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Abstract

In this thesis I will implement a system for accomplishing autonomous sailing boat
route planning. For the training I will use the public historical wind data from
satellites with a 10 km resolution. I will describe a deep reinforcement learning
system where states are fake images of wind velocity around the boat, the boat
position and orientation and the target location. For evaluating my results I
will use the Vendée Globe 2020/21 competition: a sailing boats regatta in which
competitors have to accomplish a round of the world trip without any help or
breaks. I will use wind data of the race period and I will compare my autonomous
agent’s track with the GPSes of human competitors’.
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Chapter 1

Introduction

1.1 Sailing Boat

Figure 1.1: A sailing boat
underway (1)

Sailing boats (Figure 1.1) are vehicles able to move above
water without any engine but wind. A huge amount of
designs have been tested and built during human history
starting from 3000 a.C. in Taiwan (6) to nowadays. In re-
cent years some incredibly efficient sailing boats where built
thanks to computer physical simulation and new hi-tech ma-
terials. The most used design in modern days are the yachts:
boats with a single hull, two sails, a movable boom and a
keel in the lower part underwater to prevent the boat from
falling when hit by strong wind (Figure 1.2). Unlike old
boats modern yachts are able to move (with different speed)
in all directions but a 90° angle centered in the wind coming
direction using the appropriate boom and rudder positions.
Figure 1.3 shows the speed of boats with different wind di-
rections. As we can see we can reach maximum speed with
an angle a little bit bigger than 90° respect to the wind di-
rection, we have a null speed for angle lower than 45° degrees
(Up Wind) and low speed with a 180° degrees angle (Down
Wind). Finally as expected we have higher boat speed with
higher wind speed.

Figure 1.2: The main parts of a sailing boat (2)
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Figure 1.3: The big white arrows show the wind direction, getting further away from
the circle center we have bigger boat speeds, and three lines (black, blue and purple)
show the boat speed in 3 different conditions of increasing wind intensity. The two areas
in gray show direction with null speed (Up Wind) or direction with low speed (Down
Wind). The four boats in yellow show how the sail (red) should be taken to go in that
direction.

1.2 Reinforcement Learning

Reinforcement Learning (later abbreviated as RL) is one of the three big categories of
machine learning algorithms; the other two are supervised and unsupervised learning.
RL try to optimize problems where there is a Decision Maker that interacts with an
Environment repeatedly at each time step.

1.2.1 Environment

The Environment is a mathematical object called Markov Decision Process (later
abbreviated as MDP). An MDP is composed by 4 parts (7):

1. A set of states called S

2. A set of actions for each state s called As

3. A set of probabilities for each action a of passing from state s to state s′ called
Pa(s, s

′)

4. A set of Rewards for each action a of transition from state s to s′ called Ra(s, s
′)

In Figure 1.4 an example of MDP is showed.



Figure 1.4: A representation of a MDP where we have S = {S0, S1}, AS0 = {a0, a1},
AS1 = {a0}, Pa0(S0, S1) = 0.3, Pa0(S0, S0) = 0.7, Pa1(S0, S1) = 1, Pa1(S0, S0) = 0,
Pa0(S1, S0) = 1, Pa0(S1, S1) = 0, Ra0(S0, S1) = +1, Ra0(S0, S0) = −1, Ra1(S0, S1) = +0.5
and Ra0(S1, S0) = 0

1.2.2 Decision Maker

The Decision Maker is located on a state at each time step, he takes one of the possible
actions of that state, he receives a reward from the Environment and the possibly new
state in which he is located; at the next time step we repeat the same path. The process
terminates when the Decision Maker enters in a terminal state: a state without any
actions.
Let’s make an example using the Environment (MDP) described in Figure 1.4.

• Assuming that the Decision Maker start the process in the state S0

• Let’s suppose that after some calculation the Decision Maker decides to take the
action a0

• Now the environment generates a weighted random choice (70% probability to leave
him in S0 and 30% probability to move him to S1). Let’s suppose that the Decision
Maker is left in S0 and he receives a reward of −1 as we can see in Figure 1.4.

• Let’s suppose that the Decision Maker decides to take the action a1

• The Environment brings him to the new state S1 and gives him a 0.5 reward.

