
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA
CAMPUS DI CESENA

Scuola di Ingegneria e Architettura

Corso di Laurea (Magistrale) in Ingegneria e Scienze Informatiche

Bridging Logic Programming
with platform-independent

distributed services

Tesi di laurea in
Sistemi Distribuiti

Relatore
Prof. Giovanni Ciatto

Correlatore
Prof. Andrea Omicini

Candidato
Lorenzo Osimani

Seconda Sessione di Laurea

Anno Accademico 2022-2023

ii

Abstract

Researchers have always been interested in combining the logic paradigm with
other technologies to create new hybrid approaches. Until now, however, it was
difficult to make languages like Prolog interact with external entities. In this
thesis, we propose a solution that enables a logical solver to delegate the execution
of requests to remote service, possibly implemented in languages different from that
of the solver. Accordingly, we provide a prototype that leverages the concepts of
logic primitives and the As-A-Service model and we implement a concrete example
that merges symbolic AI with sub-symbolic AI.

iii

iv

Ai miei nonni, che continuano a guidarmi nella mia vita

v

vi

Acknowledgements

Ringrazio innanzitutto i professori del corso di studio di Ingegneria e Scienze In-
formatiche, che mi hanno seguito in questi intensi anni di formazione e hanno
contribuito alla crescita della mia figura professionale. In particolare ringrazio il
professor Giovanni Ciatto, per avermi accompagnato in questi mesi di lavoro di
tesi con serietà, pazienza e l’entusiasmo che ha saputo trasmettermi.

Ringrazio poi tutti i miei amici, sia quelli le cui strade si sono allontate dalla
mia che quelli che camminano ancora oggi al mio fianco, perchè ognuno di loro è
stato un pezzo fondamentale del percorso della mia maturità umana.

Infine ringrazio la mia famiglia, soprattutto mio padre Maurizio, mia madre
Elisabetta e mia sorella Maria Chiara per essere stati dei pilastri che mi hanno
sostenuto sia nei momenti di gioia che in quelli di difficoltà.

vii

viii

Contents

Abstract iii

1 Introduction 1

2 Background 3
2.1 Logic Resolution And Logic Programming 3
2.2 Prolog . 4

2.2.1 2P-Kt . 6
2.3 Prolog Applications In The Real World 8

2.3.1 Python and Prolog . 9
2.4 The As-A-Service Model . 9

2.4.1 Protocol Buffers . 10
2.4.2 gRPC . 10

3 Design 11
3.1 Objective and Requirements . 11
3.2 General System Structure . 13

3.2.1 Server Interface . 13
3.2.2 Message Protocol . 14

3.3 Interaction . 18
3.4 Distributed Entities Structure . 18

3.4.1 Primitive Service . 19
3.4.2 Client . 20

3.5 Distributed Entities Behavior . 21
3.5.1 Primitive Service . 21
3.5.2 Client Proxy . 22

4 Implementation 23
4.1 The Service Interface . 23
4.2 Implementation of a Primitive-As-A-Service 25

4.2.1 In Kotlin . 25

ix

x CONTENTS

4.2.2 In Python . 30
4.3 The Client’s Implementation . 31

5 Validation 37
5.1 Test Suite . 37
5.2 Real Application: The ml-lib . 37

5.2.1 Implementation . 37
5.2.2 The Performance Comparison Test 41

6 Conclusions 45

List of Figures

2.1 Figures of interaction modes between logic solvers and users or KB
from [5] . 5

2.2 2P-Kt modules structure . 6
2.3 Hierarchy of Prolog elements in the :core module 7

3.1 Primitive representation as a client-server metaphor taken from [4] . 12
3.2 Diagram of the system structure . 13
3.3 General hierarchy of common messages 15
3.4 General hierarchy of service-specific messages 16
3.5 General hierarchy of client-specific messages 16
3.6 Diagram of a generic messages exchange 18
3.7 Server’s generic structure . 19
3.8 Client’s generic structure . 20
3.9 Control flow diagram of a service 21
3.10 Control flow diagram of a client . 22

5.1 Test suite’s coverage results . 38

xi

xii LIST OF FIGURES

Listings

4.1 Service’s interface implementation in proto3 23
4.2 Example of message implementation in proto3 24
4.3 Serialization method of a Prolog Term 24
4.4 Kotlin implementation of the callPrimitive() method 25
4.5 Kotlin implementation of message handling in ServerSession . . . 26
4.6 Interface of a DistributedPrimitive in Kotlin 27
4.7 Implementation of the nt/1 distributed primitive in Kotlin 27
4.8 SubRequestEvent’s implementation in Kotlin 28
4.9 Kotlin implementation of the awaitResult method in a SubSolve

request . 28
4.10 Kotlin implementation of the signalResponsemethod in a SubSolve

request . 28
4.11 Implementation of enqueueRequestAndAwait() method in Kotlin . 29
4.12 Implementation of solve/2 remote primitive in Kotlin 29
4.13 Implementation of startService() method in Kotlin 30
4.14 Python implementation of the callPrimitive RPC 31
4.15 Abstract class of DistributedPrimitive in Python 31
4.16 Python implementation of nt/1 . 32
4.17 Interface of the ClientSession . 32
4.18 Implementation of method onNext() in ClientSession 33
4.19 Implementation of the solve() method in SessionSolver 34
4.20 Implementation of the solutionQueue in ClientSession 34
4.21 Implementation of the connectToPrimitive() method 35
4.22 Wrapping of a ClientSession in a 2p-kt Primitive 35
4.23 Import of a remote primitive in a Solver 36
5.1 Implementation of the remote primitive column/3 40
5.2 Implementation of the preprocessing/3 clause 41
5.3 Implementation of the createModel/3 clause 41
5.4 Implementation of the clauses for cross-validation 42
5.5 Implementation of the test/3 clause 42
5.6 Prolog query to define, fit and test the neural network 42

xiii

xiv LISTINGS

5.7 Output of demo executed in Python 43
5.8 Output of demo executed in 2p-kt 44

Chapter 1

Introduction

Nowadays many topics of research are being investigated in the computer science
field. Innovations that combine different technologies are continuously developed,
bringing new potential features into the real world. Some of these areas of study,
however, are unable to interact easily with the rest and are often the cause of
technological silos, isolated points where some data is segregated and difficult to
exchange with the overall system.

Symbolic AI [11] is one of these areas. It refers to all methods in artificial intel-
ligence that are based on high-level symbolic and human-readable representations
of problems, logic, and search. These methodologies are, for example, exploited
in Prolog, a logic programming language that defines logical solvers and queries
them with the resolution of predicates.

Many research groups have investigated possible hybrid frameworks that in-
tegrate symbolic AI with other technologies [12, 3, 13]. Yet, due to symbolic AI
characteristics and isolated nature, they often have defined theories of potential
developments but they lack a concrete how that enables the interaction.

An interesting topic that researchers have tried to incorporate with symbolic
AI is sub-symbolic AI [14]. It concerns all AI methodologies where information is
generated from relations of high complexity. These relations are often formalized
with functions that map the input to the output data or the target variables. An
example is Artificial Neural Networks (ANN), which are widely used in Machine
Learning. By uniting the two branches of AI, the resulting technology would
inherit the advantages of both techniques.

This thesis proposes a concrete approach to bridge symbolic AI, in particular
the Prolog environment, with any other technology, including sub-symbolic AI.
The idea is to apply the As-A-Service model [9] and shift the resolution of predi-
cates into a distributed view. During the execution, the logic engine will interact
with remote services and delegate part of the computation externally. These ser-
vices, furthermore, can be defined with Interface Description Languages, such as

1

2 CHAPTER 1. INTRODUCTION

gRPC [24] and proto buffers [7], which are language-independent. Thus, a solver
can interact with a service to exploit mechanisms and languages previously un-
available for the resolution of queries, without leaving the logic realm.

More technically, in this thesis we define the interface of a generic service and
the communication protocol with a logical solver using IDL. We then prototype
the system by extending the 2p-kt [4] framework and test its characteristics. Fi-
nally, to demonstrate the potentialities of this approach, we provide an example of
integration between symbolic and sub-symbolic AI by implementing the machine
learning API described in [6] for Prolog.

Thesis Structure. Accordingly, the remainder of this thesis is structured as
follows. Chapter 2 delves into the primary concepts and technologies that make
up the core elements of the project and that will be used throughout the entire
paper. Chapter 3 presents the design process that defined the system structure
and behavior. Chapter 4 showcases the actual implementation of the system, and
contains examples of code snippets of the prototype. Chapter 5 discusses how the
prototype was validated and provides an example of how it can be applied in a
real context. Finally, Chapter 6 concludes this thesis by summarising its main
contribution.

Chapter 2

Background

This chapter will list the ideas, mechanisms, and technologies that will be recurring
in the rest of the paper and that have been used during the project development.

2.1 Logic Resolution And Logic Programming

When tackling a problem in the symbolic AI field, such as the demonstration of a
theorem or the analysis of some data with Artificial Intelligence, there are various
approaches available. One of these methods is logic resolution [21]. Logic resolu-
tion is an inference rule for automated reasoning in propositional logic, and it is
based on the principle of refutation, where a statement is proven by demonstrating
that its negation leads to a contradiction.

In propositional logic, knowledge can be expressed using Horn clauses [23],
which are logic formulae in the form of disjunctions of predicates. An example of
a clause is

H :- B1, ..., Bn.

which indicates that the head H is true if the body composed of the literals B1,
..., Bn is also true. Clauses can also represent a number of predicates to be
proven, in which case are known as goals. By applying the resolution rule to them
we can determine their satisfiability in a particular context.

The resolution process is composed of three main steps:

Unification: It consists of finding a substitution, called most general unifier, that
can make two literals identical [18]. For instance, to match the literals p(X)
and p(a), a valid substitution would be X = a.

