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Sommario

Negli ultimi decenni, il mercato dei dispositivi per la Smart Home si

è espanso notevolmente. Tra le varie interfacce che permettono di inviare

comandi a questi dispositivi, è di particolare interesse quella fornita dagli

assistenti virtuali, testuali e/o vocali, soprattutto in quanto capace di offrire

più indipendenza alle persone con disabilità e alle persone anziane, gruppo

in aumento significativo in Italia.

Purtroppo le soluzioni attuali sul mercato, come gli smart speaker, sono

basate sull’invio dei comandi a server remoti, facendo sorgere preoccupazioni

più o meno legittime riguardo la privacy. Le alternative open-source attual-

mente disponibili, di contro, sono poco accurate per la lingua italiana.

L’obiettivo di questa tesi è di sviluppare un nuovo motore di Intent Recog-

nition, chiamato Converso, per assistenti domotici in lingua italiana che pos-

sono essere integrati in piattaforme locali come Home Assistant. Per rag-

giungere quest’obiettivo, è stato generato un dataset sintetico, pre-processato

tramite embedding Word2Vec, per addestrare modelli di Machine Learning

per la classificazione degli Intent e degli slot; inoltre, è stato sviluppato un

algoritmo basato su N-grammi per correggere gli errori ortografici o di ri-

conoscimento vocale.

L’agente di conversazione derivante, che si serve di una Support Vector

Machine e non richiede alcuna connessione a server remoti, è stato valutato

in un esperimento in condizioni realistiche, dimostrando un’accuratezza su-

periore al 60%.
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Chapter 1

Introduction

1.1 Motivation

In the last decades, the market of smart appliances which can be mon-

itored and controlled from a distance, such as light bulbs and thermostatic

valves, has greatly expanded, becoming varied and accessible to a wider set

of consumers.

Among the various interfaces which allow a user to send commands to

these devices, one of the most interesting ones is the Virtual Assistant, which

can let a user communicate to the device, or most commonly to the Home

Automation platform which integrates the device, through text commands

or voice requests in natural language.

This type of interface, in fact, can not only be useful for ordinary people

who temporarily require a hands-free interaction, but it can also provide more

independence to people with disabilities, such as visually impaired people,

and to old people who are not familiar with graphic UIs, with the latter

group increasing significantly in Italy [52].

Unfortunately, the available consumer solutions, such as Amazon Alexa’s

and Google Assistant’s smart speakers, require the voice commands to be

sent to their own servers. Beyond depending on a connection to the Internet,

the fundamental issue of these cloud solutions is the problem of privacy. Even

1



2 1. Introduction

if, in theory, only voice signals following activation words, called wake words,

are sent to the Internet, a significant fraction of the population does not

desire to adopt Voice Assistants in their own home, due to privacy concerns

about potential leakage and abuse of private conversations [53].

1.2 Goal

The goal of this research is to design a novel Intent Recognition engine for

the Italian Language which can be integrated into a local privacy-preserving

Virtual Assistant in order to monitor and control domotic appliances. The

main parameters which are taken into account are accuracy, delay, level of

privacy and resource consumption.

In order to achieve this goal, a synthetic dataset with text commands

is generated to train several Machine Learning models to classify Intents,

by first extracting relevant features using Word2Vec word embeddings. The

model with the best accuracy is used, in conjunction with a speech correction

algorithm based on N-grams, to convert the text command into machine

commands which can be handled by the smart home platform.

Finally, the model is evaluated by developing an integration for Home

Assistant, the most popular local smart home platform.

1.3 Thesis structure

The thesis is structured into the following chapters:

• Chapter 1, which provides an overview on Text Analysis, clarifying the

core definitions and concepts, dealing with the historical evolution of

the field and its main applications;

• Chapter 2, which introduces the most commonly used Text Analysis

techniques deriving from the fields of Natural Language Processing,

Information Retrieval and Machine Learning;



1.3 Thesis structure 3

• Chapter 3, which deals with the main notions related to the Home

Automation domain and to the Virtual Assistants interfaces, with a

section about Home Assistant;

• Chapter 4, which introduces Converso, a new privacy-preserving Intent

Recognition engine specifically designed for local smart home platforms;

• Chapter 5, which evaluates the performance of the engine through an

experiment conducted in a real environment with a varied set of par-

ticipants.
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Chapter 2

Overview on Text

Comprehension

This chapter will deal with the principles and history of Text Comprehen-

sion, clarifying differences and similarities compared to other related fields,

and the main applications.

2.1 Basics

Text Comprehension, the process of creating a structured meaningful

representation from text, usually relies on Text Analysis (TA), which can be

seen as a special case of Data Analysis.

There are multiple definitions of Data Analysis: for some researchers

it is a synonym of Knowledge Discovery from Data (KDD), the process of

“extracting knowledge from data”, which also includes the preliminary data

pre-processing activities and the final activities of evaluation and presenta-

tion of the results; for others, however, Data Analysis is only the sub-process

of KDD which consists in the application of automatic methods for the dis-

covery of patterns [1, p. 6].

Similarly, Text Analysis can also be seen both as a synonym of Knowledge

Discovery from Text (KDT), i.e. the general process of extracting knowledge

5



6 2. Overview on Text Comprehension

from textual data, and as a specific sub-process.

In the following work, the term Text Analysis will be used in the first

sense, as textual data have peculiarities that strongly influence each activ-

ity of the process: textual data are in fact unstructured data, which are

both generated and consumed by human beings [2, p. 48]. For this reason,

Text Analysis does not only make use of the classic Data Analysis tech-

niques, derived from disciplines such as Machine Learning (ML), Probability

and Statistics, Information Theory and Databases; but it also makes use of

techniques deriving from the fields of Library Science and Computational

Linguistics.

In particular, Information Retrieval (IR) and Natural Language Process-

ing (NLP) techniques can be used. IR aims to “find material (usually docu-

ments) of an unstructured nature (usually text) that satisfies an information

need from large collections (usually stored on computers)” [3, p. 1]. NLP, on

the other hand, aims to “allow a computer to understand the meaning of a

text in natural language” [2, p. 39]. In both cases, the human component

plays a significant role.

2.2 Historical background

In this section we will briefly see the path of Text Analysis from its early

days to the state of the art.

1913 The mathematician Markov proposes the N-gram characters proba-

bilistic model for language modeling [13].

1949 Claude Shannon is the first to generate N-gram word models for the

English language [14].

1950s Alan Turing describes a method for determining whether a machine

has the ability to exhibit intelligent behavior (the so-called Turing Test),

identifying natural language understanding as one of the most significant

factors [12]. The linguist Chomsky criticizes the N-gram models, slowing
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down the line of research [10, p. 883]. The US government begins investing

in the field of Machine Translation [2, p. 42].

1960s Bar-Hillel’s report [15] is published, prompting researchers to pursue

more feasibile goals for the time. The first efficient algorithms for automatic

parsing are developed [10, p. 920].

1970s - 1980s Salton et al. introduce the Vector Space Model [7], which

becomes the most used model in Information Retrieval. The first Informa-

tion Extraction algorithms [10, p. 884] are developed. The techniques at

this time are mainly based on heuristic rules of logical inference [2, p. 42].

1990s - 2000s Inspired by the success of statistical approaches to speech

recognition, researchers rediscover N-gram models [10, p. 883]. In the mid-

1990s, with the spread of the Internet and Big Data, the use of Machine

Learning models for Text Mining tasks becomes more and more common.

2010s - today The excellent results achieved by Artificial Neural Networks,

combined with greater GPUs computational power, is directing research to-

wards Deep Learning [17]. A commonly adopted approach nowadays con-

sists in using neural networks to obtain vector representations of words

which are capable of capturing their semantics (word embedding), as in the

case of the Word2Vec models (developed by Google in 2013)[18], the ELMo

model (developed by the Allen Institute for Artificial Intelligence and the

University of Washington in 2018)[21] and the BERT model (developed by

Google in 2018) [22].

2.3 Applications

As previously mentioned, Text Analysis consists in extracting knowledge

from text, and the knowledge can be defined as a set of patterns relevant to

applications. In this section we will overview some macro-problems that can

be solved through Text Analysis techniques, and some specific applications.
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2.3.1 Classification

Classification consists in labeling data using predefined categories. This

can be especially useful for facilitating search (reducing the amount of data

to take into account) and analysis (helping discovering correlations).

Some examples in the textual field are the subdivision of news into cat-

egories, such as ‘news’, ‘entertainment’ and ‘sport’, and the classification of

scientific articles according to the field of research.

In addition to classifying texts according to the topics covered, it is also

possible to classify them according to their style (for example, to trace the

author or to filter spam emails), or according to the underlying sentiment (for

example, to evaluate whether a review is positive or negative, or to analyze

political trends without relying on official statistics).

2.3.2 Clustering

Clustering consists in grouping similar elements into clusters. In the Text

Analysis field, elements can be entire documents, sentences, or single terms.

Clustering can be useful to get an overview of textual data, and therefore to

facilitate exploration.

There are two main types of clustering [28]:

• partitional clustering, which outputs disjoint clusters;

• hierarchical clustering, which outputs a tree of clusters.

Compared to classification, clustering does not use predefined categories,

and it is more useful for applications that need more flexibility because of

this. In fact, defining categories in advance when there are multiple levels

of interpretation can be not only burdensome for large volumes of data, but

also very complex.

Clustering is mainly used in recommendation systems, and in topic anal-

ysis. Recommender systems aim to offer to a specific user content that may
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interest them, and to achieve this they either group similar content (content-

based filtering) or similar users (collaborative filtering) [2, p. 221]. As far as

topic analysis is concerned, it aims to discover the latent themes of a set of

documents and the degree of coverage of the themes in each document.

2.3.3 Summarization

Summarization consists in compressing text to speed up its reading. Like

digital compression, summarization aims to lose as little information as pos-

sible given a certain level of size reduction.

There are two main methods of summarization [2, p.318]:

• selection-based method, which outputs a subset of relevant sentences

from the original document;

• generation-based method, which outputs new sentences generated by a

language model.

Summarization is especially useful for long documents, such as books,

legal and biomedical documents, and scientific articles.

2.3.4 Information Extraction

Information Extraction (IE) is the conversion of a document from un-

structured to structured. In particular, it is based on entity extraction (for

example, names of people, names of companies) and relationships between

entities (for example, who works in a given company). Typically, these activ-

ities are referred to as Named Entity Recognition (NER) and Relationship

Extraction, respectively.

