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Sommario

L’obiettivo di questa tesi è di simulare i processi di fagliazione in un semispazio poro–

elastico tramite un approccio numerico, l’implementazione del quale è presente nei

programmi pegrn/pecmp. In questa tesi sono stati studiati i tipi di faglia trascorrente,

normale e inversa. I campi di spostamento superficiale co–sismico e post–sismico e di

pressione di poro in profondità sono stati calcolati e visualizzati in sezioni orizzontali.

Nel primo capitolo è stata introdotta la teoria elastica, presentando le relazioni costi-

tutive elastiche per lo sforzo e la deformazione. Successivamente, è stata presentata la

teoria della poro–elasticità che ci permette di tener conto della presenza di fluidi nei

pori delle rocce. Nella sezione successiva, vengono introdotti i meccanismi di fagliazione

e gli ambienti tettonici. Questo ci permette di determinare le geometrie di faglia che

possono essere attese in base all’ambiente tettonico. Tramite l’assunzione di un semi-

spazio omogeneo poro–elastico, i tre differenti tipi di faglie sono stati studiati. Prima

di riportare i risultati, viene specificata configurazione dei programmi.



Abstract

The focus of this thesis is to simulate the faulting processes in a poro–elastic half–space

through numerical approach, the implementation of which is present in the programs

pegrn/pecmp. In this thesis the strike–slip, normal and thrust fault types are studied.

The surface co–seismic and post–seismic displacement and pore–pressure fields at depth

are computed and plotted in horizontal section maps. In the first chapter the elastic

theory has been discussed, introducing the elastic constitutive relations for stress and

strain. Next, the theory of poro–elasticy has been introduced which allows us to study

the presence of fluids in the pores of the rocks. In the next section, the faulting mech-

anisms and the tectonic environments are introduced. This allows us to determine the

fault geometries that can be expected depending on the tectonic environment. Through

the assumption of a homogeneous poro–elastic half–space, the three different fault types

have been studied. Before reporting the results, the configuration of the programs is

given.
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Chapter 1

Introduction

Figure 1.1: Distribution of the earthquake hypocenters with Richter magnitude 5 and

higher that took place in Italy in the last century. The image intends to give an idea

of the scale of the phenomena: the vertical lines represent the quake’s depth, while

the point size illustrates the magnitude relative to Richter magnitude 9 quakes and the

location of epicenter of the event, an adaptation from Wolfram (2023).

The purpose of this thesis is the characterisation of the poro–elastic rebound due

to strike–slip, normal and thrust fault types in a poro–elastic half–space. Poro–elastic

rebound is a process which can be observed at the surface in terms of a displacement
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field varying as a function of time, in near field conditions, that is at a distance from

the epicenter (e.g. Fig. 1) smaller than the source fault dimension. Faults are surface

discontinuities of the crust which host the nucleation point, also called hypocenter, of an

earthquake process. For this reason faults are also called earthquake sources. With the

aid of software made by Wang and Kümpel (2003) implementing the equations of poro–

elasticity, the rebound phenomena is accurately simulated and the results presented.

In order to properly model the phenomena, following the theory of poro–elasticity

by Biot (1941), it is necessary to account for the presence of fluids in the medium.

Specifically, if it is mainly composed by rocks, then the fluids have to reside in embedded

sacks known as pore, which inevitably become interconnected over time due to the

natural tendency of the fluid to erode and infiltrate. In this chapter the strain and

stress tensors and the constituive equation relating them in the case of elastic and

poro–elastic media are introduced. Finally we introduce fault features related to the

principal tectonic environments.

1.1 Strain and stress tensors

The small deformations of a body are expressed by the elastic strain tensor, given

by the symmetric part of the displacement gradient,

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
if

∣∣∣∣
∂ui
∂xj

∣∣∣∣ ≪ 1. (1.1)

Its diagonal components give the relative variation in length along x1, x2 and x3
axes.

Due to its symmetry, the eigenvalue λ borne out of the related eigensystem

εijnj = λni (1.2)

equally measures the relative variation in length along the so–called principal axis n̂.

1.1.1 Decomposition of the strain tensor

Each tensor can be split into so–called deviatoric and isotropic components. The de-

viatoric part is constructed as trace–less, while the trace is used to construct a diagonal

tensor.

The elastic strain tensor εij is then separated into a superposition of a deviatoric

part, altering solely the shape of the body, and an isotropic deformation associated to

the volume change, the isotropic part, as given in Greenshields and Weller (2022),

εij =
(
εij −

εkk
3

δij

)
+

εkk
3

δij . (1.3)

The trace of the strain tensor εkk gives the relative variation in volume due to a

deformation. Thus, when the trace is zero, only the shape of the body is being altered

and the forces causing it are said of pure shear.
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The first component in the strain tensor decomposition as in Eq. (1.3) is identified

as its deviatoric component, giving the variation in shape of the body, while its second

component only characterises the relative variation in volume.

1.1.2 Stress tensor

The surface force field Ti acting on a surface with normal n̂ per unit area, measured

in [Ti] =Pa and identified as the traction, is obtained by projecting the local normals

ni to the body onto a field τij ,

Ti = τijnj . (1.4)

This field τij is known as the stress tensor, and its unit of measurement is obtained

from the previous relationship, [τij ] = Pa, as the normals are taken unit–less.

