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“The principal difficulty in your case, . . .

lay in the fact of there being too much

evidence. What was vital was overlaid

and hidden by what was irrelevant. . . . ”

Sherlock Holmes in The Naval Treaty,

Arthur Conan Doyle





Abstract

The ever-growing number of publications in the biomedical field is causing difficul-

ties in finding insightful knowledge. In this work, we propose a subtopic-oriented

summarization framework that aims to provide an overview on the state-of-the-

art of a given subject. The method we propose clusters the papers retrieved from

a query and then, for each cluster, extracts the subtopics and summarizes the

abstracts. We conducted various experiments to select the most appropriate clus-

tering approach and concluded that the best choices are MiniLM for text embed-

ding, UMAP for dimensionality reduction and OPTICS as clustering algorithm.

For summarization, we fine-tuned both general-domain and biomedical pretrained

language models for the task of extractive summarization and selected Longformer

as the most suited model. Experimental results on multi-document summarization

datasets show that the proposed framework improves the overall recall of the gen-

erated summary with a small decrease in precision, which corresponds to slightly

longer summaries but closer to the ground truth.





Sommario

Il crescente numero di pubblicazioni in ambito biomedico sta rendendo sempre

più complicato individuare informazioni rilevanti. In questa tesi proponiamo un

framework che utilizza sotto-tematiche per generare riassunti con l’obiettivo di

fornire una panoramica sullo stato dell’arte di un dato argomento. Il metodo pro-

posto individua i cluster dato un gruppo di pubblicazioni e, per ciascuno di questi,

estrae le sotto-tematiche e genera un riassunto basandosi sui sommari. Abbiamo

condotto diversi esperimenti per selezionare il metodo di clustering più appropri-

ato e abbiamo concluso che le scelte migliori sono: MiniLM per l’embedding del

testo, UMAP per la riduzione della dimensionalità e OPTICS come algoritmo di

clustering. Per generare i riassunti, abbiamo selezionato diversi modelli di linguag-

gio pre-addestrati sia in ambito generale che in ambito biomedico e li abbiamo

specializzati per generare riassunti in maniera estrattiva. Dai risultati abbiamo

selezionato Longformer come il modello più adatto ai nostri scopi. Risultati speri-

mentali su dataset multi-documento mostrano che il framework migliora i valori di

recall del riassunto generato con una piccola perdita in precision. Ciò corrisponde

a riassunti lievemente più lunghi ma in grado di catturare più concetti.
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1 Introduction

PubMed1 is a search engine that indexes biomedical and life science related

papers. The database is updated daily and, at the time of writing, contains more

than 38 million publications. This overwhelming amount of information may cause

a significant slowdown in making new discoveries, and a solution able to present

the knowledge related to a query could help researchers gather the necessary in-

formation more quickly.

Figure 1.1: Total number of articles available on PubMed by publication year

For this purpose, in this work we present a possible approach to analyze the

knowledge available on PubMed and present an overview on the state-of-the-art

to the user. The method we propose individuates the subtopics of a given group

1https://pubmed.ncbi.nlm.nih.gov
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Chapter 1 Introduction

of papers by clustering their abstracts. Then, the subtopic of each cluster is

determined using a bag-of-words approach and a summary is created by selecting

the most important sentences of the abstracts. Following the recent developments,

for both the clustering and summarization phase, we experiment the performance

of Transformer-based pretrained language models.

In the next Chapter, we discuss other automatic summarization work. In

Chapter 3, we give the definition of language model, present the Transformer ar-

chitecture and discuss existing general-domain and biomedical pretrained language

models. In Chapter 4 and Chapter 5, we respectively define the task of clustering

and summarization, and present the experiments we conducted to select the best

approach for our work. In Chapter 6, we present the method we propose and

report the experimental results we obtained. In Chapter 7, we conclude this thesis

with some final observations and discuss possible future work.

Code availability

We make the implementation of our method and the code to reproduce the

experiments of this work publicly available.

Code to evaluate clustering

methods (Chapter 4)
http://smartdata.cs.unibo.it/datasets#PubMedSum

Code to evaluate pretrained lan-

guage models on summarization

(Chapter 5)

https://github.com/NotXia/biomed-ext-summ

Weights of the best summariza-

tion models we trained (Chap-

ter 5)

https://huggingface.co/NotXia/longformer-bio-ext-summ

https://huggingface.co/NotXia/pubmedbert-bio-ext-summ

Implementation of the method

we propose, the code to evalu-

ate it and a prototype to present

the result to the end user (Chap-

ter 6)

https://github.com/NotXia/pubmed-summ
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2 Related work

2.1 Automatic text summarization

Automatic text summarization is an active field of research with a large spec-

trum of proposed methods. Existing solutions in both the general-domain [34, 35,

41] and the biomedical field [61, 12] often use as possible architecture:

Graph-based algorithms A graph where vertexes are sentences and edges

represent a similarity metric. The summary is generated by selecting the

first k sentences based on a centrality score.

Recurrent Neural Networks (RNNs) As they are designed to process se-

quential data, RNNs and its variants can be used in summarization. A

common architecture is based on an encoder-decoder structure and atten-

tion mechanism. However, a significant disadvantage of RNNs is that they

are unable to be parallelized as each step depends on the previous one.

Convolutional Neural Networks (CNNs) Convolutions, typically used in

computer vision, can be employed in natural language processing to capture

semantic and syntactic features. A possible approach consists in using mul-

tiple filters with different size followed by pooling layers. CNNs, differently

from RNNs, are easier to parallelize. On the other hand, as there is no

recurrence, the context is limited to the receptive field of the convolutions.

Graph Neural Networks (GNNs) Instead of feeding the plain corpus se-

quence to a neural network, a GNN uses a graph to produce a summary.

3



Chapter 2 Related work

Starting from a graph built using some arbitrary criteria, it is first encoded

and then passed through a GNN which leverages the input using, for in-

stance, convolutions or an attention mechanism.

Point-generator networks [58] The summary is created using two opera-

tions: pointing and generating. Pointing allows to copy words from the input

corpus to the summary. Generating allows to select words from a vocabulary

to add in the summary. Moreover, to prevent repetitions, a coverage mask

is employed to keep track of the words covered by the attention mechanism.

Transformer models Recent advancements in natural language processing

often use pretrained language models based on the Transformer architecture.

As this is an important component for this work, we discuss Transformers

and language models more in detail in Chapter 3.

2.2 Subtopic-oriented summarization

In the literature, other work uses a similar approach based on subtopic-oriented

summarization as we do in this thesis.

In the biomedical field, both Nasr Azadani et al. [47] and Moradi [46] propose

a graph-based method that use itemset mining and clustering to extract subtopics

and partition the vertexes before creating the summary. Mishra et al. [45] also

propose a graph-based summarization model which clusters using UMLS concepts

[8] extracted using MetaMap [5].

In the general domain, other similar approaches have been explored. Zhang

et al. [65] propose a graph-based algorithm that uses a custom centrality score

based on local and global features. The method iteratively forms clusters with the

most central sentence and its neighbors within a threshold. Dai et al. [14] also

use a graph-based algorithm with fuzzy clustering and strategies to prevent local

and global redundancies. Gong et al. [23] consider the subtopics as a probability

distribution and use statistical methods to extract and use them to weight the

sentences. Mei et al. [43] propose a method that clusters the sentences based

4



Subtopic-oriented summarization

on their similarity. Then, creates the summary by selecting sentences based on

a position score with respect to the original documents and a cluster distance

score. Zheng et al. [68] embed the input sentences using a RNN and cluster

them to individuate the subtopics. The summary is created by using a saliency

score for subtopics and sentences. Dong et al. [21] extract subtopics by building

a paragraph-level graph. Then, create the summary by solving an optimization

problem that aims to minimize the distance to the original document and maximize

the topic diversity.

5





3 Pretrained language models

Pretrained Language Models (PLMs) are models for sequence processing pre-

trained on a large amount of textual data. These models can be specialized for

downstream tasks with additional steps of fine-tuning, without the need to signif-

icantly change the overall architecture.

In this chapter, we first give the definition of language model and then describe

the Transformer architecture on which recent PLMs are built on. At last, we

present the existing general-domain and biomedical pretrained models we will use

in this work.

3.1 Language models

Language Models (LMs) [33] are generative models that assign a probability

to a sequence of words. More formally, LMs compute a probability distribution:

P(w | k)

where w is a word and k is the prior knowledge (e.g. previous words of a sentence).

An example of a statistical LM is the n-gram model which assumes that the

probability of a word depends only on a fixed number of previous words (Markov

assumption). Specifically, n-gram models approximate the conditional probability

of a word given its full context to a window of n− 1 words:

P(wi | w1, . . . , wi−1) ≈ P(wi | wi−n+1, . . . , wi−1)

To compute this probability, the simplest and most straightforward approach is

7



Chapter 3 Pretrained language models

based on the maximum likelihood estimation:

P(wi | wi−n+1, . . . , wi−1) =
C(wi−n+1 . . . wi−1wi)∑
w C(wi−n+1 . . . wi−1w)

where C(s) counts the number of occurrences of the string s in the training corpus.

In recent years, deep learning approaches have been developed to create LMs.

These models, usually referred as Large Language Models (LLMs), are commonly

built using networks with millions or billions of parameters and are able to achieve

state-of-the-art results in many natural language processing tasks.

3.2 Transformer architecture

Recent pretrained language models are mostly based on the Transformer [59]

architecture which proved to have more reliability on long term dependencies while

being more parallelizable compared to recurrent neural networks.

Figure 3.1: Transformer architecture. Source: [59]

8



Transformer architecture

As depicted in Figure 3.1, Transformers are composed of a stack of encoders

followed by a stack of decoders and heavily utilize the self-attention mechanism.

The main components of a Transformer are:

Input and positional embedding The textual input is first embedded us-

ing a learnt static embedding of size dmodel. In addition, as the model does

not have recurrence, positional information obtained through sinusoidal func-

tions are injected into the embeddings.

Multi-head attention The multi-head attention mechanism allows the model

to attend at different positions of the input at the same time. Let dk be the

size of the attention keys and queries, dv the size of the attention values

and h the number of heads of the multi-head attention mechanism. A single

attention head uses a dot-product attention scaled by a factor of 1√
dk

to pre-

vent the problem of vanishing gradient. In addition, queries, keys and values

are projected using a learnt projection different for each head:

attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

headi(Q,K, V ) = attention(QWQ
i , KWK

i , V W V
i )

where Q, K and V are respectively the matrices for queries, keys and values.

WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk and W V
i ∈ Rdmodel×dv are the learnt

projection matrices for queries, keys and values. The multi-head attention is

defined as the concatenation of the attention heads with an additional final

projection:

multi head attention(Q,K, V ) = concat(head1, . . . , headh)W
O

where WO ∈ Rhdv×dmodel is the learnt projection matrix for the output.

Additionally, an optional mask can be applied to prevent future tokens to

be accessed during training.

