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Sommario

L’obiettivo di questa tesi e di simulare i processi di fagliazione in un semispazio poro—
elastico tramite un approccio numerico, l'implementazione del quale € presente nei
programmi pegrn/pecmp. In questa tesi sono stati studiati i tipi di faglia trascorrente,
normale e inversa. I campi di spostamento superficiale co—sismico e post—sismico e di
pressione di poro in profondita sono stati calcolati e visualizzati in sezioni orizzontali.
Nel primo capitolo e stata introdotta la teoria elastica, presentando le relazioni costi-
tutive elastiche per lo sforzo e la deformazione. Successivamente, & stata presentata la
teoria della poro—elasticita che ci permette di tener conto della presenza di fluidi nei
pori delle rocce. Nella sezione successiva, vengono introdotti i meccanismi di fagliazione
e gli ambienti tettonici. Questo ci permette di determinare le geometrie di faglia che
possono essere attese in base all’ambiente tettonico. Tramite 1’assunzione di un semi-
spazio omogeneo poro—elastico, i tre differenti tipi di faglie sono stati studiati. Prima
di riportare i risultati, viene specificata configurazione dei programmi.



Abstract

The focus of this thesis is to simulate the faulting processes in a poro—elastic half-space
through numerical approach, the implementation of which is present in the programs
pegrn/pecmp. In this thesis the strike—slip, normal and thrust fault types are studied.
The surface co—seismic and post—seismic displacement and pore—pressure fields at depth
are computed and plotted in horizontal section maps. In the first chapter the elastic
theory has been discussed, introducing the elastic constitutive relations for stress and
strain. Next, the theory of poro—elasticy has been introduced which allows us to study
the presence of fluids in the pores of the rocks. In the next section, the faulting mech-
anisms and the tectonic environments are introduced. This allows us to determine the
fault geometries that can be expected depending on the tectonic environment. Through
the assumption of a homogeneous poro—elastic half-space, the three different fault types
have been studied. Before reporting the results, the configuration of the programs is
given.
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Chapter 1

Introduction

Figure 1.1: Distribution of the earthquake hypocenters with Richter magnitude 5 and
higher that took place in Italy in the last century. The image intends to give an idea
of the scale of the phenomena: the vertical lines represent the quake’s depth, while
the point size illustrates the magnitude relative to Richter magnitude 9 quakes and the
location of epicenter of the event, an adaptation from Wolfram| (2023).

The purpose of this thesis is the characterisation of the poro—elastic rebound due
to strike—slip, normal and thrust fault types in a poro—elastic half-space. Poro—elastic
rebound is a process which can be observed at the surface in terms of a displacement



field varying as a function of time, in near field conditions, that is at a distance from
the epicenter (e.g. Fig. 1) smaller than the source fault dimension. Faults are surface
discontinuities of the crust which host the nucleation point, also called hypocenter, of an
earthquake process. For this reason faults are also called earthquake sources. With the
aid of software made by |Wang and Kiimpel (2003) implementing the equations of poro—
elasticity, the rebound phenomena is accurately simulated and the results presented.

In order to properly model the phenomena, following the theory of poro—elasticity
by [Biot| (1941)), it is necessary to account for the presence of fluids in the medium.
Specifically, if it is mainly composed by rocks, then the fluids have to reside in embedded
sacks known as pore, which inevitably become interconnected over time due to the
natural tendency of the fluid to erode and infiltrate. In this chapter the strain and
stress tensors and the constituive equation relating them in the case of elastic and
poro—elastic media are introduced. Finally we introduce fault features related to the
principal tectonic environments.

1.1 Strain and stress tensors

The small deformations of a body are expressed by the elastic strain tensor, given
by the symmetric part of the displacement gradient,
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Its diagonal components give the relative variation in length along z1,x9 and x3

<1, (1.1)

axes.
Due to its symmetry, the eigenvalue A borne out of the related eigensystem

5ijnj = )\TLZ (1'2)

equally measures the relative variation in length along the so—called principal axis i.

1.1.1 Decomposition of the strain tensor

Each tensor can be split into so—called deviatoric and isotropic components. The de-
viatoric part is constructed as trace—less, while the trace is used to construct a diagonal
tensor.

