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Minorità è l’incapacità di
servirsi della propria intelligenza
senza la guida di un altro.

Immanuel Kant, 1784





Sommario

Con il termine serverless si indica un nuovo modello architetturale nel cam-
po del cloud computing, caratterizzato dall’esecuzione distribuita, scalabile e
basata sugli eventi dei programmi, con la peculiarità che i costi sono proporzio-
nalmente correlati al consumo effettivo delle risorse. Gli sviluppatori scrivono
il codice in unità software indipendenti, chiamate funzioni serverless, e af-
fidano ai fornitori delle piattaforme la complessa gestione dell’infrastruttura
sottostante. Dopo aver esplorato questo paradigma, introduciamo Fenrir, un
framework che arricchisce il ciclo di sviluppo delle architetture serverless for-
nendo agli sviluppatori nuovi costrutti di meta-programmazione, detti anno-
tazioni, che dotano le funzioni serverless di attributi distinti, e consentono di
modellarne il comportamento e le caratteristiche per adattarle alle specifiche
esigenze dell’applicazione. Fenrir permette di sfruttare tutti i vantaggi del
serverless senza sacrificare la compatibilità con progetti già consolidati, poiché
è in grado di convertire monoliti esistenti, scritti in TypeScript, in architetture
serverless.
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Abstract

Serverless computing is a new cloud architectural model that promises to ex-
ecute programs in a distributed, autoscaling, event-driven, and pay-as-you go
manner. Developers write the code in self-contained software units, called
serverless functions, and they let the cloud vendors manage the complex in-
frastructure underneath. After exploring this architectural model, we intro-
duce Fenrir, which is a framework that enriches the development lifecycle of
this model by providing developers with new meta-programming constructs,
named annotations, that imbue serverless functions with distinct attributes,
augmenting their behavior and characteristics to align with specific applica-
tion requirements. Fenrir offers developers an avenue to harness the merits
of serverless without sacrificing compatibility with established codebases, as
Fenrir can convert existing TypeScript monoliths into serverless architectures.
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1 Introduction

Modern software development requires complex tooling to handle the intricate
landscape encompassing the actual code and business logic. Besides the pro-
gram implementation, there are many components to consider when thinking
about all the moving parts needed to make software work in today’s dynamic
environments, which are supposed to be scalable by design.

Traditionally, software was written in monolithic architectures where the pro-
gram’s components are tightly coupled and tend to create large codebases,
as they provide heterogeneous functionalities under the same interface. This
paradigm, despite being the oldest, still has some benefits that draw develop-
ers’ attention especially in the early stages of the development lifecycle. In-
deed, these architectures are easier to write because they do not need advanced
orchestration mechanisms, they simplify testing and debugging, and they pro-
vide the maximum amount of control over the infrastructure: this means that
developers have the authority to configure, manage, and optimize each com-
ponent of the application according to their preferences and requirements. To
illustrate, consider an e-commerce application where all features, from user
authentication to order processing, are bundled together within a monolithic
structure: in this context, the developers decide how all the software units
interact and how resources are allocated to ensure optimal performance. Yet,
the drawbacks of this paradigm were understood even in the past: a case in
point is the Unix community, which moved away from it, preferring a modular
approach instead [19]. Monoliths are hard to maintain, deploy, adapt to chang-
ing requirements and technologies, and they become rigid quickly as reshaping
its components may involuntarily cause a chain of problems.
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1 Introduction

The modular approach, where features are developed in independent software
units, gained popularity especially in the cloud services realm. The de facto
standard of cloud architectures is represented by microservices, which arrange
programs into collections of loosely coupled, fine-grained services that com-
municate through protocols such as HTTP. A microservice is a self-contained
service, organized around a specific set of needed business capabilities, that lets
developers easily implement a layered architecture using different technologies
(e.g., programming languages, databases, etc.). This distributed architectural
pattern overcomes the shortcomings of monoliths, as its modular nature makes
it scalable, easily deployable, and allows different teams to work together with-
out the risk of taking down the entire structure when a minor issue arrives.

Still, microservices are not the most efficient way of implementing cloud com-
puting architectures, since they are long-running processes whose deployment
needs to be carefully planned and managed by configuring the underlying in-
frastructure. To reduce these operational costs, serverless architectures were
recently created.

The serverless paradigm promises to let its users focus simply on the business
logic, by shifting to the cloud platform provider the infrastructure manage-
ment, resources allocation and provisioning, thus enabling software units to
scale automatically on demand. In this model, users write the code inside
single-purpose units (i.e., programming languages’ functions), even smaller
than microservices in responsibility, and they set which event will trigger their
invocation. This event-driven model of dispatching actions is very efficient, in
fact, when a function is triggered, the cloud vendor executes it in an isolated,
secure, and short-lived environment. Consequently, users are only billed for
the precise resources consumed during this execution period.

Serverless is not free of disadvantages and, while traditional solutions had
generations of practitioners and researchers improving the development expe-
rience by providing guidelines, best practices, and tools suited for each phase
of the development lifecycle (design, programming, debugging, maintenance,
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1.1 Objectives

etc.), the serverless model is still in its infancy and lacks a similar depth of
accumulated wisdom and refinement.

1.1 Objectives
In this thesis, we present Fenrir, a framework which aims to enhance serverless
programming by simplifying the development of cloud functions through its
meta-programming functionalities. Users mark the serverless functions with
annotations that signal the Fenrir compiler which code transformations are
going to be needed and which metadata will be used for their deployment,
therefore streamlining different parts of the development lifecycle simultane-
ously. Fenrir transpiles JavaScript codebases whose functions are executed
through AWS Lambda’s Node.js runtime. This is accompanied by the seamless
management of projects through its user-friendly CLI, ensuring an efficient
and graceful path into the adoption of the serverless model.
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2 Background

Before introducing the serverless paradigm, we must understand what is cloud
computing [10]. Despite its modern connotations, cloud computing isn’t a
novel concept, in fact, its principles have been established several decades ago:
in essence, cloud computing runs different types of workloads within clouds,
which are environments that abstract, pool, and share scalable resources across
distributed networks. Thus, users are offered on-demand availability of com-
puting power by a third-party provider, without the problems associated with
direct active management of IT infrastructures.