• The process continues indefinitely or till a termination state.

In case the MDP have a termination (a state without any actions), we call episode the
subset of time step from the start state to the termination state (episodes can have
different time steps length). Instead in case of a MDP without a termination we can
either define a maximum number of steps before starting with a new episode or simply
have a single infinitely long episode.



1.2.3 Reinforcement Learning Optimization

To optimize a RL system we have to create a Decision Maker that analysing the states
takes the actions that maximize the sum of all the rewards of an episode. As an Example
an optimized Decision Maker always takes the action a1 from S0 and a0 from S1 in
the MDP described in Figure 1.4.
More precisely speaking we have to find out a policy π that maximizes the return R.
Assuming to have the same actions set in each state, we define (7):

π : S × A → [0; 1]

π(s, a) = probability of taking the action a being in state s

∀ŝ ∈ S we have
∑
a∈A

π(ŝ, a) = 1

and:

R =
∞∑
t=0

γtrt

Where γ ∈ [0; 1[ (usually 0.99 or 0.999) is called discount factor and it’s used to give
more importance to temporally closer rewards and rt is the reward obtained at the time
step t. The last sum of course becomes finite if episodes are finite.

1.2.4 Model Base and Model Free

We say that our RL system is Model Base when the Decision Maker knows everything
about the Environment such as the example in Figure 1.4. We instead say that we
have a Model Free RL system when the Decision Maker just knows the states and
the possible actions. The Model Free version of the MDP represented in Figure 1.4 is
displayed in Figure 1.5. Of course after some trials (in a simple scenario) it’s possible to
estimate the unknown information of the Environment and to solve the problem as a
Model Base one.

Figure 1.5: A representation of the Model Free version of the MDP represented in Figure
1.4



1.2.5 Q Learning as an Example to solve RL problems

Q Learning is a method that could be used to solve Model Free RL problems. It creates
a Q-table (supposing to have the same actions set in each state):

Q : S × A → R

Q(s, a) = The return obtained selecting action a from state s

Of course the return of each action in each state is not known and could not be calculated
in model free problems so this method approximates its values interacting with the
Environment. In practice we start assigning to each element of the Q-table the same
value and we start simulating episodes. Every time we choose action a in the state s we
update Q(s, a) in the following way:

Q(s, a) = Q(s, a) + α
[
r + γmax

â
Q(ŝ, â)−Q(s, a)

]
where ŝ is the state at which the Decision Maker is brought by the Environment
after having chosen action a, the maximum is calculated between all the possible action
â from the state ŝ and α is the learning rate. It should be noticed that the Q-value of all
the final states (states without any actions) are never updated and remain at the value
assigned at the start of the learning process to all elements of the Q-table.

1.2.6 Deep Reinforcement Learning: Deep Q Network

Q learning is a really simple and power full method but it has a big limitation: it can only
be applied when we have a reasonably small amount of states. This can be explained
thinking that we have to try all the state-action combinations in order to try to estimate
their values. To understand the maximum problem size that this method can handle
let’s make an example.
Assuming to have 300 iterations per second, 1 hour of computation time, that we need

to update each element of the Q-table 10 time for it to be reliable and that each state
has 10 actions. We can handle only 10800 states.

300·60·60
10

10
= 10800

For comparison a 4× 4 image where pixels can be either 0 or 1 has 65586 states

24·4 = 65586

and a gray scale 4× 4 image where pixels have values between 0 and 255 has 3.4 · 1038
states.

2564·4 = 3.4 · 1038

As we can see this method can only handle small problems, for solving bigger ones we
can use neural networks as function approximator: Deep Q Learning.
In practice we substitute the Q-table with a neural network that we train while simu-

lating episodes.