The elastic strain tensor ¢;; is then separated into a superposition of a deviatoric
part, altering solely the shape of the body, and an isotropic deformation associated to
the volume change, the isotropic part, as given in (Greenshields and Weller| (2022]),

Ekk Ekk
€ij = (Eij — —57;j> + _dij- (1.3)
3 3
The trace of the strain tensor e gives the relative variation in volume due to a
deformation. Thus, when the trace is zero, only the shape of the body is being altered
and the forces causing it are said of pure shear.



The first component in the strain tensor decomposition as in Eq. (1.3) is identified
as its deviatoric component, giving the variation in shape of the body, while its second
component only characterises the relative variation in volume.

1.1.2 Stress tensor

The surface force field T; acting on a surface with normal fi per unit area, measured
in [T;] =Pa and identified as the traction, is obtained by projecting the local normals
n; to the body onto a field 7,

Tl‘ = TijjNnj. (1.4)

This field 7;; is known as the stress tensor, and its unit of measurement is obtained
from the previous relationship, [7;;] = Pa, as the normals are taken unit-less.

The stress tensor is symmetric and thus, diagonalisable by means of the eigensystem

TigMy = 0Ny, (1.5)
where 0 are the eigenvectors, giving the so—called principal axes.
The three eigenvalues o are identified as the principal values.
The stress tensor is also decomposable in a deviatoric and isotropic part,

T T
Tij = (Tij - %&'j) + %51'1" (1.6)

The isotropic component gives the average normal force per unit of area, identified
as minus the mean pressure, while its deviatoric component encodes the tangential
forces responsible for the shape variations, known as the shear forces.

1.1.3 Work of deformation

The strain and stress tensors are linearly dependent in the regime of small-deformations.
On the contrary, the experimentally measured stress—strain relationship isn’t linear af-
ter a certain ratio threshold has been met. This fact explains how plastic and elastic
deformations can both coexist. The first ones are characterised by being spontaneously
irreversible, and thus have a non-zero deformation work W spent to perform a cyclic
transformation.

Working with the assumption of elastic behaviour requires all deformation processes
to be adiabatic or isothermic transformations. In our case, temperature does not vary
and neither does the total work of deformation, as shown in the work of |[Landau et al.
(1986),

W = %Tij déij = O, where dW = Tij déij. (17)

This means that it is not possible to permanently store any energy in an elastic
material, as it will spontaneously revert to its initial configuration of no deformation.

In practice, elastic deformation processes are isotherms under the assumption that
the rate of deformation is much lower than the rate of propagation of the thermal
equilibrium. Under this assumption, the body continuously deforms at a constant
temperature.



1.1.4 Stress—strain elastic constitutive equations

The stress tensor is linearly dependent on the strain tensor in the limit of elastic
behaviour. For an elastic isotropic body, the moduli of compression K and rigidity u
are the sole needed to determine the strain—stress relations,

1S
Tij = KEkk(Sij + 2u (Eij — %51]) . (1.8)

The elastic parameter K, the bulk modulus or modulus of hydrostatic compression,
is calculated as

2

and is measured in [K]| = Pa.

The coefficients A and g on which it depends here introduced are identified as the
Lamé elastic parameters. Their units of measurement are [A\] = [u] = Pa and a typical
range of values is of the order of GPa for the rocks of the crust.

The velocity of the primary and secondary waves vy, ve in earthquakes are functions
of the Lame elastic parameters,

[A+2
v = i ,ua U2 = \/Ea (110)
p p

where p is the density of the medium in which the waves propagate.

Role of the elastic parameters

The bulk modulus K determines the relative variation in volume of the body in the
ways prescribed by the equation
erp = ;L[? (1.11)
derived from the stress—strain relationship Eq. , as the trace of the second term is
Zero.
One can find that due to the linearity of the strain—stress relations, the inverse
constitutive equation is given by

Thk 1 Thek
€ij = 9—K5ij -+ @ (Tij — ?5Z]> . (1.12)

1.1.5 Young’s modulus and Poisson’s ratio

Isotropic elastic media can be characterised by different couples of parameters.

For instance, for the case of a vertical displacement of a rod under the traction 733
applied along its axis of symmetry, x3, the relative variation in length of the rod is
given by the component of the strain tensor,

.
£33 = % (1.13)



The parameter E introduced is Young’s modulus of extension or compression. Such
coefficient gives us means of estimating how much an increase in the applied traction
results in a deformation. It is given by the expression

9K

= 1.14
SK (1.14)

measured in the same units as pressure, [E] = Pa.

