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Abstract

This thesis explores the application of AI in the realm of autonomous racing

drones. The racing industry has historically driven the evolution of robust and

efficient systems, with the recent focus shifting towards self-driving mecha-

nisms. The challenges in this domain are complex, requiring precise control

and perception systems with minimal reaction times.

The research conducted at the Autonomous Robotics Research Center of

the Technology Innovation Institute is presented, with a particular emphasis

on perception systems for autonomous racing drones. The study introduces

an innovative high-speed dataset and a pioneering approach for gate pose es-

timation powered by state-of-the-art keypoints detection neural network.

For the purpose of evaluation, the research also presents an algorithm ca-

pable of reconstructing the map of an unknown track, leveraging the results

provided by the gate pose estimation. This work contributes significantly to

the field, enhancing the accuracy of perception systems and significantly low-

ering their computational complexity.
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Chapter 1

Introduction

The racing world has always been a fundamental catalyst for the development

of increasingly efficient and safe technologies. The extreme conditions to

which vehicles are subjected, tends to amplify all the critical issues that can

normally arise in a vehicle. This, over time, has enabled the development of

increasingly efficient, effective and robust systems, significantly revolution-

izing not only the world of racing but also the technologies that surround us in

our everyday lives. In recent years, the need to develop self-driving systems

has led to the emergence of races for autonomous vehicles such as cars and

drones. Here the challenges become even more complicated, as it is neces-

sary to develop control and perception systems that are able to operate very

precisely and with very short reaction times.

In this master thesis, the research conducted at the Autonomous Robotics

Research Center of the Technology Innovation Institute will be presented,

focusing on the development of perception systems for autonomous racing

drones. The primary emphasis will be on both the groundbreaking of an un-

seen high-speed dataset and a novel AI-powered approach for pose estima-

tion of gates. The results of this work are extremely important for the future

research, development and evaluation of new learning-based control and per-

ception systems.

In order to have ameaningful evaluation of the gate pose estimationmethod,
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an algorithm will be presented. This algorithm utilizes the results generated

by the gate corner detector to reconstruct the map of an unknown track.

1.1 Drone racing

Drone racing is a high-speed, exhilarating sport where pilots operate small,

remotely controlled drones through intricate and challenging courses. These

drones are equipped with cameras that provide a real-time first-person view

(FPV) to the pilots. With years of training, human pilots are able to navigate

in complex environments at incredible speeds, reaching peacks of 50 m/s. It

comes naturally that an interest has arisen in transferring, and possibly ex-

ceeding, those capabilities into self-driving drones. Such improvements in

technology, would be very useful in a lot of application, like drones operating

in emergency scenarios, for surveillance, search-and-rescue operations and

many more.

Over the last five years, a few competitions have been organized, the

most important ones being in correspondence with four editions of the In-

ternational Conference on Intelligent Robots and Systems (IROS 2016-2018)

and AlphaPilot [15] sponsored by Lockheed Martin. Similarly to races of hu-

man piloted drones, in autonomous competitions the drone has to go through

gates, with a specific order, in the shortest time possible. In order to be able to

operate autonomously, drones are equipped with a computation unit (usually

an Nvidia Jetson GPU) and multiple onboard sensors such as IMU, cameras,

rangefinders. Given the limited computational power and all the problems that

affect these sensors at high-speeds (motion blur, light changes, motors vibra-

tions), being able to emulate human performances, arises several challenges

in perception, planning and control.



Chapter 2

Background

Since the first autonomous drone race at IROS 2016, several datasets and

methods for gate detection have been proposed. In this chapter, a summary

of widely recognized publicly available datasets and their distinguishing fea-

tures will be provided. This overview will underscore the rationale behind the

introduction of a new and expanded dataset. Subsequently, an examination

of prior approaches employed by both researchers and race competitors in the

context of gate detection will be conducted. This analysis aims to demonstrate

the various ways in which such visual information can be leveraged.

2.1 Datasets

In the field of AI for perception systems in autonomous racing drones, the

availability of suitable datasets plays a critical role in advancing research and

development. Over the years, several datasets have emerged, each catering to

specific aspects of this domain. In this section, a comprehensive review of ex-

isting datasets is conducted, discussing their characteristics and emphasizing

the distinctive contributions of the newly created dataset.

Among the earlier datasets for multi-rotor Visual-Inertial Odometry (VIO)

and Simultaneous Localization and Mapping (SLAM), the 2016 EuRoC [5]
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and the 2017 Zurich Urban micro aerial vehicle MAV [28] datasets are no-

table. However, these datasets were primarily characterized by comparatively

lower speeds and lower image capture frequencies. Such limitations proved

inadequate for addressing the demanding requirements of drone racing, where

high-speed maneuvering and real-time perception are paramount.

Recognizing the need for datasets that align with the aggressive flight na-

ture of drone racing, recent years have witnessed a resurgence in dataset cre-

ation. The UPenn dataset released in 2018 [37] aimed to validate stereo VIO

methods for fast autonomous flight but did not incorporate the presence of

racing gates.

In 2019, Lockheed Martin contributed to the landscape by releasing an

image dataset for Test #2 of its AlphaPilot challenge’s virtual qualifiers [15].

However, this dataset lacked essential drone state information, which limited

its applicability to comprehensive perception tasks. Concurrently, researchers

recognized the need for benchmarks that focused on faster trajectories, as ob-

served in the dataset presented in [12].

The Blackbird dataset [1], introduced in 2020, was designed to facilitate

perception research in aggressive indoor flight scenarios. Notably, it com-

bined real-world inertial data with high-resolution images generated in simu-

lation environments.

Despite these efforts, a dataset that encompasses the full spectrum of high-

speed autonomous flights, offers high-resolution, high-frequency RGBmono-

camera images (comparable to what human pilots rely on), and provides com-

prehensive annotations, including precise gate corner labels, was notably ab-

sent until the creation of our dataset. Our dataset distinguishes itself from [12]

by not only including piloted but also autonomous high-speed flights, thereby

reflecting the diverse operational modes of racing drones. Moreover, it offers

higher-resolution images captured under varying light conditions, rendering

it more representative of the challenging real-world scenarios encountered in

drone racing. Most importantly, the dataset encompasses both high-frequency
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motion capture data and pixel-level annotations of gates and their corners,

ensuring accurate and comprehensive ground truth information for research

purposes.

Recent additions to the dataset landscape include [31] and [2], both spe-

cialized datasets catering to drone racing and aggressive multi-rotor flight.

Additionally, [16] introduced an open-source, open-hardware racing drone,

further enhancing the accessibility and reproducibility of research in this do-

main.

Compared to the existing literature [17], our dataset stands out in sev-

eral key aspects. First, it represents the fastest autonomously flown dataset,

pushing the boundaries of speed and maneuverability. Second, it offers high-

resolution, high-frequency image data, capturing the nuances of different light-

ing conditions that are crucial for real-world racing scenarios. Lastly, our

dataset is fully annotated, going down to the granularity of individual gate cor-

ners, which empowers researchers to delve into various aspects of autonomous

drone racing, including Visual-Inertial Odometry (VIO), gate pose estima-

tion [13, 21], and end-to-end control. In summary, our dataset provides a

robust foundation for advancing research in AI-driven perception systems for

high-speed autonomous racing drones.

2.2 Gate detection

Human pilots rely on gates as a key position reference, gates allow them to

understand which are the next waypoints but also to have a relative estimate

of their position in the 3D space. Indeed, one of the key requirements of an

autonomous racing drone, is being able to detect gates. This can be done in

several ways, at different semantic levels, depending on which is the objec-

tive. For example, if one has a good state estimation module, then relying on

the simple bounding box detection (Section 2.2.1) of the gate can be enough

to pass through the next waypoints. In most situations however, particularly
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in drone races, drone cannot rely on an accurate estimate of the state. When

an external motion capture or tracking system is not available, the common

solution is to use measurements of the IMU coupled with the optical flow ob-

tained by a stereo system, to perform VIO and estimate the state of the drone.