2.1 Cloud services
Cloud computing is supplied as a collection of service models, hence, users can
arrange different abstraction layers based on their necessities.

1. Infrastructure as a Service (IaaS): these are the most low-level services
that can be provided, like bare metal servers, storage, virtual machines,
load balancers, etc.

2. Platform as a Service (PaaS): an entire toolkit or development environ-
ment made for scaling applications without thinking about the under-
lying infrastructure. PaaS vendors may offer programming languages
execution environments, databases, web servers and many more tech-
nologies.

3. Software as a Service (SaaS): this model is in direct contact with the
end-user, as it refers to the application software standing on top of the
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platforms and infrastructure. Cloud users, such as people using mo-
bile phones, access the software through a subscription fee, without ever
needing to install anything because the application is built on top of and
balanced through the previously mentioned layers.

Most recently, a new model has appeared, named Function as a Service (FaaS),
delivering a cloud service that offers computing runtimes with support for
serverless architectures.

Furthermore, the serverless model is also encompassed as Backend as a Service
(BaaS), usually accessible via APIs, providing support for many technologies
like serverless databases, but these services will not be examined in this thesis.

2.2 Serverless computing

Serverless computing was born due to a very pragmatic reason: workloads in
modern applications need to be efficiently managed because they are highly
dynamic, meaning that, some software parts need more computing resources
than the others and this aspect may vary frequently. In traditional monoliths,
or even microservices, developers are concerned with capacity planning, con-
figurations, management, fault tolerance, and scaling of containers, VMs or
physical servers.

Serverless architectures abstract way all these concerns by allowing developers
to focus solely on writing application logic, and letting the FaaS vendors handle
the burden of provisioning and scaling infrastructures.

To achieve this goal, developers write the logic inside software units called
cloud functions, which are run in short-lived environments triggered by some
kind of event. Cloud functions recall the concept of functions in programming
languages, as they associate an input to an output, and as a matter of fact,
cloud functions’ logic is encapsulated inside the latter. Yet, cloud functions
need to be considered as resources rather than instructions of code, as they
are software units invoked by the serverless provider and metered on-demand
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through an event-driven execution model, thus they can be written in different
programming languages (e.g., Go, Java, JavaScript) as long as the chosen
vendor has adequate support for the language runtime.

When the cloud function is triggered by an event such as HTTP requests,
database changes, file uploads, scheduled intervals or various other triggers,
the FaaS provider runs the code after initializing an execution environment,
which is a secure and isolated context that manages all the resources needed
for the function lifecycle. Execution environments are technically handled
differently by the platform providers, for example, AWS Lambda uses 𝜇VMs
while IBM uses Docker containers, nonetheless they all offer lightweight sand-
boxed containers designed to have fast startup/shutdown times and minimal
overhead due to their virtualized nature.

RUNTIME
STARTUP

FUNCTION
INIT

RUNTIME
SHUTDOWN

CODE
EXECUTIONCODE
EXECUTIONCODE
EXECUTION

Figure 2.1: Serverless function lifecycle in a warm execution environment (discussed
further in Section 2.2.1).

2.2.1 Serverless principles

Serverless is a misnomer, since servers are still in the picture, this computing
model must not be confused with other paradigms that do not require an
actual server such as peer-to-peer (P2P) [15]. Instead, it is more accurate to
interpret it as “less-server”, therefore emphasizing the shift from developers
actively managing server infrastructure to entrusting platform providers to
manage the underlying server complexities.

Figure 2.1 shows that serverless functions are ephemeral, so they are designed
to have a temporary nature, and consequently stateless, so there is no stored
information of previous transactions, as they are constructed from scratch each
time they are instantiated. These behaviors have several implications that may
offer advantages and disadvantages.
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Serverless architectures benefits

Reduced costs Serverless at its core gives immediate business value to its
users, because it outsources servers management to a vendor, also allowing
for economies of scale to take place, as discussed in [6]. Operational expenses
decrease significantly, and development costs are optimized since this cloud
paradigm offers the most fine-grained billing model in which developers only
pay for the actual functions’ execution time and not for idle servers.

Elasticity The cloud provider is responsible for autoscaling the capacity on
demand, hence resources are handled accordingly to accommodate the required
load. For example, consider a web application with two HTTP endpoints,
denoted as endpoint 𝐴 and endpoint 𝐵, where 𝐴 is frequently called while 𝐵
is very rarely requested. In a traditional monolith, the entire web app would
need to manually be scaled to handle unpredictable load spikes of 𝐴 calls, and
even in normal circumstances resources would still be inefficiently allocated
just to manage some occasional 𝐵 requests. By encapsulating their logic inside
two different serverless functions, endpoint 𝐴 can be allocated more resources
when it experiences high demand, while endpoint 𝐵 might cost almost zero
due to its occasional requests.

Productivity Developers can focus solely on writing business logic. Expos-
ing units of code only through an event-driven model simplifies back-end de-
velopment, also alleviating the typical problems related to distributed systems
(e.g., multithreading). Moreover, development becomes quicker as deployment
is easier and updates are granular, thus increasing the agility of the team and
rapid prototyping of new products.

