
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE
Corso di Laurea in Informatica - 8028

Testing Attacks
on Structural Text

Watermarking Techniques

Relatore:
Chiar.mo Prof.
Danilo Montesi

Corelatore:
Dott.
Fabio Bertini

Presentata da:
Simone Branchetti

Controrelatore:
Chiar.mo Prof.

Maurizio Gabbrielli

Sessione II
Anno Accademico 2022/2023

Contents

1 Introduction 7

2 State of the art 9
2.1 Zero Watermarking Techniques . 10
2.2 Image based Watermarking . 10
2.3 Syntactic based Watermarking . 11
2.4 Semantic Watermarking . 11
2.5 Structural Techniques . 12

3 Main Techniques 13
3.1 Grayscale Watermarking . 13
3.2 Whitespace Watermarking . 17
3.3 Homoglyph Watermarking . 20
3.4 Combining the different methods . 24
3.5 Embedding Capabilities . 25

4 Dataset 26
4.1 Finding the right Dataset . 26
4.2 TenTen Family - Most Languages . 27
4.3 NYTC - English . 27

5 Robustness Testing 30
5.1 Types of Attacks . 30

5.1.1 Partial Copy and Paste . 31
5.1.2 Insertion: . 31
5.1.3 Deletion . 32
5.1.4 Replacement . 32
5.1.5 Retyping . 33
5.1.6 Reformatting/Recoloring . 33

5.2 Test Execution . 34

1

6 Experimental Results 40
6.1 64 Bits of watermark . 41
6.2 128 Bits of watermark . 43
6.3 256 Bits of watermark . 45

7 Conclusion 47

8 Bibliography 48

2

List of Figures

3.1 Embedding of a 63bits long watermark in the first seven characters of the
string. 15

3.2 Embedding of 24 bits of watermark in the first whitespace of a string. . . 18
3.3 The two characters, in this font, share the same glyph but have a different

Unicode code. Homoglyph watermarking exploits this property to hide
information in a text. 20

3.4 Image that show the procedure for embedding bits of information into a
text using homoglyphs. Green highlighted characters in the first text are
those that have a homoglyph. Based on the corresponding watermarking
bit, the character is changed to its homoglyph (red highlight) or maintained. 22

5.1 Partial Copy and Paste attack example of size equal to 20% of the text.
In this case the affected character count is 40. 31

5.2 Insertion attack example of size equal to 20% of the text. In this case the
affected character count is 40. 32

5.3 Deletion attack example of size equal to 20% of the text. In this case the
affected character count is 40. 32

5.4 Replacement attack example of size equal to 20% of the text. In this case
the affected character count is 40. In this example all characters have
been replaced with *. 33

5.5 Recoloring attack example of size equal to 20% of the text. In this case the
affected character count is 40. Whitespaces affected have been highlighted
so as to make them more apparent. 34

3

List of Tables

3.1 Table of a subset of whitespaces, their corresponding Unicode code and a
coloured example to illustrate their differences. 20

3.2 This table shows which levels of character encoding are affected by the
structural watermarking techniques presented in this paper. 25

3.3 Table that shows how many characters (whitespace or not) are needed to
hide at least once different lengths of watermark with all possible combi-
nations of the techniques presented in this thesis. 25

4.1 Table that shows the number of scanned articles, their character count,
whitespace count, number and their total and average grouped by year of
publication. 29

6.1 Homoglyph Watermarking Experimental Results table. The Recoloring
attack is not included because it doesn’t affect this technique at all. . . . 40

6.2 Number of positive 64 bits watermark extractions for the Deletion attack
on 100 examples of 200 characters texts with each of the main techniques
and their combinations. 41

6.3 Number of positive 64 bits watermark extractions for the Insertion attack
on 100 examples of 200 characters texts with each of the main techniques
and their combinations. 41

6.4 Number of positive 64 bits watermark extractions for the Replacing attack
on 100 examples of 200 characters texts with each of the main techniques
and their combinations. 42

6.5 Number of positive 64 bits watermark extractions for the Recoloring at-
tack on 100 examples of 200 characters texts with each of the main tech-
niques and their combinations. 42

6.6 Number of positive 64 bits watermark extractions for the Partial Copy
and Paste attack on 100 examples of 200 characters texts with each of the
main techniques and their combinations. 42

6.7 Number of positive 128 bits watermark extractions for the Deletion attack
on 100 examples of 200 characters texts with each of the main techniques
and their combinations. 43

4

6.8 Number of positive 128 bits watermark extractions for the Insertion attack
on 100 examples of 200 characters texts with each of the main techniques
and their combinations. 43

6.9 Number of positive 128 bits watermark extractions for the Replacing at-
tack on 100 examples of 200 characters texts with each of the main tech-
niques and their combinations. 44

6.10 Number of positive 128 bits watermark extractions for the Recoloring
attack on 100 examples of 200 characters texts with each of the main
techniques and their combinations. 44

6.11 Number of positive 128 bits watermark extractions for the Partial Copy
and Paste attack on 100 examples of 200 characters texts with each of the
main techniques and their combinations. 44

6.12 Number of positive 256 bits watermark extractions for the Deletion attack
on 100 examples of 200 characters texts with each of the main techniques
and their combinations. 45

6.13 Number of positive 256 bits watermark extractions for the Insertion attack
on 100 examples of 200 characters texts with each of the main techniques
and their combinations. 45

6.14 Number of positive 256 bits watermark extractions for the Replacing at-
tack on 100 examples of 200 characters texts with each of the main tech-
niques and their combinations. 46

6.15 Number of positive 256 bits watermark extractions for the Recoloring
attack on 100 examples of 200 characters texts with each of the main
techniques and their combinations. 46

6.16 Number of positive 256 bits watermark extractions for the Partial Copy
and Paste attack on 100 examples of 200 characters texts with each of the
main techniques and their combinations. 46

5

List of Algorithms

1 Grayscale Embedding . 16
2 Grayscale Validation . 16
3 Whitespace Embedding . 19
4 Whitespace Validation . 19
5 Homoglyph Embedding . 23
6 Homoglyph Validation . 24
7 Deletion Attack . 35
8 Insertion Attack . 36
9 Replacement Attack . 36
10 Recoloring Attack . 37
11 Partial Copy and Paste Attack 38
12 Testing Process . 39

6

Chapter 1

Introduction

In recent times, certifying content paternity is becoming an interesting challenge to
overcome, and a pressing one at that. Every day more and more content is published
on the internet in social media sites, cloud sharing services or websites and this content
becomes easy pickings for people who want to steal it and make it theirs. When this
sort of “content theft” occurs it is very difficult to trace the stolen piece of content
back to its original author. Another linked issue is that publishers and content creators
are interested in a lightweight and easy to use solution to this problem in order to
protect their works against different types of attack. The most common solution to this
problem is Digital Watermarking, defined as the process of digitally embedding a certain
amount of information (the watermark) into a piece of multimedia content such as a
picture, video or written document. The most apparent form of Digital Watermark is a
photographer’s name printed on top of their picture in order to protect it from improper
use, as it would carry the watermark if it were to be copied and pasted in another
website, thus linking the picture to its owner. Different pieces of media need different
watermarking techniques because, for example, an image has different properties from a
piece of text. Speaking of the latter, text watermarking is especially difficult, because
text as a medium has a low embedding rate for external information: for example if
one inserts a new word into a piece of text, any attacker would be able to understand
where the watermark is and how to delete it. This means that text watermarking is done
through other more discreet means like converting text to an image and watermarking
the result, using synonyms or with the help of structural watermarking methods. This
thesis will focus on text watermarking because of its abundance in literature and the
inherent omnipresence of text on the internet which make it almost omnipresent in
blogs, social networks, forums and scientific journal’s websites. In the next chapters
we will explain what text watermarking is, how it is done and, most importantly, what
attacks can be used to break every technique that will be mentioned and how likely
it is for such an attack to be successful. A particular focus will be placed on three
structural watermarking techniques: Homoglyph based watermarking, Grayscale based

7

watermarking and Whitespace color based watermarking, with an in-depth look into
their robustness to several types of attacks.

8

Chapter 2

State of the art

Watermarking a piece of text poses lots of different problems because text as a medium
has low embedding bandwidth (meaning that there’s not much room to hide information
compared to an image, where every pixel can hide many bits of watermark) and only
allows a restricted number of alternative syntactic and semantic permutations [1]. Of
course, there are many text watermarking methods already used in practice with a
large amount of literature backing them so, among them, a characterization of text
watermarking techniques has emerged. Many papers like [2] and [3] define the basic
characteristics for a generic watermarking technique as:

• Readable or Detectable: if the watermark is readable, the user can clearly see
it. Conversely, it is detectable if a function can identify it but the user alone can’t.

• Visible or Invisible: A visible watermarking method is visually perceptible by
the user. On the contrary, the method is invisible if it is hidden in the original
digital content and is not noticeable by the user. A visible watermark may be
non-readable if a user can visually detect it but cannot read its content.

• Blind or Non Blind: If the original digital content is not needed in the extraction
process, the watermarking is blind. Otherwise, the watermarking process belongs
to the non blind category.

• Simple or Multiple: If a watermark can be applied only once the watermarking
is simple. A multiple watermarking method means that a payload of data can be
embedded more than one time in the same document without affecting the whole
process.

