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Abstract

The growing popularity of highly distributed IoT has highlighted the need for new
methods to develop these systems effectively and at scale. Key distinguishing
features of these systems include: (partial observability) each entity/agent posses
only a partial view of the environment in which it operates; (full distribution)
there is no central entity that coordinates the entire system, as in traditional
client-server architectures (instead, computation takes place directly on the IoT
device or on some edge devices distributed throughout the system, near the IoT
devices); (uncertainty) each entity/agent is influenced by its interactions with the
environment and with other agents, introducing a level of stochasticity into the
system. Over the years, numerous methods have been suggested to address these
challenges, including: Aggregate Computing [65], a macro-programming paradigm,
and Multi-Agent Reinforcement Learning [16, 30], a machine learning paradigm.
This thesis proposes the starting point for a hybrid toolchain that aims to exploit
the potential of both aggregate computing and multi-agent reinforcement learning
to develop systems capable of learning from experience and self-organizing in case
of changes in the external environment.

To attain this objective, we present ScaRLib [23], a framework designed to
streamline the creation of these systems in simulated settings and JVM-based plat-
forms. ScaRLib focuses on reducing the complexity of development by providing
domain abstractions, integration with state-of-the-art tools for multiple subcom-
ponents, a modular and extensible architecture, and a domain-specific language
(DSL) to facilitate the configuration of diverse experiments.

Finally, two experiments are also presented to validate the framework function-
alities by testing it in basic contexts specific to this domain. These experiments
were beneficial in verifying the proper functioning of the tool and highlighting its
strengths, as well as identifying areas for future work.
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Chapter 1

Introduction

Thesis motivation Significant technological advancements have paved the way
for the emergence of a field known as collective computing [3], with Cyber-Physical
Swarms (CPSWs) [53] as a noteworthy branch within it. The latter consist of myr-
iad devices that interact with the environment and exchange information among
themselves to reach a collective outcome or behaviour. Examples of such systems
include swarms of drones, large-scale IoT systems and networks of wearable devices
[62, 27]. A crucial aspect of these systems is that a complex collective behavior
emerges from the interaction between simpler individual agents leading to adaptive
execution of various tasks. Among all aspects related to CPSWs, our focus lies
on properties like collective intelligence [58] and self-organization [52]: hence we
shall concentrate on their collective behavior to express autonomy, adaptability,
and coordination of the devices that are part of them.

This progress has been driven by research in various related fields such as:
multi-agent systems [24], coordination [68], distributed artificial intelligence [14],
autonomic computing [41] and many others. Additionally, it has a profound impact
on a wide range of applied domains, including: smart cities [70], swarm robotics
[15], large-scale IoT systems [61], and many more.

A crucial aspect to consider in CPSWs is how individual devices are pro-
grammed and achieve coordination to the perform assigned tasks. Novel ap-
proaches – like aggregate computing [65] – have focused on manually developing
controllers from a global perspective. However, this approach has some drawbacks:
it is highly challenging to write satisfactory and efficient programs for complex
tasks, they may be error-prone and lack of generality.

On the other hand, approaches exist that leverage various artificial intelligence
(AI) techniques, such as Multi-Agent Reinforcement Learning (MARL) [16, 30], to
enable devices to learn directly from experience and/or data. These approaches
have proved to be fundamental to effectively express adaptive behaviors in complex
environments and to achieve high performance in a wide range of tasks. However,
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2 CHAPTER 1. INTRODUCTION

they also present several challenges, including: communication, scalability and
non-stationarity (i.e., the environment constantly changes) [29].

Thesis objectives The goal of this thesis is to start the design of a hybrid
approach that can succeed in exploiting the potential of both macro-programming
and artificial intelligence approach. In order to achieve this goal, it is necessary
to develop a toolchain that allows these systems to be developed in an agile,
fast and reusable way. ScaRLib [23], is the tool that for us forms the basis of
this toolchain. Its main purpose is to integrate ScaFi [18] (an implementation of
aggregate computing) and Alchemist [44] (a general purpose simulator for network
oriented systems), with Reinforcement Learning used to help the development of
experiments in simulated environments with offline learning (i.e., learning is done
once and then the policy is deployed in real-case systems).

Finally, the last goal of this thesis is to validate the functionalities of the
framework by implementing two common experiments in this domain; in this way
it will be possible to understand the current state of the tool and the work that
will be necessary to complete it.

Thesis Structure Chapters 1 and 2 presents a broad scope of the objectives,
motivations, and theoretical concepts that serve as the foundation of this thesis.
Subsequently, in Chapters 3 to 5, the project that has been developed is presented,
starting with the requirements and domain analysis and then delving into the
design, implementation, and development process management choices. Finally,
in Chapters 6 and 7, two experiments carried out to validate the functionalities of
the framework are presented, followed by a discussion of the current state of the
project and future work that will be necessary to complete the tool.



Chapter 2

Background

2.1 Cyber-Physical Swarms

Cyber-physical swarms (CPSWs) are an extension of swarm systems in which both
logical and physical agents coexist. Swarms draw inspiration from natural systems
such as ant colonies and bird flocks [57, 50, 13]. In these systems a myriad de-
vices (agents) interact among themselves and with the surrounding environment
to achieve a common goal. A fundamental characteristic of these systems is that
the local interaction among individual devices usually consists of simple behav-
iors, but from this a more complex collective behavior emerges that leads to the
resolution of the given task. Examples of these systems (Figure 2.1) are a fleet
of drones tasked with monitoring a park to oversee adverse events (e.g., fires), or
a set of wearable devices to manage crowd congestion in a specific area during a
public event.

Swarms have been extensively studied due to a series of significant advantages,
namely: i) cost : the devices used are typically simpler than a single device that
could solve the task individually, resulting in lower costs; ii) fault-tolerance: sim-
pler devices are less prone to failures, and there is no single point of failure; iii)
scalability : the system can be easily scaled by adding or removing devices; iv)
robustness : the system can handle the loss of some devices; v) flexibility : the same
system can solve different tasks.

2.2 Aggregate Computing

Context Over the last few years, there has been a definite trend in the devel-
opment of computational devices: they have been getting smaller, powerful, and
less expensive. We have moved from using a single mainframe computer that is
shared by an entire department at a company or university, to using numerous

3



4 CHAPTER 2. BACKGROUND

Figure 2.1: Some examples of Cyber-Physical Swarms.

individual devices like smartphones, smartwatches, and others, all interconnected
with one another. This phenomenon has led to a range of opportunities, but
it has also introduced new challenges when it comes to engineering these com-
plex distributed systems. It soon became clear that conventional microprogram-
ming approaches, which involve programming each device separately, lacked of
modularity and reusability. Another problem with microprogramming approaches
concerns the difficulty of mapping local behavior of individual agents onto the
global behavior of the overall system (mapping local to gloabl problem). For this
reason, attempts have been made to introduce novel paradigms, including macro-
programming, which shifts focus onto the collective of devices, considering their
neighbourhood relations and interactions. Some paradigms that have gained sig-
nificant attention in recent years are aggregate computing (AC) [10], tuple on the
air (TOTA) [39] and buzz [45].

Field calculus Field calculus (FC) [64] has been designed to be a minimal core
calculus aimed at capturing the essential aspects of languages that make use of
computational fields, somewhat similarly to what λ-calculus does for representing
the essence of functional programming. The computational model of FC proposes
that a program P is executed by a network of devices δ, with a concept of neigh-
borhood relation representing physical or logical proximity. An example of such
a network is shown in Figure 2.2. This notion of neighborhood is used to repre-
sent devices capable of direct communication, such as sensors within a broadcast
range. In addition to this, the computational model also defines the concept of
computational field ϕ. These fields [65, 38] are a distributed data structure that
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Figure 2.2: A random network of devices generated using ScaFi Web. Each purple
dot represents a device, and each line represents a neighbour relation.

maps each device, at a given time, to a value.

A key aspect of FC is that the program (or specification) P can be interpreted
both locally and globally. Locally, it is viewed as a description of computation on an
individual device, which is executed in asynchronous computational rounds. Each
round consists of three phases: i) context building, each device collects information
from the neighborhood and sensors and aggregates it to build its own local context,
ii) program execution, each device executes the aggregate program on the local
context, and iii) export sharing, each device shares the result of the computation
with the neighborhood. When a device completes a round, it is said “the device
fires”. Globally, on the other hand, a given expression e specifies a mapping that
associates, for each round of each device, the value e assumes at that specific
space-time event. This dualism inherently enables the alignment of each device’s
individual behaviour with the emerging global behaviour of the entire network of
devices.

Figure 2.3 gives the basic abstract syntax of field calculus. Following this syntax
a program P is defined as a sequence of function declarations F̄ followed by the
main expression e. An expression can be:

• A variable x (e.g., a function parameter)

• A value v. It can be of two types:
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Figure 2.3: Field calculus abstract syntax. From [64].

– A local value l (e.g., a Boolean or an Integer);

– A neighbouring (field) value ϕ. It represents a collection of values from
neighbors that maps, for each device, the set of neighbour devices δ
(including the device itself) to local values l (e.g., a map of neighbours
to the distances to those neighbours).

• A function call f(ē) to either a user-declared function or a built-in function;

• A branching expression that splits the system into two sub-region depending
on how each device evaluates the condition;

• The nbr construct, that defines a neighbouring value field ϕ that maps each
neighbor with its latest available result of evaluating e;

• The rep construct, which models state evolution over time.

In addition to the syntax explained for FC, there is an expanded version for
higher-order FC. Here, functions are considered first-class values and programmers
are able to pass functions as parameters to other functions. This allows for the
addition or modification of existing code within the network.

