
Alma Mater Studiorum · Università di
Bologna

SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Informatica

Diffusion generative models

for

weather forecasting

Relatore:

Chiar.mo Prof.

ANDREA ASPERTI

Presentata da:

ALBERTO PAPARELLA

Correlatore:

Chiar.mo Dott.

FABIO MERIZZI

Sessione II

Anno Accademico 2022-23

Sommario

Negli ultimi anni, i tradizionali approcci numerici utilizzati per la pre-

visione accurata del tempo meteorologico hanno dovuto affrontare una cre-

scente sfida da parte dei metodi basati sull’apprendimento profondo. Gli

insiemi di dati storici ampiamente impiegati nelle previsioni meteorologiche

a breve e medio termine seguono spesso una struttura regolare a griglia spa-

ziale. Questa disposizione somiglia notevolmente alle immagini: ciascuna

variabile meteorologica può essere infatti rappresentata come una mappa o,

considerando l’aspetto temporale, come un video.

Diverse categorie di modelli generativi, tra cui le Reti Generative Avver-

sarie (Generative Adversarial Networks), gli Autoencoder Variazionali (Va-

riational Autoencoders) e i più recenti Modelli di Diffusione per la Rimozione

del Rumore (Denoising Diffusion Models), hanno dimostrato ampiamente la

loro efficacia nell’affrontare il problema della previsione del prossimo frame.

Di conseguenza, risulta naturale valutare le loro prestazioni sui benchmark

dedicati alla previsione meteorologica. Tra tutti, i modelli di diffusione si rive-

lano particolarmente affascinanti in questo contesto, considerando la natura

intrinsecamente probabilistica della previsione del tempo. Essi mirano a mo-

dellare la distribuzione di probabilità degli indicatori meteorologici, fornendo

una stima del valore atteso, ossia la previsione più probabile.

L’obiettivo principale di questa tesi è l’approfondimento dell’utilizzo di

tali modelli nell’ambito delle previsioni meteorologiche, con particolare at-

tenzione alle previsioni delle precipitazioni a breve termine (nowcasting). Per

questo studio, si è fatto ricorso a un sottoinsieme specifico del dataset ERA5,

i

contenente dati orari riferiti all’Europa occidentale nel periodo compreso tra

il 2016 e il 2021. Nel contesto di questa indagine, è stata analizzata l’efficacia

dei modelli di diffusione nella gestione delle previsioni delle precipitazioni a

breve termine. La valutazione delle prestazioni dei modelli è stata effettua-

ta attraverso il confronto con i ben consolidati modelli U-Net, ampiamente

documentati nella letteratura scientifica.

L’approccio proposto, denominato Generative Ensemble Diffusion (GED),

sfrutta un modello di diffusione per generare un insieme di possibili scenari

meteorologici, i quali vengono successivamente combinati in una previsio-

ne probabile mediante l’utilizzo di una rete di post-elaborazione. Questo

approccio si è dimostrato significativamente più efficace rispetto ai recenti

modelli di apprendimento profondo, ottenendo prestazioni globali migliori.

Il Capitolo 1 svolge un ruolo introduttivo, presentando il problema in

esame: le previsioni meteorologiche. In questo contesto, vengono dettaglia-

tamente discussi i metodi numerici e statistici utilizzati per affrontare questo

compito, con un’attenzione particolare rivolta all’applicazione delle tecniche

nel campo delle previsioni di precipitazioni a breve termine. Successivamen-

te, si delinea il panorama dei modelli generativi, una classe di tecnologie alla

base dei modelli centrali analizzati in questa tesi, i cosiddetti modelli a diffu-

sione, i quali saranno approfonditamente esaminati nel Capitolo 2. Inoltre, si

conduce un’esplorazione dello stato dell’arte in merito alla loro applicazione

nelle previsioni meteorologiche e nella previsione delle precipitazioni.

Nel Capitolo 3, viene delineato un approccio innovativo nell’impiego dei

modelli a diffusione per la previsione delle precipitazioni a breve termine.

Questo capitolo include un’esaustiva descrizione dell’architettura del model-

lo a diffusione integrata e un confronto dettagliato con altre metodologie

simili presenti nella letteratura scientifica. Successivamente, nel Capitolo 4,

l’efficacia di questa architettura è valutata attraverso un confronto con lo

stato dell’arte, e i risultati ottenuti dimostrano chiaramente la sua validità,

portando alla presentazione di un articolo [1] proposto per pubblicazione su

Neural Computing and Applications (NCAA).

Introduction

In recent years, traditional numerical methods used for accurate weather

prediction have faced increasing challenges from deep learning techniques.

The historical datasets commonly employed for short and medium-range

weather forecasts are typically structured in a regular spatial grid format.

This arrangement closely resembles images, with each weather variable akin

to a map or, when considering the temporal axis, as a video.

Several classes of generative models, including Generative Adversarial

Networks (GANs), Variational Autoencoders (VAEs), and the recent De-

noising Diffusion Models (DDMs), have demonstrated their effectiveness in

tackling the next-frame prediction problem. Consequently, it is only natural

to assess their performance in the context of weather prediction benchmarks.

DDMs, in particular, hold strong appeal in this domain due to the inherently

probabilistic nature of weather forecasting. This methodology aims to model

the probability distribution of weather indicators, with the expected value

representing the most likely prediction.

This thesis is dedicated to investigating the application of diffusion mod-

els in the realm of weather forecasting, with a specific focus on precipitation

nowcasting. To achieve this, a specific subset of the ERA5 dataset has been

leveraged, encompassing hourly data for Western Europe spanning the years

2016 to 2021. Within this context, the effectiveness of diffusion models has

been rigorously assessed in the challenging domain of precipitation nowcast-

ing. The research is conducted in direct comparison to the well-established

U-Net models, as extensively documented in existing literature.

iii

iv INTRODUCTION

The proposed approach, referred to as Generative Ensemble Diffusion

(GED), harnesses a diffusion model to generate a diverse set of potential

weather scenarios. These scenarios are subsequently amalgamated into a

probable prediction through the application of a sophisticated post-processing

network. In direct contrast to recent deep learning models, the GED ap-

proach consistently demonstrated superior performance across multiple per-

formance metrics, underscoring its significant advancement in the field of

weather forecasting.

Chapter 1 introduces the issue under examination, weather forecasting,

describing the relative state-of-the-art numerical and statistical methods,

with emphasis on precipitation nowcasting, as well as the predominant data

sources for weather forecasting. The chapter also introduces generative mod-

els, the class of technologies comprising the ones under scrutiny, i.e., diffusion

models, described in chapter 2. Furthermore, the state-of-the-art regarding

the application of generative models to weather forecasting and precipitation

nowcasting is also explored.

The proposed approach for the application of diffusion models to precipit-

ation nowcasting is described in chapter 3, presenting the architecture of the

integrated diffusion model, as well as a comparison with similar recent ap-

proaches found in the literature. This architecture is successively compared

with the state-of-the-art in chapter 4, providing successful results, bringing

to the writing of a paper [1] which has been submitted to Neural Computing

and Applications (NCAA).

Contents

Sommario i

Introduction iii

1 Preliminaries 1

1.1 Weather forecasting . 1

1.1.1 Precipitation nowcasting 3

1.1.2 An example of a NWP model for precipitation now-

casting: STEPS . 5

1.2 Data sources for weather forecasting 8

1.2.1 ERA5 . 9

1.2.2 NWCSAF . 13

1.2.3 WeatherBench . 16

1.3 Generative models . 19

1.3.1 Generative models for weather forecasting 20

1.3.2 An example of a generative model for precipitation

nowcasting: DGMR . 22

2 Generative diffusion models 25

2.1 Denoising Diffusion Probabilistic Models (DDPM) 27

2.2 Denoising Diffusion Implicit Models (DDIM) 28

2.3 Latent Diffusion Models (LDM) 31

2.4 Conditioning . 33

v

vi CONTENTS

3 Generative diffusion models for precipitation nowcasting 35

3.1 The DDIM architecture . 36

3.1.1 Denoising . 36

3.1.2 Conditioning . 38

3.2 A novel approach: Generative Ensemble Diffusion (GED) . . . 39

3.3 Concurrent work . 41

4 Experiments 45

4.1 Dataset description and preprocessing 45

4.2 Additional features . 47

4.3 Training and Evaluation . 50

4.4 Results . 51

Conclusions 57

A Code fragments 59

B Ablation study 69

Bibliography 73

List of Figures

1.1 Forecasting high-impact weather using ensemble prediction

systems. Image taken from [2]. 6

1.2 European Centre for Medium-RangeWeather Forecasts (ECMWF)

[3] Ensemble Prediction System. Image taken from [4]. 6

1.3 NWC/GEO-HRW output example of atmospheric motion vec-

tors (AMVs) in the European and North Atlantic region. Im-

age taken from [5]. 16

1.4 DGMR model overview and case study of performance on a

challenging precipitation event starting on 24 June 2019 at

16:15 UK, showing convective cells over eastern Scotland. Im-

age taken from [6]. 23

2.1 Forward (from left to right) and reverse (from right to left)

diffusion process. 25

2.2 The architecture of latent diffusion model. Image taken from

[7]. 31

3.1 U-net architecture (example for 32x32 pixels in the lowest res-

olution). Each blue box corresponds to a multi-channel fea-

ture map. The number of channels is denoted on top of the

box. The x-y-size is provided at the lower left edge of the

box. White boxes represent copied feature maps. The arrows

denote the different operations. Image taken from [8]. 37

vii

viii LIST OF FIGURES

3.2 Conditioning is implemented by stacking additional informa-

tion alongside the channel axis in the denoising network. . . . 39

3.3 Generative Ensemble Diffusion (GED) prediction structure,

showing the multiple denoising cycles and the final post-processing

step. 40

3.4 An overview of the LDCast neural networks. (a) The fore-

caster and denoiser stacks. (b) The VAE used to transform

precipitation sequences to the latent space. (c)–(h) The layer

blocks used in the network diagrams. (i) The training pro-

cedure. (j) The forecast generation procedure. Conv denotes

convolution. MLP (multilayer perceptron) is a block consist-

ing of a linear layer, activation function and another linear

layer. Res block denotes a ResNet-type residual block [9]; the

noise embedding is added to the input of the block. Image

taken from [10]. 43

4.1 Example of precipitation data from the ERA5 dataset. 47

4.2 Visual example of the additional features. 48

4.3 Single Diffusion results for the year 2021 on EU50, depict-

ing significant score variations depending on the month of the

year. Subfigure (a) illustrates the month-wise dissimilarity

in scores for each of the three predicted hours. In subfigure

(b), we observe that the dissimilarity remains consistent across

predictions computed with Single Diffusion, GED (mean), and

GED (post-process). 55

List of Tables

1.1 Description of ERA5 hourly data on single levels from 1940 to

present variables tackled in this work. 10

1.2 List of variables contained in theWeatherBench dataset. Table

taken from [11]. 18

4.1 Additional features units and details. 49

4.2 Results comparison on the EU-50 Dataset using different sets

of additional features with the Single Diffusion model. All sets

include 8 frames representing total precipitation (rain). lsm

and geopot stand for land-sea mask and geopotential map,

respectively. time represents the timestamp embedding. 52

4.3 Results comparison on the EU-20 Dataset. 53

4.4 Results comparison on the EU-50 Dataset. 54

B.1 Results on EU-20 for various configurations. 69

ix

Listings

A.1 DataGenerator class implementation from generators.py file. . 60

A.2 U-Net blocks implementation from models.py file. 62

A.3 U-Net implementation from models.py file. 63

A.4 DiffusionModel class implementation from models.py file (1):

initialization, compilation, metrics, denormalization, diffusion

schedule and denoising functions. 64

A.5 DiffusionModel class implementation from models.py file (2):

reverse diffusion and generate2 functions. 65

A.6 DiffusionModel class implementation from models.py file (3):

train step function. 66

A.7 DiffusionModel class implementation from models.py file (4):

test step and plotter functions. 67

A.8 Evaluation function for Single Diffusion generation. 68

xi

Chapter 1

Preliminaries

This chapter aims to offer an overview of the fundamental components of

this thesis. It involves a comprehensive exploration of the primary subject

under scrutiny, namely weather forecasting, with a particular emphasis on

the specialized field of precipitation nowcasting. Furthermore, it provides in-

sights into the current landscape of numerical and statistical models. Finally,

it offers an overview of generative models, the larger class of techniques com-

prising the models under examination, namely diffusion generative models.

1.1 Weather forecasting

Weather forecasting is the intricate process of predicting the atmo-

spheric conditions at a specific location and time in the future. This vital

science profoundly impacts our daily lives, guiding choices ranging from

scheduling outdoor activities, assessing travel safety, and managing agricul-

tural and energy resources. One of its critical roles is in safeguarding public

safety, as it provides crucial alerts and warnings about severe weather events

such as hurricanes, tornadoes, and floods, enabling individuals to take timely

precautions [12]. Additionally, businesses rely on weather forecasts to op-

timize their operations, affecting decisions concerning staffing and inventory

management, ultimately enhancing both efficiency and profitability.

1

2 1. Preliminaries

Weather forecasts can be broadly classified into short-term (0-3 days),

medium-term (3-7 days), and long-term (beyond 7 days) predictions.

Short-term forecasts exhibit greater accuracy, as the atmospheric dynamics

are more predictable over shorter spans. Conversely, long-term projections

carry inherent uncertainties due to the complexity of long-range forecasting.

Initiating the weather forecasting process entails amassing extensive data

from diverse sources. This data encompasses crucial variables such as tem-

perature, humidity, wind speed and direction, air pressure, cloud cover,

and more. Observations are sourced from an extensive network comprising

ground-based weather stations, weather balloons, satellites, radar systems,

and most recently drones [13]. These observations form a snapshot of the

current atmospheric state, forming the foundation for constructing computer

models [14] that simulate future weather conditions.

The bedrock of contemporary weather forecasting is the discipline known

as Numerical Weather Prediction (NWP) [15, 16]. NWP relies on

sophisticated mathematical models to simulate the evolving behaviour of

the atmosphere over time. These models partition the atmosphere into a

three-dimensional grid and employ fundamental equations of fluid dynamics,

thermodynamics, and heat transfer to prognosticate its evolution.

The models commence with the initial observational data and then ad-

vance the atmospheric state in discrete time intervals [17]. To heighten the

precision of NWP models, a technique called data assimilation is deployed.

This process fuses real-time observational data with model output to refine

the model’s initial conditions. By incorporating current observations, met-

eorologists rectify disparities between the model’s predictions and the actual

atmospheric state.

NWP models generate an extensive array of meteorological variables, in-

cluding temperature, precipitation, wind speed, and more, at various future

time intervals. Meteorologists scrutinize these model outputs to formulate

weather forecasts, discerning patterns and trends in the data to forecast tem-

perature, rainfall, storms, and other weather phenomena. After the forecast

1.1 Weather forecasting 3

period, meteorologists gauge the accuracy of their predictions by comparing

them with the actual atmospheric conditions to enhance future forecasts.

Weather forecasts are continuously updated as fresh data becomes available,

with short-term forecasts often receiving multiple updates daily, while long-

term forecasts are typically refreshed less frequently. Some well-known NWP

models include the Global Forecast System (GFS) [12], the European

Centre for Medium-Range Weather Forecasts (ECMWF) model [3],

and the Weather Research and Forecasting (WRF) model [18].

It is imperative to acknowledge the inherent limits posed by weather fore-

casting due to the innate complexity and chaotic nature of the atmosphere, as

its accuracy hinges on several factors, including data quality, the intricacy of

the atmospheric system in question, and the forecast duration. Specifically,

forecasts for significant events such as hurricanes, tornadoes, floods, and ex-

treme weather occurrences are much more complex, requiring tailored models

and monitoring systems designed to predict and track these specific types of

weather phenomena. Furthermore, running NWP models requires significant

computational power, often involving supercomputers, due to the complexity

of the equations and the need for high spatial and temporal resolutions.

Nevertheless, the continual refinement of data collection, modelling tech-

niques, and computing capabilities has significantly elevated our capacity to

deliver precise and timely weather predictions, ultimately saving lives and

aiding in strategic planning.

1.1.1 Precipitation nowcasting

Precipitation nowcasting is a specialized branch of weather forecasting

that focuses on predicting short-term precipitation patterns over a relatively

short time horizon. Specifically, it deals with predicting the location, intens-

ity, and movement of precipitation (rain, snow, sleet, or hail) for the next few

hours, typically up to six hours in advance. It is essential for various applic-

ations, including flood prediction, transportation management, and outdoor

event planning.

4 1. Preliminaries

It relies on various sources of data to make accurate predictions, including

weather radar systems, providing information on the location and intensity

of precipitation in real time, satellite imagery, offering insights into cloud

cover, which is essential for predicting precipitation, and surface observa-

tions, with ground-based weather stations providing valuable information on

temperature, humidity, and wind speed, which can influence precipitation.

A critical tool for precipitation nowcasting is the doppler radar [19, 20].

It not only detects the presence of precipitation but also measures the velo-

city of raindrops and their direction of movement. Doppler radar data help

meteorologists track the movement and intensity of precipitation systems,

allowing for more accurate short-term predictions.

Numerical and statistical weather prediction models play a role in

precipitation nowcasting by providing guidance on how precipitation patterns

may evolve. These models often operate at higher spatial and temporal

resolutions than traditional weather models to capture short-term changes in

precipitation. Sophisticated algorithms are employed to process the available

data and create precipitation nowcasts. These algorithms consider factors

such as radar reflectivity, precipitation type, and atmospheric conditions.

While numerical weather prediction models may accurately forecast pre-

cipitation likelihood and overall intensity across extensive geographic regions

and medium-term timeframes, they face a more formidable task when dealing

with short spatial and temporal scales, as highlighted by [21]. Over inter-

vals of less than 4 hours, they often fall short of the performance achieved by

persistence-based forecasts, as noted by [22]. This discrepancy can be primar-

ily attributed to the inherent stochastic nature of precipitation, compoun-

ded by the prolonged computational time typically demanded by numerical

methods. These methods require substantial processing time to assimilate

extensive data and incorporate them into the initial conditions of the models.

