
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA
CAMPUS OF CESENA

Computer Science and Engineering Department

Second Cycle Degree in Computer Science and Engineering

Developing Distributed Programs For
The Cloud-Edge Computing Combining
Multitier And Aggregate Programming

Thesis in
Pervasive Computing

Supervisor
Prof. Mirko Viroli

Co-supervisors
Prof. Guido Salvaneschi
Dr. Pascal Weisenburger

Presented by
Linda Vitali

Academic Year 2022-2023

To my amazing dad.

To my sister. You can do it.

Abstract

In the digital era, the increasing number of interconnected devices caused by the
advent of Internet of Things and cyber-physical systems, has made distributed
systems more and more pervasive as well as difficult to develop. This has brought
about new challenges in terms of complexity and heterogeneity in the infrastructure
on which these systems are deployed. For instance, in a scenario where the
devices are distributed across the cloud and the edge. To tackle this complexity,
two programming paradigms emerged in the last years: aggregate and multitier
programming. The former is a paradigm that addresses the development of large-
scale distributed systems by considering the system as a collection of devices (i.e.
aggregates). Those devices can be programmed by using functions composition.
The latter is a paradigm that allows the development of distributed systems by
abstracting from the communication layer and developing every component of a
distributed system in a single code base. The integration of these two paradigms
can be beneficial for the development of the so-called Cloud-Edge continuum since
aggregate computing can be used to program the logic of the devices at the edge,
and the multitier paradigm can be used to address specific nodes in the cloud as
well as easily deploy the system’s components. The work described in this thesis
aims to investigate the integration of the two programming models and to provide a
middleware that uses the aggregate programming language ScaFi and the multitier
programming language ScalaLoci to allow the development of distributed systems
that can be deployed on the cloud, the edge, or a combination of both.

i

ii

Acknowledgements

I would like to thank Prof. Mirko Viroli and Prof. Guido Salvaneschi, for giving
me the opportunity of this experience abroad and for their guidance and valuable
advice during the development of this thesis. I would also like to thank Dr. Pascal
Weisenburger, Dr. Roberto Casadei, and Gianluca Aguzzi for their patience and
essential help. Thanks to the people I encountered in St. Gallen, particularly the
Programming Group and the others in Torstrasse 25, for the breaks, the food, the
stories, the hikes, and the laughs. A profound thanks to my family for their support
and love. I want to thank Pierre for believing in me in every single thing I do. A
special thanks to my Atedeg mates: you taught me so much and helped me during
the master’s years without even realizing it. Finally, a thanks to all my friends,
you are the people who have been there for me since the very beginning (I love you
even though some of you think I’m graduating in “fixing printers”).

iii

iv

Contents

Abstract i

1 Introduction 1
1.1 Motivations and goals . 2
1.2 Thesis outline . 4

2 Background 5
2.1 Aggregate computing . 5

2.1.1 Assumptions made by aggregate programming 6
2.1.2 Execution model . 7

2.2 ScaFi . 7
2.3 Multitier programming . 9
2.4 ScalaLoci . 10

2.4.1 Multitier modules . 11

3 State of the art 15
3.1 Multitier pulverized aggregate computing 15

4 Towards a seamless integration of ScaFi and ScalaLoci 19
4.1 Dynamic connections . 19
4.2 Aggregate base station . 21
4.3 Considerations . 22

5 Middleware requirements 23
5.1 Business requirements . 23
5.2 User requirements . 23
5.3 Functional requirements . 24

6 Design 25
6.1 Middleware architecture . 25
6.2 Implementation . 29

6.2.1 Node’s communication strategy 29

v

vi CONTENTS

6.2.2 Topology definition with multitier modules 29

7 Evaluation 31
7.1 Case studies . 32
7.2 Preservation of fault tolerance . 34
7.3 Scafi-Loci middleware on Android devices 34
7.4 Middleware limitations . 36