The stress tensor is symmetric and thus, diagonalisable by means of the eigensystem

τijnj = σni, (1.5)

where n̂ are the eigenvectors, giving the so–called principal axes.

The three eigenvalues σ are identified as the principal values.

The stress tensor is also decomposable in a deviatoric and isotropic part,

τij =
(
τij −

τkk
3

δij

)
+

τkk
3

δij . (1.6)

The isotropic component gives the average normal force per unit of area, identified

as minus the mean pressure, while its deviatoric component encodes the tangential

forces responsible for the shape variations, known as the shear forces.

1.1.3 Work of deformation

The strain and stress tensors are linearly dependent in the regime of small–deformations.

On the contrary, the experimentally measured stress–strain relationship isn’t linear af-

ter a certain ratio threshold has been met. This fact explains how plastic and elastic

deformations can both coexist. The first ones are characterised by being spontaneously

irreversible, and thus have a non–zero deformation work W spent to perform a cyclic

transformation.

Working with the assumption of elastic behaviour requires all deformation processes

to be adiabatic or isothermic transformations. In our case, temperature does not vary

and neither does the total work of deformation, as shown in the work of Landau et al.

(1986),

W =

∮
τij dεij = 0, where dW = τij dεij . (1.7)

This means that it is not possible to permanently store any energy in an elastic

material, as it will spontaneously revert to its initial configuration of no deformation.

In practice, elastic deformation processes are isotherms under the assumption that

the rate of deformation is much lower than the rate of propagation of the thermal

equilibrium. Under this assumption, the body continuously deforms at a constant

temperature.

4



1.1.4 Stress–strain elastic constitutive equations

The stress tensor is linearly dependent on the strain tensor in the limit of elastic

behaviour. For an elastic isotropic body, the moduli of compression K and rigidity µ

are the sole needed to determine the strain–stress relations,

τij = Kεkkδij + 2µ
(
εij −

εkk
3

δij

)
. (1.8)

The elastic parameter K, the bulk modulus or modulus of hydrostatic compression,

is calculated as

K = λ+
2

3
µ, (1.9)

and is measured in [K] = Pa.

The coefficients λ and µ on which it depends here introduced are identified as the

Lamé elastic parameters. Their units of measurement are [λ] = [µ] = Pa and a typical

range of values is of the order of GPa for the rocks of the crust.

The velocity of the primary and secondary waves v1, v2 in earthquakes are functions

of the Lamè elastic parameters,

v1 =

√
λ+ 2µ

ρ
, v2 =

√
µ

ρ
, (1.10)

where ρ is the density of the medium in which the waves propagate.

Role of the elastic parameters

The bulk modulus K determines the relative variation in volume of the body in the

ways prescribed by the equation

εkk =
τkk
3K

, (1.11)

derived from the stress–strain relationship Eq. (1.8), as the trace of the second term is

zero.

One can find that due to the linearity of the strain–stress relations, the inverse

constitutive equation is given by

εij =
τkk
9K

δij +
1

2µ

(
τij −

τkk
3

δij

)
. (1.12)

1.1.5 Young’s modulus and Poisson’s ratio

Isotropic elastic media can be characterised by different couples of parameters.

For instance, for the case of a vertical displacement of a rod under the traction τ33
applied along its axis of symmetry, x3, the relative variation in length of the rod is

given by the component of the strain tensor,

ε33 =
τ33
E

. (1.13)
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The parameter E introduced is Young’s modulus of extension or compression. Such

coefficient gives us means of estimating how much an increase in the applied traction

results in a deformation. It is given by the expression

E =
9Kµ

3K + µ
, (1.14)

measured in the same units as pressure, [E] = Pa.

Figure 1.2: Various stages of the elastic deformation for an ideal elastic material. The

block is fixed on the left by a support while being subjected to a tensile load of various

force magnitudes in its rightmost extremity, by Wolfram (2022).

In this case of homogeneous vertical deformation, with x3 as axis of symmetry, it is

found that along the transverse directions the other diagonal components of the strain

tensor have to be equal in magnitude. By using Eq. (1.12), such components are found

to be linked to the relative variation in length through the formula

ε11 = ε22 = −νε33, (1.15)

where the ratio of the transverse compression to the longitudinal extension is defined

as Poisson’s ratio ν. It takes values in the range between -1 and 1/2,

ν =
3K − 2µ

6K + 2µ
, (1.16)

and it does not have a unit of measurement.

Thanks to Eq. (1.16), the Eq. (1.12) can be expressed as

εij =
1

2µ

(
τij −

ν

1 + ν
τkkδij

)
. (1.17)

1.2 Theory of poro–elasticity

Sponges are optimal examples of poro–elastic media, and this is because their porous

structure, within which fluids can infiltrate and reside in, is able to spontaneously regain

its shape after being deformed.
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In order to describe such a structure, fluid–mechanical theories have to be included

into the theory of elasticity. This is done by means of including an additional fluid–

related element in the work of deformation Belardinelli and Bonafede (2022),

dW = τij dεij + p dv, (1.18)

where p is the pressure of the fluid inside the pores, known as the pore–pressure in the

theory of poro–elasticity, and v is the volume of fluid per unit of volume of medium,

and thus does not have an associated unit of measurement.