• Fragile, Semi-Fragile, Robust: A fragile watermark is detectable and can be
altered or erased, thus, it is used for integrity authentication; a robust watermark
is detectable and not erasable and it is most suitable for copyright protection. A
semi-fragile watermarking is suited for content authentication.

9

These characteristics make up the baseline for defining all watermarking techniques.
Keeping with the example of the photographer’s name on their picture as the water-
mark, we can identify it as a Readable, Visible, Blind, Multiple and Fragile technique.
The focus of this thesis is on Text Watermarking and, even though all Text watermarking
techniques can be defined using the previously mentioned characteristics, the literature
regarding these is especially prolific, with techniques being grouped in different cate-
gories:

2.1 Zero Watermarking Techniques
Zero watermarking techniques don’t hide any information inside the content, instead
they extract characterizing information from a text, and then store this information into
an Intellectual Property Right (IPR) database [4]. They are counted among watermark
techniques even though using this method the association between the content and the
author does not rely on the watermark, but on the proof from a trusted authority. Using
these techniques, the amount of data that the IPR has to store is greatly reduced if
compared to a method that stores the entire text for paternity purpose but, on the other
hand, Zero watermarking has a clear weakness: the text and identity of the owner must
be deposited to a third party and this can lead to privacy issues [1].

2.2 Image based Watermarking
A text watermarking technique is called Image based if the process of embedding involves
transforming the text into an image (by scanning or taking a screenshot of it) and then
watermarking the resulting image. These techniques are some of the most explored
in literature, with the first dating back to the mid-nineties [5, 6]. For example, in a
grayscale image of a text, a large amount of information can be hidden in the image by
tuning the luminance of some pixels based on the watermark data [7]. Another example
of this category is this article from Kim and Oh [8] that shows an image watermarking
technique based on altering image histograms in order to hide information into an image.
Some other techniques implement a shift in text elements of an image, like a line being
slightly higher or lower [5, 9], or tweaking the space between different words [10, 11],
changing serifs and strokes or elongating single characters [5, 12, 13].
Even though Image based techniques are abundant, they all share two key weaknesses:
the resulting file must be kept in an image file format like JPEG or PNG and it can
therefore be shared only through avenues that allow it like as a physical printed page or
a fax machine. The second vulnerability is one that is shared by almost all categories
of text watermarking: if an attacker were to retype the whole text by reading it from
the watermarked image the information hidden inside of it would be lost. Because of

10

this strong focus on printed paper for the protected medium, Image based watermarking
may become less relevant in the future due to the increasing pressure from society on
the printed press in favor of digital alternatives as the preferred way to consume textual
information.

2.3 Syntactic based Watermarking
Instead of focusing on the shape and positioning of words, Syntactic techniques alter
the very structure of the text in order to embed a watermark. The first step to this
process is the construction of a syntactic tree for a sentence, after which a series of
operations like clefting, passivization or activization are applied in order to encode the
watermark bits [14]. Clefting is the process of transforming a simple sentence into a
complex one using clefting particles like “what”, “it” or similar [15], for example the
sentence “I ate steak” can be transformed into a cleft sentence like “Steak is what I ate”
(“what” clefting) or “It is steak that i like” (“it” clefting). Activization and passivization
are two faces of the same coin, whereas the first transforms a passive sentence into an
active one, the second does the opposite. Other morpho-syntactic transformations exist
that preserve the original meaning of the sentence like switching from “ ’s ” to “of” and
vice-versa when talking about possession [16]. The major limit of these techniques is
their low embedding capabilities because in situations where text length is restricted
like SMS messages or social network posts there is often no room to apply any of the
techniques just described. Another disadvantage is that these techniques can change the
meaning of a sentence because different syntactic forms don’t always preserve idiomatic
interpretations [17].

2.4 Semantic Watermarking
Semantic Watermarking exploits the similar meanings of different words to replace word
with their synonyms [18]. This results in non-blind watermarking techniques because the
original text is required in order to understand which synonyms have been put into the
text. This particular semantic approach can be mixed with previously described syntactic
techniques like Topkara et al. do in [19] in order to obtain an higher embedding capacity.
Other semantic techniques use sentences’ presuppositions in order to add to a sentence,
embedding some information in the meantime. A presupposition is a fact that must be
true for the sentence to make sense; for example if the sentence to modify is “Paul walks
his dog”, the implicit information is that Paul has a dog and, by making that information
explicit, or in other cases removing it, it is possible to hide a watermark into a piece of
text. Of course, these techniques are not perfect and, in fact, they are quite reliant on
language and on the correctness of the text to watermark, in addition to the fact that

11

the content of the text can be heavily altered in order to apply a semantic watermark.

2.5 Structural Techniques
Structural methods include all those methods that do not alter the text content but only
its structure, meaning the underlying representation or the visual features. These have
recently emerged as methods that embed watermark or hidden payloads by changing the
underlying encoding of symbols or adding invisible symbols, without actually altering
the readable content of the text. The Unicode standard has several different symbols for
whitespaces, some of different width, others practically identical. By putting many of
these whitespace symbols at the end of a paragraph, or by filling an empty line, relatively
long payloads have been hidden in Microsoft Word documents [20]. A similar technique
has been effectively applied to watermark Arabic language text: by using a different
Unicode whitespace between words depending on the bits of the watermark’s binary rep-
resentation a payload of data can be hidden in the text [21]. A more recent method uses
multiple ASCII white spaces to embed a covert message [22] for PDF steganography in-
stead. This last technique works on justified text and is able to embed 4 bits for each host
line, where a host line is a line with at least 9 normal spaces and 3 wider spaces. Apart
from whitespaces, the Unicode standard also provides some totally invisible symbols,
which are coded as zero-width whitespaces. These symbols, together with whitespaces,
have been exploited to hide hidden messages in text [23] and to watermark HTML pages
[24, 25]. As mentioned earlier, these methods have the important advantage of keeping
the original content unaltered without transforming the text to an image, or relying on
an external database. The above structural methods are blind, meaning that the original
text is not needed in order to extract the watermark. This, together with the easiness
of removing multiple whitespaces, makes these approaches fragile in both malicious and
benign attacks. This is particularly true for methods that use consecutive whitespaces
and whitespaces before or after the whole text, because it has been proven that many
digital platforms and social media automatically remove them [26]. A similar problem
can also occur through selection for copy and paste: selection may easily exclude the
white portion where the watermark is embedded. Apart from whitespaces, homoglyphs
ad invisible characters, some image based techniques where lines or words are slightly
shifted without altering the text content [27, 28] have been also considered as structural
methods [29].

12

Chapter 3

Main Techniques

The main techniques in this thesis are all structural techniques and, in this section, we
will explain each of them in detail. If other techniques were just mentioned by name,
these will get a proper explanation complete with algorithms for both encoding and
decoding information into a text, all for the interest of later explaining how attacks can
influence negatively the recovering process of an embedded watermark. The thing they
have in common is that, while they all embed watermark bits into a text in a different way,
the original watermark is always created by encrypting the full text with an encryption
algorithm the user chooses. Different encryption algorithms produce different watermark
lengths, but all of the following watermarking methods use this resulting array of bits
in the same way regardless of its length. In particular, in [30], watermark lengths of 64,
128 and 256 bits are used, among others, with the respective hashing algorithms being
SipHash [31], SHA128 and SHA256 [32] so, to keep our measures coherent our tests will
use the same watermark lengths. The key for every algorithm used is inputted by the
user and it is the final proof of paternity for the document so, for example, even if two
documents are watermarked with the same technique, if the two users choose different
keys the resulting documents will be different in and of themselves.

3.1 Grayscale Watermarking
The first structural watermarking technique we want to present is called Grayscale Text
Watermarking or just Grayscale Watermarking in short. We described its functioning in
deeper detail in a paper from 2022 cited here [30].
This technique is detectable, invisible, blind, fragile and preserves content and length of
the watermarked text.
It works by embedding watermark bits into the shades of grey of the characters in a text
document. We define a grayscale as a palette of colours that starts with pure black and
ends with pure white, usually represented as a series of hexadecimal codes (e.g., #171717

13

is a shade of grey very closely resembling pure black #000000). After the process is com-
plete each character has a different shade of grey and, as such, stands for different parts
of the original bit sequence of the watermark.
The main problem that needs to be solved is that not all shades of grey are indistinguish-
able when confronted with pure black text. To solve this issue, Grayscale watermarking
uses a two-step process to ensure maximum bit embedding per character while maintain-
ing the outcome invisible to the majority of people. The first step is thresholding the
maximum possible shades of grey we use to embed a sequence of bits in a character. This
reduces the number of bits we can embed in a single character but improves indistin-
guishability compared to using the whole palette of grey or the whole colour spectrum.
The specifics of these thresholds are in the article [30] but in this thesis we report that
a survey made with 255 people on the visibility of different shades of gray showed that
the best thresholds to use in this application are from #070707 to #272727. We will use
one of these two when making examples on this technique.
The second step is the separation of the hexadecimal components of the character’s colour
(i.e., red, green, blue). If we used the entire colour spectrum and a maximum threshold
of #070707, there would be several colours represented with smaller numerically values
that would be visually further away from black and more visible to the user (e.g., the
numerical value #00ffff representing the colour yellow is numerically less than #070707).
The solution is to consider a separate threshold of #07 for each colour component and
then reconstruct the full colour to use for the character reassembling the components.
As shown in Figure 3.1, the shade of each component encodes a portion of the sequence
of bits of the watermark and helps to form the grey shade that respects the defined
threshold. In particular, the grayscale is chosen converting a part of the watermark
bits into a hexadecimal number lower than the current colour component’s threshold.
Considering the previous #070707 threshold, the maximum number of embeddable bits
into a single colour component is three because the binary value 111 is equal to 07 in
hexadecimal.