7.4.1 Neighboring logic . 36
7.5 Different nodes interaction . 36
7.6 Middleware and pulverization . 36

7.6.1 Scalability concerns . 36
7.6.2 Limited Error Handling . 37
7.6.3 Performance evaluation . 37

8 Conclusion 39
8.1 Future work . 40

Bibliography 43

List of Figures

2.1 Compiling process in multitier programming [7] 10

3.1 Pulverized device in ScalaLoci [10] 16
3.2 ScaFi and ScalaLoci integration [10] 17

6.1 Middleware architecture’s modules 26
6.2 Middleware architecture with topology configuration 26
6.3 Runtime module . 27
6.4 Configuration module . 28
6.5 Default topologies provided . 30
6.6 General topologies . 30

vii

viii LIST OF FIGURES

Listings

2.1 Field constructs in ScaFi . 8
2.2 An aggregate program in ScaFi . 9
2.3 Multi-client-server architecture in ScalaLoci 10
2.4 Int placed on Node . 11
2.5 Encapsulation with multitier modules 12
2.6 Abstract peer types . 12
4.1 First integration experiment’s main method 20
4.2 Connections management . 20
4.3 Monitoring multitier module . 21
4.4 Monitoring multitier module . 21
6.1 Architecture trait . 29
7.1 General hybrid multi-client-server topology 33
7.2 General pure multi-client-server topology 33
7.3 General hybrid peer-to-peer topology 33
7.4 Case study example code . 34
7.5 ScalaLoci code to enable the compilation of Scala both to JVM

bytecode and to Javascript . 35

ix

x LISTINGS

Chapter 1

Introduction

The vast expanse of digital transformation has made distributed systems an in-
dispensable asset of modern computing. Their importance is underscored by the
evolution of technology, from individual isolated systems to intricate networks of
interconnected devices. While these systems present myriad opportunities, espe-
cially in scaling processes and enabling ubiquitous access to data and services, they
are also abounding with challenges. These complexities span from the technical
nuances of concurrency and asynchronous execution to the operational challenges
of message losses and unpredictable device malfunctions.

The transformative impact of pervasive computing, Internet of Things (IoT),
and cyber-physical systems (CPS), leading to increasing interconnection of devices,
further amplifies the role and challenges of distributed systems. As potentially
thousands of devices come online, generating and processing vast amounts of data,
traditional Cloud computing finds its limitations. Cloud’s characteristic strength
in centralizing computing often becomes a problem when real-time processing
and responsiveness are critical. It is against this backdrop that Edge Computing
emerges bridging the gap between data generation and data processing. By situating
computational tasks closer to where data originates, at the “edge” of the network,
Edge Computing offers not just reduced latency, but a promise of more astute,
immediate, and context-aware data handling. The integration of cloud and edge —
often termed “cloud-edge computing” — proposes a balanced approach, synergizing
the robustness of centralized data processing with the agility of decentralized
computation, providing a more holistic approach to distributed system design.

An important aspect to consider in the context of Cloud-Edge computing is the
intricate coordination between a multitude of devices functioning in a distributed
environment. This coordination presents adaptive challenges, necessitating systems
to automatically adjust in response to fluctuating environmental factors or changing
needs. The interconnected web of devices in this environment must possess not
only singular intelligence for independent operation but also the ability to act

1

2 CHAPTER 1. INTRODUCTION

collectively. Beyond this collective intelligence, the system must be endowed with
self-adaptive and self-organizing capacities to gracefully handle variations, be they
in device distribution, energy supply, computational demands, or unexpected faults.
Also, as these devices span various locations, platforms, and functions, ensuring
security, interoperability, and resilience becomes paramount.

Researchers explore new approaches to make the development of distributed
systems easier, and every approach focuses on different aspects of the problem: some
on the communication aspect, others on the data representation, and others on the
programming model. The aspects considered in this thesis is related to combining
programming models that allow programmers to write code for homogeneous and
collective devices that is easy to maintain by adding abstraction levels over low-level
implementation details such as data representation, serialization, and networking.

Aggregate programming [1] and multitier programming [2] are two programming
models considered in this thesis. The first one emphasizes a collective perspective
where the basic unit of computing is no longer a single device but instead a
cooperating collection of devices. The second one deals with developing the
components of different tiers in a distributed system (e.g., client and server),
mixing them in the same compilation unit allowing to target the programming of
specific devices.