High availability Thanks to the distributed nature of serverless comput-
ing, platform providers ensure fault tolerance by redirecting functions across
healthy and available zones. Latency is also reduced by deploying functions
geographically near the end-users.
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Interoperability The serverless paradigm can be used in conjunction with
code deployed in traditional styles, such as microservices or monoliths [15].
Therefore, this model can be incrementally adopted by large companies and
benefit complex existing systems. Though, start-ups should prioritize following
a pure serverless approach because of all the previously mentioned benefits.

Serverless architectures shortcomings

Serverless computing is not flawless, and researchers [5] pointed out some of
the limits that are inherent to this paradigm.

State management Considering that there is no server-state, the program-
ming model needs to shift for developers, as numerous applications require
storing data for future references. To limit this disadvantage, users may use:

• Temporary data stores or distributed caches, like Redis.

• Databases, both SQL or NoSQL, as long as the connections can be in-
stantiated quickly.

• Vendor-specific strategies, like AWS’ step functions or Azure’s durable
functions.

Also, the limited lifetime of serverless functions needs to be contemplated given
that they are not designed to support long-running processes, and if misused
they can become more costly than traditional solutions.

Cold starts Serverless functions startup times can be a crucial drawback for
systems performance, as the overhead for allocating all the resources needed to
run a function can cause significant delays. This well-known problem, named
“cold start”, is particularly emphasized with technologies requiring heavy run-
times, such as JVM -based languages. To avoid this constraint, platform
providers usually wait some time before dismantling the container, keeping
it in a so-called “warm” state, as shown in Figure 2.1, so they are able to run
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the code without all the initialization overhead: this approach is obviously
more costly, but it dramatically improves performances.

Vendor lock-in Any outsourcing strategy is subject to this limitation. Users
are bound to the vendors’ decisions who wield control over system downtimes,
cost changes, loss of functionality, forced API upgrades and many more limits
that may, at times, be enforced unilaterally. In addition, each vendor offers
different features and workflows, often deeply integrated with their own private
services, and as a result switching vendors means updating operational tools
(deployment, monitoring, etc.), modifying the code to satisfy the new FaaS
interfaces, and most importantly porting chunks of the architecture from one
infrastructure to another. To circumvent these issues, programs should be
created in a platform-agnostic manner, without relying too heavily on the
third-party services offered by the platform provider. Moreover, serverless
architectures can be achieved through open-source solutions at the expense of
self-hosting parts of the infrastructure.

Complex debugging Monitoring, tracing, logging, and debugging are harder
in serverless environments because of their ephemeral and stateless nature.
These limits originate from the fact that that cloud environments are difficult
to simulate in local contexts, therefore even techniques like integration testing
become unpractical. Although entire functions can be timed, there is typically
no ability to dig into more detail by attaching profilers, debuggers or APM
tools [9].

2.2.2 Serverless use cases

A meta-analysis conducted by Eismann et al. [4] reviewed 89 real-world use
cases of serverless architectures and studied their characteristics. Their find-
ings provide insightful values on how this paradigm is being used and how well
it performs:
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• AWS Lambda is the most popular platform provider, taking up 80%
of the market share: this is not surprising as they pioneered the most
mature and well integrated set of services out of all the cloud vendors.

• JavaScript and Python are the most used programming languages for
cloud functions (each used by 32% of the cases). Most of these architec-
tures depend on a wide variety of cloud services, with the most used ones
being cloud storage, cloud database, API gateway and cloud pub-sub.

• Cost savings seem to be the strongest motivator for adopting serverless
computing, still, other driving factors are reduced operation effort, the
scalability and performance gains.

• The overall trend of serverless architectures is to feature unpredictable
on-demand workloads, typically triggered through lightweight (<1MB)
HTTP requests.

The first two points also serve to understand how Fenrir operates: we chose to
compile JavaScript codebases written following AWS Lambda’s interfaces due
to their ever-growing popularity. Furthermore, the meta-programming offered
through Fenrir’s annotations can be expanded to support different platform
providers.

To simplify the development of serverless architectures even more, Fenrir not
only manipulates source codes, but it also generates metadata used by the
Serverless Framework [16] (referred to as SLS in this thesis): this framework
streamlines the operational efforts by providing a simple abstraction layer that
can deploy with ease to all major cloud providers by tweaking a few configura-
tion details. Thus, SLS helps in breaking the shortcomings of vendors’ control,
and it also brightens the developer experience by extending workflows through
CLI tools, debugging facilities and useful plugins.
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2.3 Server-side JavaScript

“Any application that can be written in JavaScript, will eventually
be written in JavaScript.”

As time passes, this quote by Jeff Atwood becomes more and more accurate:
in fact, it should be expanded in scope to include all types of software, as
JavaScript continues to evolve and keeps being one of the most popular pro-
gramming languages of all time.

Despite its humble beginnings, its versatility and simplicity have taken the
language a long way, giving rise to a vibrant open-source ecosystem that has
enlarged its domain beyond web browsers: JavaScript is now widely used in
diverse fields including game development, IoT, data analysis, and numerous
other contexts.

Probably, the most important contribution to the language has been the advent
of Node.js in 2009 [12], which is a runtime environment that executes JavaScript
outside a web browser. This technology played a pivotal role in reshaping
users’ perceptions of JavaScript: it transitioned from being regarded as a mere
scripting language to being recognized as a capable general-purpose one.

Node.js stands apart from traditional programming language runtimes, and,
instead, inherits the strengths of JavaScript and builds upon them, making this
environment unique in many ways. Node.js operates on a single-thread event
loop, using non-blocking I/O calls, allowing it to support tens of thousands of
concurrent connections without incurring the cost of thread context switching.

This event-driven design optimizes throughput and scalability in architectures
bound to many asynchronous I/O operations, but it is limited in CPU-heavy
environments given the single-threaded nature of Node.js. For this reason,
Node.js shines in serverless architectures more than traditional ones, since it is
a great runtime to support the ephemeral and stateless cloud functions, where
users do not need to think about the orchestration of distributed systems.
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2.3 Server-side JavaScript

2.3.1 TypeScript

TypeScript is a superset of JavaScript with an additional fundamental layer:
the type system.