14

Figure 3.1: Embedding of a 63bits long watermark in the first seven characters of the
string.

The following algorithms show a possible implementation of this technique with re-
spects to both the embedding and the recovering of a watermark composed of a string
of bits. In this example we will use a threshold of #272727 for our embedding.

15

Algorithm 1 Grayscale Embedding
1: // The SHA256 hashing algorithm returns a 256bits watermark.
2: function grayscaleEmbedding(origText, userPassword)
3: watermark ← SHA256(origText, userPassword)
4: threshold← #272727
5: for each char ∈ origText do
6: redBits← toGreyShade(pop(watermark, 3))
7: greenBits← toGreyShade(pop(watermark, 3))
8: blueBits← toGreyShade(pop(watermark, 3))
9: colour ← redBits+ greenBits+ blueBits

10: wtmText← wtmText+ colouring(char, colour)

11: return wtmText

This is the first set of algorithms for embedding and retrieving a watermark in a
structural technique so we can highlight some of the common themes ew will see between
all of them: the embedding algorithms will scan every character of the text in order to
find the correct ones to modify, the watermark bits are embedded repeatedly into the
text so that every part of the text is equally protected and the validation algorithms
need the original text to validate a watermark, making all of these techniques non-blind.

Algorithm 2 Grayscale Validation
1: // This function wipes out the watermark.
2: function grayscaleClean(wtmText)
3: for each char ∈ wtmText do
4: text← text+ colouring(character,#000000)
5: return text
6:
7: // The extracted watermark is compared with the new one
8: // generated using a new password.
9: function gscaleV alidation(wtmText, newPassword)

10: origText← clean(wtmText)
11: newWtm← SHA256(origText, newPassword)
12: for each char ∈ wtmText do
13: colourString ← string(getColor(char))
14: red, green, blue← extractComponent(colourString)
15: recoveredWtm← recoveredWtm + red+ green+ blue

16: return (newWtm == recoveredWtm) ?True : False

16

3.2 Whitespace Watermarking
This structural watermarking technique is similar in concept to the previously described
Grayscale watermarking technique but with a substantial difference: this time, only
whitespace characters are considered for the recolouring process.
The process is simple and allows for more embedding in a single character. A whitespace
character is invisible to the naked eye but, in every collaborative text editor, it can be
coloured nonetheless with the full hexadecimal scale. We can use this by taking a large
chunk of watermark bits (24) and converting it into a hexadecimal code that is applied
to the first whitespace character in the text as its colour. This process is repeated for
every whitespace character, looping over the watermark as many times as necessary to
provide enough bits to this process. Because of this repetition, the technique protects
text to a sentence level with only 3 whitespace characters needed to hide a 64 bits water-
mark.Whit this technique, for every whitespace character present in a text we can hide
24 bits of information by removing all colour limits we had previously with Grayscales.
The similarity between these methods of watermarking can be seen in figure 3.2 that
demonstrates how the technique works.

17

Figure 3.2: Embedding of 24 bits of watermark in the first whitespace of a string.

The resulting technique is, just like Grayscale watermarking, invisible, detectable,
fragile, non-blind and content and length preserving. No character is added, all the
whitespaces are just coloured. Inevitably, the number of available characters for this
technique is lower than the other ones we present in this paper but the trade off is the
huge embedding capability of this technique. To find the average split of characters to
whitespaces we analysed the full text of over 129 thousand New York Times articles from
the NYT Annotated Corpus [33]. For each article, its full text has been analysed and
each character has been counted as either a whitespace or a normal character. The end
results show that only around 20% of characters in a text are whitespace characters.
The following algorithms show a possible implementation of this technique with respects
to both the embedding and the recovering of a watermarked composed of a string of bits.

18

Algorithm 3 Whitespace Embedding
1: // The SHA256 hashing algorithm returns a 256bits watermark.
2: function spaceEmbedding(orgText, userPassword)
3: watermark ← SHA256(orgText, userPassword)
4: for each whitespace ∈ orgText do
5: colour ← toHexColour(pop(watermark, 24))
6: wtmText← wtmText+ colouring(whitespace, colour)

7: return wtmText

Embedding and validation for Whitespace Watermarking are very similar in con-
cept to the corresponding algorithms for Grayscale Watermarking but they are further
simplified and streamlined because using the full hexadecimal color space we are not
restricted in the number of bits we can hide in an affected character. The trade off for
this increased embeddability is, of course, the increased rarity for whitespaces compared
to visible characters.

Algorithm 4 Whitespace Validation
1: // This function wipes out the watermark.
2: function spaceClean(wtmText)
3: for each whitespace ∈ wtmText do
4: text← text+ colouring(whitespace,#000000)
5: return text
6: // The extracted watermark is compared with the new one
7: // generated using a new password.
8: function spaceV alidation(wtmText, newPassword)
9: origText← clean(wtmText)

10: newWtm← SHA256(origText, newPassword)
11: for each whitespace ∈ wtmText do
12: colourString ← string(getColor(whitespace))
13: recoveredWtm← recoveredWtm + colourString

14: // If the two passwords were equal they generated the same
15: // watermark, proving the paternity of the text.
16: return (newWtm == recoveredWtm) ?True : False

We use the term “whitespace” and not simply space because the Unicode standard
has a family of characters that serve to put a blank space between two others. Every
single one of them has its own uses and the table below shows some of them with their
relative code. The characters are coloured for ease of reading and comparison.

19

White space Unicode Example
Space 0x0020 The Example

En Quad 0x2000 The Example
Three-per-em 0x2004 The Example
Four-per-em 0x2005 The Example

Punctuation Space 0x2008 The Example
Thin Space 0x2009 The Example

Narrow No-Break Space 0x202f The Example
Medium Mathematical Space 0x205f The Example

Table 3.1: Table of a subset of whitespaces, their corresponding Unicode code and a
coloured example to illustrate their differences.

3.3 Homoglyph Watermarking
When typing a text, every character has its own glyph, or visual representation, based on
the font used. A character has a homoglyph if there’s another character in Unicode that
shares the same glyph but has a different underlying code. For example the character
“C”, which is the uppercase third letter of the English alphabet, has a homoglyph in
the character “C”, the roman numeral for one hundred. This property provides a useful
avenue for structural text watermarking. The homoglyph based watermarking technique
is described in this paper [1] however, just like with Grayscale watermarking, this thesis
will contain a short summary to explain its functioning.
To understand how this watermarking method works, one first has to understand how
we can use homoglyphs to hide information in a text. The following image provides a
graphical display of how two characters with different codes can have the same glyph
and thus be homoglyphs.

Figure 3.3: The two characters, in this font, share the same glyph but have a different
Unicode code. Homoglyph watermarking exploits this property to hide information in a
text.

20

A particular subclass of characters is whitespaces: every whitespace has, by the
definition, the same glyph, the only difference is the length. In table 3.1 that we used
in the previous subsection we have identified a subset of 8 whitespace characters. This
subset can be mapped to all the possible binary digits from 000 to 111. By doing this we
can encode 3 bits of information using different whitespace homoglyphs. This approach
extends the embeddability of the technique and, as [1] proves, does not change the text
visually any more than other structural techniques. The following image shows how
characters are hidden in a text using this technique: for every character in a text that
has a homoglyph, one bit of watermark is taken then, if the bit is 1 the character gets
swapped for its homoglyph. We apply the same procedure with whitespaces but we
substitute them with the three bits resulting from a lookup to the table we constructed
before.

21

Figure 3.4: Image that show the procedure for embedding bits of information into a text
using homoglyphs. Green highlighted characters in the first text are those that have a
homoglyph. Based on the corresponding watermarking bit, the character is changed to
its homoglyph (red highlight) or maintained.

Homoglyph Watermarking relies heavily on the set of homoglyph being used: a text
that uses a language written in a Latin script like Italian or English can benefit from
Homoglyphs found in the Cyrillic alphabet but languages that use a different writing
system like Korean can not. The algorithms below show a possible way to implement
Homoglyph Watermarking Embedding and Validation with a Homoglyph set created for
Latin scripts comprised of Normal characters and Whitespaces.

22

Algorithm 5 Homoglyph Embedding
1: function homoglyphEmbedding(orgText, userPassword)
2: wtmText← “”
3: // List of confusable original symbols
4: Originals←{U+002c, U+002d, U+002e,...}
5: // List of confusable duplicate symbols
6: Duplicates←{U+a4f9, U+2010, U+a4f8,...}
7: // List of whitespace confusable characters
8: Spaces←{U+0020, U+2002, U+2005,...}
9: Confusables← Originals ∪ Spaces

10: GetDuplicate : Originals→ Duplicates
11: GetSpace :{000, ..., 111}→ Spaces
12:
13: // The SHA256 hashing algorithm returns a 256bits watermark.
14: watermark ← SHA256(orgText, userPassword)
15: for each char ∈ orgText do
16: if char ∈ Confusables then
17: if char ∈ Spaces then
18: char ← getSpace(pop(watermark, 24))
19: else
20: bit← pop(watermark, 1)
21: if bit = 1 then
22: char ← getDuplicate(char)

23: wtmText← wtmText+ char

24: return wtmText

It goes without saying that the Validation algorithm only works if the same set
of Homoglyphs is used when recovering a watermark so we repeated the same set of
Homoglyphs in this algorithm too.