Information Extraction not only allows textual data to be represented in

other forms, such as tables and graphs, facilitating search and navigation,

but can also be used as a preliminary step for other applications that need a

deeper understanding of the text documents.
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Chapter 3

Text Comprehension

Techniques

In this chapter we will examine some of the most commonly adopted

methods in text understanding, and we will split them according to their

field of origin for clarity of exposition. Depending on the specific application,

these methods can be combined at different stages of the Text Comprehension

process.

3.1 Natural Language Processing

As mentioned in the previous chapter, the field of NLP deals with natural

language understanding. Natural languages, compared to formal languages

such as programming languages, have some peculiarities that make them

difficult to deal with [10, p. 861] [2, p. 41]:

• they cannot be characterized as a defined set of sentences, as they may

not follow a precise grammar (for example, the sentence the majority

of Italians are brown-haired violates the singular-plural agreement rule,

but it is still understandable for a human being);

• they are ambiguous, at the level of: part-of-speech analysis (fishing can

be both a noun and a verb), logical analysis (in A man saw a girl with a

11
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telescope it is not clear whether with the telescope the telescope belongs

to the man or the girl), semantic analysis (in Mario said goodbye to

Luigi and took his things it is not clear whether Mario took Luigi’s

things or his own);

• they may take the so-called ‘common sense knowledge’ for granted (in

the sentence he wanted a healthier lifestyle and he stopped smoking it

is implied that smoking is harmful);

• they are constantly evolving (for example, through the introduction of

neologisms such as memes).

3.1.1 Tokenization

The first step of NLP is generally tokenization, which consists in dividing

the sequence of characters into minimal units of analysis called tokens. In the

case of the English language, a basic tokenizer is the whitespace tokenizer,

which delimits tokens based on spacing [2, p. 149]. To improve tokenization,

also other separators can be taken into account, such as tabs or punctuation

elements, and tokens that are part of contracted forms can be split.

Once the tokenization has been done, depending on the specific applica-

tions, other pre-processing techniques can also be applied, such as:

• normalization;

• lemmatization;

• stemming.

Normalization is the transformation of tokens into terms: the same term,

understood as an information unit, in fact, can be written in different ways

[3, p. 28]. Normalization may include: removing periods in acronyms (from

P.S. to PS ); hyphen removal (from e-mail to email); the expansion of abbre-

viations (from approx. to approximately); uppercase to lowercase conversion

of characters (from Nike to nike). In any case, attention must be paid to the
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collisions that may arise; for example, the token Polish in the middle of a

sentence probably means something relating to Poland, while polish probably

means to make something shine by cleaning it.

Lemmatization, on the other hand, is the transformation of the inflected

forms of words into lemmas, which correspond to the entries in the dictio-

nary. During lemmatization, words that were grammatically inflected are

brought back to their base form following the conventions of the language.

For example, the verb was and the verb is can both be replaced with be [8].

Finally, stemming consists in reducing words to their roots, and then

removing prefixes and suffixes. Some examples of stemming are the transfor-

mation of consolation into consol and of digestive into digest. A very popular

stemming algorithm for the English language is the Porter2 English Stemmer

[9], based on rules and exceptions.

3.1.2 N-gram language models

One of the major contributions of NLP research are language models,

i.e. ‘models that predict the probability distribution of linguistic expressions’.

These can be, for example, single characters, words, or sequences of words

[10, p. 861].

Estimating the probabilities of every possible sequence of linguistic ex-

pressions is not feasible, as they are infinite, so the most used model is the

N-gram model, which simplifies the problem through some independence as-

sumptions.

A model is called a N-gram model when it is based on sequences of length

N, but there are specific terms for sequences of unit length (‘unigrams’), for

sequences of length equal to two (‘bigrams’), and for sequences of length

equal to three (‘trigrams’).

Formally, an N-gram model is a Markovian process, i.e. a probabilistic

model that respects Markov’s assumption of dependence on the present state

only; in the specific case of N-gram language model the present state is deter-

mined by the N - 1 linguistic expressions prior to the one under examination.
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The table 3.2 shows the Markov assumptions for the unigram, bigram

and trigram models.

Unigram P (wi|w1:i−1) = P (wi)

Bigram P (wi|w1:i−1) = P (wi|wi−1)

Trigram P (wi|w1:i−1) = P (wi|wi−2:i−1)

Table 3.1: Markov’s assumptions applied to the N-gram models.

In the case of bigram word models, for example, we have:

P (w1:N) =
N∏
i=1

P (wi|w1:i−1) =
N∏
i=1

P (wi|wi−1)

Therefore, considering the sentence θ = ‘I eat an apple’, with a bigram

model, we get:

P (θ) = P (I)P (eat|I)P (one|eat)P (apple|one)

Given a text or set of texts, its language pattern can be estimated by

estimating the probabilities of the N-grams through their normalized fre-

quencies.

The table 3.2 shows the estimates for the unigram, bigram and trigram

models.

Unigrams P (wi) =
count(wi)∑
w count(w)

Bigrams P (wi|wi−1) =
count(wi−1:i)∑
w count(wi−1,w)

Trigrams P (wi|wi−2:i−1) =
count(wi−2:i)∑

w count(wi−2:i−1,w)

Table 3.2: Estimation of probabilities for N-gram models

Wanting to estimate, for example, the conditional probability P (apple|one)
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for a bigram model, one would have to normalize the number of occurrences

of the bigram ‘one apple’ by the number of occurrences of ‘one’.

Estimating probabilities using frequencies has its problems.

Assuming, for example, that a certain N-gram never appears in the cor-

pus, its probability will be equal to zero. To mitigate this problem, a smooth-

ing algorithm can be applied; smoothing by linear interpolation, for example,

is a backoff model that combines unigram, bigram and trigram models.

Another problem that can arise is that of words not present in the vocab-

ulary. One method that can be used to handle them is to add a new word to

the vocabulary for unknown words - usually <UNK> - and, before building

the model, to replace all the first occurrences of each word precisely with

<UNK> [10, p. 863-864].

3.1.3 Hidden Markov Models

Like N-gram models, Hidden Markov Models (HMM) are Markov process

models, with the difference that HMM have hidden states (properties) that

cause observable events.

To understand the logic behind HMM, we can analyze how they can be

used for POS (Part-of-Speech) tagging, an activity which consists in annotat-

ing words with the grammar role they cover within sentences (generally used

in the field of NLP to reduce ambiguity due to homographies and polysemies).

Based on the grammatical characteristics that depend on the language, a

POS tagger will be able to classify a word as a noun, verb, adjective, article,

etc.; as singular or plural; and so on. The Penn Treebank, an annotated cor-

pus of more than 4.5 million words in American English, for example, uses

36 tags [29].

In the case of POS tagging, the hidden states are the tags, while the

observable events are the words, and the goal is therefore to find the most

probable sequence of tags that generated the sequence of words (decoding).

If we have the probabilities of emission of the words given the tags, and

the probabilities of transition between tags, it is possible to find the optimal
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sequence by applying the Viterbi algorithm, a dynamic programming method

whose details are discussed in [30].

3.1.4 Probabilistic Context-Free Grammars

Another widely used model in the field of NLP derives from Chomsky’s

studies on grammars. Formally, a grammar is a “set of rules which define a

language as a set of allowed strings of words” [10, p. 890]. Indeed, assuming

that sentences have a syntactic tree structure, new sentences can be generated

by defining rewriting rules on the basis of the different lexical and syntactic

categories.

Among the various possible grammars, Probabilistic Context-Free Gram-

mars (PCFG) represent a good trade-off between expressiveness and effi-

ciency and are often used in NLP. As with the context-free grammars defined

by Chomsky, each rule has only one non-terminal symbol on the left-hand

side, while both terminal and non-terminal symbols can be found on the

right-hand side; in addition to that, probabilistic grammars assign a proba-

bility to each string. Clearly, the symbols representing the lexical categories

(the POS tags mentioned above) and those representing the syntactic cate-

gories (for example NP and VP, respectively noun phrase and verb phrase)

constitute the non-terminal symbols , while the dictionary words are the

terminal symbols.

An example of a PCFG production rule could be the following [10, p. 891]:

S → NP VP [0.70] | S Conj S [0.30]

According to this rule, a sentence can be composed of a noun phrase

followed by a verb phrase (with 70% probability), or it can be composed of

two sentences joined by a conjunction (with 30% probability).

For the construction of the rules, the approach is generally to learn them

from the data using an annotated corpus such as the aforementioned Penn

Treebank.
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The utility of PCFG depends on the applications: they can be useful

for tasks such as parsing, i.e. for analyzing texts in order to obtain the

structure of sentences, but they have the disadvantage, compared to the

N-gram models, that they don’t distinguish between non-terminal symbols

belonging to the same lexical category.

3.2 Information Retrieval

Even though information retrieval is more about accessing data than it

is about analytics, it does propose some basic ideas that can be used for the

latter as well.

In order to satisfy the user’s information need, expressed through a query,

i.e. a sequence of keywords, Information Retrieval methods sort the docu-

ments of the collection according to their relevance.

3.2.1 Vector Space Model

One of the most common approaches to quantify the relevance of a doc-

ument is to measure the similarity between the query and the document

itself. In the Vector Space Retrieval model, both the document and the

query - which can be seen as a short document - are represented as vectors of

weights [7]. Once the vectors q⃗ and d⃗ have been defined, the cosine similar-

ity can be used to measure their similarity, which corresponds to the scalar

product of the normalized vectors:

similarity(q⃗, d⃗) = cos(θ) =
q⃗ · d⃗

∥q⃗∥∥d⃗∥
(3.1)

where θ is the angle between q⃗ and d⃗ [3, p. 121].

3.2.2 Bag-of-Words

As far as the vectorization of documents is concerned, refinements of the

Bag-of-Words (BoW) model are typically used in the context of Information
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Retrieval, whereby a document can be represented as a multiset (bag) of the

terms cointained in the document, ignoring their order. Therefore, consider-

ing each term as a dimension in the vector space, a weight can be associated

to each of them on the basis of various factors. In the basic version of the

BoW model, the weight associated with a term is equal to the term frequency

(TF), i.e. the number of occurrences of that term in the document [2, p. 89].

3.2.3 TF-IDF

The major flaw of the BoW model is that it does not take into account

the importance of words: words like ‘the’ or ‘of’ (the so-called ‘stop words ’)

carry almost zero information, since they are very common.

If we consider the distribution of words in any natural language, this

can be approximated by a Zipfian distribution (Zipf’s law), whereby the fre-

quency of a word is inversely proportional to its rank. In fact, by drawing the

rank-frequency graph of the words of a corpus, a power law type distribution

is obtained, whereby there are a few very frequent words, a relatively small

group of words with an average frequency, and many rare words [4]. In figure

3.1 we can see Zipf’s law applied to Wikipedia in 30 different languages: the

linear trend that emerges from the log-log scale graph is a clear indicator of

a power distribution.