Chapter 2

Simpler Problems

Before trying to solve the whole autonomous sailing boat problem, I have decided to test
my RL system on simpler ones. I have started with a really easy environment where
the agent can freely move in a small wind-less world, and I have finished with the whole
Earth as agent’s world and a temporal and spatial varying wind.
I have used this approach for two main reasons:

• to find out errors in the RL implementation

• to get out an appropriate value for each hyperparameter

Of course both the above algorithm-checks are easier when the whole training of the net-
work lasts 3 minutes instead of 3 days, but why not just make a really simple environment
to check everything and directly pass to the real and highly complex one?
The answer is that I assumed the hyperparameters of similar problems to be similar,

and I slightly adjusted them passing from a problem to a sightly more complex one, but
this could probably not be done in case of a big complexity gap between them.
Following this approach slowed me during the implementation (I have implemented a

lot of different problems) but saved me a lot of time when I had to find out logic errors.
As an example, after finding out a non learning agent, you do not have any information
about where the problem in your logic is and as a consequence you have to check again
the entire program. With my approach instead, you know all the unchanged parts that
were working in the easier problem and focus just on the modified ones.
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2.1 10x10 Manhattan Problem

The world of this problem is a 10×10 board; the agent position at each time-step and the
target position are cells. The agent at each time step can move in 4 directions: North,
Est, South, West. The agent’s objective is to arrive at the target position.

(a) The green circle represents the agent location, the
red square the target location and the green arrows all
the possible actions.

(b) Here we have a representation of the network with
as input a 1 channel 10 × 10 image and as output a 4
elements vector (one for each action).

Figure 2.1: Representation of the 10x10 Manhattan Problem [a] and its Neural Network
[b]

2.1.1 States

The states are represented by 10×10 images where we have a 1 in the agent location and
a -1 in the target location, all the other cells are 0. As an example, the state represented
in Figure 2.1a is:





0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


2.1.2 Actions

The actions are 4 in each state, and they move the agent in the four adjacent cells (North,
Est, South, West). If the action moves the agent out of the grid, it instead leaves him
in his position.

2.1.3 Rewards

The agent obtains a reward equal to 1 when moving to the target cell and 0 in all other
cases.

2.1.4 Training

The environment chooses a random agent and target position at the start of episodes.
The episodes terminate only when the agent arrives to the target location (they could
be really long). During the training process, the probability of random actions is fixed
at 0.8.

2.1.5 Take Home Message

The agent was able to learn and completely solve the problem (it always chooses the
best path). This means that the RL system is working and the hyperparameters have
an appropriate value.



2.2 Always the Same Wind Problem

This problem is really similar to the previous one, but it adds wind to the world as well
as diagonal moves; the wind direction is always the same in each episodes. The agent
can move in all directions but the ones from which the wind comes from.

(a) The green circle represents the agent location, the
red square the target location and the green arrows all
the possible actions.

(b) Here we have a representation of the network with
as input a 1 channel 10 × 10 image and as output a 7
elements vector (one for each action but the direction of
wind).

Figure 2.2: Representation of the Always the Same Wind Problem [a] and its Neural
Network [b]

2.2.1 States

The states are the same as the previous problem.

2.2.2 Actions

The actions are 7 in each state, and they move the agent to adjacent cells except the
direction where the wind come from. If the action moves the agent out of the grid, it
instead leaves him in his position.



2.2.3 Rewards

The agent obtains a reward equal to 1000 when moving to the target cell and 0 in all
other cases.

2.2.4 Training

The environment chooses random agent and target positions at the start of episodes;
the wind direction is the same in all episodes. The episodes terminate when the agent
arrives to the target location (they could be really long). During the training process,
the probability of random actions is linearly decreased from 1 to 0.

2.2.5 Take Home Message

The agent understands which direction is useless (where the wind comes from) and
rapidly learns the new paths shape. I noticed how keeping the reward between −1 and 1
increases the network learning speed. This is probably because it has to spend time just
learning that it has to increase its output with a specific factor. It seems that linearly
decreasing the random actions during training increases the training speed. At the start
just random actions are accomplished (general information about the goodness of the
choices are taken out) and at the end the agent behavior is fine-tuned (more specific
information about the goodness of the agent behavior are taken out).



2.3 Temporally Varying and Spatially Constant Wind Problem

This problem is similar to the previous one but the wind direction changes at each
episode: spatially speaking it’s constant.

(a) The green circle represents the agent location, the
red square the target location, the green arrows all the
possible actions and the arrows in each square represent
the real wind direction (blue) and the discretized one
(red).

(b) Here we have a representation of the network with
as input a 3 channel 10 × 10 image and as output a 8
elements vector (one for each action).