Resolution: It involves combining two clauses by selecting two complementary
literals, one from each clause, and unifying them. The resolved literals are

3

4 CHAPTER 2. BACKGROUND

later removed from both the original clauses, which are then merged to create
a resolvent that serves as an intermediate step.

Simplification: In this step redundant literals or tautologies are eliminated from
the obtained clause.

If the final outcome of the resolution process is an empty clause, it indicates that
the initial goal presents a contradiction and is therefore not true.

Logic resolution is commonly used in automated theorem proving and logical
reasoning, by recursively applying a specific resolution rule and producing a new
clause that follows logically from the initial one. This method enables the deriva-
tion of new logical conclusions or the verification of satisfiability or unsatisfiability
of logical formulas.

From the concepts of logic resolution, a new programming approach has been
developed with time, called Logic Programming [1]. Logic Programming is a declar-
ative programming paradigm used mainly in the field of AI. Instead of a sequence
of commands and instructions, a program is composed of sentences and rules in
logical form. A problem is described as a set of clauses named knowledge base
(KB) that represents the various entities of its domain, their relations, and their
constraints. Goals can then be passed to the program in the form of queries, and
the system will attempt to apply resolution and inference on the provided facts
and rules to generate logical deductions or solutions.

A key feature of Logic Programming is its support for non-determinism and
backtracking. During the resolution of a query, in fact, the program can explore
alternative paths and find multiple solutions by systematically exploring the solu-
tion space. If a chosen course leads to a contradiction or a dead end, the system
can backtrack and explore the remaining available branches until all possibilities
are analyzed.

2.2 Prolog

One of the most well-known declarative programming languages is Prolog[16],
which stands for PROgramming in LOGic. Prolog programs consist of Horn
clauses that can be categorized as either facts or rules. Facts are fixed entities
in the problem’s knowledge base, while rules define the logical relationships be-
tween those entities. In the resolution process, this data is used to reach new
logical conclusions.

Prolog is commonly used in data-driven AI due to its capacity to investigate
vast amounts of information [2]. In particular, the clauses in a knowledge base
can be general and may not always be accurate, providing a level of uncertainty
that is useful in this field of study. To compute solutions of a query, the Prolog

2.2. PROLOG 5

User

User

Solver

Solver Solution Stream

solve(Goal)

create Solution Stream

reference to stream

loop [do while last Substitution != null]

next()

pull()

compute next solution

solution(Substitution)

solution(Substitution)

(a) Stream-oriented interaction mode

Solver

Solver

KB

KB

request of i-th Solution for Goal

Behind the scenes

get(SubGoal)

stream of Clauses

If new knowledge is acquired

assert(NewClause)

if prior knowledge must be retracted

get(OldClause)

Once a solution is found

i-th Solution

(b) Interaction among a logic solver and
its KB

Figure 2.1: Figures of interaction modes between logic solvers and users or KB
from [5]

system employs a form of depth-first search called backward chaining, constructing
a tree where each node represents one of the logical resolution steps. A solution can
either succeed, fail, or encounter an error that stops its execution. Queries can also
contain variables, which are represented by literals beginning with a capitalized
letter. Any successful returned solution will be a possible substitution of variables
that makes the query true within that particular program’s knowledge base.

A reactive logic entity that interacts with a knowledge base and can resolve
queries requested by a user is called solver à la Prolog. Its knowledge base can
be either static, dynamic, or a combination of both, depending on how it can be
modified during the execution of goals. As detailed in [5], backtracking enables
a solver to return solutions of a query on a lazy stream. The stream generates a
new value every time the user requests a new solution until no more are available.
Thus, a Prolog solver acts as both a producer and consumer of streams of solutions.
Figure 2.1 provides an example of the interaction between users, solvers, and
knowledge bases.

In order to find new solutions, a solver can consume streams of data produced
either by its knowledge base or by an external source. This external source can take
the form of a primitive, which is a logical predicate that enables data manipulation
and interaction with the Prolog environment. Usually a primitive is implemented

6 CHAPTER 2. BACKGROUND

Figure 2.2: 2P-Kt modules structure

in a low-level programming language. Examples of built-in primitives are is/2,
which is used for arithmetic calculations, and write/1, which writes on the output
buffer. When a solver queries a primitive, it sends a request with any necessary
arguments and variables. The primitive then generates one or more responses and
possibly side effects that will be applied to the solver environment.

2.2.1 2P-Kt

Learning Prolog itself is relatively easy, and it is rather simple to understand.
However, due to the syntax required when defining a program, it may not be user-
friendly in particular contexts. To address this issue, a research team has developed
2p-kt [4], a framework written in Kotlin that wraps the core mechanisms of Prolog
in a multi-paradigm environment while also expanding its functionalities. The
framework includes various modules that are incrementally interdependent, each
introducing new features for symbolic manipulation and reasoning. Some of the
primary modules are:

:core → contains the logic terms defined in Prolog rewritten in Kotlin. The most
generic type of logical entity is Term.

:solve → a generic API to instantiate and use solver entities for the resolution of
logic queries, extended by some specific implementations in other modules
like :solve-classic.

:parser-core and :parser-theory → used respectively to parse Terms and Theories
into serialized items.

2.2. PROLOG 7

clauses

Clause

Rule Directive

Fact

Term

Constant

Collection

Var Struct

Numeric

Integer Real

Atom

Truth

Indicator

Empty

EmptySetEmptyList

List

Cons

Set Tuple

Figure 2.3: Hierarchy of Prolog elements in the :core module

:io-lib → a module that contains an API of operations usable in a Prolog pro-
gram to interact with input and output channels.

The framework is a general-purpose open ecosystem. It virtually supports sev-
eral platforms, like JVM, JS, and Android, due to its multi-platform nature. More-
over, it is very lightweight and minimal since it only leverages the Kotlin standard
library. Using the module :solve, a user can create a solver entity with custom
initialization parameters, like the knowledge bases, I/O channels, operators, and
libraries. These libraries are a collection of functions, operators, and clauses that
can extend the syntax and functionalities supported in a solver.

Thanks to the structure of 2p-kt it is possible to easily implement custom prim-
itives written in Kotlin. Primitives can, in fact, be considered as I/O operations
that delegate the computation to some external entity and that return lazily the
stream of calculated values. By assigning them to a signature, composed of the
function name and its arity, they can be inserted in a library and later imported
into a solver. This way the possible procedures are no longer limited by the struc-

8 CHAPTER 2. BACKGROUND

tures of Prolog and they can be defined externally. At the moment, however,
the only supported language is Kotlin, the same one used to implement the 2p-kt
framework.

2.3 Prolog Applications In The Real World

In the modern world, Prolog is used in various contexts. Some examples of appli-
cations are the following:

Automated Reasoning: [17] Prolog’s primary usage is to automatically derive
logical conclusions from a given set of facts and rules. This is a major
functionality applied in the fields of AI and theorem proving.

Database Querying: [15] Because of its pattern-matching capabilities, Prolog
allows developers to define logical queries and retrieve data from databases,
including complex relationships and retrieval criteria.

Constraint Satisfaction Problems (CSP): [19] Prolog has built-in constraint
logic programming features, making it suited to approach constraint satis-
faction problems like resource allocation or scheduling.

Natural Language Processing (NLP): [10] NLP problems encompass appli-
cations such as comprehending and parsing natural language sentences. By
defining grammar, syntactic and semantic rules, Prolog can be used for tasks
like information retrieval and question answering from texts written in nat-
ural languages.

Prolog performances and applications are, however, limited to the logic paradigm.
Researchers have theorized the possible results of combining symbolic AI with
other fields of study [12, 3, 13], yet we still lack an actual bridge that connects
Prolog with the functionalities offered by those technologies.

A research topic that would offer interesting advantages if merged with Prolog
is sub-symbolic AI [14]. Unlike symbolic AI methods, sub-symbolic AI attempts
to replicate the intricate network of neurons in the human brain and learns by
defining complex functions that map input data to target variables. Sub-symbolic
AI includes various statistical learning methods, such as Bayesian learning, deep
learning, backpropagation, and genetic algorithms. The symbolic approach is best
suited for small, precise data and often requires human intervention during the
learning process. In contrast, the sub-symbolic techniques can handle large and
noisy datasets effectively and adapt autonomously. A hybrid method would thus
be able to both learn from the environment and reason the results.

2.4. THE AS-A-SERVICE MODEL 9

2.3.1 Python and Prolog

Naturally, Python[8] comes to mind when talking about AI, as it is widely used in
the field of machine learning. Python is a high-level, general-purpose programming
language and it supports multiple programming paradigms, including structured,
object-oriented, and functional programming. Python was also designed to be
highly extensible via modules and thus it provides an extensive ecosystem of li-
braries.

NumPy, pandas, scikit-learn, and TensorFlow are only some instances of the
frameworks available. By exploiting them, Python can run complex operations of
data manipulation and define machine learning models with few and simple lines
of code. Python’s flexibility and integration capabilities allow users to seamlessly
integrate AI algorithms with components of data processing pipelines, making it
exceptionally well-suited for real-world applications.

Using Python functionalities in a Prolog-like environment could allow users to
combine automated reasoning and sub-symbolic AI approaches. For example, the
authors of [6] present the structure of an API in Prolog, where the methods enable
users to load datasets, pre-process data, select and define predictors’ models (in
particular neural networks), train these predictors, use them for inference of data
and validate the results without leaving the logic realm. However, it is only a
theoretical prototype and lacks an actual implementation.