Figure 1.2: Various stages of the elastic deformation for an ideal elastic material. The
block is fixed on the left by a support while being subjected to a tensile load of various
force magnitudes in its rightmost extremity, by Wolfram (2022).

In this case of homogeneous vertical deformation, with x3 as axis of symmetry, it is
found that along the transverse directions the other diagonal components of the strain
tensor have to be equal in magnitude. By using Eq. , such components are found
to be linked to the relative variation in length through the formula

€11 = €22 = —VEss, (1.15)

where the ratio of the transverse compression to the longitudinal extension is defined
as Poisson’s ratio v. It takes values in the range between -1 and 1/2,

3K —2u
= 1.16
v 6K +2u’ (1.16)
and it does not have a unit of measurement.
Thanks to Eq. (1.16)), the Eq. (1.12)) can be expressed as
1 v
5ij = ﬂ (Tij — —1 I VTkk(Sij> . (1.17)

1.2 Theory of poro—elasticity

Sponges are optimal examples of poro—elastic media, and this is because their porous
structure, within which fluids can infiltrate and reside in, is able to spontaneously regain
its shape after being deformed.



In order to describe such a structure, fluid—mechanical theories have to be included
into the theory of elasticity. This is done by means of including an additional fluid—
related element in the work of deformation Belardinelli and Bonafede| (2022)),

dW = 73 dej; + pdo, (1.18)

where p is the pressure of the fluid inside the pores, known as the pore—pressure in the
theory of poro—elasticity, and v is the volume of fluid per unit of volume of medium,
and thus does not have an associated unit of measurement.

1.2.1 Constitutive equations

To derive the strain—strain relations for a poro—elastic medium, the linearity is
exploited to represent the general deformation as a superposition of effects.

If the pore—pressure is zero, the equations are the ones of elasticity given by Eq.
, where the coefficients are the modulus of rigidity p and Poisson’s ratio v.

In order to keep the pore—pressure constantly zero, as assumed, the volume of fluid
v has to vary if a stress is applied. Specifically, it varies proportionately to the applied

stresses,
Tkk

T 3H'
The constant of proportionality H here introduced is such that its inverse gives ex-

(1.19)

actly the volume of fluid expelled by an unitary volume of material after the application
of a an unitary confinement pressure pc, given by

T
o = —%. (1.20)

On the other hand, by enforcing a constant and uniform stress field 7;;, the strain

tensor has to vary proportionately to the pore—pressure,
Eij = 31;15” (1.21)

The proportionality coefficient H is exactly the one previously introduced, although
in this context it gives the relative increment in volume of an unitary volume element
of the medium due to an unitary increment in the pore—pressure, while the stress field
is kept null. Tt is then measured in [H]| =Pa, as is the pore—pressure.

The relative variation of the fluid volume is linearly dependent on the pore—pressure
under such assumptions, »

V== (1.22)

The parameter R gives the relative variation of fluid volume inside the medium
due to an expansion or contraction of the pores set off by an unitary increase of the
pore—pressure. It is measured in [R] =Pa, as v is unit-less.

Consequently, by the assumed linearity of the strain—stress relations, the separately
studied effects can be superimposed to yield the general-case deformation scenario,
given by the simultaneous equations

1 v
€ij = ﬂ (TZ] 1+ Tkk(gw) 3H57,j; (123)
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1.3 Poro—elastic coefficients

It is found that to these equations are associated the extensions of Young’s modulus
E and Poisson’s ratio v to poro—elasticity, identified as the drained coefficients.

Undrained regime takes place when the medium has no outflow of fluid and thus,
the system loses no mass, [Wang and Manga| (2021)).

By increasing the pore—pressure, the material expands as the fluid pushes against
the inner surfaces of the pores. On the contrary, by increasing the confinement pressure
pc, the material contracts. This is expressed by means of the strain tensor’s trace,

o 1-2v . p (1.25)
Ekk - 2[[,[/(1 + V)Tkk H? .
where the drained incompressibility K is,
20 (1
K=y | _ 20ty (1.26)
OV lp=0  3egrlp=0 3(1—2v)

and is measured in [K] = Pa.
Furthermore, the expression for Young’s drained modulus £ is found by subjecting
the body to uniaxial traction,
T11

E=— =2u(l+v). (1.27)
€11 Ip=0

For an elastic and pore—less material under the effect of an external balancing

pressure field equal to the internal pore-pressure 7;; = —pd;;, the strain tensor at
equilibrium is given by
p
€ij = ———0j; (1.28)
1) ?)KS 1)

The coefficient Kg is the incompressibility for the solid matrix.
Through direct substitution into the constitutive equations Eq. ) and ( -
a correlation between the elastic and poro—elastic parameters emerges7

111
S 1.2
H K Ks (1.29)

While, from an analysis of the pores’ volume variation, the following is established

111

= 1.
R0 s (1.30)

where vg is the initial volume of fluid present in the pores.