The challenge is particularly pronounced in the case of convective precip-

itation, characterized by intense rainfall originating from cells spanning just

a few tens of kilometers, as expounded upon in [23].

1.1 Weather forecasting 5

Machine learning techniques, including neural networks and decision

trees, are increasingly used to improve nowcasting accuracy. Precipitation

nowcasting models typically operate at fine spatial and temporal resolutions.

This means they can provide predictions for small geographic areas and short

time intervals, which is crucial for local and immediate decision-making.

These techniques will be better discussed in subsection 1.3.1.

Precipitation nowcasting has numerous practical applications, including

flood prediction and management, anticipating heavy rainfall or snowmelt

helping authorities take proactive measures to prevent flooding, transport-

ation, and aviation, as knowing where and when precipitation will occur is

vital for planning road maintenance, and air traffic control, and airport op-

erations, as well as outdoor events and activities, with event organizers and

outdoor enthusiasts relying on nowcasts to plan activities and ensure safety

during inclement weather.

1.1.2 An example of a NWP model for precipitation

nowcasting: STEPS

A Short-Term Ensemble Prediction System (STEPS) [24, 25] is

a specialized tool used in meteorology to provide probabilistic forecasts for

relatively short timeframes, typically ranging from a few hours to a few days

into the future. This system is designed to address the inherent uncertainty

in weather forecasting by generating multiple forecasts or scenarios, known

as ensemble members, rather than a single deterministic forecast.

Specifically, STEPS employs an ensemble approach (Figures 1.1 and 1.2),

which involves running multiple simulations or model forecasts with slight

variations in initial conditions and model parameters [26]. These ensemble

members represent a range of possible weather outcomes. Each ensemble

member has a likelihood associated with it, allowing meteorologists and

decision-makers to assess the range of potential weather scenarios and their

associated probabilities.

6 1. Preliminaries

Figure 1.1: Forecasting high-impact weather using ensemble prediction sys-

tems. Image taken from [2].

Figure 1.2: European Centre for Medium-Range Weather Forecasts

(ECMWF) [3] Ensemble Prediction System. Image taken from [4].

1.1 Weather forecasting 7

The ensemble members typically start with slightly perturbed initial con-

ditions. These perturbations are small adjustments to the initial observations

used to initialize the models. By introducing variability in the initial con-

ditions, STEPS captures the inherent uncertainty in weather observations.

In addition to variations in initial conditions, STEPS may also employ dif-

ferent model configurations or parameterizations for its ensemble members.

These variations reflect the uncertainty in the modeling itself. As new ob-

servational data becomes available, STEPS can assimilate this data into its

ensemble members, updating the forecasts in real-time. Data assimilation

is crucial for improving forecast accuracy.

STEPS is used for a wide range of applications, including severe weather

prediction (e.g., thunderstorms, heavy rainfall), short-term climate monitor-

ing, and decision-making in various sectors, such as agriculture, transport-

ation, and emergency management. One of the advantages of STEPS is its

ability to communicate forecast uncertainty. Users can assess the likelihood

of various weather outcomes, aiding in risk assessment and decision-making.

To assess the performance of the ensemble forecasts, meteorologists use

verification and skill scores, such as the Brier Score [27] and the ROC

curve [28], to determine how well the ensemble system matches observed

weather conditions. Researchers and meteorological agencies continuously

work to improve STEPS by refining ensemble techniques, enhancing data

assimilation methods, and incorporating advancements in NWP models.

PySTEPS [29] is an open-source Python library for short-term precipit-

ation nowcasting. It is designed to provide tools and models for forecasting

precipitation at high spatiotemporal resolution, typically within the range of

0 to 6 hours into the future. It’s a valuable resource for researchers, meteor-

ologists, and data scientists working on precipitation forecasting and related

applications. It is an open-source project, which means it benefits from con-

tributions and collaboration from the meteorological and data science com-

munities. This open approach encourages the development and refinement

of precipitation nowcasting techniques.

8 1. Preliminaries

PySTEPS is capable of working with various sources of precipitation data,

including radar, satellite, and rain gauge observations. It provides tools

for data acquisition, quality control, and preprocessing, as well as several

nowcasting models that can be used for short-term precipitation prediction.

Some of these models are based on traditional statistical and radar-based

techniques, while others leverage machine learning approaches. The library

also supports ensemble methods for combining multiple models to improve

forecasting accuracy.

PySTEPS operates at high spatial and temporal resolutions, allowing for

precise and detailed precipitation nowcasting. This is crucial for applica-

tions like flood forecasting, emergency response, and transportation manage-

ment. The library offers tools for verifying and evaluating the performance of

nowcasting models, helping users assess the accuracy and reliability of their

precipitation forecasts.

PySTEPS can be integrated with other Python libraries and tools com-

monly used in the data science and meteorology fields, including NumPy,

Pandas, Matplotlib, and Jupyter notebooks, making it accessible and con-

venient for users familiar with these tools. Users can customize and adapt

the PySTEPS library to their specific needs. This includes the ability to

implement and experiment with new nowcasting models or techniques. Fur-

thermore, it provides comprehensive documentation and tutorials to assist

users in understanding and applying the library’s functionality effectively.

1.2 Data sources for weather forecasting

This section provides an overview of the most peculiar data sources for

weather forecasting found in the literature. Specifically, it introduces the

dataset used for the experiments in this work (chapter 4), i.e., ERA5, also

providing an in-depth description of the attributes of interest, and two other

data sources taken into consideration that have not been used but can be

interesting for future work.

1.2 Data sources for weather forecasting 9

1.2.1 ERA5

ERA5 [30] marks the fifth advancement in ECMWF’s reanalysis series,

encompassing global climate and weather data over an impressive 80-year

span, commencing from 1940 onwards. Reanalysis is a complex process

that blends model-generated data with observations sourced from across the

globe, yielding a comprehensive and internally coherent dataset founded on

the principles of physics. This technique, recognized as data assimilation,

closely parallels the methodology employed by NWP centers. At specific

intervals (e.g., every 12 hours at ECMWF), a previous forecast is melded

with the most up-to-date observations in an optimized manner to generate a

refreshed and improved assessment of the atmospheric condition, referred to

as analysis, that significantly contributes to refining subsequent forecasts.

Reanalysis operates along similar lines but at a reduced resolution, en-

abling the development of a dataset spanning numerous decades. Unlike

real-time forecasts, reanalysis isn’t constrained by the necessity for immedi-

ate predictions. This flexibility allows for ample time to amass observations,

and when delving further into the past, to incorporate enhanced versions

of the original data. Collectively, these factors culminate in a substantial

enhancement of the reanalysis product’s quality.

ERA5 provides hourly estimates for a diverse range of atmospheric, ocean-

wave, and land-surface parameters. These estimations come with an accom-

panying assessment of uncertainty, sampled by a 10-member ensemble every

three hours. To enhance user convenience, both the ensemble’s mean and

its range have been pre-computed. These uncertainty estimates are closely

tied to the evolving observation system, which has undergone substantial ad-

vancements over time, and they also pinpoint regions particularly responsive

to atmospheric changes. To cater to a wide spectrum of climate-related

applications, monthly-average values have also been pre-calculated. ERA5

undergoes daily updates with a brief delay of approximately 5 days. In

the event of significant anomalies detected in this initial release, known as

ERA5T, the data may deviate from the final release by 2 to 3 months.

10 1. Preliminaries

To facilitate usage, the data has been subjected to regridding, aligning it

with a regular latitude-longitude grid. The grid spacing is set at 0.25 degrees

for the reanalysis data and 0.5 degrees for the uncertainty estimates (0.5 and

1 degree, respectively, for ocean waves). There are four main subsets avail-

able, including hourly and monthly products, encompassing both pressure

levels (about upper air fields) and single levels (encompassing atmospheric,

ocean-wave, and land surface parameters). Specifically, data for the experi-

ments in chapter 4 has been extracted from the ERA5 hourly data on single

levels from 1940 to present. This subset is conveniently accessible online

via spinning disk storage, ensuring rapid and effortless retrieval. Table 1.1

deeply describes the features considered in this work.

Table 1.1: Description of ERA5 hourly data on single levels from 1940 to

present variables tackled in this work.

Name Units Description

100m u-component

of wind

ms−1 This parameter signifies the eastward compon-

ent of the 100-meter wind, representing the ho-

rizontal air velocity moving in an eastward dir-

ection at an altitude of 100 meters above the

Earth’s surface, measured in meters per second.

It is possible to combine this parameter with its

northward counterpart to obtain the speed and

direction of the horizontal 100-meter wind.

100m v-component

of wind

ms−1 This parameter signifies the northward compon-

ent of the 100-meter wind, representing the hori-

zontal air velocity moving in an northward dir-

ection at an altitude of 100 meters above the

Earth’s surface, measured in meters per second.

It is possible to combine this parameter with its

eastward counterpart to obtain the speed and

direction of the horizontal 100-meter wind.

Continued on next page

1.2 Data sources for weather forecasting 11

Table 1.1 – continued from previous page

Name Units Description

Geopotential m2s−2 This parameter denotes the gravitational poten-

tial energy of a unit mass at a particular Earth’s

surface location relative to mean sea level. Ad-

ditionally, it signifies the amount of work needed

to raise a unit mass from mean sea level to

that specific point, counteracting the force of

gravity. Surface geopotential height, often re-

ferred to as orography, can be calculated by di-

viding the surface geopotential by the Earth’s

gravitational acceleration, symbolized as g and

equivalent to 9.80665 meters per second squared

(m/s2). It’s noteworthy that this parameter re-

mains constant over time.

Land-sea mask dimensionless This parameter measures the land fraction

within a grid box, distinguishing it from ocean

or inland water bodies such as lakes, reservoirs,

rivers, and coastal regions. It is a dimensionless

value that falls within the range of zero to one.

Starting from ECMWF Integrated Forecasting

System (IFS) cycles beginning with CY41R1,

introduced in May 2015, grid boxes with values

above 0.5 can contain a mix of land and inland

water, excluding ocean. Grid boxes with values

of 0.5 or lower exclusively represent water sur-

faces. In these cases, the extent of lake cover

is taken into account to determine whether it’s

ocean or inland water.

In IFS cycles before CY41R1, grid boxes with

values above 0.5 consist entirely of land, while

those with values of 0.5 or less are solely oceanic.

In these earlier model cycles, there is no differ-

entiation between ocean and inland water. Not-

ably, this parameter remains constant over time.

Continued on next page

12 1. Preliminaries

Table 1.1 – continued from previous page

Name Units Description

Total precipitation m This parameter represents the combined amount

of liquid and frozen water, encompassing both

rain and snow, that descends to the Earth’s

surface. It is the summation of two types of

precipitation: large-scale precipitation and con-

vective precipitation. Large-scale precipitation

is the result of the cloud scheme within the

ECMWF Integrated Forecasting System (IFS).

This scheme models the formation and dissipa-

tion of clouds and large-scale precipitation based

on predicted changes in atmospheric variables

(such as pressure, temperature, and moisture)

directly at the grid box or larger spatial scales.

Convective precipitation arises from the IFS’s

convection scheme, which simulates convection

at spatial scales smaller than the grid box. Note

that this parameter does not account for fog,

dew, or precipitation that evaporates in the at-

mosphere before reaching the Earth’s surface.

The accumulation period for this parameter var-

ies depending on the extracted data. In the case

of reanalysis, it covers the one-hour period end-

ing at the validity date and time. For ensemble

members, it spans the three hours leading up to

the validity date and time.

The units for this parameter are expressed as

depth in meters of water equivalent, represent-

ing the depth the water would reach if evenly

distributed across the grid box.

Continued on next page

1.2 Data sources for weather forecasting 13

Table 1.1 – continued from previous page

Name Units Description

Surface pressure Pa This parameter represents atmospheric pres-

sure, which measures the force per unit area

exerted by the atmosphere on the Earth’s sur-

face, encompassing land, sea, and inland water.

It essentially quantifies the total weight of the

air in a vertical column above a specific loca-

tion on the Earth’s surface. Surface pressure is

frequently used in conjunction with temperat-

ure to calculate air density. Given the substan-

tial variation in pressure with altitude, partic-

ularly in mountainous regions, identifying low

and high-pressure weather systems can be chal-

lenging. As a result, mean sea level pressure is

typically preferred for this purpose over surface

pressure. The units for this parameter are de-

nominated in Pascals (Pa). Surface pressure is

commonly measured in hectoPascals (hPa), and

occasionally it’s presented in the older millibar

units (mb), where 1 hPa equals 1 mb or 100 Pa.

1.2.2 NWCSAF

The NWCSAF [5], which stands for the Satellite Application Facility

on Support to Nowcasting and Very Short Range Forecasting, operates as

a consortium within the broader network of Satellite Application Facilities

(SAF) under the European Organisation for the Exploitation of Meteor-

ological Satellites (EUMETSAT). Its primary mission is to develop and

provide two independent software packages, known as NWC/GEO and

NWC/PPS, capable of swiftly generating meteorological data from both

geostationary and polar satellite information in near real-time. These soft-

ware packages are intended for local installation at the user’s location, aiming

to enhance nowcasting and very short-range forecasting, typically covering

weather predictions for up to 12 hours ahead.

14 1. Preliminaries

NWC/GEO offers a comprehensive range of seven meteorological products

that encompass the entire Earth’s observable regions via geostationary satel-

lites. These products include:

• Four cloud-related products:

– Cloud Mask (CMA)

– Cloud Type (CT)

– Cloud Top Temperature, Height, and Pressure (CTTH)

– Cloud Microphysics (CMIC), which furnishes information on cloud

phase, cloud effective radius, cloud optical thickness, and liquid/ice

water content.

• Two sets of precipitation products:

– Precipitating Clouds (PC and PC-Ph), which assess the likelihood

of precipitation for cloudy pixels.

– Convective Rainfall Rate (CRR and CRR-Ph), providing instant-

aneous and hourly precipitation values, with a focus on convective

clouds. The second product in each pair utilizes information from

the Cloud Microphysics (CMIC) product.

• Two convection-related products:

– Convection Initiation (CI), estimating the probability of a cloudy

pixel developing into a thunderstorm.

– Rapidly Developing Thunderstorms (RDT), tracking and analyz-

ing convective systems, highlighting various characteristics.

• One clear air product, Imaging Satellite Humidity and Instability (iSHAI),

offering vertical profiles of humidity, temperature, and ozone for clear

air pixels. It also provides data on precipitable water in both the total

column and three vertical layers, along with several instability indices.

1.2 Data sources for weather forecasting 15

• Three conceptual model products:

– Automatic Satellite Image Interpretation (ASII)

– Tropopause Folding (ASII-TF)

– Gravity waves (ASII-GW)

– These products interpret satellite images using conceptual models,

with the latter two focusing on turbulence-related phenomena.

• One extrapolation product, Extrapolated Imagery (EXIM), predicts

future satellite imagery or other NWC/GEO products by considering

kinematic extrapolation.

• One Atmospheric Motion Vector (AMV) product, High-ResolutionWinds

(HRW), calculating AMVs and trajectories by tracking cloud and hu-

midity features across successive satellite images.

An atmospheric motion vector (AMV) represents the horizontal shift

between two Earth locations observed in two satellite images, and it is de-

termined by tracking a square segment of n×n pixels referred to as a tracer.

A trajectory is the route traced by the same tracer across multiple successive

satellite images. Tracers are defined based on particular features in visible,

infrared, or water vapor images. These features could be related to cloudiness

(in the case of cloudy tracers) or specific humidity characteristics in regions

devoid of clouds, particularly in water vapor images (for clear air tracers).

These tracers have a fixed size, measured in pixels. Initially, tracers are

identified in an initial image and then monitored as they move in subsequent

images, with their displacements between these images providing the neces-

sary data to compute the atmospheric motion vectors (AMVs). The HRW

product provides valuable data, including pressure level data, which helps

position the calculated atmospheric motion vectors (AMVs) and trajectories

in the vertical dimension. AMVs and trajectories are continuously computed

around the clock, 24 hours a day.

16 1. Preliminaries

Figure 1.3: NWC/GEO-HRW output example of atmospheric motion vectors

(AMVs) in the European and North Atlantic region. Image taken from [5].

When it comes to weather forecasting, traditional observations are lim-

ited in coverage, while satellite-based observations offer extensive global data

at regular intervals. Therefore, the generation of atmospheric motion vectors

(AMVs) from satellite images becomes a crucial source of wind informa-

tion on a global scale, particularly in regions over the oceans and remote

continental areas. In this context, the NWCSAF High-Resolution Winds

(NWC/GEO-HRW) product proves to be highly valuable in both short-term

weather prediction (nowcasting) and longer-term forecasting applications. It

complements other available data sources and aids forecasters in several ways.

1.2.3 WeatherBench

WeatherBench [11] represents a very promising benchmark dataset for

data-driven medium-range weather forecasting. It comprises data derived

from the ERA5 archive that has been processed to facilitate the use of

machine-learning models. It also proposes simple and clear evaluation met-

rics that enable a direct comparison between different methods, as well as

baseline scores from simple linear regression techniques, deep learning mod-

els, as well as purely physical forecasting models.

The selection of available variables was guided by meteorological consider-

ations. Geopotential, temperature, humidity, and wind represent prognostic

state variables found in the majority of physical Numerical Weather Pre-

diction (NWP) and climate models. Complementing the three-dimensional

1.2 Data sources for weather forecasting 17

fields, the dataset encompasses various two-dimensional fields. For instance,

the 2-meter temperature is a significant variable due to its direct relevance to

human activities and susceptibility to the diurnal solar cycle. The 10-meter

wind plays a vital role, especially in applications related to wind energy fore-

casts. Additionally, total cloud cover assumes a pivotal role in solar energy

prediction. Lastly, top-of-atmosphere incoming solar radiation as an input

variable can effectively encode diurnal variations. Furthermore, the dataset

includes several potentially significant time-invariant fields, housed within the

constants file. The initial trio of variables pertains to surface characteristics:

the land-sea mask, a binary field distinguishing land and sea points; soil type,

categorized into seven distinct classes; and orography, representing surface

elevation. Additionally, two-dimensional fields containing latitude and lon-

gitude values at each point are provided, as they can prove valuable for the

neural network to capture latitude-specific insights, including grid structure

and the Coriolis effect. All the variables contained in the benchmark dataset

are described in Table 1.2.