1.1 Motivations and goals

This thesis work was carried out while being hosted by the University of St. Gallen
at the Programming Group, a research group of the Institute of Computer Science
(ICS) which, among other things, works on topics like programming languages and
software engineering including languages and architectures for distributed systems.
The group developed the ScalaLoci [3] programming language, which allows for
writing type-safe multitier distributed applications.

The collaboration with this group lies in the necessity of combining the program-
ming of collective and homogeneous devices on the Edge, with the programming of
specific and well-defined devices on the Cloud. To fulfill this need, the idea is to
combine the power of aggregate programming with multitier programming using
ScalaLoci and ScaFi [4].

The two main motivations and goals of this thesis are summarized as follows:

• Aggregate programming is a good fit for the programming of “weak” nodes
(e.g. sensors on the edge) and it makes very few assumptions on the underlying
physical system, while the latter is a good fit for the programming of “strong”
nodes (e.g. servers on the cloud) and it does a lot of assumptions about the
underlying physical system. The combination of the two programming models

1.1. MOTIVATIONS AND GOALS 3

will allow the programmer to target the programming of either collective or
specific devices, depending on the needs of the system

• Even without making assumptions about the underlying hardware, the use of
aggregate programming and its benefits for programming collective devices
can be simplified by leveraging the benefits of multitier programming. This
allows the developers to focus only on the logic of the system, designing the
aggregate program to execute and the topology of the network, abstracting
away the low-level details of the underlying system.

This thesis proposes the realization of a middleware that leverages the power of
the Aggregate and Multitier programming through the use of ScalaLoci and ScaFi
which will be described in detail in the following chapter. The middleware will
be able to execute aggregate programs and deploy them on different architectures,
in the Cloud, the Edge, or a combination of both. Moreover, it will allow the
integration and communication between aggregate and non-aggregate programs.

To showcase the effectiveness of the middleware, some scenarios and example
have been identified and implemented. Every example uses a different architecture
with the same aggregate program, showing the flexibility of the middleware and the
possibility to target different devices. The case studies include both the execution
of an aggregate program in every device of the network, and the execution of a
specific program in a single device that communicates with the aggregate nodes,
showing the possibility to target both collective and specific devices at the same
time.

For what concerns the testing of the middleware, a test suite has been developed
in order to validate the correct execution of the Aggregate Programming execution
model and its integration with ScalaLoci.

Moreover, some test has been done to run the middleware on Android devices
through the use of Scala.js1 supported by ScalaLoci.

1https://www.scala-js.org/

https://www.scala-js.org/

4 CHAPTER 1. INTRODUCTION

1.2 Thesis outline

The thesis’s structure is organized as follows: Chapter 2 provides the necessary
background information to better understand the previously illustrated motivations
of this thesis and how the frameworks on which the project is based work. Chapter 3
describes the related work and the state of the art of integration between aggregate
and multitier programming. Chapter 4 describes the first steps of this thesis work,
describing the implementation of a prototype of the integration. Chapter 5 describes
the requirements of the project, Chapter 6 the design and implementation, and
Chapter 7 describes the case studies as well as considerations about the middleware’s
current limitations. Finally, Chapter 8 concludes the thesis and provides an overview
of future work.

Chapter 2

Background

This chapter provides the necessary background information to better understand
the previously illustrated motivations of this thesis and how ScaFi and ScalaLoci
— on which the project is based — work. The first section provides an overview
of Aggregate Programming the second section describes the ScaFi framework, the
third section consider Multitier programming aspects and the fourth section defines
ScalaLoci.

2.1 Aggregate computing

Aggregate computing simplifies the design, creation, and maintenance of complex
distributed software systems guaranteeing the reusability and composability of
components for collective adaptive behavior. It supports the construction of layered
APIs with formal behavior guarantees, sufficient to readily enable the creation of
complex applications [5]. This paradigm is based on the concept of computational
field, which offers a compelling solution to bridge the divide between the macro-level
(defining the collective behavior of the system) and the micro-level (actions and
interactions performed by individual devices to realize the collective behavior).
By acting as an intermediary, computational fields enhance the development of
collective APIs and complex systems, enabling work at more elevated levels of
abstraction.