1.3.1 Skempton’s coefficient

In the regime of compressible flow, the fluid’s relative density varies proportionally
to the pressure it undergoes,
Ap_p
p  Kr’
where K is the coefficient of incompressibility for the fluid.

(1.31)

Through this result, the variation in fluid mass is evaluated by its associated dif-
ferential equation. Assuming that no fluid mass is lost from the application of an
impulsive stress field 7;;, working in the undrained regime, an associated pore-pressure

p is generated,
B
P = =g Thks (1.32)

where B is known as Skempton’s coefficient.
It is given by the inverses of the previously introduced elastic coefficients,

KKp
Kp (K—HU())-FHKU().

B = (1.33)
To better understand its significance, in a very porous matrix where the fluid is still
in its liquid phase, such as in sedimentary materials next to the surface, Skempton’s
coefficient is approximately unitary.
The coefficient takes the value of

B =~ (1.34)

| =

when the solid or fluid phases of the fluid are extremely compressible.

Skempton’s coefficient models the undrained Poisson’s ratio v, as B = 1 gives the
maximum value of v, and B = 0 gives the lowest.

In undrained conditions, [Rice and Cleary| (1976) gives the poro—elastic equations

1 v 3(vy — V)

€ij = — | Tij — ——Tkr0i; + 0ij 1.35

ST ( U 4y BT B(l—i—y)(l—l—yu)p K (1.35)

In the early stages after a earthquake’s (postseismic stages), a transition of the soil

from an undrained to a drained regime takes place as the fluid begins to flow due to

the acting stresses. This means that the poro—elastic equations have to be solved in the
post—seismic phase.

1.3.2 Darcy’s law and hydraulic diffusivity

The motion of fluids in porous and permeable media is described by Darcy’s law.

In a configuration in which a reservoir of fluid is suspended at a certain height
and forced to flow downwards through a porous and permeable material, if a pressure
gradient due to gravity is present, then the flux of the fluid is proportional to the
effective pressure gradient Vp* = Vp — p;g. Particularly, if the density of the fluid p
is constant, then the effective pressure is given by p* = p — prgz.

9



The volume of fluid that goes through the porous and permeable material per unit
of area and time ¢ is inversely proportional to the height A of the material column
and directly proportional to the difference in effective pressures through the ratio of

permeability k and viscosity 7,

k
q= —EVp*. (1.36)

The vectorial form is a generalisation due to the gradient.

Darcy’s law together with the diffusion and equilibrium equations end up defin-
ing the quasi—static evolution equation of a poro—elastic material with compressible
components,

0%-
335]-

=0 D% (ot ) = 5 (ome + )
=0, DV (Ukk-i-B = 5 O'kk-i—B , (1.37)

where D is the hydraulic diffusivity coefficient, measured in [D] = m?s~!. The hy-

draulic diffusity is related to the permeability of the medium.

1.4 Faulting processes

Materials rupture whenever a certain stress threshold is met. This principle is ex-
tendable to the study of faulting processes in the crust, as the friction between adjacent
blocks of the tectonic plaques, along the fault surfaces, allows for the sudden release of
energy, which in turn alters the equilibrium of the fluids residing in the ground.

Faulting events in elastic media are due to a stress configuration with non—vanishing
deviatoric part. The rupture happens on a plane intermediate with respect to the ones
associated to the eigenvectors relative to the maximum and minimum eigenvalue of the
stress tensor.

The first classification of faults is done through the brittle-elastic model which poses
a finite resistance to fractures, where the maximum shear stress reaches the threshold
value called shear strength of rocks. Once this value is reached, the faulting process
takes place and the adjacent blocks undergo a relative sliding along the faulting plane.

Tensile fractures instead take place when the maximum principal stress o) is pos-
itive and greater than a material-specific threshold. Tensile fractures are characterised
by a rupture along the plane of the body, perpendicular to the associated eigenvector
for o3,

The surface of the Earth is assumed stress—free, neglecting the atmospheric pressure
and wind shear stresses, and this causes the vertical axis to have an eigenvalue of zero.