Unfortunately, VIO is well known to be affected drift, which is particularly

intensified at high speeds where the noise from the IMU increases and the op-

tical flow struggles due to motion blur in images. The knowledge about shape,

size and perhaps position of gates, can be leveraged to get an estimate of the

drone’s state, allowing to correct the drift. Thus, for the purpose of improving

localization abilities, more complicated solution that aim to extract the pose

of gates seen from the camera needs to be employed (Sections 2.2.2, 2.2.3).

2.2.1 Simple gate detection

In the early stages of autonomous drone racing navigation, the primary ap-

proach involved using the visibility of gates in the camera image stream to

perform reactive control towards approximated waypoints. Many competi-

tors focused on straightforward gate detection using either classical computer

vision techniques or neural networks for object detection.

One noteworthy example is the work of Jung et al. [20], who achieved

victory in the first autonomous drone racing competition at IROS 2016. They

employed a color-based approach that effectively worked for that specific

race, as the gates were monochromatic and bright orange. However, this ap-

proach tends to falter in the face of challenges such as varying light conditions

and motion blur induced by high-speed flight. To address these limitations,

Jung et al. proposed ”ADRNet,” a modified Single Shot MultiBox Detector

(SSD) [25]. ADRNet’s task was to predict a bounding box around gates, and

their control module aimed to align the image frame center with the center of

this bounding box. However, a weakness of this approach lies in the strong

assumption that the center of the bounding box corresponds to the center of
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the real gate. While this assumption holds true when the camera’s optical axis

is perpendicular to the gate and there is no lens distortion, in most real-world

situations, these conditions are not met.

A significant advancement in harnessing the information that a visible

gate can provide was made by [30]. They initially proposed an object de-

tector very similar to ADRNet, utilizing a lightweight version of SSD with

MobileNetV2 [35] as the backbone. This detector was employed to predict

only the closest gate. Subsequently, they processed the grayscale version of

the bounding box crop using another convolutional neural network (CNN) in

conjunction with a fully connected layer to regress the distance to the gate.

However, this approach did not yield high accuracy, as they reported an av-

erage error of 0.66 meters in distance prediction, even when the drone was

operating at low speeds (maximum 2 meters per second) and the entire per-

ception module was running off-board.

2.2.2 Gate Corners Detection

While simple gate detection methods can suffice when the drone operates at

low speeds and benefits from a robust state estimation system, exploiting the

presence of gates in images can provide invaluable information for mapping

or state estimation in case of known tracks. In such contexts, estimating the

relative pose of visible gates becomes crucial. Given the well-known shape

and size of gates, along with the camera’s intrinsic parameters, detecting the

corners of gates allows for accurate pose estimation.

Over the years, various approaches have been employed to detect gate

corners, depending on race settings and hardware constraints. Some of these

methods rely on classical computer vision techniques, as seen in ”Snake-gate” [22]

and ”Lines” [36]. These methods are particularly suitable for drones with lim-

ited computational power. However, they still face common challenges posed

by noise, motion blur, and varying light conditions.
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Schmidt [36] proposed solutions based on object detection models, such

as YOLOv5 [33] and Faster-RCNN [34], and semantic segmentation of cor-

ners. While this paper offers a valuable performance comparison of differ-

ent approaches, these methods were applied out of context on the Alphapilot

dataset [15]. Consequently, issues related to partial occlusion, corner-to-gate

correspondence and computational constraints were not fully addressed.

In the Alphapilot 2019 competition [15], the winning team and the second-

place team both relied on deep neural networks for gate detection and pose

estimation. The winning team employed ”GateNet” [13], a UNet architec-

ture trained on a private manually labeled dataset consisting of 2336 images.

They employed a ”de-rotation” step and subsequently applied the Snake-gate

algorithm [22] to locate the corners of gates. In contrast, the second-place

team [15] introduced an effective method for solving the corner-to-gate corre-

spondence problem when multiple gates were present in the image. They em-

ployed a UNet to predict both corner masks and Part Affinity Fields (PAFs),

adapting a technique originally proposed for human pose estimation [6]. Uti-

lizing this information, they tackled a K-dimensional matching problem [39]

to construct coherent ”bodies” of visible gates.

2.2.3 End-to-end gate pose estimation

A significant milestone in the field of autonomous racing drones was achieved

at IROS 2018 when Kaufmann et al. [21] secured victory using the first end-

to-end image-to-pose approach. They employed a CNN with two separate

Multi-Layer Perceptron (MLP) heads. One head was dedicated to regressing

the relative pose of the closest gate, while the other provided an estimate of

uncertainty. This uncertainty information was particularly valuable, as it was

used to update an extended Kalman filter, maintaining a global estimate of the

race track. The network was trained on a private dataset that featured only a

single non-squared gate in various environments. This choice was rationalized



2.2 Gate detection 10

by the perception system’s primary objective of estimating the pose of the next

gate. However, as noted in [15], the neural network struggled when multiple

gates were simultaneously visible.

Following in the footsteps of the IROS 2018 winners, Pham et al. [32]

presented a similar approach. They proposed a CNN with a single fully con-

nected layer on top, responsible for regressing various parameters, including

the confidence value, gate center pixel coordinates, distance, and orientation

of visible gates. Their work demonstrated that integrating such detections into

multiple Extended Kalman Filters (EKFs), one per gate, allowed for a precise

estimate of the racing track.

These end-to-end approaches mark a significant advancement in gate pose

estimation, as they aim to provide a holistic understanding of the drone’s po-

sition and orientation relative to the race track based solely on visual input

without any further processing step. However, ongoing research continues

to address challenges associated with handling multiple visible gates and en-

hancing the robustness of end-to-end pose estimation in complex racing envi-

ronments.



Chapter 3

High-Speed dataset

In this chapter, the methodologies and processes employed in collecting and

annotating the high-speed dataset are explored. It begins with an introduction

to the drone platform, its hardware components, and sensor systems, followed

by an exploration of the software stack. The focus will then move to the in-

door arena setup, a critical environment for our experiments. The heart of this

chapter lies in our detailed examination of the collected visual data and the

precise labeling methods employed, which are essential for our research. The

culmination of the efforts in creating this dataset has led to the submission of a

paper to IEEE Robotics and Automation Letters (RA-L). While this thesis pri-

marily concentrates on the visual data collected by the drone, for an extensive

understanding of the entire data collection process and guidance on utilizing

the dataset, it is recommended to refer to our original paper that will be soon

released. Some information, figures, and tables presented in this thesis have

been directly sourced from the mentioned paper.

3.1 Drone Setup

To facilitate the collection of our dataset, a custom quadrotor, as depicted in

Figure 3.1, was built. Its design is centered around a 5” carbon-fiber frame

with a propeller-to-propeller diagonal spanning 215mm. The fully-assembled
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Figure 3.1: The drone platform used to record the dataset, the body frame B
has its origin at the FCU’s IMU location, the camera frame C is located where
the bottom lens is (the top lens being the one of the FPV system).

drone, inclusive of the battery, possesses a weight of approximately 870g,

while boasting an impressive maximum speed of 179km/h. This high-speed

capability is essential for executing the aggressive maneuvers demanded in

drone racing.

One noteworthy feature of our design is its adaptability, which enables

it to function seamlessly as both an autonomous racing drone and a human-

piloted First-Person View (FPV) racing drone. This dual-purpose configura-

tion serves a critical purpose: it establishes an authentic testing environment

for benchmarking the performance of autonomous drone racing against human

counterparts.