One final important aspect of field calculus is its ability to formally demonstrate
the validity of significant properties, including:

• self-stabilization [63, 66, 22, 36]: this feature serves to prevent the system
from entering incorrect states. Firstly, it guarantees that, given a costant
input, a program’s execution will converge to a specific value in a finite time
for each device. Secondly, it ensures that this value is solely dependent on
the input and not on previous execution history.

• global coherence: this characteristic is assured by the field calculus, which en-
sures consistent alignment of the nbr operator across the network. However,
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achieving this isn’t straightforward, as multiple requests for nbr can occur,
and the execution speed of functions can vary depending on the device. If
global-local coherence isn’t maintained, there may come a point where a
subset of network devices loses synchronization with the entire network.

• space-time universality [7]: this property guarantees that field calculus is
computationally universal (or Turing complete [59, 60]) and that it can be
used to solve any computable problem.

• eventual consistency [11]: this property is closely related with self-stabilization.
It approximates the network of devices as a continuous environment; a system
is eventual consistent if the state it converges to is set by that continuous en-
vironment rather than the particulars of how devices are distributed through
it.

Agregate computing Aggregate computing [10] is a macro-programming model
whose foundation is based on field calculus, providing innovative solutions to the
issues previously mentioned. AC’s objective is to reduce the complexity of de-
signing, developing, and maintaining complex distributed systems, with focus on
three fundamental aspects: i) the composition of modules and subsystems must
transparent, ii) different subsystems needs different coordination mechanisms for
different regions and times, and iii) the implementation details of coordination
mechanisms should be hidden from programmers in order to facilitate ease of use.
To attain this objective, AC adopts a layer-based architecture (Figure 2.4) that, in
addition to field calculus, includes two levels of abstraction to increase resilience
and hide complexity.

The first additional layer, placed immediately above the FC layer, is crucial
for hiding complexity and supporting the efficient engineering of distributed co-
ordination systems. In practice, it introduces various operators that can be used
by the subsequent levels as building blocks, namely: i) G allows the spread of
information from a source to a given distance, ii) C is the inverse of G, allowing
the collection of information, iii) T allows to keep track of the time, and iv) S
allows the election of a set of leaders and the partition of the network according
to those leaders. The second-to-last layer comprises libraries and features tailored
towards offering a simple interface for software developers. Furthermore, this layer
encourages reusability, productivity, declarativeness, flexibility, and efficiency. An
instance of a robust API is ScaFi [18], a Domain-Specific Language for implement-
ing aggregate computing via the Scala programming language. Finally, there is
the application layer, where the end-user can integrate their own services based
on aggregate computing, such as a crowd monitoring system in a smart city.
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Device Capabilties

Field Calculus

Coordination operators

Developer APIs

Application code

Figure 2.4: Aggregate programming abstraction layers.

ScaFi ScaFi [18] is a toolkit for the Scala language that provides a domain-
specific language, libraries, a simulation environment and runtime support for
developing aggregate computing based systems.

The architecture of ScaFi consists of various modules (Figure 2.5), the main
ones being: i) scafi-core, which contains the DSL and a standard library of
reusable functions (e.g., Gradients, BlockG and BlockS), ii) scafi-stdlib-ext,
which provides a set of additional functions; as these require external dependencies,
it is kept separate from the core, iii) scafi-simulator, which offers support for
simulating aggregate systems, iv) scafi-simulator-gui, which provides a GUI
for visualizing and interacting with the simulation, v) spala, which provides an
actor-based middleware for AC based on Akka [31], vi) scala-distributed, which
provides an integration layer for spala in ScaFi.

An example of how ScaFi works is shown in Figure 2.6 and Listing 2.1, the
goal is create a channel given a source, a destination and a width. To reach this
goal is it possible to define the computation as a pure function over fields that
exploits and composes the following functions: i) gradient, which takes as input
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Figure 2.5: ScaFi toolkit high level architecture.

a field of Booleans and computes in output a field of Integers with the mininum
distance, for each point, from a given source represented by the values set to true
in the input; ii) distance, which computes the distance between two sources, and
iii) dilate, which takes as input a field of Booleans and stretches the source by a
given width.

Figure 2.7 shows the execution of the channel algorithm on ScaFiWeb.

Listing 2.1: A ScaFi AC program example. The algorithm implements a channel
between a source and a destination.�

1 def channel(

2 source: Boolean,

3 destination: Boolean,

4 width: Double

5 ): Double {

6 dilate(gradient(source) + gradient(destination)

7 <= distance(source, destination), width)

8 }
� �
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Figure 2.6: A ScaFi AC program example. This algorithm representation is ob-
tained from the code in Listing 2.1

.

2.3 Reinforcement Learning

“Reinforcement Learning (RL) is the science of decision making. It is about learn-
ing the optimal behavior in a environment to obtain maximum reward”1. RL is
a general framework, other than supervised and unsupervised learning, in which
an agent learns to behave within an environment by performing some actions and
seeing the result they produce. It is inspired by how humans and animals learn
through the system of rewards and punishments: for each good action the envi-
ronment provides to the agent a positive reward, instead, for each bad action the
agent gets a negative reward (also called penalty).

Formally, a RL problem can be formulated as following [35]:

• Discrete time steps t = 0, 1, 2, ...;

• A discrete set of environment states S;

• A discrete set of agent actions A;

• A reward signal;

• A probabilistic policy π, that is a mapping function from states to actions.

The goal of the agent is to learn the optimal policy π∗ in order to maximize some
long-run measure of reinforcement (e.g., the Infinite Horizon Discounted Model

1https://www.synopsys.com/ai/what-is-reinforcement-learning.html

https://www.synopsys.com/ai/what-is-reinforcement-learning.html
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Figure 2.7: Channel algorithm execution on ScafiWeb. The source is the red dot,
the destination is the green dot, the time flows from left to right and from top to
bottom.

[35]). First, at time t, the agent observes the state of the environment st ∈ S and
chooses an action at ∈ A using the actual policy πt. Thereafter, the environment:
takes in the action at, emits the new state st+1 ∈ S and returns the scalar reward
rt+1 (Figure 2.8). Finally, the agent, based on the reward obtained updates its
knwoledge. This formulation stems fromMarkov Decision Processes [28, 46], which
is a mathematical framework for sequential decision making. A very important
property that these systems must adhere to is the Markov property, which states
“the future is independent of the past given the present.” In other words, it implies
that the state transition function does not require the entire past trajectory but
only the last state, namely:

p(st+1|st, at, ..., s0, a0) = p(st+1|st, at)

It is important to note that the concept of state can always be extended to satisfy



12 CHAPTER 2. BACKGROUND

Figure 2.8: Agent-environment interactions.
Source: https://it.mathworks.com/discovery/reinforcement-learning.html

this property.
In order to find the optimal policy π∗, the agent tries to maximize the expected

cumulative reward. Since the environment is stochastic (i.e., the same action
performed in the same state could lead to different results over time) the more
you look into the future the more the outcome could diverge. For this reason, it
is common to use a model that takes less account of rewards that are far away in
time than those that are close in time:

Rt =
∞∑
i=t

γi−t ·Rπ(si)(si, si+1)

This model is called Infinite Horizon Discounted Model, the key aspect is the
hyper-parameter γ. It is a scalar weight in the range [0; 1], in this way, the further
away the reward is in time, the smaller its weight.

Exploration-exploitation dilemma The exploration-exploitation dilemma is
a problem that comes from the definition of the RL process. In order to increase its
knowledge and build an optimal policy, the agent needs to explore the environment
in the hope of finding better actions. After some exploration, the agent might have
found a set of apparently rewarding actions, but, how can the agent be sure that
the found actions are actually the best? When should the agent continue to explore
or else, when should it just exploit its existing knwoledge?

Several exploration strategies have been proposed in the literature to solve
this problem, the simplest is the ϵ-greedy strategy. The agent randomly explore
the environment with probability ϵ while exploit the current optimal action with
probability 1− ϵ.

https://it.mathworks.com/discovery/reinforcement-learning.html
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(a) Policy based RL (b) Value based RL

Figure 2.9: Policy and value based algorithms visual comparison.
Source: https://www.lamsalashish.com.np/blog/reinforcement-learning

π(s) =

{
π∗(s) with probability 1− ϵ

random action with probability ϵ

Usually, at the beginning of the learning process ϵ starts near to 1 (i.e., more
exploration) and then decreases to 0 as the agent learns more and more about the
environment.

Main approaches In Reinforcement Learning, there are two main families of
approaches that can be used to categorize the algorithms employed by an agent in
finding the optimal policy. These are: i) policy-based methods, and ii) value-based
methods. Policy-based algorithms aim to directly learn a function that maps each
state to the best action to take (or a probability distribution over a set of possible
actions). On the other hand, value-based methods seek to learn a function that
maps each possible state to an expected value of being in that state. This way,
the agent can learn which states is more valuable and will take action that leads
to it. This comparison is well illustrated in Figure 2.9.