With this technique, the basic unit of computing is no longer a single device
but instead a cooperating collection of devices [6]. Aggregate Computing provides
a functional programming model that enables three main elements:

• collective behavior is abstract and composable

• the focus is on the desired outcomes at a high level (aggregate level) without
having to micro-manage each component Individual components collabo-

5

6 CHAPTER 2. BACKGROUND

ratively adapt and organize themselves to realize a collective objective or
behavior.

• flexibility of mapping aggregate computation onto the considered infrastruc-
ture

2.1.1 Assumptions made by aggregate programming

In this model, it is presumed that a potentially distributed platform exists, supplying
each device in the aggregate with local computational and interactive functions.
Specifically:

1. Neighborhood: At any given time, a device is surrounded by a set of devices
it can communicate with — its “neighborhood”. This set can be fixed or can
evolve, reflecting changes like movement or system failures.

2. Sensors: A device can fetch data from its local sensors when needed. These
sensors grant access to observable environmental factors. Generally, the
sensor setup is consistent across devices. For instance, sensors might detect a
device’s unique identifier or the ambient temperature.

3. Actuators: A device can undertake actions impacting either itself or its
surroundings.

4. Message Reception: As devices interact, they swap messages. At any time,
a device can access a record of the most recent communications from its
neighbors, with previous messages being omitted.

5. Message Broadcast: A device can, on demand, transmit a message to all
surrounding devices. This communication process is asynchronous and re-
tains order. Message losses are compensated by adjustments in neighbor
connections.

6. State: Every device has local storage to retain data over time.

7. Computation: Each device divides computations into segments referred to
as “computational rounds”. These rounds are concise and conclusive, relying
on the local functionalities listed above and yielding a potentially organized
output. Such output could, for example, activate actuators.

8. Scheduling: Local schedulers initiate these computational rounds. In general,
the process is asynchronous yet equitable, with devices possibly operating at
diverse rates. It is essential to note that a new round is only scheduled after
the completion of the preceding one.

2.2. SCAFI 7

Furthermore, it is crucial to understand that an aggregate primarily signifies a
logical network of devices. This network can be variously overlaid onto the tangible,
physical network of computing nodes, and in simple setups, there might be a direct
correspondence between logical and physical devices. For instance, in a robot
cluster, each robot might independently run the aggregate program in its specific
context.

2.1.2 Execution model

Each device processes the comprehensive aggregate program by structuring compu-
tational rounds in the following manner:

1. It discerns its local context by gathering environmental status samples using
sensors and receiving messages from neighbors.

2. The device then reassesses the aggregate program based on this local context,
yielding an output along with a “coordination message” termed as “export”.

3. The device then interacts with the environment utilizing actuators, as directed
by the program.

4. Subsequently, the device conveys the export to neighboring devices. This
step essentially serves to notify the nearby area about alterations in the local
context, facilitating the transition from local to global state progression.

Given that the computational rounds across different devices often occur asyn-
chronously, aggregate programs typically depict the way an entire aggregate grad-
ually adjusts to environmental shifts and internal system changes (e.g., failures,
movement) and produces eventually consistent responses.

2.2 ScaFi

ScaFi, short for Scala Computational Fields, is a toolkit designed for building
aggregate systems using the Scala programming language, from which inherits
the syntax and semantics. It offers a domain-specific language (DSL), an API
that effectively acts as an “embedded language”. Alongside this, ScaFi provides
a comprehensive library of functions tailored for field programming and other
essential development utilities, including simulation tools. The field constructs
are captured by the Constructs trait (Listing 16). Higher-level functions can be
defined by combining the constructs to capture increasingly complex collective
behavior.