Figure 2.3: Representation of the Temporally Varying and Spatially Constant Wind Prob-
lem[a] and its Neural Network [b]

2.3.1 States

The states are 3 channels 10× 10 images. The first channel has in each cell the distance
from the agent location, the second one has in each position the distance from the target
location and the third one has the discretized wind position in each cell (all cells always
have the same value). An example of the three channels in a smaller 5×5 grid is reported
below:

Distance from the Agent =


0.1414 0.2000 0.3162 0.4472 0.5831
0.0000 0.1414 0.2828 0.4243 0.5657
0.1414 0.2000 0.3162 0.4472 0.5831
0.2828 0.3162 0.4000 0.5099 0.6325
0.4243 0.4472 0.5099 0.6000 0.7071





Distance from the Target =


0.8000 0.7071 0.6325 0.5831 0.5657
0.7071 0.6000 0.5099 0.4472 0.4243
0.6325 0.5099 0.4000 0.3162 0.2828
0.5831 0.4472 0.3162 0.2000 0.1414
0.5657 0.4243 0.2828 0.1414 0.0000
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2.3.2 Actions

The actions are 8 in each state, and they move the agent in the adjacent cells (North
North-Est, Est, South-Est, South, South-West, West, North-West). If the action moves
the agent outside from the grid or against the wind, it instead leaves him in his position.

2.3.3 Rewards

The agent obtains a reward equal to 100 when moving to the target cell and minus the
distance from the target otherwise; 5 is subtracted if it’s trying to go against the wind.

2.3.4 Training

The environment chooses random agent and target positions and wind direction at the
start of episodes; the wind direction is the same in all cells. The episode terminates
when the agent arrives to the target location or after a maximum number of time steps.
During the training process the probability of random actions is linearly decreased from
1 to 0.

2.3.5 Take Home Message

Giving a reward not just at the end of the episode increases the learning speed: the
agent starts learning also while trying to reach the first target and not just when it
really reaches it. At the start all actions are random and it’s hard for the agent to reach
the target point; setting up a maximum number of time steps it’s able to see different
setups without waiting to reach the first target.



Chapter 3

The System

Figure 3.1: The green diamond represents the start location, the red one the agent
location, the purple one the target location, the red arrow the wind direction, the yellow
arrow the boat direction and the purple arrow the target direction based on the current
agent position. On the bottom right we have some parameters such as the boat speed,
the wind speed, the time elapsed from the start (and the number of time steps in the
square brackets), the current, the starting and the last delta angular distance of the agent
from the target location and the cumulative, last step and last episode rewards. On the
top left it’s possible to see the wind speed along with the latitudinal and longitudinal
directions.
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3.1 Data

As common in artificial intelligence I have used a lot of real data. More precisely I have
used three different sets of data:

• World Sea Surface Wind data 0.25° spatial and 6h temporal resolutions (3)

• Polar Speed data for sailing boats (8) (9)

• GPSes of real competitors in Vendée Globe 2020/21 (5)

3.1.1 Wind Data

Wind data at each time step are composed by two 720 × 1440 matrices, the first one
having for each pixel the wind latitudinal speed (in knots) and the other having the
longitudinal one. I have modified the data in two ways: first of all I have transformed
the speeds from knots to m

s
and secondly I have set both the speeds to 0 on lands to

prevent the boat from becoming an amphibious. I have downloaded and used, both for
training and validation, data from November 2020 to February 2021.

Figure 3.2: Example representation of the world wind data.(3)

3.1.2 Boat Speed Data

In my physical model I have used what is called the Polar Diagram of a boat for having
an idea of the boat speed in each wind direction and speed conditions. What a polar is
and how it’s built was shown in Figure 1.3. I have found out a project (9) that takes out
polar diagrams from the ORC (Offshore Racing Congress) data set of a wide range of
boats. More precisely I have chosen a boat really similar to the ones that are competing
in length, weight and performances: Vesper shown in Figure 3.3.