23

Algorithm 6 Homoglyph Validation
1: // List of confusable original symbols
2: Originals←{U+002c, U+002d, U+002e,...}
3: // List of confusable duplicate symbols
4: Duplicates←{U+a4f9, U+2010, U+a4f8,...}
5: // List of whitespace confusable characters
6: Spaces←{U+0020, U+2002, U+2005,...}
7: Confusables← Originals ∪ Spaces
8: GetDuplicate : Originals→ Duplicates
9: GetSpace :{000, ..., 111}→ Spaces

10: Watermark ← “”
11: function homoglyphV alidation(wtmText, newPassword)
12: for each char ∈ wtmText do
13: if char ∈ Spaces then
14: Watermark = Watermark +GetSpace(char)
15: else if char ∈ Originals then
16: Watermark = Watermark + “0”
17: else if char ∈ Duplicates then
18: Watermark = Watermark + “1”

19: return Watermark

3.4 Combining the different methods
All of our different structural watermarking techniques work on a particular aspect of
character encoding and these levels are shown in table 3.2. These techniques are not
mutually exclusive and any combination of them can be used in the same text to protect
it further. The two colouring techniques in particular are weak to recolouring, which
is defined as the act of colouring a text once it has been already watermarked with
Grayscale or Whitespace Colouring. This weakness can be overcome by combining them
with our Homoglyph approach that is completely immune to this attack. Vice versa,
our homoglyph technique has a lower embedding rate than our colouring techniques
so, to protect smaller parts of the text, mixing them together can prove useful. The
way to combine the different techniques is by applying them to each character they
affect when they appear in the text, using Homoglyphs before any coloring techniques
so any replaced character retains the correct color, for example as soon as a whitespace
character appears we watermark it first with the Homoglyph technique and then with
the Whitespace technique using the same watermark sequentially.

24

Watermarking technique Layer Example
Grayscale & Whitespace Color layer All the world

Font All the world

Homoglyphs Characters All the world
Bits 01000101...

Table 3.2: This table shows which levels of character encoding are affected by the struc-
tural watermarking techniques presented in this paper.

3.5 Embedding Capabilities
Before proceeding with the testing, an important piece of information to know is how
many bits of watermark each of the previously mentioned technique embeds in a single
character. Something to keep in mind is that all three of the previously mentioned water-
marking methods are finegrained, meaning that they embed the watermark repeatedly
into the same text and, by boasting really high embedding capabilities, they can protect
the text in a finer detail than most other watermarking techniques.

Length
Method (threshold) 64 bits 128

bits
256
bits

Grayscale (#272727) 16 31 62
Homoglyphs 101 198 357
Whitespace 17 34 67
Grayscale (#272727) + Homoglyphs 12 23 46
Grayscale (#272727) + Whitespace 8 16 32
Homoglyphs + Whitespace 15 29 58
Grayscale (#272727) + Homoglyphs + Whitespace 8 15 30

Table 3.3: Table that shows how many characters (whitespace or not) are needed to
hide at least once different lengths of watermark with all possible combinations of the
techniques presented in this thesis.

25

Chapter 4

Dataset

When looking at a written text, from a structural point of view not all characters are
created equal. At first glance, we can divide all the characters in visible characters
or whitespaces depending on if the glyph associated with the character is visible or
not under normal circumstances. Because the main techniques presented in this paper
all have different targets for their manipulations, we need a method to understand how
many characters there are in a text, how frequent whitespaces are and how effective
different watermarking techniques can be.

4.1 Finding the right Dataset
The first issue is defining what constitutes a “normal” text or, in other words, what
collection of texts can give us the best representation of what the average text looks like.
First and foremost, we must decide on the language and alphabet more suited to this
application because different languages use different alphabets and this has important
effects on the techniques presented. We can, of course, color every glyph from every
alphabet supported in a common text editing software, finding homoglyphs in other
alphabets can be more difficult. The challenge here arises because of the large number
of symbols languages like certain languages tend to have which make it hard to find a
comprehensive set of homoglyph that would make Homoglyph Watermarking work just
as well as it is doing with the Latin alphabet. Fortunately, the problem of having a
collection of texts in a specific language for testing purposes is in no way a new one and
the principal solution is that of corpora. A corpus is a collection of texts that are usually
purposefully collected, structured and catalogued for research purposes. This thesis will
focus on two of these: the TenTen Corpus family which has a Corpus for most languages
and collects web texts and the New York Times Corpus which collects articles from the
titular newspaper.

26

4.2 TenTen Family - Most Languages
The TenTen Corpus Family is a project by Jakubíček et al. [34] aimed at producing
corpora for different languages by crawling the internet and categorizing different website
contents with metadata born in 2013. TenTen is built upon the Sketch Engine, which is
a tool that analyzes billions of texts to produce, in this case, a corpora from web content.
Corpora in this family are all built using the same flowchart:

• Texts are crawled from the Internet using a web spider designed for linguistic
purposes.

• Texts are cleaned to remove navigation links, advertisements etc.

• Tokens are generated using a tokenization process on the texts.

• Using a language filter, longer sentences in different languages are eliminated, while
foreign words like movie titles are kept in the text.

• An apposite tool deletes duplicate content at the paragraph level.

• Content with poor quality and spam is removed.

• Each text is classified into a genre (writing style) and a topic (a category).

• A lemmatizer and a tagger tool lemmatize and tag parts of speech.

• The user can check the finished corpus before publishing it.

This schematized process can produce a comparable corpora (corpora consisting of texts
from the same domain in more languages) in any language chosen, with most of the
major world languages being represented in this family like Arabic, Chinese, English,
French, German, Italian, Japanese, Korean, Portuguese, Russian and Spanish.
Ultimately, this is an interesting set of corpora that showcase with effectiveness a method
with which to create a corpus for a language. The issue for us is the need for an account
to access the corpora and/or the creating tool and the unpredictable nature of creating
a corpus using seed URLs and a crawler means that we will have no idea until the end
of the process about what content is or is not in the created corpus.

4.3 NYTC - English
The last option, and the one chosen in this thesis is the New York Times Corpus [33],
already used when testing Homoglyph Watermarking, which is a collection of almost 2
million articles from 1987 to 2006 of the New York Times. This corpus is suited for
this research and free to use for these types of application. The articles within it are

27

catalogued as XML files that contain a large amount of information about each article
in the daily edition of the NYT. The majority of that information is of no use here but
the one field that we analysed is full_text that, as the name implies, contains the full
text of any given article. A Python script we wrote for this purpose combed through
1’791’891 articles that had the full_text tag and counted every character and whitespace
present. With a final count of more than 5 billion visible characters and almost 1 billion
whitespaces scanned, we compiled the results and performed some statistical analysis on
them.
The average article had 2802 visible characters and 544 whitespaces which means that
for every visible character we can count 0.19 whitespaces when thinking in terms of
watermark bits embedded per character. The techniques presented in this paper work
either on visible characters like GTW and HBW or on whitespace characters WTW so
having a coherent unit of measure for all of them helps with comparing the efficacy
of the techniques. From this point onward, all performance metrics will be calculated
and expressed assuming we are watermarking the average text and all characters that
a technique ignores will be added to the resulting metric to keep the measurement as
fair as possible. For example in the text “All the world” we count 3 whitespaces and
11 visible characters and if we were to delete 10% of this text it would be 2 characters
chosen at random, regardless of what the watermarking technique applied to it is.

28

Year Character count Whitespace Count Article Count
1987 270’612’216 51’450’406 106’104
1988 270’572’825 51’655’946 104’161
1989 264’180’289 50’423’406 101’760
1990 259’222’470 49’542’292 97’663
1991 222’823’312 43’317’424 83’995
1992 219’521’115 42’569’113 81’361
1993 214’460’525 41’628’894 77’653
1994 211’063’756 41’102’431 73’257
1995 226’378’041 44’231’326 83’783
1996 226’979’997 44’346’019 77’819
1997 231’505’524 45’067’168 84’406
1998 257’161’463 50’074’104 88’179
1999 263’542’092 51’419’165 90’111
2000 276’671’454 54’182’011 93’369
2001 268’401’276 52’402’883 95’142
2002 273’897’490 53’456’283 95’925
2003 268’054’422 52’523’328 92’829
2004 262’092’827 51’086’897 90’054
2005 259’565’516 50’558’312 88’786
2006 262’799’467 51’177’801 85’534
TOT 5’009’506’077 972’215’209 1’791’891
AVG 250’475’304 48’610’760 89’595

Table 4.1: Table that shows the number of scanned articles, their character count, whites-
pace count, number and their total and average grouped by year of publication.

This corpus is perfect for our purposes: it’s open-source, easily accessible, was already
used to test Homoglyph Watermarking so we can maintain testing homogeneity and it is
composed of complete texts from a reliable source with rigid publication requirements so
each text in it is high quality. When testing the techniques in this thesis for robustness
the texts on which the tests will be performed will be chosen from this corpus.