Going back to the original problem, the BoW model can be improved

by taking this distribution into account, favoring the rarer terms. One of

the most used methods is TF-IDF, which consists in multiplying the term

frequency by an importance factor: the inverse document frequency (IDF):

w = tf · idf = tf · logN + 1

df
(3.2)

where N is the number of documents and df is the document frequency,

i.e. the number of documents containing the term [2, p. 99].
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Figure 3.1: Rank-frequency distribution of the first 10 million words on

Wikipedia [11].

3.2.4 Sub-linear transformations of TF

Another aspect to consider when representing a document is that the term

frequency differences are much more significant in the lower ranges than in

the higher ones: for example, it can be very important to know if the word

‘Covid’ occurs at least once; while knowing whether it appears 50 or 51 times

doesn’t make much difference.

For this reason, a sub-linear transformation can be applied to the term

frequency. Given f equal to the raw number of occurrences of the term in

the document, some options can be:

• logarithmic transformation: tf = log(1 + f)

• double logarithmic transformation: tf = log(1 + log(1 + f))

• BM25 TF: tf = (k+1)f
f+k

Compared to the logarithmic transformations, the BM25 TF transforma-

tion has the advantage of being able to be controlled through the parameter
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k : if it is equal to 0, a binary term frequency will be obtained (and, conse-

quently, a bit vector representation), while as k increases we will tend towards

a linear trend, with k+1 as the upper limit [6].

3.2.5 Pivoted length normalization

Even applying a sub-linear transformation of the term frequency, there

can be a bias towards long documents, as they contain more words. This

bias may or may not be justified depending on the specific application. In

the case of Information Retrieval, it may be useful to penalize (with caution)

longer documents, because they may cover more topics and therefore require

a greater effort from the user in order to satisfy his information needs.

One of the methods that can be used is the pivoted length normalization,

which uses the average length of the documents (pivot) as a reference, pe-

nalizing the longer ones with respect to the pivot and rewarding the shorter

ones. In practice, the following normalizer can be used:

1− b+ b
|d|

pivot

where |d| is the length of the document and b is a parameter between 0

and 1 that controls the degree of normalization [5].

3.2.6 Maximum TF normalization

Another approach that is sometimes used as an alternative to the sub-

linear transformation combined with pivoted length normalization is maxi-

mum TF normalization. The goal of this technique is to mitigate the effect

of words that are repeated over and over in a document. The normalization

that is applied is the following:

tf = a+ (1− a)
f

fmax
(3.3)

where fmax is the maximum raw frequency in the document considering

all the terms and a is a smoothing parameter between 0 and 1 (when it is



3.3 Machine Learning 21

equal to 0.5, it is usually called ‘Augmented Frequency’ ) [3, p. 127].

3.3 Machine Learning

Another field that has generated some interesting techniques for Text

Analysis is the field of Machine Learning (ML). The objective of Machine

Learning is similar to the one of Data Mining, i.e. the recognition of patterns

in data, but with the first expression we mean a specific approach, based on

the automatic training of models through examples (inferential learning).

Therefore at the basis of learning there is a dataset, made up of n samples

(also called ‘observations’), described by a vector of attributes (also called

‘variables’ or ‘features’). Attributes can be of various types: nominal/cate-

gorical, binary, ordinal, numeric.

The purpose of Machine Learning consists in the estimation of an out-

put (also called ‘target’) starting from the values of the attributes. If the

dataset that is used for model training also contains sample targets (also

called ‘labels’), the training is called supervised, otherwise it is unsupervised.

The two main problems that can be solved with a supervised approach are

regression (when the target is continuous) and classification (when the target

is discrete), while the clustering problem (i.e. the partition of the dataset

into groups such that the elements in the same group are similar and those in

different groups are dissimilar) typically requires an unsupervised approach.

As for the supervised case, suppose we observe p variables x⃗ together

with a target variable y. The latter is a function of x⃗:

y = f(x⃗) + ϵ (3.4)

where ϵ is the random error (independent of x⃗ and with zero mean) [23,

pp. 28-29].

In this case, the training of the Machine Learning model consists in esti-

mating the parameters of a function f̂ such that ∀(x⃗, y):
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y ≈ f̂(x⃗) (3.5)

With model evaluation, we can determine how close ŷ = f̂(x) is to y.

To avoid bias, the evaluation cannot be performed using samples which are

not seen in the training phase, so the dataset is initially divided into three

subsets:

• training set (for the training phase);

• validation set (for hyperparameter calibration);

• test set (for evaluation).

If we have a high error on the training set, it means that the model is too

simple and it underfits ; if instead there is a low error on the train set but a

high error on the test set, it means that the model is not able to generalize

and it overfits.

3.3.1 K-Nearest Neighbours

K-Nearest Neighbors (K-NN) [24, pp. 39-42] is one of the simplest clas-

sification models. It consists in representing the samples as points in a p-

dimensional space, and calculating the distance between the samples and

the sample under examination, according to a distance metric, such as the

Euclidean distance or the Manhattan distance.

Once the k closest samples have been identified, the output class is simply

the most common class of those samples.

To find a good value of k, experiments can be performed by incrementing

k from a value of 1 and selecting the value of k that results in the lowest

error rate.

3.3.2 Support Vector Machine

Another one of the most used models in the field of text classification is

the Support Vector Machine (SVM) model [24, pp. 340-353].
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In the SVM model, as in the K-NN model, each observation is represented

as a point in space. The goal is to find an optimal separation hyperplane

between samples of different classes. Assuming we have a vector space of

dimension p, a hyperplane of this space can be described by the following

linear equation:

w0 +

p∑
j=1

wjxj = 0 (3.6)

Supposing we have two classes, with yi ∈ {−1, 1}, we can define a sepa-

rating hyperplane as a hyperplane for which the following property holds for

each i = 1...n :

yi(w0 +

p∑
j=1

wjxij) > 0 (3.7)

Concretely, this constraint imposes that the points corresponding to the

negative and positive class lie respectively below and above the hyperplane.

The problem with this definition is that there can be infinite hyperplanes

that fulfill this constraint. Obviously, the most reasonable choice is a hy-

perplane that is as far away from the train set observations as possible. In

the Maximal Margin Classifier, this is done by looking for the parameters

β0, ...βp which maximize a variable M called margin, with the constraint that

all observations are at least at a distance M from the hyperplane:

yi(w0 +

p∑
j=1

wjxij) > M (3.8)

However, this optimization problem may not have a solution. To solve

this issue, and to avoid overfitting due to outliers, some violations can be

accepted during training, effectively defining a soft margin. The resulting

model is a Soft Margin Classifier, also known as Support Vector Classifier

(SVC).

To loosen the constraint, positive slack variables ϵ1...ϵn are added to the

optimization problem, which, if greater than zero, indicate that the observa-
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Figure 3.2: Comparison of 2D hyperplanes.. H3 does not separate the two

classes. H1 separates the classes with a small margin, while H2 is the sepa-

rating hyperplane with maximum margin [27].

tion is on the wrong side of the margin (these points and the ones exactly on

the margin are called support vectors):

yi(w0 +

p∑
j=1

wjxij) > M(1− ϵi) (3.9)

To control the number and severity of violations, the sum of slack variables

is required to be less than a C hyperparameter.

Using sophisticated techniques, one can reformulate the optimization

problem so that it can be solved simply by calculating the scalar products

between the observations.

The Support Vector Machines are the generalization of the SVC: instead

of the dot product, in fact, other similarity kernel functions can be used.

Indeed, if the data is not linearly separable, a nonlinear decision boundary

can be obtained by mapping the points to a multidimensional space, using,

for example, the polynomial kernel.

Since these models are of binary type, in the presence of an arbitrary

number k ≥ 2 of classes it is necessary to train more classifiers, adopting one

of the following approaches:

• One-Versus-One (OVO), implementing a voting system with k(k−1)
2
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classifiers;

• One-Versus-All (OVA), implementing only k classifiers and searching

for the class with the highest confidence level.

3.3.3 Bayesian models

Bayesian models are probabilistic models, based on the assumption that

reality is governed by probability distributions.

The simplest Bayesian model is the Naive Bayes (NB) model, aMaximum

Posterior (MAP) classifier.

The goal is to find the class for which the conditional probability is max-

imum [25, pp. 177-178]:

k∗ = argmax
ki∈K

P (ki|xt) (3.10)

where K is the set of classes and xt is a new sample.

By Bayes’ theorem, we have:

P (A|B) =
P (A)P (B|A)

P (B)
(3.11)

where:

• P (A|B) is the a posteriori probability ;

• P (B|A) is the likelihood ;

• P (A) is the a priori probability.

Therefore we have:

k∗ = argmax
ki∈K

P (ki)P (xt|ki)
P (xt)

= argmax
ki∈K

P (ki)P (xt|ki) (3.12)

Assuming that the variables xj,t are independent - and therefore their

joint probability is equal to the product of the individual probabilities - we
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have:

k∗ = argmax
ki∈K

P (ki)

p∏
j=1

P (xj,t|ki) (3.13)

In the case of qualitative variables, these probabilities can be easily esti-

mated from the dataset by calculating the relative frequencies, while in the

case of quantitative variables it can be assumed that each variable follows

a different distribution whose parameters can be estimated using Maximum

Likelihood Estimation (MLE).

The Gaussian Naive Bayes model, for example, assumes that the vari-

ables are governed by normal distributions, and it estimates the mean and

variance for each class.

3.3.4 Artificial Neural Networks

Artificial Neural Networks (ANN) are regression and classification models

inspired by neuroscience.

The basic unit of ANNs is the neuron, which performs two fundamental

operations: a weighted sum of the inputs (2.1) and the application of an

activation function (2.2).

z =
n∑

i=0

wixi (3.14)

a = g(z) (3.15)

where x is the vector of inputs (with a bias input x0 = 1), w is the

vector of weights associated with the inputs, and g is a nonlinear activation

function. Figure 3.3 shows some of the most used activation functions.

There are two basic types of [10, p.729] networks:

• feed-forward networks, whose connections between units are in one di-

rection only;

• recurrent networks (RNN), whose outputs can become inputs, thus

supporting short-term memory.
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Figure 3.3: Commony used activation functions: Sigmoid, Hyperbolic tan-

gent, ReLU, and Leaky ReLU.

The choice of network type usually depends on the task: for example,

feed-forward networks are suitable for simple classification problems, while

RNNs can be used to generate sequential data.