1.2.1 Constitutive equations

To derive the strain–strain relations for a poro–elastic medium, the linearity is

exploited to represent the general deformation as a superposition of effects.

If the pore–pressure is zero, the equations are the ones of elasticity given by Eq.

(1.17), where the coefficients are the modulus of rigidity µ and Poisson’s ratio ν.

In order to keep the pore–pressure constantly zero, as assumed, the volume of fluid

v has to vary if a stress is applied. Specifically, it varies proportionately to the applied

stresses,

v =
τkk
3H

. (1.19)

The constant of proportionality H here introduced is such that its inverse gives ex-

actly the volume of fluid expelled by an unitary volume of material after the application

of a an unitary confinement pressure pC , given by

pC = −τkk
3

. (1.20)

On the other hand, by enforcing a constant and uniform stress field τij , the strain

tensor has to vary proportionately to the pore–pressure,

εij =
p

3H
δij . (1.21)

The proportionality coefficient H is exactly the one previously introduced, although

in this context it gives the relative increment in volume of an unitary volume element

of the medium due to an unitary increment in the pore–pressure, while the stress field

is kept null. It is then measured in [H] =Pa, as is the pore–pressure.

The relative variation of the fluid volume is linearly dependent on the pore–pressure

under such assumptions,

v =
p

R
. (1.22)

The parameter R gives the relative variation of fluid volume inside the medium

due to an expansion or contraction of the pores set off by an unitary increase of the

pore–pressure. It is measured in [R] =Pa, as v is unit–less.

Consequently, by the assumed linearity of the strain–stress relations, the separately

studied effects can be superimposed to yield the general–case deformation scenario,

given by the simultaneous equations

εij =
1

2µ

(
τij −

ν

1 + ν
τkkδij

)
+

p

3H
δij , (1.23)
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v =
τkk
3H

+
p

R
. (1.24)

1.3 Poro–elastic coefficients

It is found that to these equations are associated the extensions of Young’s modulus

E and Poisson’s ratio ν to poro–elasticity, identified as the drained coefficients.

Undrained regime takes place when the medium has no outflow of fluid and thus,

the system loses no mass, Wang and Manga (2021).

By increasing the pore–pressure, the material expands as the fluid pushes against

the inner surfaces of the pores. On the contrary, by increasing the confinement pressure

pC , the material contracts. This is expressed by means of the strain tensor’s trace,

εkk =
1− 2ν

2µ(1 + ν)
τkk +

p

H
, (1.25)

where the drained incompressibility K is,

K = −V
∂pc
∂V

∣∣∣
p=0

=
τkk
3εkk

∣∣∣
p=0

=
2µ(1 + ν)

3(1− 2ν)
, (1.26)

and is measured in [K] = Pa.

Furthermore, the expression for Young’s drained modulus E is found by subjecting

the body to uniaxial traction,

E =
τ11
ε11

∣∣∣
p=0

= 2µ(1 + ν). (1.27)

For an elastic and pore–less material under the effect of an external balancing

pressure field equal to the internal pore–pressure τij = −pδij , the strain tensor at

equilibrium is given by

εij = − p

3KS
δij . (1.28)

The coefficient KS is the incompressibility for the solid matrix.

Through direct substitution into the constitutive equations Eq. (1.23) and (1.24),

a correlation between the elastic and poro–elastic parameters emerges,

1

H
=

1

K
− 1

KS
. (1.29)

While, from an analysis of the pores’ volume variation, the following is established

1

R
=

1

H
− 1

KS
, (1.30)

where v0 is the initial volume of fluid present in the pores.
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1.3.1 Skempton’s coefficient

In the regime of compressible flow, the fluid’s relative density varies proportionally

to the pressure it undergoes,
∆ρ

ρ
=

p

KF
, (1.31)

where KF is the coefficient of incompressibility for the fluid.

Through this result, the variation in fluid mass is evaluated by its associated dif-

ferential equation. Assuming that no fluid mass is lost from the application of an

impulsive stress field τij , working in the undrained regime, an associated pore–pressure

p is generated,

p = −B

3
τkk, (1.32)

where B is known as Skempton’s coefficient.

It is given by the inverses of the previously introduced elastic coefficients,

B =
KKF

KF (K −Hv0) +HKv0
. (1.33)

To better understand its significance, in a very porous matrix where the fluid is still

in its liquid phase, such as in sedimentary materials next to the surface, Skempton’s

coefficient is approximately unitary.

The coefficient takes the value of

B ≈ R

H
(1.34)

when the solid or fluid phases of the fluid are extremely compressible.

Skempton’s coefficient models the undrained Poisson’s ratio νu, as B = 1 gives the

maximum value of νu and B = 0 gives the lowest.

In undrained conditions, Rice and Cleary (1976) gives the poro–elastic equations

εij =
1

2µ

(
τij −

ν

1 + ν
τkkδij +

3(νu − ν)

B(1 + ν)(1 + νu)
pδij

)
(1.35)

In the early stages after a earthquake’s (postseismic stages), a transition of the soil

from an undrained to a drained regime takes place as the fluid begins to flow due to

the acting stresses. This means that the poro–elastic equations have to be solved in the

post–seismic phase.

1.3.2 Darcy’s law and hydraulic diffusivity

The motion of fluids in porous and permeable media is described by Darcy’s law.