Figure 3.3: The boat from which I have taken the polar data for simulations during a
race in May 2023 near Naples.(4)

3.1.3 Vendée Globe 2022 GPS Data

To validate my results I have used the GPS data from the Vendée Globe competition
of 3 competitors. These data were not public, so I have asked for them directly to the
race organization that kindly answered sending them to me. The three boats that I
have chosen are respectively: the winner Yannick Bestaven (Mâıtre CoQ IV), the 8TH

Giancarlo Pedote (Prysmian Group) and the 25TH Ari Huusela (Sark). The competition
had started in November 2020 in Lorient (France) and had finished in February 2021 in
the same place.

Figure 3.4: The three Vandée Globe participants and their boats that I have chosen for
validating my experiments. From left to right Yannick Bestaven, Giancarlo Pedote and
Ari Huusela.(5)



3.2 Physical Model

The whole physical model is composed of two parts: the wind and the boat. The first one
is simply composed of a couple of matrices that associate to each place on earth a wind
velocity vector. Properly updating the time we are able to take care of the temporal
changes of wind (I have new data every 6 hours). Just with that the best we can do
for estimating the wind vector in a given spatial and temporal location is by using a 3D
linear interpolation (latitude, longitude and time); more information about this in A.3.

Let’s talk about the boat. Assuming a generic time step in which we know the boat
position and orientation; we give the possibility to the driver to change the boat’s ori-
entation clockwise, anticlockwise or not to change it at all. After that we calculate the
relative angle between the boat and the wind directions, we calculate the wind speed in
the boat’s position and we get out the boat speed from the polar wind data with a 2D
linear interpolation (boat-wind relative angle and wind speed); more information about
this in A.2.

In conclusion we simply integrate over a predefined amount of time the boat position
with the speed that we have found and we start again the process with a possibly new
position; it doesn’t change just in case of null wind speed or relative angle lower than
45°. The whole process is repeated at each iteration.

3.2.1 Parameters

The only parameter that we have to choose in the physical model is the integration
time interval. It turns out to be a really important and sensitive parameter. With a
big integration time the RL agent needs to take much fewer decisions and it can better
understand how good or bad its actions are (we have big changes in the positions); in
simpler words the training is faster and simpler. But if we look at the other side of it,
we will have bigger and more unpredictable changes in wind direction on adjacent time
steps and the RL agent will limit itself by analyzing only the current one.

Choosing a small integration time we will end up with a huge number of actions that
the agent needs to take. As a consequence each action will be less important for the bigger
result and harder to be correctly evaluated; we will have a slower and harder training.
Of course if we look at the other side of it, we will have a much smoother change of
wind direction and the information about the surrounding conditions will become more
important.

3.3 Reinforcement Learning

Let’s now explore the Reinforcement Learning part of the system. Like the simpler ones
the problem was treated with a deep Q-network solution.

3.3.1 States

States are composed of two parts. The first one is a 2 channels 128 × 128 fake image
with the latitudinal and longitudinal wind speed from a square area of 1000 km around
the boat. The second one is instead a vector of 7 elements with values between 0 and 1.
More precisely the vector components are: the normalized boat direction angle respect to
north, the normalized direction angle of the vector that points to the target point respect
to north, the normalized wind direction, the normalized wind speed (40m

s
was arbitrarily

set as the maximum accepted speed), the normalized boat speed (30m
s
was arbitrarily

set as the maximum accepted speed), the normalized angular distance to the target (the



starting angular distance was set as the maximum) and the normalized maximum of
episode steps (the maximum number of episode steps was previously set).

Final State

There are 3 ways to conclude an episode or equivalently arrive in a final state:

• Having already done the maximum number of steps

• Being at less than a predefined distance from the target location; more precisely the
angular distance is used, for more information see Appendix B

• Being at more than double the starting episode distance from the target location;
the angular distance is used

3.3.2 Actions

The possible actions are 3: rotate the boat clockwise, anticlockwise and not rotating the
boat at all.

Parameters

The only parameter of the actions part is the rotation step. In order to give importance
to each action it’s good that it’s as big as possible but also not too big, in such a way
that the boat is able to go near to 45° facing the wind; otherwise it’s not able to properly
move against it. The chosen rotation step was π

8
.