3.1.1 Design

The quadrotor comprises three main sub-systems: (i) quadrotor electronics,

(ii) an autonomousmodule, and (iii) a First-Person-View (FPV) system. These

sub-systems are integrated using the frame and fasteners. The assembled sys-

tem includes two cameras: one digital camera connected to the autonomous

module and one analog camera used by the human pilot in the FPV system.
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Both cameras share the same mount, with the FPV camera positioned above

the digital one.

The quadrotor electronics (i) consist of the electronic speed controller

(ESC), the Kakute H7 v1 flight controller unit (FCU), the radio controller

(RC) receiver, and the battery. These components are mounted underneath

the frame, with aluminum standoffs connecting the frame and a 3D-printed

custom battery cage. The FCU hosts an STM32H7 microcontroller and is ca-

pable of running various firmware, including Ardupilot and PX4.

The autonomous module (ii) comprises an NVIDIA Orin NX, hosted on

the A203v2 carrier board with SSD and wireless card, the battery eliminator

circuit (BEC) powering it, and an Arducam RGB camera. These components

are positioned above the frame and secured by two 3D-printed plates con-

nected by aluminum standoffs. The top plate serves as the mount for the cam-

eras, with an MIPI CSI-2 ribbon cable connecting the companion board with

the Arducam. The FC is connected via a serial port, using a shielded cable.

This connection is used both to control the drone and read FC sensor data.

The FPV system (iii), independent from the autonomous module and de-

signed for human piloting, includes an analog camera, a video transmitter, and

their respective antennas, all placed above the frame.

3.1.2 Sensors

The quadrotor is equipped with three primary sensors for autonomous and

piloted aggressive flight: (i) an IMU, (ii) an RGB camera, and (iii) an FPV

camera.

(i) The IMU, an InvenSense MPU6000, is embedded into the FC and pro-

vides precise real-time tri-axis angular rate sensor (gyroscope) data and accu-

rate tri-axis accelerometer data.

(ii) The camera, an Arducam IMX219 8MP RGB Bayer, is part of the
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autonomous module and captures 640x480 pixel frames at 120Hz with a di-

agonal field-of-view (FOV) of 175°. The image is converted to BGR format

for processing and analysis. This conversion is performed by the NVIDIA

GStreamer plugin on the NVIDIA companion computer.

(iii) The FPV camera is a Foxeer T-Rex Mini 1500TVL with 6ms of la-

tency. It is used by a human pilot in conjunction with a pair of 1280x960

OLED Fat Shark HDO2 goggles.

3.1.3 Software

The FC firmware used is Betaflight 4.3.1 [4], with proportional-integral-derivative

controller (PID) tuning performed by a human pilot. The companion computer

communicates with the FC usingMultiwii Serial Protocol (MSP) to send com-

mands and read sensor data. To ensure safety, Betaflight’s MSP_OVERRIDE

feature is activated, allowing the human pilot to override motor commands

with an RC controller for emergency disarming.

On the Orin NX module, NVIDIA JetPack 5.1.1 is installed, which in-

cludes Jetson Linux 35.3.1 Board Support Package (BSP) with Linux Real-

Time Kernel 5.10 and an Ubuntu 20.04-based root file system with CUDA

11.4 support. The Robot Operating System 2 (ROS2) [27] Humble distribu-

tion is used as the middleware for communication between the perception,

planning, and control modules.

3.2 Arena Setup

The dataset was recorded in TII’s indoor arena (Figure 3.2), measuring 24 x

9.7 x 7 meters. The arena is equipped with a Qualisys motion capture sys-

tem (MoCap) comprising 32 Arqus A12 cameras, which track the 6DoF poses

of defined rigid bodies with millimeter accuracy at 275Hz.

To prepare the motion capture system for use, calibration is required. An

L-shaped arrangement of markers is placed in the center of the arena, defining
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Figure 3.2: 3D view of the arena from Qualysis software, the 3d bounding
box determines the area covered by the motion capture system. The position
of all the 32 cameras is visible.

the axes’ direction and the motion capture reference frame’s center position.

The x-axis aligns with the arena’s longest direction, while the z-axis points

upward. Calibration involves recording a sequence of movements using a T-

shaped wand with markers on the sides.

3.3 Data collection

The dataset contains a total of 24 flights (Table 3.1): 12 human-piloted and

12 autonomous ones. In either case, two shapes—ellipse and lemniscate (Fig-

ure 3.3)—have been executed 6 times, using the same gate configuration in

each run. In the course of the six repetitions, various settings of light condi-

tions andmotion blur can be observed, as indicated in Table 3.2. These settings

are determined by the combination of lighting (on/off), blinds (up/down), and

exposure time (auto/fixed). Recording at 120 fps, resulted in a high number of

images : 177030 in total. Using different combination of exposure and lights

resulted in a large variability in the recorded images (Figure 3.4).
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Control Trajectory Top Speed Time Distance

Autonomous Ellipse 21.83 m/s 149.32 s 526.15 m
Lemniscate 10.22 m/s 155.32 s 480.67 m

Piloted Ellipse 9.50 m/s 575.62 s 3355.67 m
Lemniscate 8.93 m/s 594.60 s 3577.65 m

Table 3.1: Summary of the flights recorded in the dataset

Position, orientation and velocity of the drone were recorded using Qual-

isys, while linear and angular acceleration were collected by the onboard IMU.

In the end, all these information were synchronized according to the times-

tamps, and, beside the ROS bags and raw data, a csv file was generated for

each flight. In order to use computer vision methods for objects pose estima-

tion, the camera calibration results (intrinsic matrix and distortion parameters)

and the set of images used were released too. Using Qualisys, by placing a

marker in place of the camera, an estimate of the translation between the drone

and camera pose was computed. Regarding the rotation, we assumed them to

be aligned, except for the x axis, as the camera was placed at 40◦ and 50◦

during lemniscate and ellipse trajectory, in order to compensate for the high

pitch, due to high-speed, and make gates more visible. For each flight, the

position and orientation of the gates was also recorded, in order to allow the

development and evaluation of any perception module.

3.4 Labeling

As far as our research has revealed, there has been no previous dataset that en-

compasses images captured from the First-Person View (FPV) of a real drone

operating at high speeds, featuring comprehensive labeling of all gates and

their associated corners, even when occluded. My primary contribution to

this dataset centered around the meticulous labeling of images, involving the

delineation of bounding boxes around each gate and the assignment of corners
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Figure 3.3: Examples of recorded trajectories on a 4-gate track: an ellipse
(top) and a lemniscate (bottom).

Flight Trajectory Lighting Motion Blur Autonomous Piloted
1 Ellipse high high 2699 12666
2 Ellipse high normal 2944 11316
3 Ellipse medium high 2903 10821
4 Ellipse medium normal 3494 12811
5 Ellipse low high 2773 10071
6 Ellipse low normal 3040 11201
7 Lemniscate high high 3692 12831
8 Lemniscate high normal 3651 10461
9 Lemniscate medium high 3001 11224
10 Lemniscate medium normal 3314 11201
11 Lemniscate low high 2668 12861
12 Lemniscate low normal 2806 12581

Total 36985 140045

Table 3.2: Summary of the images recorded in each flight
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(a) Flight 01 (b) Flight 04 (c) Flight 06

(d) Flight 07 (e) Flight 09 (f) Flight 11

Figure 3.4: Examples of recorded images during autonomous flights

to their respective gates.

Prior datasets were primarily designed for applications involving simple

object detection, semantic segmentation, or pixel-wisemethods. Consequently,

none of these datasets included labels for occluded gates. Thus, the question

arises: How was the annotation of all these images managed?