The base class of feed-forward networks is that of Multilayer Perceptron

(MLP), in which there are several layers in sequence, each composed of units

working in parallel, and the outputs of each layer become the inputs of the

next level.

All units other than output units are called hidden units, and, if every

unit in one level is connected to all other units in the next level, the network

is said to be fully connected.

The width of the network is defined as the maximum number of hidden

units in a single level, while the depth of the network is defined as the total

number of levels; in the case of neural networks with many levels, we call it

Deep Learning.

The learning consists in the estimation of the weights of the network, in

order to determine a composite function that solves the given problem.
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To do this, we try to optimize a given objective function.

In the case of regression, the mean squared error (Mean Squared Error,

MSE) can be used as a cost function.

In the case of multiclass classification, on the other hand, one may wish

to maximize the likelihood of the target class for each sample [26, p. 209]:

P (y|x,w) =
N∏

n=1

K∏
k=1

ŷynk

nk (3.16)

where ynk is a bit equal to 1 only if class k is associated with sample n,

and ŷnk is the probability of class k for sample n estimated via the network.

Since the product of a large number of probabilities tends to zero and since

maximization problems are generally reduced to minimization problems, the

goal becomes the minimization of the Negative Log Likelihood (NLL), which

corresponds to Multiclass Cross-Entropy :

J(w) = −lnP (y|x,w) = −
N∑

n=1

K∑
k=1

ynkln(ŷnk) (3.17)

To minimize the cost function J, variants of the iterative Gradient Descent

algorithm are typically used. The latter allows to find the local minima of the

function starting from a random point and following each time the direction

opposite to that indicated by the gradient, until convergence [10, p.719]:

wl = wl − α
δJ(w)

δwl

(3.18)

where l is the level, and α is the learning rate which determines the length

of the steps.

To calculate the gradient at each level, the backpropagation method is

used, based on the rule of the chain of derivatives, starting from the output

level and going backwards.

In addition to Gradient Descent, other optimizers potentially faster in

achieving convergence can be used, such as, for example, Stochastic Gradient

Descent (SDG) which trains the network with a subset (minibatch) of samples

at a time [10, p.720].
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3.3.5 Word2Vec

Word2Vec is a set of models to generate word embeddings (mapping of

words into vectors of real numbers) developed by Google in 2013 [18]. Em-

beddings generated by Word2Vec allow semantic analysis, since similar words

have similar embeddings. Moreover, taking into account different types of

similarity, these embeddings can be used in vector arithmetic: for example,

vec(Germany) + vec(capital) is close to vec(Berlin) [19] [20]. Instead of cre-

ating a sparse representation as one-hot encoding models, Word2vec creates

a dense representation, assuming that each element of the vector is associated

to a concept (e.g. gender, nationality, and so on).

Word2Vec learning is based on the Distributional Hypothesis formulated

by the linguist John Rupert Firth: “You shall know a word by the company

it keeps” [31].

Word2Vec includes two models, both based on two-layer networks:

• Skip-Gram (SG), which predicts the context given a word as input;

• Continuous Bag-of-Words (CBOW), which predicts a word given the

context as input.

Skip-Gram works by training a network to solve the task of predicting

context words given an input word (center word). The network computes

probabilities related to how likely it is find each vocabulary word nearby

the center word, i.e. p(o|c). To be more precise, SG is a network with a

single hidden layer (with as many units as the chosen number of dimensions)

which considers as training samples the word pairs (represented as one-hot

encodings). The network tries to maximize the probability of the words being

in the same context, which is defined using the softmax function to get values

between 0 and 1 for each word that together sum up to 1:

p(o|c) = eu
T
o vc∑W

w=1 e
uT
wvc

(3.19)
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where W is the number of words in the vocabulary, uT
w is the context

embedding of word w and vw is the context embedding of word w 3.4.

Actually, the goal is just to learn the weights of the hidden layer, which

are the word vectors we are looking for.

Figure 3.4: Skip-Gram model

Continuous Bag-of-Words is similar to Skip-Gram, but, since it uses many

context words as inputs, it averages their embeddings in the hidden layer.

SG is a little bit slower than CBOW, because it trains the network with a

single context word at a time, but it works better with uncommon words.



Chapter 4

State of the Art of Virtual

Assistants for Domotic

Appliance Control

This chapter will introduce the core concepts and motivations of Home

Automation and Virtual Assistants, dealing with available consumer hubs on

the market and the most popular open-source alternative: Home Assistant.

4.1 Home Automation

Home Automation, also referred to as domotics from the Latin word

domus meaning house, is the field of building systems capable of monitoring

and controlling home appliances in order to improve quality of life.

These systems can be classified according to several parameters, such as

topology and communication channel.

Depending on topology, there can be centralized systems with a hub or

distributed systems with many smart devices. Each structure has its ad-

vantages and disadvantages: centralized systems are easier to control and

manage, but distributed systems are more robust since there is not a single

point of failure. In reality, the most common solution is to create a system

31
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which combines the advantages of each topology, by having smart devices

which can also be integrated into a central hub.

Depending on communication channel, there can be wired systems, such

as the most common KNX standard implementation which connects de-

vices through a twisted pair bus, or wireless systems, which connect devices

through a radio-frequency standard, such as Wi-Fi, Zigbee, Bluetooth or Z-

Wave. Wired system have the advantage of being generally faster and almost

completely immune to interference, but are more expensive and typically re-

quire a technician intervention for installation and upgrade. However, it is

important to notice that there is a great variance even between wired pro-

tocols: Bluetooth is slower than Wi-Fi; Wi-Fi is slower and requires more

power consumption than Zigbee and Z-Wave; all devices except Wi-Fi de-

vices require an hub in order to be connected to the Internet and become an

actual Internet-of-Things (IoT) device.

As far as appliances are concerned, the most common ones are:

• lightning devices, such as light bulbs, led strips and light switches;

• heating, ventilation and air conditioning (HVAC) devices, such as ther-

mostats, thermostatic valves and fans;

• security devices, such as alarms, locks, contact sensors, motion sensors

and security cameras;

• environmental sensors, such as temperature and humidity sensors, air

quality sensors, smoke and gas leakage detectors;

• energy devices, such as plugs and meters.

Home Automation systems can be helpful in improving safety, energy

efficiency, making home management easier, especially for elderly people and

people with disabilities, thus increasing their independence.
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4.2 Virtual Assistants

Interaction between humans and machines has evolved significantly over

time and different styles of interaction have emerged to improve the efficacy

of the dialogue, taking into account the features of the specific application,

and to eventually meet the user’s needs.

Between these styles, Natural Language appears to be the most attractive,

since it is usually more immediate: for example, it does not require users to

remember commands (as the Command Line Interface style) nor to navigate

through long sequences of options (as the Menu style) [32]. However, as we

have seen in 3.1, Natural Language is ambiguous by nature, so an NLP-based

interaction is most effective in limited domains, where context can help in

generating precise instructions for the computer.

Virtual Assistants (VA) are software which take as input a text/voice

request and execute the requested task. While the most basic VAs make

use of the command-line interaction style inheriting its lack of flexibility, the

most advanced ones can be quite complex.

4.2.1 Components

The main component of a Virtual Assistant is the Intent Recognition

component. If the input is in vocal form, a Speech Recognition component

is also needed. The Speech Synthesis component is optional in each case.

A Voice Assistant is a special kind of VA which is composed of all three

components.

Speech Recognition

The Automatic Speech Recognition (ASR) component is in charge of

Speech-to-Text (STT): it translates the spoken language command (an acous-

tic signal) into a text command.

Most speech recognizers are made up of four components [10, pp. 913-

918]:
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• a signal processor, an Analog-to-Digital Converter (ADC) which sam-

ples and quantizes the acoustic signal and computes relevant frequency

features over time slices called frames ;

• a phone model, an Hidden Markov Model which describes a phone

(distinct speech sound) as three states: onset, middle and end;

• a word-pronunciation model, a transition model whose states are the

phone models;

• a language model, typically a N-gram model.

The probabilities of the phone models and the word-pronunciation models

are acquired from a corpus of speech, while those of the language model are

acquired from a corpus of written text.

With these components, a speech recognizer can compute the most likely

command through Bayes’ rule:

argmax
word1:t

P (word1:t|sound1:t) = argmax
word1:t

P (sound1:t|word1:t)P (word1:t) (4.1)

In the last few years, a new end-to-end approach based on Transformers

has emerged, which is more flexible than HMM. While the signal processing

step is similar, the acoustic and language models are replaced by encoders and

decoders made up of Recurrent Neural Networks (RNN) with an attention

mechanism [48]. An example of open-source transformer-based ASR system

is OpenAI’s Whisper, trained on 680,000 hours of multilingual supervised

data, which approaches human accuracy [49].

Intent Recognition

The Intent Recognition component is in charge of translating the textual

command into a command (Intent) which matches the user intentions and is

understandable by the machine.

The two main approaches which can be adopted to reach this goal are:
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• the rule-based approach, which makes use of regular expressions or

equivalent matching techniques;

• the Machine Learning approach, which treats the Intent Recognition

problem as a classification problem.

In addition to the Intent, this component also extracts additional infor-

mation from the input: the slot-filling process identifies relevant slot labels

(such as area) and slot values (such as kitchen).

Speech Synthesis

The Speech Synthesis component is in charge of Text-to-Speech (TTS): it

generates human speech from text, and it can be used to provide a feedback

about the operation or the result of the query.

To accomplish this task, the engine pre-processes the text (for example,

normalizing numbers and abbreviations) and assigns phonetic transcriptions

to the tokens. By using these annotations, the synthesizer can generate the

speech by using pre-recorded samples.

4.3 Proprietary Voice Assistants for Home

Control

The most widespread VAs with home control capabilities are Amazon

Alexa, Google Assistant and Siri.

Amazon Alexa, first released in 2014, is embedded on a wide range of

smart devices, such as the popular smart speakers Amazon Echo Dot and

Amazon Echo Plus. It can perform several basic tasks, which can be extended

by installing applications called Skills.

Google Assistant, first released in 2016 as Android application, is now

available on numerous other devices as well, such as the Google Nest speakers.

The platform which is in charge of linking all Google’s components for home

control is called Google Home.
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Siri, the VA released by Apple Inc. in 2011, is only available on Apple

devices, such as iPad, iPhone, and HomePod speakers. The framework which

allows users to use Siri for home control is called HomeKit.

As far as performance is concerned, a study conducted by Loup Ventures

has compared Google’s, Amazon’s and Apple’s VAs; in the command cate-

gory, the most accurate VA appears to be Siri (85% accuracy), followed by

Google Assistant (73% accuracy) and Amazon Alexa (68% accuracy) [59].