An example of policy-based method is Proximal Policy Optimization (PPO)
[54], while an example of value based-method is Q-Learning [67]

Q-Learning Q-Learning is one of the most famous Reinforcement Learning al-
gorithm from the value-based methods family. One of the key aspects of this
algorithm is the Q-Table, denoted as Q(s, a). This table represents, for each possi-
ble state-action pair, the expected cumulative reward that the agent will obtain by
taking action a in state s and subsequently following optimal actions. Thus, the
Q-table at time step t, given a state st, an action at, and a policy πt, is represented
by:

Q(st, at) = maxπ(st)=atRt+1

https://www.lamsalashish.com.np/blog/reinforcement-learning
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Starting from the Q-Table, it is possible to define the optimal policy as follows:

π∗(s) = argmaxaQ
∗(s, a)

Another key aspect is how we can estimate the reward at the end of the process
if we only know the current state and action, without knowing the subsequent
trajectory. To achieve this, the Bellman equation can be used. This equation
defines the value Q(s, a) recursively as the sum of the immediate reward and the
maximum expected cumulative reward from the subsequent state:

Q(st, at) = rt+1 + γ ·maxaQ(st+1, a)

The main idea of Q-Learning is to iteratively approximate the Q-values, using
the Bellman equation, as follows:

Q(st, at) = (1− α)︸ ︷︷ ︸
Learning Rate

·Q(st, at)︸ ︷︷ ︸
Old Value

+ α︸︷︷︸
Learning Rate

·
Learned Value︷ ︸︸ ︷

( rt+1︸︷︷︸
Reward

+ γ︸︷︷︸
Discount Factor

· maxaQ(st+1, a)︸ ︷︷ ︸
Maximum Future Reward

)

(2.1)

Where α is the learning rate hyper-parameter that controls how much of the cur-
rent Q-value and newly proposed Q-value is considered. At the beginning of the
learning process, these Q-values will be practically random estimates and may be
completely wrong. However, it has been demonstrated that as iterations progress,
these Q-values will converge and represent the true Q-values.

Deep Reinforcement Learning Classical algorithms of reinforcement learn-
ing, when applied in real-world contexts, suffer from the problem of state space
explosion. This arises from an exceedingly large number of possible states, making
the resolution of a given task computationally intractable. For instance, in the
game of chess, there can be around 100120 possible typical games, a number much
larger than the count of sand grains on Earth (≈ 1023) and the number of atoms in
the observable universe (≈ 1081). For this reason, deep reinforcement learning has
been introduced, which involves utilizing deep neural networks as approximators
for the policy and/or the value function.

One of the most well-known Deep RL algorithms is DQN [40]. This was de-
veloped by DeepMind in 2013 and was initially used to train an agent capable of
playing Atari video games. One of the advantages of using neural networks as ap-
proximators for the function to be learned is the ability to avoid hand-engineering
the state space and instead allow the network to learn the best features directly.
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Figure 2.10: Q-Learning and Deep Q-Learning visual comparison

For example, in the case of Atari games, this is achieved by using convolutional
layers and feeding the network with screen raw pixels.

DQN, specifically, is the deep version of the Q-Learning algorithm, thus pro-
ducing a Q-Value output for each possible action (Figure 2.10). This makes the
training of the utilized neural network a regression task in which a squared error
loss can be employed as the loss function:

L = (yt − ŷt)
2

Where yt represents the actual value and ŷt is the predicted value at time t. Since
RL is an unsupervised learning, and therefore labels are not available, the value
yt is estimated using the Bellman equation, transforming the loss function for a
transition < st, at, st+1, rt+1 > into:

L = (rt+1 + γ ·maxaQ(st+1, a)−Q(st, at))
2

When attempting to use neural networks to approximate the Q-function, sev-
eral problems arise. The first one is due to the high correlation that exists between
two consecutive transitions within the same episode. This correlation leads to a
significant decrease in variance, causing the network to tend to forget previous
transitions as it overwrites them with newer ones. For instance, let’s consider an
agent’s task to learn to play a level-based video game; this issue implies that while
the agent tries to learn how to navigate the second level, it might forget how to
behave in the first level. The most common solution is to employ an experience
replay (i.e., a buffer), where all transitions < st, at, st+1, rt+1 > are stored. When
updating weights, a random mini-batch is sampled from this buffer, breaking the
correlation between consecutive transitions. Furthermore, since a transition can
be used in multiple weight updates, this approach also improves data efficiency.

A second issue that can be observed is referred to as the moving target prob-
lem. This stems from the fact that, when updating the network’s weights, both
the predicted values and the target values are estimated using the same neural
network. This leads to a strong correlation between the target values and the net-
work’s weights, introducing significant oscillations during training. To address this



16 CHAPTER 2. BACKGROUND

problem, two distinct neural networks with identical architecture are employed: i)
the action network Q, used to determine the agent’s actions, which is updated
every u steps; ii) the target network Q̂, used to calculate the target values, up-
dated every c steps. Typically, c >> u, and the target network’s weight update
involves replacing the existing weights with those from the action network. Since
the target values are generated using an older set of weights, a delay is introduced
between the moment the Q network is updated and the moment it starts to affects
the target values. This delay reduces the likelihood of divergence and oscillations.
The loss function becomes:

L = (rt+1 + γ ·maxaQ̂(st+1, a)−Q(st, at))
2

2.4 Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning is an extension of RL where multiple learning
agents interact one another and with the environment. Usually, MARL is modelled
as a Markov Game (or Stochastic Game S) [37] in which we have:

• A tuple S =< N,S, {Ai}, P, {Ri} > with i ∈ 1 . . . N

• The number of agents N > 1

• The action space of the i-th agent Ai. The global action space is defined as
A = A1 × A2 × · · · × AN

• A function describing the transition dynamics P : S × A → P(S)

• The reward function Ri : S × A× S → R for each agent i

Categorization Based on the reward function used by the agents, MARL can
be divided into three categories (Figure 2.11): i) cooperative, where all the agents
trying to maximize the same reward function (e.g., a group of robots trying to
clean a room); ii) competitive, where, potentially, each agent has its own reward
function that is conflictual with the other (e.g., a rock-paper-scissor game). iii)
mixed, where some agents are cooperative and others are competitive (e.g., a soccer
game). Cooperative MARL, with respect to the policy, can be further divided into
two additional categories, namely: i) homogeneous, where all the agents have the
same capabilities, i.e., they use the same policy ii) heterogeneous, where each agent
may have its own policy, in this case, each agent tries to maximize the local policy
following the global shared goal.

In this thesis, we focus on a subset of MARL, namely: Many Agent Reinforce-
ment Learning [69]. The only difference between the two approaches is in the
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Figure 2.11: MARL tasks.

number of agents involved. Typically, in Many Agent Reinforcement Learning the
number of agents may range from a hundred to one or two thousands whereas, in
Multi Agent Reinforcement Learning, there are only a few tens [51, 9]. Moreover,
we focus on cooperative homogeneous and heterogeneous learning.

Training and execution model Another point to pay attention to is the sys-
tem by which the training and execution of the various agents are carried out. The
main question is: what information is available to agents during training and after
the learning of policies? Thus, MARL algorithms can be categorized into three
types (Figure 2.12):

1. Centralized Training Centralized Execution (CTCE), in this type of system,
there is a higher-level agent called Learner, with a global perspective, whose
task is to perform training and compute actions to be undertaken. The
remaining agents, therefore, transmit their local environmental perceptions
(i.e., the local state) to the learner agent, which is responsible for merging
these perceptions to reconstruct the global state. Once reconstructed, it
selects the action to take in accordance with the current policy and evaluates
the reward function for policy updates. This system reduces the multi-agent
game to a single-agent game using the history of observation of all agents,
which can be useful in context with partial observability or where complex
coordination between agents is required. However, there are three main
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(a) CTCE (b) CTDE (c) DTDE

Figure 2.12: MARL execution model comparison.

drawbacks: i) the central policy uses the joint action space, which usually
grows exponentially with the number of agents, ii) the environment assigns
a collective reward to all agents, and it may prove challenging or unfeasible
to convert it into an individual reward for each agent, and iii) as the agents
are distributed, they may be unable to communicate with a central learner.
For instance, transmitting all sensor and camera data in autonomous cars is
unfeasible.

2. Decentralized Training Decentralized Execution (DTDE), in this type of sys-
tem, each agent has its own local policy and can only observe a portion of the
environment. Each agent, therefore, takes actions based on its perception
of the environment and updates its own local reward function accordingly.
The primary advantage of this approach is its ability to prevent exponential
growth of the action space, although it does have some disadvantages, includ-
ing: i) as agents are trained concurrently, they may be significant affected
by non-stationarity, and ii) agents’ policy cannot rely on shared information
neither during training nor during execution.

3. Centralized Training Decentralized Execution (CTDE), in this type of system,
a learner agent with a global perspective executes the training algorithm.
Once the policy is updated, it is sent to each agent, which can interact
with the environment and take actions in accordance with it. This system
combines the benefits of the previous two approaches.

Challenges MARL is a highly promising field that has been garnering increas-
ing attention in recent years. Nevertheless, there are still several challenges that
complicate its application in complex contexts. Some of these challenges include:
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1. Partially Observable Environments : in environments of significant complex-
ity, agents cannot have a complete representation of the surrounding envi-
ronment nor access the state of other present agents.

2. Non-Stationarity : this issue arises due to multiple agents simultaneously
learning and changing the environment. From the perspective of an individ-
ual agent, the environment becomes non-stationary.

3. Agent Communication: communication among agents is a crucial feature
in the literature. The problem not only addresses what an agent should
communicate but also with whom and when.

4. Coordination: coordination is essential in cooperative systems, as agents
must reach a consensus on the actions to take. Failure to coordinate dur-
ing learning can lead to suboptimal policies. Coordination can be achieved
through communication or implicitly, with each agent constructing its own
model of other agents’ behavior to infer their next actions.

5. Multi-Agent Credit Assignment Problem: this refers to associating a reward
with an action taken by a specific agent. This association is crucial for
learning to understand the effectiveness of an action and maximizing the
reward function over time.