Just like Node.js, TypeScript is a pretty unique technology. Indeed, this lan-
guage was born to fix many of the quirks present in JavaScript, which, given
its popularity, started being used in codebases with hundreds of thousands of
lines of code, even though, it was never intended for such use cases, hence,
its error-prone nature started appearing at runtime with all its oddities and
surprises. While other tools tried replacing it, and consequently failed (e.g.,
CoffeeScript), TypeScript embraced it and added a compile-time type checker
to drastically lower the chance of bugs.

TypeScript is a strongly typed programming language, but it is also designed
to support existing JavaScript codebases, and as a result many of the strict
type checks performed can be loosened up to compile regular JavaScript. Fur-
thermore, TypeScript guarantees to preserve the runtime behavior, even if the
compiler raises type errors, allowing the transition between the two languages
to happen without subtle differences. Once the compiler has finished checking
the code, the types are erased and the resulting code has no type information.

Normally, TypeScript is very strict during its checks, so other than blocking the
weird JavaScript parts, it also provides guards for writing code at enterprise
level, ensuring that everything works even in big projects with multiple teams,
as long as the established type definitions are followed.

1 /* Guards against JavaScript's quirks */
2 if ('' == 0) {
3 }
4 // Error: This comparison appears to be unintentional because the
5 // types 'string' and 'number' have no overlap.
6
7 console.log(4 / [])
8 // While this is a syntactically-legal instruction that logs `Infinity`,
9 // TypeScript will issue an error because it is a nonsensical operation.

10
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11 /* Strict type checks */
12 type User = {
13 firstName: string
14 lastName: string
15 role: 'Professor' | 'Student'
16 }
17
18 const user: User = {
19 firstName: 'Angela',
20 lastName: 'Davis',
21 role: 'Professor',
22 name: 'Angela Davis',
23 }
24 // Error: Object literal may only specify known properties
25 // and 'name' does not exist in type 'User'.

Listing 2.1: TypeScript’s type checks

Listing 2.1 previews a very important principle of TypeScript, its structural
type system. Although, most strongly typed languages implement a nominal
type system, where two types are considered equal when their names corre-
spond, TypeScript had to be more pervasive to enhance JavaScript’s dynamic
duck typing [3], and as a consequence it implements structural checks, where,
rather than the name, the shapes of the values are compared.

1 type Dollar = number
2 type Euro = number
3 function foo(n: Dollar)
4 let e: Euro
5 // This function call raises an error in a nominal system
6 // because `foo` only accepts an argument of type `Dollar`,
7 // but works completely fine in a structural system,
8 // since the two types share the same shape of `number`.
9 foo(e)

To be more precise, TypeScript’s type system is not entirely structural, as it of-
fers nominal typing-like mechanisms to simplify the writing of new definitions,
by making types unique symbols across their contexts, which is especially use-
ful for creating recursive data structures.
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All these key factors (i.e., strictness, compatibility with JavaScript, structural
typing), have greatly boosted TypeScript’s popularity at every scale of software
development. On top of that, it introduces powerful features that improve
developers’ experience:

• Types inference support vastly superior in comparison to most of the
commercial general-purpose programming languages.

• Enriched build pipeline. Before TypeScript existed, projects were de-
veloped through complex combinations of different tools, especially if
the developers preferred to use newer features of JavaScript that were
not supported by the runtime yet. TypeScript simplifies these workflows
since it provides an inclusive build system which compiles even the ex-
perimental features of the language to older versions without the need
for polyfills or other technologies.

• Better tooling through open-source contributions. For example, Type-
Script was the reason behind the birth of the Language Server Protocol
(LSP), which enriches code editors with language intelligence tools such
as code completion, syntax highlighting, error marking, refactoring rou-
tines and many more features. Traditionally, all this work had to be
repeated for each programming language as they all built upon different
APIs, but now all major programming languages follow this specification,
which decouples the language services from the editors. This is just one
of the tools built because of and for TypeScript, but it should not be
underestimated since it improves developers’ experience significantly.

In serverless computing, where functions need to be self-contained, concise, and
easily deployable, TypeScript strengths are particularly valuable, since it en-
courages developers to write robust and maintainable code. This is convenient
since cloud functions are harder to test and debug, and having compile-time
errors reduces maintenance costs and saves a lot of time.

Fenrir uses the parser offered by the TypeScript API to handle AST traversals
and manipulations, so it parses both TypeScript and JavaScript codebases.
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3 Implementation

This chapter presents an in-depth description of how Fenrir operates by review-
ing each step of its compilation process and analyzing the concept of annota-
tions which represent the foundation of this framework. Moreover, it presents
practical use cases to demonstrate how much it can simplify developers’ expe-
rience by allowing them to focus on the core logic of their applications while
effortlessly benefiting from the serverless paradigm.

3.1 Overview

Fenrir is a transpiler which enhances serverless programming by introducing
the concept of annotations. Annotations are an abstraction layer that the de-
velopers can unobtrusively use to apply code transformations and metadata
generation to a given application, which will be deployed to a serverless plat-
form.

To achieve this goal, we used the TypeScript [18] compiler API which lets us
manipulate sources with ease, and SLS [16] which uses the generated metadata
to deploy to AWS Lambda.
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Figure 3.1: Transpiler pipeline.

The transpilation pipeline, depicted in Figure 3.1, starts with the parsing of
the input source code, which produces AST nodes with their related annota-
tions. Then, each annotation induces the application of its related transfor-
mation step, whose output is fed into the next transformer, if any. During
the transformation steps, Fenrir reports possible errors by gracefully stopping
the compilation process and indicating the offending instructions. Once the
transformations have taken place without any errors, the output code is saved
and the related metadata is also appended to a serverless.yml file which
specifies function deployment properties (e.g., the address to invoke a given
function).