Feed-forward layer The feed-forward layer is simply composed of two linear

transformations and an activation function (usually ReLU or its variants).

9



Chapter 3 Pretrained language models

The encoder stack extracts the relevant features of the input sequence. Each

encoder takes as input the output of the previous encoder and passes it through a

multi-head attention and feed-forward sub-layers.

The decoder stack takes as input the result of the encoder and the previously

outputted token, and autoregressively generates the next token. First, the previous

token is passed through a masked multi-head attention which prevents the model

to attend at future tokens during training. Then, the output is used as the query

of a second multi-head attention, while keys and values are taken from the encoder

stack. The output of the multi-head attention sub-layers is then passed through a

feed-forward sub-layer. The next token is determined by passing the result of the

decoder stack through a softmax layer.

It must be noted that Transformer based models do not necessarily utilize the

full architecture. Depending on the task, a model can be classified as:

Encoder-decoder Commonly used for sequence-to-sequence models where

the input and output are both sequences (e.g. machine translation).

Encoder-only Suited for extracting features from the input sequence. Usually

used for classification tasks.

Decoder-only Used for auto-regressive models that are only able to attend

at previously generated tokens. Usually used for next token prediction.

3.3 General-domain pretrained models

For our work, we will only focus on encoder-only models. In this section, we

present the most common general-domain encoder-only models.

BERT

BERT (Bidirectional Encoder Representations from Transformers) [19] is a

language representation model based on a bidirectional Transformer encoder-only

architecture that allows the model to attend at every position of the input.

10



General-domain pretrained models

BookCorpus [69] and English Wikipedia are used for pretraining and the ob-

jectives are the Masked Language Model (MLM) and Next Sentence Prediction

(NSP) tasks. MLM consists in making the model predict randomly masked tokens

from the input. NSP consists in predicting if a sentence B follows a sentence A.

During sequence processing, WordPiece, a subword-level tokenizer, is used to

embed the input. Moreover, a classification token ([CLS]) is added in front of

the input to hold the representation of the entire sequence for classification tasks.

If a sentence pair is provided as input, a separator token ([SEP]) and segment

embeddings are employed to distinguish between sequence A and B.

RoBERTa

RoBERTa (Robustly optimized BERT approach) [40] is a modified version of

BERT, pretrained using different training tasks and a larger batch size. Instead

of using a subword-level tokenizer, a byte-level Byte-Pair Encoding is used. The

input is provided with a full-sentences approach that consists in feeding the

model with continuous sentences from one or more documents (i.e. at the end

of a document, it continues with the next one). The NSP task and segment

embeddings are removed, while, for the MLM task, RoBERTa uses a dynamic

masking mechanism where the mask is generated at input time, opposed to BERT’s

static masking created at preprocess time.

DistilBERT

DistilBERT [56] is a model obtained through knowledge distillation with BERT

as the teacher model. DistilBERT maintains BERT’s architecture but halves the

number of layers and removes segment embeddings. During training, three losses

are used: a distillation loss over the probability distributions of the teacher and

the student, BERT’s standard MLM loss and a cosine embedding loss to align the

direction of the teacher’s and student’s outputs.

11
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Longformer

Longformer [7] is based on RoBERTa and introduces a modified version of the

Transformer self-attention mechanism.

The original self-attention mechanism has a quadratic space and time complex-

ity, which makes it impractical to handle long sequences. To solve this limitation,

Longformer introduces an attention pattern that scales linearly with the input se-

quence based on a local and a global context. The local attention uses a sliding

window, making each token attend to its surrounding within the window. The

global attention works as the standard attention mechanism, allowing a token to

attend at every position and to be attended by all other tokens. To maintain the

linear complexity, the number of tokens with global attention should be negligible

compared to the length of the sequence.

3.4 Biomedical pretrained models

Biomedical models are mostly trained using data from PubMed or Semantic

Scholar1. In this section, we present the biomedical models that we will use for

our experiments.

BioBERT

BioBERT [36] uses BERT’s weights and tokenizer as baseline and is further

pretrained on a biomedical corpus composed of PubMed abstracts and PubMed

Central articles. The resulting model was tested on the tasks of named entity

recognition, relation extraction and question answering.

Clinical BERT

Clinical BERT and Clinical BioBERT [2] are models based respectively on

BERT and BioBERT, further pretrained on MIMIC-III [31], a database containing

1https://www.semanticscholar.org/

12
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Biomedical pretrained models

clinical data of ICU patients. The resulting model was tested on the tasks of named

entity recognition and natural language inference.

BlueBERT

BlueBERT [50] is a model based on BERT’s weights, additionally pretrained

on PubMed abstracts and MIMIC-III. This work defines BLUE, a benchmark con-

taining tasks on sentence similarity, named entity recognition, relation extraction,

document classification and natural language inference.

SciBERT

SciBERT [6] uses the same architecture of BERT and is pretrained from scratch

on 1.14 million computer science and biomedical full-text papers from Semantic

Scholar. It also introduces SciVocab, a vocabulary for WordPiece built on a scien-

tific corpus. The resulting model was tested on the tasks of named entity recog-

nition, PICO extraction, text classification, relation extraction and dependency

parsing.

PubMedBERT

PubMedBERT [25] is based on the architecture of BERT and is pretrained from

scratch on abstracts from PubMed and full-texts from PubMed Central. It also

generates a new WordPiece vocabulary based on the same training corpus. This

work introduces and evaluates its model on a benchmark named BLURB, which

includes named entity recognition, PICO extraction, relation extraction, sentence

similarity, document classification and question answering.

BioLinkBERT

BioLinkBERT is the biomedical version of LinkBERT [64], a model based on

BERT and pretrained using a new objective based on cross-document information.

The training corpus of LinkBERT is seen as a graph of documents linked by

13



Chapter 3 Pretrained language models

hyperlinks or references. The objectives for the model are the standard BERT’s

MLM and a new task named Document Relation Prediction (DRP) which requires

the model to classify the relationship between two input segments as contiguous,

random or linked. The resulting model was tested on the BLURB benchmark and

additional question answering datasets.

BioMed-RoBERTa

BioMed-RoBERTa [27] uses RoBERTa’s weights and continues the pretraining

phase on a corpus of 2.68 million full-text scientific papers from Semantic Scholar.

The resulting model was tested on the tasks of named entity recognition, relation-

ship extraction and sentence classification.

DistilBioBERT

DistilBioBERT [54] is a distilled version of BioBERT obtained using the same

losses of DistilBERT. The resulting model was tested on the tasks of named entity

recognition, relationship extraction and question answering.

Clinical-Longformer

Clinical-Longformer [37] is based on Longformer’s weights and further pre-

trained on the MIMIC-III database. The resulting model was tested on the tasks

of named entity recognition, question answering and document classification.

14



4 Text clustering

Clustering is an unsupervised task that aims to find subgroups (clusters) in a

dataset. Based on a similarity function, elements within a cluster should be similar

to each other and different to elements of other clusters.

In this chapter, we present our choices for text clustering. We first present com-

mon word embedding methods, dimensionality reduction techniques and clustering

algorithms respectively in Sections 4.1, 4.2 and 4.3. In Section 4.4, we describe a

topic extraction method. In Section 4.5, we present metrics to evaluate clustering

results. Finally, in Section 4.6, we present the experiments we conducted to select

the best clustering approach.

4.1 Word embeddings

Word embeddings are methods to convert a text corpus into a vector space.

The embedding should be able to capture meaningful features of the text as it

usually improves the performance of subsequent elaboration steps.

4.1.1 Bag-of-words

Bag-of-words represents a document based on the occurrences of its tokens. To

parse n documents, the algorithm uses a learnt or user defined dictionary of w

words and encodes the documents into a usually sparse n× w matrix.

To refine the encoding and remove unnecessary information, many techniques

can be applied. For instance:

15
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Words removal Words that do not contribute to the representation can be

removed. This includes stop words or common words across all documents.

Stemming Inflected words are reduced to their root form using heuristics (e.g.

removing the ”s” of the plural form).

Lemmatization Words are reduced to their canonical form (e.g. synonyms

are replaced with a dictionary lookup). Differently from stemming, lemma-

tization considers the context of each word.

To normalize the encoding, Term Frequency-Inverse Document Frequency (TF-

IDF) can be applied. Given a set of documents D and a vocabulary V , TF-IDF

represents a term t ∈ V of a document d ∈ D by computing its term frequency

TF and inverse document frequency IDF:

TF(t, d) =
ft,d
Td

IDF(t,D) = log

(
|D|

|{d ∈ D | t ∈ d}|

)
where ft,d is the number of occurrences of the word t in the document d and Td

represents the number of words in the document d. Then, TF-IDF is computed as

follows:

TF-IDF(t, d,D) = TF(t, d) · IDF(t,D)

IDF can be seen as a weight applied to TF to filter out common words.

4.1.2 Pretrained embeddings

Pretrained embeddings [13] refer to text embedding methods that are pre-

trained on a large textual corpus using traditional machine learning techniques or

shallow neural networks. This family of models usually relies on the distributional

hypothesis [28], which states that words occurring in the same context tend to be

related.

An important property of these embeddings is their capability to encode the

semantics of words by creating an embedding space where word vectors are placed
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in a meaningful manner. For this reason, in the vector space, related concepts

are encoded with similar directions and algebraic operations produce semantically

coherent results (e.g. Paris− France+ Italy = Rome).

Word2vec

Word2vec [44] is trained using a shallow neural network with a single projection

layer and has been proposed with two variants of the training objective. Given

a vocabulary V , a context Cw of surrounding words of w ∈ V , the size of the

embeddings N and the projection layer of the neural network E ∈ R|V |×N ; an

embedding can be learnt as a continuous bag-of-words model or a continuous skip-

gram model:

Continuous bag-of-words is a model that predicts a word w given its neigh-

boring one-hot encoded tokens within a context Cw. Each input is passed

through the same projection layer and the final vector is obtained as their

average. Therefore, the objective is to maximize the log-likelihood:∑
w∈V

logP(w | Cw)

Continuous skip-gram is a model that takes as input a one-hot encoded

word w and predicts the tokens in its context Cw. Therefore, the objective

is to maximize the log-likelihood:∑
w∈V

∑
c∈Cw

logP(c | w)

For both approaches, the weights of the projection layer E represents the em-

beddings of the vocabulary V .

GloVe

GloVe (Global Vectors) [51] is a model that uses the word-word co-occurrence

matrix of the training corpus.
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Let V be the vocabulary, N the size of the embeddings, X the co-occurrence

matrix, Xi,j an element of X indicating the number of times a word j occurred in

the context window of a word i, f(Xi,j) a weighting function to handle the noise

in X. GloVe minimizes the loss function:

L(W, W̃ ,B, B̃) =

|V |∑
i=1

|V |∑
j=1

f(Xi,j) · (wT
i w̃j + bi + b̃j − logXi,j)

2

where W ∈ R|V |×N and B ∈ R|V |×N are the embeddings and biases of the words in

V , while W̃ ∈ R|V |×N and B̃ ∈ R|V |×N can be seen as the embeddings and biases of

the context of the words in V . The final word embeddings are obtained as W +W̃ ,

as it can be empirically shown that this approach improves the encoding.

fastText

fastText [9] is an extension of Word2vec to handle out of vocabulary words by

exploiting their morphology. It creates a bag of character n-grams from the original

vocabulary and learns their embeddings using the skip-gram model. With fastText,

the embedding of a word is obtained as the sum of the vectors representing its

subwords.