For each one of the VAs, access to the Internet is required for ASR. Once

the smart speaker recognizes the wake word, it turns on a LED indicator

and streams the voice command to the cloud in order to understand it and

execute it, as shown in Figure 4.1.

Figure 4.1: Cloud-based Voice Assistant architecture.

Several privacy concerns have emerged over the years. Amazon, Google

and Apple have admitted in 2019 that human workers have been regularly

listening to VAs recordings [60], and there have been numerous cases in which

smart speakers have been accidentally triggered [61]. The companies have

tackled the issue by establishing the possibility for the user to delete the

recordings and to opt-out of recording retention.
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Nevertheless, privacy is “the right of a user to determine the degree to

which they are willing to share their personal information with others” [62],

thus the user’s perception, which is also influenced by trust, cannot be ne-

glected.

4.4 An open-source alternative: Home Assis-

tant

Home Assistant is an open-source platform which allows to build a home

automation system and run it on a local server to preserve privacy.

It was first released in 2013 by Paulus Schoutsen, and it has now be-

come one of the most active projects on GitHub.com, with more than 3000

contributors [36].

The exact number of users of Home Assistant cannot be known, but its

developers estimate from usage reports that there are more than 200,000

active installation currently with an increasing trend 4.2.

Figure 4.2: Home Assistant installations [34].

The most popular board for the system is the microprocessor Raspberry

Pi, which is designed to be an always-on system, has a low energy con-
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sumption, a small form factor, and is cheaper than most computers with

comparable specifications. Its latest version, Raspberry Pi 4, comes with

four variants ranging from 1GB RAM to 8GB RAM.

4.4.1 Core concepts

Home Assistant has a layered architecture:

• Home Assistant Core is the main application, which is in charge of

monitoring events and entity state changes, calling services, handling

the UI, and so on;

• Home Assistant Supervisor is the layer in charge of running and up-

dating Core and Add-ons and managing backups;

• Home Assistant Operating System (HAOS, formerly known as HassIO)

is an operating system built on Linux specifically to run Home Assistant

with minimal effort.

Home Assistant Core is built incrementally on integrations, which provide

devices and services. For example, the light integration allows to track light

bulbs and exposes services to control them (e.g. turn on/off, change color,

and so on). There are four main types of integrations:

• integrations which define a domain (e.g. light, fan, lock);

• integrations which provide devices interacting with external platforms

(e.g. MQTT );

• integrations which represent virtual data (e.g. input boolean);

• integrations which provide sequences of actions (e.g. automation).

All relevant information for the end-user is in the form of entities, whose

states (e.g. on) and attributes (e.g. last changed) can be used to create

YAML scripts and automations (scripts with specific triggers). Internally,
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the system stores information about devices, entities, and user-defined areas

(location of devices) in specific registries. Home Assistant Core currently

includes more than 2000 built-in integrations, and can also be extended with

Python-written custom integrations.

4.4.2 Assist

Home Assistant provides a Virtual Assistant called Assist (released in

January 2023 for the “Year of the Voice” project [51]) capable of accessing

device information and calling services, which lets users input text commands

or voice commands. There are several ways to input voice commands:

• through a computer microphone accessed by the browser;

• through an Android/iOS smartphone microphone accessed by the Home

Assistant app;

• through a WearOS smartwatch microphone;

• through ESP32 boards equipped with a microphone (self-built or pre-

assembled as the M5Stack Atom Echo)

The idea is to have multiple voice satellites which can be activated (cur-

rently pressing a button, in the future, according to developers, through wake

word detection) in several areas of the house where they can be useful.

The Assist Pipeline is in charge of linking the STT component, the Intent

Recognition component, the Intent execution component, and the TTS com-

ponent 4.3. Each part, except the Intent execution component, is customiz-

able by the end user: it is possible to connect external voice services (e.g.

Whisper as STT service and Piper as TTS service) through the Wyoming

protocol, as well as using custom conversation agents.

Conversation integration

The default conversation agent provided by Home Assistant relies on an

Intent Recognition engine called hassil. Hassil is a match-based engine: it



40
4. State of the Art of Virtual Assistants for Domotic Appliance

Control

Figure 4.3: Assist Architecture [33].

makes use of YAML sentence templates provided by the Home Assistant

community to recognize the intent and to fill the slots for that specific in-

tent by extracting data using positional information. For example, a small

fragment for the HassTurnOn intent is the following:

language: en

intents:

HassTurnOn:

data:

- sentences:

- "(open | raise) [the] {cover_classes:device_class}

in <area>"

slots:

domain: cover

response: cover_device_class

The parentheses and the pipe operator define alternative text parts and

allow the sentence to start with open or raise; the square brackets introduce
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the optional text sequence The; the curly brackets introduce a placeholder for

a slot value; the colon defines the possible input values and the corresponding

output values for the slot (e.g. maps the cover class doors to the device class

door); the angle brackets are linked to expansion rules defined elsewhere

which in this case replace ⟨area⟩ with [The] {area}.
In addition to the intent, the slot labels and the slot values, the sentence

template can also contain a response type to make it possible to generate a

response which is as pertinent as possible to the request, which is especially

useful for query requests such as “How many doors are open?”. Response

templates make use of the Jinja2 templating engine which manipulates the

matched entities.

Home Assistant currently supports intents in table 4.4.2 for the Italian

language.

Intent Slots

HassTurnOn name, area, domain, device class

HassTurnOff name, area, domain, device class

HassGetState name, area, domain, device class, state

HassLightSet name, area, brightness, color

The name, area, domain and device class slots are self-explanatory, while

the state slot is used to store question information which have to be used as

filters for the query (e.g. if the input is “Is the kitchen light on?” the slot

will contain the value ‘on’).

Not all slots need to be filled in order to handle the Intent: it is possible

to identify a device/entity or a set of devices using: only their name; only

their area; their area and name/domain/device class; only their domain; their

domain and device class.

Table 4.4.2 shows the possible responses for each intent. The responses

for HassTurnOn, HassTurnOff and HassLightSet are all variants of feedback

about the action which has been carried out (e.g. “Turned on light” or

“Brightness changed to 100%”). Unlike these, the responses for HassGetState

are the result of a query:
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• one is the response type for questions about the state of a single entity;

• one yesno is the response type when asking whether a single entity is

in a specific state;

• all is the response type when asking whether every entity is in a specific

state;

• any is the response type when asking whether there is at least one

entity in a specific state;

• which is the response type when asking to list the entities in a specific

state;

• how many is the response type when requesting the total count of en-

tities in a specific state;

Intent Responses

HassTurnOn default, lights area, fans area, cover device class, cover device class area

HassTurnOff default, lights area, fans area, cover device class, cover device class area

HassGetState one, one yesno, all, any, which, how many

HassLightSet brightness, brightness area, color, color area



Chapter 5

A new Intent Recognition

engine: Converso

This chapter will introduce a novel Intent Recognition engine for the

Italian Language which can be integrated into Home Assistant in order to

control and monitor home appliances.

5.1 Design

The main requirements for this Voice Assistant are three:

• high accuracy (> 60%);

• low delay (median value < 5s);

• privacy-preservation (complete control of data).

Assuming all household members and visitors can be trusted, the choice

of a local platform like Home Assistant automatically fulfills the privacy

requirement, since the system can work without connecting to any cloud

service: no leakage, no data breaches and no misuse are possible without

access to the local server. Figure 5.1 shows the architecture of the system.

However, the choice of a local system introduces a new requirement: low

resources consumption (less than 8 GB RAM). In fact, even if the main

43
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Figure 5.1: Converso-based Voice Assistant architecture.

bottleneck of the Voice pipeline is Speech Recognition, using low resource and

faster STT models (such as Whisper base instead of Whisper large 5.2) results

in less accurate output, which has to be handled and possibly corrected.

Figure 5.2: Whisper models [35].

5.1.1 Spelling Correction

Speech Recognition is prone to errors related to:

• environmental noise, due to music, people, loud appliances, and so on;

• bad sound quality, due to low quality/distant microphones;

• out-of-vocabulary words, for example due to the use of custom names;
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• homophones, which are different words with similar phonemes;

• lack of pauses in speech, which can result in segmentation and coartic-

ulation errors;

• pronunciation defects, for example due to dialect variations.

There exists many techniques to reduce these errors, among which the

most flexible one is post-editing, which entails correcting the output text

instead of the ASR algorithm [50]. In fact, these type of techniques can also

be used for written commands which can contain spelling errors as well.

The main components of a post-editing algorithm are [55]:

1. error detection;

2. generation of candidates for correction;

3. selection of the best candidate.

Error detection

The error detection step is the simplest one. First, the input command

is decomposed into unigrams and bigrams. Then, the algorithm identifies as

possible errors the unigrams which are not included in the domain vocabulary,

as well as bigrams whose probability is below a certain threshold γ.

The domain vocabulary is defined using all words which appear in the syn-

thetic dataset defined in subsection 5.1.2, extended with user-defined custom

entities’ tokens.

The probability of each bigram is accessed from a pre-computed dataset

derived from bigrams frequency lists extracted from the Italian WaCky cor-

pus, which was built using the Italian Wikipedia and a 2 billion word corpus

built by crawling .it web pages [54]. In order to reduce RAM usage, only

bigrams with frequency greater than 10 are taken into account in the pre-

computed dataset, resulting in 6,862,893 bigrams.
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If the bigram is not included in the dataset, there are two cases: if the

bigram is part of a custom name, the algorithm returns the maximum prob-

ability computed among all bigram probabilities; if the bigram is not part of

a custom name, the algorithm returns the minimum probability instead.

Candidates generation

The generation of possible candidates for the correction of an error is

performed by taking into account the trade-off between output accuracy and

computational efficiency. For this reason, the possible candidates are gen-

erated in three different stages: if the best candidate in the current stage

does not meet the requirements, then the algorithm continues the search by

generating the candidates for the following stage.

Assuming that domain-specific unigrams and less edited N-grams have a

greater probability, the candidates for each stage are:

1. 1-edit corrections which result in unigrams included in the domain vo-

cabulary;

2. 2-edit corrections which result in unigrams included in the domain vo-

cabulary and 1-edit corrections which result in unigrams included in

the WaCky vocabulary;

3. 2-edit corrections which result in unigrams included in the WaCky vo-

cabulary.

The possible corrections are generated by computing close strings, where

closeness is defined through a metric called edit distance, which is the mini-

mum number of operations required to transform one string into the other.