One straightforward solution would have been to utilize perspective pro-

jection. Given the recorded positions of both the drone and the gates through

the motion capture system, and the knowledge of camera intrinsics and lens

distortion parameters, one could intuitively project the four corners of each

gate back into the image frame. However, practical implementation presented

challenges in the context of real-time data acquisition. Issues such as network

instability leading to packet loss from the motion capture system, small track-

ing inaccuracies in the recorded objects, and the complexities of synchronizing

images with their corresponding poses collectively contributed to deviations

between the projected points and their actual pixel positions.

The alternative approach adopted, involved the creation of a synthetic

dataset, followed by training a robust and high-performance model using this

synthetic data. This model was subsequently employed for automated labeling
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after a fine-tuning on manually labelled real data. The auto-labeling pipeline

we devised can be summarized as follows:

1. Creation of a synthetic dataset using Blender[9].

2. Pretraining of a two-stage top-down keypoint detector [8, 10].

3. Fine-tuning of the detector using a small set of manually labeled real-

world images.

4. Iterative review, correction, and fine-tuning of the generated labels.

The last step was an ongoing process, meticulously refined until all gen-

erated labels met the requisite quality standards.

3.4.1 Data Generation Pipeline

To construct a 3D model of the racing gates and render them in random po-

sitions, Blender[9] was utilized in conjunction with a Python script plugin

known as [7], which facilitated automated rendering.

Within the Blender environment, a world configuration was established,

comprising five gates, four distinct light sources, and a camera sharing iden-

tical image resolution (640x480) and intrinsic parameters as those estimated

from the real camera through calibration.

The Python rendering script systematically applied random translations

and rotations to all elements in the world, ensuring that gates did not intersect

with one another. To impose some degree of coherence and prevent entirely

random camera poses, a constraint was placed on the camera to track one of

the gates.

A total of 50,000 images were generated, each accompanied by 4x4 trans-

formation matrices (with respect to the world reference frame) for all objects

in the scene, which were stored in a numpy file.

For each rendered image, initially in PNG format with an alpha channel, a

random background from the COCO[24] 5k images validation set was applied.
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To simulate the motion blur characteristic of real flight images, random sam-

pled kernels of varying dimensions (3x3, 5x5, or 7x7) were applied through

convolutions.

By employing the stored pose information of each object alongside the

camera’s intrinsic parameters, the corners of each gate were projected into

the rendered image frame, and their corresponding bounding boxes were ex-

tracted.

Concerning the labeling format, adherence was maintained to the conven-

tions outlined by COCO[23] for keypoint detection and the standard format

for bounding boxes. Each gate label encompassed the following attributes:

• Bounding box: cx, cy, w, h

• The four inner corners: tlx, tly, tlv, trx, try, trv, brx, bry, brv, blx, bly, blv

In this notation, ’c’ represents the center, ’t’ signifies the top, ’b’ denotes

the bottom, ’l’ represents the left, and ’r’ stands for the right. Additionally,

each keypoint ’k’ featured a third value, ’kv’, indicating its visibility. As per

COCO conventions, visibility values carried the following interpretations:

• 0: Keypoint is out of the image.

• 1: Keypoint is occluded.

• 2: Keypoint is clearly visible.

The rendering plugin also facilitated the storage of segmentationmasks for

each gate, allowing to distinguish between visible and occluded keypoints.

3.4.2 Auto-labeller Pre-training

A top-down keypoints detector was used to automate the labeling process for

all images. The decision of using such type of model is well detailed in Sec-

tion 4.1. This choice implied to utilize the widespread Pytorch-based frame-

work developed by Open-MMLab for training both the object detection [8]
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Figure 3.5: Examples of synthetic images generated in Blender

and keypoint detection [10] networks.

Thismodular framework facilitated the design of a top-down keypoints de-

tector consisting of two independently trained networks. Users can select from

a variety of available models, and our selection leaned towards the highest

performing models based on the Average Precision (AP) scores provided by

the MM library. Due to computational constraints on an 80GB Nvidia A100

GPU, the choice was made to employ the large versions of the object detector

RTMDET [26] and keypoints detector RTMPOSE [18]. These models were

initially trained separately. However, during inference for auto-labeling, they

operated in a cascade mode. The bounding box detected by the first model

defined the region in which the second model sought to locate keypoints.

As first training session, the synthetic dataset was employed, training on

the 80% of the generated images and using the rest for validation.

3.4.3 Auto-labeller Fine-tuning

In computer vision applications for robotics, there is often a demand for high-

quality pixel-level annotations. Manual labeling of such data is an extremely

time-consuming endeavor. In situations where employing specialized sensors

to collect this information, such as LIDAR or stereo systems for obtaining

depth maps, is impractical, a common solution involves generating synthetic

images and their corresponding annotations using computer graphics and sim-

ulation tools.

Even when ultra-realistic graphics engines are employed, the generated
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data may not closely resemble the distribution of real-world data. This dispar-

ity is commonly referred to as the ”sim-to-real” gap, leading to the potential

underperformance of models trained solely on synthetic data when tested on

real data.

To address this challenge, a widely adopted strategy is to collect a rela-

tively small sample of labels for real images and employ them to fine-tune the

pre-trained model. In line with this approach, 5000 images randomly selected

from the entire dataset were manually annotated. These images were subse-

quently divided into training and test sets (80-20%). Fine-tuning sessions for

both the object and keypoints detectors were conducted.

The fine-tuning process resulted in a highly performing model capable

of detecting gates and their corners even when they were partially occluded.

Initially, this model was used to automatically generate labels for the 12 au-

tonomous flights. Following meticulous validation and any necessary manual

corrections, the model underwent further fine-tuning, ultimately leading to

improved performance. This enhanced model significantly streamlined the

labeling process for the remaining piloted flights.



Chapter 4

Pose estimation

As discussed in Section 2.2, the estimation of drone racing gate poses pri-

marily falls into two categories: corner detection followed by Perspective-n-

Point (PnP) utilizing camera parameters, or training an end-to-end neural net-

work. The latter approach, while potentially offering faster inference times,

was deemed impractical due to its limitations in handling multiple gates and

adapting to different environments.

Many proposed methods have focused on corner detection by relying on

full gate segmentation masks, whether based on color [22] or UNet-based [13]

approaches, followed by post-processing to identify gate corners. Phoen et

al. [15] adopted a UNet model to directly predict the segmentation masks of

corners and Part Affinity Fields (PAFs), whichwere subsequently used in post-

processing to establish corner-to-gate associations.

However, these methods encounter two main challenges: they struggle in

scenarios with multiple overlapping gates, potentially with corners obscured

by other gates, and they require post-processing steps to handle segmentation

masks and solve corner-to-gate correspondence.

In this chapter, the focus will be on how state-of-the-art keypoint detection

models can be utilized to precisely identify the pixel coordinates of gate cor-

ners, effectively addressing the challenges mentioned earlier. Furthermore, an

algorithm will be introduced that utilizes PnP and the drone’s state estimate
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(position and orientation) for accurate reconstruction of the racing track.

4.1 Keypoint Detection

The employed approach to address both of these challenges in gate pose esti-

mation was to treat it as a keypoints detection task. Many solutions have been

developed for detecting keypoints, primarily designed for human pose esti-

mation following the COCO [23] standard, which defines 17 keypoints for

the human body. These solutions can generally be categorized as top-down

and bottom-up methods.

Top-down methods involve a two-stage process where object detection

is performed first, followed by keypoints detection for each detected object.

However, this approach, due to its reliance on two networks and increasing

complexity with the number of detected objects, is not suitable for real-time

applications and can fail if the bounding box detection is imprecise. In con-

trast, bottom-up approaches aim to detect keypoints for all objects in the scene

simultaneously and then employ post-processing methods to group keypoints

and construct the structure of each object. The approach proposed by [15] can

be considered a bottom-up keypoints detection method.

A solution that combines the advantages of both top-down and bottom-

up approaches is the one presented by Maji et al. [29] for efficient multi-

person pose estimation in YOLO-Pose. The following method for gate pose

estimation relies on a variant of this keypoint detector, available within the

YOLOv8 [19] framework.