29

Chapter 5

Robustness Testing

This chapter will focus on exploring how to test Grayscale and Whitespace Watermarking
plus their combinations with each other and Homoglyph Watermarking for vulnerabilities
to different attacks. It is divided in sections that explain the methods with which the
tests were performed and the results of said tests. The important thing to remember is
that we will focus on Structural Text Watermarking Techniques for our testing, meaning
that attacks directed at videos and pictures are not considered.

5.1 Types of Attacks
In order to test how well the main watermarking techniques fare against different types of
attack we must of course specify what attacks we will be testing for. The attacks we con-
sidered have the purpose to delete completely or partially the watermark embedded in a
text in order to avoid detection. This can be achieved in many different ways depending
on the technique used and the kind of watermarking employed (attacks useful against
image-based watermarking may not be effective for structural watermarking methods,
for example). All attacks in this section can be used on other text watermarking tech-
niques to measure their robustness to some of the most common attacks that happen
to a text. The list of attacks we developed is partly derived from literature [35, 36] and
partly derived from the need to highlight possibly problematic areas in the watermarking
techniques presented.
In order to make sure that the techniques are properly challenged, the attacks will have
to target all of their properties, with the finegrained property first and foremost. Because
the watermark will be embedded multiple times into the text, the best chance an attack
will have to disrupt them all, while still resembling something a human would reasonably
do, is for each of the attacked characters to be chosen at random.
With this premise, the following subsections form a list of attacks that were considered
possible on the techniques presented in this article, with an example of each of the at-

30

tacks on an example test with 20% of the text affected by that attack. All images in this
section are captured from a Google Documents document, as such, they are subjected
to change if the software itself changes.

5.1.1 Partial Copy and Paste
A very common scenario where the content of a text file, or part of it in this case, is
copied and pasted into an attacker’s file. This attack is insidious because usually, only
a small amount of text is copied from the protected text to another in order to avoid
plagiarism checks. In our case the attack consists on randomly choosing a point in the
text and trying and recover the watermark in a portion of text starting with that point
(or ending with it if it is too close to the end of the text); in the figure below we can
see how a partial copy of 20% of the text affects it. As the example shows, in our tests
it is not a requirement for the copied portion of text to be coherent of have any sense
because it would be too difficult to implement and it would limit the amount of attacks
possible and their extension.

A mother whose toddler was abducted by a car thief when she left him unattended in
the back seat on Saturday will not face charges, District Attorney Richard A. Brown of
Queens said yesterday. He char

Normal Text
dler was abducted by a car thief when she

Partial Copy and Paste

Figure 5.1: Partial Copy and Paste attack example of size equal to 20% of the text. In
this case the affected character count is 40.

5.1.2 Insertion:
Insertion attacks work by randomly adding new words or characters in the watermarked
text [37], with the goal of altering the watermark. We can think of this attack in the
simplest form as an attacker adding the word “not” in front of a sentence to alter the
meaning of the text. An insertion of 20% of the text’s length changes it drastically as
we can see from the example below:

31

A mother whose toddler was abducted by a car thief when she left him unattended in
the back seat on Saturday will not face charges, District Attorney Richard A. Brown of
Queens said yesterday. He char

Normal Text
A moth$er w$ho$se tod$dler was$ abducted by a$ car thief wh$en she lef$t him
unattended i$n $the ba$ck se$at $on S$atur$day $will $not fac$e charg$es, Dis$$trict
Attorn$ey Rich$a$rd A. Br$own of $Quee$ns sa$id yesterd$ay. He ch$ar

Insertion

Figure 5.2: Insertion attack example of size equal to 20% of the text. In this case the
affected character count is 40.

5.1.3 Deletion
In this attack, some parts of the text are removed [29]. If the deleted portion is part
of the watermark, the watermark may be destroyed or completely removed [37]. An
attacker may delete part of the text to make it fit a certain narrative or to hide some
information while retaining the general meaning but, just like with the Insertion attack,
if we delete 20% of characters at random the text is unrecognisable.

A mother whose toddler was abducted by a car thief when she left him unattended in
the back seat on Saturday will not face charges, District Attorney Richard A. Brown of
Queens said yesterday. He char

Normal Text
A mthrwos odler as bdutedby ar thef wen sh lf him unttendd i the bak sat on Saurday
wll nt facechrges, Dstrct Atorne RichardA. Bown f Quens sid ysterdy. Hechar

Deletion

Figure 5.3: Deletion attack example of size equal to 20% of the text. In this case the
affected character count is 40.

5.1.4 Replacement
In a replacement attack, a set of words or characters in the watermarked text are replaced
with other words or characters [29, 37]. It can be considered as a deletion attack followed
by an insertion attack in the same location. An example could be, in a gendered language
like Italian, changing the suffix of a noun, an adverb or a pronoun in order to make it
masculine instead of feminine.

32

A mother whose toddler was abducted by a car thief when she left him unattended in
the back seat on Saturday will not face charges, District Attorney Richard A. Brown of
Queens said yesterday. He char

Normal Text
A m*ther whose*toddl*r was abducted *y * car thief*when *he*left*him una*t*nd*d
*n*t** *ack seat o* *aturday will*not face c*arge*, Dis*r*ct*At*or*ey Ric*ar***.
Brown*of*Queens*said *esterday. He char

Replacement

Figure 5.4: Replacement attack example of size equal to 20% of the text. In this case the
affected character count is 40. In this example all characters have been replaced with *.

5.1.5 Retyping
In a retyping attack, a malicious user retypes the text in a different file or platform.
Structural methods are all fragile to retyping by definition. In fact, because the structural
methods embed the watermark by altering the layout such as formatting features, spaces,
Unicode, and ASCII encodings without altering the content, retyping a text will always
destroys a watermark. There will be no examples in this subsection because a retyping
attack doesn’t modify the text, the attacker just manually retypes it. The first obvious
failure of all structural techniques is this Retyping attack: when typing a text after
looking at it, we cannot expect the attacker to also manually color each character and,
by virtue of its innate invisibility, homoglyphs will also be lost in the process. We can
therefore mark all of these as a failure and this type of attack will not show up in any
result tables for brevity.

5.1.6 Reformatting/Recoloring
Reformatting attacks including the change of formatting features of the text such as fonts
or color. Copy and paste, retyping, and OCR (Optical Character Recognition) have been
also considered sub-types of formatting attacks [29]. In particular, Reformatting refers
in this case only to a Recoloring of the text. Fonts do have an impact on Homoglyph
Watermarking but they only affect its visibility, not the capacity to extract a valid
watermark from the text so, because this is outside of this thesis’s scope, we will refer to
Recoloring attacks only. In this spirit, the next example shows a Recoloring Attack where
20% of the original characters (whitespaces and visible characters) have been recolored
to red.

33

A mother whose toddler was abducted by a car thief when she left him unattended in
the back seat on Saturday will not face charges, District Attorney Richard A. Brown of
Queens said yesterday. He char

Normal Text
A mother whose toddler was abducted by a car thief when she left him unattended in
the back seat on Saturday will not face charges, District Attorney Richard A. Brown
of Queens said yesterday. He char

Recoloring

Figure 5.5: Recoloring attack example of size equal to 20% of the text. In this case the
affected character count is 40. Whitespaces affected have been highlighted so as to make
them more apparent.

One important measure to decide is what percentage of the text must be affected by
the attacks just described. Bashardoost et al. in [38] assert that 10% of a text’s length
is a high attack size for any watermarking technique to endure but, in order to push
the limits of techniques that embed a watermark into a text in a finegrained manner [1]
we will explore extreme scenarios where up to 60% of a text is affected by an attack.
A notable outlier is the Partial Copy and Paste attack where increasing the portion of
text that is copied and pasted makes it easier rather that harder to conserve at least one
repetition of the watermark. In this case we will test portions of text from 10% down to
just 5% of the original length.

5.2 Test Execution
To execute our tests we created a Python software that gathers the first 200 characters
from 100 articles of the New York Times Corpus [33] chosen randomly from all years, to
make sure the techniques work even if the “style” of writing changes, in order to form
our starting texts. Our techniques embed a watermark in very few characters like we
previously saw in 3.3 so, because we want to have a larger number of articles as a sample
we decide to limit the amount of characters from each of them to 200 which is more
than enough for the watermark to be embedded several times. We don’t have to worry
about Homoglyph Watermarking because its robustness has already been tested in [1]
and in this application we will only be combining it with the other techniques. For the
watermark, a function selects 64, 128 or 256 random bits that serve as a watermark then,
each original text gets watermarked with the technique tested, some for of attack get
performed that disturbs the watermarked text and finally a function tries to extract a full
watermark from the perturbed text. After 100 repetitions we count how many successful
watermark extractions happened and that gives us an indication of the robustness of

34

that particular technique to a particular type of attack expressed in percentages.
As for the singular tests, we tested Deletion, Insertion, Replacement, Recoloring and
Copy and Paste with every attack altering a certain percent of the text. Following are
the algorithms for the attacks that were used.