In this work we use the Damerau-Levenshtein distance [57], which allows 4

types of operations:

• insertion of a character;

• deletion of a character;
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• replacement of a character with another character;

• transposition of two adjacent characters.

The characters we consider are all the letters of the Latin alphabet plus

the space character, which is useful to correct segmentation errors.

Finally, candidates which contain unigrams not included in the WaCky-

derived unigram frequency list (containing the top 352,142 unigrams) are

filtered out.

Candidate selection

The best candidate at each stage is selected using N-gram language mod-

els, in order to make use of context information. As seen in section 3.1.2,

using a bigram model, the probability of a sentence can be computed as a

product of conditional probabilities:

P (w1:N) =
N∏
i=1

P (wi|w1:i−1) =
N∏
i=1

P (wi|wi−1)

Each conditional probability can be estimated through frequency normal-

ization:

P (wi|wi−1) =
count(wi−1:i)∑
w count(wi−1, w)

In this application, count(wi−1:i) is the frequency of the bigram wi−1wi

which can be directly extracted from the WaCky dataset, while we approxi-

mate the denominator as the frequency of wi−1 for efficiency reasons.

As before, the frequency of custom N-grams is assumed to be the same

as the most frequent N-grams, while the frequency of out-of-vocabulary N-

grams is assumed to be the same as the less frequent N-gram, in order to

avoid division by zero.

The conditional probability is also smoothed using linear interpolation:

P (wi|wi−1) = (1− λ)P (wi|wi−1) + λP (wi)
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Moreover, since the product of many probabilities can cause underflow,

we transform probabilities into log-likelihoods:

P (w1:N) =
N∏
i=1

P (wi|wi−1) =
N∑
i=1

log[P (wi|wi−1)]

Thus:

P (w1:N) ≈
N∑
i=1

log[(1− λ)
count(wi−1wi)

count(wi−1)
+ λ

count(wi)∑N
j=1 wj

]

Therefore, the best candidate at each stage is the candidate which results

in the greatest likelihood using bigrams.

Finally, assuming that a wrong correction is worse than no correction,

the best candidate replaces the error only if a fixed improvement threshold

β, which is proportional to the stage number and normalized by the sentence

length, is reached.

5.1.2 Intent Recognition and Slot Labelling

The Intent Recognition problem can be seen as a multi-class classification

problem, thus it can be faced adopting a Machine Learning approach. The

possible intents taken into consideration are the following:

• HassTurnOn, which is used to turn on/open entities in the on/off do-

mains;

• HassTurnOff, which is used to turn off/close entities in the on/off do-

mains;

• HassGetState, which is used to ask questions about the state of entities

in the on/off domains;

• HassLightSet which is used to change the brightness/color of a light;
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• HassClimateGetTemperature, which is used to get the current temper-

ature detected by a sensor of an appliance in the climate domain (such

as a thermostat);

• HassClimateSetTemperature, which is used to modify the target tem-

perature of a climate appliance.

As far as slot-filling is concerned, an hybrid approach is adopted. Slots

whose value can be directly extracted from the text, such as area, name

brightness and color, are handled in section 5.1.3. Machine Learning is used

to classify all other slots: domain; device class; response; state.

The domain can be: light, fan, cover, climate, or default. The first three

are considered on/off domains, and default means that the domain cannot

be derived from the text, as in the case of turning on an entity by using its

name. The domain slot has to be filled for the HassTurnOn, HassTurnOff

and HassGetState intents.

The device class slot is currently used by Home Assistant only to disam-

biguate between different entities in the cover domain, and it can have one

the following values: door ; window ; blind ; curtain; awning ; garage; gate;

shade; shutter. The device class slot has to be filled for the HassTurnOn,

HassTurnOff and HassGetState intents, but only if the domain is cover.

The response slot can have one of the following values depending on intent

type:

• ifHassTurnOn/HassTurnOff : default, lights area, fans area, cover area,

cover, cover device class, cover device class area, cover garage;

• if HassGetState: one, one yesno, any, all, which, how many ;

• if HassLightSet : brightness, brightness area, color, color area;

• if HassClimateGetTemperature: default ;

• if HassClimateSetTemperature: default.
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The state slot, described in 4.4.2, can have value on, off or none (if the

response is one). The state slot has to be filled only for the HassGetState

intent.

Dataset generation

In absence of available data for the Italian language, a synthetic dataset

with a large number of text commands is used as training dataset. The

dataset is generated through a Feature Based Grammar, which takes into

account the Syntactic Agreement, marking nouns and verbs as plural or

singular; marking nouns as feminine or masculine; marking masculine nouns

according to their article (in the Italian language, singular masculine nouns

can be preceded by il or lo).

The grammar consists of productions inspired by the Home Assistant

sentence templates [37].

The starting productions are the following:

S -> Intent

Intent -> HassTurnOn | HassTurnOff | HassGetState | HassLightSet |

HassClimateGetTemperature | HassClimateSetTemperature

HassTurnOn -> Light_TurnOn | Fan_TurnOn | Cover_Open |

Entity_TurnOn

HassTurnOff -> Light_TurnOff | Fan_TurnOff | Cover_Close |

Entity_TurnOff

HassGetState -> Cover_Get | Entity_Get

HassLightSet -> Light_SetBrightness | Light_SetColor

HassClimateGetTemperature -> Climate_Get

HassClimateSetTemperature -> Climate_Set

The Entity TurnOn, Entity TurnOff and Entity Get are related to sen-

tences addressing the entity by name.

Productions related to the cover domain (an on/off domain) use the verbs

to open and to close instead of to turn on and to turn off and differentiate
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between interior covers and exterior covers in order not to generate illogical

sentences such as “the garage in the kitchen”.

Since the Italian language has a word order which is less strict than the

English language, also valid permutations are added, such as:

Light_SetColor -> Set Color WhereOf Onto ColorValue |

Set Onto ColorValue Color WhereOf

Light_SetColor -> Change Color WhereOf Into ColorValue |

Change Into ColorValue Color WhereOf

WhereOf -> In Area | Of Area

Leaf values are Italian tokens, for example:

TempUnit -> ‘gradi’ | ‘gradi celsius’ | ‘gradi centigradi’

In order to automatically annotate each sentence with the intent, the

slot values and the response type, the grammar tree is parsed and subtrees

generated by filtering node labels are analyzed.

Finally, since the actual voice commands do not always contain stop-

words (e.g. ‘turn kitchen lights on’) as users can prioritize speed in respect to

grammar rules, the dataset is extended with commands without stop-words.

Data preprocessing

Each text command in the dataset is preprocessed through the following

pipeline:

1. normalization;

2. tokenization;

3. stop-word removal;

4. feature extraction.
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Since the last step entails using FastText, an open-source library for word

embeddings, the first two steps are carried out consistently with the same

algorithm which was used to tokenize FastText training data, included in

Europarl Preprocessing Tools [39] [40]. This algorithm:

• lowercases all words;

• adds spaces around special characters (except spaces, dots, commas,

apostrophes, backticks and dashes);

• keeps sequences of dots united;

• adds spaces around commas, except if the comma is between numbers;

• splits contractions (e.g. converts isn’t to isn’ t);

• tokenizes the text using a whitespace tokenizer.

In addition, it converts numbers from word form (e.g. four) to digit form

(e.g. 4 ).

Stop-word removal does not always result in better results with word-

embeddings, as it can lead to loss of information, so models are tested with

and without stopwords.

Feature extraction, as mentioned before, is performed using FastText.

FastText includes models derived from Word2Vec, which enrich the word

representations by taking into account the internal structure of words: each

word is represented by the sum of the vector representations of its (bag

of characters) N-grams. The model for the Italian language is trained on

Common Crawl and Wikipedia using CBOW with a window size of 5 and

character 5-grams [41].

In order to convert each command to an array of floating points, each

token of the command is converted to a 100-dimensional vector and the

average vector is computed.

To speed up training, each attribute is standardized by scaling to unit

variance:

z =
x− µ

σ
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where µ is the mean value of the training samples and σ is the standard

deviation of the training samples.

Finally, since datasets can be unbalanced and this could affect training,

an undersampling technique is used to mitigate the problem by randomly

removing samples in the majority class.

Model training

A different dataset is created for each label. The Response label is split

into three different sub-labels (ResponseHassTurn, ResponseLightSet and Re-

sponseGetState), since the possible responses depend on Intent. The datasets

do not include examples whose target value for the label can be inferred from

other target values:

• Response is always equal to default for HassClimateGetTemperature

and HassClimateSetTemperature;

• Domain is always equal to light for HassLightSet and equal to climate

for HassClimateGetTemperature and HassClimateSetTemperature;

• DeviceClass is only relevant if Domain is equal to cover ;

• State is only relevant for HassGetState if Response is not equal to one

A splitting technique is applied to each dataset. Table 5.1 shows the

splitting ratios adopted.

Train Set Validation Set Test Set

72% 18% 10%

Table 5.1: Datasets splitting ratios.

In addition to random shuffling, stratification is applied in order to have

the same proportion of target values in each subset as the original dataset.
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The proposed models are SVM (with linear and polynomial kernel), Gaus-

sian Naive Bayes, KNN and Multi-Layer Perceptron (MLP). A grid search

is performed in order to find the best hyperparameters for each model: for

SVM, the possible values for C taken into account are 0.1, 1, 10, 100; with

a degree of 2 or 3 in the case of polynomial kernel; for KNN, the number of

neighbors taken into account are 1, 2, 3 and 4; for MLP, the possible values

for α are 0.0001 and 0.05, with one (100 neurons) or two (100 and 10 neurons)

hidden layers.

In order to obtain reliable error values, a 5-fold cross-validation is used:

the dataset is split in 5 different ways and the average accuracy is used to

tune the hyperparameters. K-fold cross-validation is usually implemented

with k=5 or k=10 [24, p.184], in this case the smallest value is used due to

the size of the dataset.

5.1.3 Information Extraction

A different approach is used to fill the slots whose value can be directly

extracted from the text.

Firstly, the input text is preprocessed following the Europarl tokenization

algorithm described previously, then unigrams, bigrams and trigrams are

generated and converted to sentence embeddings computing the average of

the vectors of each token.

In the case of area and name, the exposed entities, i.e. entities names, ids,

and aliases for the entities made available for the Voice Assistant by the user

through the UI, are converted to sentence embeddings in the same way, then

the cosine similarity between each N-gram and exposed entity is computed.

If the similarity is above a certain threshold, the area/name entity is added

as slot value.