In a configuration in which a reservoir of fluid is suspended at a certain height

and forced to flow downwards through a porous and permeable material, if a pressure

gradient due to gravity is present, then the flux of the fluid is proportional to the

effective pressure gradient ∇p∗ = ∇p− ρfg. Particularly, if the density of the fluid ρf
is constant, then the effective pressure is given by p∗ = p− ρfgz.
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The volume of fluid that goes through the porous and permeable material per unit

of area and time q is inversely proportional to the height h of the material column

and directly proportional to the difference in effective pressures through the ratio of

permeability k and viscosity η,

q = −k

η
∇p∗. (1.36)

The vectorial form is a generalisation due to the gradient.

Darcy’s law together with the diffusion and equilibrium equations end up defin-

ing the quasi–static evolution equation of a poro–elastic material with compressible

components,
∂τij
∂xj

= 0, D∇2
(
σkk +

3p

B

)
=

∂

∂t

(
σkk +

3p

B

)
, (1.37)

where D is the hydraulic diffusivity coefficient, measured in [D] = m2 s−1. The hy-

draulic diffusity is related to the permeability of the medium.

1.4 Faulting processes

Materials rupture whenever a certain stress threshold is met. This principle is ex-

tendable to the study of faulting processes in the crust, as the friction between adjacent

blocks of the tectonic plaques, along the fault surfaces, allows for the sudden release of

energy, which in turn alters the equilibrium of the fluids residing in the ground.

Faulting events in elastic media are due to a stress configuration with non–vanishing

deviatoric part. The rupture happens on a plane intermediate with respect to the ones

associated to the eigenvectors relative to the maximum and minimum eigenvalue of the

stress tensor.

The first classification of faults is done through the brittle-elastic model which poses

a finite resistance to fractures, where the maximum shear stress reaches the threshold

value called shear strength of rocks. Once this value is reached, the faulting process

takes place and the adjacent blocks undergo a relative sliding along the faulting plane.

Tensile fractures instead take place when the maximum principal stress σ(3) is pos-

itive and greater than a material–specific threshold. Tensile fractures are characterised

by a rupture along the plane of the body, perpendicular to the associated eigenvector

for σ(3).

The surface of the Earth is assumed stress–free, neglecting the atmospheric pressure

and wind shear stresses, and this causes the vertical axis to have an eigenvalue of zero.

At large depth, below the lithosphere, the stress tensor is only given by its isotropic

component,

τij = −plitδij (1.38)

where plit is the lithostatic pressure.

The lithostatic pressure is given as a function of the depth of measurement z, the

density of the ground ρ and atmospheric pressure patm,

plit = ρgz + patm. (1.39)
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Near the surface, in the lithosphere, the tectonic motions give rise to an additional

component hij ,

τij = hij − plitδij , (1.40)

with principal values σ(i), given i = 1, 2, 3.

The deviatoric component of hij matches the one of τij and is responsible for the

ruptures of the rocks, which take place when a certain shear stress threshold is reached,

we define

p = −τkk
3

= −hkk
3

+ plit ≈ plit, z ≫ 1 km. (1.41)

The deviatoric stress tensor becomes then τij + pδij and its three eigenvalues are

σ(i) + p, given i = 1, 2, 3. Because it has zero trace, if the eigenvalues are taken to be

ordered based on their respective index, then σ(1) + p is associated to the maximum

compression and σ(3) + p to the maximum tension.

Only in the case of near-surface conditions, due to a limited lithostatic pressure,

tensile fractures can happen. Therefore, at larger depths any sort of relative motion of

rock blocks during the fracture process must be tangent to the surface of contact of the

blocks as it is for a shear fracture.

In the end, it is expected that such fractures happen on planes next to the maximum

shear surfaces, although friction can create significant deviations from such directions.

1.5 Faulting mechanisms and tectonic environments

The previous case studies can be applied to the study of faulting environments

throughout the lithosphere.

When the resistance of the material is reached, its strength level, a fracture appears

on a faulting surface, causing a relative sliding of the two blocks adjacent to the surface

itself. These blocks are called as hanging wall and foot wall. In Fig. (1.3) the foot wall

is represented.

The geometry of the fault is defined by three angles that constitute its orientation

with respect to the axes, oriented to the local geographical directions. The relative

displacement of the hanging wall with respect to the foot wall is by us referred to as

slip.

Firstly, the strike angle θ of fault plane clockwise from North, can take values in the

range 0◦ ≤ θ ≤ 360◦. Then, the dip angle δ of the fault plane down from the horizontal

is limited to the values 0◦ ≤ δ ≤ 90◦. Lastly, the rake angle λ in the fault plane is the

angle between the slip direction and the strike, in the range −180◦ ≤ λ ≤ 180◦.

Additionally, the slip amount along the strike uθ and dip uδ direction have to be

defined, they give how much the fault slides along the relative direction.

1.5.1 Thrust, normal and strike–slip faults

One has to consider that due to the condition of free–surface, one of the eigenvalues

is related to the vertical direction. Depending on which one is in such configuration,

different faulting environments are identifiable.
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4.11. TEORIA DI ANDERSON DELLA FAGLIAZIONE. 131

traccia (strik
e)

N

∆u

δ

λ

θ

Figura 4.16: Parametri cinematici e geometrici di una faglia.