6. Scalability : the scalability of these systems is influenced by the challenges
outlined in this section. Training a single agent is inherently challenging;
as the number of agents in the system increases, the complexity grows ex-
ponentially. Additionally, scalability is determined by an agent’s robustness
in the face of changes in the behavior of other agents. Literature presents
exploration techniques to enhance scalability, such as knowledge reuse [21],
regularization [49, 56], and others.

2.5 Simulation

In science and engineering, the use of simulators plays a key role. These simu-
lators enable the experimentation with complex and expensive systems (such as
cyber-physical swarms), offering a virtual environment in which to conduct tests,
analyses, and in-depth studies rapidly, under controlled and repeatable conditions
(e.g., [6, 8, 20, 17]). Moreover, simulation is crucial in MARL with offline learning,
enabling agents to learn a policy for a model of the environment without relying on
physical components, such as robots, that may be cost-prohibitive or unavailable.
In this project, the Alchemist [42] simulator has been taken as a reference.
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Alchemist is a meta-simulator designed for simulating complex distributed sys-
tems in a rich variety of scenarios like swarm robotics [19], large-scale sensor
networks [4], crowd simulation [10], path planning, and even morphogenesis of
multi-cellular systems.

This simulator is “meta” by design, this stems from the fact that it is based on
general abstractions that can be mapped to specific use cases (i.e., incarnations).
The meta-model is inspired by biochemistry and consists of a set of nodes that
exist in an environment and are linked together by relationship rules. Each node
contains a sequence of molecules and reactions. A molecule represents a variable,
which acts as a container for data. Reactions instead are events that occur based
on a set of conditions, and are fired according to a time distribution, producing an
effect that is described as an action. This abstraction allows the simulator to be
flexible and adaptable to a variety of use cases and node numbers (it could support
thousands of nodes), while maintaining a consistent underlying structure

Alchemist features four incarnations: biochemistry, sapere, protelis, and ScaFi,
each with a different way of modeling molecules and actions. In this project, the
ScaFi incarnation has been taken as a reference. It supports the ScaFi Scala DSL
and has been used in distributed peer-to-peer chats and situated problem-solving

Alchemist offers an straightforward method for defining simulations. The pro-
cess requires a YAML file that includes essential parameters, such as the incar-
nation type, neighbor connection model, and node deployment. In Figure 2, we
have provided an example YAML file that creates a simulation using the ScaFi in-
carnation (first row). It also defines the neighborhood relationship based on fixed
distances (0.5 in this case), placing nodes in a fixed grid of size 10x10 starting
at -(5,5) and ending at (5,5), with a node-to-node distance of 0.25. Finally, it
loads the ScaFi program called “program”, which is evaluated at each node with
a frequency of 1.
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�
1 incarnation: scafi

2 network-model:

3 type: ConnectWithinDistance

4 parameters: [0.5]

5 deployments:

6 type: Grid

7 parameters:

[-5,-5,5,5,0.25,0.25]

8 /*dynamics of the simulation

*/

9 programs:

10 - program:

11 - time-distribution: 1

12 type: Event

13 actions:

14 - type: RunScafiProgram

15 parameters: [program]

16 - program: send

17 
� �
Figure 2.13: An Alchemist simulation example.



22 CHAPTER 2. BACKGROUND



Chapter 3

Requirements

This chapter first introduces the domain model of the hybrid AC-MARL approach
to engineer CPSWs, and then presents the framework requirements. Finally, some
scenarios are explained to provide a reference context.

3.1 Domain model

The proposed hybrid approach between AC and MARL aims to combine the
strengths of the two approaches to engineer CPSWs. The idea is to leverage
AC to define structural rules of the swarm (e.g., leader election [43]) while using
MARL to define behavioral rules (e.g., the choice of an action by an agent). Har-
nessing machine learning allows for the definition of more complex and adaptive
behaviors, which would be challenging to achieve through programmatic methods.

To accurately define the domain, a Domain-Driven Design [26] approach was
used. First, the ubiquitous language, as presented in Table 3.1, was defined. This
associates a precise definition with each term of the domain, thereby eliminating
potential ambiguities, which are common given the breadth of the MARL domain.

The environment is the context in which agents are immersed and operate,
cooperating to solve the assigned task. Agents interact with the environment by
receiving the state it is in before choosing which action to perform, but they are
also equipped with sensors through which they can perceive certain features of
the context they are in, such as the number of other agents in the neighborhood
and the distance from them. Each agent chooses which action to take based on
its own behavior policy. This policy is updated in accordance with the system
that encompasses the agents themselves and the environment. This system is one
of the key abstractions and defines the execution flow of agents. For example,
in a CTDE (Centralized Training and Decentralized Execution) system, agents
rely on a centralized learner that updates the policy as experience is accumulated

23
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and then also distributes the new policy to each agent. On the other hand, in a
DTDE (Decentralized Training and Decentralized Execution) system, each agent is
responsible for its own policy, potentially resulting in each agent having a different
policy from all the others.

3.2 Framework requirements

This section describes the requirements that the project must satisfy.

Business requirements

The business requirements specify the characteristics that the system must have
to be correct. Those identified for ScaRLib are:

• The framework must enable the development of CMARL systems for JVM-
based environments through a high-level specification;

• The framework should support different training and execution models;

• The framework should be extensible and modular to allow the integration
of:

– different learning algorithms;

– different simulators;

– different deep learning frameworks.

User requirements

The user requirements express the needs of the users and describe the actions
that the user must be able to perform by interacting with the system. From the
previous domain analysis that was carried out, we can identify the following user
requirements:

• It should be possible to configure the learning system through a DSL;

• It should be possible to define a custom environment ;

• It should be possible to define a custom state space;

• It should be possible to define a custom action space;

• It should be possible to define a custom reward function;
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Concept Definition
Environment The context in which the agents are immersed and operate, it is

a representation of the task to be solved. It is capable of inter-
acting with the agents, providing information about its current
state, receiving the actions that one or more agents wish to ex-
ecute, and returning the corresponding reward.

Agent An entity that interacts within an environment and with other
agents in order to learn the optimal actions sequence to maxi-
mize a reward signal. It is equipped with sensors, actuators and
a communication mechanism.

State A representation of the environment at a given time, including
any relevant information that an agent can perceive or use to
make decisions about its actions.

Action A decision or choice made by an agent in response to the current
state of the environment.

System A collection of agents that interact within a shared environment.
It defines the training and execution flow of the agents.

Policy A function that maps the current state of the environment to
a probability distribution over the set of possible actions that
the agent can take in that state. The policy specifies the agent’s
behavior or strategy in response to different states of the envi-
ronment, and it is learned through a process of trial and error
using the reward signal as feedback.

Sensor A device that allows an agent to perceive certain characteristic
of the environment.

Actuator A mechanism that allows an agent to perform certain actions on
the environment.

Table 3.1: Hybrid AC-MARL approach ubiquitous language
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• It should be possible to define a custom neural network to approximate the
policy/value-function;

• It should be possible to define some of the agent logic through aggregate
programming ;

• It should be possible to log information related to the training process;

• It should be possible to visualize the execution of agents, both during training
and testing.

Functional requirements

The functional requirements relate to the functionalities that the system must
make available to the user. To define them, it is necessary to rely on the user
requirements extracted previously.

• The framework must allow the user to define their own experiment, this
includes: i) the environment, ii) the state space, iii) the action space, and
iv) the reward function;

• The framework must allow the user to define their own learning algorithm;

• The framework must allow the user to define their own neural network to
approximate the policy/value-function;

• The framework must allow the user to define their own agent logic through
aggregate programming;

• The framework must allow the user to log information related to the training
process;

• The framework must allow the user to visualize the execution of agents, both
during training and testing.

Non-functional requirements

Non-functional requirements concern the functionalities that the system does not
necessarily have to possess in order to ensure that it is correct. The following non-
functional requirements have been identified within the system to be developed:

• The framework should provide an easy and clean API;

• The framework must be cross-platform, therefore it must be executable on
any operating system capable of supporting Java version 11 or later;
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• The framework should be extensible and modular, allowing the user to cus-
tomize some of its components, along the following dimensions: i) learning
algorithms, ii) simulators, and iii) deep learning frameworks.

3.3 Scenarios

This section aims to provide a reference context for the use of the framework by
attempting to illustrate, through some practical examples, the key characteristics
within the domain of CPSWs.

The first scenario (Figure 3.1a) represents one of the simplest conceivable in-
stances for CPSWs, in which the proposed hybrid approach can be beneficial. It
involves a fleet of drones, each drone having a predetermined set of neighbors. The
objective for each drone is to maintain proximity to its neighbors (i.e., cohesion),
while avoiding collisions. Each drone can only observe a limited portion of the en-
vironment (i.e., partial observability), which comprises only its neighboring drones
and not the positions of the entire fleet. The goal is to define a policy that allows
the fleet to form many clusters, in which each drone has a mean distance from its
neighbors that is as close as possible to a given threshold. This first scenario will
be implemented in Chapter 6 to validate the framework.

The second example (Figures 3.1b and 3.1c) also involves a fleet of drones but
is more intricate than the previous one. In this case, the fleet’s purpose is to
monitor a designated area of territory for adverse events (e.g., fires). Once an
adverse event is identified, the fleet must coordinate to determine the number of
drones to intervene and their respective strategies. The goal is to define a policy
that allows the fleet to identify the adverse events and coordinate to handle them
within a given time frame.

A final example (Figure 3.1d) entails the use of wearable devices (e.g., smart-
watches) for crowd management during a public event (e.g., a conference or con-
cert). In this scenario, the agents constituting the swarm are the individuals
themselves, as represented by their wearable devices. The goal is to prevent the
formation of overly crowded clusters and to determine the optimal routes for evac-
uating the area in the event of an emergency.
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(a) Drones flocking [34]. (b) Adversial events monitoring.