2.4 The As-A-Service Model

Evolving monolithic structures into the distributed paradigm has become a trend
to improve the performance and quality of new technologies. One of the lead-
ing models for defining complex distributed systems is the As-A-Service model [9],
which consists of taking a certain resource, from a simple physical infrastructure to
software, and making it available remotely: users can request the service’s capabil-
ities by communicating on the network. This model introduces many advantages
like scalability, fault tolerance, improved performance, and relieving the client of
the physical allocation of the necessary resources. However, it also complicates
the development process by introducing critical issues like security concerns and
network dependence.

Services can be defined through Interface Descriptor Languages (IDL) [22].
An IDL is a language used to describe structured data types and interfaces in
a language-independent way, thus allowing a program or object written in one
language to communicate with another program written in an unknown language.
Two examples of IDL are Protocol Buffers and gRPC.

10 CHAPTER 2. BACKGROUND

2.4.1 Protocol Buffers

Protocol Buffers [7], also referred to as protobuf, is a language-neutral, platform-
neutral extensible mechanism for serializing structured data. It was developed by
Google and it’s used for data serialization and designing communication protocols
between systems, for example, in distributed environments.

A .proto file is defined as a set of messages written in a specific syntax that
can contain scalar types, strings, nested and repeated messages as fields. By using
this structured model, data is serialized in a compact binary format, smaller in
size compared to formats like XML or JSON. This makes Protocol Buffers more
efficient for data transmission over the network due to fewer storage requirements.

The basic syntax of a .proto file is very simple, but it can be extended with
custom options and features, for instance, services that define Remote-Procedure-
Calls (RPC) interfaces. These files can later be used to automatically generate the
relative classes in many programming languages, including C++, Java, Python,
Go, Ruby, C#, JavaScript, and more. Moreover, protobuf supports the versioning
of message definitions with mechanisms of backward and forward compatibility.

2.4.2 gRPC

gRPC [24], on the other hand, is a modern open-source high-performance Remote
Procedure Call (RPC) framework that can run in any environment. It can ef-
ficiently connect services in and across data centers with pluggable support for
load balancing, tracing, health checking, and authentication. gRPC is based on
the remote procedure call paradigm, where a client can invoke methods on the
server application as if they were local function calls. The complexities of network
communication are hidden from the user, keeping its usage transparent.

The system supports various types of calls, from unary calls, where a single
request from the client corresponds to a single response from the server, to stream-
ing calls, where both clients and servers send independently continuous streams of
messages on the communication channel.

The services interfaces are defined with Protocol Buffers, allowing gRPC to
support multiple languages and enabling interoperability across different language
implementations; moreover, due to protobuf, the message structure is strongly
typed. The default transport protocol used is HTTP/2, which allows multiplex-
ing, flow control, and header compression, while also supporting many security
mechanisms like Transport Layer Security (TLS) and the possibility to add inter-
ceptors and middleware.

Thus, by utilizing protobuf and gRPC we can define effective service interfaces
and message protocols without having to concern ourselves with which languages
are used to implement each distributed entity.

Chapter 3

Design

3.1 Objective and Requirements

We previously stated that Prolog is considered a technological silo due to its in-
ability to interact and communicate easily with entities and functionalities from
paradigms that transcend the logic realm. This thesis proposes to bridge that gap,
by integrating the concept of Prolog primitives with the As-A-Service model.

As described in Chapter 2, a primitive is a logical predicate defined by a functor,
an arity representing the number of arguments it accepts, and an elaboration
process that lazily returns the values in a sequence. Figure 3.1 illustrates the
usage of a primitive with a client-server metaphor. When the user queries a goal
to the solver involving a primitive, it sends a request. The request may include the
arguments provided for the computation and a reference to the execution context,
which correspond to the state of the solver and can be used by the primitive to
query the resolution of additional sub-goals.

The primitive returns a lazy sequence of responses, each containing a generated
value, a list of side effects that modify the solver’s state, or an error encountered
during the resolution. The responses are later elaborated to generate the solutions
for the user.

Figure 3.1 highlights the compatibility of the primitive mechanism with the
As-A-Service model. A primitive can be seen as an external service that provides
a method to lazily return solutions. The interface of the service and the message
protocol can be defined with an IDL, thus allowing the service to be implemented
in any compatible language.

The idea of this thesis is to develop a distributed system that enables a solver
to exploit various language-specific functionalities while remaining in a logic en-
vironment. In other words, we want to design a platform-independent primitive
service interface and its message protocol used to communicate with a logic solver

11

12 CHAPTER 3. DESIGN

User

User

Solver

Solver

Primitive

Primitive

solve(Goal)

Request(Goal)

Lazily enumerated, e.g. via backtracking

Sequence<Response>

Sequence<Solution>

Figure 3.1: Primitive representation as a client-server metaphor taken from [4]

à la Prolog.

Functional Requirements

• A solver must be able to remotely call a primitive service during the resolu-
tion process, optionally providing arguments, and receive a lazy sequence of
solutions.

• A primitive service should be able to query additional information from a
solver when computing a request, such as the current state of its execution
context or the logic resolution of sub-goals.

Non Functional Requirements

• The server interface must be generic enough to allow users to implement any
kind of primitives, that may vary in name, computation process, number and
types of arguments.

• The server interface must be platform-independent.

• The introduction of distributed entities should not significantly worsen the
performances in comparison to a Prolog execution of primitives.

• A primitive service should be able to handle multiple requests concurrently.

3.2. GENERAL SYSTEM STRUCTURE 13

Logic Solver

bidirectional
communication Primitive ServiceAPI

Figure 3.2: Diagram of the system structure

Technological Requirements

• The service interface and message protocol must be implemented using an
IDL, possibly gRPC and protobuf.

• The distributed system should be compatible with the methods and the
structures present in the framework 2p-kt.

3.2 General System Structure

The generic architecture of the system is composed of the two entities illustrated in
figure 3.2, which are a solver acting as the client and a primitive service. When a
solver connects with the service and requests a new computation process, a stream
of messages is exchanged between the two parts until no more solutions can be
generated or the client interrupts the connection. We will from now on refer to
the stream of messages and the data relative to a single invocation of the primitive
with the term session.

3.2.1 Server Interface

While connected, the client may use the service API to invoke the following oper-
ations:

• Request the initialization of a new computation process, eventually by pro-
viding arguments.

• Request to compute, if available, a new value of a specific computation pro-
cess.

• Send the service the result of a sub-task, such as part of the execution context
state or the resolution of a sub-goal.

On the other hand, the service can perform these operations:

• Generate and send the client a new value relative to a specific computation
process.

14 CHAPTER 3. DESIGN

• Query the client with a sub-task and await the response.

• Send the solver a side effect to apply to its execution context.

It’s worth noticing that it is impossible to define a priori a linear execution
order of these operations since it depends on the actual computation process of
the remote primitive. For example, the number of sub-tasks requested before
the service replies with a generated value is unknown. To maintain the service’s
implementation flexible, the interface is defined with these characteristics:

• an attribute that represents the remote primitive functor and arity, called
signature.

• an invocation that creates a bidirectional channel where all the messages are
sent, named callPrimitive.

The invocation method callPrimitive is the core of the interface, as it en-
compasses all possible interactions during a session. Its communication channel is
composed of two streams of messages, one for each sender.

3.2.2 Message Protocol

The message protocol is designed as a hierarchy of structured entities divided by
sender, following the characteristics of the service interface.

Common Messages

StructMsg: It represents an element of the Prolog syntax, such as a variable, a
function, a constant, or a fact.

ArgumentMsg: It is used to wrap Struct elements in arguments of functions or
substitutions included in a solution.

ResponseMsg: It contains one solution and the side effects generated either by the
service or by the client during a sub-goal execution.

SolutionMsg: It holds data about a solution, like if it succeeded and with which
values, failed, or encountered an error.

ErrorMsg: It represents an error encountered during the computation of a solu-
tion. A hierarchy of more specific error messages that extends this structure
is available.

SideEffectMsg: It represents a side effect that must be applied to the execution
context. As for the errors, the different types of side effects are organized in
a hierarchy based on this structure.

3.2. GENERAL SYSTEM STRUCTURE 15

ResponseMsg

SolutionMsg

StructMsgErrorMsgSubstitutionMsg

SideEffectMsg

1

1

1

10...1

1

0...n

1

1

0..n

1...n
1

ArgumentMsg

1
1

StructMsg
LogicErrorMsg

DomainErrorMsg

TimeoutExceptionMsg

ResolutionExceptionMsg HaltExceptionMsg MissingPredicateMsg

InitializationIssueMsg

TypeErrorMsgSystemErrorMsg SyntaxErrorMsg

RepresentationErrorMsg PermissionErrorMsg MessageErrorMsg

InstantiationErrorMsg

ExistenceErrorMsg EvaluationErrorMsg

WriteOnOutputChannelMsg

AlterChannelsMsg AlterOperatorsMsg

AlterRuntimeMsgAlterFlagsMsg

SetClausesOfKBMsg

Figure 3.3: General hierarchy of common messages

Service-Specific Messages

NextSolution: An empty message sent to request the generation of a new solu-
tion.

SubRequestMsg: This message is sent by the service to query a sub-task to the
client. The more specific messages associated with the available operations
are the following:

SubSolveRequest: It requests the resolution of a sub-goal to the solver-
client.

ReadLineMsg: It queries the reading of a line from an input channel of the
solver.

InspectKbMsg: It is sent to inspect the knowledge bases of the solver, pos-
sibly by providing filters for the clauses.

GenericGetMsg: It requests one of the elements of the current execution
context.