In generale, i parametri cinematici e geometrici che descrivono una faglia sismica sono i
seguenti (vedi Figura 3.16):

• rigetto (slip) ∆u: è il vettore che dà lo spostamento della faccia superiore rispetto alla

faccia inferiore del piano di faglia;

• traccia della faglia: è la retta intersezione fra piano di faglia e superficie terrestre, orientata
in modo da lasciare sulla destra il blocco sovrastante;

• direzione della faglia (strike) θ: è l’angolo orario misurato sulla superficie terrestre, fra
il nord geografico e la retta traccia della faglia, orientata in modo da lasciare il blocco

superiore sulla destra (0 ≤ θ < 2π);

• immersione (dip) δ: è l’angolo fra la verticale (orientata verso l’alto) e la normale alla su-
perficie di faglia (rivolta verso l’alto); δ coincide quindi con l’angolo fra superficie terrestre

e piano di faglia, misurato nel blocco sovrastante (0 < δ < π/2);

• angolo di scorrimento (rake) λ: l’angolo fra la direzione dello scorrimento e la direzione
di strike, positivo se in senso anti-orario visto dall’alto (−π ≤ λ ≤ π). Il valore λ = π

2
corrisponde a una faglia inversa, λ = −π

2 ad una faglia normale, λ = 0 oppure π a faglie
trascorrenti; le faglie transpressive hanno valori di λ positivi, quelle transtensive hanno λ

positivi.

4.11 Teoria di Anderson della fagliazione.

Una delle più interessanti applicazioni dell’elasticità piana in geofisica è fornito dalla teoria della
fagliazione proposta da E.M. Anderson nel 1905. Abbiamo visto in un precedente paragrafo

che il piano di massimo sforzo di taglio è orientato a 45◦ rispetto agli assi principali massimo e
minimo; ci aspetteremmo quindi che la frattura si verifichi lungo questo piano. Tuttavia, come

vedremo, ciò è vero solo in assenza di attrito.

Figure 1.3: Depiction of the fault geometrical configuration dependent on the strike

angle θ, the dip angle δ and the rake λ. The slip is given by the vector ∆u. The fault

has length L measured along the strike direction, while its width W is the dimension

along the maximum slope direction on the fault surface. The fault surface has length

L measured along the strike direction, while its width W is the dimension along the

maximum slope direction on the fault surface.

If the vertical axis is related to σ(1) + p, then the axis of maximum tension is

horizontal, which lends to a distensive fault environment. The surfaces of maximum

shear are tilted by half a right angle with respect to the horizontal direction, which

is enough reason for these environments to typically be identified with normal faults,

presenting dips greater than 45◦ due to friction. In this situation the hanging wall slips

downwards and the foot wall tends to go up.

In the case of the vertical axis related to σ(3)+p, the axis of maximum compression

is horizontal, which gives rise to a compressive environment. The behaviour is opposite

to the normal environments, having the foot wall sliding downwards below the hanging

wall (thrust fault) going upwards with dip angles smaller than 45◦.

Both the axes of maximum tension and compression are horizontal if the vertical

axis is the intermediate one associated to σ(2) + p. This gives rise to an horizontal

fracture with two perpendicular faults oriented at 45◦ with respect to the principal

stress axes of σ(1) and σ(3). This causes the maximum shear surfaces to be vertical,

therefore, typical of these environments are strike–slip faults, classified in right-handed,

or left-handed, depending on the sliding direction of one block with respect to the other.

Taking into account friction, as a shear stress threshold value to reach in order to

realise slip on fault surfaces, the dip angle δ is different in the the fault types. This

difference emerges more clearly when considering it as a function of the static friction

coefficient fs. The relationship is given by

tan 2δ = ± 1

fs
, (1.42)

which has solutions for both the distensive (−) and compressive environments (+),

being 0 < 2δ < π. Specifically, for fs ≈ 1, Anderson’s theory predicts δ ≈ 70◦ for the
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scorrimento relativo lungo un “piano di faglia” su cui è presente un elevato sforzo deviatorico,
e gli sforzi di taglio cadono a zero (o meglio, ad un valore determinato dall’attrito dinamico).

Supponiamo che lo stato di sforzo nella litosfera sia inizialmente litostatico e che i moti tettonici
generino un campo di sforzo incrementale ∆σij con assi principali in direzione x, y (orizzontali)

e z (verticale) e sia, per fissare le idee, ∆σx > ∆σy > ∆σz . Per l’equazione di equilibrio deve
essere σz = −ρgz e quindi ∆σz = 0, sicché l’ambiente tettonico è distensivo, con asse di massima

dilatazione lungo x e σx = −ρgz +∆σx).

La pressione litostatica cresce con la profondità e quindi σx è compressivo oltre una limitata

profondità ma con valori inferiori (in modulo) alla pressione litostatica. La superficie di massimo
sforzo di taglio è allora data da ciascuno dei due piani contenenti l’asse intermedio y e inclinati

di 45◦ rispetto alla verticale. In questo caso, lo scorrimento lungo la superficie di frattura genera
lo scivolamento del blocco sovrastante su quello sottostante e si ha una faglia diretta detta anche

faglia normale o di gravità.