Evaluation is done for the years 2017 and 2018. 500 hPa geopotential

and 850 hPa temperature have been chosen as primary verification fields.

Geopotential at 500 hPa pressure, often abbreviated as Z500, is a commonly

used variable that encodes the synoptic-scale pressure distribution. It is the

standard verification variable for most medium-range NWP models. 850

hPa temperature has been chosen as a secondary verification field because

temperature is a more impact-related variable. 850 hPa is usually above the

planetary boundary layer and therefore not affected by diurnal variations

but provides information about broader temperature trends, including cold

spells and heat waves.

The root mean squared error (RMSE) has been chosen as the primary

metric because it is easy to compute and mirrors the loss used for most ML

applications. RMSE is defined as:

RMSE =
1

Nforecasts

Nforecasts∑
i

√√√√ 1

NlatNlon

Nlat∑
j

Nlon∑
k

L(j)(fi,j,k − ti,j,k)2

18 1. Preliminaries

where f is the model forecast and t is the ERA5 truth. L(j) is the latitude

weighting factor for the latitude at the jth latitude index:

L(j) =
cos(lat(j))

1
Nlat

∑Nlat

j cos(lat(j))
.

Table 1.2: List of variables contained in the WeatherBench dataset. Table

taken from [11].

Long name Short name Description Unit Levels

geopotential z Proportional to the height of a

pressure level

m2s−2 13

temperature t Temperature K 13

specific humidity q Mixing ratio of water vapor kgkg−1 13

relative humidity r Humidity relative to satura-

tion

% 13

u component of wind u Wind in x/longitude-direction ms−1 13

v component of wind v Wind in y/latitude direction ms−1 13

vorticity vo Relative horizontal vorticity 1s−1 13

potential vorticity pv Potential vorticity Km2kg−1s−1 13

2m temperature t2m Temperature at 2 m height

above surface

K 1

10m u component of wind u10 Wind in x/longitude-direction

at 10 m height

ms−1 1

10m v component of wind v10 Wind in y/latitude-direction

at 10 m height

ms−1 1

total cloud cover tcc Fractional cloud cover (0–1) 1

total precipitation tp Hourly precipitation m 1

toa incident solar radiation tisr Accumulated hourly incident

solar radiation

Jm−2 1

constants File containing time-invariant

fields

land binary mask lsm Land-sea binary mask (0/1) 1

soil type slt Soil-type categories see text 1

orography orography Height of surface m 1

latitude lat2d 2D field with latitude at every

grid point

1

longitude lon2d 2D field with longitude at

every grid point

1

1.3 Generative models 19

1.3 Generative models

Generative models are a class of machine learning models designed

to generate new data samples that resemble a given dataset. These models

have gained significant attention and popularity in various fields, including

computer vision, natural language processing, and art generation. They’re

used for tasks like image generation, text generation, speech synthesis, and

more.

There are several types of generative models, but two of the most well-

known and widely used ones are Variational Autoencoders (VAEs) [31,

32, 33] and Generative Adversarial Networks (GANs) [34, 35]. VAEs

are a type of generative model that combine ideas from autoencoders [36] and

probabilistic graphical models. They consist of two main parts: an encoder

and a decoder. The encoder maps the input data into a lower-dimensional

latent space, while the decoder maps points in this latent space back to the

data space. VAEs are trained to learn the probability distribution of data

in the latent space, making it possible to generate new samples by sampling

from this distribution. They are particularly useful for applications like image

generation and data denoising.

GANs are another popular class of generative models that consist of two

neural networks: a generator and a discriminator. The generator tries to gen-

erate fake data samples from random noise according to the desired distribu-

tion, while the discriminator aims to distinguish between real and generated

(fake) data. During training, these two networks are in constant competition:

the generator tries to generate data that is indistinguishable from real data,

while the discriminator tries to get better at telling real from fake. The

generator and discriminator are trained alternately, with each adversarial

component being frozen during the training of its counterpart. The ultimate

goal is for the generator to excel, producing samples that the discriminator

cannot differentiate from genuine data. GANs are known for their ability to

create highly realistic data samples, and they have been used for generating

images, videos, and even text.

20 1. Preliminaries

Other notable generative models include Autoregressive Models, gen-

erating data one element at a time, with each element being conditioned

on the previous ones (e.g., PixelRNN and PixelCNN [37] models for image

generation, and the GPT - Generative Pre-trained Transformer - series [38]

for text generation), and Flow-Based Models [39, 40], focusing on learn-

ing the data distribution directly and used for density estimation and data

generation. Normalizing flows [39] are a popular approach in this category.

Generative models have a wide range of applications beyond simply gener-

ating data. They can be used for data augmentation, style transfer, anomaly

detection, and more. The choice of which generative model to use depends on

the specific task and the nature of the data. Additionally, the field of generat-

ive modeling is continuously evolving, with new architectures and techniques

emerging regularly to improve the quality and diversity of generated data.

1.3.1 Generative models for weather forecasting

A wealth of historical datasets is readily available for short and medium-

range weather forecasting, and these datasets often adhere to a structured

spatial grid format that closely resembles visual images. Each weather vari-

able within these datasets can be effectively depicted as a map, and when

taking the temporal dimension into account, they can be envisioned as dy-

namic sequences akin to videos.

The challenge of predicting the next frame in a video sequence is a well-

established problem in image processing, and a range of generative models

have demonstrated their effectiveness in this regard, as evidenced by studies

such as [41, 42, 43, 44]. Consequently, it is not surprising that recent research

efforts have gravitated toward the application of deep neural network

(DNN) architectures to the domain of weather nowcasting, as exemplified

by studies like [45, 46, 47, 48, 49, 50, 51, 52]. Notably, these models do not

rely on explicit physical laws that describe atmospheric dynamics. Instead,

they employ backpropagation-based learning methods to directly forecast

weather patterns using observed data.

1.3 Generative models 21

The majority of the aforementioned models are trained with the aim of

minimizing the log-likelihood of their predictions, often quantified using

metrics like mean squared error (MSE). However, it is widely recognized

in other domains of image processing that log-likelihood-based optimization,

particularly when dealing with multimodal output, tends to produce predic-

tions that are overly smoothed, introducing a degree of blurriness. This effect

becomes more pronounced as the lead time for predictions increases

Rather than solely predicting the anticipated quantity of precipitation, an

alternative approach involves characterizing its probability distribution,

a core objective of generative modeling as highlighted in works like [53, 54].

Typically, this probability distribution is acquired through implicit learning,

where a generator is trained to generate data that conforms to the desired

distribution.

For several years, the dominant class of generative models has been Gen-

erative Adversarial Networks (GANs). In comparison to likelihood-based

models like Variational Autoencoders (VAEs), GANs typically offer super-

ior generative quality, albeit potentially at the expense of reduced sampling

diversity [55]. GANs are known to be susceptible to a phenomenon known

as mode collapse [56], in which the generator tends to output only a lim-

ited set of examples, sometimes even ignoring its noise input and generating

identical outputs for certain inputs. This is important, as it prevents GANs

from being suitable for ensemble techniques. In the realm of weather fore-

casting, Generative Adversarial Networks (GANs) have found applications in

various domains, including downscaling [57, 58, 59], precipitation estimation

from remote satellite sensors [60, 61], and disaggregation [62]. Notably, the

Deep Generative Models of Rainfall (DGMR) [6], described in sub-

section 1.3.2, stands as a distinguished example of a generative nowcasting

model based on GANs.

The conventional dominance of GANs in the realm of generative modeling

has recently faced a formidable challenge in the form of Denoising Diffu-

sion Models (DDM) [63], which will be deeply discussed in chapter 2.

22 1. Preliminaries

1.3.2 An example of a generative model for precipita-

tion nowcasting: DGMR

The Deep Generative Models of Rainfall (DGMR) [6] is a notable

and advanced generative model designed specifically for rainfall nowcasting.

It is highly regarded in the field of weather forecasting and has demonstrated

impressive capabilities in generating accurate rainfall predictions.

DGMR is based on the GAN framework, a deep learning architecture con-

sisting of two neural networks – a generator and a discriminator – that engage

in an adversarial training process. The generator aims to produce realistic

rainfall predictions, while the discriminator tries to distinguish between real

and generated rainfall data. Furthermore, DGMR is often implemented as

a conditional GAN, meaning that it takes additional information as input

to condition its predictions. In the context of rainfall nowcasting, this addi-

tional information could include past rainfall observations, atmospheric data,

or other relevant meteorological factors. By conditioning on this information,

DGMR can produce contextually relevant rainfall forecasts.

To enhance the quality of its predictions, DGMR typically incorporates

regularization techniques. These regularization terms are added to the

GAN’s loss function to encourage the model to generate rainfall forecasts

that are consistent with the underlying physical processes and observed data.

DGMR is often designed to produce high-resolution rainfall predictions, al-

lowing it to capture fine-scale details in precipitation patterns. This is par-

ticularly valuable for applications such as flood prediction and monitoring.

DGMR is the result of ongoing research and development in the field of

weather forecasting and machine learning. It represents a significant advance-

ment in the use of generative models for weather-related tasks. DGMR and

similar generative models are employed in various weather-related applica-

tions, including rainfall nowcasting, flood forecasting, and climate modeling.

Their ability to generate high-quality, spatiotemporally detailed rainfall

predictions makes them valuable tools for improving our understanding of

and preparedness for extreme weather events.

1.3 Generative models 23

Figure 1.4: DGMR model overview and case study of performance on a

challenging precipitation event starting on 24 June 2019 at 16:15 UK, showing

convective cells over eastern Scotland. Image taken from [6].

Chapter 2

Generative diffusion models

This chapter aims to deeply describe Denoising Diffusion Models (DDM)

and its most noticeable variants, namely Denoising Diffusion Probabilistic

Models (DDPM) [63], Denoising Diffusion Implicit Models (DDIM) [64],

and Latent Diffusion Models (LDM) [7]. DDM has emerged as a generative

technique with distinctive characteristics that have played a pivotal role in

numerous contemporary and widely-recognized applications [65, 66], span-

ning across domains such as video generation [67, 68]. These distinguishing

attributes encompass exceptional generation quality, heightened sensitivity

and adaptability to conditioning, a wide-ranging sampling capability, robust

training stability, and commendable scalability [69, 70].

Essentially, a diffusion model leverages a single network to effectively

eliminate noise from images, with the flexibility to parametrically adjust

the level of noise to be removed. This network is subsequently employed

Figure 2.1: Forward (from left to right) and reverse (from right to left)

diffusion process.

25

26 2. Generative diffusion models

to produce novel samples by iteratively diminishing noise in a designated

noisy image. This iterative process commences from an entirely random

noise configuration and is conventionally known as reverse diffusion. Its

objective is to effectively invert the direct diffusion process, where noise is

incrementally added to the source image (refer to Figure 2.1).

Diffusion models represent a class of powerful probabilistic generative

models renowned for their proficiency in capturing intricate, high-dimensional

data distributions. These models have found extensive utility across diverse

domains, including computer vision, natural language processing, and gen-

erative art. Fundamentally, diffusion models are rooted in the mathematical

concept of a diffusion process, which characterizes the stochastic, continuous

random movement of particles through time. This process simulates the dis-

persion or diffusion of a given quantity across space or time, with particles

naturally gravitating from regions of high concentration to those of lower

concentration. This gradual blending or mixing of the quantity defines the

core principle.

In the realm of machine learning, diffusion models harness the principles

of diffusion processes to elucidate data generation. Rather than directly

sampling data points from a fixed distribution, these models ingeniously it-

erate to transform an initially simple distribution—often a well-known one

like a Gaussian or uniform distribution—into the desired complex data distri-

bution. The central concept revolves around a sequence of diffusion steps,

wherein each step updates the probability distribution of the data. This is

achieved by incrementally introducing Gaussian noise to the existing data

samples and continuously refining them.

From a mathematical standpoint, when we start with a distribution rep-

resented as q(x0) responsible for generating the data, the objective of gen-

erative models is to identify a parameter vector θ. This parameter vector is

utilized to shape the distribution pθ(x0), which is characterized by a neural

network. The goal here is for this parameterized distribution, pθ(x0), to

closely approximate and model the original data distribution q(x0).

2.1 Denoising Diffusion Probabilistic Models (DDPM) 27

2.1 Denoising Diffusion Probabilistic Models

(DDPM)

Denoising Diffusion Probabilistic Models (DDPM) [63] posit that

the generative distribution pθ(x0) follows a specific form defined as:

pθ(x0) =

∫
pθ(x0:T)dx1:T (2.1)

Here, the time horizon extends to T > 0, and pθ(x0:T) can be further

expressed as:

pθ(x0:T) = pθ(xT)
T∏
t=1

pθ(xt−1|xt) (2.2)

In this formulation, DDPM characterizes the generative process by mod-

eling the joint distribution over a sequence of time steps, where pθ(xT) repres-

ents the initial distribution, and the subsequent terms capture the conditional

transitions from xt to xt−1 as the process evolves.

Training in diffusion models traditionally relies on a variational lower

bound of the negative log-likelihood:

− log pθ(x0)

≤ − log pθ(x0)+DKL(q(x1:T |x0)∥pθ(x1:T |x0))

= − log pθ(x0)+Eq

[
log

q(x1:T |x0)

pθ(x0:T)/pθ(x0)

]
= − log pθ(x0)+Eq

[
log

q(x1:T |x0)

pθ(x0:T)
+ log pθ(x0)

]
= Eq

[
log q(x1:T |x0)− pθ(x0:T)

]
= L(θ) (2.3)

What sets diffusion models apart from typical latent variable models like

Variational Autoencoders (VAEs) [31, 32, 33] is that they employ a fixed,

non-trainable inference procedure denoted as q(x1:T |x0). Moreover, the latent

variables in diffusion models exhibit relatively high dimensionality, which

usually matches the dimensions of the visible space.

28 2. Generative diffusion models

2.2 Denoising Diffusion Implicit Models (DDIM)

In the specific case of Denoising Diffusion Implicit Models (DDIM) [64],

the authors introduce a non-Markovian diffusion process defined as:

qσ(x1:T |x0) = qσ(xT |x0)
T∏
t=2

qσ(xt−1|xt, x0) (2.4)

Here, the term qσ(xT |x0) is described by a Gaussian distribution:

qσ(xT |x0) = N (xT |
√
αTx0, (1− αT) · I) (2.5)

Additionally, the conditional distribution qσ(xt−1|xt, x0) takes the form:

qσ(xt−1|xt, x0) = N
(
xt−1

∣∣∣µσt(x0, αt−1);σ
2
t · I

)
(2.6)

with

µσt(x0, αt−1) =
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
xt−

√
αtx0√

1−αt
.

The choice of q(xt−1|xt, x0) is strategically made to fulfill two critical as-

pects of the DDPM diffusion process: the Gaussian nature of q(xt−1|xt, x0)

when conditioned on x0, and the ability to recover the same marginal dis-

tribution as in DDPM, where qσ(xt|x0) = N (xt|
√
αtx0; (1 − αt) · I). This

property allows us to represent xt as a linear combination of x0 and a noise

variable ϵt ∼ N (ϵt|0; I):

xt =
√
αtx0 +

√
1− αtϵt. (2.7)

Next, our task is to define a trainable generative process denoted as

pθ(x0:T), where the conditional distribution pθ(xt−1|xt) is crafted to incor-

porate the structure from qσ(xt−1|xt, x0). The concept here is that when

2.2 Denoising Diffusion Implicit Models (DDIM) 29

provided with a noisy observation xt, the process begins by predicting x0

and then employs this prediction to derive xt−1 according to equation 2.6.

In practical terms, a neural network denoted as ϵ
(t)
θ (xt, αt) is trained to

effectively map a given pair of inputs, xt and αt (representing the noise

rate), into an estimate of the noise component, ϵt. This estimated noise,

when added to x0, facilitates the construction of the next time step, xt.

Consequently, the conditional distribution pθ(xt−1|xt) is approximated as

a Dirac delta function δ
f
(t)
θ
, where:

f
(t)
θ (xt, αt) =

xt −
√
1− αtϵθ(xt, αt)√

αt

. (2.8)

Using f
(t)
θ (xt, αt) as an approximation of x0 at timestep t, xt−1 is sub-

sequently calculated as follows:

xt−1 =
√
αt−1 · f (t)

θ (xt, αt) +
√

1− αt−1 − σ2
t · ϵθ(xt, αt) (2.9)

.

Regarding the loss function, the term in equation 2.3 can be further

decomposed into the sum of the following terms [71]:

Lθ = LT + Lt−1 + · · ·+ L0 (2.10)

where

LT = DKL(q(xT |x0) ∥ pθ(xT))

Lt = DKL(q(xt|xt+1, x0)∥pθ(xt|xt+1))

for 1 ≤ t ≤ T − 1

L0 = − log pθ(x0|x1)

This breakdown of the loss function provides a more granular perspective on

the optimization process.

30 2. Generative diffusion models

All the aforementioned distributions take the form of Gaussians, facilitat-

ing the calculation of their KL divergences in a closed-form manner, following

a Rao-Blackwellized approach. After a series of manipulations, we arrive at

the following formulation:

Lt = Et ∼ [1, T], x0, ϵt

[
γt|ϵt − ϵθ(xt, t)|2

]
(2.11)

This expression can be interpreted as the weighted mean squared er-

ror between the predicted noise and the actual noise at time t. In practice,

the weighting parameters are often omitted, as experimental evidence sug-

gests that the training process tends to perform better without them. The

pseudocode for training and sampling is given in the following Algorithms.

Algorithm 1 Training

1: repeat

2: x0 ∼ q(x0)

3: t ∼Uniform(1,..,T)

4: ϵ ∼ N (0; I)

5: xt =
√
αtxb +

√
1−αtϵ

6: Backpropagate on ||ϵ− ϵθ(xt, αt)||2

7: until converged

Sampling is an iterative process, starting from a purely noisy image xT ∼
N (0, I). The denoised version of the image at timestep t is obtained using

equation 2.9.