It is important to notice that Fenrir does not lock developers in managing their
functions only through its tools, instead, its primary objective is to facilitate
the incremental adoption of the serverless paradigm.

3.1.1 Brief example: Monolith to Serverless
conversion

In Listing 3.1, we show an example of a monolithic codebase with a pair of illus-
trative functions. One function, called processOrder, retrieves orders (e.g.,
via a database query). The other function, called generateReport, produces
reports based on the retrieved orders. Since we want the processOrder func-
tion to be invocable from clients, we annotate it as $Fixed, and we specify its
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HTTP endpoint and method with the $HttpApi annotation. The generateReport
function is instead a backend one, which we want to run at pre-established in-
tervals: to obtain this behavior, we use the $Scheduled annotation to specify
that it shall be run every two hours. All these annotations are explored in
detail in Section 3.3. Using Fenrir, we translate the code of Listing 3.1 into
the serverless codebase of Listings 3.2– 3.3.

1 /**
2 * $Fixed
3 * $HttpApi(method: "GET", path: "/orders/report")
4 */
5 export async function processOrder(orderId) {
6 // ... processing logic ...
7 console.log(`Processing order ${orderId}`)
8 return order
9 }

10 /** $Scheduled(rate: "2 hours") */
11 export async function generateReport() {
12 // get the processed data and generate report
13 console.log("Generating report")
14 }

Listing 3.1: Source Code.

1 export async function processOrder(event) {
2 const orderId = event.orderId
3 // ... processing logic ...
4 console.log(`Processing order ${orderId}`)
5 return {
6 statusCode: 200,
7 body: JSON.stringify(order),
8 }
9 }

10 // The implementation of `generateReport`
11 // is omitted as it remains unchanged.

Listing 3.2: Generated Code.
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1 processOrder:
2 handler: output.processOrder
3 events:
4 - httpApi:
5 method: GET
6 path: /orders/report

7 generateReport:
8 handler: output.generateReport
9 events:

10 - schedule:
11 rate: 2 hours

Listing 3.3: Generated deployment configuration.

The generated code includes both the processOrder and generateReport
functions ready to be deployed on the serverless platform. In particular, notice
that the input of processOrder changed to match the expected signature for
functions of the serverless platform, i.e., an event that carries, among other
content, the invocation parameters of the function, which are automatically
assigned to local counterparts at the beginning of the function body. Com-
plementarily, we also find the return value changed to match the shape of the
response expected by the platform—at lines 5–8 of Listing 3.2, we create a
JSON object with a status code and a body that contains a serialized version
of the value held by the variable order, which holds the value returned by
the function in the source codebase. The other notable element in the YAML
code found in Listing 3.3, which contains the information that the serverless
platform needs to deploy the two functions, e.g., the type of invocation for
the processOrder function (HTTP) and its invocation address and the call
schedule of the generateReport function.

This brief example introduces features that will be thoroughly described, but
it does not contain any real logic. A non-trivial example, named Hati1, is
present in the Fenrir public repository, yet, it is omitted from this thesis due
to its size.

Hati converts a monolithic email message analysis program, into an event-
driven serverless pipeline where each function has the same core logic as the
monolithic counterpart, but they are manipulated to have all the benefits of-
fered by the serverless paradigm.

1In Norse mythology, Fenrir has two sons, Hati and Sköll.
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Figure 3.2: Hati’s pipeline.

3.2 Parsing

Fenrir requires a configuration file that must be named fenrir.config.json
to understand where to operate:

1 {
2 "files": ["input/source.ts"],
3 "serverlessConfigPath": "input/serverless.yml",
4 "outputDirectory": "output",
5 "annotations": {
6 "CustomAnnotation": "annotations/custom-annotation.ts"
7 }
8 }

Listing 3.4: Fenrir configuration
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The files field accepts an array of filenames or a directory, and it is used to
represent which files will be parsed by the transpiler.

The serverlessConfigPath field points at the input SLS configuration that
must contain some mandatory input metadata, such as the region which the
functions will be deployed on.

The outputDirectory field indicates where the emitted files will be placed.

The annotations field locates custom annotations as it takes an object where
the keys represent the new names and the values refer to their associated
implementations.

Fenrir’s CLI After creating the configuration, Fenrir can be started through
its CLI tool by optionally passing as a flag the directory in which it is contained.

1 # defaults to the current directory (.) for its file lookup...
2 > fenrir
3 # ...or uses a custom path
4 > fenrir -g input-directory

Furthermore, the CLI offers the init sub-command to ease the setup needed
for the entire pipeline by generating the necessary boilerplate and configuration
files.

AST Traversal

Through the TypeScript compiler API, each sources’ AST is traversed by a
visitor function which collects some data (e.g., dependencies imports) and
examines certain types of node in order to process annotations, namely exported
function declarations. Lookups are restricted only to this syntactic category
for two reasons:

• export ensures the functions are public and ready to be deployed.
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• function declarations minimize the code needed to control the AST.
Considering that JavaScript provides three distinct ways of declaring a
function, accommodating all of these variations would inevitably result
in a threefold expansion of the manipulation code. Moreover, function
declarations are the idiomatic technique to write top-level functions.

1 // Skipped
2 const a = 2;
3 // Skipped
4 for (const b of [1, 2, 3]) {}
5 // Processed
6 export function foo() {}
7 // Skipped
8 export const fiz = () => {}
9 // Skipped

10 export const bar = function() {}

Listing 3.5: Examples of processed or skipped nodes.

The processed functions have their annotations examined, and their bodies are
visited to handle AST transformations.