Client-specific Messages

RequestMsg : This message is sent by the client to start a session with the service;
it contains the data about the primitive called, the arguments provided, and

16 CHAPTER 3. DESIGN

PrimitiveMsg

ResponseMsg NextMsg SubRequestMsg

SubSolveRequest

ReadLineMsg

InspectKbMsg

GenericGetMsgSolutionMsg

StructMsg

ErrorMsg

SubstitutionMsg

SideEffectMsg

1 1

1 11

0...1

1

0...n

1

0..n

Figure 3.4: General hierarchy of service-specific messages

SolverMsg

RequestMsg SubResponseMsg

GenericGetResponse

StructMsg

LineMsg

SignatureMsg

ArgumentMsg

ExecutionContextMsg

1

1...n

1

1

ResponseMsg SolutionMsg

StructMsg

ErrorMsg

SubstitutionMsg

SideEffectMsg

1
1

1
1

1

0...1

1

0...n

1

0..n

CustomDataMsgLogicStacktraceMsg

UnificatorMsg LibrariesMsgChannelsMsg

OperatorSetMsgFlagsMsg

Figure 3.5: General hierarchy of client-specific messages

3.2. GENERAL SYSTEM STRUCTURE 17

the basic information about the current execution context of the solver.

SignatureMsg : It contains the functor and arity of the primitive called.

ExecutionContextMsg : It includes the basic elements of the execution context,
such as the current procedure evaluated and the substitutions of variables
already known.

SubResponseMsg : It is sent as the response to a sub-task requested by the prim-
itive service during its execution. It may contain:

LineMsg: It includes a string read from an input channel of the solver.

StructMsg: It represents one of the clauses of the knowledge base, and it is
returned when the service queries the inspection of the current state of
the static or dynamic KB.

GenericGetResponse: It contains one of the following elements of the exe-
cution context:

LogicStacktraceMsg: The current logic stack trace of execution.

CustomDataMsg: A key-value store that may keep any sort of data and
that can be used during computations.

UnificatorMsg: A set of variables and the values to which they can
be unified.

LibrariesMsg: Libraries cannot be serialized and sent on the network
since they are composed of executables. Therefore only the names
and the methods’ signatures of the libraries imported by the solver
are in this structured message.

FlagsMsg: A set of flags and their values used in the solver’s configu-
ration.

OperatorSetMsg: The set of operators usable to parse queries of the
solver.

ChannelsMsg: The names of the I/O channels.

To avoid the high cost of sending the entire execution context in one message
and the additional exchanges needed to keep it up-to-date, we chose to provide
the server with various sub-tasks that allow the remote primitive to retrieve each
element individually, one at a time. This partitioning approach is also applied
when handling other large groups of data, such as theories and knowledge bases,
which are sent through multiple messages as lazy streams of clauses.

18 CHAPTER 3. DESIGN

Solver Client

Solver Client

Primitive Service

Primitive Service

solve(goal)

RequestMsg

loop [for each requested solution]

NextMsg

loop [for each sub-task or getter of execution context]

SubRequestMsg

SubResponseMsg

ResponseMsg

solution

closeConnection()

Figure 3.6: Diagram of a generic messages exchange

3.3 Interaction

As previously stated, during the invocation of a remote primitive all the communi-
cation happens in a bidirectional stream. Figure 3.6 displays the general structure
of message exchange between the two distributed entities, enhancing the schema
presented in 3.1. Since the actual resolution procedure of a primitive depends on
its implementation, the order of messages may vary accordingly: for instance, mul-
tiple sub-tasks may occur simultaneously, or be resolved across different solutions’
dispatch. Nonetheless, a ResponseMsg is sent on the stream for each NextMsg, and
for each SubRequestMsg there should be a SubResponseMsg, in whichever order
they may be exchanged.

3.4 Distributed Entities Structure

Once the general behavior of the system is defined, we delve in more detail into
the components of each distributed entity of the system.

3.4. DISTRIBUTED ENTITIES STRUCTURE 19

Primitive Server Factory

startService(primitive, address, port)

Distribuited Response

solution: Solution

sideEffects: List<SideEffect>

Primitive Server Wrapper

callPrimitive(request)

getSignature()

dispatch

dispatch

Distribuited Request

functor: String

arity: Int

arguments: List<Term>

replyWith(value)

replySuccess(value)

replyFail()

replyError(error)

Server Session

handleMessage(msg)

subSolve(query, timeout)

readLine(channelName)

enqueueRequestAndAwait(request)

1

1

Distribuited Primitive

solve(distribuitedRequest)

return

1

1

1

n

Context Requester

inspectKb(filters)

getLogicStackTrace()

getCustomDataStore()

getUnificator()

getLibraries()

getFlagStore()

getOperators()

getInputStoreAliases()

getOutputStoreAliases()

Use

1

1

Figure 3.7: Server’s generic structure

3.4.1 Primitive Service

When designing the structure of a service, we must consider that depending on
which language is actually used, the language paradigm may vary and different
syntax mechanisms may be available. However, it is still possible to define a
general layout, shown in 3.7, that every implementation should follow to its best
abilities. Its components are the following:

Distributed Request It represents a request received from the client: it contains
the arguments provided by the client solver to be used during the compu-
tation. It also exposes the methods to issue a sub-task or to retrieve any
element of the execution context.

Distributed Response Its instances are what compose the sequence of values
generated by the primitive. It can contain a substitution of the variables in
the query or a possible error encountered during the resolution. Moreover,
it includes the eventual side effects that will be applied to the solver.

20 CHAPTER 3. DESIGN

Primitive Client Factory

connectToPrimitive(address, port)
dispatch

Client Session

solutionQueue

handleMessage(msg)

1 1

Session Solver

solve(id, event)

readLine(id, event)

inspectKb(id, event)

getExecutionContextElement(id, type)

Figure 3.8: Client’s generic structure

Distributed Primitive It holds the resolution process of any primitive-as-a-
service. It presents a higher-order function that takes a Distributed Request
and returns a sequence of Distributed Responses. During resolution, addi-
tional data can be retrieved from the client through the methods exposed
by the Distributed Request object. The function must employ a mechanism
to lazily return the values generated by the primitive. For example, in the
basic implementation of primitives in 2p-kt, written in Kotlin, the keyword
yield should be used, which computes the first value and then suspends the
execution until the next one is requested.

Server Session It is the core of the server and it contains all the logic that keeps
track of the session’s data and handles the messages received from the client.
It also exposes the methods to build all the types of replies and it sends them
on the stream of communication.

Context Requester It acts as a remote execution context, where all its fields
are mapped to dispatch the corresponding GenericGetMsg to the client.

Primitive Server Wrapper It implements the service API previously defined.
Thus it is the active component that listens for the messages arriving, redi-
rects them to the right component, initializes sessions, and sends all the
responses to the clients.

Primitive Server Factory Given the implementation of the distributed primi-
tive and which port it will listen onto, its method produces the instances of
servers and starts them.

3.4.2 Client

The client extends a standard solver, introducing structures that enable the inter-
action with the service API.

Client Session It contains the client that actually connects with the service.
When prompted, it requests new solutions to the remote primitive and han-
dles the stream of messages received, executing the sub-tasks when necessary.

3.5. DISTRIBUTED ENTITIES BEHAVIOR 21

Idle
/

[connection started
with RequestMsg]

Waiting
Messages

start Session
/

/
[message received]

/
[connection closed] handle message

/

/
[is NextMsg]

Computing
Solution

/
[is SubResponseMsg]

Handling
Response

signal response
received

/

send ResponseMsg
/

[solution computed]

send sub-task
/

Waiting
Response

/
[response received]

stop service
/

/
start service

Figure 3.9: Control flow diagram of a service

Session Solver It keeps track of the information about the current session with
the primitive. It has data on any ongoing sub-task and contains a copy of
the solver’s execution context: this copy is used to reply to the sub-requests
of the service.

Primitive Client Factory It presents the method that, given which address to
connect to and which port, starts the connection with the remote service and
returns the relative Client Session instance.

3.5 Distributed Entities Behavior

Both service and client are structured around the idea of managing multiple con-
current tasks. On both sides, the main task listens for new messages, and a new
task is generated for each message received. The components can therefore handle
multiple messages simultaneously, allowing single tasks to await additional data
without blocking the whole component.

3.5.1 Primitive Service

A primitive service instance initially listens for clients’ connections and RequestsMsg.
Once a connection is established, a new task initializes the session and waits for
messages in an async manner on the opened channel stream. When a message is
received, another task is created to handle it. If additional data is required from
the client, the corresponding message is sent on the communication stream and
the current task awaits the response. Otherwise, if the message received contains

22 CHAPTER 3. DESIGN

the response of an ongoing sub-task, it unlocks the latter by signaling the received
value. When a solution is finally computed, a ResponseMsg is sent on the stream.

3.5.2 Client Proxy

Connected

Waiting
Messages

send RequestMsg
/

/
[message received]

close client
/

[sequence finished OR
closed by solver]

handle message
/

deliver solution to Solver
/

[is ResponseMsg]

/
[is SubRequestMsg]

Handling
Sub-Task

send SubResponseMsg
/

end connection
/

start client
/

[primitive requested]

send NextMsg
/

[next() received from Solver]

Figure 3.10: Control flow diagram of a client

The actual client is instantiated when a solver queries the primitive. After
establishing the connection with the service, it waits on the channel stream for
messages. If a ResponseMsg is received, it is made available for consumption by
the solver. If any other message is received instead, it is handled by dispatching
the requested data on the stream. The Session Solver also maintains data for
any ongoing sub-task during the execution, like the values already generated for a
sub-solve and the sequence to retrieve new ones if available. Once all the values of
the primitive have been received or the solver terminates the sequence, the client
closes the connection.

Chapter 4

Implementation

In this chapter, we will describe the prototype’s implementation, which extends
2p-kt with a new module called :primitives-aas. During the development, we
employed gRPC, protobuf, and the other modules already present in the Prolog
framework. While the client is written in Kotlin, the same language used for 2p-kt,
the service structure can be implemented in many different languages. For the sake
of demonstrating the service’s platform independence, we developed its prototype
both in Kotlin and Python.