BioWordVec

BioWordVec [67] is a biomedical version of fastText trained on PubMed and the

Medical Subject Headings (MeSH) RDF. The corpus from PubMed is composed

of both titles and abstracts, while the corpus from the MeSH RDF is extracted

by identifying paths on the graph and sampling its nodes to create a sequence of

words.

4.1.3 Contextual embeddings

Contextual embeddings are models able to encode words in a dynamic man-

ner depending on the context they appear in. This is different from traditional

pretrained embeddings for which the context is only considered during training.
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Therefore, contextual embeddings are more suited to handle polysemous words

compared to traditional approaches.

In this work, we use the method introduced in SBERT [53] which embeds a

document by encoding it using a pretrained language model (e.g. BERT) and

averaging all its output vectors. SBERT shows that directly using the outputs of

the original BERT produces worse results than GloVe. Therefore, a fine-tuning

step is performed to specialize the model on the task of sentence similarity. During

fine-tuning, a siamese network is used to compute, using the same weights, the

embeddings of two documents which are then used to determine the loss based on

their distance.

For our experiments, we will use MiniLM [62] (a distilled version of BERT),

BioBERT [18] and PubMedBERT [17] fine-tuned for sentence similarity.

4.2 Dimensionality reduction

Dimensionality reduction methods are used to transform high-dimensional fea-

tures into a low-dimensional space. This process is useful to refine sparse features

or to remove noise after word embedding and prevent the curse of dimensionality.

4.2.1 Principal Component Analysis

Principal Component Analysis (PCA) [30] aims to project the dataset into a

new lower-dimensional space while maximizing the variance of the data.

Given a p-dimensional mean-centered dataset X = (X1, X2, . . . , Xp) ∈ Rn×p,

principal components are a linear combination of the features that maximizes the

variance. For instance, the first principal component Z1 is defined as:

Z1 = ϕ1,1X1 + ϕ2,1X2 + · · ·+ ϕp,1Xp

where ϕ1 = (ϕ1,1, ϕ2,1, . . . , ϕp,1) ∈ Rp contains the first principal component load-

ings and is constrained to ∥ϕ1∥2 = 1 in order to prevent arbitrarily high variance.

The following i-th principal component Zi has the additional constraint that it
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must be uncorrelated (orthogonal) to the previous Z1, . . . , Zi−1 principal compo-

nents.

It can be proven [32] that this problem can be reduced to the eigendecompo-

sition of the covariance matrix of the features. Let C ∈ Rp×p be the covariance

matrix of the features in X, λ1 ≥ · · · ≥ λp its ordered eigenvalues and ϕ1, . . . , ϕp

the associated eigenvectors. The i-th principal component loadings are in the

eigenvector ϕi associated to the i-th biggest eigenvalue λi.

Given all the loadings vectors Φ = (ϕ1, . . . , ϕp) ∈ Rp×p, the full principal

component decomposition can be defined as:

Z = XΦ

To reduce the dimensionality of X, the first k principal components are kept and

the others are dropped. The result will be a n× k matrix Zk:

Zk = XΦk

4.2.2 Latent Semantic Analysis

Latent Semantic Analysis (LSA) [16, 1], also referred as Latent Semantic In-

dexing (LSI), is a dimensionality reduction technique specific for textual data.

Let X ∈ Rn×t be the document-term matrix (e.g. generated using bag-of-

words). It must be noted that XTX ∈ Rt×t corresponds to the column-wise dot

products and computes the correlations among the terms. This matrix can be seen

as a scaled approximation of the correlation matrix that, similarly to PCA, can be

used for dimensionality reduction.

We can find the eigenvalues and eigenvectors of XTX by decomposing X using

Singular Value Decomposition (SVD):

X = UΣV T

where Σ ∈ Rn×t is a diagonal matrix containing the singular values, U ∈ Rn×n

and V ∈ Rt×t are orthogonal matrices respectively with the left and right singular

vectors as columns. A property of SVD is that the left singular vectors are the
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eigenvectors of XXT , the right singular vectors are the eigenvector of XTX and

the non-zero singular values are the square roots of the eigenvalues of both XXT

and XTX.

With the decomposition of X, we can project X into a low-dimensional basis

in the same way as in PCA, by selecting the first k eigenvectors of XTX that

correspond to the highest eigenvalues (or singular values):

Zk = XVk ≈ (UkΣkV
T
k )Vk = UkΣk

4.2.3 Uniform Manifold Approximation and Projection

Uniform Manifold Approximation and Projection (UMAP) [42] is a nonlinear

dimensionality reduction technique based on the assumption that the dataset is

uniformly distributed across a locally connected Riemannian manifold and that

each point has a locally constant Riemannian metric.

UMAP builds a fuzzy neighborhood topology that can be viewed as a graph

where the weights of the edges are based on a locally defined metric by each point.

Therefore, given two nodes a and b, the weights of the edges that connect them

are not necessarily the same. To handle different metrics, the graph is uniformed

by converting it into an undirected form where the weight connecting two nodes

a and b is given by the probability disjunction of their weights w(a, b) and w(b, a)

in the original graph.

With the final fuzzy topology of the original dataset, a low-dimensional rep-

resentation can be obtained as an optimization problem by minimizing the cross-

entropy between the fuzzy topologies of the original and low-dimensional data.

4.3 Clustering algorithms

4.3.1 Centroid-based

In centroid-based clustering [30, 1, 63], the dataset is partitioned into k clusters

based on the distance between the data and the cluster centroid. The most common

algorithm of this family is k-means.
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Given a dataset with n entries X = (x1, . . . , xn) and the number of clusters to

find k, k-means is solved as an optimization problem with objective:

argmin
C

k∑
i=1

∑
x∈Ci

∥x− µi∥

where C = {C1, . . . , Ck} are the k clusters and µi =
1

|Ci|
∑

x∈Ci
x is the centroid of

the cluster Ci. This problem is proven to be NP-hard, therefore existing solutions

are based on approximations and heuristics that usually converge to a local opti-

mum. To cope with this limitation, the result of k-means is usually obtained after

multiple runs with different initialization seeds. Many variations have also been

proposed, for instance:

K-medoids enforces the centroid to be an element of the dataset.

K-medians selects the centroid as the median of the elements in the cluster.

Farthest first traversal k-center ensures that the centroids are representa-

tive of the dataset variance.

Bisecting k-means iteratively splits a cluster into two new clusters. Centroid

are determined progressively on the cluster to split.

The complexity of an iteration of k-means is O(kn), where k is the number

of clusters and n the size of the dataset. An important disadvantage is that the

number of clusters k is a user set parameter. Moreover, the algorithm is not noise

robust and is not able to discover clusters with an arbitrary shape.

4.3.2 Hierarchical

Hierarchical clustering [30, 1] partitions a dataset based on the distance among

the documents by building a dendrogram, a tree-like structure where each leaf

represents a document and intermediate nodes can be seen as a different granularity

of clustering. The tree can be built using two different strategies:
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Agglomerative The tree is built starting from the leaves. Each document is

part of its own cluster and is incrementally merged with the others until all

documents are in the same cluster.

Divisive The tree is built from the root. All documents start in a single

cluster that is subsequently decomposed until each cluster contains a single

document.

Moreover, given a document distance function dist and two clusters C1 and C2,

different linkage criterions can be used to determine the distance between C1 and

C2:

Single linkage The distance is determined as the distance of the two closest

documents in the two clusters.

min
a∈C1, b∈C2

dist(a, b)

This approach is not resistant to outliers which may cause uncorrelated clus-

ters to merge (chaining problem).

Complete linkage The distance is determined as the distance of the two

farthest documents in the two clusters.

max
a∈C1, b∈C2

dist(a, b)

Outliers may cause unbalanced clusters since they can be considered to com-

pute the distance.

Average linkage The distance is determined as the mean between all the

distances of all the documents in the two clusters.

1

|C1| · |C2|
∑
a∈C1

∑
b∈C2

dist(a, b)

Compared to single and complete linkage, this method is more robust to

noise, but is computationally more expensive.

In general, the complexity of hierarchical clustering is O(n3) and O(2n−1) re-

spectively for the agglomerative and divisive methods. In some cases, more efficient

algorithms of complexity O(n2) can be applied.
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4.3.3 Density-based

Density-based clustering [3, 63] identifies clusters as high-density areas of the

dataset. The most common methods are DBSCAN and its variants.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [22]

is based, as in hierarchical clustering, on the distance between documents and

uses an additional density criterion based on the number of neighbors around

a document.

Let D be a dataset, Nε(d) the neighbors of a document d ∈ D in a radius ε

(including d itself) and mneighbors the minimum number of neighbors a docu-

ment has to have to be considered dense. The algorithm marks a document

d as a core point if d has at least mneighbors in an ε radius around it:

core points = {d ∈ D : |Nε(d)| ≥ mneighbors}

non core points = D ∖ core points

Core samples di, dj ∈ core points are part of the same cluster only if they

are neighbors (dj ∈ Nε(di)). A non-core point dk ∈ non core points is part

of the same cluster of its nearest core point neighbor, if exists; otherwise, it

is considered an outlier.

OPTICS (Ordering Points To Identify the Clustering Structure) [4] uses the

same approach of DBSCAN but takes into account the fact that clusters may

have different densities and require different radiuses.

Let D, Nε(d) and mneighbors be defined as in DBSCAN. Let dist(d1, d2) be

the distance between documents d1 and d2. OPTICS defines for each docu-

ment d its core distance:

core dist(d) =

dist(d, dk), dk mneighbors-th neighbor of d if |Nε(d)| ≥ mneighbors

undefined otherwise

Then, it is possible to define the reachability distance of a document d start-

ing from do:
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reach dist(d, do) =

max{core dist(do), dist(do, d)} if |Nε(do)| ≥ mneighbors

undefined otherwise

OPTICS processes the documents and produces an ordering of the docu-

ments based on their reachability distance. With the output of OPTICS, it

is possible to represent a reachability plot with the ordered documents on

the x-axis and the reachability distances on the y-axis. The plot has the

form of multiple valleys where each of them represents a cluster. To extract

the clusters, it is possible to set a threshold (which produces DBSCAN-like

results) or by using algorithms to detect valleys. It must be noted that,

differently from DBSCAN, ε for OPTICS represents the maximum radius.

HDBSCAN (Hierarchical DBSCAN) [11] can be seen as an improvement of

OPTICS that removes the ε parameter completely.