4.2 YOLO

YouOnly LookOnce (YOLO) is one of themost prominent andwidely adopted

single-stage object detection systems. Introduced by JosephRedmon et al. [33]

in 2016, YOLO has undergone numerous iterations and improvements over
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the years by different research groups, focusing on enhancing its capabilities

while maintaining a strong emphasis on the speed-accuracy trade-off. Today,

it stands as the de facto standard solution for many real-time computer vision

applications.

For an in-depth review and detailed explanation of YOLO’s inception,

evolution, and contributions from various research groups, readers can refer

to an extensive resource [38].

One notable group that has played a significant role in advancing YOLO

and making it accessible to a wider audience is Ultralytics. Ultralytics, the

developers behind YOLOv5, introduced a PyTorch-based version of YOLO,

along with a user-friendly Python library that simplifies the training, valida-

tion, and deployment pipeline for various YOLO variants. Building on their

extensive experience with YOLOv5, Ultralytics released YOLOv8 [19] in

the most recent development. This version incorporates several innovations

from intermediate YOLO iterations, including the transition to an anchor-free

model (based on the TOOD implementation [14]) and the use of decoupled

heads for different tasks.

In addition to its traditional capabilities in image classification and object

detection, YOLOv8 extends its utility to segmentation, object tracking, and, as

ofApril 2023, pose estimation tasks. For the latter, Ultralytics drew inspiration

from thework ofMaji et al. [29] on human pose estimation, particularly human

keypoints detection.

Ultralytics adopted a straightforward approach to keypoints detection: sim-

ilar to bounding box predictions, adedicated head directly regresses the coor-

dinates of 17 keypoints on a human body. This implementation utilizes the

same model architecture as YOLOv8 for object detection but includes an ad-

ditional and decoupled head specialized in predicting keypoints. Importantly,

this approach ensures that the model’s performance in detecting objects and

keypoints remains largely independent, allowing for accurate keypoints local-

ization even when bounding box predictions are imprecise.
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Figure 4.1: Detailed YOLOv8 architecture [11]. Only the object detection
head is shown, however the network is the same for the keypoint detection
task.
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4.2.1 Metric and Loss

A notable innovation in the keypoint detector lies in its loss function, which is

directly tied to the target metric. The COCO dataset [23] introduced not only

a human keypoint dataset but also defined the evaluation criteria for model

performance. In particular, COCO introduced the Objects Keypoint Similar-

ity (OKS) metric, analogous to Intersection over Union (IoU), enabling the

use of classic Average Precision (AP) and Average Recall (AR) metrics for

keypoints. For an object with N keypoints, the OKS is defined as follows:

OKS =

∑N
i

[
exp

(
− d2

i

2s2κ2
i

)
δ(vi > 0)

]
∑N

i δ(vi > 0)
∈ [0, 1]; κi = 2σi (4.1)

In this equation:

• di represents the Euclidean distance between the ground truth and de-

tected keypoints.

• vi is the ground truth visibility flag for each keypoint.

• The distance is transformed by an unnormalized Gaussian distribution

with a standard deviation of sκi, where s represents the size of the object

(determined by the bounding box).

• κi essentially controls the size of the Gaussian distribution around a

specific keypoint, defined as 2σi.

The choice of σ values strongly influences the OKS outcome. Smaller σ val-

ues demand higher precision for a given keypoint, making it more challenging

to achieve a high similarity value.

In YOLO, OKS is not solely used as a similarity measure for AP/AR com-

putation; it is directly incorporated into the keypoint loss function:

Lkpts = 1−OKS (4.2)
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For model evaluation, the mean average precision (mAP) is computed as

the average of results obtained usingmultiple threshold values of OKS. Specif-

ically, the considered interval will be the common [0.5, 0.95] with a step of

0.05.

4.3 Training

Ultralytics has releasedmultiple versions of themodel at different scales, rang-

ing from the ”nano” version with 3.3 million parameters to the ”xlarge” ver-

sion with 69.4 million parameters. Given the computational constraints of the

onboard device and the desire for the network to perform at or above the cam-

era’s frame rate (120Hz), the choice was made to utilize the smaller version

of YOLOv8. Consequently, the pre-trained model, yolov8n-pose.pt (nano),

was chosen, and its default 17-keypoints detection head was replaced with one

designed for detecting four gate corners.

Training experiments were conducted at different input resolutions, in-

cluding 6402, 4482, 2242, and 1922, to find the right trade-off between ac-

curacy and inference time. The choice to work with these input resolutions,

despite the camera recording at 640×480, arises from the YOLO framework’s

requirement for squared input shapes when using multi-GPU training and cer-

tain data augmentations.

Several data augmentations were applied during training, including±10%

resize and translation, HSV color transformations, and random left-right flips.

In the initial epochs, mosaic augmentation was also employed. AdamW opti-

mizer along with a linear learning rate scheduler were chosen for the training

procedure.

The setting of the σ values, as explained in Section 4.2.1, plays a crucial

role since OKS is directly used in the loss function. While COCO [23] assigns

low values (0.025) to small body parts like ears and nose and higher values

(0.107) to larger body parts like hips, estimating the pose of the gates requires



4.4 Evaluation 29

high precision in the detection of corners. Therefore, all the four σ values

were set to 0.025.

Attempting to train with such low σ values initially did not yield high

mAP scores (see Figure 4.2). Training a model from scratch directly on a

challenging task is known to be suboptimal. To tackle this issue, the concept

of ”Curriculum Learning” as proposed by Y. Bengio et al. [3] was adopted. In

this approach, the training data is structured in a curriculum or sequence, with

each step representing varying levels of task complexity. The model is trained

on simpler examples first and is progressively exposed to more challenging

ones.

Therefore, a training pipeline with multiple steps was defined, at each step

a lower value for the σ values is used. The pipeline consisted of three training

steps with σ values of 0.25, 0.05, and finally 0.025. In each step, the model

pretrained in the previous step was fine-tuned for 50 epochs starting from a

lower learning rate.

During the authorship of this thesis, labels for all the human-piloted recorded

flights were still under review. As a result, only the autonomous flights were

utilized for training and evaluating the performance of YOLO and the map-

ping algorithm. The evaluation was conducted on two flights, one per trajec-

tory, with flights 6 and 9 serving as the test/validation set, while the remaining

flights were used for training.

4.4 Evaluation

The models were tested on two different trajectories: an ellipse trajectory

recorded under low-light conditions and a lemniscate trajectory with normal

lighting but high motion blur.

First, let’s discuss the benefits of the curriculum training strategy em-

ployed. A comparison between a model trained at an input resolution of 6402
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with and without our custom training pipeline reveals the significant differ-

ence. Results from straightforward training (Figure 4.2) demonstrate that the

model struggles to accurately localize keypoints when its head is trained from

scratch. In contrast, Figure 4.3 shows results obtained by the model fine-

tuned in the last curriculum training step. Thanks to the previous training at

σ = 0.05, it starts from a lower loss and achieves a 98.86 mAP. Table 4.1 illus-

trates how using a lower input image resolution decreases the performance in

terms of mAP. The 3% difference between 6402 and 1922 resolutions, suggests

that the model’s performance is relatively stable even with coarse images.

While standard metrics are valuable for model selection and hyperparame-

ter tuning, theymay not provide meaningful insights for deployment in robotic

applications. In robotics, it’s common to conduct a final evaluation using met-

rics directly related to the task at hand. For this purpose, inference results

from models trained at different input resolutions were used to construct a

map of the race track using the algorithm (1) described in Section 4.6. Con-

sequently, the mean translation error of the gates in centimeters serves as the

final evaluation metric. To establish a baseline, the ground-truth labels pro-

vided in the dataset were used, resulting in baseline errors of 13 cm and 28

cm for flights 6 and 9, respectively (see the ”Label” column in Tables 4.2 and

4.3). These errors stem from various noise sources and problems detailed in

Section 4.6. Additionally, synchronization delays between the Qualisys poses

and recorded images introduce inaccuracies, with a more pronounced impact

on the lemniscate flight due to its higher angular acceleration that imply high

orientation variance in subsequent time units.