8 CHAPTER 2. BACKGROUND

1 trait Constructs {

2 def rep[A](init: => A)(fun: A => A): A

3 def nbr[A](expr: => A): A

4 def foldhood[A](init: => A)(acc: (A, A) => A)(expr: => A): A

5 def aggregate[A](f: => A): A

6

7 // the following (aggregate IF construct) can be defined

upon AGGREGATE ()

8 def branch[A](cond: => Boolean)(th: => A)(el: => A)

9 // the following is a variant of REP()

10 def share[A](init: => A)(fun: (A, () => A) => A): A

11

12 def mid: ID

13 def sense[A](sensorName: String): A

14 def nbrvar[A](name: CNAME): A

15 }

Listing 2.1: Field constructs in ScaFi

This interface is implemented by an abstract class called AggregateProgram

which provides its subclasses with access to the filed constructs. A brief description
of what these elements do is the following:

• rep captures state evolution, starting from an init value that is updated each
round through fun

• nbr captures communication, of its expr value, with neighbors; it is used only
inside the argument expr of foldhood, which supports data aggregation of
neighborhood-dependent data to single values, through the input accumulator
function acc;

• branch captures domain partitioning, or space-time branching;

• mid is a built-in sensor providing the identifier of devices;

• sense abstracts access to local sensors; and

• nbrvar abstracts access to neighboring sensors that behave similarly to nbr
but are provided by the platform.

As mentioned before, an aggregate program specifies collective behavior in terms
of both computation and neighbor-to-neighbor interaction. To write an aggregate
program it is sufficient to extend the AggregateProgram class and implement the
main method and compose the constructs to obtain the desired behavior. Listing 6
shows an example of an aggregate program that simply counts how many rounds
each device has executed.

2.3. MULTITIER PROGRAMMING 9

1 class MyAggregateProgram extends AggregateProgram {

2 override def main(): Any = {

3 rep (0){ x => x + 1 }

4 }

5 }

Listing 2.2: An aggregate program in ScaFi

2.3 Multitier programming

A typical distributed system’s structure is multi-tiered, meaning it consists of several
layers, with each layer addressing a specific functional aspect, such as data handling
or application processes. Traditionally, these unique tiers and functionalities that
span across them have been developed as separate compilation units, frequently
utilizing different programming languages. This approach tends to increase both the
initial development and ongoing maintenance expenses. In multitier programming,
components specific to various system tiers, e.g. client and server, are integrated
into a single compilation unit with a single programming language. Depending on
the language of choice, the code of different tiers is then either generated at run
time or split by the compiler following user annotations and static analysis, types,
or a combination of these. The developer doesn’t have to worry about low-level
concerns (e.g. network communication, serialization, and data conversions) since is
the compiler that breaks the computation into deployment units (Figure 2.1). It
also generates the communication code that is required for such modules to interact
during program execution. In type-level multi-tier programming, the specification
leverages the type system of the language to ensure the correctness and coherence
of the architecture.

This paradigm allows the description of a distributed system in a declarative way,
where the programmer specifies the system as a whole and not every component
separately enforcing the coherence of the system as well as formal reasoning and
software design [7].

10 CHAPTER 2. BACKGROUND

Figure 2.1: Compiling process in multitier programming [7]

The multitier language considered in this thesis is ScalaLoci, which will be
described in detail in the next section.

2.4 ScalaLoci

Multitier languages are often integrated into general-purpose languages by extending
them with support for distribution. This is the case of ScalaLoci, a type-safe
language hosted in Scala language that extends it with multitier abstractions.
ScalaLoci allows the programmer to abstract over low-level communication details
and data conversions and brings to the world of multitier languages the possibility
to specify an architecture based on peer types, thus, supporting generic distributed
systems whose architecture can be defined by the developer. Also, with ScalaLoci
is possible to associate locations both with data and computations.

The main language constructs of ScalaLoci are peers and ties. A peer represents
the different kinds of components of the system, like a server, a client, a database,
etc. A tie specifies the kind of relation among peers, like Single, Multiple, or
Optional. Only tied peers can communicate with each other. Listing 2.3 depicts
an example of a multi-client-server architecture in ScalaLoci, where a server is tied
to multiple clients and a client is tied to a single server. Placement types are the
core concept of ScalaLoci and the peers defined in the system architecture to allow
specifying the placement of data and computations. Placement is part of the type
system and the type checker can reason about resource location in the application.