Let D, mneighbors and dist(d1, d2) be defined as above. Differently from

OPTICS, the core distance is defined without considering a maximum radius:

core dist(d) = dist(d, dk), dk mneighbors-th neighbor of d

Next, it is possible to define the mutual reachability distance of two docu-

ments d1 and d2:

m reach dist(d1, d2) = max{core dist(d1), core dist(d2), dist(d1, d2)}

Then, a mutual reachability graph G can be built by using the documents

as vertexes and the mutual reachability distances as edges. With G, it is

possible to define a graph Gε ⊆ G where edges greater than ε are removed

and documents with a core distance lower than ε are considered as noise.

To cluster the dataset with radius ε, it is sufficient to find the connected

components in Gε.

HDBSCAN finds the clusters for all the possible values of ε. To do this, it

finds a minimum spanning tree from the full mutual reachability graph G

and removes at each iteration the edges with the highest mutual reachability
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distance until all connected components have been removed. The result of

this procedure is a hierarchy where each level corresponds to a different radius

ε.

To convert the hierarchy into an actual partition of the dataset, HDBSCAN

solves a constrained optimization problem based on the stability of the clus-

ters. Let C1, . . . , Ck be the ordered clusters in the hierarchy (C1 is the root),

L the indexes of leaf clusters, Ph the indexes of the clusters on the path from

Ch to the root C1 excluded and S(Ci) the stability of the cluster Ci, which

is based on its lifetime in the hierarchy. The optimization problem is defined

as:

max
δ1,...,δk

k∑
i=2

δiS(Ci)

subject to

δi ∈ {0, 1}, i ∈ {2, . . . , k}∑
j∈Ph

δi = 1,∀h ∈ L

where δi = 1 if cluster Ci is in the final solution. The second constraint

prevents from selecting more than one cluster in a leaf-root path.

Density-based clustering is noise robust as it is able to detect outliers. More-

over, it is able to recognize clusters of arbitrary shapes, but works on the as-

sumption that a cluster only exists in high density areas. The time complexity of

DBSCAN, OPTICS and HDBSCAN is O(n2) in the worst case.

4.4 Topic extraction

As a final step of the clustering process, it could be useful to find for each

cluster a set of keywords to represent its subtopic.

For this task, we follow the same approach proposed in BERTopic [24] which

finds the topics of each cluster with a bag-of-words approach based on a cluster

level TF-IDF named c-TF-IDF. Let C = {C1, . . . , Cn} be the clusters, ci the

concatenation of the documents in the cluster Ci, ft,ci the number of occurrences
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of the term t in ci and A the average number of words per cluster. The term

frequency of a term t in a cluster Ci can be defined using the standard TF:

c-TF(t, Ci) = TF(t, ci)

The inverse class frequency is defined as:

c-IDF(t, C) = log

(
1 +

A∑
Ci∈C ft,ci

)
Finally, the cluster level TF-IDF can be computes as:

c-TF-IDF(t, Ci, C) = c-TF(t, Ci) · c-IDF(t, C)

4.5 Evaluation metrics

In this section, we discuss some of the available evaluation metrics for the

clustering task [57]. As, to the best of our knowledge, human labeled datasets for

biomedical abstract clustering do not exist, in this work we only present internal

metrics that do not require to know the ground truth.

4.5.1 Calinski-Harabasz index

The Calinski-Harabasz index [10] is a value based on the dispersion of the

elements within a cluster and between all clusters.

Let D be the dataset, C1, . . . , Cn the n clusters of D and dist(d1, d2) the

distance between two documents d1 ∈ D and d2 ∈ D. The within-cluster dispersion

W is given by the sum of the squared distances of each document to the cluster

centroid ci it belongs to:

W =
n∑

i=1

∑
d∈Ci

dist(d, ci)
2

The between-cluster dispersion B is given by the weighted sum of the squared

distances of each cluster centroid ci to the dataset centroid cD:

B =
n∑

i=1

|Ci| · dist(ci, cD)2
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The Calinski-Harabasz index is computed as:

SCH =

(
B

n− 1

)
/

(
W

|D| − n

)
The value of SCH does not have an upper bound. Higher values of SCH generally

indicate better clusters.

4.5.2 Davies-Bouldin index

The Davies-Bouldin index [15] is a value based on the dispersion of the doc-

uments within a cluster with respect to its centroid and the dispersion of the

centroids of all clusters.

Let D, C1, . . . , Cn and dist(d1, d2) be defined as above. The within-cluster

dispersion si of a cluster Ci is given by the mean distance between each document

and the centroid ci of the cluster:

si =
1

|Ci|
∑
d∈Ci

dist(d, ci)

The distance mi,j of two clusters Ci and Cj is given by the distance of their

centroids ci and cj:

mi,j = dist(ci, cj)

The score ri,j to assess the separation of two clusters Ci and Cj is given by:

ri,j =
si + sj
mi,j

The Davies-Bouldin index of the dataset is defined as:

SDB =
1

n

n∑
i=1

max
j=1,...,n, j ̸=i

ri,j

By definition SDB ≥ 0, where a value of 0 indicates better defined clusters.

4.5.3 Silhouette coefficient

The silhouette coefficient [55] is a score based on the distance of each document

with respect to the cluster it belongs to and to the nearest cluster.

28



Experiments

Let D, C1, . . . , Cn and dist(d1, d2) be defined as above. For each document

d ∈ Ci, the silhouette coefficient computes two scores:

a(d) =
1

|Ci| − 1

∑
dk∈Ci, dk ̸=d

dist(d, dk)

b(d) = min
Cj, Cj ̸=Ci

1

|Cj|
∑
dk∈Cj

dist(d, dk)

where a(d) is the mean dissimilarity of d to all the other documents in its cluster

and b(d) is the mean dissimilarity of d to all the documents in the nearest cluster.

The silhouette coefficient of a document d is then defined as:

s(d) =
b(d)− a(i)

max{a(d), b(d)}
The silhouette coefficient of the entire dataset is defined as the average silhouette

coefficients of its documents:

SSC =
1

|D|
∑
d∈D

s(d)

The value of SSC is bounded in [−1, 1], where SSC = 1 indicates well defined

clusters, while SSC = −1 indicates incorrect clusters.

4.6 Experiments

4.6.1 Dataset

As, to the best of our knowledge, a labeled dataset for biomedical documents

clustering does not exist, to evaluate the clustering algorithms we built a dataset

suitable for our use case.

Our dataset is composed of PubMed abstracts obtained through 20 different

queries for a total of 66k articles. The abstracts for each query represent a group

of documents to cluster, therefore the evaluation will assess twenty different exe-

cutions. The final score for the dataset is given by the average of the evaluation

scores of each run. It must be noted that this dataset is not labeled and we only

rely on internal metrics.

For more details on the dataset creation, we refer the reader to Appendix A.
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4.6.2 Implementation details

For our experiments, we used the implementation of dimensionality reduction

methods, clustering algorithms and evaluation metrics available on scikit-learn

[49]. For traditional pretrained embeddings we used the Gensim [52] library, while

for contextual embeddings we used the SentenceTransformers [53] library.

4.6.3 Results

We evaluated different combinations of word embeddings, dimensionality re-

duction methods and clustering algorithms using different initialization hyperpa-

rameters. Tables 4.1, 4.2 and 4.3 contain the results of the best performing run

using the metrics we previously discussed.

Between PCA and LSA, we only present PCA as both methods are imple-

mented using SVD and yield similar results. Other results are omitted when the

clustering algorithm labels all documents as noise or as a single class for at least

one entry of the dataset.

It is important to note that it is not straightforward to compare clustering

results obtained using different embeddings (for this reason, Tables 4.1, 4.2 and

4.3 should be read column-wise). Therefore, we are only able to make high-level

observations.

Regarding dimensionality reduction, it can be seen that UMAP is the most

consistent method that allows each clustering algorithm to produce a valid classi-

fication that is not a single class or all outliers.

Among the clustering algorithms, OPTICS is the one with the best performance

on the Silhouette coefficient and Davies-Bouldin index. It is also observable that

k-means has good results on the Calinski-Harabasz index. This is most likely a

consequence of the definition of the Calinski-Harabasz index as it has the within-

cluster dispersion, which k-means minimizes, in the denominator.

Given these results, in this work we will use UMAP as dimensionality reduction

method and OPTICS as clustering algorithm. We will further experiment word

embeddings to determine the most suitable approach.
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Bag-of-words Word2Vec GloVe

No reduction PCA UMAP No reduction PCA UMAP No reduction PCA UMAP

K-means

SC

CH

DB

0.04 ± 0.01

32 ± 16

4.26 ± 0.59

0.14 ± 0.02

177 ± 88

1.87 ± 0.10

0.37 ± 0.03

1386 ± 813

1.05 ± 0.09

0.07 ± 0.01

245 ± 130

2.91 ± 0.33

0.11 ± 0.01

434 ± 238

2.24 ± 0.21

0.37 ± 0.04

3303 ± 1830

0.96 ± 0.14

0.07 ± 0.01

234 ± 121

2.87 ± 0.25

0.11 ± 0.01

382 ± 199

2.22 ± 0.18

0.35 ± 0.04

2846 ± 1603

1.04 ± 0.12

Agglomerative

SC

CH

DB

– –

0.37 ± 0.04

1169 ± 713

0.97 ± 0.09

– –

0.30 ± 0.05

2300 ± 1101

1.10 ± 0.11

0.06 ± 0.01

223 ± 116

3.15 ± 0.36

0.08 ± 0.01

339 ± 175

2.58 ± 0.19

0.32 ± 0.04

2706 ± 1553

1.11 ± 0.17

DBSCAN

SC

CH

DB

– –

0.01 ± 0.32

272 ± 227

1.15 ± 0.33

– – –

0.03 ± 0.01

48 ± 47

2.40 ± 0.75

0.05 ± 0.02

90 ± 81

2.16 ± 0.35

0.28 ± 0.06

1999 ± 995

1.14 ± 0.12

OPTICS

SC

CH

DB

–

0.51 ± 0.04

69 ± 21

0.71 ± 0.08

0.68 ± 0.04

2443 ± 1222

0.45 ± 0.06

– –

0.72 ± 0.05

2309 ± 1063

0.39 ± 0.06

– –

0.73 ± 0.05

2364 ± 1024

0.37 ± 0.05

HDBSCAN

SC

CH

DB

0.16 ± 0.09

14 ± 5

1.71 ± 0.201

0.28 ± 0.09

93 ± 94

1.03 ± 0.14

0.52 ± 0.13

1400 ± 1210

0.58 ± 0.13

–

0.37 ± 0.30

125 ± 123

0.94 ± 0.54

0.46 ± 0.23

609 ± 438

0.56 ± 0.28

0.31 ± 0.26

74 ± 93

1.27 ± 0.69

0.36 ± 0.29

110 ± 133

1.01 ± 0.57

0.43 ± 0.27

443 ± 368

0.64 ± 0.40

Table 4.1: Silhouette coefficient (SC), Calinski-Harabasz index (CH) and Davies-Bouldin index (DB) on clustering using bag-of-

words, Word2Vec and GloVe. Column-wise best results are in bold and underlined.