Algorithm 2 Sampling

1: xT ∼ N (0, I)

2: for t = T, ..., 1 do

3: ϵ = ϵθ(xa, xt, αt)

4: x̃0 =
1√
αt
(xt − 1−αt√

1−αt
ϵ)

5: xt−1 =
√
αt−1x̃0 +

√
1− αt−1ϵ

6: end for

2.3 Latent Diffusion Models (LDM) 31

2.3 Latent Diffusion Models (LDM)

The Latent Diffusion Model (LDM), introduced by Rombach et al.

in 2022 [7], offers an innovative approach to image processing. Unlike con-

ventional models that operate in pixel space, LDM conducts the diffusion

process in the latent space. This choice significantly reduces the training

cost and enhances inference speed. The underlying motivation for this ap-

proach stems from the insight that the majority of an image’s information

contributes to perceptual details, while the fundamental semantic and con-

ceptual composition remains intact even after aggressive compression.

LDM achieves its capabilities through a two-step process. Initially, it

employs an autoencoder to eliminate pixel-level redundancy, effectively trim-

ming away superfluous information. Subsequently, LDM utilizes a diffusion

process on the learned latent space to manipulate and generate semantic

concepts. This dual approach effectively decomposes the tasks of perceptual

compression and semantic compression, harnessing the power of generative

modeling to enhance the quality and efficiency of image processing.

The perceptual compression process in the model relies on an autoen-

coder architecture. The encoder ε takes the input image x ∈ RH×W×3 and

compresses it into a smaller 2D latent vector z = ε(x) ∈ Rh×w×c with down-

Figure 2.2: The architecture of latent diffusion model. Image taken from [7].

32 2. Generative diffusion models

sampling rate f = H/h = W/w = 2m, where m is a natural number. Here, h

and w are the dimensions of the latent space, and c represents the number of

channels in the latent representation. Subsequently, a decoder D is employed

to reconstruct the images from the latent vector, yielding x̃ = D(z).

To enhance the training of the autoencoder and avoid arbitrarily high

variance in the latent spaces, the authors explore two types of regularization

techniques: KL-reg, applying a small KL penalty to encourage the learned

latent space to approximate a standard normal distribution, similar to the

concept in Variational Autoencoders (VAE) [72] and VQ-reg, in which a

vector quantization layer is integrated within the decoder, reminiscent of

the VQVAE architecture [73]; however, in LDM, the quantization layer is

absorbed by the decoder. Both these regularization techniques contribute to

the effective training and control of the autoencoder’s latent space.

The diffusion and denoising processes take place on the latent vector

z. The denoising model employed is a time-conditioned U-Net architecture,

which is augmented with a cross-attention mechanism to accommodate

flexible conditioning information for image generation. This conditioning in-

formation can include class labels, semantic maps, or blurred variants of an

image. The design of the model is such that it integrates different modalities

of information using the cross-attention mechanism. Each type of condition-

ing information is paired with a domain-specific encoder τθ, which projects

the conditioning input y into an intermediate representation (τθ(y) ∈ RM×dτ)

that can be effectively utilized by the cross-attention component:

Attention(Q,K, V) = softmax(
QKT

√
d

) · V

where

Q = W
(i)
Q · φi(zi), K = W

(i)
K · τθ(y), V = W

(i)
V · τθ(y)

and

W
(i)
Q ∈ Rd×diϵ ,W

(i)
K ,W

(i)
V ∈ × τ , φi(zi) ∈ RN×diϵ , τθ(y) ∈ RM×dτ .

2.4 Conditioning 33

Recently, the principles of LDMs have successfully been extended to

the temporal domain [74], allowing for the generation of coherent video se-

quences.

2.4 Conditioning

The process of generating data often necessitates a means of exerting

control over the sample creation process to influence the final output. This

procedure is commonly referred to as conditioned or guided diffusion. Di-

verse strategies have been developed to seamlessly incorporate image and/or

text embeddings into the diffusion process, thereby facilitating guided gener-

ation. In mathematical terms, guidance entails the conditioning of a prior

data distribution, typically denoted as p(x), with specific constraints, such

as class labels or image/text embeddings. This conditioning yields the emer-

gence of a conditional distribution, represented as p(x|y).
To transform a diffusion model, denoted as pθ, into a conditional diffusion

model, we introduce conditioning information, denoted as y, at each step of

the diffusion process, yielding the following formulation:

pθ(x0:T |y) = pθ(xT)
T∏
t=1

pθ(xt−1|xt, y) (2.12)

The learning of this distribution typically follows one of two approaches.

The first approach relies on an auxiliary classifier, akin in spirit to AC-

GANs [75]. The second approach, in contrast, operates without a classifier,

offering an alternative methodology for modeling conditional diffusion.

The concept underpinning classifier guidance is as follows: the objective

is to learn the gradient of the logarithm of the conditional density pθ(xt|y).
By applying Bayes’ rule, this can be expressed as:

∇xt log pθ(xt|y) = ∇xt log

(
pθ(y|xt) · pθ(xt)

pθ(y)

)
(2.13)

34 2. Generative diffusion models

Given that the gradient operator solely pertains to xt, the term pθ(y) can

be eliminated; after simplification, we arrive at:

∇xt log pθ(xt|y) =∇xt log pθ(xt)

+ s · ∇xt log pθ(y|xt) (2.14)

Here, the scalar term s assumes the role of modulating the strength of the

guidance component. As elucidated in [69], one approach to guide the diffu-

sion process during generation entails the utilization of a classifier, denoted as

fϕ(y|xt, t)). This method involves the training of a classifier fϕ(y|xt, t) using

a noisy image xt to predict its corresponding class label y. Subsequently, the

gradient ∇x log fϕ(y|xt) can be harnessed to steer the diffusion sampling pro-

cess towards the targeted conditioning information y through adjustments to

the noise prediction. It’s worth noting that this technique is particularly well-

suited for scenarios involving discrete labels, and as such, further elaboration

is omitted.

The concept of conditioned diffusion, devoid of reliance on an external

classifier, has been extensively explored in [76]. This approach involves the

training of both a conditional diffusion model, denoted as ϵθ(xt, t, y), and an

unconditional model, denoted as ϵθ(xt, t, 0). In many cases, the same neural

network architecture can serve both models: during training, the class label

y is randomly set to 0, thereby exposing the model to both conditional and

unconditional scenarios. The estimated noise, represented as ϵ̂θ(xt|t, y) at

time step t, subsequently emerges as a judiciously weighted combination of

the conditional and unconditional predictions:

ϵ̂θ(xt, t, y) = ϵθ(xt, t, y) + s · ϵθ(xt, t) (2.15)

Chapter 3

Generative diffusion models for

precipitation nowcasting

The application of diffusion models to weather forecasting presents a

natural and compelling avenue of exploration, with multiple teams inde-

pendently addressing this challenge across various datasets. In a notable in-

stance, as described in [77], diffusion models have been effectively employed

for a downscaling task. Moreover, in [10], a diffusion model was meticulously

trained on a dataset originating from the MeteoSwiss operational radar net-

work [78, 79] and subsequently evaluated using data derived from the radar

composite of the German Weather Service (DWD) spanning April to Septem-

ber 2022 [80]. These findings were subjected to comparison against a GAN-

based Deep Generative Models of Rainfall (DGMR) (described in subsec-

tion 1.3.2) and a statistical model, PySTEPS (described in subsection 1.1.2),

revealing discernible enhancements in both accuracy and diversification.

The purpose of this chapter is to present a novel model, the Generative

Ensemble Diffusion (GED). This model is rooted in the Denoising Dif-

fusion Implicit Model (DDIM) described in section 2.2 and is trained on a

sequence of rainfall data, enriched with additional meteorological features.

35

36 3. Generative diffusion models for precipitation nowcasting

GED operates by generating multiple outputs, which are subsequently

amalgamated into a final prediction using a U-Net architecture. This am-

algamation process facilitates the creation of a comprehensive precipitation

forecast, capitalizing on the DDIM’s aptitude for modeling the probability

distribution of weather data and the U-Net’s prowess in extracting salient

features.

Our exploration begins with an introduction to the distinct components

that constitute the GED model, elucidating their roles within the broader

framework. This discussion culminates in an examination of the overarch-

ing structure of the model. For a comprehensive analysis contrasting the

architecture proposed in [10] with the GED model, refer to section 3.3.

3.1 The DDIM architecture

As we have seen in chapter 2, diffusion models essentially function as

iterative denoising algorithms, with their central trainable component being

the denoising network, represented as ϵθ(xt, αt). This network takes as input

the noisy images, denoted as xt, along with a corresponding noise variance,

αt, and aims to accurately estimate the level of noise affecting the image. The

training of this underlying denoising network follows a conventional proced-

ure. Initially, a sample, x0, is drawn from the dataset and subjected to a

predetermined amount of random noise. The network is then tasked with the

responsibility of estimating the noise content within these perturbed images.

3.1.1 Denoising

The denoising network consists of a U-Net architecture, which stands

as one of the most prevalent choices for denoising tasks [81, 82, 83, 84].

Notably, the U-Net architecture is frequently employed in diffusion models

[85]. Originally devised for semantic segmentation purposes [8], the U-Net

has garnered widespread acclaim and found utility across a wide spectrum

of image manipulation tasks.

3.1 The DDIM architecture 37

Figure 3.1: U-net architecture (example for 32x32 pixels in the lowest res-

olution). Each blue box corresponds to a multi-channel feature map. The

number of channels is denoted on top of the box. The x-y-size is provided at

the lower left edge of the box. White boxes represent copied feature maps.

The arrows denote the different operations. Image taken from [8].

The network structure, shown in Figure 3.1, consists of a downsampling

sequence of layers, succeeded by an upsampling sequence, all while incor-

porating skip connections linking layers of equivalent dimensions. Typically,

the configuration of the U-Net is defined by specifying the number of down-

sampling blocks and the channel count for each block. The upsampling com-

ponent mirrors a symmetrical pattern, and the spatial dimensions align with

the image resolution, which, in our case, is set at 96x96.

The entire structure of a U-Net can be succinctly encoded in a single list,

as exemplified by [32, 64, 96, 128]. This list serves a dual purpose, denot-

ing both the number of downsampling blocks (in this instance, 4) and the

associated channel counts, which typically increase as the spatial dimensions

decrease. For the experiments in chapter 4, a U-Net configuration of [64, 128,

256, 384] has been used, which empirically proved to be the most effective.

38 3. Generative diffusion models for precipitation nowcasting

To enhance the U-Net’s sensitivity to the noise variance, αt is introduced

as an input. Subsequently, an ad-hoc sinusoidal transformation to embed

this noise variance is employed. This transformation involves dissecting the

value into a set of frequencies, a technique reminiscent of positional encod-

ings in Transformers [86]. The embedded noise variance is then vectorized

and concatenated with the noisy images along the channel axes before being

fed into the U-Net. This strategic addition bolsters the network’s ability

to discern noise levels, a critical factor for achieving superior performance.

Sinusoidal embeddings are implemented using a Lambda layer.

3.1.2 Conditioning

Conditioning the model is imperative to steer the diffusion process to-

ward a forecast determined by the known prior weather conditions. In the

proposed approach, conditioning is achieved in a classifier-free manner [76]

by directly appending the conditioning frames to the noisy images along the

channel axis.

In practical terms, the model ϵθ(xt, t, y) receives as input the noisy im-

ages, denoted as xt = {r1, r2, r3}, where each rh represents the future predic-

tion of rain precipitation for h hours ahead. The conditioning information,

y = {r−8..0, u−1,0, v−1,0, lsm, geopot}, encompasses the previous 8 hours of

precipitation data r−11..0, the prior two hours’ data for both wind compon-

ents u−1,0 and v−1,0, along with two static maps characterizing the land-sea

mask (lsm) and geopotential (geopot).

Figure 3.2 illustrates how conditioning is implemented by stacking this

additional information alongside the channel axis in the denoising network.

This implementation seamlessly integrates the conditioning information into

the U-Net architecture. Specifically, each temporal slice in the input data

is treated analogously to a color channel in an RGB image. By applying

2D convolutions across these temporal slices independently, the model can

extract sufficient frame-level temporal features to generate a sequence that

aligns coherently with the past frames used for conditioning.

3.2 A novel approach: Generative Ensemble Diffusion (GED) 39

Figure 3.2: Conditioning is implemented by stacking additional information

alongside the channel axis in the denoising network.

For instance, when training with a batch size of 16, the input data

provided to the denoising network would have the shape [16, 96, 96, 17], with

the last dimension encompassing both the conditioning information and the

noisy images. In contrast, the output would consist solely of the denoised 3

frames, resulting in a shape of [16, 96, 96, 3].

Notably, this training process has demonstrated consistent success in

achieving temporal conditioning solely with conditioned instances. This

stands in contrast to some examples in the literature, which required altern-

ating between conditioned and non-conditioned training instances, followed

by a weight mixing stage, as described in [87].

3.2 A novel approach: Generative Ensemble

Diffusion (GED)

The proposedGenerative Ensemble Diffusion (GED) approach lever-

ages the power of diffusion to integrate the inherent probability distribution

of meteorological patterns, which is then used to synthesize a probable pre-

cipitation prediction. Image samples generated through the diffusion process,

in line with the generative traits of the model, yield a highly diverse set of

40 3. Generative diffusion models for precipitation nowcasting

outputs despite sharing identical conditioning information. Based on the as-

sumption that the diffusion model captures the stochastic essence of weather

dynamics, a prediction can be derived from an ensemble of possible outcomes.

The proposed methodology shares a fundamental alignment with the en-

semble post-processing techniques commonly employed in Numerical Weather

Prediction models. As covered in subsection 1.1.2, ensemble post-processing

involves the statistical refinement of a set of multiple weather forecasts gener-

ated from slightly different initial conditions, offering a spectrum of potential

weather outcomes and serving as an estimation of forecast uncertainty.

Ensemble post-processing methods encompass a wide range of techniques,

including statistical approaches like linear regression and distributional re-

gression [88, 89], as well as more advanced machine learning algorithms such

as QRF [90] and EMOS-GB [91]. In recent years, there has been a signi-

ficant research focus on neural methods for ensemble post-processing, with

several notable successful examples [92, 93]. These methods aim to enhance

the accuracy and reliability of weather forecasts by combining information

from multiple model runs, effectively mitigating uncertainties in predictions.

Figure 3.3: Generative Ensemble Diffusion (GED) prediction structure,

showing the multiple denoising cycles and the final post-processing step.

3.3 Concurrent work 41

Two distinct approaches have been proposed for implementing ensemble

predictions: one based on a straightforward statistical method and the other

employing a neural model. The first approach entails running multiple dif-

fusion generations iteratively (a process that can be parallelized across the

batch dimension for significant speedup, as noted in [94]). Subsequently, the

mean of these generated images is calculated. This technique effectively con-

solidates the probability distribution of images into an averaged outcome, res-

ulting in a more precise forecast. Experimental findings (section 4.4) demon-

strate that computing the mean of multiple generations consistently yields

superior results compared to using a single diffusion generation. Thus, this

approach harnesses the diversity of potential outcomes to generate a more

accurate and robust prediction. You can reference Figure 3.3 for clarity.

Instead of merely computing a mean, the second approach employs a

more sophisticated module for prediction synthesis, a technique commonly

employed in the literature [24, 25]. Specifically, a U-Net architecture is util-

ized to amalgamate the generated outcomes into a more plausible prediction.

This approach not only facilitates more informed decision-making in the in-

tegration of outputs but also offers the opportunity to add a post-processing

layer specifically trained on the target image. This stands in contrast to the

diffusion model, which is trained on the noise differences of individual dif-

fusion steps. Experimental results (section 4.4) have consistently validated

the effectiveness of this methodology, demonstrating its superiority over both

simple diffusion and diffusion ensemble with the mean method.

3.3 Concurrent work

At the time of writing, another notable work addressing precipitation

nowcasting using diffusion models is presented in [10]. However, comparing

the two architectures poses a significant challenge due to the substantial

differences in spatiotemporal scales within the data they handle.

42 3. Generative diffusion models for precipitation nowcasting

In [10], the authors work with time steps of 5 minutes, employing 4 time

steps (equivalent to 20 minutes) of precipitation data as input while pre-

dicting precipitation up to 20 time steps (or 100 minutes) into the future.

Furthermore, the geographical scale differs considerably, with radar signals

collected at a 1 km resolution covering a rectangular area spanning 710 km

in the east–west direction and 640 km in the north–south direction, encom-

passing all of Switzerland and some adjacent regions.

In the mentioned work, the network is trained on 256x256 pixel images,

corresponding to a geographical area of 256 km2. To manage computational

costs effectively, they adopt the concept of the Latent Diffusion Model

(LDM) described in section 2.3, popularized by Stable Diffusion [95], where

the diffusion process operates within a latent variable space mapped to the

physical pixel space through an autoencoder.

The diffusion model employed in their work exhibits several distinctions

from GED, starting with the number of denoising iterations, which is set

at 50 as opposed to our 15 iterations. Moreover, their Denoiser incorpor-

ates a forecaster stack based on Adaptive Fourier Neural Operators

(AFNOs) [96][97] for conditioning the model. This conditioning involves

temporal cross-attention to map between input and output time coordin-

ates and a distinct denoiser stack also founded on AFNOs, facilitating cross-

attention simulations. However, the exact significance of these modules re-

mains undocumented, as no ablation study was conducted. For an overview

of the whole structure of the model, reference to Figure 3.4.

Other related works in precipitation nowcasting, particularly those based

onConvolutional Neural Networks (CNNs), often incorporate 3D con-

volutions or utilize alternative conditioning methods likeRecurrent Neural

Networks (RNNs) or Long Short-Term Memory networks (LSTMs)

to explicitly model temporal connections [98, 99, 100, 101]. In recent years,

multiple publications have showcased promising results by treating timesteps

as multiple channels within the network architecture, effectively achieving

temporal prediction with 2D convolutions [102, 103].

3.3 Concurrent work 43

Figure 3.4: An overview of the LDCast neural networks. (a) The forecaster

and denoiser stacks. (b) The VAE used to transform precipitation sequences

to the latent space. (c)–(h) The layer blocks used in the network diagrams.