(c) Adversial events monitoring. (d) Crowd management.

Figure 3.1: Some reference scenarios for CPSW.



Chapter 4

Design and implementation

This chapter presents the design decisions for modelling the domain and imple-
menting the framework. It introduces the key details of each module, followed by
a discussion of the interactions between them.

4.1 Framework architecture

The framework has been devised to aid the development of CMARL systems in
JVM-based environments through high-level specifications. For this purpose, the
tool is divided into three primary modules (Figure 4.1), namely: i) scarlib-core:
which captures the core concepts of the CMARL domain by abstracting low-level
implementation details, ii) dsl-core: which provides a high-level language for
specifying a CMARL system, and iii) alchemist-scafi: which provides bindings
between ScaRLib and the Alchemist and ScaFi tools, enabling experiments in a
simulated environment using aggregate computing. One aspect to consider is the
pytorch sub-module upon which scarlib-core relies. This sub-module serves as
a learning engine to conduct training and optimization of neural networks utilised
by the RL algorithms. It’s worth noting that, if required, an alternative substitute
module (e.g., DL4J 1) that has similar functionality can be used instead.

The modularization of the framework brings various benefits. On the one hand,
the framework makes it possible for the user to select only those components that
are necessary for him. On the other hand, this makes it easy to extend and
modify the framework. For instance, ScaRLib, due to the actual need, has already
integrated the alchemist-scafi module. If a user wants to use another simulator
instead of Alchemist (e.g., FlameGPU [48] or VMAS [12]), he simply has to disable
the import of this module and build a fresh custom environment based on his
chosen simulator.

1https://deeplearning4j.konduit.ai/
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scarlib-core

dsl-core alchemist-scafi

PyTorch

Figure 4.1: ScaRLib main modules.

Figure 4.2: scarlib-core module UML class diagram.

ScaRLib Core

The scarlib-core module contains the essential abstractions of the reference do-
main, including the necessary data structures and learning algorithms. It has
been conceptualised around several key components (Figure 4.2), the central one
being the system. A system serves as a generic representation of a collection
of agents interacting with each other and with a shared environment, trained
to optimise a reward signal conveyed by a reward function. The tool offers
two pre-implemented systems that are widely used in literature [25], namely the
CTDESystem and DTDESystem. The distinction between them is based on the train-
ing of the different agents. To understand their dynamics better, it is useful to
study their internal details. Both systems undergo a training process that includes
a specific number of epochs, each of which comprises numerous episodes. Within
a single episode, at a generic time step t, agents interact with the environment
and receive the state st. They choose which action at to take based on this and
the current policy πt. The environment then gathers the actions of all agents
and returns a new state st+1 and the corresponding reward rt+1. When using a
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Figure 4.3: Examples of developed System dynamics. On the left, there is the
centralized system, where a learner with a global view of the system updates the
policy shared with all agents. On the right, there is a decentralized system, where
each agent has a local policy and a local policy.

CTDESystem, the agents are trained in a centralised way, involving a specialised
agent, called the Learner, that gathers the experience of all the other agents to
update the policy, and then the updated policy is distributed to all the agents,
resulting in a homogeneous system. Conversely, when using a DTDESystem, each
agent assumes responsibility for individual policy training, thus making the poli-
cies different from each other, resulting in a heterogeneous system. The behaviors
of these systems are depicted in Figure 4.3.

Furthermore, the module provides a pre-implemented version of the DQN [40]
learning algorithm, which can be used to train the agents. Alternatively, a user can
define their own custom learning algorithm by creating a new class that extends
the trait Learner.

DSL Core

The dsl-core module is dedicated to implementing a Domain Specific Language
in Scala that can be used to define the high-level configuration of the experiment
to run. This module is the simplest of the three, consisting of a series of contextual
functions that make the definition of the learning system fluent and straightfor-
ward. The decision to implement a DSL, which essentially serves as a facade for
the abstractions defined by the framework, was made to enable the identification
of simple configuration errors at compile time rather than waiting for execution to
intercept them.
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Let’s take the example of a user who wants to define his own learning system
for the experiment he wants to run with the DSL. First of all, the basic components
must be defined. To start with, a reward function must be defined.�

1 class MyRewardFunction extends CollectiveRewardFunction:

2 override def computeReward(state: State, action: Action,

nextState: State): Double = ...
� �
Afterward, it will be necessary to define the action space, which can be done as
follows, leveraging Scala’s product types :�

1 sealed trait CustomAction extends Action

2 object CustomActionSpace:

3 case object A extends CustomAction

4 case object B extends CustomAction

5 case object C extends CustomAction

6 def all: Seq[CustomAction] = Seq(A, B, C)
� �
Final refinements required include: i) choosing the class of the Alchemist en-
vironment to instantiate, ii) defining the number of agents living in the chosen
environment, and iii) defining the size of the buffer in which the memory will be
stored. Finally, everything can be combined to create the configuration of the
learning system through the DSL as follows:�

1 val system = learningSystem {

2 rewardFunction { new MyRewardFunction() }

3 actions { CustomActionSpace.all}

4 dataset { ReplayBuffer[State, Action](10000) }

5 agents { 50 } // select the number of agent

6 environment {

7 // select a specific environment

8 "it.unibo.scarlib.experiments.myEnvironment"

9 }

10 }
� �
Alchemist-ScaFi

The alchemist-scafi (Figure 4.4) module has been designed to provide inte-
gration between the scarlib-core module and the two tools Alchemist [42] and
ScaFi [18]. In addition to the scarlib-core module, this module provides an
environment that implements bindings with the Alchemist simulator. This way,
the user only needs to provide a YAML file containing the simulation specification
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Figure 4.4: alchemist-scafi module UML class diagram.

they want to execute. Another component is the abstract class ScafiProgram,
which represents the logic of the agents. In this case, the user only needs to im-
plement the computeState method, specifying through aggregate computing how
to reconstruct the state that will be returned to the various agents.

4.2 Component interactions

The interaction among the various components depends on the selected train-
ing and execution model. The framework provides two pre-implemented models,
namely: CTDESystem and DTDESystem. The interaction flow for the CTDE model
is illustrated in Figure 4.5, while that for the DTDE model is shown in Figure 4.6.
In general, the main interaction takes place between the agents and the environ-
ment, in both models: initially, the agent observes the state of the environment
and, based on this observation, makes a query to its policy to choose an action to
execute. When the action is received, the environment computes the new state and
returns a reward and the new state to the agent. At this point, the most signifi-
cant difference between the two systems becomes evident. In the case of CTDE,
the agent collects its experience in a centralized Learner that takes responsibility
for updating the policy following the implemented learning algorithm. Conversely,
in the case of DTDE, each agent interfaces directly with its own learner. In the
former case, the policies of various agents will be homogeneous, whilst in the latter
case, each agent will have its own policy.

An important aspect to note regarding figures 4.5 and 4.6 is that they represent
a simplification of what actually happens. In fact, only one agent is illustrated,
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Figure 4.5: UML sequence diagram of the learning process using a CTDE system.

while in reality, the number of agents is much greater than 1. Both systems man-
age agents concurrently, leveraging asynchronous programming to enable parallel
execution. The environment, in order to compute the new state, must wait to
collect the actions of all agents for the current time step, thus following the model
defined by the markov games [37].
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Figure 4.6: UML sequence diagram of the learning process using a DTDE system.
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Chapter 5

Technologies

This chapter first presents the main technologies used to implement the frame-
work, then it describes the process and devops techniques used to manage the
development of the project.

5.1 Framework technologies

Scala language

Scala (short for Scalable Language) is a general-purpose programming language.
It combines the object-oriented paradigm with the functional paradigm. The lan-
guage is purely object-oriented in that every value is an object, while also incor-
porating the functional paradigm, ensuring that every function is a value. This
permits the utilisation of higher-order functions, anonymous functions, and lamb-
das in a straightforward and natural manner, fostering programmers to implement
pure functions. This implies that, for identical inputs, they returns the same
output without side effects. This facilitates the implementation of more easily
comprehensible and maintainable code with fewer errors.

The Scala language has been designed for the succinct, elegant, and type-safe
expression of commons programming patterns. It is a statically-typed language,
and due to the expressiveness of its type system, its abstractions can be used
reliably and safely. Some of these abstractions include: upper and lower bounds
for types, variance annotations, implicit parameters, implicit conversions, as well
as polymorphic methods, among others. Moreover, a very important feature of the
compiler is its highly potent type inference, which makes the code very readable,
allowing programmers to avoid using unnecessary and redundant type annotations.

Originally, Scala was designed as a language intended for seamless interoper-
ability with the JVM (Java Virtual Machine). Since then, native versions and

37
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interoperability with JavaScript have also been included. The compiler does not
directly manage support for cross-platform development; it is achieved by using
plugins. These plugins enable the creation of an intermediate representation that
contains cross-platform aspects, which is then used to generate the final code.

Asynchronous programming

Asynchronous programming is crucial within modern software development. The
importance of asynchronous programming is its potential to improve the efficiency
and responsiveness of applications. By permitting tasks to run concurrently with-
out blocking the primary execution thread, it allows applications to handle multiple
operations at once, making them more scalable and responsive to user interactions.
In Scala, Future and Promise are crucial devices for handling asynchronous opera-
tions. A future denotes a value or error computation that may finish at some point
in the future, allowing non-blocking execution. A promise, conversely, performs
as a writable, synchronized container for a future result. This pairing encourages
orderly and articulate code for dealing with asynchronous tasks, encouraging a
more natural and manageable codebase.