fastText BioWordVec

No reduction PCA UMAP No reduction PCA UMAP

K-means

SC

CH

DB

0.07 ± 0.01

352 ± 193

2.61 ± 0.23

0.11 ± 0.01

533 ± 296

2.13 ± 0.20

0.38 ± 0.04

3351 ± 1771

0.93 ± 0.12

0.09 ± 0.01

323 ± 173

2.60 ± 0.22

0.14 ± 0.02

504 ± 269

2.02 ± 0.20

0.38 ± 0.04

3164 ± 1732

0.99 ± 0.12

Agglomerative

SC

CH

DB

– –

0.29 ± 0.05

2583 ± 1593

1.09 ± 0.11

0.05 ± 0.02

75 ± 70

2.35 ± 0.42

0.07 ± 0.03

138 ± 117

2.00 ± 0.21

0.34 ± 0.05

2568 ± 1232

1.00 ± 0.11

DBSCAN

SC

CH

DB

– – – – – –

OPTICS

SC

CH

DB

– –

0.61 ± 0.05

2335 ± 1692

0.54 ± 0.06

– –

0.68 ± 0.06

2922 ± 1403

0.43 ± 0.07

HDBSCAN

SC

CH

DB

– –

0.47 ± 0.20

524 ± 403

0.56 ± 0.25

0.38 ± 0.29

101 ± 112

1.00 ± 0.55

0.38 ± 0.32

141 ± 151

0.88 ± 0.49

0.48 ± 0.20

710 ± 583

0.52 ± 0.22

Table 4.2: Silhouette coefficient (SC), Calinski-Harabasz index (CH) and Davies-Bouldin index (DB) on clustering using fastText

and BioWordVec. Column-wise best results are in bold and underlined.



MiniLM BioBERT PubMedBERT

No reduction PCA UMAP No reduction PCA UMAP No reduction PCA UMAP

K-means

SC

CH

DB

0.04 ± 0.02

117 ± 52

3.87 ± 0.35

0.11 ± 0.01

145 ± 66

2.16 ± 0.11

0.38 ± 0.04

1907 ± 880

0.97 ± 0.08

0.03 ± 0.01

97 ± 46

4.13 ± 0.38

0.08 ± 0.02

214 ± 103

2.78 ± 0.20

0.34 ± 0.05

1874 ± 939

1.09 ± 0.15

0.04 ± 0.01

101 ± 45

4.08 ± 0.42

0.09 ± 0.02

236 ± 109

2.69 ± 0.21

0.36 ± 0.06

2078 ± 982

1.08 ± 0.18

Agglomerative

SC

CH

DB

0.05 ± 0.03

27 ± 23

2.55 ± 1.30

0.09 ± 0.02

85 ± 65

2.16 ± 0.33

0.40 ± 0.03

1975 ± 980

0.89 ± 0.06

0.04 ± 0.01

7 ± 1

2.30 ± 0.12

0.05 ± 0.02

24 ± 5

2.30 ± 0.11

0.33 ± 0.06

1523 ± 623

1.05 ± 0.10

0.02 ± 0.01

22 ± 4

3.70 ± 0.23

0.05 ± 0.02

69 ± 19

2.65 ± 0.20

0.36 ± 0.05

1739 ± 744

1.01 ± 0.10

DBSCAN

SC

CH

DB

–

0.44 ± 0.04

40 ± 6

0.86 ± 0.08

-0.01 ± 0.32

416 ± 638

0.99 ± 0.26

– –

-0.05 ± 0.25

217 ± 176

1.09 ± 0.32

– –

-0.004 ± 0.278

334 ± 484

1.02 ± 0.35

OPTICS

SC

CH

DB

– –

0.69 ± 0.03

3685 ± 1651

0.43 ± 0.03

–

0.46 ± 0.07

30 ± 11

0.82 ± 0.12

0.70 ± 0.04

2407 ± 1205

0.42 ± 0.05

0.34 ± 0.04

14 ± 3

1.08 ± 0.09

0.40 ± 0.04

31 ± 9

0.93 ± 0.08

0.68 ± 0.05

2940 ± 1312

0.46 ± 0.07

HDBSCAN

SC

CH

DB

0.13 ± 0.05

13 ± 7

1.52 ± 0.25

0.13 ± 0.08

24 ± 19

1.31 ± 0.16

0.56 ± 0.04

1876 ± 990

0.55 ± 0.05

0.16 ± 0.06

16 ± 8

1.45 ± 0.36

0.19 ± 0.06

25 ± 15

1.21 ± 0.25

0.54 ± 0.13

841 ± 576

0.52 ± 0.20

–

0.13 ± 0.07

25 ± 20

1.38 ± 0.18

0.51 ± 0.05

1298 ± 701

0.59 ± 0.07

Table 4.3: Silhouette coefficient (SC), Calinski-Harabasz index (CH) and Davies-Bouldin index (DB) on clustering using MiniLM,

BioBERT and PubMedBERT. Column-wise best results are in bold and underlined.





5 Summarization

In this chapter, we present the task of automatic text summarization. We first

give the definition of the task in Section 5.1, then describe evaluation metrics in

Section 5.2 and datasets for biomedical summarization in Section 5.3. Finally, in

Section 5.4, we discuss the experiments we conducted to choose the best summa-

rization model.

5.1 Automatic text summarization

Summarization is the task of creating a shorter version of a document. De-

pending on how it is produced, summarization techniques can be classified [34]

as:

Extractive The summary is created by selecting the most relevant sentences

from the source document. The problem is a classification task, where a

document D is defined by its sentences D = {si | i = 1 . . . n}. Each sentence

si is classified with a positive label if si is part of the summary, a negative if

not.

Abstractive The summary is produced as a paraphrase of the source docu-

ment. The problem can be solved using a sequence-to-sequence model that

takes as input the source document and outputs the summary.

Hybrid The summary is generated using both extractive and abstractive ap-

proaches. Usually, the source document is first processed using an extractive

method, then the selected sentences are rewritten using an abstractive model.
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Moreover, summarization can be classified based on the number of documents

to process as:

Single-document The result is a straightforward summary of a single docu-

ment.

Multi-document The summary involves more than one document. In this

case, a strategy to process multiple documents is required (e.g. concatena-

tion).

In this work, we will focus on extractive summarization and will use multi-

document datasets.

5.2 Evaluation metrics

5.2.1 ROUGE

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [38] is a set of

metrics based on the overlap between the generated summary and the ground

truth. The most common ROUGE metrics are:

ROUGE-N computes the number of overlapping n-grams between the gen-

erated and reference summary. Let s be the reference summary, ŝ the gen-

erated summary and gramsn(d) the n-grams of a document d. The original

formulation of ROUGE-N can be computed as:

ROUGE-Nrecall(s, ŝ) =
|gramsn(s) ∩ gramsn(ŝ)|

|gramsn(s)|

In existing implementations (e.g. rouge-score1), a ROUGE precision mea-

sure is also available:

ROUGE-Nprecision(s, ŝ) =
|gramsn(s) ∩ gramsn(ŝ)|

|gramsn(ŝ)|

1https://github.com/google-research/google-research/blob/master/rouge
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It must be noted that this measure is closely related to BLEU [48], a precision-

oriented metric for machine translation. Differently from ROUGE, BLEU

also has a brevity penalty for predictions shorter than the ground truth.

For our experiments, we will use ROUGE-1 and ROUGE-2 as they are com-

monly used in other work.

ROUGE-L is based on the longest common subsequence between the gener-

ated and reference summary. Let s be the reference summary, ŝ the generate

summary and LCS(d1, d2) the longest common subsequence of two documents

d1 and d2. ROUGE-L can be computed as:

ROUGE-Lrecall(s, ŝ) =
|LCS(s, ŝ)|

|s|

ROUGE-Lprecision(s, ŝ) =
|LCS(s, ŝ)|

|ŝ|
where | · | indicates the length of a textual sequence.

5.2.2 BERTScore

BERTScore [66] uses a pretrained language model (e.g. BERT) to create and

compare the contextual embeddings of the generated summary and the ground

truth. Differently from ROUGE, this approach is not based on an exact match

and allows to better handle synonyms and reordering.

Let s be the reference summary, ŝ the generated summary and E(d) the con-

textual embeddings of a document d. We denote with pi ∈ E(d) the embedding of

the i-th token of d. BERTScore is obtained by computing the cosine similarity

between E(s) and E(ŝ). The score associated to a token t of s (or ŝ) is determined

by greedily selecting the maximum similarity between t and the other tokens in ŝ

(or s):

BERTScorerecall =
1

|s|
∑

pi∈E(s)

max
qj∈E(ŝ)

pTi qj

BERTScoreprecision =
1

|ŝ|
∑

qj∈E(ŝ)

max
pi∈E(s)

qTj pi

where |d| indicates the number of tokens in a document d.
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5.3 Datasets

In this work, we use three biomedical datasets: MSˆ2, Cochrane and SumPubMed.

All these datasets are built using scientific articles, mostly from PubMed. We also

use CNN/Dailymail, a general-domain dataset on which we test the capabilities of

our domain-specific fine-tuned models.

5.3.1 MSˆ2

MSˆ2 [20] is a multi-document summarization dataset with around 20k sum-

maries of 470k documents cited in systematic literature reviews indexed by PubMed.

The construction of the dataset utilizes a SciBERT classifier, trained on human

annotated data, to identify in each review the research question (background)

and the obtained results (target). The documents to summarize are the ab-

stracts of the studies cited in the reviews and the background sentences. The

target sentences form the reference summary.

5.3.2 Cochrane

Cochrane [60] is a multi-document summarization dataset created using 4528

systematic reviews from Cochrane2. Each review collects from PubMed trials on

a specific clinical question. The documents to summarize are the abstracts of the

trials cited in the review. The reference summary is the ”conclusion” section of

the review.

5.3.3 SumPubMed

SumPubMed [26] is a summarization dataset based on 33,772 full-text articles

from BMC3. Each document is split into a front and a body: the front section

contains the abstract and is considered as the reference summary; the body section

2https://www.cochranelibrary.com/
3https://www.biomedcentral.com
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contains the main document, without non-textual elements (e.g. images, tables,

. . . ), acknowledgments and references, and is considered as the source document.

5.3.4 CNN/Dailymail

CNN/Dailymail [29] is a summarization dataset built using 93k articles from

CNN and 220k articles from Daily Mail. On the websites of both news providers,

each article has some bullet points that summarize its content. The dataset uses

these points as reference summary and the article as main document.

5.4 Experiments

5.4.1 Model architecture

The overall architecture for extractive summarization follows the same ap-

proach of BertSum [39] and is depicted in Figure 5.1. The document is first

passed through a pretrained encoder, then a task specific layer is applied and the

score for each sentence is outputted from a sigmoid.