3.3 Annotations
Annotations are syntactical units, or keywords, enclosed within JSDoc com-
ments, each associated with their respective transformer. They can be ex-
pressed using a BNF-like syntax:

Annotation ∶∶= "$"⟨Name⟩["("⟨Parameters⟩")"]
Name ∶∶= [a-zA-Z0-9_]+

Parameters ∶∶= ⟨TypeScriptObject⟩
TypeScriptObject ∶∶= …

This representation does not intend to provide a formal and complete definition
of the syntax of annotations. Nevertheless, it serves to offer a general intuition
of how they can be written within the code.
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1 /** $Foo */
2
3 /** $Bar(param: "first") */
4
5 /** $Fiz(first: true, second: [1, 2, 3], third: (a, b) => a + b) */
6
7 /**
8 * Annotations enrich docs...
9 * $Foo

10 * ...and can even be multiline.
11 * $Bar(
12 * param: "fiz"
13 * )
14 *
15 * all these explanatory texts are not
16 * harmful, as they are simply ignored.
17 */

Listing 3.6: Generic examples of annotation.

Annotations are designed to avoid cluttering JavaScript code with new syntax,
as they can only be written inside JSDoc comments. Thus, they serve a dual-
purpose, they provide the functionality needed by Fenrir, and they also serve
as supplementary documentation for the codebase.

Listing 3.6 provides a valuable insight on how annotations may be parameter-
ized to modify transformers’ functionality. In fact, arguments undergo parsing
as a TypeScript object literal, hence, they are as powerful as regular objects [11]
meaning that even complex structures (arrays, functions, etc...) can be used
during the compilation step to enrich transformations.

Another crucial feature of annotations is their composability, as multiple an-
notations can be written within the same JSDoc, essentially defining dedicated
compilation pipelines by passing the output of a transformation as input for
the subsequent ones: to facilitate this process, each source file may be visited
multiple times.
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3.3.1 Core Annotations

Fenrir offers four core annotations whose transformers can handle code ma-
nipulation, deployment metadata or a combination of both functionalities: by
pipelining annotations, we can effectively utilize the strengths of different ap-
proaches.

Table 3.1: Core annotations

Name Code Metadata
$Fixed Yes Yes
$TrackMetrics Yes No
$HttpApi No Yes
$Scheduled No Yes

$Fixed

$Fixed(memorySize?: number, timeout?: number, ...) converts monolithic
functions into fixed-size serverless functions, whose resources are statically de-
termined and remain constant regardless of the workload or input size. To
achieve this conversion, code is handled as follows:

• The monolithic functions’ parameters are mapped to a single event pa-
rameter in order to adhere to AWS Lambda serverless functions’ signa-
ture.

• The monolithic functions’ return statements change to match the shape
of the response expected by the platform, by creating an object with a
status code (200) and a body that contains a serialized version of the
initially returned value.

• Early return statements and throw statements are modified similarly,
but the status code represents a client error (400).

$Fixed has no mandatory parameters, however, all the specified arguments will
be passed as metadata for the function deployment.
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1 /** $Fixed(timeout: 10) */
2 export async function foo(id) {
3 if (!isValid(id)) {
4 throw new Error('Something went wrong')
5 }
6
7 const data = await query()
8
9 return data

10 }

Listing 3.7: Input code for $Fixed

1 /** $Fixed(timeout: 10) */
2 export async function foo(event) {
3 const id = event.id
4
5 if (!isValid(id)) {
6 return {
7 statusCode: 400,
8 body: JSON.stringify({
9 error: "'Something went wrong'",

10 }),
11 }
12 }
13
14 const data = await query()
15
16 return {
17 statusCode: 200,
18 body: JSON.stringify(data),
19 }
20 }

Listing 3.8: Output code from $Fixed

1 functions:
2 foo:
3 handler: output/source.foo
4 timeout: 10 # default is 6 seconds

Listing 3.9: Generated Metadata through $Fixed
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$TrackMetrics

$TrackMetrics(namespace: string, metricName: string, metricValue?: ts.Expression)

generates code that monitors and logs the functions’ resource usage by also
importing the necessary dependencies, i.e., for AWS Lambda it uses and injects
the CloudWatch dependency. These are the required properties:

• The function declaration must be async. Preceding this annotation with
$Fixed makes it automatically async.

• namespace and metricName are mandatory strings. The former repre-
sents the namespace instantiated on the cloud through AWS.

• The third parameter, if present, must be the same as one of the variables’
identifiers.

We complete the explanation with an example:
1 import { query } from './local'
2
3 /**
4 * $TrackMetrics(namespace: 'shop', metricName: 'sell', metricValue: size)
5 */
6 export async function processOrder(id) {
7 const order = await query(id)
8 const size = order.size
9 // ...more logic...

10 return size
11 }

Listing 3.10: Input code for $TrackMetrics

1 import { query } from './local'
2 import { CloudWatch } from 'aws-sdk'
3
4 /**
5 * $TrackMetrics(namespace: 'shop', metricName: 'sell', metricValue: size)
6 */
7 export async function processOrder(id) {
8 const order = await query(id)
9 const size = order.size
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10 await new CloudWatch()
11 .putMetricData({
12 Namespace: 'shop',
13 MetricData: [
14 {
15 MetricName: 'sell',
16 Timestamp: new Date(),
17 Value: size,
18 },
19 ],
20 })
21 .promise()
22 // ...more logic...
23 return size
24 }

Listing 3.11: Output code from $TrackMetrics

Listing 3.11 shows the generated boilerplate to enable logs inside the function,
and an additional import statement is included at the top of the file to address
its previous absence. $TrackMetrics puts the code in a context-aware manner,
placing it after the variable declared as metricValue.