In the case of number extraction, such as brightness and temperature, a

different approach is used. First, the text is parsed in order to find numeric

modifiers (nummod), then related numeric modifiers and conjuncts (conj )

are considered potential decimal parts to add to the number.
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Finally, the color extraction is a simple hash-table search.

5.2 Implementation

The implementation consists of three packages: the word2vec package;

the intent recognition package; and the converso package. Relevant snippets

of code can be found in Appendix B.

5.2.1 Word2Vec

The Word2Vec package handles the word embeddings, providing useful

methods to convert tokens into their vector representation, to compute cosine

similarity between text sequences, and to retrieve the most similar words to

a given word.

As previously stated, the word embeddings are provided by the FastText

library (specifically, the 6.74 GB cc.it.300.bin file). In order to reduce RAM

usage, the model which is used in the training stage and in the final applica-

tion is a pre-computed model derived from the original one by reducing it to

100 dimensions and saving it in word2vec binary format - resulting in a 783

MB file - using Gensim library [58]:

import fasttext

import fasttext.util

from gensim.models import KeyedVectors

fasttext.util.download_model(‘it’, if_exists=‘ignore’)

ft = fasttext.load_model(‘cc.it.300.bin’)

fasttext.util.reduce_model(ft, 100)

ft.save_model(‘cc.it.100.bin’)

m = gensim.models.fasttext.load_facebook_model(‘cc.it.100.bin’)

m.wv.save_word2vec_format(‘gensim_cc.it.100.bin’, binary=True)
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5.2.2 Intent Recognition

The Intent Recognition package is used to generate and preprocess the

dataset, to train the models, to evaluate them and save the best ones.

The synthetic dataset is generated through the FeatureGrammar of NLTK

(Natural Language Toolkit) library [42]. The grammar consists of 202 pro-

ductions, resulting in 33,874 commands, extended through NLTK stop-word

removal to a total of 42,106 unique commands.

The tokenization is applied consistently with Europarl processing tools,

using regex expressions and the NLTK WhitespaceTokenizer.

Each dataset is saved as a .csv file and handled as Pandas [43] dataframe.

The details of each dataset - before balancing - can be found in Appendix A.

The models are trained and evaluated through Scikit-learn library [45],

with cross validation performed using GridSearchCV, while the balancing is

carried out using Imbalanced-learn library [38].

In order to save the models for re-use, the Joblib library [44] is used.

5.2.3 Converso

The Converso package can be installed as an Home Assistant integration

and acts as conversation agent.

It includes the ConversoAgent class, which is a subclass of AbstractCon-

versationAgent, and overrides the recognize method.

The package also includes the SpeechCorrector class and the IntentRec-

ognizer class.

As far the correction is concerned, NLTK ngram module is used, with

λ = 10−6, γ = 10−8 and γ = 10−8 and β(i, N) = 10·2i−1

N
where i is the stage

and N is the sentence length. The candidates are generated using a modified

version of Norvig’s implementation of string editing [56], not allowing the

deletion and replacement of numeric characters. Conditional probabilities

are cached in order to improve performance.

The IntentRecognizer class is in charge of using the Intent Recognition
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package to use the models and to extract the slots values in order to build a

list of matched entities.

Spacy’s library [63], and specifically the it core news sm model with its

Dependency Parser [64], is used for number extraction, as well as the Num2words

library [65] in order to extract numbers from words (e.g. three to 3 ) and vice

versa.
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Chapter 6

Experimental Results

This chapter will deal with the evaluation of the Converso engine. As in

similar studies [66], models are first tested on the synthetic dataset, in order

to find the best models to integrate into the final application, then the latter

is tested in a realistic setting with human participants.

6.1 Synthetic dataset

The best models selected through cross-validation for Intent Recognition

are shown in Table 6.1.

Label Model Hyperparameters

Intent

Linear SVC

Linear SVC (without stop-words)

Polynomial SVC

Polynomial SVC (without stop-words)

MLP

MLP (without stop-words)

KNN

KNN (without stop-words)

C=10

C=100

C=10, degree=2

C=100, degree=2

alpha=0.05, hidden layer sizes=(101,)

alpha=0.0001, hidden layer sizes=(101,)

n neighbours = 3

n neighbours = 1

Table 6.1: Best configurations of models for Intent Recognition.

As far as performance is concerned, as it can be seen from Figure 6.1,

accuracy is close to 100% for each model except Gaussian Naive-Bayes.

59
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Figure 6.1: Testing accuracies for Intent.

Regarding slot filling, Table 6.2 shows the best models for the Domain,

Device Class and State labels, while Figure 6.2 compares the accuracies of

the models. As it can be seen, stop-word removal leads to an increase in

accuracy and SVC with a linear kernel is the most accurate model, with a

100% score for each slot.

Finally, Table 6.3 shows the best models for Response Recognition, with

the corresponding accuracies in Figure 6.3. As before, stop-word removal

leads to an increase in accuracy, with the notable exception of the label

ResponseHassGetState: in this case, stop-words such as quale (which) and

quanti (how many) carry crucial information about the request. SVC with

a linear kernel is still the most accurate model.

6.2 Experiment

The Home Assistant integration is tested in a realistic scenario to gather

more useful insights about the performance, since the usage of synthetic

datasets could lead to overfitting.
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(a) Domain label. (b) Device Class label.

(c) State label.

Figure 6.2: Testing accuracies for each slot.

(a) ResponseHassTurn label. (b) ResponseHassGetState label.

(c) ResponseHassLightSet label.

Figure 6.3: Testing accuracies for each response type.
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Label Model Hyperparameters

Domain

Linear SVC

Linear SVC (without stop-words)

Polynomial SVC

Polynomial SVC (without stop-words)

MLP

MLP (without stop-words)

KNN

KNN (without stop-words)

C=10

C=1

C=100, degree=3

C=100, degree=2

alpha=0.05, hidden layer sizes=(100,10)

alpha=0.0001, hidden layer sizes=(100,10)

n neighbours = 1

n neighbours = 2

DeviceClass

Linear SVC

Linear SVC (without stop-words)

Polynomial SVC

Polynomial SVC (without stop-words)

MLP

MLP (without stop-words)

KNN

KNN (without stop-words)

C=1

C=0.1

C=100, degree=3

C=100, degree=3

alpha=0.05, hidden layer sizes=(100,10)

alpha=0.05, hidden layer sizes=(100,)

n neighbours = 1

n neighbours = 1

State

Linear SVC

Linear SVC (without stop-words)

Polynomial SVC

Polynomial SVC (without stop-words)

MLP

MLP (without stop-words)

KNN

KNN (without stop-words)

C=0.1

C=0.1

C=10, degree=3

C=1, degree=3

alpha=0.05, hidden layer sizes=(100,)

alpha=0.0001, hidden layer sizes=(100,)

n neighbours = 1

n neighbours = 1

Table 6.2: Best configurations of models for Slot Filling.

6.2.1 Hardware

The Home Assistant integration is tested using a development container

and Docker [46] [47] on a machine with a 2.90 GHz AMD processor, allocating

4 cores and 8 GB RAM. In addition to the Home Assistant container, a

container for Whisper and one for Piper are also instantiated.

The satellite device which is used for the experiment is the M5Stack Atom

Echo, an inexpensive and small programmable smart speaker equipped with

a ESP-PICO-D4 chip and a SPM1423 PDM microphone 6.4. The device can

be integrated easily into Home Assistant through the ESPHome add-on and

activated by pressing the button and pressing it again to send the command

to the local server.
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Label Model Hyperparameters

ResponseTurn

Linear SVC

Linear SVC (without stop-words)

Polynomial SVC

Polynomial SVC (without stop-words)

MLP

MLP (without stop-words)

KNN

KNN(without stop-words)

C=1

C=1

C=100, degree=3

C=100, degree=3

alpha=0.0001, hidden layer sizes=(10,10)

alpha=0.05, hidden layer sizes=(100,10)

n neighbours = 1

n neighbours = 1

ResponseGetState

Linear SVC

Linear SVC (without stop-words)

Polynomial SVC

Polynomial SVC (without stop-words)

MLP

MLP (without stop-words)

KNN

KNN (without stop-words)

C=1

C=0.1

C=100, degree=2

C=10, degree=2

alpha=0.0001, hidden layer sizes=(100,10)

alpha=0.0001, hidden layer sizes=(100,)

n neighbours = 1

n neighbours = 3

ResponseLightSet

Linear SVC

Linear SVC (without stop-words)

Polynomial SVC

Polynomial SVC (without stop-words)

MLP

MLP (without stop-words)

KNN

KNN (without stop-words)

C=0.1

C=0.1

C=100, degree=3

C=10, degree=2

alpha=0.05, hidden layer sizes=(101,4)

alpha=0.0001, hidden layer sizes=(101,)

n neighbours = 1

n neighbours = 1

Table 6.3: Best configurations of models for Response Recognition.

6.2.2 Data collection

Ten participants, who have never used virtual assistants to control smart

home appliances, are selected for the experiment. They are all different from

each other in respect to:

• gender: 5 women, 4 men, 1 non-binary person;

• age: ranging from 22 to 65 years old;

• geographic origin: 3 from Emilia-Romagna, 3 from Piedmont, 3 from

Campania, 1 from Marche.

The experiment is conducted in a controlled indoor environment, one

participant at a time. The first phase of the experiment consists in system
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Figure 6.4: M5Stack Atom Echo size comparison. On the left, an Amazon

Echo Dot 5th Gen.; on the right, a 1 euro coin.

setup: each participant has to describe their house, defining areas and de-

vices (lights, fans, HVAC devices, covers and switches), naming each entity.

The second phase consists in letting the participants imagine their houses

were transformed into a smart home, describing the available features of the

system. In this phase, periphrasis are used in order not to influence the lex-

icon and the syntax of the commands: for example, one of the prompts for

the intent HassLightSet is “You can control how much light is emitted”.

The speech recognition engine which is used is Whisper base-int8 with a

beam size of 2 candidates. The distance from the microphone ranges from

0.5 meters to 2 meters; 2/3 of the experiments are conducted in a silent

environment, while 1/3 of the experiments includes a 50dB-70dB background

conversation noise.

A dataset with 360 uttered commands with the corresponding Whisper

output commands is created and manually annotated, according to the pre-

defined system setup.

Some takeaways from this first part of the experiment are:

• naming conventions differ greatly between participants: for example, a

participant has chosen to name all lights luce (light), while other have

chosen to name them including their location in the name;
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• only few participants have included articles and prepositions in their

commands;

• the ASR system recognizes commands with longer pauses between

words better than rushed commands.

6.2.3 Evaluation

The gathered commands are processed with both the default Hassil-based

conversation agent and the Converso agent, in order to compare their perfor-

mance over three different types of input: the raw speech, the automatically

corrected speech, and the text command.