(i) The training procedure. (j) The forecast generation procedure. Conv

denotes convolution. MLP (multilayer perceptron) is a block consisting of a

linear layer, activation function and another linear layer. Res block denotes

a ResNet-type residual block [9]; the noise embedding is added to the input

of the block. Image taken from [10].

44 3. Generative diffusion models for precipitation nowcasting

In the proposed diffusion model, temporal data is handled using 2D con-

volutions like processing different color channels in image processing. Spe-

cifically, each temporal slice in the input data is treated analogously to a

color channel in an RGB image. By independently applying 2D convolutions

across these temporal slices, akin to the processing of various color chan-

nels, the model successfully matches the performance of competing 3D CNN

models.

Chapter 4

Experiments

This chapter aims to compare the proposed Generative Ensemble Dif-

fusion (GED) model introduced in chapter 3 with the Weather Fusion

UNet (WF-UNet) model introduced in [98]. The comparison entails in-

corporating precipitation and wind speed variables as inputs in the learning

process. The chosen dataset spans six years of precipitation and wind radar

images, ranging from January 2016 to December 2021, covering 14 European

countries. This dataset features a temporal resolution of 1 hour and a spatial

resolution of 31 square km, relying on the traditional ERA5 dataset [30].

When assessed using the conventional Mean Squared Error metric,

the diffusion model consistently demonstrates superior predictive accuracy

compared to the WF-UNet model.

4.1 Dataset description and preprocessing

To evaluate the performance of the model, experiments have been con-

ducted using the same dataset and setup as outlined in previous studies such

as [98, 100, 99], with a specific focus on precipitation nowcasting. The chosen

dataset is a subset of ERA5 [30], a state-of-the-art global atmospheric reana-

lysis dataset developed by the European Centre for Medium-Range

Weather Forecasts (ECMWF).

45

46 4. Experiments

As covered in subsection 1.2.1, ERA5 provides a comprehensive numer-

ical representation of Earth’s recent climate history, spanning several decades

and featuring global coverage at a high spatial resolution of approximately

31 kilometers. It offers hourly estimates of various atmospheric, land, and

oceanic climate variables, including but not limited to temperature, precip-

itation, humidity, wind speed and direction, and sea surface temperature.

This dataset is the result of a sophisticated and consistent data assim-

ilation system that combines millions of diverse observations with intricate

Earth system modeling. The integration of these components produces a

coherent and reliable dataset that is widely respected and extensively used

across a range of scientific disciplines. Its applications extend to weather

forecasting, climate research, hydrological studies, energy production predic-

tion, and numerous policy-related endeavors, highlighting its importance in

various fields.

The primary focus in this study is precipitation nowcasting, with the key

target variable being Total Precipitation. Total Precipitation is defined as

the accumulated amount of liquid and frozen water that reaches the Earth’s

surface, encompassing both rain and snowfall. For this investigation, a spe-

cific region of interest has been delineated within a geographical rectangle.

This region spans from latitude -12◦ to latitude 12◦ in the north-south dir-

ection and from longitude 36◦ to longitude 60◦ in the east-west direction.

The images obtained from this region cover a substantial portion of Western

Europe, partially encompassing 14 different countries.

The dataset comprises observations collected over six years, spanning

from 2016 to 2021, with measurements taken at hourly intervals. Each data

point in the dataset has a dimension of 96×96, with each value represent-

ing the depth of fallen water. This depth measurement corresponds to the

amount of water equivalent to the depth in meters that would result if the

collected precipitation were uniformly spread over a grid box measuring 31

square kilometers in size.

4.2 Additional features 47

Figure 4.1: Example of precipitation data from the ERA5 dataset.

To prepare the dataset for the experiments, normalization has been per-

formed by scaling the values of both the training and testing sets. This

scaling was achieved by dividing all data points by the highest value ob-

served in the training set. Subsequently, the dataset has been divided into

two distinct subsets: a training set encompassing the years 2016 to 2020 and

a testing set for the year 2021.

It’s worth noting that precipitation, the target parameter, tends to ex-

hibit sparsity, often being absent in the analyzed region. This characteristic

results in a dataset containing a substantial amount of non-informative data,

which can introduce a bias toward predicting zero values [99]. To address

this issue, an additional parameter has been introduced in the data gen-

erator. This parameter allows to filter and return only sequences where a

certain percentage of rain is present in the pixels, effectively simulating the

conditions outlined in the EU-50 and EU-20 datasets as specified in [98].

In these datasets, images contain at least 50% and 20% of rain in the pixels,

respectively. This filtering process involves computing the number of non-

zero pixels within a larger region measuring 105x173, after which the image

is cropped to its final dimension of 96x96.

4.2 Additional features

Precipitation nowcasting often require a holistic consideration of various

meteorological variables that extend beyond the mere presence or absence of

rain. Elements such as temperature, atmospheric pressure, humidity, wind

speed, and wind direction play pivotal roles in shaping precipitation patterns.

48 4. Experiments

The interactions among these variables and other meteorological factors

can be intricate, contributing to the overall complexity of atmospheric dy-

namics. Furthermore, the model’s awareness of the underlying physical struc-

ture is essential. Incorporating elements like time embeddings, land/sea

masks, and elevation information can enhance the model’s capacity to make

well-informed predictions.

An ablation study (described in 4.4 and shown in Table 4.2) was con-

ducted, incorporating several supplementary meteorological features sourced

from the ERA5 dataset. These additional features, shown in Figure 4.2 and

described in Table 4.1, encompassed wind speed, derived from both north-

erly and easterly wind components, the land-sea mask, a geopotential

map, and a sinusoidal time embedding. Before training, all these fea-

tures underwent normalization, scaling them to a range between 0 and 1.

Figure 4.2: Visual example of the additional features.

4.2 Additional features 49

Name Units Description

100m wind speed ms−1 Wind speed of air at a height

of 100 meters above the surface

of the Earth, given easterly and

northerly components u and v the

speed is obtained by
√

(u2 + v2).

Timestamp [m,d,h] Timestamp including month, day,

and hour of the start of the

given sequence, tile encoded into

a 96x96 array.

Land-sea mask dimensionless Proportion of land, as opposed to

ocean or inland waters in a grid

box.

Geopotential m2s−2 Gravitational potential energy of

a unit mass, at a particular loca-

tion at the surface of the Earth,

relative to mean sea level.

Table 4.1: Additional features units and details.

50 4. Experiments

4.3 Training and Evaluation

The diffusion model was trained with a batch size of 2 throughout 40

epochs. For optimization, the AdamW algorithm was employed, utilizing

a learning rate of 1e-04 and a weight decay of 1e-05. Interestingly, it was

observed increasing the batch size had a detrimental effect on the training

process. Furthermore, a fine-tuning phase was conducted, encompassing 10

epochs with a reduced learning rate of 1e-05 and a weight decay of 1e-06,

resulting in modest improvements in overall results. To facilitate training, a

generator was utilized to produce random batches of sequences covering the

training years from 2016 to 2020. As with the reference model, sequences

composed of more than 50% non-rain values were excluded from the training

process. Following standard diffusion model practices, Mean Absolute

Error (MAE) has been used as a loss function and applied to the noise

difference. Training experiments based on image loss, rather than noise,

yielded inferior results.

The evaluation of the diffusion model was carried out using data from

the test year of 2021, maintaining a fixed number of 15 diffusion steps and

assessing performance using the Mean Squared Error (MSE) metric,

defined as in Equation 4.1. In this equation, n represents the total number

of samples, yi denotes the ground truth value, and ŷi signifies the predicted

value. It’s important to note that all metrics were computed on denormalized

data.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4.1)

Generative Ensemble Diffusion (GED) features a post-processing U-

Net that shares the spatial dimensions of the denoising U-net, excluding the

embedded variance. This network takes fifteen distinct generative outputs

from the diffusion model as input, each containing predictions for the sub-

sequent three hours. Subsequently, the U-net produces an output comprising

three images, each predicting the rainfall for one of the upcoming three hours.

4.4 Results 51

The training of this model follows a process similar to that used for the

diffusion model. It utilizes AdamW as the optimizer with a learning rate

set at 1e-4 and a weight decay of 1e-5. The loss function employed is the

Mean Squared Error (MSE), calculated as the discrepancy between the

predicted images and their corresponding ground truth. During training,

data is dynamically generated by the diffusion model using random sequences

from the training years. Evaluation, on the other hand, is carried out using

sequences from the test year of 2021.

4.4 Results

In this section, we outline the experimental setup and describe the experi-

ments conducted. All experiments were conducted using models implemented

in the TensorFlow/Keras framework. The training dataset comprised precip-

itation data and additional features for the designated region, spanning from

2016 to 2021. Conversely, the test set exclusively utilized data collected in

2021. To compute the results, we conducted a comprehensive analysis of all

sequences within the specified year for both the EU-20 and EU-50 datasets.

All models simultaneously generate three different predictions. While it’s

possible that using a distinct model instance for each prediction could poten-

tially yield a slight improvement in overall performance, this would come at

the cost of increased training and inference times. This consideration is par-

ticularly significant for the practical application of precipitation nowcasting,

where efficiency in real-time predictions is crucial.

The primary objective is to minimize the Mean Squared Error (MSE)

for the initial three hours of the prediction model. However, determining the

optimal input data and model configuration remains an ongoing debate. To

tackle this challenge, a series of initial tests have been conducted, aiming at

identifying the most advantageous set of input features. Table 4.2 provides a

comparison of scores obtained using different sets of additional features with

the Single Diffusion model.

52 4. Experiments

Single diffusion with different inputs on EU-50

Inputs MSE 1h MSE 2h MSE 3h

8 rain 2.62e-04 4.60e-04 6.21e-04

8 rain + lsm + geopot 2.60e-04 4.61e-04 6.23e-04

8 rain + lsm + geopot +

time

2.60e-04 4.56e-04 6.16e-04

8 rain + lsm + geopot +

time + 2 wind speed

2.59e-04 4.51e-04 6.03e-04

Table 4.2: Results comparison on the EU-50 Dataset using different sets of

additional features with the Single Diffusion model. All sets include 8 frames

representing total precipitation (rain). lsm and geopot stand for land-sea

mask and geopotential map, respectively. time represents the timestamp

embedding.

Regarding model comparison, Table 4.3 and 4.4 offer a comprehensive

analysis comparing several models. These include the standard Core U-Net

model [8], BroadU-Net [100], WF-UNet (which incorporates additional

features as proposed by [98]), the proposed diffusion model with a singular

generative output (Single Diffusion), and two distinct implementations of

the Generative Ensemble Diffusion (GED). The GED models generate

a final prediction by integrating 15 different generations of the three predicted

frames. In the first implementation, the prediction is calculated by averaging

all the values (mean), while the second version employs a post-processing

U-Net for this task (post-process). The primary metric utilized for these

results is Mean Squared Error (MSE), supplemented with additional

metrics such as Accuracy, Precision, and Recall.

The results suggest that while a single diffusion prediction is outperformed

by the U-Net models, both implementations of GED significantly surpass the

performance of any U-Net-based approach. Notably, the GED version with

post-processing demonstrates the most superior overall performance.

4.4 Results 53

MSE values and additional metrics for EU-20 dataset

Model MSE Accuracy Precision Recall

1 hour ahead

Core U-net 2.97e-04 0.863 0.698 0.837

Broad U-net 3.05e-04 0.861 0.706 0.803

WF-UNet 2.67e-04 0.933 0.790 0.847

Single Diffusion 2.86e-04 0.911 0.754 0.888

GED (mean) 2.25e-04 0.930 0.786 0.901

GED (postprocess) 2.03e-04 0.923 0.798 0.909

2 hour ahead

Core U-net 5.02e-04 0.813 0.609 0.796

Broad U-net 5.05e-04 0.819 0.638 0.712

WF-UNet 4.87e-04 0.895 0.664 0.807

Single Diffusion 4.69e-04 0.886 0.705 0.831

GED (mean) 3.93e-04 0.900 0.731 0.848

GED (postprocess) 3.53e-04 0.898 0.742 0.849

3 hour ahead

Core U-net 6.71e-04 0.800 0.612 0.657

Broad U-net 6.55e-04 0.806 0.637 0.609

WF-UNet 6.34e-04 0.877 0.626 0.736

Single Diffusion 6.10e-04 0.853 0.638 0.758

GED (mean) 5.20e-04 0.880 0.689 0.801

GED (postprocess) 4.70e-04 0.891 0.701 0.796

Table 4.3: Results comparison on the EU-20 Dataset.

54 4. Experiments

MSE values and additional metrics for EU-50 dataset

Model MSE Accuracy Precision Recall

1 hour ahead

Core U-net 3.18e-04 0.862 0.698 0.833

Broad U-net 3.24e-04 0.860 0.705 0.795

WF-UNet 2.50e-04 0.921 0.803 0.849

Single Diffusion 2.59e-04 0.915 0.767 0.882

GED (mean) 2.02e-04 0.924 0.782 0.885

GED (postprocess) 1.99e-04 0.913 0.803 0.907

2 hour ahead

Core U-net 5.02e-04 0.813 0.609 0.796

Broad U-net 5.05e-04 0.819 0.638 0.712

WF-UNet 4.62e-04 0.877 0.684 0.813

Single Diffusion 4.51e-04 0.875 0.699 0.844

GED (mean) 3.59e-04 0.882 0.711 0.862

GED (postprocess) 3.40e-04 0.878 0.724 0.860

3 hour ahead

Core U-net 6.71e-04 0.800 0.612 0.657

Broad U-net 6.55e-04 0.806 0.637 0.609

WF-UNet 6.31e-04 0.855 0.647 0.743

Single Diffusion 6.03e-04 0.848 0.672 0.801

GED (mean) 4.92e-04 0.856 0.701 0.828

GED (postprocess) 4.65e-04 0.861 0.706 0.821

Table 4.4: Results comparison on the EU-50 Dataset.

4.4 Results 55

(a) (b)

Figure 4.3: Single Diffusion results for the year 2021 on EU50, depicting

significant score variations depending on the month of the year. Subfigure

(a) illustrates the month-wise dissimilarity in scores for each of the three

predicted hours. In subfigure (b), we observe that the dissimilarity remains

consistent across predictions computed with Single Diffusion, GED (mean),

and GED (post-process).

The diffusion model’s performance on the 2021 test set exhibits significant

dissimilarities across the year, as vividly depicted in Figure 4.3a for all three

forecasted timeframes. This dissimilarity persists regardless of whether the

prediction is generated using Single Diffusion, GED (mean), or GED (post-

process), as demonstrated in Figure 4.3b. Such consistency may be attributed

to the inherent complexities of precipitation forecasting, particularly during

specific seasonal periods.

Precipitation patterns are notably susceptible to pronounced seasonal

fluctuations [104]. For instance, the transition between seasons can trigger

abrupt atmospheric changes, introducing challenges in accurately predicting

precipitation types and quantities [105]. Convective precipitation, prevalent

during warm and humid conditions in the warmer months, is closely asso-

ciated with rapidly evolving weather systems like thunderstorms. Even in

traditional operational meteorology [106, 107], accurately forecasting these

56 4. Experiments

systems remains a formidable challenge due to their rapid manifestation and

susceptibility to a multitude of intricate and dynamic atmospheric processes.

This has prompted the research community to propose dedicated solutions

for this specific challenge in precipitation forecasting[108, 109], particularly

in regions prone to such phenomena[110, 111, 112, 113].

Analyzing the obtained results, it becomes evident that this specific chal-

lenge significantly impacts the proposed model, particularly during the period

from June to September, as indicated by the notable peak in MSE scores

between the fifth and eighth months. This timeframe corresponds to the

summer months when weather phenomena like convective precipitation and

the transit of weather fronts, including cold and warm fronts, are more pre-

valent.

Meanwhile, transitional seasons, such as spring and fall, witness distinct

air masses interacting within these fronts, leading to rapid changes in pre-

cipitation distribution. This intricate interplay among air masses introduces

further complexity, rendering the precise timing and location of precipita-

tion a formidable task. However, the inclusion of wind speed as an addi-

tional feature in the model appears promising, as suggested by the improved

performance during the third (April) to fifth (June) months.

Conclusions

In this study, we undertook the challenging task of precipitation nowcast-

ing using diffusion models. Our experimental endeavors, focused on estab-

lished benchmarks detailed in existing literature, revealed that the proposed

Generative Ensemble Diffusion (GED) approach outperformed competing U-

Net-based models in terms of overall performance.

The primary goal was to test the hypothesis that a diffusion model could

successfully represent the complex and chaotic nature of weather patterns

by modeling their probability distribution. This research has been conduc-

ted using a subset of the ERA5 dataset, which contains hourly data from

a Western European region. The chosen training data covered the years

2016 to 2020, while the testing was performed on data from the year 2021.

Furthermore, pre-processing techniques have been adopted, consistent with

those used in existing literature, particularly referencing the work of [98].

Experimental results show that including supplementary meteorological

features leads to improved prediction quality. Specifically, integrating wind

speed, the land-sea mask, timestamp information, and geopotential data con-

tributed significantly to enhancing the overall accuracy of the predictions.

In the initial stages, single generative predictions from the diffusion model

exhibited lower performance compared to U-net-based predictions with sim-

ilar settings. However, a significant breakthrough occurred when conducting

multiple generative predictions in parallel. By amalgamating these diverse

outcomes through a post-processing step, a substantial improvement has been

achieved in prediction quality, outperforming well-established U-net models.

57

58 CONCLUSIONS

The probabilistic nature of the model, coupled with its ensemble forecast-

ing approach, renders it particularly well-suited for predicting rare events.

These events, while occurring with low probability, can have a substantial

impact on both the population and the economy, as highlighted in previous

research [114].

In summary, this research contributes to the ongoing development of pre-

cipitation nowcasting techniques and presents a promising avenue for har-

nessing diffusion models to gain deeper insights into weather patterns. The

integration of GED with post-processing showcases the potential to improve

precipitation nowcasting, thereby offering valuable insights for a range of

applications and decision-making processes.

One noteworthy aspect of this research is that it was conducted with

limited computing resources. The majority of computations were carried out

on a single workstation, which was equipped with a Quadro RTX A4000

GPU featuring 16GB of VRAM and 32GB of RAM. Despite these resource

constraints, this work produced valuable insights and promising results.