Algorithm 7 Deletion Attack
1: // Delete a percentage of the text one random character at the time.
2:
3: originalText←“In a new twist in the dispute over who first...”
4:
5: function deletion(originalText, percent)
6:
7: deletionNumber ← length(originalText) ∗ percent/100
8:
9: for (i← 0; i < deletionNumber; i← i+ 1) do

10: n← randomBetween(0, length(originalText)− 1)
11: popFrom(originalText, n)

12:
13: return originalText

The Deletion algorithm deletes a percent of the text’s length one character at the
time. A human attacker would never perform a Deletion attack like this but we wanted to
develop attacks that had the highest chance possible of disrupting a watermark. Because
the watermark is embedded multiple times into the same text, deleting some words like
a human attacker might do would just leave watermarks dispersed in the untouched
sections of text, which would make the techniques seem incredibly robust. The random
approach of this version of the attack lets us consider the worst possible scenario to test
the techniques by pushing them to their limit.

35

Algorithm 8 Insertion Attack
1: // Insert characters into a text up to a percentage of it one random character at the

time.
2: originalText←“In a new twist in the dispute over who first...”
3: function insertion(originalText, percent)
4: // approximately one in five characters in a text is a whitespace.
5: characters←[‘a’,‘b’,‘c’,‘d’,‘ ’]
6: insertionNumber ← length(originalText) ∗ percent/100
7: for (i← 0; i < insertionNumber; i← i+ 1) do
8:
9: n← randomBetween(0, length(originalText)− 1)

10: char ← randomBetween(0, 4)
11: insertInto(originalText, characters[char])

12:
13: return originalText

Algorithm 9 Replacement Attack
1: // Replaces characters into a text up to a percentage of it one random character at

the time.
2: originalText←“In a new twist in the dispute over who first...”
3: function replacement(originalText, percent)
4: // approximately one in five characters in a text is a whitespace.
5: characters←[‘a’,‘b’,‘c’,‘d’,‘ ’]
6: replacementNumber ← length(originalText) ∗ percent/100
7: for (i← 0; i < replacementNumber; i← i+ 1) do
8:
9: n← randomBetween(0, length(originalText)− 1)

10: char ← randomBetween(0, 4)
11: replaceRandom(originalText, characters[char])

12:
13: return originalText

Insertion and Replacement share the same array called characters in the algorithms
which serves to mimic how a real text is written. When talking about the New York
Times Corpus we stated that there are 0.19 whitespaces per visible character in the
“average” text so, in order to reproduce a truly random Insertion or Replacement, we
pick the character to Insert or Replace from an array composed of 4 visible characters
(letters from “a” to “d”) and one whitespace, respecting the ratio the original texts have.

36

Algorithm 10 Recoloring Attack
1: // Recolors characters from the text up to a percentage of it one random character

at the time.
2:
3: originalText←“In a new twist in the dispute over who first...”
4: function recoloring(originalText, percent)
5: recoloringNumber ← length(originalText) ∗ percent/100
6:
7: for (i← 0; i < recoloringNumber; i← i+ 1) do
8:
9: n← randomBetween(0, length(originalText)− 1)

10:
11: // This example recolors with pure black. The results will be the same
12: // with every other color if not better.
13:
14: recolorCharacter(originalText[n], “#ff0000′′)

15:
16: return originalText

Recoloring is a type of attack unique to Grayscale and Whitespace Watermarking and
it can be simulated by transforming each character into a tuple containing the character
and its color. The attack then simply consists of changing the color of the character to
something like pure red that would ruin our watermark. Using colors inside the Grayscale
threshold for this process would incur the miniscule risk that a character gets recolored
with the same color he had. The red color used here doesn’t eliminate the same risk
for Whitespace Watermarking but the risk is so small that it was not worth to avoid it,
seeing as getting pure red from 24 bits has a probability of 1/224.

37

Algorithm 11 Partial Copy and Paste Attack
1: // Copies a contiguous portion of the text.
2: //This test consists in recovering the watermark from that copied portion.
3:
4: originalText←“In a new twist in the dispute over who first...”
5:
6: function copypaste(originalText, percent)
7:
8: replacementNumber ← length(originalText) ∗ percent/100
9: n← randomBetween(0, length(originalText)− 1)

10:
11: // Taking a slice of 10 or less percent from a text
12: // we have to make sure we don’t go over the length of the text.
13:
14: if ((n+ percent) > (length(originalText)− 1)) then
15: originalText← substring(originalText, n− percent, n)
16: else
17: originalText← substring(originalText, n, n + percent)

18:
19: return originalText

The Copy and Paste attack is singular in that a larger attack size only makes recov-
ering watermarks easier because more characters are preserved. In this case we select a
portion of the original text and treat that as the text where to recover the watermark,
simulating the situation where a small part of the original text is copied and pasted into
a new text that is not watermarked.
All of these functions were used to test the watermarking techniques in an algorithm like
the following that cycles over all 100 texts, it watermark them, perturbes them, tries to
recover the watermark and counts how many of them actually contained a recoverable
watermark. In this example we will use Deletion as the perturbation technique and
Grayscale as the watermarking technique but the process would be the same no matter
what perturbation or watermarking technique is chosen.

38

Algorithm 12 Testing Process
1: // Watermarks 100 texts, perturbs them and tries
2: // to recover a complete watermark, counting the successful recoveries.
3: key ← “password”
4: positive← 0
5: negative← 0
6:
7: texts← [...] // Array of 100 texts, each of them is a string.
8:
9: for each text ∈ texts do

10: //Create the watermark.
11: //SHA256 is used here as an example of a hashing function. It returns 256 bits.
12: watermark ← SHA256(text, key)
13:
14: //Watermark the text. Grayscale Watermarking is used here as an example
15: //but the algorithm doesn’t change even if the technique is different.
16: wmarkedText← grayscale(text, watermark)
17:
18: //Perturb the watermarked text. 10 percent of perturbation.
19: perturbedText← deletion(wmarkedText, 10)
20:
21: //Recover the watermark.
22: recovered← resolveGrayscale(perturbedText)
23:
24: if watermark == recovered then
25:
26: positive← positive+ 1
27: else
28:
29: negative← negative+ 1

30:
31: return positive, negative

39

Chapter 6

Experimental Results

This chapter catalogues the results from our testing of structural watermarking tech-
niques. In all of these tests Grayscale Watermarking was used with a threshold of
#272727 in order to hide the maximum amount of bits into a single character. The re-
sults are divided into 3 groups based on the length of the watermark hidden inside each
of the 100 texts used for the tests; one table for each type of attacks then displays the
number of those where a successful recovery of the watermark happened. As a reminder,
10% of the text affected by an attack is already a “high” quantity attack and, more
importantly, the attacks performed on the texts all choose random sets of characters
in a process that a human attacker would never do. We specifically chose this style of
attack in order to better target the finegrained properties of our techniques, making the
extraction process harder.
Homoglyph Watermarking has already been tested in [1] so it will not appear in any of
the tables below. We will, however, report the results for ease of access to the informa-
tion. The tests on Homoglyph Watermarking were performed as an evaluation on 1000
news articles of recent, Latin-based structural text watermarking and steganography
methods. The results of the attacks are shown for 10% attack size.

Partial
CopyPaste Insertion Deletion Replacement Retyping

99.92% 96.4% 98.2% 98.3% 0%

Table 6.1: Homoglyph Watermarking Experimental Results table. The Recoloring attack
is not included because it doesn’t affect this technique at all.

40

6.1 64 Bits of watermark
This first section shows how resilient to attacks our watermarking techniques are. The
most concerning technique is the Whitespace one which shows poor resistance to a partial
Copy and Paste attack, even at a size of 10% of the text, with 30 watermarks retrieved
successfully when used alone and 33 when combined with Homoglyphs watermarking.
This can be attributed to how densely packed the watermark bits are in each whitespace
and how few of them get selected in an attack like Copy and Paste. The rest of the attacks
generally start taking their toll on the watermarked texts at about 50% of their length
in affected characters which, as the reader will concede, results in a dramatic change to
the original content of the text regardless of the effort in protecting it. For example,
Grayscale watermarking keeps 36 out of 100 watermarks when 60% of the watermarked
text is deleted but such a massive removal of characters is sure to modify the text in a
more than meaningful way.

Deletion
10% 20% 30% 40% 50% 60%

Grayscale 100 100 100 90 62 36
Whitespace 100 99 96 94 69 41

Grayscale + Whitespace 100 100 100 100 89 45
Homoglyphs + Grayscale 100 100 100 95 65 21

Homoglyphs + Whitespace 100 98 90 58 39 22
Complete 100 100 100 100 91 53

Table 6.2: Number of positive 64 bits watermark extractions for the Deletion attack
on 100 examples of 200 characters texts with each of the main techniques and their
combinations.

Insertion
10% 20% 30% 40% 50% 60%

Grayscale 100 100 100 100 100 100
Whitespace 100 98 95 91 94 93

Grayscale + Whitespace 10 100 100 100 100 100
Homoglyphs + Grayscale 100 100 100 100 100 100

Homoglyphs + Whitespace 98 98 99 96 92 94
Complete 100 100 100 100 100 100

Table 6.3: Number of positive 64 bits watermark extractions for the Insertion attack
on 100 examples of 200 characters texts with each of the main techniques and their
combinations.

41

Replacing
10% 20% 30% 40% 50% 60%

Grayscale 100 100 100 97 93 68
Whitespace 99 94 86 68 57 43

Grayscale + Whitespace 100 100 100 100 98 94
Homoglyphs + Grayscale 100 100 100 100 97 83

Homoglyphs + Whitespace 98 91 81 53 51 19
Complete 100 100 100 100 100 95

Table 6.4: Number of positive 64 bits watermark extractions for the Replacing attack
on 100 examples of 200 characters texts with each of the main techniques and their
combinations.