Specifically, differently from the standard approach, each sentence fed to the

pretrained encoder has its own classification token to learn sentence-level features.

Moreover, for BERT-based models, segment embeddings are alternated between

segment A and segment B to distinguish each individual sentence of the document.

For Longformer-based models, the global attention mask is applied on all classifi-

cation tokens to better capture inter-sentence features. The output of the encoder

is filtered to only consider classification tokens, which are passed through some

task specific Transformer encoders to learn inter-sentence features. The output

score for each sentence is given by a final sigmoid layer.

5.4.2 Data preprocessing

To create an extractive summarization dataset, we use a method based on a

greedy algorithm similar to BertSum. The algorithm iterates over the sentences

39



Chapter 5 Summarization

Embeddings

Pretrained encoder

Inter-sentence encoders

Sigmoid

[CLS] ... . . .tok1,1 tok1,n [SEP] [CLS] ...tok2,1 tok2,m [SEP] [CLS] ...toks,1 toks,p [SEP]

score1 score2 scores

Figure 5.1: Model architecture for extractive summarization.

of the source document (as MSˆ2 and Cochrane are multi-document datasets, we

concatenate the abstracts in each entry and treat them as a single document)

and, at each iteration, selects the one that maximizes ROUGE-1 and ROUGE-

2. The number of sentences to select is fixed to max(3, sentsref), where sentsref

is the number of sentences in the reference summary. This value represents an

upper bound since the greedy method may end before reaching the given number

of selected sentences, when none of the remaining ones improve the score.

For documents longer than the input size of the model, we first try to reduce

the number of tokens without truncation, by randomly removing sentences that

are not part of the summary. This approach aims to preserve the semantic of the

final summary. If after this process the document is still too long, we truncate it.

In Table 5.1, we report some statistics for each preprocessed dataset we will

use for evaluation. For MSˆ2 and Cochrane, we use the validation set as the test

set is not publicly available.

5.4.3 Training details

All the models are implemented using PyTorch and HuggingFace’s transform-

ers and datasets libraries to load models and datasets.

We trained our models on a single NVIDIA V100 (16 GB) GPU for 10 epochs

using Binary Cross Entropy as loss and Adam as optimizer with β1 = 0.9 and
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Dataset Documents Avg. tokens Avg. sents. Avg. sel. sents.

MSˆ2 (val.) 2021 6597.05 291.80 3.43

Cochrane (val.) 470 2347.51 103.60 3.67

SumPubMed (test) 3269 4088.43 165.00 11.82

CNN/DailyMail (test) 11490 694.73 34.77 3.90

Table 5.1: Evaluation datasets statistics: number of documents, average number

of tokens and sentences in the source document and average number of sentences

selected by the greedy algorithm (Oracle).

β2 = 0.999. At the end of training, we selected the checkpoint with the best

results as final model.

Table 5.2 reports the configuration we used to train each model. As learning

rate, we tested and selected the best value among 3e−6, 8e−6 and 1e−5. We fixed the

batch size to 16 and used gradient accumulation when needed to cope with memory

limitations. For efficiency purposes, we trained Longformer-based models using

mixed precision (using both half-precision and single-precision floating-point).

Model family Learning rate Batch size Gradient accum. Training time

BERT 3e−6 16 1 110 min

RoBERTa 3e−6 16 1 110 min

DistilBERT 1e−5 16 1 80 min

Longformer 1e−5 1 16 20 h

Table 5.2: Training configuration per each model family

5.4.4 Evaluation method

We evaluate our models on the datasets we previously described. During eval-

uation, we make our models select the same number of sentences as the average

number of sentences selected by the Oracle (see Table 5.1). As an additional

baseline, we use Lead-n, which considers as the summary the first n sentences of
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the document.

To summarize a document longer than the input size of the model, we create

smaller chunks by partitioning the sentences. Each chunk is processed by the

model individually and the output is created by concatenating each independent

scores vector.

5.4.5 Results

Results on MSˆ2 and Cochrane are respectively reported in Table 5.3 and

Table 5.4. On both datasets, Longformer performs the best on both ROUGE and

BERTScore F1 scores.

Results on SumPubMed are reported in Table 5.5. In this case, PubMedBERT

(abstracts + full-texts) is the model that yields the best results on both ROUGE

and BERTScore F1 scores.

Results on CNN/Dailymail are reported in Table 5.6. Curiously, models pre-

trained on biomedical data archive better results compared to general domain

models. In fact, the best performing model is SciBERT on both ROUGE and

BERTScore. It must be noted that Lead-4 obtains better results than the pre-

trained models on this dataset, which is most likely caused by the fact that news

articles are substantially different from scientific publications.

For each dataset, we report the standard deviation of the scores obtained by

the pretrained models. It can be seen that almost all models have similar results

with only small differences regardless of the pretraining corpus. More in details,

biomedical models tend to have higher recall, which results in summaries closer to

the ground truth. On the other hand, models pretrained on the general-domain

have slightly higher precision, which corresponds to shorter generated summaries.

Moreover, it can be observed that the highest precision and F1 scores of

ROUGE and BERTScore are reasonably correlated, while, considering only re-

call, a connection between ROUGE and BERTScore is not clearly notable.

Come to this conclusion, in the continuation of this work, we will use the base

version of Longformer as it has the best precision-recall tradeoff and allows to

process a significantly longer sequence compared to the other models.
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Model
ROUGE-1 ROUGE-2 ROUGE-L BERTScore

F1 (recall, prec.) F1 (recall, prec.) F1 (recall, prec.) F1 (recall, prec.)

Oracle 29.80 (49.82, 22.98) 11.31 (19.59, 8.64) 17.00 (29.31, 12.97) 85.43 (87.59, 83.41)

Lead-3 17.43 (23.13, 16.85) 1.92 (2.64, 1.86) 11.19 (15.32, 10.70) 83.93 (85.04, 82.89)

BERTBASE (cased) 17.94 (32.62, 14.07) 2.45 (4.61, 1.91) 10.99 (20.93, 8.46) 83.17 (85.42, 81.08)

BERTBASE (uncased) 18.55 (35.08, 14.21) 2.67 (5.38, 2.02) 11.23 (22.30, 8.45) 83.48 (85.75, 81.38)

RoBERTaBASE 18.95 (35.47, 14.58) 2.85 (5.66, 2.17) 11.42 (22.43, 8.62) 83.69 (85.85, 81.68)

DistilBERT 18.59 (33.65, 14.58) 2.68 (5.10, 2.09) 11.31 (21.48, 8.70) 83.56 (85.68, 81.59)

LongformerBASE 19.48 (33.49, 15.64) 2.88 (5.23, 2.29) 11.83 (21.28, 9.33) 84.12 (85.91, 82.45)

BioBERTBASE (v1.2) 18.51 (35.71, 14.05) 2.82 (5.68, 2.12) 11.23 (22.77, 8.36) 83.37 (85.71, 81.21)

Clinical BioBERT 17.99 (34.86, 13.61) 2.64 (5.36, 1.97) 10.99 (22.35, 8.16) 83.19 (85.57, 81.00)

BlueBERT 18.84 (32.29, 15.21) 2.63 (4.73, 2.10) 11.49 (20.60, 9.10) 83.74 (85.71, 81.91)

PubMedBERT (abstracts only) 18.77 (35.35, 14.39) 2.82 (5.50, 2.15) 11.37 (22.49, 8.55) 83.58 (85.78, 81.54)

PubMedBERT (abs. + full-texts) 18.67 (35.62, 14.26) 2.83 (5.66, 2.14) 11.32 (22.71, 8.48) 83.51 (85.78, 81.42)

BioLinkBERT 18.65 (34.22, 14.54) 2.74 (5.25, 2.12) 11.33 (21.77, 8.67) 83.60 (85.74, 81.61)

SciBERT (cased) 18.87 (35.88, 14.36) 2.84 (5.67, 2.15) 11.42 (22.84, 8.53) 83.61 (85.84, 81.54)

SciBERT (uncased) 18.17 (35.86, 13.64) 2.74 (5.65, 2.04) 11.02 (22.86, 8.12) 83.17 (85.67, 80.86)

BioMed RoBERTa 18.91 (34.98, 14.65) 2.80 (5.44, 2.16) 11.40 (22.15, 8.67) 83.62 (85.81, 81.59)

DistilBioBERT 18.40 (31.72, 14.87) 2.52 (4.51, 2.03) 11.29 (20.37, 8.96) 83.55 (85.52, 81.71)

Clinical-Longformer 19.07 (33.52, 15.15) 2.73 (5.05, 2.15) 11.65 (21.49, 9.09) 83.93 (85.78, 82.20)

Standard deviation 0.40 (1.36, 0.55) 0.12 (0.39, 0.09) 0.22 (0.82, 0.34) 0.26 (0.13, 0.41)

Table 5.3: Evaluation on MSˆ2 validation set with 3 sentences selected. Best results are bolded and underlined.



Model
ROUGE-1 ROUGE-2 ROUGE-L BERTScore

F1 (recall, prec.) F1 (recall, prec.) F1 (recall, prec.) F1 (recall, prec.)

Oracle 30.68 (41.73, 25.66) 9.67 (13.42, 8.06) 17.15 (23.84, 14.24) 84.19 (86.08, 82.41)

Lead-4 20.74 (27.08, 19.09) 2.88 (3.78, 2.67) 12.48 (16.67, 11.38) 83.62 (85.48, 81.91)

BERTBASE (cased) 22.10 (35.36, 17.72) 3.74 (6.17, 2.97) 12.86 (21.41, 10.13) 83.59 (85.91, 81.46)

BERTBASE (uncased) 22.38 (36.63, 17.68) 3.90 (6.48, 3.08) 12.98 (22.07, 10.09) 83.73 (86.07, 81.58)

RoBERTaBASE 23.08 (36.85, 18.46) 4.17 (6.86, 3.30) 13.38 (22.21, 10.52) 83.96 (86.23, 81.89)

DistilBERT 22.59 (35.75, 18.14) 3.91 (6.31, 3.11) 13.08 (21.50, 10.32) 83.82 (86.03, 81.79)

LongformerBASE 23.19 (36.01, 18.84) 4.10 (6.66, 3.27) 13.41 (21.69, 10.69) 84.02 (86.18, 82.03)

BioBERTBASE (v1.2) 22.47 (37.25, 17.61) 4.02 (6.78, 3.13) 12.97 (22.38, 9.99) 83.70 (86.08, 81.53)

Clinical BioBERT 22.18 (36.65, 17.42) 3.83 (6.50, 2.99) 12.85 (22.03, 9.93) 83.73 (86.08, 81.56)

BlueBERT 22.52 (34.97, 18.42) 3.72 (5.91, 3.02) 13.06 (20.91, 10.53) 83.81 (86.00, 81.79)

PubMedBERT (abstracts only) 22.73 (37.06, 18.00) 4.04 (6.77, 3.16) 13.20 (22.35, 10.28) 83.91 (86.18, 81.82)

PubMedBERT (abs. + full-texts) 22.62 (37.17, 17.88) 3.99 (6.76, 3.12) 13.13 (22.44, 10.20) 83.77 (86.09, 81.64)

BioLinkBERT 22.67 (36.34, 18.15) 3.91 (6.39, 3.10) 13.14 (21.79, 10.35) 83.87 (86.11, 81.81)

SciBERT (cased) 22.63 (37.15, 17.85) 4.01 (6.70, 3.12) 13.02 (22.12, 10.11) 83.80 (86.14, 81.65)

SciBERT (uncased) 22.07 (36.99, 17.24) 3.92 (6.67, 3.05) 12.81 (22.31, 9.84) 83.53 (86.00, 81.27)

BioMed RoBERTa 22.36 (36.19, 17.82) 3.88 (6.51, 3.05) 12.84 (21.60, 10.06) 83.73 (86.04, 81.61)

DistilBioBERT 22.20 (34.64, 17.97) 3.70 (5.97, 2.96) 12.75 (20.62, 10.16) 83.74 (85.90, 81.75)

Clinical-Longformer 22.51 (36.49, 17.88) 3.96 (6.61, 3.12) 12.99 (21.93, 10.15) 83.80 (86.03, 81.74)

Standard deviation 0.32 (0.81, 0.40) 0.13 (0.29, 0.09) 0.19 (0.53, 0.23) 0.12 (0.09, 0.18)

Table 5.4: Evaluation on Cochrane validation set with 4 sentences selected. Best results are bolded and underlined.