Supposing a typographical error was written instead of size, the following
error message would appear:

1 '$TrackMetrics' can only receive an identifier as
2 a value for the 'metricValue' parameter like
3 'id' | 'order' | 'size'
4 in function 'processOrder' defined here:
5 --> input/source.ts:6

$HttpApi

$HttpApi(method: string, path: string, ...) generates the metadata needed
to make the function available as an HTTP endpoint.

• The method parameter represents the desired HTTP method (GET, POST,
etc...).
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• The path parameter represents the URL path where the function will
be available.

• The optional parameters are meant to customize the behavior of the
HTTP endpoint further, for example, by setting up Cross-Origin Re-
source Sharing (CORS) headers.

1 /**
2 * $HttpApi(method: "POST", path:

"/users/create")
3 * $HttpApi(method: "PUT", path:

"/users/update")
4 */
5 export function foo() {}

1 foo:
2 handler: output/source.foo
3 events:
4 - httpApi:
5 method: POST
6 path: /users/create
7 - httpApi:
8 method: PUT
9 path: /users/update

$Scheduled

$Scheduled(rate: string, ...) generates the metadata needed to make the
function run at specific dates or periodic intervals.

• The rate parameter is a rate or cron expression which schedules when
the function should be triggered.

• The optional parameters are meant to customize the behavior of the
scheduled event further, for example, by specifying multiple schedule
expressions and giving it a description.

1 /**
2 * $Scheduled(rate: "rate(2

hours)")
3 */
4 export function foo() {}

1 foo:
2 handler: output/source.foo
3 events:
4 - schedule:
5 rate: rate(2 hours)
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3.3.2 Custom Annotations

Fenrir is not bound to its core annotations, as it endorses the creation of new
ones to fit custom requirements and usages.

In order to inform Fenrir of the new annotation name and its transformer
implementation, the configuration file (i.e., fernrir.config.json) must be
updated:

1 {
2 ...
3 "annotations": {
4 "IoT": "annotations/iot-impl.ts"
5 }
6 }

Fenrir encourages strict type-safety by offering a type definition for custom
transformers:

1 // in 'annotations/iot-impl.ts'
2 import type { CustomTransformer } from 'fenrir-core'
3
4 type IotTransfomer = CustomTransformer<'IoT', { sql: string }>
5
6 const transformer: IotTransfomer = (
7 node,
8 context,
9 annotation

10 ) => {
11 // ...implementation...
12 }
13
14 // custom transformers must be exported as `default`
15 export default transformer

Listing 3.12: Custom transformer for a new $IoT annotation.

Analyzing custom transformers’ signature also provides insights on how core
annotations are implemented, since their definitions are almost identical.
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The node argument represents the function declaration in the AST which was
marked with the annotation. It contains all the relevant information associated
with this type of AST node, including the function’s body, name, parameters,
and other relevant details.

The context argument represents the TypeScript transformation context,
which is a very powerful object containing:

• Methods for source code manipulations, such as
context.factory.updateIfStatement().

• The typechecker, which is an essential module integrated in TypeScript,
useful for working with symbols: it has access to every type of each node
and details about the project dependencies.

• Miscellaneous methods to handle lexical environments and compiler op-
tions.

• Fenrir utilities that facilitate the development of transformers and of
metadata handling.

The annotation argument is an object containing the annotation name and
a record of all the arguments passed to it. Its type definition is inferred from
the previously established CustomTransformer schema.

A transformer’s return type can be omitted as it is inferred, however, if it is
manifested to provide a stricter signature, it is restricted to this subset:

type TransformerReturnType =
| ts.SourceFile
| ts.FunctionDeclaration
| undefined
| void

Hence, transformers may perform three types of tasks: modifying the entire
source file, which is useful for updating import declarations or other AST
nodes, altering the function itself, or solely modifying the metadata without
changing the source code.
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3.4 Emit
The last step of Fenrir’s pipeline involves emitting the transformed files and
metadata. Files are ejected in a single output folder, with the default name
being functions: it is important to give it an insightful name, since, users are
encouraged to review and potentially modify the emitted code if they aren’t
satisfied with the transformations.

The transformed code may not look as the input code, as it is formatted
through an opinionated set of conventions which imposes properties like the
usage of semicolons or the number of spaces: in order to make it adhere to
personal formatting preferences, users should use popular tools such as ESLint
and Prettier.

Generated metadata is appended to a serverless.yml placed at the project
root, and through the SLS CLI it may be deployed to the serverless platform.

3.4.1 Error handling

Fenrir tries to provide as many informations as it can when it meets errors.

Configuration mistakes cause the program to panic, for example:
1 Since you are providing a list of files, a `serverless.yml` must
2 be provided to the transpiler to generate the needed metadata.

Annotations syntax errors provide another set of logs:
1 $Schdle
2 ^^^^^^
3 Unknown annotation name
4
5 $Scheduled(
6 ^
7 Invalid bracket
8
9 $Fixed(foo: )

10 ^^^^^^^
11 Invalid syntax for annotation parameters
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Transformers can also emit specific errors only related to their domain, such
as:

1 '$HttpApi' must receive both 'method' and 'path' as parameters
2 in function 'foo' defined here:
3 --> input/source.ts:6

33





4 Conclusions

After a brief introduction, we discussed all the necessary knowledge needed
to understand this thesis in Chapter 2, and finally we presented how Fenrir
works, by thoroughly examining its inner components in Chapter 3.

The most important concept to recall about this framework is its goal, and
how it tries to achieve it. Fenrir wants to enhance the serverless programming
model through its meta-programming features. In fact, its core annotations
operate very differently from each other, as they are related to distinct do-
mains, but they still can be combined to enrich the development experience.
Thus, Fenrir’s users are not only inheriting all the benefits offered by serverless
architectures, but they are also accessing all its powerful code transformations
that can save precious development time.