Recoloring
10% 20% 30% 40% 50% 60%

Grayscale 100 100 100 99 89 71
Whitespace 100 100 92 83 64 46

Grayscale + Whitespace 100 100 100 100 100 97
Homoglyphs + Grayscale 100 100 100 100 97 81

Homoglyphs + Whitespace 100 94 83 56 36 25
Complete 100 100 100 100 100 99

Table 6.5: Number of positive 64 bits watermark extractions for the Recoloring attack
on 100 examples of 200 characters texts with each of the main techniques and their
combinations.

Partial Copy and Paste
20% 10% 9% 8% 7% 6% 5%

Grayscale 100 100 100 100 99 100 93
Whitespace 90 30 29 21 7 6 3

Grayscale + Whitespace 100 100 100 100 100 100 99
Homoglyphs + Grayscale 100 100 100 100 100 99 97

Homoglyphs + Whitespace 94 33 28 18 14 8 2
Complete 100 100 100 100 100 100 99

Table 6.6: Number of positive 64 bits watermark extractions for the Partial Copy and
Paste attack on 100 examples of 200 characters texts with each of the main techniques
and their combinations.

42

6.2 128 Bits of watermark
With a watermark size of 128 we can see that some of the higher percentages of affected
characters greatly hamper the robustness of our techniques. Once again, Whitespace
Watermarking shows remarkable weakness to Copy and Paste attacks but performs ad-
mirably in all other aspects. The results from the previous subsection foreshadowed this
results but the techniques still hold up to every type of attack extremely well considering
that at least 10% of each text is being modified each time.

Deletion
10% 20% 30% 40% 50% 60%

Grayscale 100 94 52 15 3 1
Whitespace 98 81 41 20 6 1

Grayscale + Whitespace 100 100 74 30 5 0
Homoglyphs + Grayscale 100 92 40 10 3 0

Homoglyphs + Whitespace 90 49 20 7 1 0
Complete 100 99 77 34 6 1

Table 6.7: Number of positive 128 bits watermark extractions for the Deletion attack
on 100 examples of 200 characters texts with each of the main techniques and their
combinations.

Insertion
10% 20% 30% 40% 50% 60%

Grayscale 100 98 79 46 32 15
Whitespace 95 82 58 40 32 13

Grayscale + Whitespace 100 100 99 91 77 48
Homoglyphs + Grayscale 100 100 83 57 36 19

Homoglyphs + Whitespace 98 88 79 56 44 24
Complete 100 100 100 93 78 61

Table 6.8: Number of positive 128 bits watermark extractions for the Insertion attack
on 100 examples of 200 characters texts with each of the main techniques and their
combinations.

43

Replacing
10% 20% 30% 40% 50% 60%

Grayscale 100 93 54 24 9 1
Whitespace 84 55 18 3 1 2

Grayscale + Whitespace 100 99 85 59 20 9
Homoglyphs + Grayscale 100 92 55 25 7 2

Homoglyphs + Whitespace 81 36 10 4 1 0
Complete 100 98 91 54 29 13

Table 6.9: Number of positive 128 bits watermark extractions for the Replacing attack
on 100 examples of 200 characters texts with each of the main techniques and their
combinations.

Recoloring
10% 20% 30% 40% 50% 60%

Grayscale 100 90 55 32 6 4
Whitespace 88 50 28 11 4 1

Grayscale + Whitespace 100 100 86 49 35 14
Homoglyphs + Grayscale 100 98 68 38 12 4

Homoglyphs + Whitespace 79 29 5 5 3 0
Complete 100 99 92 59 29 20

Table 6.10: Number of positive 128 bits watermark extractions for the Recoloring attack
on 100 examples of 200 characters texts with each of the main techniques and their
combinations.

Partial Copy and Paste
20% 10% 9% 8% 7% 6% 5%

Grayscale 100 93 85 61 50 16 5
Whitespace 35 1 0 0 0 0 0

Grayscale + Whitespace 100 100 100 98 79 47 25
Homoglyphs + Grayscale 100 100 92 74 49 23 3

Homoglyphs + Whitespace 33 0 0 0 0 0 0
Complete 100 100 99 97 87 55 27

Table 6.11: Number of positive 128 bits watermark extractions for the Partial Copy and
Paste attack on 100 examples of 200 characters texts with each of the main techniques
and their combinations.

44

6.3 256 Bits of watermark
With a watermark size as large as 256 bits, it is to be expected that the results would
drop but, importantly, Grayscale Watermarking mixed with Whitespace Watermarking
and the Complete technique maintain a respectable > 90% positive extractions at 10%
disturbance, making these particular techniques highly reliable.

Deletion
10% 20% 30% 40% 50% 60%

Grayscale 79 18 3 0 0 0
Whitespace 59 24 1 1 0 0

Grayscale + Whitespace 92 30 3 0 0 0
Homoglyphs + Grayscale 74 9 1 0 0 0

Homoglyphs + Whitespace 37 3 0 0 0 0
Complete 97 35 4 1 0 0

Table 6.12: Number of positive 256 bits watermark extractions for the Deletion attack
on 100 examples of 200 characters texts with each of the main techniques and their
combinations.

Insertion
10% 20% 30% 40% 50% 60%

Grayscale 80 16 2 0 1 0
Whitespace 53 24 3 1 0 0

Grayscale + Whitespace 97 52 25 3 4 0
Homoglyphs + Grayscale 88 22 9 0 1 0

Homoglyphs + Whitespace 67 26 8 10 1 1
Complete 99 63 20 6 5 2

Table 6.13: Number of positive 256 bits watermark extractions for the Insertion attack
on 100 examples of 200 characters texts with each of the main techniques and their
combinations.

45

Replacing
10% 20% 30% 40% 50% 60%

Grayscale 79 9 1 0 0 0
Whitespace 22 2 0 0 0 0

Grayscale + Whitespace 96 47 7 3 0 0
Homoglyphs + Grayscale 85 16 2 0 0 0

Homoglyphs + Whitespace 19 0 0 0 0 0
Complete 93 34 15 1 0 0

Table 6.14: Number of positive 256 bits watermark extractions for the Replacing attack
on 100 examples of 200 characters texts with each of the main techniques and their
combinations.

Recoloring
10% 20% 30% 40% 50% 60%

Grayscale 69 10 0 0 0 0
Whitespace 25 5 3 0 0 0

Grayscale + Whitespace 98 39 6 2 0 0
Homoglyphs + Grayscale 78 11 2 1 0 0

Homoglyphs + Whitespace 11 1 0 0 0 0
Complete 96 45 10 1 0 0

Table 6.15: Number of positive 256 bits watermark extractions for the Recoloring attack
on 100 examples of 200 characters texts with each of the main techniques and their
combinations.

Partial Copy and Paste
20% 10% 9% 8% 7% 6% 5%

Grayscale 96 2 0 0 0 0 0
Whitespace 0 0 0 0 0 0 0

Grayscale + Whitespace 100 25 11 1 0 0 0
Homoglyphs + Grayscale 99 9 0 0 0 0 0

Homoglyphs + Whitespace 0 0 0 0 0 0 0
Complete 99 27 15 7 0 0 0

Table 6.16: Number of positive 256 bits watermark extractions for the Partial Copy and
Paste attack on 100 examples of 200 characters texts with each of the main techniques
and their combinations.

46

Chapter 7

Conclusion

Text Watermarking is a research field that is always expanding because content pater-
nity certification is an interesting and worthwhile process for both private people and
industries alike. The rapid and uncontrolled spread of content over the internet, mainly
textual, makes protecting one’s intellectual property challenging. In this thesis we posit
that one of the most effective ways to protect a piece of content is through the use of
Digital Watermarking, a process that embeds some information, the watermark, into a
piece of content using some specific method.
After classifying watermarking methods by characteristics and set of techniques, we fo-
cused on Structural techniques which embed a watermark by exploiting the underlying
characteristics of text and characters. The focus of this thesis has been on three struc-
tural watermarking techniques in Grayscale, Whitespace and Homoglyph Watermarking
and building a suit of test in order to quantify their robustness against a series of at-
tacks that represents common operations done on a text in order to steal its content or
purposefully deleting the present watermark.
Because the presented techniques apply the watermark in a finegrained fashion, meaning
that the same payload of bits in embedded back to back, we wanted to create a testing
environment capable of highlighting the pros and cons of this approach. We explained
the suit of tests, the reasoning behind each attack and we provided pseudocode for each
of them so that they can be reproduced if further testing is needed or if the same attacks
were to be used on other watermarking techniques.
Finally, the results show that our techniques resist all attacks admirably with a 64 bits
watermark up to 60% of the text affected by the attack, a result that proves that the
high embedding capacity of our techniques translates into a capillar protection for every
transformed text. Other watermarking payload sizes were considered in 128 bits and
256 bits and our results were convincing up to the industry standard 10% of the text
being affected. These results appear even better when we remember that the attacks
on the techniques were designed to be random to challenge the techniques’ finegrained
properties. The only vulnerability we found was with the Partial Copy and Paste attack

47

and the Whitespace watermarking technique which shows poor performance compared
to the other options at all payload size probably because each affected whitespace hold
much more of the payload than other techniques.