Model
ROUGE-1 ROUGE-2 ROUGE-L BERTScore

F1 (recall, prec.) F1 (recall, prec.) F1 (recall, prec.) F1 (recall, prec.)

Oracle 55.97 (70.35, 47.13) 30.09 (37.73, 25.38) 28.97 (36.29, 24.46) 88.34 (89.14, 87.56)

Lead-12 40.17 (42.87, 39.28) 11.06 (11.92, 10.74) 18.21 (19.50, 17.77) 85.57 (85.75, 85.40)

BERTBASE (cased) 40.38 (57.01, 32.06) 13.29 (18.79, 10.54) 18.45 (26.25, 14.59) 86.05 (87.09, 85.06)

BERTBASE (uncased) 40.86 (60.32, 31.62) 14.22 (21.03, 10.99) 18.86 (28.05, 14.54) 86.46 (87.54, 85.42)

RoBERTaBASE 40.81 (61.03, 31.38) 14.60 (21.92, 11.20) 19.00 (28.66, 14.56) 86.51 (87.63, 85.43)

DistilBERT 40.63 (59.16, 31.66) 13.92 (20.28, 10.84) 18.75 (27.52, 14.56) 86.31 (87.36, 85.29)

LongformerBASE 42.23 (58.32, 33.95) 14.09 (19.56, 11.29) 19.05 (26.52, 15.26) 86.43 (87.32, 85.55)

BioBERTBASE (v1.2) 39.89 (60.94, 30.34) 14.04 (21.49, 10.66) 18.58 (28.61, 14.08) 86.43 (87.59, 85.32)

Clinical BioBERT 39.42 (60.24, 29.94) 13.59 (20.80, 10.32) 18.21 (28.06, 13.78) 86.33 (87.47, 85.23)

BlueBERT 41.32 (57.90, 32.93) 13.87 (19.47, 11.04) 19.00 (26.82, 15.09) 86.24 (87.25, 85.27)

PubMedBERT (abstracts only) 40.67 (61.42, 31.09) 14.61 (22.10, 11.16) 18.95 (28.84, 14.44) 86.54 (87.64, 85.47)

PubMedBERT (abs. + full-texts) 41.49 (61.35, 32.11) 15.08 (22.36, 11.65) 19.40 (28.90, 14.96) 86.63 (87.67, 85.63)

BioLinkBERT 41.34 (60.95, 32.03) 14.73 (21.77, 11.39) 19.15 (28.45, 14.78) 86.52 (87.60, 85.48)

SciBERT (cased) 40.50 (60.95, 31.03) 14.32 (21.59, 10.96) 18.82 (28.57, 14.37) 86.51 (87.61, 85.45)

SciBERT (uncased) 40.20 (60.79, 30.74) 14.18 (21.49, 10.83) 18.67 (28.46, 14.22) 86.46 (87.58, 85.39)

BioMed RoBERTa 40.91 (61.19, 31.46) 14.67 (22.00, 11.26) 19.09 (28.78, 14.63) 86.49 (87.66, 85.36)

DistilBioBERT 40.92 (57.65, 32.48) 13.67 (19.27, 10.85) 18.76 (26.63, 14.84) 86.14 (87.19, 85.13)

Clinical-Longformer 42.05 (59.08, 33.49) 14.34 (20.24, 11.39) 19.18 (27.16, 15.21) 86.47 (87.40, 85.58)

Standard deviation 0.73 (1.48, 1.08) 0.47 (1.14, 0.35) 0.30 (0.93, 0.40) 0.16 (0.18, 0.16)

Table 5.5: Evaluation on SumPubMed test set with 12 sentences selected. Best results are bolded and underlined.



Model
ROUGE-1 ROUGE-2 ROUGE-L BERTScore

F1 (recall, prec.) F1 (recall, prec.) F1 (recall, prec.) F1 (recall, prec.)

Oracle 49.93 (73.26, 39.01) 29.84 (43.34, 23.50) 34.35 (50.13, 26.95) 88.71 (90.36, 87.14)

Lead-4 37.77 (55.76, 30.03) 17.04 (25.35, 13.50) 24.12 (35.94, 19.09) 86.39 (87.56, 85.28)

BERTBASE (cased) 28.57 (46.38, 21.74) 9.85 (16.24, 7.44) 17.81 (29.28, 13.48) 84.85 (86.18, 83.59)

BERTBASE (uncased) 28.09 (45.33, 21.48) 9.29 (15.22, 7.04) 17.32 (28.31, 13.16) 84.72 (85.96, 83.56)

RoBERTaBASE 27.98 (44.83, 21.46) 9.15 (14.97, 6.94) 17.20 (27.93, 13.10) 84.68 (85.85, 83.57)

DistilBERT 27.35 (45.35, 20.57) 8.92 (14.92, 6.69) 16.87 (28.32, 12.62) 84.59 (85.91, 83.33)

LongformerBASE 29.00 (47.59, 21.84) 9.70 (16.06, 7.29) 17.71 (29.42, 13.27) 84.81 (86.13, 83.55)

BioBERTBASE (v1.2) 29.23 (48.94, 21.82) 10.40 (17.54, 7.75) 18.24 (30.90, 13.55) 84.92 (86.37, 83.55)

Clinical BioBERT 28.39 (48.67, 20.97) 9.88 (16.98, 7.30) 17.65 (30.61, 12.98) 84.73 (86.24, 83.29)

BlueBERT 27.44 (44.88, 20.73) 8.78 (14.43, 6.62) 16.75 (27.71, 12.59) 84.58 (85.86, 83.35)

PubMedBERT (abstracts only) 27.44 (48.23, 20.01) 9.27 (16.25, 6.77) 16.95 (30.11, 12.31) 84.48 (86.04, 83.00)

PubMedBERT (abs. + full-texts) 28.65 (48.37, 21.32) 9.95 (16.89, 7.39) 17.79 (30.39, 13.18) 84.81 (86.25, 83.44)

BioLinkBERT 27.40 (46.74, 20.30) 9.04 (15.47, 6.70) 16.77 (28.95, 12.37) 84.48 (85.91, 83.12)

SciBERT (cased) 29.83 (50.36, 22.14) 10.84 (18.38, 8.04) 18.65 (31.85, 13.79) 85.06 (86.58, 83.61)

SciBERT (uncased) 29.44 (49.77, 21.87) 10.53 (17.86, 7.82) 18.38 (31.42, 13.59) 84.96 (86.47, 83.54)

BioMed RoBERTa 28.47 (47.33, 21.35) 9.74 (16.36, 7.28) 17.55 (29.54, 13.10) 84.79 (86.16, 83.48)

DistilBioBERT 27.24 (44.46, 20.64) 8.68 (14.31, 6.55) 16.74 (27.65, 12.61) 84.55 (85.83, 83.33)

Clinical-Longformer 29.02 (49.82, 21.37) 10.17 (17.54, 7.50) 17.90 (31.10, 13.13) 84.82 (86.36, 83.37)

Standard deviation 0.82 (1.96, 0.62) 0.65 (1.25, 0.46) 0.61 (1.37, 0.44) 0.17 (0.24, 0.18)

Table 5.6: Evaluation on CNN/Dailymail test set with 4 sentences selected. Best results are bolded and underlined.



6 Proposed method

6.1 Framework

The method we propose is mainly based on the idea of summarizing subtopic

related articles to minimize the possibility of mixing or losing information.

As presented in Figure 6.1, given a group of abstracts A to summarize, the

framework applies the following steps:

1. Cluster A to obtain its clusters A1, . . . , An. Outliers are also considered as

their own cluster.

2. Summarize each Ai to obtain the corresponding summary Si.

3. Summarize the concatenation of each Si to obtain the overall summary S.

Clustering

Summarization

Summarization

Summarization

Abstracts

Abstracts1

Abstractsn Summaryn

Summary1

Summary

. .
 .

. .
 .

Figure 6.1: Framework steps

Given the results of the framework, S can be considered as the final sum-

mary. Alternatively, S1, . . . , Sn, along side the subtopics obtained using c-TF-IDF

(Chapter 4), can be presented as a subtopic-oriented summary.
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Chapter 6 Proposed method

6.2 Experiments

6.2.1 Dataset

To evaluate our method, we use the validation set of MSˆ2 and Cochrane

as we did in Chapter 5. Since the framework is designed for multi-document

summarization, we exclude the entries with less than 15 articles. Statistics of the

resulting datasets are presented in Table 6.1.

Dataset Entries Avg. abstracts per entry Avg. sel. sents.

MSˆ2 (val.) 1262 33.23 3.50

Cochrane (val.) 105 29.70 4.16

Table 6.1: Evaluation datasets statistics: number of entries, average number of

abstracts per entry and average number of sentences selected by the Oracle.

6.2.2 Evaluation method

As mentioned in Chapter 4, for the clustering phase, we use UMAP and OP-

TICS respectively as dimensionality reduction method and clustering algorithm.

UMAP reduces the features into a 10-dimensional space. Parameters for OPTICS

are ε = +∞ and mneighbors = 2. Since previously we did not individuate the

best embedding, we experiment and report the results for all the embeddings we

presented.

For the summarization phase, as concluded in Chapter 5, we use the base

version of Longformer. Similarly to the previous experiments, we make our model

select the same number of sentences as the average number of sentences selected

by the Oracle.
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Experiments

6.2.3 Results

Framework evaluation

Results on MSˆ2 are presented in Table 6.2. Considering only F1 scores, sum-

maries created only using Longformer yield better results, while our method ob-

tains slightly lower scores. A notable property, which we will discuss further on,

is that the framework obtains higher recall but lower precision.