Taking the baseline errors into account, it’s clear that the performance

trends seen in Table 4.1 are reflected in the mapping results: models using

high-resolution images exhibit lower mean translation errors.

Finally, an evaluation in terms of inference speed is crucial, particularly

in the context of drone races. After optimization (explained in Section 4.5),

an inference speed test was conducted with each model. The results in Figure
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Figure 4.2: Straight forward training with σ = 0.025 (6402).

Figure 4.3: Last step of curriculum training with σ = 0.025 (6402).

4.4 reveal that the Nvidia Jetson Orin NX is capable of running the optimized

TensorRT engine at very high frequencies. However, there is a significant

gap between the model with an input size of 4482 and the one with 2242.

The choice of which model to use for online gate pose estimation depends

on the specific race setting. Considering performance in terms of both accu-

racy and inference speed, the model using images at 2242 likely strikes the

best balance. Even though the camera captures images at 120 FPS, the ability

to rapidly process this information for mapping or state estimation is critical

for the drone’s control module, which must make quick decisions. Moreover,

the onboard computation unit must manage various processes and sensors, so

a lighter model will have a smaller overall computational impact.
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Image size mAP

6402 98.86
4482 98.44
2242 96.74
1922 95.88

Table 4.1: mAP [.50:.95:.05] on the test/val set

Figure 4.4: Inference speed-test with TensorRT optimized models, compari-
son at different image input size.

Image size Label Prediction

6402 13.02± 5.48 14.95± 9.45
4482 13.02± 5.48 18.77± 6.53
2242 13.02± 5.48 15.35± 6.35
1922 13.02± 5.48 18.27± 8.11

Table 4.2: Mapping mean translation error (cm) - Flight 06 (autonomous)

Image size Label Prediction

6402 28.05± 20.73 27.77± 20.36
4482 28.05± 20.73 30.00± 22.05
2242 28.05± 20.73 32.44± 22.94
1922 28.05± 20.73 35.10± 24.05

Table 4.3: Mapping mean translation error (cm) - Flight 09 (autonomous)
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Figure 4.5: Results of mapping using ground truth keypoints labels for Flight
06 (top) and Flight 09 (bottom). In green gates’ poses as fromMoCap, in blue
the estimated ones. In the middle the starting pose of the drone.
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4.5 Model deployment

In the deployment phase of the research, efforts were made to leverage the

computational capabilities of the NVIDIA Jetson Orin NX. This involved an

initial step of converting the trained YOLO model to the ONNX (Open Neu-

ral Network Exchange) format. ONNX served as a bridge, facilitating inter-

operability between various deep learning frameworks and paving the way

for seamless integration with TensorRT, NVIDIA’s high-performance deep

learning inference optimizer and runtime.

TensorRT played a pivotal role in achieving significantly faster inference

times on the Jetson Orin NX. This optimization process is performed auto-

matically and involves a range of techniques, including layer fusion, precision

calibration, and dynamic tensor memory management, all of which geared to-

wards maximizing the hardware capabilities of the target GPU. At the end

of this process, there was the creation of a highly efficient TensorRT engine,

custom-tailored for our specific YOLOmodel and the Jetson Orin NX. Specif-

ically, the precision calibration step entails selecting between FP32, FP16, and

INT8. The decision was made to utilize FP16 to prevent a decrease in accuracy.

In order to run onboard and communicate with all the software stack of the

drone, the code for inference and mapping had to be realized as ROS2 nodes.

Particularly, a node (YOLO_NODE) was developed to intake input images from

the camera and publishes a list of gate detections. For each gate, bounding

box, confidence score, keypoints, and the relative pose of the gate with respect

to the camera are specified. The relative pose is obtained using PnP and is

represented by two std::array float[3] for translation and rotation. Thus,

the second ROS2 node (MAPPER) takes in input the results of the YOLO_NODE

and the state estimation provided by Qualysis, uses the mapping algorithm (2)

to update the current belief of the track and publishes it as a list of gate poses in

the world frame. The inference code, implemented in C++ utilizing the CUDA

API, leveraged the produced engine, facilitating real-time keypoint detection
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with impressive speed (Table 4.4), thus demonstrating the tangible benefits of

TensorRT for edge computing applications.

4.6 Mapping

Being their shape and dimension well known, gates represents a key landmark

in the context of drone races, indeed also human pilots rely on them to under-

stand the track and have an estimate of their position. With the availability of

camera intrinsic matrix, distortion coefficient, size of gates and a model that is

able to detect gates’ corners, all the necessary elements are in place to estimate

the position and orientation of gates in the camera frame through PnP.

Perpsective-n-Point (PnP) is a robust and widely used algorithm in com-

puter vision that problem of estimating the 3D pose (position and orientation)

of an object or a set of points in space, relative to the camera that observes

them. The core idea behind PnP is to establish correspondences between 2D

image points (the keypoints detected by YOLO) and their corresponding 3D

points in the real world. These 3D points may be defined in a local or global

coordinate system, depending on the application. The PnP algorithm works

by solving a system of equations derived from the geometric relationship be-

tween the known camera intrinsics, the 2D image points, and the 3D world

points. It employs techniques such as the Direct Linear Transform (DLT) or

more robust nonlinear solvers like Levenberg-Marquardt to minimize the error

between the projected 3D points and the detected 2D keypoints.

While PnP is a powerful and widely used tool in computer vision for esti-

mating the 3D pose of objects or points in space, it worth to note its limitations

and potential sources of noise that can affect its precision. Noises can indeed

arise from different sources:

• Inaccurate camera intrinsic parameter matrix and distortion coefficients

due to imprecision in the camera calibration process. These parameters

are one of the fundamental inputs of the PnP algorithm, the entire set of
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equations indeed is built on top of them.

• Wrong assumptions and approximations of the 3D world coordinates.

Gates are assumed to be perfectly squared objects of 1524 cm with 4

co-planar inner corners, in reality the shape of gates can vary, especially

because they are not made of rigid materials.

• Inaccuracies in the detected gate corner coordinates. Even relying on

human labels, the given pixel coordinate will never be perfect since

light condition, low resolution and motion blur make it impossible to

determine the exact location of the corner.

Considering all of these challenges, it becomes clear why even when using

ground-truth labels, we observe a baseline error in Tables 4.2 and 4.3.

To evaluate our model’s real-world performance, an algorithm was devel-

oped for mapping the racing track (Algorithm 1). This algorithm leverages

the current drone state estimate, including position and orientation, to project

the gates’ pose estimates relative to the camera back into the world reference

frame. The world pose of the detected gate (gate_world) is then matched with

the closest gate, up to a given threshold, in the current map estimate. In the

event of a match, the new detection contributes to updating the pose of the

matched gate.

Before processing a new image, a refinement step is applied. In this step,

a check is performed, ensuring that no pair of gates in the map is too close. In

such case, the two identified gates are merged using a weighted average based

on their number of detections (hits).