Fenrir was also designed to help migrate existing monolithic codebases into
serverless ones through an incremental approach, meaning that users do not
need to convert their entire project, but they can partially adopt this new
computing paradigm by iteratively annotating which components should be
deployed as independent functions. Additionally, it is crucial to understand
that the code emitted by Fenrir is not set in stone, instead, it can be actively
modified and even used as a starting point of a serverless codebase. Fenrir
should be viewed as a coding assistant rather than a fully comprehensive tool
to write serverless functions.

Fenrir’s most notable limitation is the lack of more core annotations, which
stems from the substantial time investment required to establish the frame-
work’s foundations, reflect on valuable transformers and write their implemen-
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tation. Still, users are encouraged to create their custom annotations tailored
to address their specific use cases, which can include scenarios that cannot be
foreseen by Fenrir due to their unique nature.

Another important decision to discuss is our rationale behind selecting Type-
Script. Many other programming languages offer meta-programming compile-
time capabilities, like Rust macros, C++ templates or Zig comptime. Such
systems are far superior to our annotations, yet, these low-level languages are
not suitable for the high-level programming that the serverless functions are
supposed to entail, in fact, most of these languages do not have the runtime
support from any major platform provider. Moreover, even high-level lan-
guages with similar compile-time features, like Scala, demand to be monitored
with caution, because of their heavy runtime (i.e., JVM for Scala) initialization
spin-ups that may cause expensive cold starts.

TypeScript, enriched with our annotations, perfectly fits the serverless model
as it runs, after its strict static type checks, on Node.js, which is a well-suited
lightweight environment designed to handle distributed services, as discussed
in Section 2.3.

4.1 Comparison with previous studies

One of the features offered by Fenrir is the fact that it can port an existing
monolith to a serverless platform as shown in Section 3.1.1. This process,
named “FaaSification”, has captured the attention of researchers who have
explored and presented various solutions to this challenge.

The first attempts were developed for Python and Java monoliths, with the
tools being named respectively Lambada [17] and Termite [2]. They are fairly
limited, as their emitted code cannot correctly process inputs, and they do not
support the use of global variables within the serverless functions.

Instead, let us focus on the technologies built around JavaScript:
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Node2Faas [1] It was the first JavaScript “FaaSifier”. It converts methods
of the Node.js monolith into serverless functions and replaces their bodies with
an API call to the target FaaS system. This tool has many weaknesses: most
notably, it cannot resolve either code or package dependencies, which is a
considerable constraint since many cloud functions work by using third-party
services.

DAF and M2FaaS [14, 13] They were built by the same team of re-
searchers, the latter, M2FaaS, represents an improved iteration of the former.
They introduce a concept similar to our annotations, through which users can
mark arbitrary parts of their code with the dependencies needed to be de-
ployed. The outcome is a serverless monolithic application hybrid. However,
due to technical limitations, the development effort to write their marking
constructs is remarkable, as users are compelled to write configuration details
inside their business logic.

FaaSFusion [8] This is the closest work to Fenrir. FaaSFusion’s users also
mark their functions with annotations and some associated code transforma-
tions occur. This framework brings infrastructure-as-code concepts into the
function source, but this approach has evident shortcomings since it heavily
relies on heuristics for its foundations. For example, it offers an annotation
named @Warmup which injects an algorithm to avoid cold starts by periodically
pinging the function through a CloudWatch event: however, platform providers
have suggested avoiding these so-called “warmers”, because they are mostly
ineffective, break serverless principles, and can increase costs very quickly.

The main obstacle that these tools do not overcome is that they are not de-
signed to handle codebases beyond the trivial examples which they present to
support their cases. In comparison, Fenrir is very powerful, and its scope is
broader.
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4.2 Future directions

We believe Fenrir could be improved further by expanding its features or by
building tools around it. We close this thesis by listing a few of the enhance-
ments Fenrir could receive.

4.2.1 More annotations

Fenrir should have more core annotations. Also, while the existing anno-
tations currently do not exhibit conflicts with each other, it is prudent to
anticipate potential conflicts that could arise when new annotations are in-
troduced. Consequently, incorporating new constraints becomes essential to
prevent such conflicts and ensure the smooth coexistence of annotations within
the framework.

Fenrir should add support for marking not just top-level functions, but also
other AST nodes. This feature would enrich the framework further, as users
would have more freedom to change the emitted code. These new annotations
may be inside the function itself, marking nodes inline, or even at the source
level. Additionally, they may be related to a particular annotation, thus,
creating sets of domain-specific annotations. For example, $Fixed, whose scope
is related to “FaaSification”, could have children annotations that would issue
a warning if used under other top-level annotations.

1 /** $Fixed */
2 export async function foo() {
3 const data = await query()
4 // new inner annotation, which changes parts of the emitted code
5 /** $StatusCode(code: 201) */
6 return data
7 }
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4.2.2 Formalization

Many parts of this framework should be formalized, similarly to the work
conducted by Kallas et al. [7], as this would give solid foundations to Fenrir:

• Annotation syntax and semantics, including defining the structure of
annotations, allowed parameters, and their meanings, because we only
presented a preliminary insight in Section 3.3.

• Composition semantics to spot potential conflicts while using multiple
annotations.

• Transformations algorithms to ensure correctness, predictability, and
consistency in the compilation process, given some notion of behavioral
correspondence.

4.2.3 Linter

Currently, there is no standalone linter or set of rules for existing ones that
captures serverless principles and enforces them on projects. A new linter may
analyze the code, flag architectural smells, and warn users whenever they are
breaking best practices. For example, the linter may issue an error if there is a
serverless function invoking another one, as this could lead to increased costs,
more debugging complexity, and a breach of the isolation principle.

Furthermore, a new linter could be built specifically for Fenrir, flagging er-
rors and warnings when a developer misuses annotations. Linting may take
place either before the transpilation process or afterward, targeting the emitted
directory.
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