Results on Cochrane are presented in Table 6.3. This time, our method has

slightly increased F1 scores compared to only using Longformer. Again, the frame-

work increases recall but decreases precision.

Across the different text embeddings, with the current results, we think that

MiniLM is the most suitable one as it has one of the highest ROUGE recall and

BERTScore. Still, it is not clear which of them performs better and further

study may be required.

Clustering criteria analysis

As a further experiment, we use an alternative formulation of our framework

that clusters using PubMed keywords and MeSH terms instead of full-text ab-

stracts.

Results using this configuration are reported in Table 6.4. For computational

limitations, we are only able to evaluate on Cochrane. As in the previous cases,

there are only minor differences in F1 scores. Recall and precision also have the

same behavior we noted before.

Compared to using full-text abstracts, clustering using keywords resulted in a

small decrease in performance. This is most likely given by the fact that embed-

dings that use abstracts are able to capture more information compared to only

using keywords.
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Model
ROUGE-1 ROUGE-2 ROUGE-L BERTScore

F1 (recall, prec.) F1 (recall, prec.) F1 (recall, prec.) F1 (recall, prec.)

Oracle 30.65 (51.06, 23.58) 12.23 (21.05, 9.33) 17.33 (29.73, 13.20) 85.50 (87.72, 83.43)

Longformer only 18.72 (38.11, 13.85) 3.00 (6.43, 2.20) 11.10 (23.90, 8.07) 83.45 (85.86, 81.21)

Framework embedding

Bag-of-words 18.43 (40.10, 13.20) 2.97 (6.91, 2.10) 10.86 (25.02, 7.63) 83.14 (85.89, 80.60)

Word2Vec 18.45 (40.04, 13.22) 2.98 (6.87, 2.12) 10.87 (25.04, 7.65) 83.17 (85.90, 80.65)

GloVe 18.29 (39.93, 13.10) 3.02 (7.00, 2.13) 10.85 (25.00, 7.64) 83.06 (85.84, 80.50)

fastText 18.33 (39.71, 13.16) 2.99 (6.89, 2.11) 10.89 (24.97, 7.67) 83.11 (85.85, 80.60)

BioWordVec 18.48 (40.04, 13.25) 3.05 (6.94, 2.17) 10.91 (25.03, 7.68) 83.13 (85.87, 80.62)

MiniLM 18.59 (40.20, 13.34) 3.01 (6.92, 2.14) 11.05 (25.24, 7.79) 83.20 (85.91, 80.72)

BioBERT 18.49 (40.17, 13.23) 3.04 (6.98, 2.15) 10.94 (25.13, 7.68) 83.15 (85.88, 80.63)

PubMedBERT 18.50 (39.95, 13.28) 3.03 (6.96, 2.15) 10.98 (25.14, 7.74) 83.17 (85.90, 80.65)

Average framework improvement -0.27 (+1.91, -0.63) +0.01 (+0.50, -0.07) -0.18 (+1.17, -0.39) -0.31 (+0.02, -0.59)

Table 6.2: Evaluation with abstracts clustering on MSˆ2 validation set with 4 sentences summaries. Best results are bolded and

underlined.



Model
ROUGE-1 ROUGE-2 ROUGE-L BERTScore

F1 (recall, prec.) F1 (recall, prec.) F1 (recall, prec.) F1 (recall, prec.)

Oracle 32.14 (44.81, 26.52) 11.46 (16.64, 9.38) 17.36 (25.02, 14.16) 85.20 (87.10, 83.41)

Longformer only 22.99 (36.02, 19.12) 3.33 (5.66, 2.72) 12.93 (21.26, 10.49) 83.94 (86.04, 81.98)

Framework embedding

Bag-of-words 22.97 (38.05, 18.46) 3.49 (6.08, 2.74) 12.70 (22.15, 9.95) 83.93 (86.06, 81.95)

Word2Vec 23.39 (38.59, 18.73) 3.57 (6.10, 2.80) 12.86 (22.19, 10.08) 84.14 (86.14, 82.27)

GloVe 22.46 (37.44, 17.95) 3.41 (6.03, 2.69) 12.56 (21.99, 9.82) 83.87 (86.05, 81.84)

fastText 23.03 (38.38, 18.47) 3.54 (6.36, 2.75) 12.58 (22.15, 9.84) 83.97 (86.00, 82.07)

BioWordVec 22.96 (38.50, 18.27) 3.49 (6.13, 2.73) 12.73 (22.26, 9.89) 84.02 (86.16, 82.02)

MiniLM 23.21 (38.17, 18.83) 3.41 (5.87, 2.71) 12.62 (21.72, 9.99) 84.17 (86.17, 82.31)

BioBERT 23.11 (38.31, 18.43) 3.55 (6.24, 2.80) 12.60 (21.90, 9.83) 84.00 (86.10, 82.03)

PubMedBERT 22.67 (37.63, 18.22) 3.48 (5.98, 2.78) 12.81 (22.05, 10.09) 84.04 (86.12, 82.11)

Average framework improvement -0.01 (+2.11, -0.70) +0.16 (+0.43, +0.03) -0.25 (+0.79, -0.55) +0.08 (+0.06, +0.09)

Table 6.3: Evaluation with abstracts clustering on Cochrane validation set with 4 sentences summaries. Best results are bolded

and underlined.



Model
ROUGE-1 ROUGE-2 ROUGE-L BERTScore

F1 (recall, prec.) F1 (recall, prec.) F1 (recall, prec.) F1 (recall, prec.)

Longformer only 22.99 (36.02, 19.12) 3.33 (5.66, 2.72) 12.93 (21.26, 10.49) 83.94 (86.04, 81.98)

Framework embedding

Bag-of-words 22.86 (37.85, 18.41) 3.48 (6.04, 2.77) 12.54 (21.61, 9.89) 84.07 (86.15, 82.13)

Word2Vec 23.00 (38.02, 18.49) 3.44 (5.96, 2.72) 12.67 (22.05, 9.95) 84.07 (86.15, 82.13)

GloVe 22.95 (38.17, 18.22) 3.44 (5.85, 2.71) 12.78 (22.10, 9.98) 84.04 (86.07, 82.13)

fastText 22.74 (37.82, 18.27) 3.44 (5.86, 2.75) 12.61 (22.05, 9.85) 83.98 (86.06, 82.04)

BioWordVec 22.77 (37.83, 18.39) 3.45 (5.86, 2.78) 12.64 (21.88, 10.00) 83.93 (86.01, 81.99)

MiniLM 22.83 (38.05, 18.25) 3.30 (5.81, 2.59) 12.53 (21.93, 9.78) 84.00 (86.14, 82.01)

BioBERT 22.73 (37.68, 18.22) 3.58 (6.19, 2.86) 12.68 (22.19, 9.93) 84.00 (86.07, 82.07)

PubMedBERT 22.97 (38.20, 18.46) 3.47 (5.99, 2.75) 12.73 (22.25, 9.99) 83.96 (86.11, 81.95)

Average framework improvement -0.13 (+1.93, -0.78) +0.12 (+0.28, +0.02) -0.28 (+0.75, -0.57) +0.07 (+0.05, +0.08)

Table 6.4: Evaluation with keywords clustering on Cochrane validation set with 4 sentences summaries. Best results are bolded

and underlined.



Experiments

Precision-recall analysis

The difference in recall and precision is reasonably given by the fact that the

generated summaries are longer but overlap better with the ground truth. To

further study this behavior, we report in Table 6.5 the average number of words

in the generated summaries on Cochrane.

Model/embedding Avg. words in summaries

Longformer only 140.19

Bag-of-words 153.38

Word2Vec 153.02

GloVe 154.93

fastText 154.01

BioWordVec 153.85

MiniLM 152.16

BioBERT 153.90

PubMedBERT 153.07

Table 6.5: Average number of words in Cochrane generated summaries

Compared to the results of only using Longformer, our method selects slightly

longer sentences for the summary, which explains the decrease in precision. Con-

sidered that the gain in recall is generally larger in comparison to the loss in

precision, we believe that the method we propose is a valid approach to improve

the quality of a summary.
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7 Conclusion

In this thesis, we presented a subtopic-oriented framework to summarize ab-

stracts in the biomedical field. We first evaluated clustering algorithms paired

with different text embeddings and dimensionality reduction methods and con-

cluded that, for our use case, the best dimensionality reduction method is UMAP

and the best clustering algorithm is OPTICS. Then, we experimented different

general-domain and biomedical pretrained language models fine-tuned for the task

of extractive summarization and found out that models pretrained on a biomedical

corpus generally obtain higher recall, while general-domain models result in higher

precision. Among all, we selected Longformer, which has the best precision-recall

tradeoff, as our summarization model. Finally, we assessed the performance of our

framework. We observed that, compared to directly using a summarization model,

our method increases the recall and slightly decreases the precision of the gener-

ated summary, which results in more accurate but longer summaries. We studied

this behavior by analyzing the size of the generated summaries and concluded that

the loss in precision is acceptable as the overhead in size is negligible.

With these results, we believe that the method we discussed is a valid approach

to improve the quality of a summary and to make the result more interpretable as

it is enriched with information on the subtopics.

Future expansions of this work could consider to: (i) explore the use of fuzzy

clustering algorithms as an alternative to the hard clustering algorithms we em-

ployed, (ii) use additional clustering criteria such as time information, (iii) exper-

iment abstractive or hybrid summarization.
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A Clustering dataset creation

To evaluate the clustering algorithms we discussed in Chapter 4, we created a

dataset of PubMed abstracts as, to the best of our knowledge, none of the existing

datasets are suited for our use case.

The dataset is composed of 66,388 abstracts divided into 20 different entries.

Each entry contains abstracts related to a disease that we selected from lists main-

tained by NHS inform1 and the National Organization for Rare Disorders2.

For each query, we used the PubMed API3 to fetch PMIDs and abstracts.

We set an upper bound of 5000 abstracts and, for easier reproducibility, we only

queried 2022 publications. Of the fetched articles, we excluded those without an

abstract.

In Table A.1, we report the queries we used and the number of abstracts for

each of them.

1https://www.nhsinform.scot/illnesses-and-conditions/a-to-z
2https://rarediseases.org/rare-diseases
3https://www.ncbi.nlm.nih.gov/books/NBK25499/
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Appendix A Clustering dataset creation

Query Abstracts

asthma 4427

attention deficit hyperactivity disorder 2359

autistic spectrum disorder 4463

brain tumours 4713

bronchitis 917

common cold 900

covid-19 4546

dementia 4707

depression 4851

gilbert syndrome 373

heart failure 4518

hepatitis B 3454

hiv 4591

kidney cancer 4591

meningitis 3440

migraine 2122

multiple sclerosis 4669

radiation sickness 1633

type 2 diabetes 4722

yellow fever 392

Total 66,388

Table A.1: Clustering evaluation dataset composition
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