In the end, the map array will contain the estimated poses of gates. Addi-

tionally, with the map_hits, one can filter out gates that fall below a certain

threshold of detections. As mentioned in the previous section (4.5), a ROS2

node in C++ was implemented to execute the mapping algorithm. However,

due to time constraints, its online performance was not thoroughly tested.
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Algorithm 1Mapping algorithm
1: map← [] ▷ Stores pose matrices of detected gates
2: map_hits← [] ▷ # detections per mapped gate
3: α← 0.7 ▷ Update coefficient
4: thr← 2.0 ▷ Match threshold (m)
5: for image in flight_images do
6: map, map_hits← map_refinement(map, map_hits, thr)
7: camera_world← state_estimate() ▷ Camera pose in world system
8: for detection in YOLO(image) do
9: kpts← detection[5 :] ▷ Discard bounding box
10: if num_visible_points(kpts) is 4 then
11: gate_camera← pose_estimation(kpts) ▷ Result of PnP
12: gate_world← gate_camera×camera_world
13: match← closest_gate(map, gate_world, thr)
14: if match then
15: map[match]← α∗map[match]+(1− α)∗gate_world
16: map_hits[match]++
17: else ▷ No match or empty map
18: map.append(gate_world)
19: map_hits.append(1)
20: end if
21: end if
22: end for
23: end for

Algorithm 2 Refinement of the map
Require: N ≥ 2
Ensure: map : too close gates are merged
1: function map_refinement(map[N ], map_hits[N ], thr)
2: for i← 1 to N − 2 do
3: match← closest_gate(map[i + 1:], map[i], thr)
4: if match then
5: match← match+i + 1
6: total_hits← map_hits[i] + map_hits[match]
7: wi ← map_hits[i] / total_hits
8: wm ← map_hits[match] / total_hits
9: map[i]← wi∗map[i] +wm∗map[match]
10: map_hits[i]← map_hits[i] + map_hits[match]
11: map.remove(match)
12: map_hits.remove(match)
13: end if
14: end for
15: return map, map_hits
16: end function



Chapter 5

Conclusion and Future works

Throughout this master thesis, the primary focus has been on the development

of perception systems for autonomous racing drones. The objective was to

tackle the challenges associated with operating drones with exceptional pre-

cision and minimal reaction times in the context of autonomous racing.

To address these challenges, a high-speed dataset was recorded in an in-

door arena using a custom quadrotor drone. This dataset encompasses flight

trajectories, sensor data and labeling information. The process of labeling

required and extensive work: tools for 3D rendering were used to produce

synthetic images, a two-stage keypoint detection model was first pretrained

on the generated images and then finetuned of a few manually labelled ones.

The entire process for labeling automatization was important to drastically

reduce the effort required to manually label hundreds of thousand of images.

The creation of such a comprehensive dataset is a significant achievement as it

provides a valuable resource for both training and evaluating perception algo-

rithms specifically tailored for high-speed racing scenarios, and for developing

classic or reinforcement learning based control systems.

For this purpose, one of the key contributions of this thesis lies in the de-

velopment of a keypoints detection model using the YOLOv8 architecture.

This model was trained on the high-speed dataset to detect racing gates, using
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a method that can be seen as a form of ”Curriculum learning”. The per-

formance of the model was evaluated from different perspectives: canonical

metrics (mAP) were used to find the best training recepy, translation error

in the map reconstruction was used to verify the effective capability of such

model, demonstrating promising results in accurately detecting and localizing

gates in real-time scenarios. Consequently, a mapping algorithm was devel-

oped that utilizes the outputs of the keypoints detection model to reconstruct

the map of an unknown racing track. By leveraging the gate detections, this

algorithm estimates the pose of the racing gates, enabling the creation of a

comprehensive map of the track. The accurate mapping of the track is essen-

tial for autonomous racing drones as it provides them with a detailed under-

standing of the environment, allowing them to plan optimal trajectories and

make informed decisions during the race.

Furthermore, the successful deployment of the trained keypoints detection

model on the Nvidia Jetson Orin NX, a powerful embedded platform, exem-

plifies the feasibility of running the perception system on resource-constrained

hardware. This achievement is of paramount importance for real-world appli-

cations, where computational resources are often limited.

While this thesis has made significant strides in the field of perception

systems for autonomous racing drones, several exciting avenues for future re-

search remain unexplored. One potential direction is to delve into advanced

deep learning techniques to further enhance gate detection performance. This

could involve exploring novel architectures, incorporating temporal informa-

tion, or leveraging additional sensor modalities to improve the robustness and

accuracy of the perception system. Furthermore, integrating perception sys-

tems with planning and control algorithms is another avenue for future explo-

ration. While this thesis focused primarily on perception, the ultimate goal of

autonomous racing drones is to navigate the race track efficiently and safely.

By integrating perception with planning and control algorithms, it is possi-

ble to develop end-to-end autonomous racing systems that can make real-time
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decisions based on the perception of the environment.

In conclusion, this master thesis has made substantial contributions to the

development of perception systems for autonomous racing drones. The cre-

ation of a high-speed dataset, the development of a keypoints detection model,

and the successful deployment on resource-constrained hardware have paved

the way for further advancements in autonomous racing technology. These

achievements serve as a solid foundation for future research endeavors in the

exciting intersection of AI, computer vision, and robotics, with the potential

to revolutionize not only the world of racing but also various other domains

that rely on autonomous systems.



Bibliography

[1] A. Antonini, W. Guerra, V. Murali, T. Sayre-McCord, and S. Karaman.

The blackbird dataset: a large-scale dataset for uav perception in ag-

gressive flight. In J. Xiao, T. Kröger, and O. Khatib, editors, Proceed-

ings of the 2018 International Symposium on Experimental Robotics,

pages 130–139, Cham. Springer International Publishing, 2020. isbn:

978-3-030-33950-0.

[2] L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, and D. Scaramuzza.

NeuroBEM: hybrid aerodynamic quadrotor model. In Robotics: Sci-

ence and Systems XVII. Robotics: Science and Systems Foundation,

July 2021. doi: 10.15607/rss.2021.xvii.042.

[3] Y. Bengio, J. Louradour, R. Collobert, and J.Weston. Curriculum learn-

ing. In Proceedings of the 26th Annual International Conference on

Machine Learning, ICML ’09, pages 41–48,Montreal, Quebec, Canada.

Association for Computing Machinery, 2009. isbn: 9781605585161.

doi: 10.1145/1553374.1553380. url: https://doi.org/10.1145/

1553374.1553380.

[4] Betaflight. The betaflight open source flight controller firmware project.

https://github.com/betaflight/betaflight.

[5] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.

Achtelik, and R. Siegwart. The EuRoC micro aerial vehicle datasets.

The International Journal of Robotics Research, 35(10):1157–1163,

2016. doi: 10.1177/0278364915620033.



BIBLIOGRAPHY 42

[6] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-person 2d

pose estimation using part affinity fields. 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR):1302–1310, 2016.

url: https://api.semanticscholar.org/CorpusID:16224674.

[7] J. Cartucho, S. Tukra, Y. Li, D. S. Elson, and S. Giannarou. Vision-

blender: a tool to efficiently generate computer vision datasets for robotic

surgery. Computer Methods in Biomechanics and Biomedical Engi-

neering: Imaging & Visualization:1–8, 2020.

[8] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng,

Z. Liu, J. Xu, Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li, X.

Lu, R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi, W. Ouyang, C. C. Loy, and

D. Lin. Mmdetection: open mmlab detection toolbox and benchmark,

2019. arXiv: 1906.07155 [cs.CV].

[9] B. O. Community. Blender - a 3D modelling and rendering package.

Blender Foundation. Stichting Blender Foundation, Amsterdam, 2022.

url: http://www.blender.org.

[10] M. Contributors. Openmmlab pose estimation toolbox and benchmark.

https://github.com/open-mmlab/mmpose, 2020.

[11] M. Contributors. MMYOLO: OpenMMLab YOLO series toolbox and

benchmark. https://github.com/open-mmlab/mmyolo, 2022.

[12] J. Delmerico, T. Cieslewski, H. Rebecq, M. Faessler, and D. Scara-

muzza. Are we ready for autonomous drone racing? the uzh-fpv drone

racing dataset. In 2019 International Conference on Robotics and Au-

tomation (ICRA), pages 6713–6719, 2019. doi: 10.1109/ICRA.2019.