4.1 The Service Interface

As explained previously, gRPC allows the definition of different types of remote
procedure calls in .proto files. The simpler one of these is the unary RPC, where
a single message from the client corresponds to a single reply from the service.
Another type available is the bidirectional streaming RPC, on which the messages
are sent on two separate streams, one for each side: any call that is initiated by
the client creates a different channel that is managed concurrently wrt the others.

The service interface is defined in protobuf, as shown in Listing 4.1, using the
proto3 syntax. It is composed of two methods, a bidirectional streaming RPC
named callPrimitive which handles the messages exchange of a resolution’s ses-
sion, and a unary RPC called getSignature that returns the primitive’s signature.

Listing 4.1: Service’s interface implementation in proto3�
1 service GenericPrimitiveService {

2 rpc callPrimitive(stream SolverMsg) returns (stream PrimitiveMsg) {}

3 rpc getSignature(EmptyMsg) returns (SignatureMsg) {}

4 }
� �
Messages are also defined in .proto files as small logical records of information

containing a series of name-value pairs called fields. These fields can be primitive

23

24 CHAPTER 4. IMPLEMENTATION

types such as int, enum, and bool, more complex structures like lists and maps,
or user-defined types. An example of a message is shown in Listing 4.2, which
contains the definition of SolutionMsg.

Listing 4.2: Example of message implementation in proto3�
1 message SolutionMsg {

2 SolutionType type = 1;

3 StructMsg query = 2;

4 map <string , ArgumentMsg > substitutions = 3;

5 optional ErrorMsg error = 4;

6 bool hasNext = 5;

7 enum SolutionType {

8 SUCCESS = 0;

9 FAIL = 1;

10 HALT = 2;

11 }

12 }
� �
Thanks to a special gRPC plugin, from the .proto files it is possible to generate

automatically code that includes the gRPC client and server classes, as well as the
methods for populating, serializing, and retrieving the message types. Thus, it is
feasible to extend these files and implement in detail our system’s functionalities
and behavior without worrying about the low-level coding of establishing and
managing the connection.

In order to easily transform the 2p-kt entities in messages and vice versa, we
also defined a collection of serializers. The serialization methods are implemented
as extensions of the original classes, such as in Listing 4.3.

Listing 4.3: Serialization method of a Prolog Term�
1 fun Term.serialize (): ArgumentMsg {

2 val builder = ArgumentMsg.newBuilder ()

3 when (this) {

4 is Var -> builder.setVar(this.name)

5 is Truth -> builder.setFlag(this.isTrue)

6 is Numeric -> builder.setNumeric(this.decimalValue.toDouble ())

7 is Atom -> builder.setAtom(this.value)

8 is Struct -> builder.setStruct(this.serialize ())

9 }

10 return builder.build ()

11 }
� �

4.2. IMPLEMENTATION OF A PRIMITIVE-AS-A-SERVICE 25

Listing 4.4: Kotlin implementation of the callPrimitive() method�
1 class PrimitiveServerWrapper private constructor(...):

GenericPrimitiveServiceGrpc.GenericPrimitiveServiceImplBase () {

2

3 override fun callPrimitive(responseObserver: StreamObserver <

PrimitiveMsg >): StreamObserver <SolverMsg > {

4 return object : StreamObserver <SolverMsg > {

5

6 private var session: ServerSession? = null

7

8 override fun onNext(value: SolverMsg) {

9 when (session) {

10 null ->

11 if (value.hasRequest ()) {

12 session = ServerSession.of(primitive , value.request ,

responseObserver)

13 } else { ... }

14 else -> {

15 executor.execute {

16 session !!. handleMessage(value)

17 }

18 }

19 }

20 }

21 ...
� �
4.2 Implementation of a Primitive-As-A-Service

4.2.1 In Kotlin

Following the structure described in 3.4.1, we implemented in Kotlin the service
architecture inside the :primitives-aas module.

The PrimitiveServerWrapper class is implemented by extending the server
code generated by the gRPC plugin and therefore it presents the methods defined
in the service interface, as shown in Listing 4.4. In particular, the bidirectional
streaming RPC callPrimitive(...) requires as argument the StreamObserver

object used by the server to dispatch replies with the onNext() method, and
returns the StreamObserver object that intercepts the client messages. If a
RequestMsg is received on the stream, a session is initialized. Otherwise, a new
task is spawned to handle the message.

The handling of messages is delegated to the ServerSession class in List-
ing 4.5. Depending on the content received, the task elaborates it accordingly:

• if a NextMsg has been received, it iterates over the primitive’s sequence of
solutions replying with a new value. If the sequence has already been termi-

26 CHAPTER 4. IMPLEMENTATION

Listing 4.5: Kotlin implementation of message handling in ServerSession�
1 override fun handleMessage(msg: SolverMsg) {

2 /** Handling Next Request */

3 if (msg.hasNext ()) {

4 val response = try {

5 stream.next().serialize(stream.hasNext ())

6 } catch (_: NoSuchElementException) {

7 request.replyFail ().serialize(false)

8 }

9 responseObserver.onNext(

10 PrimitiveMsg.newBuilder ().setResponse(response).build ()

11)

12 if (! response.solution.hasNext) responseObserver.onCompleted ()

13 }

14 /** Handling SubRequest Event */

15 else if (msg.hasResponse ()) {

16 ongoingSubRequests.find { it.id == msg.response.id }.let {

17 it?. signalResponse(msg.response)

18 }

19 }

20 /** Throws error if it tries to initialize again */

21 else if (msg.hasRequest ()) { ... }

22 }
� �
nated, the service replies with a failure. Additionally, if no more solutions
are available to be calculated, the connection is closed with the stream’s
onCompleted() method.

• if the message is a SubResponseMsg, the task signals the relative pending
sub-task with the received value.

The basic elements of the primitive used in the service, such as the request and
response object, recall the implementations already present in the 2p-kt framework.
However, they have been revised in a new version to comply with the message
protocol’s structure and the distributed nature of the system.

For instance, the solutions’ sequence is generated by the DistributedPrimitive
entity, a higher-order function that provides the actual implementation of the res-
olution process and is defined when initializing the service instance. The interface
to be extended is Listing 4.6. Its solve() method accepts a DistributedRequest
object and returns a sequence of DistributedResponse that can be iterated lazily.

An example of DistributedPrimitive implementation is Listing 4.7, a rewrit-
ing of the primitive natural/1 which either asserts if the argument provided is
a natural number or, in case of a variable argument, returns a sequence of incre-
mental numbers.

4.2. IMPLEMENTATION OF A PRIMITIVE-AS-A-SERVICE 27

Listing 4.6: Interface of a DistributedPrimitive in Kotlin�
1 fun interface DistributedPrimitive {

2

3 fun solve(request: DistributedRequest): Sequence <DistributedResponse >

4

5 companion object { ... }

6 }
� �
Listing 4.7: Implementation of the nt/1 distributed primitive in Kotlin�

1 DistributedPrimitiveWrapper("nt", 1) { request ->

2

3 when (val arg1: Term = request.arguments [0]) {

4 is Var ->

5 generateSequenceOfNaturals ().map { request.replySuccess(

Substitution.of(arg1 , it)) }

6 is Integer ->

7 sequence{

8 yield(request.replyWith(arg1 >= 0)

9 }

10 else ->

11 sequenceOf(request.replyFail ())

12 }

13 }
� �
The keyword yield and the Sequence type are used to obtain the lazy nature

of a primitive so that the computation process blocks after each generated value
until the next one is requested.

In order to implement the request for a sub-task, we defined the SubRequestEvent
interface, shown in Listing 4.8. A SubRequestEvent is composed of the mes-
sage sent to the client to query the task, a randomly generated id, and two
methods, awaitResult() and signalResponse(), used respectively to await the
value requested and to signal the response’s reception by manipulating an internal
Deferred object.

An example of a sub-task type is the SubSolve task, which queries the client
solver a Prolog sub-goal and returns the sequence of computed solutions. List-
ing 4.9 and Listing 4.10 present the implementation of the two methods used to
handle a single response of a sub-solve request.

When a sub-task is requested, the function enqueueRequestAndAwait(), illus-
trated in Listing 4.11, is called, in which these steps will be taken in order:

• It adds the SubRequestEvent object to the set of ongoing sub-tasks.

• It sends the corresponding SubRequestMsg to the client.

28 CHAPTER 4. IMPLEMENTATION

Listing 4.8: SubRequestEvent’s implementation in Kotlin�
1 interface SubRequestEvent {

2

3 val message: PrimitiveMsg

4

5 val id: String

6

7 fun signalResponse(msg: SubResponseMsg)

8

9 fun awaitResult (): Any?

10 }
� �

Listing 4.9: Kotlin implementation of the awaitResult method in a SubSolve

request�
1 override fun awaitResult (): DistributedResponse {

2 val response = runBlocking {

3 result.await ()

4 }

5 hasNext = response.solution.hasNext

6 return response.deserializeAsDistributed ()

7 }
� �

Listing 4.10: Kotlin implementation of the signalResponsemethod in a SubSolve
request�

1 override fun signalResponse(msg: SubResponseMsg) {

2 if (msg.hasSolution ()) {

3 this.result.complete(msg.solution)

4 } else {

5 throw IllegalArgumentException("The message received is not of a

SubSolve")

6 }

7 }
� �

4.2. IMPLEMENTATION OF A PRIMITIVE-AS-A-SERVICE 29

Listing 4.11: Implementation of enqueueRequestAndAwait() method in Kotlin�
1 override fun enqueueRequestAndAwait(

2 request: SubRequestEvent

3): Any? {

4 ongoingSubRequests.add(request)

5 responseObserver.onNext(request.message)

6 return request.awaitResult ().also {

7 ongoingSubRequests.remove(request)

8 }

9 }
� �
Listing 4.12: Implementation of solve/2 remote primitive in Kotlin�

1 DistributedPrimitiveWrapper("solve", 1) { request ->

2 request.subSolve(request.arguments [0]. castToStruct ()).map {

3 if (it.solution.isYes) {

4 request.replySuccess(it.solution.substitution.castToUnifier ()

)

5 } else if (it.solution.isNo) {

6 request.replyFail ()

7 } else {

8 request.replyError(it.solution.exception !!)