Se fosse ∆σx < ∆σy < ∆σz = 0 (ambiente compressivo), σx e σy saranno compressivi
e superiori (in valore assoluto) alla pressione litostatica. La superficie di massimo sforzo di

taglio è ancora data da ciascuno dei due piani contenenti l’asse intermedio y e inclinati di 45◦

rispetto alla verticale. In questo caso però, lo scorrimento lungo la superficie di frattura genera

la risalita del blocco sovrastante su quello sottostante e si ha una faglia inversa detta anche
faglia di sovrascorrimento o compressiva (thrust fault).

Le faglie normali e inverse sono anche dette faglie di “dip-slip” perché lo scorrimento su di
esse avviene nella direzione d’immersione del piano di faglia. Diverso è invece il caso in cui l’asse

intermedio sia verticale: in tal caso, dovendo essere ∆σz = 0 (per l’equazione di equilibrio), sarà
∆σx > 0 e ∆σy < 0 oppure ∆σy > 0 e ∆σx < 0; in entrambi i casi, i piani di massimo sforzo

di taglio contengono l’asse z (quindi sono verticali) e bisecano l’angolo fra gli assi principali
orizzontali. Si ha allora una faglia trascorrente (strike-slip fault) che può essere destra (se un

osservatore posto su un lato della faglia vede l’altro lato muoversi verso destra) oppure sinistra
(nel caso opposto).

Questa classificazione è tuttavia estremamente schematica perché abbiamo supposto che

le faglie siano orientate nella direzione di taglio massimo, mentre nella crosta terrestre sono
certamente presenti superfici di debolezza variamente orientate (eventualmente eredità di regimi
tettonici diversi da quello attuale). Inoltre, come vedremo nel prossimo paragrafo, anche l’attrito

determina una deviazione del piano di faglia dalla superficie di taglio massimo.

faglia 
destra

faglia 
sinistra

faglie trasformi

faglie inverse

δ

faglie normali

graben

δ

Figura 4.15: Classificazione delle faglie.Figure 1.4: Illustration of the strike–slip, normal and thrust fault types highlighting

the difference in the dip angle δ between the normal and thrust faults.

normal faults, while for the thrust faults δ ≈ 20◦.
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90˚ 

60˚ 

30˚ 

0˚ 

δ

faglie normali

faglie inverse

0.2 1.00.80.60.40
fs

(a)

Δ
σ
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)

faglie normali

faglie inverse

fs
0.2 1.00.80.60.4

-400 

-200 

-100 

 0

100 

-300 

(b)

Figura 4.18: Angolo di dip δ (a) e sforzo limite ∆σ (b) previsto dalla teoria di Anderson per faglie normali
e faglie inverse in presenza di attrito e pressione di poro idrostatica (ρ = 2700 kg/m3, ρw = 1000 kg/m3,
g = 10 m/s2, z = 5 km).

Ripetendo calcoli analoghi per un ambiente compressivo, in cui ∆σ < 0, otterremmo

tan 2δ =
1

fs
(4.44)

Essendo 0 < 2δ < π otteniamo quindi un angolo δ ottuso per ambiente distensivo, acuto per

ambiente compressivo:

δ =
1

2

(
π − arctan

1

fs

)
, ambiente distensivo

δ =
1

2
arctan

1

fs
ambiente compressivo

(4.45)

In particolare, se fs = 0.85 (rocce asciutte) si ottiene δ = 65◦ per faglie normali e δ = 25◦ per

faglie inverse; per valori decrescenti del coefficiente di attrito δ si avvicina a 45◦ in entrambi i
casi (Figura 3.18-a), che individua la superficie di taglio massimo. Inserendo la (3.45) in (3.42)

otteniamo lo sforzo tettonico ∆σ minimo richiesto per attivare una faglia (figura 3.18-b).

Figure 1.5: Dip angle δ plotted against the static friction coefficient fs, as predicted by

Anderson’s theory for normal and thrust faults.
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(a) Normal fault, configured to have the geo-
metrical parameters θ = 0◦, δ = 60◦, λ = 90◦.

(b) Thrust fault, configured with the geomet-
rical parameters θ = 0◦, δ = 30◦, λ = −90◦.

(c) Strike–slip fault, configured to have the ge-
ometrical parameters θ = 0◦, δ = 90◦, λ = 0◦.

Figure 1.7: Visualisation of the different types of faults. The plots display the hanging

wall and the foot wall against one another. The P and T vectors give the local pressure

and tension axes during the faulting process, while U gives the direction in which the

hanging wall slips towards. From the works of Scherbaum et al. (2011).
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Chapter 2

Presentation of the results

Programs that solve the poro–elastic equations have been developed. Some of them

are able to simulate the effects of strike–slip, normal, thrust faults and various others,

including any combination thereof , located within poro–elastic media (half–space),

which slip at t = 0 during an earthquake.

Specifically, the ones by us employed for the simulation of faulting processes are

pegrn and pecmp, made by Wang and Kümpel (2003). They employ discretisation

techniques which involve the generation of a grid of point–like elements upon which

the associated differential equations for poro–elastic media are to be solved and then

interpolated.

Interpolation is a process which has the aim of finding the continuous form of

a discrete function. It requires the knowledge of a function at certain points, and

although originally this function may have a discrete domain, it is then extended to the

continuum. The function that the data is interpolated against is an arbitrary choice.

2.1 Process of data retrieval and analysis

Technically, these programs are able to replicate the realistic conditions of faulting

environments when given the proper required information, which mainly comprehends

the fault’s geometry and the poro–elastic parameters, with other various lesser options.