8793887.

[13] C. de Wagter, F. Paredes-Vallés, N. Sheth, and G. C. de Croon. The

artificial intelligence behind the winning entry to the 2019 ai robotic

racing competition. ArXiv, abs/2109.14985, 2021. url: https://api.

semanticscholar.org/CorpusID:238227128.



BIBLIOGRAPHY 43

[14] C. Feng, Y. Zhong, Y. Gao, M. R. Scott, and W. Huang. Tood: task-

aligned one-stage object detection, 2021. arXiv: 2108.07755 [cs.CV].

[15] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig, M.

Muglikar, and D. Scaramuzza. Alphapilot: autonomous drone racing.

Autonomous Robots, 46:307–320, 2020. url: https://api.semanticscholar.

org/CorpusID:218889286.

[16] P. Foehn, E. Kaufmann, A. Romero, R. Penicka, S. Sun, L. Bauers-

feld, T. Laengle, G. Cioffi, Y. Song, A. Loquercio, and D. Scaramuzza.

Agilicious: open-source and open-hardware agile quadrotor for vision-

based flight. Science Robotics, 7(67):eabl6259, 2022. doi: 10.1126/

scirobotics.abl6259. eprint: https://www.science.org/doi/

pdf/10.1126/scirobotics.abl6259.

[17] D. Hanover, A. Loquercio, L. Bauersfeld, A. Romero, R. Pěnika, Y.

Song, G. Cioffi, E. Kaufmann, and D. Scaramuzza. Autonomous drone

racing: a survey. ArXiv, abs/2301.01755, 2023. url: https://api.

semanticscholar.org/CorpusID:255440725.

[18] T. Jiang, P. Lu, L. Zhang, N. Ma, R. Han, C. Lyu, Y. Li, and K. Chen.

Rtmpose: real-time multi-person pose estimation based on mmpose,

2023. arXiv: 2303.07399 [cs.CV].

[19] G. Jocher. YoloV8. Ultralytics. 2023. url: https : / / github . com /

ultralytics/ultralytics.

[20] S. Jung, S. Hwang, H. Shin, and D. H. Shim. Perception, guidance, and

navigation for indoor autonomous drone racing using deep learning.

IEEE Robotics and Automation Letters, 3(3):2539–2544, 2018. doi:

10.1109/LRA.2018.2808368.

[21] E. Kaufmann,M.Gehrig, P. Foehn, R. Ranftl, A. Dosovitskiy, V.Koltun,

and D. Scaramuzza. Beauty and the beast: optimal methods meet learn-

ing for drone racing. 2019 International Conference on Robotics and



BIBLIOGRAPHY 44

Automation (ICRA):690–696, 2018. url: https://api.semanticscholar.

org/CorpusID:53114276.

[22] S. Li, M. M. O. I. Ozo, C. de Wagter, and G. C. de Croon. Autonomous

drone race: a computationally efficient vision-based navigation and con-

trol strategy. Robotics Auton. Syst., 133:103621, 2018. url: https://

api.semanticscholar.org/CorpusID:52284283.

[23] T. Lin, M.Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays,

P. Perona, D. Ramanan, P. Doll’a r, and C. L. Zitnick. Coco - keypoint

evaluation. 2014. url: https://cocodataset.org/#keypoints-

eval.

[24] T. Lin, M.Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays,

P. Perona, D. Ramanan, P. Doll’a r, and C. L. Zitnick. Microsoft COCO:

common objects in context. CoRR, abs/1405.0312, 2014. arXiv: 1405.

0312. url: http://arxiv.org/abs/1405.0312.

[25] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C.-Y. Fu, and

A. C. Berg. Ssd: single shot multibox detector. In European Conference

on Computer Vision, 2015. url: https://api.semanticscholar.

org/CorpusID:2141740.

[26] C. Lyu, W. Zhang, H. Huang, Y. Zhou, Y. Wang, Y. Liu, S. Zhang,

and K. Chen. Rtmdet: an empirical study of designing real-time object

detectors, 2022. arXiv: 2212.07784 [cs.CV].

[27] S.Macenski, T. Foote, B. Gerkey, C. Lalancette, andW.Woodall. Robot

operating system 2: design, architecture, and uses in the wild. Science

Robotics, 7(66):eabm6074, 2022. doi: 10.1126/scirobotics.abm6074.

url: https://www.science.org/doi/abs/10.1126/scirobotics.

abm6074.

[28] A. L. Majdik, C. Till, and D. Scaramuzza. The Zurich urban micro

aerial vehicle dataset. The International Journal of Robotics Research,



BIBLIOGRAPHY 45

36(3):269–273, 2017. doi: 10.1177/0278364917702237. eprint: https:

//doi.org/10.1177/0278364917702237.

[29] D. Maji, S. Nagori, M. Mathew, and D. Poddar. Yolo-pose: enhanc-

ing yolo for multi person pose estimation using object keypoint simi-

larity loss. 2022 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition Workshops (CVPRW):2636–2645, 2022. url: https:

//api.semanticscholar.org/CorpusID:248177719.

[30] T. Morales, A. Sarabakha, and E. Kayacan. Image generation for ef-

ficient neural network training in autonomous drone racing. In 2020

International Joint Conference on Neural Networks (IJCNN), pages 1–

8, 2020. doi: 10.1109/IJCNN48605.2020.9206943.

[31] C. Pfeiffer andD. Scaramuzza. Human-piloted drone racing: visual pro-

cessing and control. IEEERobotics and Automation Letters, 6(2):3467–

3474, 2021. doi: 10.1109/LRA.2021.3064282.

[32] H. X. Pham, H. I. Ugurlu, J. L. Fevre, D. Bardakci, and E. Kayacan.

Deep learning for vision-based navigation in autonomous drone racing.

Deep Learning for Robot Perception and Cognition, 2022. url: https:

//api.semanticscholar.org/CorpusID:246777980.

[33] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi. You only

look once: unified, real-time object detection. 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR):779–788, 2015.

url: https://api.semanticscholar.org/CorpusID:206594738.

[34] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster r-cnn: towards real-

time object detection with region proposal networks. IEEE Transac-

tions on Pattern Analysis andMachine Intelligence, 39:1137–1149, 2015.

url: https://api.semanticscholar.org/CorpusID:10328909.

[35] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen.

Mobilenetv2: inverted residuals and linear bottlenecks. 2018 IEEE/CVF



BIBLIOGRAPHY 46

Conference on Computer Vision and Pattern Recognition:4510–4520,

2018. url: https://api.semanticscholar.org/CorpusID:4555207.

[36] A. Schmidt. A comparison of gate detection algorithms for autonomous

racing drones. 2022 IEEE Aerospace Conference (AERO):1–13, 2022.

url: https://api.semanticscholar.org/CorpusID:251472236.

[37] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar,

C. J. Taylor, and V. Kumar. Robust stereo visual inertial odometry for

fast autonomous flight. IEEERobotics and Automation Letters, 3(2):965–

972, 2018. doi: 10.1109/LRA.2018.2793349.

[38] J. R. Terven and D. M. C. Esparza. A comprehensive review of yolo:

from yolov1 to yolov8 and beyond. ArXiv, abs/2304.00501, 2023. url:

https://api.semanticscholar.org/CorpusID:257913644.

[39] D. B. West. Introduction to graph theory. In 1995. url: https://api.

semanticscholar.org/CorpusID:118323960.



Acknowledgements

I would like to express my gratitude to my supervisor, Professor Giovanni Pau,

and the Technology Innovation Institute for the opportunity to undertake this

internship.

I’m grateful to the entire ”Drone racing team” for their support, collabo-

ration and friendship in these months of hard work.