During the processing, the maximum memory usage of the platform is

6.1 GB, while processor usage is always below 50%.

As far as speed is concerned, the total median delay, defined as the time

between the end of the utterance and the response, is less than 3 seconds in

each case. The delay is mainly affected by spelling correction, as it can be

seen from Figure 6.5.

Figure 6.5: Delay of response since command utterance (s).

Regarding spelling correction, its performance can be evaluated through

a metric called Word Error Rate (WER), defined as the sum of the word

substitutions, deletions and insertions applied by the algorithm, normalized
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by the number of words in the reference text. Figure 6.6 shows the effect

on WER of the spelling correction algorithm applied to the output of STT.

Even though some inputs are too noisy to be corrected (even by humans), the

spelling correction algorithm helps in shrinking WER; for example, the text:

“Pegni lucci camera dune.” is correctly corrected to “spegni luce camera 2”,

reducing WER from 0.75 to zero.

Figure 6.6: Comparison of Word Error Rates of raw STT and spelling cor-

rected STT.

As for overall accuracy, Figure 6.7 shows a comparison of the distributions

of correct action/responses and errors. As expected, the best results are

achieved with textual commands, and ASR correction increases accuracy for

speech commands. Comparing the two agents, Converso outperforms Hassil

on all inputs; reaching an accuracy of 59%-64% on speech (depending on

response, e.g. the agent could carry out the correct action but reply with an

incomplete feedback). However, Converso yields more incorrect actions and

responses in respect to Hassil, due to the former’s flexible approach.

In addition, Figure 6.8 shows the Confusion Matrix for the Intent label

(the most important labels, since it affects all other classifications) for each

conversation agent and input, which highlights that TurnOn and TurnOff

are the hardest classes to distinguish, since their commands are similar and

a one-word misspelling can overturn the meaning.



6.2 Experiment 67

Figure 6.7: Comparison between the default Home Assistant conversation

agent and Converso agent.
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Figure 6.8: Normalized Confusion Matrices for the Intent label.



Chapter 7

Conclusions

The aim of this study was to design an Intent Recognition engine for

a privacy-preserving local Virtual Assistant for the control of Smart Home

appliances in Italian language.

In order to achieve this goal, techniques from several fields of study were

used: a Context-Free Grammar was used to generate a synthetic dataset;

N-grams were used for spelling correction; the Vector Space Model was used

to extract relevant features, specifically Word2Vec embeddings, from text

and to compare sequences of tokens; Support Vector Machines were used for

Intent and slots classification.

Finally, the engine, called Converso, has been integrated into the most

popular local home control platform, Home Assistant, which preserves pri-

vacy by not sending any data to external servers. The Virtual Assistant has

been tested in a real life setting with 10 participants, for a total number of

360 commands. Converso has scored an accuracy above 60%, which outper-

forms Home Assistant’s rule-based conversation agent, offering users more

flexibility when they issue commands.

It would be desiderable that subsequent research focused on limiting

memory usage further and on improving spelling correction performance,

which is not perfect and also appears to be the main cause of delay. The

main challenge is the trade-off between resource usage and performance: for
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example, generating 3-edits candidates for correction could result in a greater

accuracy at the cost of a longer delay in command execution.

A possible alternative method could leverage the statistical distribution

of ASR errors, but more data has to be gathered for the Italian language in

the Smart Home domain in order to adopt this approach. A greater number

of samples could also be used to reduce model overfitting.

However, this research has shown that the development of a privacy-

preserving Voice Assistant for home control is feasible, and hopefully this

can result in helping a greater number of people be more independant and

comfortable in the future.



Appendix A

Datasets

Dataset Class Samples

Intent

HassTurnOn/HassTurnOff

HassGetState

HassLightSet

HassClimateGetTemperature

HassClimateSetTemperature

761

4,556

13,515

1,201

22,073

42,106

Domain

default

light

fan

cover

climate

90

462

1,194

4,084

248

6,078

State
off/on 2,257

4,514

DeviceClass

door/window/blind/curtain/shade/shutter

awning

garage

gate

644

54

120

46

4,084

rn

default

lights area

cover device class area

cover device class

fans area

cover garage

102

612

98

348

28

1,216

ResponseGetState

one

one yesno

any

all

which

how many

42

1,150

1,014

574

1,214

562

5,648

ResponseLightSet

brightness

color

brightness area

color area

1,386

297

9,744

2,088

13,515
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Appendix B

Code

The full code is available at https://github.com/paolapersico1/converso.

This appendix contains the most relevant snippets of code.

1 def pipeline ():

2 """ Generate Intent Recognition models."""

3 df = load_synthetic_dataset ()

4 w2v = Word2Vec(dim=WORD2VEC_DIM)

5

6 for label in (

7 "Intent","Domain","DeviceClass","State",

8 "ResponseHassTurn","ResponseHassLightSet",

9 "ResponseHassGetState",

10 ):

11 ld = create_label_datasets(label ,df)

12 best_models = {}

13 for without_sw in (True ,False):

14 x_current = ld["Text"]. to_numpy ().reshape(-1, 1)

15 if label.startswith("Response"):

16 y_current = ld["Response"]

17 else:

18 y_current = ld[label]

19

20 x_train , x_test , y_train , y_test = train_test_split(

21 x_current , y_current , test_size =0.10,

22 random_state =42, stratify=y_current ,

73
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23 )

24

25 current_bests = generate_best_models(

26 x_train , y_train , x_test , y_test , label ,

27 w2v , without_sw

28 )

29 best_models.update(current_bests)

30

1 def preprocess_text(text):

2 """ Tokenize the text."""

3 text = text.lower()

4 text = text.strip()

5 text = " " + text + " "

6 text = re.sub(r"([^\w\s.\’\‘,\-])", r" \1 ", text)

7

8 text = re.sub(r"\.([\.]+)", r"DOTMULTI \1", text)

9 while "DOTMULTI." in text:

10 text = re.sub(r"DOTMULTI \.([^\.])", r"DOTDOTMULTI \1",

text)

11 text = re.sub(r"DOTMULTI \.", r"DOTDOTMULTI", text)

12

13 text = re.sub(r"([^0 -9]) ,([^0-9])", r"\1 , \2", text)

14 text = re.sub(r"([0 -9]) ,([^0-9])", r"\1 , \2", text)

15 text = re.sub(r"([^0 -9]) ,([0-9])", r"\1 , \2", text)

16 text = text.replace("‘", "’")

17 text = text.replace("’’", ’ " ’)

18 text = re.sub(r"([^\w])[ ’]([^\w])", r"\1 ’ \2", text)

19 text = re.sub(r"([^\w])[’]([\w])", r"\1 ’ \2", text)

20 text = re.sub(r"([\w])[ ’]([^\w])", r"\1 ’ \2", text)

21 text = re.sub(r"([\w])[’]([\w])", r"\1’ \2", text)

22 text = text.lstrip ()

23 text = text.rstrip ()

24 text = re.sub(r"([0 -9]) \.([0 -9])", r"\1 FRACDOT \2", text)

25 text = text.replace(".", " .")

26

27 while "DOTDOTMULTI" in text:

28 text = text.replace("DOTDOTMULTI", "DOTMULTI.")
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29

30 text = text.replace("DOTMULTI", " .")

31 text = text.replace("FRACDOT", ".")

32

33 tk = WhitespaceTokenizer ()

34

35 sequence = [str(NUMBER_DICT.get(token , token)) for token

in tk.tokenize(text)]

36

37 return tk.tokenize(text)

38

39 def mean_embedding(w2v , token_list):

40 """ Return the average embedding over a list of tokens."""

41 result = np.mean(

42 [

43 w2v.word2vector(token.strip(" ’"))

44 for token in token_list

45 if token.strip(" ’") in w2v.w2v_model

46 ],

47 axis=0,

48 )

49 return result

1 def grid_search(x_trainval , y_trainval , clf , params , w2v ,

without_sw):

2 """ Perform grid search with different parameters."""

3 rs = RandomUnderSampler ()

4 embedder = W2VTransformer(w2v , with_sw =(not without_sw))

5

6 pipeline = Pipeline(

7 [

8 ("sampling", rs),

9 ("embedding", embedder),

10 ("scaler", StandardScaler ()),

11 ("clf", clf),

12 ]

13 )

14
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15 gs = GridSearchCV(

16 pipeline ,params ,cv=5,n_jobs=1,

17 return_train_score=True ,verbose=3,

18 )

19 gs.fit(x_trainval , y_trainval)

20

21 return pd.DataFrame(gs.cv_results_), gs.best_estimator_

1 def detect_errors(self , sequence):

2 """ Detect possible errors in a sequence."""

3 errors = []

4 for bigram in list(ngrams(sequence , 2)):

5 prob = self.prob(bigram)

6 if prob < self.plausibility_threshold:

7 bigram_as_str = " ".join(bigram)

8 errors.append(bigram_as_str)

9

10 errors = errors + [

11 unigram for unigram in sequence if unigram not in self.

domain_vocab

12 ]

13

14 return errors

15

16 def conditional_prob(self , left , right):

17 """ Compute conditional probability with raw count."""

18 if (left , right) in self.cached_cond_prob:

19 result = self.cached_cond_prob [(left , right)]

20 else:

21 num = self.raw_count ((right , left))

22 den = self.raw_count(right)

23 cond_prob = float(num) / den

24 result = (1 - self.lambda1) * cond_prob + self.lambda1 *

self.prob(left)

25 self.cached_cond_prob [(left , right)] = result

26

27 return result

28
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29 def sentence_LL(self , sequence):

30 """ Compute the bigram log likelihood of a sequence."""

31 ll = 0

32 n_grams = list(ngrams(sequence , 2))

33 for pre_word , post_word in n_grams:

34 cond_prob = self.conditional_prob(post_word , pre_word)

35 ll = ll + math.log(cond_prob)

36

37 return ll

38

39 def generate_ngram_candidates(self , ngram , sentence , vocab ,

edits_num , edits):

40 """ Generate possible error corrections for ngrams."""

41 candidates: list[Edit] = []

42

43 for edit in self.legit_edits(edits , vocab):

44 p_sequence = self.tk.tokenize(sentence.replace(ngram ,

edit))

45 p_sequence = list(pad_both_ends(p_sequence , n=2))

46 bigram_ll = self.sentence_LL(p_sequence)

47 candidates.append(

48 Edit(

49 previous=ngram , new=edit ,

50 edits=edits_num , bigram_ll=bigram_ll

51 )

52 )

53 return candidates
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