3.3.3 Rewards

I have tried an high number of reward functions and as I expected they changed a lot
the training speed and effectiveness. I will report the last and more effective one.
The sum of all the rewards in an episode is constrained between 0 and 100; more

precisely it’s composed of two parts that are constrained between 0 and 50 and that are
summed to obtain the final reward. The first part is about space; more precisely relative
to how close the agent arrived to the target point respect to the starting distance from
it. The second one is about time; more precisely relative to how fast the agent obtained
the result. Mathematically speaking at each non final step t we have a reward of:

rt = 25 · distancet−1 − distancet
distancet0︸ ︷︷ ︸

Spatial Part

− 50

maximum number of steps︸ ︷︷ ︸
Temporal Part

where distancet is the distance from the position of the boat at time t and the target
point; more precisely I have calculated the angular distance along the circumference
passing through both the target point and the boat position on the approximated earth
sphere, more information in Appendix B.
Each final state t takes instead a reward of

rt = 50 where t is a final state

Some Examples

Let’s make some examples to clarify this equation.
Let’s start by analyzing an episode in which the boat is not smart at all and it always

moves away from the target. There are two possible conclusions to such an episode:



• The maximum number of steps is reached

• The starting distance from the target is doubled

In the first scenario we will have a Spatial Part << 25 and a Temporal Part = 0, so a
final recall:

R =

Maximum Number of Steps∑
t=0

rt << 25

In the second scenario we will have a Spatial Part = 0 and a Temporal Part << 50, so
a final recall:

R =

Maximum Number of Steps∑
t=0

rt << 50

Generally speaking we will have in both cases really low recalls.

Let’s analyze the scenario in which we have a boat that simply stays at the starting
point. The only possibility of conclusion is to reach the maximum number of steps. We
would have a Spatial Part = 25 and a Temporal Part = 0, so:

R =

Maximum Number of Steps∑
t=0

rt = 25

We turn out to have a better reward than in the previous example but of course still a
poor one.

In conclusion let’s analyze the scenarios in which we have a really smart boat that
arrives to the target location firstly using 1

2
of the time steps and secondly 1

5
of them. In

the first case we would have a Spatial Part = 50 and a Temporal Part = 25, so:

R =

Maximum Number of Steps∑
t=0

rt = 75

and in the second scenario we would have a Spatial Part = 50 and a Temporal Part = 40,
so:

R =

Maximum Number of Steps∑
t=0

rt = 90

3.3.4 Neural Networks

The Neural Network is composed of two parts: a convolutional one that takes care of
the fake images and a fully connected one that merges the output of the first one and
the normalized numbers shown in the State description 3.3.1. A representation of both
the parts is shown in Figure 3.5 and 3.6.

More precisely the input of the fully connected network is a concatenation between
the 36 output elements of the convolutional one and the 7 numbers explained in 3.3.1.
Its output is a 3 entries vector that should contain the expected recall of each action:
turn clockwise, anticlockwise and do not turn at all.

This network is used as a function approximator, so the ReLU activation function
was chosen.



Figure 3.5: Here we have a representation of the small convolutional part of the network
that takes as input the 2 channels fake image with the wind speed around the boat and
returns a vector of 36 numbers. In each convolution a stride of 4 is used.

Figure 3.6: Here we have a representation of the Fully Connected part of the network. It
takes as input vectors of 43 elements: 36 from the output of the convolutional part and
7 that are the normalized elements shown in 3.3.1. It gives as output 3 numbers that are
the expected episode rewards taking respectively the turn clockwise, anticlockwise and
do not turn actions.

3.4 Training

The training process of the final model was of course more complex and long than the
already reported simpler problems ones; in the following I will show and comment the
three more important training sessions.

3.4.1 Training Setup

The training episodes were built with different wind conditions randomly choosing a day
amongst the data, and choosing random start and target location amongst the Vandée



Globe checkpoints that are shown in Figure 3.7 (If the i checkpoint has been chosen as
starting point the i+ 1 checkpoint is always chosen as target point).

Figure 3.7: All the Vandée Globe Checkpoints numerated. The rules state that you need
to pass near to checkpoint 1/6 after having reached both checkpoint 0 and 5.