ScalaPy

ScalaPy1 is a software tool that effectively integrates Python and Scala, two promi-
nent programming languages. This bridge empowers developers to utilise the
strengths of both languages in a single project, offering flexibility and extensibil-
ity required for various tasks. At its heart, ScalaPy permits developers to utilise
Python libraries and packages directly in Scala code, removing the requirement
for challenging interoperability workarounds. This capability is notably beneficial
when harnessing the extensive Python ecosystem, which comprises libraries for
data science, machine learning, and scientific computing, such as NumPy, Pan-
das, and TensorFlow. By bridging this gap, ScalaPy enables Scala developers to
tap into the rich functionality and pre-existing solutions offered by the Python
community, thereby accelerating development and reducing duplication of effort.
Moreover, ScalaPy provides robust support for data type conversions, allowing
seamless passage of data between Python and Scala, further enhancing the inter-
operability between the two languages. This capability simplifies the process of
combining Python’s dynamic typing with Scala’s strong, static typing, ensuring
that the integration remains type-safe and reliable.

1https://scalapy.dev/

https://scalapy.dev/
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PyTorch

PyTorch [33] has become a groundbreaking framework for training deep neural
networks, providing a potent and adaptable platform which has won over both
researchers and developers in the field of deep learning. PyTorch’s dynamic com-
putation graph, sophisticated design, and user-friendly interface distinguish it from
the rest, making it an indispensable tool for building and training neural networks.
At the heart of PyTorch’s appeal is its dynamic computation graph, a sharp con-
trast to the static graphs seen in many other deep learning frameworks. This
dynamic nature allows developers to define and revise computational graphs as
needed, empowering dynamic control flow and simplifying debugging. Researchers
find this feature particularly useful in implementing complex models, encourag-
ing experimentation and streamlining prototyping. PyTorch’s capacity to harness
GPU acceleration is effortless, allowing for the training of deep neural networks on
high-performance hardware. Autograd, an automatic differentiation engine, effec-
tively calculates gradients for optimization algorithms based on gradients such as
stochastic gradient descent [5]. This characteristic streamlines the implementation
of custom loss functions and intricate optimization strategies.

5.2 DevOps technologies used

DevOps techniques are fundamental to the development of a project for several
reasons. On the one hand, they make it possible to improve code quality while
keeping work organised, promoting testing and ensuring continuous integration of
the various components being developed, while systematically tracking released
versions. On the other hand, they make it easier to maintain high productivity
by avoiding downtime and automating repetitive and tedious tasks that can be
performed more efficiently by a computer than by a human, leaving more time for
critical features.

Repository management

The management of the codebase was carried out using the renowned Decentral-
ized Version Control System (DVCS) git [55], specifically leveraging the GitHub
2 hosting service. To ensure standardized and consistent tool usage, avoiding er-
rors and compatibility issues, the GitFlow methodology was chosen. GitFlow is a
branching model that involves the use of two main branches: master and develop

(Figure 5.1). The master branch is used for releases, while the develop branch
is used for ongoing development. Additionally, for each feature, a branch named

2https://github.com/

https://github.com/
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Figure 5.1: GitFlow.

feature/feature-name is created, which is then merged into the develop branch
once the feature is completed. Furthermore, to ensure a standardized way of
writing commit messages, the Conventional Commits 3 approach was adopted. A
commit is therefore written in the following format: <type>[<optional scope>]:

<description>. Some examples of commit types are feat, fix, docs and style.

Build automation

Build automation aims to automate the management of dependencies, compilation,
and distribution of a software project. Firstly, build automation decreases human
errors during source code compilation by eliminating potential sources of errors
from manual omissions or configuration mistakes. This increases the software’s
reliability and accelerates the development cycle, enabling developers to concen-
trate on more creative tasks and problem-solving instead of manual compilation.
Additionally, build automation aids in the regulation of project dependencies and
version control, permitting developers to explicitly and systematically establish the
necessary libraries and resources for the application and guaranteeing that they
persistently maintain the accurate versions. Finally, build automation facilitates
continuous integration and continuous delivery (CI/CD), which are essential for
timely releases of new features and bug fixes. Through automation, it is possible
to implement automated testing and continuous deployment processes, decreasing
release times and enhancing the overall quality of the software.

3https://www.conventionalcommits.org/en/v1.0.0/

https://www.conventionalcommits.org/en/v1.0.0/
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In this project Gradle 4 was used as the build automation tool. It is a powerful
and versatile tool extensively used in the software development industry. It sup-
plies a flexible and efficient approach to regulate and automate different aspects
of the build process for projects of all sizes and complexities. One of Gradle’s no-
table advantages is its backing for multiple programming languages and platforms,
which renders it a preferred choice for both Java-based applications and a wide
variety of other technologies. With Gradle, developers are able to establish and
adapt build scripts by utilising a Kotlin-based DSL (Domain Specific Language),
providing considerable versatility and expressiveness. Gradle also performs ex-
ceedingly well in dependency management, allowing developers to simply declare
and manage project dependencies, making it an essential tool for building and
maintaining strong software projects. Whether building, testing or deploying ap-
plications, Gradle streamlines and automates these tasks to enhance productivity
and allow developers to concentrate on writing superior code. Most of the Gradle
configuration is in the build.gradle.kts file. For example, it’s possible to specify
a dependency on an third-party library as shown below:�

1 dependencies {

2 implementation("it.unibo.alchemist:alchemist-incarnation-scafi

:25.14.6")

3 }
� �
Another crucial aspect is the ability to define custom tasks, allowing for a series of
actions to be carried out during the build stage. For instance, the following task
creates a jar file that holds the documentation of the program’s code.�

1 val scaladocJar by tasks.registering(Jar::class) {

2 dependsOn("scaladoc")

3 val destinationDirectory = tasks

4 .named<ScalaDoc>("scaladoc")

5 .get()

6 .destinationDir

7 from(destinationDirectory)

8 archiveClassifier.set("docs-${project.name}")
9 }
� �
Continuous integration

Continuous Integration (CI) is a software development technique that involves reg-
ularly integrating code modifications into a shared repository following automated

4https://gradle.org/

https://gradle.org/
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building and testing procedures. Its significance lies in its ability to optimise the
development workflow by pinpointing and resolving problems early on in the devel-
opment cycle. CI ensures that modifications made by multiple developers do not
cause any conflicts or bugs. This improves code quality, reduces integration issues,
and ultimately speeds up the software delivery. By automating these processes, CI
not only saves time but also encourages collaboration and motivates developers to
write reliable and maintainable code. This results in a more efficient and robust
software development pipeline.

In this project GitHub Actions 5 were used to implement CI. GitHub Actions
is a CI/CD service, integrated into GitHub, that allows developers to automate
their software development workflows. GitHub Actions is based on the concept
of workflows, which are a series of jobs that are executed when a specific event
occurs. For example, a workflow can be triggered when a pull request is opened or
when a commit is pushed to the repository. Workflows are defined in a YAML file
called .github/workflows/main.yml. The following is an example of a workflow
that is triggered when a commit is pushed to the main branch. It is composed of
one job named build that runs on a ubuntu machine. The job consists of four
steps: first it checks out the code, then it sets up the Node.js environment, then
it installs project dependencies, and finally it runs the tests.�

1 name: Simple Pipeline

2

3 on:

4 push:

5 branches:

6 - main

7

8 jobs:

9 build:

10 runs-on: ubuntu-latest

11

12 steps:

13 - name: Checkout Code

14 uses: actions/checkout@v2

15

16 - name: Set up Node.js

17 uses: actions/setup-node@v2

18 with:

19 node-version: ’14’

20

5https://docs.github.com/en/actions

https://docs.github.com/en/actions
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21 - name: Install Dependencies

22 run: npm install

23

24 - name: Run Tests

25 run: npm test
� �
Versioning and releasing

Software versioning refers to the process of assigning a unique identifier to a soft-
ware state. The identifier is typically an alphanumeric sequence of characters
separated by dots, slashes, or dashes. In this project, to distinguish different ver-
sions of the software, we decided to follow the guidelines proposed by Semantic
Versioning 6. Consequently, the software version is represented by three numbers
separated by a dot: MAJOR.MINOR.PATCH.

The correct version to be associated with the software state is based on the
saved commits, which were written following the Conventional Commit approach.
In particular, we used the following approach:

• MAJOR release: any commit type and scope that causes a breaking change;

• MINOR release: any commit with type feat;

• PATCH release: any commit with type fix, doc, perf, revert.

With regard to the release of the software, on the other hand, it was decided
to publish the various versions on the Maven Central repository 7, so as to make
the framework easily available and importable for all users. The release process,
following good devops practices, was also fully automated.

5.3 License

A software license is a legal agreement that governs the terms and conditions
under which a user may use a particular piece of software. It serves as a critical
tool in the world of software development and distribution because it defines the
rights and responsibilities of both the software creator (licensor) and the end user
(licensee). The importance of a software licence lies in several key aspects. First,
it helps protect the software developer’s intellectual property rights by specifying
how the software can be used, copied, modified and distributed. This ensures that

6https://semver.org/
7https://central.sonatype.com/

https://semver.org/
https://central.sonatype.com/
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the developer retains control over his or her creation and can potentially generate
revenue from it. Secondly, a well-drafted licence can provide legal protection for
both parties by clarifying liability and warranty terms, thereby reducing the risk
of disputes and litigation. Finally, software licences can promote responsible and
ethical use of software by preventing piracy and unauthorised distribution, which
ultimately benefits the software industry as a whole and encourages innovation.
In summary, software licences are essential because they provide a framework for
fair, legal and mutually beneficial interactions in the software ecosystem.