At large depth, below the lithosphere, the stress tensor is only given by its isotropic

component,
Tij = —PiitOij (1.38)

where py;; is the lithostatic pressure.
The lithostatic pressure is given as a function of the depth of measurement z, the
density of the ground p and atmospheric pressure pagm,

Diit = P92 + Patm- (1.39)
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Near the surface, in the lithosphere, the tectonic motions give rise to an additional
component h;j,
Tij = hij — Pitdiy, (1.40)

with principal values o, given i = 1,2, 3.

The deviatoric component of h;; matches the one of 7;; and is responsible for the
ruptures of the rocks, which take place when a certain shear stress threshold is reached,
we define 5

p= —% = —% + it ~ pLt, 2 > lkm. (1.41)

The deviatoric stress tensor becomes then 7;; + pd;; and its three eigenvalues are
o) 4+ P, given i = 1,2, 3. Because it has zero trace, if the eigenvalues are taken to be
ordered based on their respective index, then o) + 7 is associated to the maximum
compression and 0®) + p to the maximum tension.

Only in the case of near-surface conditions, due to a limited lithostatic pressure,
tensile fractures can happen. Therefore, at larger depths any sort of relative motion of
rock blocks during the fracture process must be tangent to the surface of contact of the
blocks as it is for a shear fracture.

In the end, it is expected that such fractures happen on planes next to the maximum

shear surfaces, although friction can create significant deviations from such directions.

1.5 Faulting mechanisms and tectonic environments

The previous case studies can be applied to the study of faulting environments
throughout the lithosphere.

When the resistance of the material is reached, its strength level, a fracture appears
on a faulting surface, causing a relative sliding of the two blocks adjacent to the surface
itself. These blocks are called as hanging wall and foot wall. In Fig. (1.3) the foot wall
is represented.

The geometry of the fault is defined by three angles that constitute its orientation
with respect to the axes, oriented to the local geographical directions. The relative
displacement of the hanging wall with respect to the foot wall is by us referred to as
slip.

Firstly, the strike angle 6 of fault plane clockwise from North, can take values in the
range 0° < # < 360°. Then, the dip angle § of the fault plane down from the horizontal
is limited to the values 0° < § < 90°. Lastly, the rake angle X in the fault plane is the
angle between the slip direction and the strike, in the range —180° < A < 180°.

Additionally, the slip amount along the strike ug and dip ugs direction have to be
defined, they give how much the fault slides along the relative direction.

1.5.1 Thrust, normal and strike—slip faults

One has to consider that due to the condition of free—surface, one of the eigenvalues
is related to the vertical direction. Depending on which one is in such configuration,
different faulting environments are identifiable.

11



Figure 1.3: Depiction of the fault geometrical configuration dependent on the strike
angle #, the dip angle 0 and the rake A. The slip is given by the vector Au. The fault
has length L measured along the strike direction, while its width W is the dimension
along the maximum slope direction on the fault surface. The fault surface has length
L measured along the strike direction, while its width W is the dimension along the
maximum slope direction on the fault surface.

If the vertical axis is related to o) + P, then the axis of maximum tension is
horizontal, which lends to a distensive fault environment. The surfaces of maximum
shear are tilted by half a right angle with respect to the horizontal direction, which
is enough reason for these environments to typically be identified with normal faults,
presenting dips greater than 45° due to friction. In this situation the hanging wall slips
downwards and the foot wall tends to go up.

In the case of the vertical axis related to o) +p, the axis of maximum compression
is horizontal, which gives rise to a compressive environment. The behaviour is opposite
to the normal environments, having the foot wall sliding downwards below the hanging
wall (thrust fault) going upwards with dip angles smaller than 45°.

Both the axes of maximum tension and compression are horizontal if the vertical
axis is the intermediate one associated to o(®) +p. This gives rise to an horizontal
fracture with two perpendicular faults oriented at 45° with respect to the principal
stress axes of o) and ¢®). This causes the maximum shear surfaces to be vertical,
therefore, typical of these environments are strike—slip faults, classified in right-handed,
or left-handed, depending on the sliding direction of one block with respect to the other.