Nevertheless, this research is part of an ongoing collaboration with the

High-Performance Computing Department of Cineca. As a next step, the

model will be evaluated using the state-of-the-art Leonardo system, which of-

fers significantly greater computational power. Specifically, diffusion models

will be tested on more intricate weather benchmarks (such as WeatherBench,

described in subsection 1.2.3). These benchmarks encompass predictions at

varying spatial and temporal scales, with a particular focus on medium and

long-term temporal ranges.

Furthermore, this methodology will be applied to the downscaling of met-

eorological indicators within the framework of the European Cordis Project

Optimal High-Resolution Earth System Models for Exploring Future Climate

Changes. This ambitious initiative aligns with a commitment to advancing

the field of climate modeling and enhancing our understanding of future cli-

mate changes at a high resolution.

Appendix A

Code fragments

This appendix provides the salient parts of the code used for the experi-

ments. The whole code is archived in the following GitHub repository. The

ERA-5 dataset can be openly accessed at the Copernicus website.

In support of the training process, a generator has been implemented to

produce randomized batches of sequences spanning the training years (List-

ing A.1). Additionally, a modified version of this generator that sequentially

samples batches has also been implemented. This adjustment has been made

to address the challenge posed by evaluating the model on a single year,

which inherently contains a significant amount of variability, as illustrated in

Figure 4.3. Notice how the additional information is stacked on the fourth

axis together with the total precipitation previous frames, as shown in Fig-

ure 3.2, in the following order: the first 2 elements of each sequence contain

the geopotential map and the land-sea mask, the third element contains the

sinusoidal embedding of the timestamp, the fourth and fifth element contain

wind speed information of the previous 2 hours, the remaining 11 elements

represent total precipitation frames, with 8 frames representing the previous

8 hours and 3 frames representing the ground truth for the following 3 hours.

Furthermore, the generator takes an additional parameter min_rainfall

used to discard sequences not containing a minimum percentage of rainfall

in its pixels, to replicate EU-20 and EU-50 datasets from [98].

59

https://github.com/fmerizzi/Precipitation-nowcasting-with-generative-diffusion-models
https://cds.climate.copernicus.eu/

60 A Code fragments

1 class DataGenerator(keras.utils.Sequence):

2 def __init__(self , data , batch_size =24, min_rainfall = 0.0, time =None ,

wind = None) :

3 self.data = data

4 self.time = time

5 self.wind = wind

6 self.sequence = 11

7 self.batch_size = batch_size

8 self.num_samples = data.shape [0]

9 self.num_batches = int(np.ceil(self.num_samples / self.batch_size))

10 self.min_rainfall = min_rainfall # Percent of minimum rainfall per

image

11

12 def __len__(self):

13 return self.num_batches

14

15 def __getitem__(self , idx):

16 result = np.zeros((self.batch_size ,96,96,self.sequence + 5))

17 result [:,:,:,:2] = addon

18 for i in range(self.batch_size):

19 while True:

20 random = np.random.randint (0,(self.num_samples -self.sequence

))

21 items = self.data[random:random+self.sequence]

22 items = np.expand_dims(items , axis=-1)

23 items = np.swapaxes(items , 0, 3)

24 if ((np.sum(items[:,:,:,-3] != 0) / (173*105)) < self.

min_rainfall):

25 pass

26 else:

27 result[i,:,:,2] = (utils.date_to_sinusoidal_embedding(

self.time[random]) + 1) / 2

28 result[i,:,:,3:5] = np.transpose(self.wind[random +6:

random +8],(1, 2, 0))

29 result[i,:,:,5:] = items [: ,:96 ,:96 ,:]

30 break

31 return result

Listing A.1: DataGenerator class implementation from generators.py file.

A Code fragments 61

Listings A.2 and A.3 show the implementation of the U-Net architecture

(3.1). The use of LayerNormalization instead of BatchNormalization (line

23 of Listing A.2), typical of RNNs and Transformers architectures, proved

to slightly improve performance. As described in subsections 3.1.2 and 3.3,

only 2D convolutions are employed. For upsampling, bilinear interpolation

is employed. Functions get_network and get_post_network are used to

create a new U-Net for the Diffusion Model and post processing, respect-

ively. Parameters such as the number and width of blocks can ben set in the

setup.py file.

Listings A.4, A.5, A.6, A.7 show the implementation of the Diffusion

Model. The function generate2 in Listing A.5 can be used after training

to generate new samples (i.e., predictions) using the trained diffusion model,

given an adequate input. The function training_step in Listing A.6 spe-

cified noise loss for training, i.e., evaluating the MAE value between the

predicted noise and the exact noise added to the ground truth during the

diffusion step instead of the MAE value between the two images. Image loss

is still evaluated as a metric. The implementation also provides a plotter

utility function (Listing A.7) to plot a specified sequence and the relative gen-

erated output, as well as MSE values, to keep track of model performance

during training, plotting at the end of each epoch.

Training is specified in the training.py file. Two keras callback functions

have been specified: the saver callback function is used to store the weights

of the model every specified number of epochs, while a ReduceLROnPlateau

keras callback function is employed to half the learning rate each time the

image loss did not improve for two consecutive epochs.

Evaluation is performed using the evaluation.py file. Two experiment

functions have been specified, evaluating MSE values on single and ensemble

diffusion respectively. Listing A.8 shows the implementation of the former.

Other metrics can be evaluated using the compute_metrics or metrics_ag-

gregator functions found in the utils.py file.

62 A Code fragments

1 def sinusoidal_embedding(x):

2 embedding_min_frequency = 1.0

3 frequencies = tf.exp(

4 tf.linspace(

5 tf.math.log(embedding_min_frequency),

6 tf.math.log(embedding_max_frequency),

7 embedding_dims // 2,

8)

9)

10 angular_speeds = 2.0 * math.pi * frequencies

11 embeddings = tf.concat(

12 [tf.sin(angular_speeds * x), tf.cos(angular_speeds * x)], axis=3

13)

14 return embeddings

15

16 def ResidualBlock(width):

17 def apply(x):

18 input_width = x.shape [3]

19 if input_width == width:

20 residual = x

21 else:

22 residual = layers.Conv2D(width , kernel_size =1)(x)

23 x = layers.LayerNormalization(axis=-1,center=True , scale=True)(x)

24 x = layers.Conv2D(

25 width , kernel_size =3, padding="same", activation=keras.

activations.swish

26)(x)

27 x = layers.Conv2D(width , kernel_size =3, padding="same")(x)

28 x = layers.Add()([x, residual])

29 return x

30 return apply

31

32 def DownBlock(width , block_depth):

33 def apply(x):

34 x, skips = x

35 for _ in range(block_depth):

36 x = ResidualBlock(width)(x)

37 skips.append(x)

38 x = layers.AveragePooling2D(pool_size =2)(x)

39 return x

40 return apply

41

42 def UpBlock(width , block_depth):

43 def apply(x):

44 x, skips = x

45 x = layers.UpSampling2D(size=2, interpolation="bilinear")(x)

46 for _ in range(block_depth):

47 x = layers.Concatenate ()([x, skips.pop()])

48 x = ResidualBlock(width)(x)

49 return x

50

51 return apply

Listing A.2: U-Net blocks implementation from models.py file.

A Code fragments 63

1 def get_network(image_size , input_frames , output_frames , widths , block_depth

):

2 noisy_images = keras.Input(shape=(image_size , image_size , input_frames+

output_frames))

3 noise_variances = keras.Input(shape=(1, 1, 1))

4

5 e = layers.Lambda(sinusoidal_embedding)(noise_variances)

6 e = layers.UpSampling2D(size=image_size , interpolation="nearest")(e)

7

8 x = layers.Conv2D(widths [0], kernel_size =1)(noisy_images)

9 x = layers.Concatenate ()([x, e])

10

11 skips = []

12 for width in widths [:-1]:

13 x = DownBlock(width , block_depth)([x, skips])

14

15 for _ in range(block_depth):

16 x = ResidualBlock(widths [-1])(x)

17

18 for width in reversed(widths [:-1]):

19 x = UpBlock(width , block_depth)([x, skips])

20

21 x = layers.Conv2D(output_frames , kernel_size =1, kernel_initializer="

zeros")(x)

22

23 return keras.Model([noisy_images , noise_variances], x, name="

residual_unet")

24

25 def get_post_network(image_size , input_frames , output_frames , widths ,

block_depth):

26 noisy_images = keras.Input(shape=(image_size , image_size , input_frames))

27

28 x = layers.Conv2D(widths [0], kernel_size =1)(noisy_images)

29

30 skips = []

31 for width in widths [:-1]:

32 x = DownBlock(width , block_depth)([x, skips])

33

34 for _ in range(block_depth):

35 x = ResidualBlock(widths [-1])(x)

36

37 for width in reversed(widths [:-1]):

38 x = UpBlock(width , block_depth)([x, skips])

39

40 x = layers.Conv2D(output_frames , kernel_size =1, kernel_initializer="

zeros")(x)

41

42 return keras.Model([noisy_images], x, name="residual_unet")

Listing A.3: U-Net implementation from models.py file.

64 A Code fragments

1 class DiffusionModel(keras.Model):

2 def __init__(self , image_size , input_frames , output_frames , widths ,

block_depth):

3 super().__init__ ()

4 self.normalizer = layers.Normalization ()

5 self.network = get_network(image_size , input_frames , output_frames ,

widths , block_depth)

6 self.ema_network = keras.models.clone_model(self.network)

7 self.input_frames = input_frames

8 self.output_frames = output_frames

9

10 def compile(self , ** kwargs):

11 super().compile (** kwargs)

12 self.noise_loss_tracker = keras.metrics.Mean(name="n_loss")

13 self.image_loss_tracker = keras.metrics.Mean(name="i_loss")

14

15 @property

16 def metrics(self):

17 return [self.image_loss_tracker , self.noise_loss_tracker]

18

19 def denormalize(self , images):

20 # convert the pixel values back to 0-1 range

21 images = self.normalizer.mean + images * self.normalizer.variance

**0.5

22 return tf.clip_by_value(images , 0.0, 1.0)

23

24 def diffusion_schedule(self , diffusion_times):

25 # diffusion times -> angles

26 start_angle = tf.acos(max_signal_rate)

27 end_angle = tf.acos(min_signal_rate)

28 diffusion_angles = start_angle + diffusion_times * (end_angle -

start_angle)

29 # angles -> signal and noise rates

30 signal_rates = tf.cos(diffusion_angles)

31 noise_rates = tf.sin(diffusion_angles)

32 # note that their squared sum is always: sin^2(x) + cos^2(x) = 1

33 return noise_rates , signal_rates

34

35 def denoise(self , noisy_images , noise_rates , signal_rates , training):

36 # the exponential moving average weights are used at evaluation

37 if training:

38 network = self.network

39 else:

40 network = self.ema_network

41 # predict noise component and calculate the image component using it

42 pred_noises = network ([noisy_images , noise_rates **2], training=

training)

43 pred_images = (noisy_images [:,:,:,-self.output_frames :] -

noise_rates * pred_noises) / signal_rates

44 return pred_noises , pred_images

Listing A.4: DiffusionModel class implementation from models.py file (1):

initialization, compilation, metrics, denormalization, diffusion schedule and

denoising functions.

A Code fragments 65

1 def reverse_diffusion(self , initial_noise , diffusion_steps):

2 # reverse diffusion = sampling

3 num_images = initial_noise.shape [0]

4 step_size = 1.0 / diffusion_steps

5 past = initial_noise [:,:,:,:-self.output_frames]

6 #future = initial_noise [-1]

7 # important line:

8 # at the first sampling step , the "noisy image" is pure noise

9 # but its signal rate is assumed to be nonzero (min_signal_rate)

10 next_noisy_images = initial_noise

11 for step in range(diffusion_steps):

12 noisy_images = next_noisy_images

13 # separate the current noisy image to its components

14 diffusion_times = tf.ones((num_images , 1, 1, 1)) - step *

step_size

15 noise_rates , signal_rates = self.diffusion_schedule(

diffusion_times)

16 pred_noises , pred_images = self.denoise(

17 noisy_images , noise_rates , signal_rates , training=False

18)

19 # network used in eval mode

20 # remix the predicted components using the next signal and noise

rates

21 next_diffusion_times = diffusion_times - step_size

22 next_noise_rates , next_signal_rates = self.diffusion_schedule(

23 next_diffusion_times

24)

25 next_noisy_frames = (

26 next_signal_rates * pred_images + next_noise_rates *

pred_noises

27)

28 #concatenate predicted single frame with past known frames

29 next_noisy_images = tf.concat ([past , next_noisy_frames], axis =

-1)

30 return pred_images

31

32 def generate2(self , images , diffusion_steps):

33 # noise -> images -> denormalized images

34 initial_noise = tf.random.normal(shape=(images.shape[0], images.

shape[1], images.shape[2], self.output_frames))

35 images[:,:,:,-self.output_frames :] = initial_noise

36 generated_images = self.reverse_diffusion(images , diffusion_steps)

37 generated_images = self.denormalize(tf.concat ([images[:,:,:,:-self.

output_frames],generated_images],axis=-1))

38 return generated_images

Listing A.5: DiffusionModel class implementation from models.py file (2):

reverse diffusion and generate2 functions.

66 A Code fragments

1 def train_step(self , images):

2 # normalize images to have standard deviation of 1, like the noises

3 #normalize only real images

4 images = self.normalizer(images , training=True)

5 noises = tf.random.normal(shape=(batch_size , image_size , image_size ,

self.output_frames))

6 # sample uniform random diffusion times

7 diffusion_times = tf.random.uniform(

8 shape=(batch_size , 1, 1, 1), minval =0.0, maxval =1.0

9)

10 noise_rates , signal_rates = self.diffusion_schedule(diffusion_times)

11 # mix the images with noises accordingly

12 target = images[:,:,:,-self.output_frames :]

13 noisy_images = signal_rates * target + noise_rates * noises

14 #concat the images with added noises with the originals

15 noise_two = tf.concat ([images[:,:,:,:-self.output_frames],

noisy_images],axis=-1)

16 #print(noise_two.shape)

17 with tf.GradientTape () as tape:

18 # train the network to separate noisy images to their components

19 pred_noises , pred_images = self.denoise(

20 noise_two , noise_rates , signal_rates , training=True

21)

22 noise_loss = self.loss(noises , pred_noises) # used for training

23 image_loss = self.loss(target , pred_images) # only used as

metric

24 # Training on noise_loss (default)

25 gradients = tape.gradient(noise_loss , self.network.trainable_weights

)

26 self.optimizer.apply_gradients(zip(gradients , self.network.

trainable_weights))

27 self.noise_loss_tracker.update_state(noise_loss)

28 self.image_loss_tracker.update_state(image_loss)

29 # track the exponential moving averages of weights

30 for weight , ema_weight in zip(self.network.weights , self.ema_network

.weights):

31 ema_weight.assign(ema * ema_weight + (1 - ema) * weight)

32 return {m.name: m.result () for m in self.metrics}

Listing A.6: DiffusionModel class implementation from models.py file (3):

train step function.

A Code fragments 67

1 def test_step(self , images):

2 # normalize images to have standard deviation of 1, like the noises

3 images = self.normalizer(images , training=False)

4 noises = tf.random.normal(shape=(batch_size , image_size , image_size ,

self.output_frames))

5 # sample uniform random diffusion times

6 diffusion_times = tf.random.uniform(

7 shape=(batch_size , 1, 1, 1), minval =0.0, maxval =1.0

8)

9 noise_rates , signal_rates = self.diffusion_schedule(diffusion_times)

10 # mix the images with noises accordingly

11 target = images[:,:,:,-self.output_frames :]

12 noisy_images = signal_rates * target + noise_rates * noises

13 noise_two = tf.concat ([images[:,:,:,:-self.output_frames],

noisy_images],axis=-1)

14 # use the network to separate noisy images to their components

15 pred_noises , pred_images = self.denoise(

16 noise_two , noise_rates , signal_rates , training=False

17)

18 noise_loss = self.loss(noises , pred_noises)

19 image_loss = self.loss(target , pred_images)

20 self.image_loss_tracker.update_state(image_loss)

21 self.noise_loss_tracker.update_state(noise_loss)

22 return {m.name: m.result () for m in self.metrics}

23

24 def plotter(self ,epoch , logs):

25 sample = test_generator50.__getitem__ (1)

26 hist = np.copy(sample)

27 sample = model.normalizer(sample)

28 tmp = model.generate2(np.copy(sample) ,15)

29 hist = hist * maxRtesr

30 tmp = tmp * maxRtesr

31 mse = np.mean(np.sum((hist[:,:,:,:]-tmp[:,:,:,:])**2,axis =(1,2)),

axis =0)

32 mse = np.round(mse , 8)

33 print("\n mse values :")

34 print("\n" + str(mse) + "\n")

35 plt.figure(figsize =(6,6))

36 for i in range(tmp.shape [-1]):

37 plt.subplot(1, tmp.shape[-1], i + 1)

38 plt.imshow(tmp[0,:,:,i])

39 plt.axis("off")

40 plt.tight_layout ()

41 plt.show()

42 plt.close()

Listing A.7: DiffusionModel class implementation from models.py file (4):

test step and plotter functions.

68 A Code fragments

1 def experiment(generator = test_generator50 , n_iter =29):

2 history = np.zeros((n_iter ,3))

3 raw_data = np.zeros((n_iter ,batch_size ,96 ,96,6))

4

5 #define final mse array

6 mses = np.zeros ((3))

7 for i in range(n_iter):

8

9 #select a random batch in the test set

10 sample = generator.__getitem__(i)

11 # save a copy as ground truth

12 hist = np.copy(sample)

13 #normalize sample before generation

14 sample = model.normalizer(sample)

15 # compute generation with 15 diffusion steps

16 tmp = model.generate2(np.copy(sample) ,15)

17

18 # Denormalize prediction and g.t.

19 hist = hist * maxRtrain

20 tmp = tmp * maxRtrain

21

22 raw_data[i,:,:,:,:3] = hist[:,:,:,-3:]

23 raw_data[i,:,:,:,3:] = tmp[:,:,:,-3:]

24

25 # compute the metric , sum on last two axis , mean on first.