ScaRLib license ScaRLib is distributed under the MIT license. The Mas-
sachusetts Institute of Technology License, commonly referred to as the MIT Li-
cense, is an open-source software license that has gained widespread use. Its
simplicity and permissiveness enable developers to utilise, adjust, distribute, and
even commercialise the software without significant restrictions. Users are usually
expected to include the original copyright notice and disclaimer when redistribut-
ing the software. This licence advocates collaboration and code sharing within the
open-source community while ensuring legal protection for creators and users. Its
straightforward terms make it a popular choice for developers intending to utilise
or contribute to open-source projects.



Chapter 6

Validation

To test the functionalities of the framework, a series of experiments were created1

using selected features from well-known problems in literature. This allowed for
a large number of agents to be involved and non-trivial coordination tasks to be
undertaken.

6.1 Cohesion and collision

Description The aim of this experiment is to create a flock of drones with the
task of avoiding collisions and maintaining a cohesive movement pattern. The
goal is to learn a policy that guides each agent’s movement based on the distances
from neighbors. This problem is well-known in the literature as flocking [47, 72].

In our study, we examine an unbounded 2D environment where every agent
has a set number of neighbours (the five nearest, a hyper-parameter that is con-
figurable), and can move in eight directions (the four cardinal points and the four
diagonals). The state of the environment is reconstructed through aggregate com-
puting, using ScaFi, as follows:�

1 val state = foldhoodPlus(Seq.empty)(_ ++ _)(Set(nbrVector))
� �
In the code above: i) nbrVector represents relative distances to neighbours, ii)
foldhoodPlus is a ScaFi function that iterates over all neighbours, and iii) ++ is
the concatenation operation between sequences.

A crucial aspect of this task involves defining the reward function. The aim
is to learn a policy that enables agents, initially placed randomly within the en-
vironment, to approach one another and reach a specific target distance δ (set
in advance as a parameter of the experiment) without any collisions occurring.

1https://github.com/ScaRLib-group/ScaRLib-flock-demo
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Figure 6.1: Cohesion-Collision reward function: the red vertical line represents the
target distance d. The portion of the graph to the right of the red line represents
the influence of the cohesion term, while the left one represents the influence of
the collision term.

In this case, a function composed of two components was selected. The collision
factor kicks in when the distance is less than the target distance:

collision =

{
0 if d > δ

exp
(
−d

δ

)
otherwise

(6.1)

Following this function, the distance d from the nearest neighbour is exponentially
weighted, causing agents to move away from each other. The second element aims
to enhance cohesion. Considering the neighbour with the longest distance D, the
reward function is defined as follows:

cohesion =

{
0 if d < δ

−(D − δ) otherwise
(6.2)

The overall reward function is defined as the sum of these two factors (cohesion+
collision) as shown in Figure 6.1.

Implementation First of all, it was necessary to define the action space of the
various agents, this can be done easily by leveraging the product types of Scala as
follows:�

1 import it.unibo.scarlib.core.model.Action

2

3 object CohesionCollisionActionSpace {

4 final case object North extends Action

5 final case object South extends Action
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6 final case object East extends Action

7 final case object West extends Action

8 final case object NorthEast extends Action

9 final case object NorthWest extends Action

10 final case object SouthWest extends Action

11 final case object SouthEast extends Action

12

13 def all(): Seq[Action] =

14 Seq(North, South, East, West, NorthEast, NorthWest,

SouthWest, SouthEast)

15 }
� �
Secondly, it was necessary to define the state space:�

1 import it.unibo.scarlib.core.model.State

2 import StateInfo.{neighborhood, encoding}

3

4 case class CohesionCollisionState (

5 positions: List[(Double, Double)],

6 agentId: Int

7 ) extends State {

8

9 override def elements(): Int = neighborhood * encoding

10

11 override def toSeq(): Seq[Double] = {

12 val fill = List.fill(elements())(0.0)

13 (positions

14 .flatMap { case (l, r) => List(l, r) } ++ fill)

15 .take(elements())

16 }

17

18 override def isEmpty(): Boolean = false

19 }
� �
Then, it was necessary to define the reward function:�

1 import it.unibo.scarlib.core.model.{Action, RewardFunction, State}

2 import it.unibo.scarlib.core.util.AgentGlobalStore

3

4 class CohesionCollisionRewardFunction extends RewardFunction {

5 private val targetDistance = 0.2

6
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7 override def compute(currentState: State, action: Action,

nextState: State): Double = {

8 val distances = computeDistancesFromNeighborhood(s)

9 val cohesion = cohesionFactor(distances)

10 val collision = collisionFactor(distances)

11 AgentGlobalStore()

12 .put(s.agentId, "cohesion", cohesion)

13 AgentGlobalStore()

14 .put(s.agentId, "collision", collision)

15 AgentGlobalStore()

16 .put(s.agentId, "reward", collision + cohesion)

17 cohesion + collision

18 }

19

20 private def cohesionFactor(distances: Seq[Double]): Double = {

21 val max = distances.max

22 if (max < targetDistance){

23 0.0

24 } else {

25 -(max - targetDistance)

26 }

27 }

28

29 private def collissionFactor(distances: Seq[Double]): Double = {

30 val min: Double = distances.min

31 if (min < targetDistance) {

32 2 * math.log(min / targetDistance)

33 } else {

34 0.0

35 }

36 }

37 }
� �
Finally, it was necessary to define the aggregate program used to reconstruct the
state of each agent:�

1

2 import it.unibo.scafi.ScafiProgram

3

4 class CohesionCollisionScafiAgent

5 extends ScafiProgram with FieldUtils {
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6 override protected def computeState(): State = {

7 val positions = excludingSelf

8 .reifyField(nbrVector())

9 .toList

10 .sortBy(_._2.distance(Point3D.Zero))

11 .map(_._2)

12 .map(point => (point.x, point.y))

13 .take(5)

14 CohesionCollisionState(positions, mid())

15 }

16 }
� �

Results The experiment’s training involved conducting 1000 epochs, each with
100 episodes, using 50 agents, an environment measuring 50x50 metres and a target
distance δ set to 2 metres. The training was conducted using both CTDE and
DTDE processes.

Figure 6.2 shows the multi-objective nature of the problem. In fact, cohesion
and collision are two adverse signals, and the system had to find a balance between
these two values. The graphs show that the learning algorithm optimizes one signal
at a time, with cohesion tending towards zero and collision increasing. Nonetheless,
after 500 epochs in CTDE simulation, it is possible to see that the system had
already found a balance between these two factors. Instead, in the case of DTDE
learning, convergence can be observed after approximately 50 epochs, which is due
to the presence of a larger number of policies.

To verify the homogenous policy learned using the CTDE process, 16 simula-
tions were conducted, each with agents randomly positioned and varying the seeds.
Given the homogenous nature of the policy learned with CTDE, we also varied the
number of agents by conducting simulations with 50, 100 and 200 agents. Accord-
ing to our hypotheses, this should not impact the quality of the learned policy and
its performance. Figure 6.3 displays screenshots from a simulation with 50 and 200
agents, illustrating how they gradually form cohesive clusters over time. Figure 6.4
shows the performance of the learned policy with 50, 100 and 200 agents. From
these graphs, it can be observed that the performance does not change significantly
with varying numbers of agents, and the system is able to maintain approximately
a distance δ between the agents.
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Figure 6.2: Cohesion and collision experiment results. The y-axis represents the
reward value. The x-axis represents the total number of timesteps. The first three
graphs show the results of the CDTE learning process, while the last three show
the results of the DTDE learning process.

6.2 Follow the leader

Description The aim of this experiment is to create a flock of drones with the
task of avoiding collissions while following a special agent, the leader. The goal is
to learn a policy that guides each agent’s movement based on the distances from
neighbors and the leader.

In our study, we examine an unbounded 2D environment where each agent has a
set number of neighbours (the five nearest, a hyper-parameter that is configurable),
and can move in eight directions (the four cardinal points and the four diagonals).
During training the leader is placed in a random position and cannot move, instead,
during evaluation, the leader choose a random direction every h time steps (a
hyper-parameter that is configurable).

The reward function is composed of two components. The first component is
the collision factor, which is the same as the one used in the previous experiment,
kicks in when the distance is less than a given target distance δ:

collision =

{
0 if d > δ

exp
(
−d

δ

)
otherwise

(6.3)

The second component aims to reduce the distance between each agent and the
leader:

distance to leader = −d (6.4)



6.2. FOLLOW THE LEADER 51
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Figure 6.3: Snapshots of the learned policy, the time flow is from left to right.
In the first row, there are 50 agents, whereas in the second row, there are 200
agents. In the last step of the simulation, the agents converged to a distance of
approximately δ.
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Figure 6.4: The performance of the learned policy. The y-axis represents the
distance between the agents. The x-axis represents the time. The green line is
equal to δ. In the charts, as the number of agents varies, the performance of the
learned policy is similar. Moreover, the minimum (blue line) distance between the
agents is always greater than δ. The average distance (orange line) stays close to
2 * δ (after convergence).
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The overall reward function is defined as the sum of these two factors.