3.4.2 Motor Boat General Training

After having tried to train the entire model without obtaining any results I have tried
to simplify the problem by giving the boat the possibility to go in any direction with
the same speed; in practice I have given a motor to my sailing boat. I have linearly
decreased the random actions probability from 1 to 0.2 along the training obtaining in
a really fast way good results. The mean episode reward and the loss along training is
shown in Figure 3.8a and Figure 3.8b.

(a) (b)

Figure 3.8: Mean Episode Reward [a] and Loss [b] along the training of the simplified
version of the problem



3.4.3 Sailing Boat General Training

Starting with the weight trained as shown in the last section I have come back to the
full problem of sailing boats. Also during this training session I have linearly decreased
the probability of random actions but between 0.8 and 0.2 this time. The mean episode
reward and the loss along training is shown in Figure 3.9a and Figure 3.9b.

In the last part of the training, when there was a low number of random actions,
the episode reward clearly decreased highlighting a not completely successful training.
Trying the weights with different checkpoints I figured out the problem: the agent was
really good when near Antarctica with strong and spatially constant wind but got stuck
in Pacific due to really close to the coast passage and highly spatially variable wind.
With an high probability of random moves it was able to avoid getting stuck but it was
not able to learn a general behaviour to avoid that.

(a) (b)

Figure 3.9: Mean Episode Reward [a] and Loss [b] along the training of the full version
of the problem. In the last part of the training, when random actions were more rare
the episode reward clearly decreased.

3.4.4 Sailing Boat Specific Training

The solution to the problems shown in the last section was simply to train the model
more specifically on the Atlantic ocean starting from the weighs obtained in the previous
training. During this training I have kept the probability of random moves lower (linearly
decreased from 0.5 to 0) and after some starting steps really good results were obtained.
The mean episode reward and the loss along training in the Atlantic Ocean is shown in
Figure 3.10a and Figure 3.10b.



(a) (b)

Figure 3.10: Mean Episode Reward [a] and Loss [b] along the training of the full version
of the problem specifically for the Atlatic Ocean. After a first part of not learning a good
increasing of the episode reward can be seen.



Chapter 4

Results

4.1 Vandée Globe Validation

For validating my results I have compared the real sailor GPSes and my Agent’s track
in the Vandée Globe competition of 2020/2021.

4.1.1 Competition Rules

The race begins and finishes in the French city of Lorient. The competitors have to pass
near 6 checkpoints in a streak order and come back to the start point: Lorient. The
competition started on the 11th of November 2020. Of course I used and kept updated
the wind data of that period to validate my RL agent decisions. All the checkpoints are
shown in Figure 3.7.

28



Figure 4.1: Screenshot of the GPSes almost 8 days after the virtual start of the competi-
tion. In yellow Yannick Bestaven, in light blue Giancarlo Pedote, in orange Ari Huusela
and in red my agent.



Figure 4.2: Screenshot of the GPSes almost 20 days after the virtual start, approaching
the second checkpoint. In yellow Yannick Bestaven, in light blue Giancarlo Pedote, in
orange Ari Huusela and in red my agent.



4.1.2 Validation Result

In conclusion I show the whole GPSes of the virtual regatta in Image 4.3 and the arrival
data and time for each of the analyzed sailors in Table 4.1. I want to highlight the two
main parts in which the agent has taken different decisions respect to humans shown
in Figure 4.3b and 4.3c. In 4.3b it has decided to stay closer to the coast and to go
against the wind while humans have chosen to stay more further away from land with a
more manageable wind. In 4.3c it has decided to pass closer to Antarctica than all the
humans.

(a)

(b) (c)

Figure 4.3: The whole GPSes track of the competitors in my virtual Vandée Globe race
[a] and two parts in which the agent has taken different decisions respect to humans:
[b] and [c]. In yellow Yannick Bestaven, in light blue Giancarlo Pedote, in orange Ari
Huusela and in red my agent.



Boat Arrival Date Arrival Time

Yannick Bestaven 28-01-2021 03:00
Giancarlo Pedote 28-01-2021 12:00
My RL Agent 04-02-2021 16:00
Ari Huusela 05-03-2021 07:00

Table 4.1: Arrivals date and time for the three selected sailors and my RL agent. They
have started the virtual regatta on the 11th of November 2020.