1 @multitier object SimpleSystem {

2 @peer type Server <: { type Tie <: Multiple[Client] }

3 @peer type Client <: { type Tie <: Single[Server] }

2.4. SCALALOCI 11

4

5 on[Client] { println("Hello , I’m the client!") }

6 on[Server] { println("Hello , I’m the server!") }

7 }

Listing 2.3: Multi-client-server architecture in ScalaLoci

The sample compiles two executables representing the client and the server,
whose instances can be deployed and executed on different physical nodes.

Placed data of type T on P represent a value of type T that is placed on peer
P. For instance, is possible to define a value of type Int (e.g. the node’s id) that is
placed on a peer of type Node as shown in Listing 2.4.

1 @peer type Node <: { type Tie <: Multiple[Node] }

2 val id: Int on Node = UUID.randomUUID ().hashCode ()

Listing 2.4: Int placed on Node

ScalaLoci uses asynchronous multitier reactives like signals and events to allow
the composition of non-blocking data flows that span across multiple tiers. Events
are used to represent discrete changes, while signals are used to represent continuous
time-changing values.

To access the value of a placed data there are different ways depending on the
type of tie. To access the value of a placed data on a peer with a single tie, it is
used the expression .asLocal while to access the value of a placed data on a peer
with multiple ties, the expression .asLocalFromAll is provided. Accessing remote
values creates a local representation of the remote value by transmitting it over
the network or by establishing a remote dependency.

2.4.1 Multitier modules

One of the main features of ScalaLoci is the possibility to define multitier modules [8]
to support strong interfaces and achieve encapsulation and information hiding,
such that implementations can be easily exchanged. This approach makes peer
types abstract enabling the definition of abstract modules, which capture a specific
component of a distributed system. Every module can be further composed with
other abstract modules and can eventually be instantiated for a concrete software
architecture. This language mechanism allows developers to design applications
based on logical functionalities rather than network boundaries.

The example in Listing 2.5 show an example of encapsulation using a module
for a simple Chat that defines a client peer type and a server peer type. The
ChatApp also requires an instance of the MessageService multitier module to handle
messaging functionalities.

12 CHAPTER 2. BACKGROUND

1 @multitier trait ChatApp {

2 @peer type Client <: { type Tie <: Single[Server] }

3 @peer type Server <: { type Tie <: Single[Client] }

4 val messageService: MessageService

5 }

6

7 @multitier trait MessageService {

8 @peer type UserInterface <: { type Tie <: Single[Database] }

9 @peer type Database <: { type Tie <: Single[UserInterface] }

10

11 def sendMessage(message: String): Unit on UserInterface =

12 placed { remote call storeMsg(message) }

13

14 def fetchMessages (): Future[List[String]] on UserInterface =

15 placed { (remote call retrieveMsgs ()).asLocal }

16

17 private def storeMsg(message: String): Unit on Database =

18 // storing logics

19

20 private def retrieveMsgs (): List[String] on Database =

21 // retrieving logics

22 }

Listing 2.5: Encapsulation with multitier modules

The MessageService module specifies two peer types: UserInterface for
handling user interactions and Database for storing and retrieving messages. The
sendMessage and fetchMessages methods can be invoked on the UserInterface
peer and make remote calls to storeMessage and retrieveMessages methods on
the Database peer. This module encapsulates all the messaging functionalities,
including the communication between the UserInterface and the Database.

Other than encapsulation and the definition of module interfaces, LociMod
modules enable abstracting over placement using abstract peer types. Peer types
are abstract type members of traits, i.e. they can be overridden in sub-traits
specializing their type.

1 @multitier trait ChatApp {

2 @peer type Client <: messageHandler.UserInterface { type

Tie <: Single[Server] }

3 @peer type Server <: messageHandler.Database { type Tie <:

Single[Client] }

4 val messageHandler: MessageService

5 }

Listing 2.6: Abstract peer types

As shown in the example, the peers defined in a module can be specialized with

2.4. SCALALOCI 13

the role of other modules’ peers. This is useful if UserInterface or the Database
are not physical peers in the system, but just a logical place.