48

Bibliography

[1] Stefano Giovanni Rizzo, Flavio Bertini, and Danilo Montesi. Fine-grain watermark-
ing for intellectual property protection. EURASIP Journal on Information Security,
2019:1–20, 2019.

[2] Manmeet Kaur and Kamna Mahajan. An existential review on text watermarking
techniques. International Journal of Computer Applications, 120(18), 2015.

[3] Nurul Shamimi Kamaruddin, Amirrudin Kamsin, Lip Yee Por, and Hameedur Rah-
man. A review of text watermarking: theory, methods, and applications. IEEE
Access, 6:8011–8028, 2018.

[4] Yaxun Zhou and Wei Jin. A novel image zero-watermarking scheme based on dwt-
svd. In 2011 International Conference on Multimedia Technology, pages 2873–2876.
IEEE, 2011.

[5] Jack T Brassil, Steven Low, Nicholas F. Maxemchuk, and Lawrence O’Gorman.
Electronic marking and identification techniques to discourage document copying.
IEEE Journal on Selected Areas in Communications, 13(8):1495–1504, 1995.

[6] Steven H Low, Nicholas F Maxemchuk, Jack T Brassil, and Lawrence O’Gorman.
Document marking and identification using both line and word shifting. In Pro-
ceedings of INFOCOM’95, volume 2, pages 853–860. IEEE, 1995.

[7] Anoop K Bhattacharjya and Hakan Ancin. Data embedding in text for a copier
system. In Proceedings 1999 International Conference on Image Processing (Cat.
99CH36348), volume 2, pages 245–249. IEEE, 1999.

[8] Young-Won Kim and Il-Seok Oh. Watermarking text document images using edge
direction histograms. Pattern Recognition Letters, 25(11):1243–1251, 2004.

[9] Steven H Low, Nicholas F Maxemchuk, and Aleta M Lapone. Document identi-
fication for copyright protection using centroid detection. IEEE Transactions on
Communications, 46(3):372–383, 1998.

49

[10] Ding Huang and Hong Yan. Interword distance changes represented by sine waves
for watermarking text images. IEEE Transactions on Circuits and Systems for
Video Technology, 11(12):1237–1245, 2001.

[11] Young-Won Kim, Kyung-Ae Moon, and Il-Seok Oh. A text watermarking algorithm
based on word classification and inter-word space statistics. In ICDAR, pages 775–
779. Citeseer, 2003.

[12] Tomio Amano and Daigo Misaki. A feature calibration method for watermarking of
document images. In Proceedings of the Fifth International Conference on Document
Analysis and Recognition. ICDAR’99 (Cat. No. PR00318), pages 91–94. IEEE, 1999.

[13] Xiaofeng Wang. Digital watermarking research based on text. In 2013 IEEE Third
International Conference on Information Science and Technology (ICIST), pages
433–436. IEEE, 2013.

[14] Mikhail J Atallah, Victor Raskin, Michael Crogan, Christian Hempelmann, Florian
Kerschbaum, Dina Mohamed, and Sanket Naik. Natural language watermarking:
Design, analysis, and a proof-of-concept implementation. In Information Hiding:
4th International Workshop, IH 2001 Pittsburgh, PA, USA, April 25–27, 2001 Pro-
ceedings 4, pages 185–200. Springer, 2001.

[15] Peter Craig Collins. Pseudocleft and cleft constructions: a thematic and informa-
tional interpretation. 1991.

[16] Hasan Mesut Meral, Bülent Sankur, A Sumru Özsoy, Tunga Güngör, and Emre
Sevinç. Natural language watermarking via morphosyntactic alterations. Computer
Speech & Language, 23(1):107–125, 2009.

[17] Rodney Huddleston. Introduction to the Grammar of English. Cambridge University
Press, 1984.

[18] Umut Topkara, Mercan Topkara, and Mikhail J Atallah. The hiding virtues of
ambiguity: quantifiably resilient watermarking of natural language text through
synonym substitutions. In Proceedings of the 8th workshop on Multimedia and
security, pages 164–174, 2006.

[19] Mercan Topkara, Cuneyt M Taskiran, and Edward J Delp III. Natural language wa-
termarking. In Security, Steganography, and Watermarking of Multimedia Contents
VII, volume 5681, pages 441–452. SPIE, 2005.

[20] Lip Yee Por, KokSheik Wong, and Kok Onn Chee. Unispach: A text-based data
hiding method using unicode space characters. Journal of Systems and Software,
85(5):1075–1082, 2012.

50

[21] Reem A Alotaibi and Lamiaa A Elrefaei. Improved capacity arabic text watermark-
ing methods based on open word space. Journal of King Saud University-Computer
and Information Sciences, 30(2):236–248, 2018.

[22] Behrooz Khosravi, Behnam Khosravi, Bahman Khosravi, and Khashayar
Nazarkardeh. A new method for pdf steganography in justified texts. Journal
of information security and applications, 45:61–70, 2019.

[23] Salwa Shakir Baawi, Mohd Rosmadi Mokhtar, and Rossilawati Sulaiman. Enhance-
ment of text steganography technique using lempel-ziv-welch algorithm and two-
letter word technique. In Recent Trends in Data Science and Soft Computing:
Proceedings of the 3rd International Conference of Reliable Information and Com-
munication Technology (IRICT 2018), pages 525–537. Springer, 2019.

[24] Nighat Mir. Copyright for web content using invisible text watermarking. Computers
in Human Behavior, 30:648–653, 2014.

[25] Milad Taleby Ahvanooey, Hassan Dana Mazraeh, and Seyed Hashem Tabasi. An in-
novative technique for web text watermarking (aitw). Information Security Journal:
A Global Perspective, 25(4-6):191–196, 2016.

[26] Stefano Giovanni Rizzo, Flavio Bertini, Danilo Montesi, and Carlo Stomeo. Text
watermarking in social media. In Proceedings of the 2017 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining 2017, pages 208–
211, 2017.

[27] Jack T Brassil, Steven Low, and Nicholas F Maxemchuk. Copyright protection for
the electronic distribution of text documents. Proceedings of the IEEE, 87(7):1181–
1196, 1999.

[28] Jack Brassil, Steven Low, Nicholas Maxemchuk, and Larry O’Gorman. Hiding
information in document images. In Proc. Conf. Information Sciences and Systems
(CISS-95), pages 482–489. Citeseer, 1995.

[29] Nurul Shamimi Kamaruddin, Amirrudin Kamsin, Lip Yee Por, and Hameedur Rah-
man. A review of text watermarking: theory, methods, and applications. IEEE
Access, 6:8011–8028, 2018.

[30] Simone Branchetti, Flavio Bertini, and Danilo Montesi. Grayscale text watermark-
ing. In Proceedings of the 26th International Database Engineered Applications
Symposium, IDEAS ’22, page 166–170, New York, NY, USA, 2022. Association for
Computing Machinery.

51

[31] Jean-Philippe Aumasson and Daniel J Bernstein. Siphash: a fast short-input prf.
In Progress in Cryptology-INDOCRYPT 2012: 13th International Conference on
Cryptology in India, Kolkata, India, December 9-12, 2012. Proceedings 13, pages
489–508. Springer, 2012.

[32] FIPS Pub. Secure hash standard (shs). Fips pub, 180(4), 2012.

[33] The new york times annotated corpus. https://catalog.ldc.upenn.edu/
LDC2008T19.

[34] Miloš Jakubíček, Adam Kilgarriff, Vojtěch Kovář, Pavel Rychlỳ, and Vít Suchomel.
The tenten corpus family. In 7th international corpus linguistics conference CL,
pages 125–127, 2013.

[35] Yingli Zhang, Huaiqing Qin, and Tao Kong. A novel robust text watermarking for
word document. In 2010 3rd International Congress on Image and Signal Processing,
volume 1, pages 38–42. IEEE, 2010.

[36] Pradeep Kaur and Pankaj Bhambri. To design an algorithm for text watermarking.
The Standard International Journals (The SIJ), 3(5):62–67, 2015.

[37] Milad Taleby Ahvanooey, Qianmu Li, Hiuk Jae Shim, and Yanyan Huang. A com-
parative analysis of information hiding techniques for copyright protection of text
documents. Security and Communication Networks, 2018, 2018.

[38] Morteza Bashardoost, Mohd Shafry Mohd Rahim, Tanzila Saba, and Amjad
Rehman. Replacement attack: A new zero text watermarking attack. 3D Research,
8:1–9, 2017.

52

https://catalog.ldc.upenn.edu/LDC2008T19
https://catalog.ldc.upenn.edu/LDC2008T19

	Introduction
	State of the art
	Zero Watermarking Techniques
	Image based Watermarking
	Syntactic based Watermarking
	Semantic Watermarking
	Structural Techniques

	Main Techniques
	Grayscale Watermarking
	Whitespace Watermarking
	Homoglyph Watermarking
	Combining the different methods
	Embedding Capabilities

	Dataset
	Finding the right Dataset
	TenTen Family - Most Languages
	NYTC - English

	Robustness Testing
	Types of Attacks
	Partial Copy and Paste
	Insertion:
	Deletion
	Replacement
	Retyping
	Reformatting/Recoloring

	Test Execution

	Experimental Results
	64 Bits of watermark
	128 Bits of watermark
	256 Bits of watermark

	Conclusion
	 Bibliography