9 }

10 }

11 }
� �
• It awaits the relative SubResponseMsg. As the answer with the correct ID is
received on a separate task, the method is awakened and the value obtained
is returned.

• The SubRequestEvent is then removed from the set of active sub-tasks.

To request a sub-task, the corresponding method must be called in the primi-
tive’s resolution process on the DistributedRequest object. An example is shown
in line 2 of Listing 4.12 with the method subsolve(). The same listing also illus-
trates an implementation of the solve/1 primitive which queries the client solver
with the sub-goal provided as the function’s argument.

Finally, to run a service we call the method present in the PrimitiveServerFactory
object and illustrated in Listing 4.13. It takes as arguments the primitive’s im-
plementation coupled with its signature and the port where the service will be
deployed. The body of the function then runs these instructions:

• It creates an Executor that will manage the threads used by the service
to handle the received messages and to complete the various tasks of the
computation processes.

30 CHAPTER 4. IMPLEMENTATION

Listing 4.13: Implementation of startService() method in Kotlin�
1 fun startService(

2 primitive: DistributedPrimitiveWrapper ,

3 port: Int = 8080

4): Server {

5 val executor = Executors.newCachedThreadPool ()

6 val service = PrimitiveServerWrapper.of(primitive , executor)

7 val genericPrimitive = ServerBuilder.forPort(port)

8 .addService(service)

9 .executor(executor)

10 .build()

11 genericPrimitive !!. start()

12 Runtime.getRuntime ().addShutdownHook(

13 Thread {

14 genericPrimitive.shutdownNow ()

15 }

16)

17 return genericPrimitive

18 }
� �
• It instantiates the PrimitiveServerWrapper, and uses it to launch the ac-
tual server.

• It adds a shutdown hook to close the server in case of interruptions.

• It returns the server’s object.

4.2.2 In Python

A primitive service can be implemented in other languages, such as Python. Apart
from some minor differences due to the different syntax, the structure and imple-
mentation are similar to the ones in Kotlin.

The first main variation is in the callPrimitive() function, as shown in List-
ing 4.14. The server classes generated by gRPC, in fact, use the Generator type
to manage the streams of messages. Thus we utilize the keyword yield not only
to generate the primitive values but also to send replies to the client.

The method messageHandling() is defined within the body of callPrimitive().
It processes the received messages and adds the resulting replies to the queue object
in a manner similar to the Kotlin implementation. This process is run concurrently
by the service Executor, while the main control flow waits for items to be added
to the queue and sends them through the stream using yield.

The same structure of distributed core elements is maintained, for example
by developing the DistributedPrimitive class as shown in Listing 4.15. The

4.3. THE CLIENT’S IMPLEMENTATION 31

Listing 4.14: Python implementation of the callPrimitive RPC�
1 def callPrimitive(self , request_iterator , context: Context):

2 queue = Queue[primitivesMsg.GeneratorMsg]()

3

4 def messageHandling (): [...]

5

6 self.executor.submit(messageHandling)

7

8 context.add_callback(lambda: queue.put(None))

9

10 while context.is_active ():

11 msg: primitivesMsg.GeneratorMsg = queue.get()

12 if(msg != None):

13 yield msg

14 else:

15 context.cancel ()
� �
Listing 4.15: Abstract class of DistributedPrimitive in Python�

1 class DistributedPrimitive(ABC):

2 @abstractmethod

3 def solve(self , request: DistributedRequest) -> Generator[

DistributedResponse , None , None]:

4 pass
� �
solve() function is defined with the @abstractmethod tag, which will be overrid-
den by the concrete implementations of the primitives.

To provide an example, we chose to implement the primitive nt/1 in Python
too. The code is illustrated in Listing 4.16, and as it can be observed there aren’t
major differences apart from the usage of generators instead of the Sequence type.

4.3 The Client’s Implementation

In a local environment, a primitive is made available by adding it to a library
and then by importing the latter into a solver. In order to use a primitive service
transparently and take advantage of the solver classes already present in 2p-kt, we
employed a client proxy. The client proxy wraps the actual client in the structure
of a local Primitive interface, so that the connection aspects are handled in a
hidden layer and the client can be used as a standard primitive.

The client proxy’s implementation adheres to the details specified in 3.4.2.
The core element of the component is the ClientSession interface, shown in
Listing 4.17. It is defined as StreamObserver of the service’s replies and it is used

32 CHAPTER 4. IMPLEMENTATION

Listing 4.16: Python implementation of nt/1�
1 class __NtPrimitive(DistributedElements.DistributedPrimitive):

2

3 def solve(self , request: DistributedElements.DistributedRequest) ->

Generator[DistributedElements.DistributedResponse , None , None]:

4 arg0 = request.arguments [0]

5 if(arg0.HasField("var")):

6 n = 0

7 while(True):

8 substitutions = {}

9 substitutions[arg0.var] = Utils.buildConstantArgumentMsg(n)

10 yield request.replySuccess(substitutions = substitutions)

11 n += 1

12 elif(arg0.HasField("numeric")):

13 yield request.replySuccess(hasNext = False)

14 else:

15 yield request.replyFail ()
� �
Listing 4.17: Interface of the ClientSession�

1 interface ClientSession : StreamObserver <PrimitiveMsg > {

2

3 val solutionsQueue: Iterator <Solve.Response >

4

5 companion object {

6 fun of(

7 request: Solve.Request <ExecutionContext >,

8 channelBuilder: ManagedChannelBuilder <*>

9): ClientSession =

10 ClientSessionImpl(request , channelBuilder)

11 }

12 }
� �
when connecting with the server. Moreover, it exposes the iterator solutionQueue
where the solutions generated by the remote primitive are retrievable.

A ClientSession instance is composed of 3 additional methods, inherited from
StreamObserver:

onNext() runs the handling process for every received message.

onCompleted() is the callback for when the connection is closed.

onError() is executed when an error has occurred during communication, such
as a sudden shutdown of the connection.

The onNext() method is defined as in Listing 4.18. If the reply received con-
tains a value, it is deserialized and added to the queue of solutions. Otherwise, if

4.3. THE CLIENT’S IMPLEMENTATION 33

Listing 4.18: Implementation of method onNext() in ClientSession�
1 override fun onNext(value: PrimitiveMsg) {

2 if (value.hasResponse ()) {

3 if (!value.response.solution.hasNext) {

4 responseStream.onCompleted ()

5 this.onCompleted ()

6 }

7 queue.add(value.response.deserialize(scope , request.context))

8 } else if (value.hasRequest ()) {

9 val request = value.request

10 if (request.hasSubSolve ()) {

11 responseStream.onNext(

12 sessionSolver.solve(request.id , request.subSolve)

13)

14 } else if (...) {

15 ...

16 }

17 }

18 }
� �
a sub-task is requested, the corresponding operation is executed and its result is
dispatched.

The actual execution of these operations is delegated to the SessionSolver,
which keeps track of the solver’s execution context and any ongoing sub-tasks. For
example, if a sub-solve request is received, the solve() method of SessionSolver
is invoked, which runs as illustrated in Listing 4.19:

• It firstly checks if any computation with the message’s ID already exists,
creating a new iterator of solutions if not present.

• It then returns the next available value and serializes the result in a SubResponseMsg.

The solutionQueue exposed by ClientSession is an iterator of Solve.Response
objects, as displayed in Listing 4.20. When a new element is requested with the
next() method, it sends a NextMsg to the server and then it awaits a new value
on the queue of solutions. If the connection is closed, the iterator will be marked
as exhausted setting the hasNext variable to false.

Finally, the PrimitiveClientFactory object takes care of instantiating the
client proxies. The method shown in Listing 4.21 takes the address and port of
the server as arguments, and runs these instructions:

• It gets the remote primitive’s signature with the getSignature RPC.

34 CHAPTER 4. IMPLEMENTATION

Listing 4.19: Implementation of the solve() method in SessionSolver�
1 override fun solve(id: String , event: SubSolveRequest): SolverMsg {

2 val query = event.query.deserialize ()

3 computations.putIfAbsent(id, sessionSolver.solve(query , event.timeout

).iterator ())

4 val solution: Solution = computations[id]!!. next()

5 return buildSubSolveSolutionMsg(

6 id ,

7 Solve.Response(solution),

8 computations[id]!!. hasNext ()

9)

10 }
� �

Listing 4.20: Implementation of the solutionQueue in ClientSession�
1 override val solutionsQueue: Iterator <Solve.Response > =

2 object : Iterator <Solve.Response > {

3

4 override fun hasNext (): Boolean = !closed

5

6 override fun next(): Solve.Response {

7 if (hasNext ()) {

8 responseStream.onNext(

9 SolverMsg.newBuilder ().setNext(EmptyMsg.

getDefaultInstance ()).build()

10)

11 return queue.takeFirst ()

12 } else {

13 throw NoSuchElementException ()

14 }

15 }

16 }
� �

4.3. THE CLIENT’S IMPLEMENTATION 35

Listing 4.21: Implementation of the connectToPrimitive() method�
1 fun connectToPrimitive(

2 address: String = "localhost",

3 port: Int = 8080

4): Pair <Signature , Primitive > {

5 val channelBuilder = ManagedChannelBuilder.forAddress(address , port)

6 .usePlaintext ()

7 val channel = channelBuilder.build()

8 val signature = GenericPrimitiveServiceGrpc.newFutureStub(channel)

9 .getSignature(EmptyMsg.getDefaultInstance ()).get()

10 channel.shutdown ()

11 channel.awaitTermination(TERMINATION_TIMEOUT , TimeUnit.SECONDS)

12 return signature.deserialize () to Primitive(primitive(channelBuilder)

)

13 }
� �
Listing 4.22: Wrapping of a ClientSession in a 2p-kt Primitive�

1 private fun primitive(

2 channelBuilder: ManagedChannelBuilder <*>

3): (Solve.Request <ExecutionContext >) -> Sequence <Solve.Response > = {

4 ClientSession.of(it , channelBuilder).solutionsQueue.asSequence ()

5 }
� �
• It returns the signature coupled with a client wrapped in a 2p-kt primitive,
which is created with the code in Listing 4.22.