Taking into account friction, as a shear stress threshold value to reach in order to
realise slip on fault surfaces, the dip angle ¢ is different in the the fault types. This
difference emerges more clearly when considering it as a function of the static friction
coefficient f;. The relationship is given by

1
tan2) = £—, (1.42)

[s
which has solutions for both the distensive (—) and compressive environments (+),
being 0 < 20 < w. Specifically, for fs ~ 1, Anderson’s theory predicts é ~ 70° for the

12
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Figure 1.4: Illustration of the strike—slip, normal and thrust fault types highlighting
the difference in the dip angle § between the normal and thrust faults.

normal faults, while for the thrust faults 6 ~ 20°.
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Figure 1.5: Dip angle 0 plotted against the static friction coefficient fs, as predicted by
Anderson’s theory for normal and thrust faults.
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style of faulting: normal
6P:75.0° 6T: 15.0° 6B: 0°

330°
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(a) Normal fault, configured to have the geo-
metrical parameters # = 0°,6 = 60°, A = 90°.

style of faulting: thrust
6P:15.0° 6T:75.0° 6B: 0°

(b) Thrust fault, configured with the geomet-
rical parameters 6 = 0°,6 = 30°, A = —90°.

style of faulting: strike-slip
6P:0° 6T:0° 6B:90.0°

(c) Strike-slip fault, configured to have the ge-

ometrical parameters 6 = 0°,

= 90°, \ = 0°.

Figure 1.7: Visualisation of the different types of faults. The plots display the hanging
wall and the foot wall against one another. The P and T vectors give the local pressure

and tension axes during the faulting process, while U gives the direction in which the
hanging wall slips towards. From the works of Scherbaum et al.| (2011).




Chapter 2

Presentation of the results

Programs that solve the poro—elastic equations have been developed. Some of them
are able to simulate the effects of strike—slip, normal, thrust faults and various others,
including any combination thereof | located within poro—elastic media (half-space),
which slip at ¢ = 0 during an earthquake.

Specifically, the ones by us employed for the simulation of faulting processes are
pegrn and pecmp, made by |Wang and Kimpel (2003). They employ discretisation
techniques which involve the generation of a grid of point-like elements upon which
the associated differential equations for poro—elastic media are to be solved and then
interpolated.

Interpolation is a process which has the aim of finding the continuous form of
a discrete function. It requires the knowledge of a function at certain points, and
although originally this function may have a discrete domain, it is then extended to the
continuum. The function that the data is interpolated against is an arbitrary choice.

2.1 Process of data retrieval and analysis

Technically, these programs are able to replicate the realistic conditions of faulting
environments when given the proper required information, which mainly comprehends
the fault’s geometry and the poro—elastic parameters, with other various lesser options.

Running the simulations allows us in the end to be able to retrieve the files that
contain the simulation data as a time series. This data is then processed in Matlab to
produce the contour and vector plots subsequently displayed.

From these files, the pore—pressure p together with Darcy’s planar velocities vectors,
and the vertical displacement field ug together with the planar displacements vectors
are retrieved. Such pairings are then used to paint an image of the deformation and
the fluid flow in our poro—elastic medium undergoing fracture.
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2.2 Configuration of pegrn and pecmp

In order for the simulations to yield consistent results in the different cases, various
parameters are shared between the program instances, such as the fault’s location and
its composition.

Here’s the geometrical configuration for the fault:

e The mesh for the generation of the Green’s functions is composed of equally spaced
elements arranged in a 50 x 50 grid of physical size given by 200 km length and
100 km depth, with the points separated by 1km intervals.

e For the plotting to be carried out, the axes have to be changed to the ones of a
Cartesian planar representation from the latitude—longitude representation. Tech-
nically, this has been achieved in Matlab by employing a function called deg2utm,
from the works of [Palacios (2023)). In this configuration, the fault length is
L = 20km and its width is W = 15km. The upper border of the faults is lo-
cated at a depth of 1km.

e The observations have been carried out at the surface, of depth z = 0km and at
a depth of z = 5km to visualise respectively the surface displacement and the
pressure at depth.

e The strike—slip modulus for the strike—slip fault is ugp = 1m, on the contrary for
the normal and thrust faults it’s zero. The dip—slip modulus for the normal fault
is us = 1 m and for the thrust fault is uy = —1m.

e The strike—slip fault has a dip angle 6 = 90°, the normal of § = 60° and the thrust
of § = 30°.