26 mse = np.mean(np.sum((hist[:,:,:,-3:]-tmp[:,:,:,-3:])**2,axis =(1,2))

,axis =0)

27 history[i] = mse

28 print(mse)

29

30 # add 3 relevant meteric values to array

31 mses += mse[-3:]

32 # return average of all mses

33 return mses / n_iter , history , raw_data

Listing A.8: Evaluation function for Single Diffusion generation.

Appendix B

Ablation study

This appendix provides an ablation study performed during the devel-

opment of the model to find the best configuration. They can be useful

as basic guideline for future experiments and model improvements. Experi-

ments include removal or addition of additional information, with ADDONS

referring to geopotential map and land-sea mask, change in the U-Net ar-

chitecture (e.g., removing the final layer), or changing the number of input

frames used for conditioning. All diffusion model experiments have been

evaluated on single diffusion, except when specified otherwise. eval specified

the portion of test set used for evaluation. All scores refer to MSE values.

Table B.1: Results on EU-20 for various configurations.

Model Score 1h Score 2h Score 3h Details

WF-Unet 2.67e-04 4.87e-04 6.34e-04 Trained by authors on

EU20.

Diffusion model, in-

put: 12 rain, output

frames: 3, batch: 2,

eval: 100%

3.59e-04 5.98e-04 7.77e-04 14 epochs, lr: 1e−4.

AdamW (no addons)

with weight decay 0.1 ·
lr. MAE as loss. [64,

128, 256, 384] widths

and 2 block depth.

Continued on next page

69

70 B Ablation study

Table B.1 – continued from previous page

Model Score 1h Score 2h Score 3h Details

Diffusion model, in-

put: 12 rain, output

frames: 3, batch 2,

ENSEMBLE: 15, eval

12.5%

2.56e-04 4.17e-04 5.44e-04 14 epochs, lr: 1e−4.

AdamW (no addons)

with weight decay 0.1 ·
lr. MAE as loss. [64,

128, 256, 384] widths

and 2 block depth.

Diffusion model, in-

put: 12 rain + AD-

DONS, output frames:

3, batch: 32, eval:

100%

3.23e-04 5.33e-04 6.84e-04 34 epochs, lr: 1e−4.

AdamW (no addons)

with weight decay 0.1 ·
lr. MAE as loss. [64,

128, 256, 384] widths

and 2 block depth.

Diffusion model, in-

put: 12 rain + AD-

DONS, output frames:

3, batch: 32, EN-

SEMBLE: 15, eval:

100%

2.59e-04 4.56e-04 5.86e-04 50 epochs, lr: 1e−4.

AdamW (no addons)

with weight decay 0.1 ·
lr. MAE as loss. [64,

128, 256, 384] widths

and 2 block depth.

Diffusion model, in-

put: 12 rain + AD-

DONS, output frames:

3, batch: 4, EN-

SEMBLE: 15, eval:

100%

2.28e-04 4.31e-04 5.71e-04 22 epochs, lr: 1e−4.

AdamW (no addons)

with weight decay 0.1 ·
lr. MAE as loss. [64,

128, 256, 384] widths

and 2 block depth.

Diffusion model,

input: 12 rain +

ADDONS + 4 WIND,

output frames: 3,

batch: 4, eval: 100%

3.02e-04 5.12e-04 6.80e-04 34(16) epochs, lr:

1e−4. AdamW (no

addons) with weight

decay 0.1 · lr. MAE

as loss. [64, 128, 256,

384] widths and 2

block depth.

Continued on next page

B Ablation study 71

Table B.1 – continued from previous page

Model Score 1h Score 2h Score 3h Details

Diffusion model,

input: 8 rain + AD-

DONS + 4 WIND,

output frames: 3,

batch: 4, eval: 100%

2.94e-04 5.01e-04 6.56e-04 34(16) epochs, lr: 1e−4

+ 1e−5 . AdamW (no

addons) with weight

decay 0.1 · lr. MAE

as loss. [64, 128,

256, 384] widths and 2

block depth.

Diffusion model,

input: 8 rain + AD-

DONS + 4 WIND,

output frames: 3,

batch: 4, EN-

SEMBLE: 15, eval:

100%

2.28e-04 4.28e-04 5.80e-04 34(16) epochs, lr: 1e−4

+ 1e−5 . AdamW (no

addons) with weight

decay 0.1 · lr. MAE

as loss. [64, 128,

256, 384] widths and 2

block depth.

Diffusion model,

input: 8 rain + AD-

DONS + 4 WIND,

output frames: 3,

batch: 4, UNET EN-

SEMBLE: 10, eval:

100%

2.51e-04 3.99e-04 5.17e-04 34(16) epochs, lr: 1e−4

+ 1e−5. 5 epochs Unet

100/16. AdamW (no

addons) with weight

decay 0.1 · lr. MAE

as loss. [64, 128,

256, 384] widths and 2

block depth.

Diffusion model, in-

put: 4 rain, output

frames: 4, batch: 2,

eval: 100%

3.40e-04 5.67e-04 7.24e-04 24 epochs, (12 lr:

1e−4 + 12 lr: 5e−5).

AdamW (no addons)

with weight decay

0.1 · lr. MAE as loss.

[64, 128, 256, 384]

widths and 2 block

depth.

Continued on next page

72 B Ablation study

Table B.1 – continued from previous page

Model Score 1h Score 2h Score 3h Details

Diffusion model, in-

put: 8 rain, output

frames: 3, batch: 2,

eval: 100%

3.04e-04 5.14e-04 6.74e-04 24 epochs, lr: 1e−4.

AdamW (no addons)

with weight decay 0.1 ·
lr. MAE as loss. [64,

128, 256, 384] widths

and 2 block depth.

Diffusion model, in-

put: 12 rain, output

frames: 3, batch: 2,

eval: 100%

3.28e-04 5.33e-04 6.88e-04 24 epochs, lr: 1e−4.

AdamW (no addons)

with weight decay 0.1 ·
lr. MAE as loss. [64,

128, 256, 384] widths

and 2 block depth.

Diffusion model, in-

put: 4 rain + 4 PRES-

SURE, output frames:

3, batch: 2, eval: 100%

3.10e-04 5.19e-04 6.71e-04 16 epochs, lr: 1e−4.

AdamW (no addons)

with weight decay 0.1 ·
lr. MAE as loss. [64,

128, 256, 384] widths

and 2 block depth.

Diffusion model, in-

put: 4 rain + 4 PRES-

SURE, output frames:

3, batch: 2, eval: 100%

3.32e-04 5.90e-04 7.26e-04 24 epochs (possible

overfit!), lr: 1e−4.

AdamW (no addons)

with weight decay

0.1 · lr. MAE as loss.

[64, 128, 256, 384]

widths and 2 block

depth.

Bibliography

[1] Andrea Asperti, Fabio Merizzi, Alberto Paparella, Giorgio Pedrazzi,

Matteo Angelinelli, and Stefano Colamonaco. Precipitation nowcasting

with generative diffusion models, 2023.

[2] Richard Swinbank, Petra Friederichs, and Sabrina Wahl. Forecasting

high-impact weather using ensemble prediction systems, page 95–112.

Special Publications of the International Union of Geodesy and Geo-

physics. Cambridge University Press, 2016.

[3] J.R. Holton and G.J. Hakim. An Introduction to Dynamic Meteorology.

International Geophysics. Elsevier Science, 2013.

[4] Roberto Buizza. Introduction to the special issue on “25 years of en-

semble forecasting”. Quarterly Journal of the Royal Meteorological So-

ciety, 145(S1):1–11, 2019.

[5] Javier Garćıa-Pereda, José Miguel Fernández-Serdán, Óscar Alonso,

Adrián Sanz, Roćıo Guerra, Cristina Ariza, Inés Santos, and Laura

Fernández. Nwcsaf high resolution winds (nwc/geo-hrw) stand-alone

software for calculation of atmospheric motion vectors and trajectories.

Remote Sensing, 11(17), 2019.

[6] Suman Ravuri, Karel Lenc, Matthew Willson, Dmitry Kangin, Remi

Lam, Piotr Mirowski, Megan Fitzsimons, Maria Athanassiadou,

Sheleem Kashem, Sam Madge, et al. Skilful precipitation nowcast-

73

74 BIBLIOGRAPHY

ing using deep generative models of radar. Nature, 597(7878):672–677,

2021.

[7] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser,

and Björn Ommer. High-resolution image synthesis with latent diffu-

sion models. In Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pages 10684–10695, 2022.

[8] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convo-

lutional networks for biomedical image segmentation. In International

Conference on Medical image computing and computer-assisted inter-

vention, pages 234–241. Springer, 2015.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep re-

sidual learning for image recognition. In 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 770–778,

2016.

[10] Jussi Leinonen, Ulrich Hamann, Daniele Nerini, Urs Germann, and

Gabriele Franch. Latent diffusion models for generative precipit-

ation nowcasting with accurate uncertainty quantification. CoRR,

abs/2304.12891, 2023.

[11] Stephan Rasp, Peter D Dueben, Sebastian Scher, Jonathan A Weyn,

Soukayna Mouatadid, and Nils Thuerey. Weatherbench: a benchmark

data set for data-driven weather forecasting. Journal of Advances in

Modeling Earth Systems, 12(11):e2020MS002203, 2020.

[12] Molly E. Brown. Famine Early Warning Systems and Remote Sensing

Data. 2008.

[13] James O. Pinto, Debbie O’Sullivan, Stewart Taylor, Jack Elston, C. B.

Baker, David Hotz, Curtis Marshall, Jamey Jacob, Konrad Barfuss,

Bruno Piguet, Greg Roberts, Nadja Omanovic, Martin Fengler, An-

ders A. Jensen, Matthias Steiner, and Adam L. Houston. The Status

BIBLIOGRAPHY 75

and Future of Small Uncrewed Aircraft Systems (UAS) in Opera-

tional Meteorology. Bulletin of the American Meteorological Society,

102(11):E2121–E2136, November 2021.

[14] Paul A. Dirmeyer, C. Adam Schlosser, and Kaye L. Brubaker. Precipit-

ation, Recycling, and Land Memory: An Integrated Analysis. Journal

of Hydrometeorology, 10(1):278, January 2009.

[15] Lewis Fry Richardson and Peter Lynch. Weather Prediction by Numer-

ical Process. Cambridge Mathematical Library. Cambridge University

Press, 2 edition, 2007.

[16] Julian Hunt. The emergence of numerical weather prediction: Richard-

son’s dream by peter lynch (cup, november 2006), pp. xi + 280, hard-

back isbn 0521857295. Quarterly Journal of The Royal Meteorological

Society - QUART J ROY METEOROL SOC, 133:2143–2144, 10 2007.

[17] R.A. Pielke. Mesoscale Meteorological Modeling. International Geo-

physics. Elsevier Science, 2002.

[18] Jordan G. Powers, Joseph B. Klemp, William C. Skamarock, Chris-

topher A. Davis, Jimy Dudhia, David O. Gill, Janice L. Coen, David J.

Gochis, Ravan Ahmadov, Steven E. Peckham, Georg A. Grell, John

Michalakes, Samuel Trahan, Stanley G. Benjamin, Curtis R. Alexan-

der, Geoffrey J. Dimego, Wei Wang, Craig S. Schwartz, Glen S. Rom-

ine, Zhiquan Liu, Chris Snyder, Fei Chen, Michael J. Barlage, Wei Yu,

and Michael G. Duda. The weather research and forecasting model:

Overview, system efforts, and future directions. Bulletin of the Amer-

ican Meteorological Society, 98(8):1717 – 1737, 2017.

[19] Liu Liang, Mihail Popescu, Marjorie Skubic, Marilyn Rantz, Tarik

Yardibi, and Paul Cuddihy. Automatic fall detection based on dop-

pler radar motion signature. IEEE, 4 2012.

76 BIBLIOGRAPHY

[20] Rodger A. Brown and John M. Lewis. PATH TO NEXRAD: Doppler

Radar Development at the National Severe Storms Laboratory. Bul-

letin of the American Meteorological Society, 86(10):1459–1470, Octo-

ber 2005.

[21] Madalina Surcel, Isztar Zawadzki, and M. K. Yau. A study on the scale

dependence of the predictability of precipitation patterns. Journal of

the Atmospheric Sciences, 72(1):216 – 235, 2015.

[22] Shejule Priya Ashok and Sreeja Pekkat. A systematic quantitative re-

view on the performance of some of the recent short-term rainfall fore-

casting techniques. Journal of Water and Climate Change, 13(8):3004–

3029, 2022.

[23] Juanzhen Sun, Ming Xue, James W. Wilson, Isztar Zawadzki, Sue P.

Ballard, Jeanette Onvlee-Hooimeyer, Paul Joe, Dale M. Barker, Ping-

Wah Li, Brian Golding, Mei Xu, and James Pinto. Use of nwp for

nowcasting convective precipitation: Recent progress and challenges.

Bulletin of the American Meteorological Society, 95(3):409 – 426, 2014.

[24] Neill Bowler, Clive Pierce, and Alan Seed. Steps: A probabilistic pre-

cipitation forecasting scheme which merges an extrapolation nowcast

with downscaled nwp. Quarterly Journal of the Royal Meteorological

Society, 132:2127 – 2155, 01 2007.

[25] Alan Seed, Clive Pierce, and Katie Norman. Formulation and evalu-

ation of a scale decomposition-based stochastic precipitation nowcast

scheme. Water Resources Research, 49, 10 2013.

[26] Stéphane Vannitsem, Daniel S Wilks, and Jakob Messner. Statistical

postprocessing of ensemble forecasts. 2018.

[27] Glenn W. Brier. Verification of Forecasts Expressed in Terms of Prob-

ability. Monthly Weather Review, 78(1):1, January 1950.

BIBLIOGRAPHY 77

[28] James A Hanley and Barbara J McNeil. The meaning and use of the

area under a receiver operating characteristic (roc) curve. Radiology,

143(1):29–36, 1982.

[29] Seppo Pulkkinen, Daniele Nerini, Andrés Pérez Hortal, Carlos Velasco-

Forero, Alan Seed, Urs Germann, and Loris Foresti. Pysteps: an open-

source python library for probabilistic precipitation nowcasting (v1.0).

Geoscientific Model Development, 12:4185–4219, 10 2019.

[30] Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András

Horányi, Joaqúın Muñoz-Sabater, Julien Nicolas, Carole Peubey,

Raluca Radu, Dinand Schepers, Adrian Simmons, Cornel Soci, Saleh

Abdalla, Xavier Abellan, Gianpaolo Balsamo, Peter Bechtold, Gionata

Biavati, Jean Bidlot, Massimo Bonavita, Giovanna De Chiara, Per

Dahlgren, Dick Dee, Michail Diamantakis, Rossana Dragani, Johannes

Flemming, Richard Forbes, Manuel Fuentes, Alan Geer, Leo Haimber-

ger, Sean Healy, Robin J. Hogan, Eĺıas Hólm, Marta Janisková, Sarah

Keeley, Patrick Laloyaux, Philippe Lopez, Cristina Lupu, Gabor Rad-

noti, Patricia de Rosnay, Iryna Rozum, Freja Vamborg, Sebastien Vil-

laume, and Jean-Noël Thépaut. The era5 global reanalysis. Quarterly

Journal of the Royal Meteorological Society, 146(730):1999–2049, 2020.

[31] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra.

Stochastic backpropagation and approximate inference in deep gen-

erative models. In Proceedings of the 31th International Conference

on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014,

volume 32 of JMLR Workshop and Conference Proceedings, pages

1278–1286. JMLR.org, 2014.

[32] Diederik P. Kingma and Max Welling. An introduction to variational

autoencoders. Found. Trends Mach. Learn., 12(4):307–392, 2019.

78 BIBLIOGRAPHY

[33] Andrea Asperti, Davide Evangelista, and Elena Loli Piccolomini. A

survey on variational autoencoders from a green AI perspective. SN

Comput. Sci., 2(4):301, 2021.

[34] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio.

Generative adversarial nets. In Advances in Neural Information Pro-

cessing Systems 27: Annual Conference on Neural Information Pro-

cessing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,

pages 2672–2680, 2014.

[35] Abdul Jabbar, Xi Li, and Bourahla Omar. A survey on generative

adversarial networks: Variants, applications, and training, 2020.

[36] David E Rumelhart, James L McClelland, and CORPORATE PDP

Research Group. Parallel distributed processing: Explorations in the

microstructure of cognition, Vol. 1: Foundations. MIT press, 1986.

[37] Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu.

Pixel recurrent neural networks. In International conference on ma-

chine learning, pages 1747–1756. PMLR, 2016.

[38] Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo,

Jiezhong Qiu, Yuan Yao, Ao Zhang, Liang Zhang, et al. Pre-trained

models: Past, present and future. AI Open, 2:225–250, 2021.

[39] Danilo Rezende and Shakir Mohamed. Variational inference with nor-

malizing flows. In International conference on machine learning, pages

1530–1538. PMLR, 2015.

[40] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with

invertible 1x1 convolutions. Advances in neural information processing

systems, 31, 2018.

BIBLIOGRAPHY 79

[41] Cheng Tan, Zhangyang Gao, and Stan Z Li. Simvp: Towards

simple yet powerful spatiotemporal predictive learning. arXiv preprint

arXiv:2211.12509, 2022.

[42] Cheng Tan, Zhangyang Gao, Siyuan Li, Yongjie Xu, and Stan Z Li.

Temporal attention unit: Towards efficient spatiotemporal predictive

learning. arXiv preprint arXiv:2206.12126, 2022.

[43] Yuankang Ye, Feng Gao, Wei Cheng, Chang Liu, and Shaoqing Zhang.

Msstnet: A multi-scale spatiotemporal prediction neural network for

precipitation nowcasting. Remote Sensing, 15(1):137, 2022.

[44] Yufan Zhou, Haiwei Dong, and Abdulmotaleb El Saddik. Deep learning

in next-frame prediction: A benchmark review. IEEE Access, 8:69273–

69283, 2020.

[45] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin

Wong, and Wang-chun Woo. Convolutional LSTM network: A machine

learning approach for precipitation nowcasting. In Advances in Neural

Information Processing Systems 28: Annual Conference on Neural In-

formation Processing Systems 2015, December 7-12, 2015, Montreal,

Quebec, Canada, pages 802–810, 2015.