Appendix A

1D/2D/3D Linear Interpolation

A.1 1D

Figure A.1: Representation of a 1D-linear interpolation of f : R → R on a point C
located between {A,B} ∈ R where the function values {f(A), f(B)} ∈ R are known.

Assuming A = x0, B = x1, C = x ∈ R, x0 < x < x1 and to have a function f : R → R
and f(C) = f(x) is unknown but f(A) and f(B) are known. We can find y in the
following way.

Considering the ACD triangle we have:

tan(α) =
CD

AD
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Considering the ABE triangle we have:

tan(α) =
BE

AE

So we have:
CD

AD
=

BE

AE
y − y0
x− x0

=
y1 − y0
x1 − x0

After some calculation we find out:

y = y0

(
x1 − x

x1 − x0

)
+ y1

(
x− x0

x1 − x0

)
For later use we can define:

∆1(x0, x, x1, y0, y1) = y0

(
x1 − x

x1 − x0

)
+ y1

(
x− x0

x1 − x0

)
(A.1)

A.2 2D

Figure A.2: Representation of a 2D-linear interpolation of f : R2 → R on a point G
located between {A,B,C,D} ∈ R2 where the function values {f(A), f(B), f(C), f(D)}
∈ R are known.

Assuming A = (x0, y0), B = (x0, y1), C = (x1, y0), D = (x1, y1), G = (x, y) ∈ R2, x0 <
x < x1, y0 < y < y1, and to have a function f : R2 → R and f(G) = (x, y) is unknown



but f(A), f(B), f(C) and f(D) are known. We can find f(G) in the following way.
First of all we find out f(E) = f(x, y1) and f(F ) = f(x, y0) using 1D interpolation:

f(E) = ∆1(x0, x, x1, f(B), f(D))

f(F ) = ∆1(x0, x, x1, f(A), f(C))

and after that we find out F (G) with another 1D interpolation:

F (G) = ∆1(y0, y, y1, f(F ), f(E))

For later use we can define:

∆2(x0, x, x1, y0, y, y1, f(A), f(B), f(C), f(D)) =

∆1(y0, y, y1,∆1(x0, x, x1, f(A), f(C)),∆1(x0, x, x1, f(B), f(D)))



A.3 3D

Figure A.3: Representation of a 3D-linear interpolation of f : R3 → R on a
point O located between {A,B,C,D,E, F,G,H} ∈ R3 where the function values
{f(A), f(B), f(C), f(D), f(E), f(F ), f(G), f(H)} ∈ R are known.

Assuming A = (x0, y0, z0), B = (x0, y1, z0), C = (x1, y0, z0), D = (x1, y1, z0), E =
(x0, y0, z1), F = (x0, y1, z1), G = (x1, y0, z1), H = (x1, y1, z1), O = (x, y, z) ∈ R3,
x0 < x < x1, y0 < y < y1, z0 < z < z1 and to have a function f : R3 → R and
f(O) = (x, y) is unknown but f(A), f(B), f(C), f(D), f(E), f(F ), f(G), f(H) are
known. We can find f(O) in the following way.

f(M) = ∆2(y0, y, y1, z0, z, z1, f(A), f(B), f(F ), f(E))



f(N) = ∆2(y0, y, y1, z0, z, z1, f(C), f(D), f(H), f(G))

f(O) = ∆1(x0, x, x1, f(M), f(N))

For symmetry we can define:

∆3(x0, x, x1, y0, y, y1, z0, z, z1,

f(A), f(B), f(C), f(D), f(E), f(F ), f(G), f(H)) =

∆1(x0, x, x1,

∆2(y0, y, y1, z0, z, z1, f(A), f(B), f(F ), f(E)),

∆2(y0, y, y1, z0, z, z1, f(C), f(D), f(H), f(G)))



Appendix B

Angular distance between two
Points on a Sphere

Figure B.1: A red spherical surface centered in (O) with two points on it (A and B) and
the construction of the angular distance α between them.

To calculate the distance between points on earth I have used the angular distance
approximating the earth to a sphere. More precisely I called angular distance the size of
the angle α shown in Image B.1 where we want to calculate the distance between A and
B with O in the center of the sphere.
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