Running the simulations allows us in the end to be able to retrieve the files that

contain the simulation data as a time series. This data is then processed in Matlab to

produce the contour and vector plots subsequently displayed.

From these files, the pore–pressure p together with Darcy’s planar velocities vectors,

and the vertical displacement field u3 together with the planar displacements vectors

are retrieved. Such pairings are then used to paint an image of the deformation and

the fluid flow in our poro–elastic medium undergoing fracture.
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2.2 Configuration of pegrn and pecmp

In order for the simulations to yield consistent results in the different cases, various

parameters are shared between the program instances, such as the fault’s location and

its composition.

Here’s the geometrical configuration for the fault:

• The mesh for the generation of the Green’s functions is composed of equally spaced

elements arranged in a 50 × 50 grid of physical size given by 200 km length and

100 km depth, with the points separated by 1 km intervals.

• For the plotting to be carried out, the axes have to be changed to the ones of a

Cartesian planar representation from the latitude–longitude representation. Tech-

nically, this has been achieved in Matlab by employing a function called deg2utm,

from the works of Palacios (2023). In this configuration, the fault length is

L = 20 km and its width is W = 15 km. The upper border of the faults is lo-

cated at a depth of 1 km.

• The observations have been carried out at the surface, of depth z = 0km and at

a depth of z = 5km to visualise respectively the surface displacement and the

pressure at depth.

• The strike–slip modulus for the strike–slip fault is uθ = 1m, on the contrary for

the normal and thrust faults it’s zero. The dip–slip modulus for the normal fault

is uδ = 1m and for the thrust fault is uδ = −1m.

• The strike–slip fault has a dip angle δ = 90◦, the normal of δ = 60◦ and the thrust

of δ = 30◦.

The elastic parameters have been chosen in order to replicate a medium solely

composed of Berea sandstone. The following elastic parameters have been set in a

configuration file:

• α = K/H = 1.0 is the coefficient for the pore–pressure.

• ρ = 2600 kgm−3 is the volumetric density of the rock.

• B = 0.62 is Skempton’s coefficient.

• D = 1.6m2 s−1 is the mass diffusivity coefficient.

• v1 = 1.519 km s−1 is the velocity of the primary waves.

• v2 = 2.481 km s−1 is the velocity of the secondary waves.

• ϕ = 0.19 is the porosity.
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(a) Vertical displacement field u3 (m) plot in a
colour map at the initial instant t = 0days at the
surface depth of z = 0km with the planar displace-
ments vectors superimposed, for a strike–slip fault.
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(b) Vertical displacement field u3 (m) plot in a
colour map at the instant t = 51 days at the surface
depth of z = 0km with the planar displacements
vectors superimposed, for a strike–slip fault.
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(c) Pore–pressure field p (Pa) plot in a colour map at
the instant t = 0days at the depth of z = 5km with
the planar Darcy’s velocities vectors superimposed,
for a strike–slip fault.
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(d) Pore–pressure field p (Pa) plot in a colour map
at the instant t = 51 days at the depth of z = 5km
with the planar Darcy’s velocities vectors superim-
posed, for a strike–slip fault.

Figure 2.1: Strike–slip faulting events computed at different time instants and depths

by the pegrn and pecmp software suite provided by Wang and Kümpel (2003). The

vertical displacement is positive due to subsidence The bold arrow in the upper right

corner of the figure is the scale: for the panels (a–b) it is 0.5m, while for the panels

(c–d) it is 10−9ms−1.
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(a) Vertical displacement field u3 (m) plot in a
colour map at the initial instant t = 0days at the
surface depth of z = 0km with the planar displace-
ments vectors superimposed, for a normal fault.
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(b) Vertical displacement field u3 (m) plot in a
colour map at the instant t = 51 days at the surface
depth of z = 0km with the planar displacements
vectors superimposed, for a normal fault.
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(c) Pore–pressure field p (Pa) plot in a colour map at
the instant t = 0days at the depth of z = 5km with
the planar Darcy’s velocities vectors superimposed,
for a normal fault.
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(d) Pore–pressure field p (Pa) plot in a colour map
at the instant t = 51 days at the depth of z = 5km
with the planar Darcy’s velocities vectors superim-
posed, for a normal fault.

Figure 2.2: Normal faulting events computed at different time instants and depths

by the pegrn and pecmp software suite provided by Wang and Kümpel (2003). The

vertical displacement is positive for subsidence. The vertical displacement is positive

due to subsidence The bold arrow in the upper right corner of the figure is the scale:

for the panels (a–b) it is 0.5m, while for the panels (c–d) it is 10−9ms−1.
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(a) Vertical displacement field u3 (m) plot in a
colour map at the initial instant t = 0days at the
surface depth of z = 0km with the planar displace-
ments vectors superimposed, for a thrust fault.
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(b) Vertical displacement field u3 (m) plot in a
colour map at the instant t = 51 days at the surface
depth of z = 0km with the planar displacements
vectors superimposed, for a thrust fault.
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(c) Pore–pressure field p (Pa) plot in a colour map at
the instant t = 0days at the depth of z = 5km with
the planar Darcy’s velocities vectors superimposed,
for a thrust fault.
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(d) Pore–pressure field p (Pa) plot in a colour map
at the instant t = 51 days at the depth of z = 5km
with the planar Darcy’s velocities vectors superim-
posed, for a thrust fault.