[46] G. Ayzel, T. Scheffer, and M. Heistermann. Rainnet v1.0: a con-

volutional neural network for radar-based precipitation nowcasting.

Geoscientific Model Development, 13(6):2631–2644, 2020.

[47] Gabriele Franch, Daniele Nerini, Marta Pendesini, Luca Coviello, Gi-

useppe Jurman, and Cesare Furlanello. Precipitation nowcasting with

orographic enhanced stacked generalization: Improving deep learning

predictions on extreme events. Atmosphere, 11(3), 2020.

[48] Casper Kaae Sønderby, Lasse Espeholt, Jonathan Heek, Mostafa De-

hghani, Avital Oliver, Tim Salimans, Shreya Agrawal, Jason Hickey,

80 BIBLIOGRAPHY

and Nal Kalchbrenner. Metnet: A neural weather model for precipita-

tion forecasting. arXiv preprint arXiv:2003.12140, 2020.

[49] Rilwan A. Adewoyin, Peter Dueben, Peter Watson, Yulan He, and Rit-

abrata Dutta. TRU-NET: a deep learning approach to high resolution

prediction of rainfall. Mach. Learn., 110(8):2035–2062, 2021.

[50] Lasse Espeholt, Shreya Agrawal, Casper Sønderby, Manoj Kumar,

Jonathan Heek, Carla Bromberg, Cenk Gazen, Rob Carver, Marcin

Andrychowicz, Jason Hickey, et al. Deep learning for twelve hour pre-

cipitation forecasts. Nature communications, 13(1):5145, 2022.

[51] Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and

Qi Tian. Pangu-weather: A 3d high-resolution model for fast and

accurate global weather forecast. CoRR, abs/2211.02556, 2022.

[52] Yusuke Hatanaka, Yannik Glaser, Geoff Galgon, Giuseppe Torri, and

Peter Sadowski. Diffusion models for high-resolution solar forecasts.

ArXiv, abs/2302.00170, 2023.

[53] Achraf Oussidi and Azeddine Elhassouny. Deep generative models:

Survey. In 2018 International Conference on Intelligent Systems and

Computer Vision (ISCV), pages 1–8, 2018.

[54] Lars Ruthotto and Eldad Haber. An introduction to deep generative

modeling. GAMM-Mitteilungen, 44(2):e202100008, 2021.

[55] Andrea Asperti and Valerio Tonelli. Comparing the latent space of

generative models. Neural Computing & Applications, To appear, 2022.

[56] David Bau, Jun-Yan Zhu, Jonas Wulff, William Peebles, Bolei Zhou,

Hendrik Strobelt, and Antonio Torralba. Seeing what a gan cannot

generate. pages 4501–4510, 10 2019.

[57] Jussi Leinonen, Daniele Nerini, and Alexis Berne. Stochastic super-

resolution for downscaling time-evolving atmospheric fields with a

BIBLIOGRAPHY 81

generative adversarial network. IEEE Trans. Geosci. Remote. Sens.,

59(9):7211–7223, 2021.

[58] Ilan Price and Stephan Rasp. Increasing the accuracy and resolution of

precipitation forecasts using deep generative models. In International

Conference on Artificial Intelligence and Statistics, AISTATS 2022,

28-30 March 2022, Virtual Event, pages 10555–10571, 2022.

[59] Lucy Harris, Andrew T. T. McRae, Matthew Chantry, Peter D.

Dueben, and Tim N. Palmer. A generative deep learning approach to

stochastic downscaling of precipitation forecasts. Journal of Advances

in Modeling Earth Systems, 14(10):e2022MS003120, 2022.

[60] Negin Hayatbini, Bailey Kong, Kuo-lin Hsu, Phu Nguyen, Soroosh So-

rooshian, Graeme Stephens, Charless Fowlkes, Ramakrishna Nemani,

and Sangram Ganguly. Conditional generative adversarial networks

(cgans) for near real-time precipitation estimation from multispectral

goes-16 satellite imageries—persiann-cgan. Remote Sensing, 11(19),

2019.

[61] CunguangWang, Guoqiang Tang, and Pierre Gentine. Precipgan: Mer-

ging microwave and infrared data for satellite precipitation estimation

using generative adversarial network. Geophysical Research Letters,

48(5):e2020GL092032, 2021.

[62] S. Scher and S. Peßenteiner. Technical note: Temporal disaggregation

of spatial rainfall fields with generative adversarial networks. Hydrology

and Earth System Sciences, 25(6):3207–3225, 2021.

[63] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion prob-

abilistic models. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia

Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances

in Neural Information Processing Systems 33: Annual Conference on

Neural Information Processing Systems 2020, NeurIPS 2020, December

6-12, 2020, virtual, 2020.

82 BIBLIOGRAPHY

[64] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion

Implicit Models. arXiv e-prints, page arXiv:2010.02502, October 2020.

[65] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark

Chen. Hierarchical text-conditional image generation with clip latents,

2022.

[66] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang,

Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol

Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Salimans, Jonathan

Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic text-

to-image diffusion models with deep language understanding. CoRR,

abs/2205.11487, 2022.

[67] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao,

Alexey Gritsenko, Diederik P Kingma, Ben Poole, Mohammad Nor-

ouzi, David J Fleet, et al. Imagen video: High definition video gener-

ation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

[68] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mo-

hammad Norouzi, and David J Fleet. Video diffusion models. arXiv

preprint arXiv:2204.03458, 2022.

[69] Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat

gans on image synthesis. In Marc’Aurelio Ranzato, Alina Beygelzimer,

Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, ed-

itors, Advances in Neural Information Processing Systems 34: Annual

Conference on Neural Information Processing Systems 2021, NeurIPS

2021, December 6-14, 2021, virtual, pages 8780–8794, 2021.

[70] Andrea Asperti, Davide Evangelista, Samuele Marro, and Fabio Mer-

izzi. Image embedding for denoising generative models. Artificial In-

telligence Review, To appear, 2023.

BIBLIOGRAPHY 83

[71] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and

Surya Ganguli. Deep unsupervised learning using nonequilibrium ther-

modynamics. 37:2256–2265, 2015.

[72] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.

arXiv preprint arXiv:1312.6114, 2013.

[73] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural

discrete representation learning. arXiv preprint arXiv:1711.00937,

2017.

[74] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn,

Seung Wook Kim, Sanja Fidler, and Karsten Kreis. Align your lat-

ents: High-resolution video synthesis with latent diffusion models. In

Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 22563–22575, 2023.

[75] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional

image synthesis with auxiliary classifier gans. In Proceedings of the 34th

International Conference on Machine Learning, ICML 2017, Sydney,

NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Ma-

chine Learning Research, pages 2642–2651, 2017.

[76] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance.

CoRR, abs/2207.12598, 2022.

[77] Lucy Harris, Andrew TT McRae, Matthew Chantry, Peter D Dueben,

and Tim N Palmer. A generative deep learning approach to stochastic

downscaling of precipitation forecasts. Journal of Advances in Modeling

Earth Systems, 14(10):e2022MS003120, 2022.

[78] Urs Germann, Gianmario Galli, Marco Boscacci, and Martin Bolliger.

Radar precipitation measurement in a mountainous region. Quarterly

Journal of the Royal Meteorological Society, 132(618):1669–1692, 2006.

84 BIBLIOGRAPHY

[79] S. Willemse and M. Furger. From weather observations to atmospheric

and climate sciences in switzerland: Celebrating 100 years of the swiss

society for meteorology. chapter 9. 2016.

[80] K. Stephan, S. Klink, and C. Schraff. Assimilation of radar-derived

rain rates into the convective-scale model cosmo-de at dwd. Quarterly

Journal of the Royal Meteorological Society, 134(634):1315–1326, 2008.

[81] Javier Gurrola-Ramos, Oscar Dalmau, and Teresa E. Alarcón. A re-

sidual dense u-net neural network for image denoising. IEEE Access,

9:31742–31754, 2021.

[82] Sehyung Lee, Makiko Negishi, Hidetoshi Urakubo, Haruo Kasai, and

Shin Ishii. Mu-net: Multi-scale u-net for two-photon microscopy image

denoising and restoration. Neural Networks, 125:92–103, 2020.

[83] Mattias P Heinrich, Maik Stille, and Thorsten M Buzug. Residual u-

net convolutional neural network architecture for low-dose ct denoising.

Current Directions in Biomedical Engineering, 4(1):297–300, 2018.

[84] Rina Komatsu and Tad Gonsalves. Comparing u-net based models for

denoising color images. AI, 1(4):465–486, 2020.

[85] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans

on image synthesis. Advances in neural information processing systems,

34:8780–8794, 2021.

[86] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Atten-

tion is all you need. In Advances in Neural Information Processing

Systems 30: Annual Conference on Neural Information Processing Sys-

tems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–

6008, 2017.

[87] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance.

arXiv preprint arXiv:2207.12598, 2022.

BIBLIOGRAPHY 85

[88] Tilmann Gneiting, Adrian E Raftery, Anton H Westveld, and Tom

Goldman. Calibrated probabilistic forecasting using ensemble model

output statistics and minimum crps estimation. Monthly Weather Re-

view, 133(5):1098–1118, 2005.

[89] Alexander Henzi, Johanna F Ziegel, and Tilmann Gneiting. Isotonic

distributional regression. Journal of the Royal Statistical Society Series

B: Statistical Methodology, 83(5):963–993, 2021.

[90] Maxime Taillardat, Olivier Mestre, Michaël Zamo, and Philippe

Naveau. Calibrated ensemble forecasts using quantile regression forests

and ensemble model output statistics. Monthly Weather Review,

144(6):2375–2393, 2016.

[91] Jakob W Messner, Georg J Mayr, and Achim Zeileis. Nonhomogeneous

boosting for predictor selection in ensemble postprocessing. Monthly

Weather Review, 145(1):137–147, 2017.

[92] Saleh Ashkboos, Langwen Huang, Nikoli Dryden, Tal Ben-Nun, Peter

Dueben, Lukas Gianinazzi, Luca Kummer, and Torsten Hoefler. ENS-

10: A dataset for post-processing ensemble weather forecast. CoRR,

abs/2206.14786, 2022.

[93] Benedikt Schulz and Sebastian Lerch. Machine learning methods for

postprocessing ensemble forecasts of wind gusts: A systematic compar-

ison. Monthly Weather Review, 150(1):235 – 257, 2022.

[94] Andrea Asperti, Davide Evangelista, and Moreno Marzolla. Dissect-

ing flops along input dimensions for greenai cost estimations. In 7th

International Conference on Machine Learning, Optimization & Data

Science, Grasmere, Lake District, England – UK, October 5-8 2021.,

Springer International Publishing, pages 86–100, 2022.

[95] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser,

and Björn Ommer. High-resolution image synthesis with latent dif-

86 BIBLIOGRAPHY

fusion models. In IEEE/CVF Conference on Computer Vision and

Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-

24, 2022, pages 10674–10685, 2022.

[96] John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima

Anandkumar, and Bryan Catanzaro. Adaptive Fourier Neural Op-

erators: Efficient Token Mixers for Transformers. arXiv e-prints, page

arXiv:2111.13587, November 2021.

[97] Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev

Raja, Ashesh Chattopadhyay, Morteza Mardani, Thorsten Kurth,

David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pedram Hassanza-

deh, Karthik Kashinath, and Animashree Anandkumar. FourCastNet:

A Global Data-driven High-resolution Weather Model using Adaptive

Fourier Neural Operators. arXiv e-prints, page arXiv:2202.11214, Feb-

ruary 2022.

[98] Christos Kaparakis and Siamak Mehrkanoon. Wf-unet: Weather fusion

unet for precipitation nowcasting. CoRR, abs/2302.04102, 2023.

[99] Kevin Trebing, Tomasz Stanczyk, and Siamak Mehrkanoon. Smaat-

unet: Precipitation nowcasting using a small attention-unet architec-

ture, 2021.

[100] Jesús Garćıa Fernández and Siamak Mehrkanoon. Broad-UNet: Multi-

scale feature learning for nowcasting tasks. Neural Networks, 144:419–

427, dec 2021.

[101] Jesús Garćıa Fernández, Ismail Alaoui Abdellaoui, and Siamak

Mehrkanoon. Deep coastal sea elements forecasting using U-Net based

models. arXiv e-prints, page arXiv:2011.03303, November 2020.

[102] G. Ayzel, M. Heistermann, A. Sorokin, O. Nikitin, and O. Lukyan-

ova. All convolutional neural networks for radar-based precipitation

BIBLIOGRAPHY 87

nowcasting. Procedia Computer Science, 150:186–192, 2019. Proceed-

ings of the 13th International Symposium “Intelligent Systems 2018”

(INTELS’18), 22-24 October, 2018, St. Petersburg, Russia.

[103] Carla L. Bromberg, Cenk Gazen, Jason J. Hickey, John Burge, Luke

Barrington, and Shreya Agrawal. Machine learning for precipitation

nowcasting from radar images. page 4, 2019.

[104] Alexandre Tuel and Olivia Martius. The influence of modes of climate

variability on the sub-seasonal temporal clustering of extreme precip-

itation. iScience, 25(3):103855, 2022.

[105] Phong Le, James Randerson, Rebecca Willett, Stephen Wright,

Padhraic Smyth, Clement Guilloteau, Antonios Mamalakis, and Efi

Foufoula-Georgiou. Climate-driven changes in the predictability of sea-

sonal precipitation. Nature Communications, 14, 06 2023.

[106] P.S. Ray. American Meteorological Society, 1986.

[107] David J. Stensrud, Ming Xue, Louis J. Wicker, Kevin E. Kelleher,

Michael P. Foster, Joseph T. Schaefer, Russell S. Schneider, Stanley G.

Benjamin, Stephen S. Weygandt, John T. Ferree, and Jason P. Tuell.

Convective-scale warn-on-forecast system: A vision for 2020. Bulletin

of the American Meteorological Society, 90(10):1487 – 1500, 2009.

[108] Lei Han, He Liang, Haonan Chen, Wei Zhang, and Yurong Ge. Con-

vective precipitation nowcasting using u-net model. IEEE Transactions

on Geoscience and Remote Sensing, 60:1–8, 2022.

[109] Vlado Spiridonov, Julian Baez, Bosko Telenta, and Boro Jakimovski.

Prediction of extreme convective rainfall intensities using a free-

running 3-d sub-km-scale cloud model initialized from wrf km-scale

nwp forecasts. Journal of Atmospheric and Solar-Terrestrial Physics,

209:105401, 2020.

88 BIBLIOGRAPHY

[110] Yanbo Nie, Jianqi Sun, and Jiehua Ma. Seasonal prediction of sum-

mer extreme precipitation frequencies over southwest china based on

machine learning. Atmospheric Research, page 106947, 2023.

[111] Wenguang Wei, Zhongwei Yan, Xuan Tong, Zuoqiang Han, Miaomiao

Ma, Shuang Yu, and Jiangjiang Xia. Seasonal prediction of summer

extreme precipitation over the yangtze river based on random forest.

Weather and Climate Extremes, 37:100477, 2022.

[112] André de Sousa Araújo, Adma Raia Silva, and Luis E. Zárate. Extreme

precipitation prediction based on neural network model – a case study

for southeastern brazil. Journal of Hydrology, 606:127454, 2022.

[113] L Bodri and V Čermák. Prediction of extreme precipitation using a

neural network: application to summer flood occurrence in moravia.

Advances in Engineering Software, 31(5):311–321, 2000.

[114] Tim N Palmer. The economic value of ensemble forecasts as a tool for

risk assessment: From days to decades. Quarterly Journal of the Royal

Meteorological Society: A journal of the atmospheric sciences, applied

meteorology and physical oceanography, 128(581):747–774, 2002.

Ringraziamenti

Alla fine di questo elaborato, mi sembra doveroso dedicare uno spazio per

esprimere la mia profonda gratitudine a tutte le persone che sono state al

mio fianco durante il mio percorso universitario. Senza il loro sostegno, il

mio percorso accademico non sarebbe stato lo stesso.

Innanzitutto, vorrei ringraziare il mio relatore, il Prof. Andrea Asperti, per

la sua disponibilità, la sua pazienza e la sua fiducia in me. La sua dedizione

alla ricerca è un punto di riferimento. Senza la sua guida esperta e il suo

incoraggiamento costante, questa tesi non sarebbe stata possibile.

Desidero anche ringraziare il mio correlatore, il Dott. Fabio Merizzi, per la

sua contagiosa positività, per aver condiviso con me la sua esperienza e per

le preziose osservazioni che ha fornito durante la stesura di questa tesi.

Un ringraziamento speciale va ai miei genitori e alla mia famiglia per il loro

amore, il loro sostegno incondizionato e per aver sempre creduto in me. Gra-

zie di cuore per avermi sostenuto in ogni fase del mio percorso accademico.

Desidero anche ringraziare i miei amici, per essere stati sempre presenti, per

le discussioni stimolanti, per le risate condivise e per il supporto morale nei

momenti di difficoltà. Non avrei potuto chiedere amici migliori.

Grazie a tutti coloro che hanno contribuito in modo diretto o indiretto a

questa tesi. La vostra gentilezza, il vostro supporto e la vostra presenza nella

mia vita sono inestimabili.

Alberto

	Sommario
	Introduction
	Preliminaries
	Weather forecasting
	Precipitation nowcasting
	An example of a NWP model for precipitation nowcasting: STEPS

	Data sources for weather forecasting
	ERA5
	NWCSAF
	WeatherBench

	Generative models
	Generative models for weather forecasting
	An example of a generative model for precipitation nowcasting: DGMR

	Generative diffusion models
	Denoising Diffusion Probabilistic Models (DDPM)
	Denoising Diffusion Implicit Models (DDIM)
	Latent Diffusion Models (LDM)
	Conditioning

	Generative diffusion models for precipitation nowcasting
	The DDIM architecture
	Denoising
	Conditioning

	A novel approach: Generative Ensemble Diffusion (GED)
	Concurrent work

	Experiments
	Dataset description and preprocessing
	Additional features
	Training and Evaluation
	Results

	Conclusions
	Code fragments
	Ablation study
	Bibliography