The elastic parameters have been chosen in order to replicate a medium solely
composed of Berea sandstone. The following elastic parameters have been set in a
configuration file:

e o = K/H = 1.0 is the coefficient for the pore—pressure.
e p=2600kgm™3 is the volumetric density of the rock.

e B =0.62 is Skempton’s coefficient.

e D =1.6m?s!is the mass diffusivity coefficient.

e v; = 1.519kms ™! is the velocity of the primary waves.

o vy = 2.481kms~! is the velocity of the secondary waves.

e ¢ = 0.19 is the porosity.
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(a) Vertical displacement field uz (m) plot in a
colour map at the initial instant ¢ = Odays at the
surface depth of z = 0 km with the planar displace-
ments vectors superimposed, for a strike—slip fault.
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(c) Pore—pressure field p (Pa) plot in a colour map at
the instant ¢ = 0 days at the depth of z = 5km with
the planar Darcy’s velocities vectors superimposed,
for a strike—slip fault.
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(b) Vertical displacement field usz (m) plot in a
colour map at the instant ¢ = 51 days at the surface
depth of z = Okm with the planar displacements

vectors superimposed, for a strike—slip fault.
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(d) Pore—pressure field p (Pa) plot in a colour map
at the instant ¢t = 51 days at the depth of z = 5km
with the planar Darcy’s velocities vectors superim-
posed, for a strike—slip fault.

Figure 2.1: Strike—slip faulting events computed at different time instants and depths
by the pegrn and pecmp software suite provided by Wang and Kiimpel (2003). The
vertical displacement is positive due to subsidence The bold arrow in the upper right
corner of the figure is the scale: for the panels (a-b) it is 0.5 m, while for the panels

(c-d) it is 107 ms~1.
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(a) Vertical displacement field uz (m) plot in a
colour map at the initial instant ¢ = Odays at the
surface depth of z = 0 km with the planar displace-
ments vectors superimposed, for a normal fault.
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(c) Pore—pressure field p (Pa) plot in a colour map at
the instant ¢ = 0 days at the depth of z = 5km with
the planar Darcy’s velocities vectors superimposed,
for a normal fault.
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(b) Vertical displacement field usz (m) plot in a
colour map at the instant ¢ = 51 days at the surface
depth of z = Okm with the planar displacements
vectors superimposed, for a normal fault.
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(d) Pore—pressure field p (Pa) plot in a colour map
at the instant ¢t = 51 days at the depth of z = 5km
with the planar Darcy’s velocities vectors superim-
posed, for a normal fault.

Figure 2.2: Normal faulting events computed at different time instants and depths
by the pegrn and pecmp software suite provided by Wang and Kiimpel (2003). The
vertical displacement is positive for subsidence. The vertical displacement is positive
due to subsidence The bold arrow in the upper right corner of the figure is the scale:

for the panels (a-b) it is 0.5 m, while for the panels (c-d) it is 107" ms
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(a) Vertical displacement field uz (m) plot in a
colour map at the initial instant ¢ = Odays at the
surface depth of z = 0 km with the planar displace-
ments vectors superimposed, for a thrust fault.
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(c) Pore—pressure field p (Pa) plot in a colour map at
the instant ¢ = 0 days at the depth of z = 5km with
the planar Darcy’s velocities vectors superimposed,
for a thrust fault.
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(b) Vertical displacement field usz (m) plot in a
colour map at the instant ¢ = 51 days at the surface
depth of z = Okm with the planar displacements
vectors superimposed, for a thrust fault.
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(d) Pore—pressure field p (Pa) plot in a colour map
at the instant ¢t = 51 days at the depth of z = 5km
with the planar Darcy’s velocities vectors superim-
posed, for a thrust fault.

Figure 2.3: Thrust faulting events computed at different time instants and depths by
the pegrn and pecmp software suite provided by [Wang and Kiimpel| (2003)). The vertical
displacement is positive due to subsidence The bold arrow in the upper right corner of
the figure is the scale: for the panels (a-b) it is 0.5m, while for the panels (c—d) it is

1079 ms L.
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Chapter 3

Conclusions

In this chapter, results presented in the previous chapter regarding the strike—slip,
normal and thrust fault types are analysed, expliciting the behaviour of the displace-
ment and pore-pressure fields in the chosen time-frame.

Comparing the relative differences in magnitude of the vertical displacement at the
surface, the rebound is most evident in the strike—slip fault for the considered time—
frame of At = 51 days. The rebound is equally observed through the relative variations
in pore—pressure at the depth of z = 5km. They are equally evident in the normal and
thrust faults, but less pronounced in the strike—slip.