The pair returned by the method can thus be included in a library and later
imported in a Solver with the instructions contained in Listing 4.23.

36 CHAPTER 4. IMPLEMENTATION

Listing 4.23: Import of a remote primitive in a Solver�
1 logicProgramming {

2 solver = Solver.prolog.mutableSolverWithDefaultBuiltins(

3 otherLibraries = Runtime.of(

4 Library.of(

5 libraryName ,

6 mapOf(

7 PrimitiveClientFactory.connectToPrimitive(

primitivesHost , port)

8)

9)

10)

11)

12 }
� �

Chapter 5

Validation

In this chapter, we will enlist the two validation methods used to verify the system
quality.

5.1 Test Suite

During the implementation phase of the prototype, we followed the Test Driven
Development model (TDD), allowing us to incrementally build a test suite. The
resulting classes use the default library kotlin.test and include some ad-hoc
primitive services that employ both the primary mechanisms of Prolog and the
available sub-tasks in a DistributedPrimitive. These remote primitives are
imported by a 2p-kt solver and queried in various test functions in order to verify
their compatibility with the framework and the handling of predicate solutions,
backtracking, and side effects. The coverage results of the suite are shown in figure
5.1.

5.2 Real Application: The ml-lib

Finally, to verify the system’s performance requirements and provide a concrete
usage of the module, we decided to implement the library defined in [6]. This
library includes methods to process large datasets, create machine learning pre-
dictors, and manage them in Prolog. The library is loaded on PyPI and can be
installed with this command:

pip install prolog primitives

5.2.1 Implementation

The Python project is composed of various nested packages:

37

38 CHAPTER 5. VALIDATION

Figure 5.1: Test suite’s coverage results

5.2. REAL APPLICATION: THE ML-LIB 39

basic: It contains the classes shown in 4.2.2 which implement the structure of a
generic primitive service.

generatedProto: It is where the server’s code generated from the .proto files is
located.

ml lib: It is the module containing all the 27 remote primitives’ implementations,
divided into nested packages depending on their functionality.

ml lib.schema: It handles the metadata of a dataset’s domain.

ml lib.dataset: It manages the loading and reading of a dataset in clause
form.

ml lib.transformations: It includes the primitives for the preprocessing
of datasets.

ml lib.predictors: It presents the functions to create, fit and use a generic
machine learning predictor.

ml lib.neuralNetwork: It contains the specific function to define a neural
network, usable as a predictor.

When invoking a primitive, data can be passed as arguments either directly
in Term form or through references. These references are identification strings
generated by specific objects on the server side. These objects both collect and
share data, enabling the exchange of information between the different remote
primitives of the library. Each service listens on a specific port, from 8100 to 8126,
and they are launched concurrently by an executor.

An example of ML primitive is column/3, which takes a reference for the
dataset of interest and a column index as arguments and returns the values of that
specific column in that dataset. The implementation of the primitive is shown in
Listing 5.1. It runs the following instructions:

• Firstly it extracts the arguments from the requests and checks if they are
the correct type.

• Using the reference provided by the client, it retrieves the corresponding
dataset from SharedCollection, which is the central hub of data collections.

• It then gets the requested column, either by index or by name, and returns
the serialized values in a ResponseMsg.

• If any of the previous steps fails, a failure is returned.

The library was also developed using TDD. We, in fact, extended the already
existing test suite with specific functions that verified the correctness of the Python
primitives.

40 CHAPTER 5. VALIDATION

Listing 5.1: Implementation of the remote primitive column/3�
1 class __ColumnPrimitive(DistributedElements.DistributedPrimitive):

2

3 def solve(self , request: DistributedElements.DistributedRequest) ->

Generator[DistributedElements.DistributedResponse , None , None]:

4 dataset_ref = request.arguments [0]

5 column = request.arguments [1]

6 values = request.arguments [2]

7

8 if(not dataset_ref.HasField("var") and values.HasField("var")):

9 dataset = SharedCollections ().getDataset(str(Utils.

parseArgumentMsg(dataset_ref)))

10

11 if(not column.HasField("var")):

12 i = Utils.parseArgumentMsg(column)

13 if(type(i) is not str):

14 i = dataset.column_names[int(i)]

15 column = list(map(Utils.stringsConverter , tf.

get_static_value(dataset[i])))

16 yield request.replySuccess ({

17 values.var: Utils.fromListToArgumentMsg(column)

18 }, hasNext=False)

19 else:

20 ...

21

22 else:

23 yield request.replyFail ()

24

25 columnPrimitive = DistributedElements.DistributedPrimitiveWrapper("column

", 3, __ColumnPrimitive ())
� �

5.2. REAL APPLICATION: THE ML-LIB 41

Listing 5.2: Implementation of the preprocessing/3 clause�
1 preprocessing(Dataset , Labels , Transformed) :-

2 theory_to_schema(Schema),

3 schema_transformation(Schema , A) ,

4 normalize(A, Labels , B) ,

5 fit(B, Dataset , C) ,

6 transform(Dataset , C, Transformed).
� �
Listing 5.3: Implementation of the createModel/3 clause�

1 createModel(NInput , NOutput , E) :-

2 input_layer(NInput , A),

3 dense_layer(A, 128, relu , B),

4 dense_layer(B, 64, relu , C),

5 output_layer(C, NOutput , linear , D),

6 neural_network(D, E).
� �
5.2.2 The Performance Comparison Test

A final test was devised in order to measure the system’s impact on the perfor-
mance. The demo consisted of building and fitting a Neural Network over the [20]
dataset, implementing the code both in Python and in Prolog using ml lib. In
particular, the Prolog version used a Solver with the knowledge base composed
of the facts that described the dataset and the following rules specific for machine
learning operation:

preprocessing/3 creates and fits on the dataset a preprocessing pipeline with a
normalization step of the labels specified in the arguments.

createModel/3 builds a neural network with two hidden layers and takes as ar-
guments the number of neurons in the input and output layers.

train cv/3, train cv fold/4, and train validate/4 are all used to execute
cross-validation on the neural network previously created.

test/3 verifies the quality of a predictor by calculating the mean average error
of its predictions.

To run the demo in Prolog, the Solver is queried with the goal shown in List-
ing 5.6, which firstly loads the dataset on the server from theory form, then builds
and applies the preprocessing pipeline and finally execute the cross-validation test.

In both languages, the code was run multiple times and the mean of all the
execution times was calculated. As shown in Listing 5.7 and Listing 5.8, the

42 CHAPTER 5. VALIDATION

Listing 5.4: Implementation of the clauses for cross-validation�
1 train_cv(Dataset , LearnParams , AllPerformances) :-

2 findall(Performance , train_cv_fold(Dataset , 5, LearnParams , Performance

), AllPerformances).

3

4 train_cv_fold(Dataset , K, LearnParams , Performance) :-

5 fold(Dataset , K, Train , Validation),

6 train_validate(Train , Validation , LearnParams , Performance).

7

8 train_validate(TrainingSet , ValidationSet , LearnParams , Performance) :-

9 createModel (7, 1, NN),

10 train(NN , TrainingSet , LearnParams , TrainedNN),

11 test(NN, ValidationSet , Performance).
� �

Listing 5.5: Implementation of the test/3 clause�
1 test(NN, ValidationSet , Performance) :-

2 predict(NN , ValidationSet , ActualPredictions),

3 mae(ActualPredictions , ValidationSet , Performance).
� �

Listing 5.6: Prolog query to define, fit and test the neural network�
1 theory_to_dataset(autoMpg , Dataset),

2 preprocessing(Dataset , [cylinders , displacement , horsepower , weight ,

acceleration , ’model year’, origin], Transformed),

3 train_cv(Transformed , [max_epoch (100) , loss(mse)], AllPerformances).
� �

5.2. REAL APPLICATION: THE ML-LIB 43

Listing 5.7: Output of demo executed in Python�
1 ...

2 10/10 [==============================] - 0s 9ms/step - loss: 6.2126 - mae

: 1.8266 - val_loss: 24.4373 - val_mae: 3.2008

3 Epoch 99/100

4 10/10 [==============================] - 0s 6ms/step - loss: 6.0738 - mae

: 1.8137 - val_loss: 23.2056 - val_mae: 3.1173

5 Epoch 100/100

6 10/10 [==============================] - 0s 6ms/step - loss: 6.1199 - mae

: 1.8058 - val_loss: 23.5669 - val_mae: 3.1574

7 3/3 [==============================] - 0s 4ms/step

8 Mean Absolute Error: 2.050995111465454

9 Medium time calculated: 25.01106333732605
� �
performances are similar, and the distributed aspects of the 2p-kt system don’t
affect the performance out-of-reasonable bounds.