Implementation First of all, it was necessary to define the action space of the
various agents, this can be done easily by leveraging the product types of Scala as
follows:�

1 import it.unibo.scarlib.core.model.Action

2

3 object FollowTheLeaderActionSpace {

4 final case object North extends Action

5 final case object South extends Action

6 final case object East extends Action

7 final case object West extends Action

8 final case object NorthEast extends Action

9 final case object NorthWest extends Action

10 final case object SouthWest extends Action

11 final case object SouthEast extends Action

12 final case object StandStill extends Action

13

14 def all(): Seq[Action] =

15 Seq(North, South, East, West, NorthEast, NorthWest,

SouthWest, SouthEast, StandStill)

16

17 def sample(): Action =

18 Random.shuffle(all().take(all().size - 1)).head

19 }
� �
Secondly, it was necessary to define the state space:�

1 import it.unibo.scarlib.core.model.State

2 import StateInfo.{neighborhood, encoding}

3

4

5 case class FollowTheLeaderState (

6 directionToLeader: (Double, Double),

7 positions: List[(Double, Double)],

8 distanceFromLeader: Double,

9 agentId: Int

10 ) extends State {

11

12 override def elements(): Int = neighborhood * encoding

13
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14 override def toSeq(): Seq[Double] = {

15 val fill = List.fill(elements())(0.0)

16 (positions

17 .flatMap { case (l, r) => List(l, r) }

18 ++ List(directionToLeader._1, directionToLeader._2)

19 ++ fill)

20 .take(elements())

21 }

22

23 override def isEmpty(): Boolean = false

24 }
� �
Then, it was necessary to define the reward function:�

1 import it.unibo.scarlib.core.model.{Action, RewardFunction, State}

2 import it.unibo.scarlib.core.util.AgentGlobalStore

3

4 class FollowTheLeaderRewardFunction extends RewardFunction {

5

6 private val targetDistance = 0.2

7

8 override def compute(currentState: State, action: Action,

nextState: State): Double = {

9 val distances = computeDistancesFromNeighborhood(s)

10 val collision = collisionFactor(distances)

11 val distanceFactor = - s.distanceFromLeader

12 AgentGlobalStore()

13 .put(s.agentId, "distance", distanceFactor)

14 AgentGlobalStore()

15 .put(s.agentId, "collision", collision)

16 AgentGlobalStore()

17 .put(s.agentId, "reward", collision + distanceFactor)

18 distanceFactor + collision

19 }

20

21 private def collissionFactor(distances: Seq[Double]): Double =

{

22 val min: Double = distances.min

23 if (min < targetDistance) {

24 2 * math.log(min / targetDistance)

25 } else {
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26 0.0

27 }

28 }

29 }
� �
Finally, it was necessary to define the aggregate program used to reconstruct the
state of each agent:�

1

2 import it.unibo.scafi.ScafiProgram

3

4 class CohesionCollisionScafiAgent

5 extends ScafiProgram with FieldUtils {

6

7 private val leader = sense[Int]("leaderId") == mid()

8

9 override protected def computeState(): State = {

10 val potentialToLeader = classicGradient(leader, nbrRange)

11 val nearestToLeader = includingSelf

12 .reifyField((nbr(potentialToLeader), nbrVector()))

13 .minBy(_._2._1)._2._2

14 val positions = excludingSelf

15 .reifyField(nbrVector())

16 .toList

17 .sortBy(_._2.distance(Point3D.Zero))

18 .map(_._2)

19 .map(point => (point.x, point.y))

20 .take(5)

21 val leaderNode = alchemistEnvironment

22 .getNodes

23 .get(leaderId)

24 val myself = alchemistEnvironment

25 .getNodes

26 .get(mid())

27 val distance = alchemistEnvironment

28 .getDistanceBetweenNodes(myself, leaderNode)

29

30 FollowTheLeaderState(

31 (nearestToLeader.x, nearestToLeader.y),

32 positions,

33 distance,
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34 mid()

35 )

36 }

37 }
� �
Results The experiment’s training involved conducting 1000 epochs, each with
100 episodes, using 50 agents, an environment measuring 50x50 metres and a target
distance δ set to 2 metres. The training was conducted using a CTDE process.

Figure 6.5 shows the results of the training. The graphs show that the learning
algorithm optimizes one signal at a time, with distance to leader tending towards
zero and collision increasing. Nonetheless, after some epochs, it is possible to see
that the system had already found a balance between these two factors.

To verify the homogeneous policy learned using the CTDE process, 16 simula-
tions were conducted, each with agents randomly positioned and varying the seeds.
Given the homogeneous nature of the policy learned with CTDE, we also varied
the number of agents by conducting simulations with 50, 100 and 200 agents.
According to our hypotheses, this should not impact the quality of the learned
policy and its performance. Figure 6.6 shows screenshots from a simulation with
50 agents, illustrating how they gradually tend to get closer to the leader (who is
represented by the agent with the blue circle). Figure 6.7 shows the performance
of the learned policy with 50, 100 and 200 agents. From these graphs, it can be
observed that the performance does not change significantly with varying numbers
of agents.

6.3 Discussion

This section discusses the current state of the framework, highlighting its strengths
and weaknesses that will shape future work in Chapter 7.

Performance Currently, a thorough and comprehensive performance bench-
marking has not been carried out. This choice was made to favor a simpler,
more modular, and flexible design and implementation, following the principle
of: “Avoid premature optimization. First make it right, then make it fast” [32].
Nonetheless, this aspect is crucial and will undoubtedly be considered in future
work to ensure the tool is fully prepared for community use.

Training and execution model Currently, the framework offers two training
and execution models, both among the most renowned in literature. While these
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(a) Total average reward

(b) Average collision factor

(c) Average distance to leader factor

Figure 6.5: Follow the leader training experiment results. The y-axis represents
the reward value. The x-axis represents the total number of timesteps.

models can address various problems, they are not exclusive and may limit func-
tionality in certain scenarios. To facilitate user implementation and avoid the
need to start from scratch, the framework must be expanded to include additional
models.

Scala-Python integration The integration between ScaRLib, which is based
on the Scala language, and the deep learning framework PyTorch, which is based
on Python, is facilitated by the ScalaPy tool. However, despite the usefulness
and potency of this tool, it remains in an experimental and research phase that
imposes certain usability and configuration restrictions, particularly in non-Linux
environments.
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(a) (b)

-

(c)

Figure 6.6: Snapshots of the learned policy, the time flow is from left to right.
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(b) 100 agents
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Figure 6.7: The performance of the learned policy. The y-axis represents the
distance between the agents. The x-axis represents the time. The green line is
equal to δ. In the charts, as the number of agents varies, the performance of the
learned policy is similar. The blue line represents the average distance between the
agents, while the orange line represents the average distance between each agent
and the leader.
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Chapter 7

Conclusions

The work conducted in this thesis has resulted in the creation of ScaRLib. The
primary objective of this framework is to minimize complexity in the design and
building of multi-agent cyber-physical systems (such as swarms of robots, IoT sen-
sor networks, and various others) exploiting and merging the potential of the
two established methods employed in developing these systems, namely: macro-
programming (i.e., aggregate computing) and artificial intelligence (i.e., reinforce-
ment learning).

In order to achieve this goal, the framework has been designed in a modular
and extensible way, which has two main advantages. Firstly, users can effortlessly
integrate fresh components including distinct simulators, various learning engines,
and new learning algorithms or models. Secondly, users can leverage solely the
elements of the framework that are required for their specific project needs, without
being duty-bound to use all of the modules.

A key aspect was to create abstractions within the reference domain to al-
low a concise and unambiguous definition of a new experiment. Furthermore,
standard training and execution models were pre-implemented (i.e., CTDE and
DTDE ), alongside a well-known learning algorithm (i,e., DQN ). Afterwards, the
core framework was combined with two tools, Alchemist and ScaFi. Alchemist
permits the simulation of highly complex distributed systems whereas ScaFi en-
ables the functional use of the aggregate computing paradigm through a Scala
programming language API. Additionally, a Domain Specific Language was devel-
oped to declaratively specify experiments and preemptively detect configuration
errors during compile time, avoiding the need to wait for runtime occurrences.

In our opinion, the framework serves as an excellent starting point for develop-
ing such systems with a hybrid method and streamlines the definition of complex
new experiments. Our aim is to showcase the potential of this technique and
inspire the scientific community to delve further into this realm.

59
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7.1 Future work

Despite the work that has been done, the reference domain is very broad, and
many aspects still require further improvement. This section aims to outline the
primary areas that need to be explored.

Performance The performance of the framework has only been assessed in rela-
tion to a small number of moderately challenging use cases. However, it is essential
to conduct further research in order to detect potential bottlenecks and ensure that
the minimum desired level of performance can be achieved, thus meeting the di-
verse needs of users.

Execution model Currently, ScaRLib has pre-implemented integration with
the Alchemist simulator via a basic, single execution model. This model operates
through each agent interacting with the environment at each timestep, followed
by the environment awaiting action collection before transition to a new state.
While this configuration is typical in this field, it will be necessary to explore new
solutions that enable the development of more specialised systems.

Learning framework The framework currently supports solely the PyTorch
learning framework. However, it would be beneficial to include additional frame-
works, such as TensorFlow [1] or DL4J, to provide users with a wider range of
options.

Scala-Pyhton integration Currently, the framework utilises the ScalaPy tool
to integrate Scala and Python programming languages. Despite its potential, the
tool has inherent research tool limitations, necessitating a judicious evaluation of
continuing its use or exploring alternative options, including custom bindings or
third-party tools.

Online learning The inclusion of online learning models in the framework,
namely models that can continue learning after deployment, would provide sig-
nificant value. However, this is a field with few existing solutions, made more
complicated by the domain’s multi-agent nature. We suggest leveraging federated
learning [71, 2] as an interesting approach, enabling agents to exchange parts of
their policy neural networks. This approach may have the potential to distribute
knowledge within the system. Nevertheless, additional research is required, and
alternative options should also be taken into account.
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