3.1 Strike—slip fault

The strike-slip fault has a surface vertical displacement w3, which has a double
symmetry along the axes that reaches a maximum of 2cm in modulus during the co—
seismic phase. In each of the quadrants, the displacement varies pseudo—harmonically
radially from the fault’s center towards the outside. This produces a sort—of ”butterfly”
image pattern. The fact can also be expressed by noting that the associated pseudo—
wavelength of the vertical displacement tends to shrinks as the time passes, limiting its
extent.

The planar displacement field is aligned along the vertical direction, as the fault
is hereby positioned and reaches a maximum value of 0.25m in the co-seismic phase.
The ground is displaced at the surface along both sides of the fault, immediately after
the faulting process. This trend does not revert in time, Fig. (2.1b).

Fig. (2.1c—d) show that the pore—pressure p at a depth of z = 5km appears to
reduce in magnitude through time, without significant changes in the overall structure
symmetry of the field.

In the domain of the field the pore—pressure reaches the maximum value of 1bar
near the fault, smoothening out as the distance from the fault increases.

Darcy’s velocities suggest a flux of fluid exiting the positive pore—pressure zones
(red) and entering the low pore—pressure ones (depicted in blue).
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3.2 Normal fault

The positive displacement of the hanging wall is positive (subsidence), while in the
foot wall is negative (uplift) in a coherent way to what is expected from a normal fault.

The pore—pressure at z = 5km is almost fully positive and thus, this implies that
the zone is subjected to co—seismic compression.

In the case of the normal fault, in Fig. (2.2a-b) the vertical displacement field us at
the surface is composed of lobes, positioned to the right and to the left of the fault, with
the right lobe (in red) encompassing the fault. The vertical displacement wug reaches
respectively a maximum value for z > 0 of about 0.41m and a minimum of about
—0.26 m for x < 0, while the horizontal displacements reach a maximum modulus of
about 18 cm.

Over time the left lobe which represents the depression of the ground reduces in
size, as the right lobe representing the increase in height advances towards the left one
while decreasing in width.

The pore—pressure field in Fig. (2.2c—d) at the depth of z = 5km undergoes a very
steep variation in time over the course of the chosen time—frame. Its maximum varies
from about 0.64 bar at t = 0days to about 3.6 bar at ¢ = 51 days at it is registered at
the centre of the domain. Darcy’s planar velocities at this depth are out—flowing from
the high pressure zone, which migrates to the centre of the fault over time, and at the
same time increasing in magnitude, as seen in Fig. (2.2d).

The lateral low—pressure regions are of lesser importance, due to their magnitude
being irrelevant to the scale of the phenomena.

3.3 Thrust fault

The vertical displacement reaches the minimum in the hanging wall for z ~ 10 km,
coherent with the one generated by a thrust fault.

The pore—pressure at z = 5 km is almost fully negative and thus, this implies that
the zone is subjected to co—seismic dilation.

The comparison with the normal fault is highlighted in Fig. (2.3a-b) by the equal
presence of lobes, one of high magnitude displacement and the other of lesser magnitude.
The depression lobe (in blue) encompasses the fault, oriented vertically at the center
of the plot. Over time, the surface displacement field shifts to the left, in the direction
highlighted by the vector field.

The vertical displacements near the center of the domain reach a maximum of about
0.07m and a minimum of about —0.33 m, while the horizontal ones have a maximum
in modulus of 30 cm.

The pore—pressure at the depth of z = 5km in Fig. (2.3c) is initially composed of
low—pressure lobes, which reaches a minimum of about —1 bar, which ends up merging
in the observed time—frame, in order to form a very—low—pressure uniform zone located
just to the right of the fault, as seen in Fig. (2.3d), which in itself reaches values of about
—bbar. The later high—pressure regions are of lesser relevance, as their magnitude is
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also in this case irrelevant to the study of the phenomena.

3.4 Closing statement

The objective of this thesis to simulate the poro—elastic rebound in the post—seismic
phase of strike—slip, normal and thrust faults is deemed successful because the simula-
tion data is seen to accurately reproduce the deformations observed in the near field in
poro—elastic media due to strike—slip, normal and thrust faults. This is verifiable when
comparing it to the data reported by Piombo et al.| (2005) and Nespoli et al. (2016).
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