44 CHAPTER 5. VALIDATION

Listing 5.8: Output of demo executed in 2p-kt�
1 1/10 [== >...........................] - ETA: 0s - loss: 9.4589 - mae:

2.3689

2 10/10 [==============================] - 0s 8ms/step - loss: 6.4137 - mae

: 1.8330 - val_loss: 9.7842 - val_mae: 2.3726

3 Epoch 98/100

4 1/10 [== >...........................] - ETA: 0s - loss: 9.6123 - mae:

2.1338

5 10/10 [==============================] - 0s 6ms/step - loss: 6.4160 - mae

: 1.8314 - val_loss: 10.7024 - val_mae: 2.4423

6 Epoch 99/100

7 1/10 [== >...........................] - ETA: 0s - loss: 7.3944 - mae:

1.9367

8 10/10 [==============================] - 0s 6ms/step - loss: 6.3663 - mae

: 1.8305 - val_loss: 9.8800 - val_mae: 2.4473

9 Epoch 100/100

10 1/10 [== >...........................] - ETA: 0s - loss: 6.9109 - mae:

1.7050

11 10/10 [==============================] - 0s 8ms/step - loss: 6.3447 - mae

: 1.8339 - val_loss: 9.8858 - val_mae: 2.4383

12 1/3 [========= >....................] - ETA: 0s

13 3/3 [==============================] - 0s 1ms/step

14 Yes(query =((getDataset(Dataset_66), preprocessing(Dataset_66 , [cylinders ,

displacement , horsepower , weight , acceleration , ’model year ’, origin

], Transformed_28)), train_cv(Transformed_28 , [max_epoch (100), loss(

mse)], AllPerformances_28)), substitution ={ Dataset_66=qzhxcxtiaf ,

Transformed_28=kaxlyzmhph , AllPerformances_28 =[2.5825018882751465 ,

2.0743658542633057 , 1.8034321069717407 , 2.304511785507202 ,

2.2109456062316895]})

15 Average time 25.509640000000008
� �

Chapter 6

Conclusions

In this thesis, we explore the possibility of creating a bridge to connect the logic
realm, in particular the Prolog language, with external multi-platform entities.

The current state of the art for the logic paradigm emphasizes how difficult it
is to incorporate symbolic AI with other topics of research. To solve this problem,
we propose a solution that exploits the concept of primitives and the As-A-Service
model. More specifically, our system consists of a client-server structure where
the solver acts as a client and the primitive is an external service used to generate
values.

To demonstrate the feasibility of our approach, we design a generic service
interface, the message protocol, and the characteristics of the distributed entities.
Furthermore, we illustrate the system functionalities by providing a prototype that
extends the 2p-kt framework and employs the Interface Description Languages
gRPC and protobuf. Thanks to these technologies, multiple languages can be
used to develop primitive services, as it is displayed in the prototype’s code.

Finally, we present an example of the system’s usage by implementing the
library described in [6], which is composed of Prolog predicates for machine learn-
ing operations. A demo that uses the library has, on average, a similar execution
time to a functionally equivalent program in pure Python, which proves that the
employment of remote primitives does not cause a significant deterioration of per-
formance.

From our perspective, the results this thesis accomplishes open the door to a
vast amount of new possibilities for symbolic AI. In fact, the system enables users
to develop their custom primitives and libraries for Prolog without worrying about
the restrictions imposed by logic programming.

In other words, it is feasible to define methods that exploit functionalities from
the most diverse platforms and paradigms without leaving the logic realm. It would
be interesting, for example, to develop hybrid systems that combine deep learning
and automated reasoning, such as the ones theorized in [14]. These technologies

45

46 CHAPTER 6. CONCLUSIONS

could acquire knowledge about objects’ representations as well as their relations
with minimal prior understanding of the data structure. Achieving the ability to
learn from the environment and, at the same time, reason the results would be a
significant milestone in the field of AI.

It is discussed in [3] that the combination of machine learning’s “black-box”
techniques with symbolic AI’s “white-box” methodologies would generate partially
understandable approaches and improve the scalability, reactivity, and account-
ability of any intelligent system in the IoT context. Data science would also benefit
from the intersection with symbolic AI since it would open up new research direc-
tions with the aim of building knowledge-based, automated methods for scientific
discovery [13].

In conclusion, we expect that, in the future of technological research, our ap-
proach will be utilized to create hybrid solutions that for now are only theoretical.

Bibliography

[1] Krzysztof R. APT. Chapter 10 - logic programming. In JAN VAN
LEEUWEN, editor, Formal Models and Semantics, Handbook of Theoreti-
cal Computer Science, pages 493–574. Elsevier, Amsterdam, 1990.

[2] Ivan Bratko. Prolog programming for artificial intelligence. Pearson education,
2001.

[3] Roberta Calegari, Giovanni Ciatto, Stefano Mariani, Enrico Denti, and An-
drea Omicini. Lpaas as micro-intelligence: Enhancing iot with symbolic rea-
soning. Big Data and Cognitive Computing, 2(3):23, 2018.

[4] Giovanni Ciatto, Roberta Calegari, and Andrea Omicini. 2p-kt: A logic-based
ecosystem for symbolic ai. SoftwareX, 16:100817, 2021.

[5] Giovanni Ciatto, Roberta Calegari, and Andrea Omicini. Lazy stream manip-
ulation in prolog via backtracking: The case of 2p-kt. In Logics in Artificial
Intelligence: 17th European Conference, JELIA 2021, Virtual Event, May
17–20, 2021, Proceedings, pages 407–420. Springer, 2021.

[6] Giovanni Ciatto, Matteo Castigliò, and Roberta Calegari. Logic program-
ming library for machine learning: API design and prototype. In Roberta
Calegari, Giovanni Ciatto, and Andrea Omicini, editors, CILC 2022 – Italian
Conference on Computational Logic, volume 3204 of ceurws, pages 104–118.
CEUR-WS, 2022.

[7] Chris Currier. Protocol buffers. In Mobile Forensics–The File Format Hand-
book: Common File Formats and File Systems Used in Mobile Devices, pages
223–260. Springer, 2022.

[8] docs.python.org. Python documentation. https://docs.python.org/3/,
2012. accessed on 02-September-2023.

[9] Yucong Duan, Guohua Fu, Nianjun Zhou, Xiaobing Sun, Nanjangud C Naren-
dra, and Bo Hu. Everything as a service (xaas) on the cloud: origins, current

47

https://docs.python.org/3/

48 BIBLIOGRAPHY

and future trends. In 2015 IEEE 8th International Conference on Cloud
Computing. IEEE, 2015.

[10] Werner Frey and Uwe Reyle. A prolog implementation of lexical functional
grammar as a base for a natural language processing system. In First Confer-
ence of the European Chapter of the Association for Computational Linguis-
tics, 1983.

[11] Marta Garnelo and Murray Shanahan. Reconciling deep learning with sym-
bolic artificial intelligence: representing objects and relations. Current Opin-
ion in Behavioral Sciences, 29:17–23, 2019.

[12] Ben Goertzel. Perception processing for general intelligence: Bridging the
symbolic/subsymbolic gap. In International Conference on Artificial General
Intelligence, pages 79–88. Springer, 2012.

[13] Robert Hoehndorf, Núria Queralt-Rosinach, et al. Data science and symbolic
ai: Synergies, challenges and opportunities. Data Science, 1(1-2):27–38, 2017.

[14] Eleni Ilkou and Maria Koutraki. Symbolic vs sub-symbolic ai methods:
Friends or enemies? In CIKM (Workshops), volume 2699, 2020.

[15] Matthias Jarke, Jim Clifford, and Yannis Vassiliou. An optimizing prolog
front-end to a relational query system. ACM SIGMOD Record, 14(2):296–
306, 1984.

[16] Philipp Körner, Michael Leuschel, João Barbosa, Vı́tor Santos Costa,
Verónica Dahl, Manuel V Hermenegildo, Jose F Morales, Jan Wielemaker,
Daniel Diaz, Salvador Abreu, et al. Fifty years of prolog and beyond. Theory
and Practice of Logic Programming, 22(6):776–858, 2022.

[17] Ewing L Lusk and Ross A Overbeek. The automated reasoning system itp.
Technical report, CM-P00069210, 1984.

[18] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(2):258–
282, 1982.

[19] Bernard A Nadel. Constraint satisfaction in prolog: Complexity and theory-
based heuristics. Information sciences, 83(3-4):113–131, 1995.

[20] R. Quinlan. Auto MPG. UCI Machine Learning Repository, 1993. DOI:
https://doi.org/10.24432/C5859H.

BIBLIOGRAPHY 49

[21] John Alan Robinson. A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM (JACM), 12(1):23–41, 1965.

[22] Richard Snodgrass. The interface description language: definition and use.
Computer Science Press, Inc., 1989.

[23] Maarten H Van Emden and Robert A Kowalski. The semantics of predicate
logic as a programming language. Journal of the ACM (JACM), 23(4):733–
742, 1976.

[24] Xingwei Wang, Hong Zhao, and Jiakeng Zhu. Grpc: A communication coop-
eration mechanism in distributed systems. ACM SIGOPS Operating Systems
Review, 27(3):75–86, 1993.

	Abstract
	Introduction
	Background
	Logic Resolution And Logic Programming
	Prolog
	2P-Kt

	Prolog Applications In The Real World
	Python and Prolog

	The As-A-Service Model
	Protocol Buffers
	gRPC

	Design
	Objective and Requirements
	General System Structure
	Server Interface
	Message Protocol

	Interaction
	Distributed Entities Structure
	Primitive Service
	Client

	Distributed Entities Behavior
	Primitive Service
	Client Proxy

	Implementation
	The Service Interface
	Implementation of a Primitive-As-A-Service
	In Kotlin
	In Python

	The Client's Implementation

	Validation
	Test Suite
	Real Application: The ml-lib
	Implementation
	The Performance Comparison Test

	Conclusions