Figure 2.3: Thrust faulting events computed at different time instants and depths by

the pegrn and pecmp software suite provided by Wang and Kümpel (2003). The vertical

displacement is positive due to subsidence The bold arrow in the upper right corner of

the figure is the scale: for the panels (a–b) it is 0.5m, while for the panels (c–d) it is

10−9ms−1.
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Chapter 3

Conclusions

In this chapter, results presented in the previous chapter regarding the strike–slip,

normal and thrust fault types are analysed, expliciting the behaviour of the displace-

ment and pore–pressure fields in the chosen time–frame.

Comparing the relative differences in magnitude of the vertical displacement at the

surface, the rebound is most evident in the strike–slip fault for the considered time–

frame of ∆t = 51 days. The rebound is equally observed through the relative variations

in pore–pressure at the depth of z = 5km. They are equally evident in the normal and

thrust faults, but less pronounced in the strike–slip.

3.1 Strike–slip fault

The strike-slip fault has a surface vertical displacement u3, which has a double

symmetry along the axes that reaches a maximum of 2 cm in modulus during the co–

seismic phase. In each of the quadrants, the displacement varies pseudo–harmonically

radially from the fault’s center towards the outside. This produces a sort–of ”butterfly”

image pattern. The fact can also be expressed by noting that the associated pseudo–

wavelength of the vertical displacement tends to shrinks as the time passes, limiting its

extent.

The planar displacement field is aligned along the vertical direction, as the fault

is hereby positioned and reaches a maximum value of 0.25m in the co–seismic phase.

The ground is displaced at the surface along both sides of the fault, immediately after

the faulting process. This trend does not revert in time, Fig. (2.1b).

Fig. (2.1c–d) show that the pore–pressure p at a depth of z = 5km appears to

reduce in magnitude through time, without significant changes in the overall structure

symmetry of the field.

In the domain of the field the pore–pressure reaches the maximum value of 1 bar

near the fault, smoothening out as the distance from the fault increases.

Darcy’s velocities suggest a flux of fluid exiting the positive pore–pressure zones

(red) and entering the low pore–pressure ones (depicted in blue).
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3.2 Normal fault

The positive displacement of the hanging wall is positive (subsidence), while in the

foot wall is negative (uplift) in a coherent way to what is expected from a normal fault.

The pore–pressure at z = 5km is almost fully positive and thus, this implies that

the zone is subjected to co–seismic compression.

In the case of the normal fault, in Fig. (2.2a–b) the vertical displacement field u3 at

the surface is composed of lobes, positioned to the right and to the left of the fault, with

the right lobe (in red) encompassing the fault. The vertical displacement u3 reaches

respectively a maximum value for x > 0 of about 0.41m and a minimum of about

−0.26m for x < 0, while the horizontal displacements reach a maximum modulus of

about 18 cm.

Over time the left lobe which represents the depression of the ground reduces in

size, as the right lobe representing the increase in height advances towards the left one

while decreasing in width.

The pore–pressure field in Fig. (2.2c–d) at the depth of z = 5km undergoes a very

steep variation in time over the course of the chosen time–frame. Its maximum varies

from about 0.64 bar at t = 0days to about 3.6 bar at t = 51 days at it is registered at

the centre of the domain. Darcy’s planar velocities at this depth are out–flowing from

the high pressure zone, which migrates to the centre of the fault over time, and at the

same time increasing in magnitude, as seen in Fig. (2.2d).

The lateral low–pressure regions are of lesser importance, due to their magnitude

being irrelevant to the scale of the phenomena.

3.3 Thrust fault

The vertical displacement reaches the minimum in the hanging wall for x ≈ 10 km,

coherent with the one generated by a thrust fault.

The pore–pressure at z = 5 km is almost fully negative and thus, this implies that

the zone is subjected to co–seismic dilation.

The comparison with the normal fault is highlighted in Fig. (2.3a–b) by the equal

presence of lobes, one of high magnitude displacement and the other of lesser magnitude.

The depression lobe (in blue) encompasses the fault, oriented vertically at the center

of the plot. Over time, the surface displacement field shifts to the left, in the direction

highlighted by the vector field.

The vertical displacements near the center of the domain reach a maximum of about

0.07m and a minimum of about −0.33m, while the horizontal ones have a maximum

in modulus of 30 cm.

The pore–pressure at the depth of z = 5km in Fig. (2.3c) is initially composed of

low–pressure lobes, which reaches a minimum of about −1 bar, which ends up merging

in the observed time–frame, in order to form a very–low–pressure uniform zone located

just to the right of the fault, as seen in Fig. (2.3d), which in itself reaches values of about

−5 bar. The later high–pressure regions are of lesser relevance, as their magnitude is
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also in this case irrelevant to the study of the phenomena.

3.4 Closing statement

The objective of this thesis to simulate the poro–elastic rebound in the post–seismic

phase of strike–slip, normal and thrust faults is deemed successful because the simula-

tion data is seen to accurately reproduce the deformations observed in the near field in

poro–elastic media due to strike–slip, normal and thrust faults. This is verifiable when

comparing it to the data reported by Piombo et al. (2005) and Nespoli et al. (2016).
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