Multiter modules can be mixed-in and this enables including the implementa-
tions of different subsystems in a single module. However, it is necessary to use
mechanisms like subtyping or overriding to specify that a peer also implements the
placed values of the overridden or subtyped peers.

One last important feature is the possibility to specify constrained modules,
meaning that it is possible to express that a functionality is required by a module
to make it work. This is realized by Scala’s self-type1 annotations.

1https://docs.scala-lang.org/tour/self-types.html

https://docs.scala-lang.org/tour/self-types.html

14 CHAPTER 2. BACKGROUND

Chapter 3

State of the art

This chapter describes an existing integration approach between aggregate program-
ming and multitier programming with ScalaLoci in the context of pulverization [9].
This was the starting point for the work presented in this thesis.

3.1 Multitier pulverized aggregate computing

Pulverization is a technique proposed for aggregate computing in which behavioral
and deployment concerns are separated. A logical device is decomposed into micro-
components that can be deployed independently and it is possible to abstract
away from the underlying communication protocol. Those components are Sensors,
Actuators, State, Behavior, and Communication. Since this approach does not
provide a way to specify deployment concerns, in the paper [10] the authors propose
a combination with multitier programming, in particular using ScalaLoci, in order
to provide such a specification in a declarative and statically checked way. This
unification also allows the deployment and execution on multiple different network
structures of pulverized systems. The result introduces a novel architecture designed
for multitiered deployment strategies in pulverized systems that allows to specify
functional behavior independently from deployment.

The logical system of a pulverized aggregate program is decomposed into
multitier modules, and it is possible to define every function associated with each
pulverized component. Moreover, it is possible to decide the network structure of
the system in terms of connections among nodes of different kinds (e.g. cloud, edge,
etc.). Finally, each pulverized component can be assigned to a certain node kind.
Figure 3.1 represents a possible implementation of a pulverized device in ScalaLoci.

15

16 CHAPTER 3. STATE OF THE ART

Figure 3.1: Pulverized device in ScalaLoci [10]

A prototype has also been developed to show the possibility of combining aggre-
gate programming and ScalaLoci leveraging the ScaFi framework. Such integration
is possible since both languages are written on top of the Scala programming
language. As previously illustrated, ScaFi requires the definition of an object that
contains the aggregate program (i.e. the aggregate application logic) and a context
that contains all the information to execute the program like the previous state,
the sensors’ data and the messages from the neighbors. Since in the pulverized
approach this elements are embedded in the State component, it is possible to run
the aggregate program leveraging the architecture described in Figure 3.1. The
resulting code presented in the paper can be seen in Figure 3.2.

3.1. MULTITIER PULVERIZED AGGREGATE COMPUTING 17

Figure 3.2: ScaFi and ScalaLoci integration [10]

This chapter establishes the foundational knowledge upon which this thesis
is built. It delves into the pre-existing integration techniques between aggregate
programming and multitier programming. Serving as more than just a review,
it sets the stage for the novel research and experiments presented later in the
thesis. The emphasis here is on the technique of pulverization and its application
in aggregate computing and how ScalaLoci can be used as a support for this use
case.

The thesis uses to a certain extent the work in this paper regarding the approach
of running aggregate programs in ScaFi along with the multitier modules approach
to provide a way to specify the deployment of the aggregate program. However,
does not consider the pulverization aspects yet, but rather a more general approach
of integration between aggregate programming using ScalaLoci and ScaFi. The
next chapter will introduce the first steps toward this integration.

18 CHAPTER 3. STATE OF THE ART

Chapter 4

Towards a seamless integration of
ScaFi and ScalaLoci

This chapter seeks to offer a comprehensive depiction of the initial phase of the
integration between ScaFi and ScalaLoci. The approach uses both libraries side-
by-side, in order to evaluate the feasibility of the integration and is based on the
work described in the previous chapter.

4.1 Dynamic connections

The goal of the experiment is to show a system that runs several examples of
aggregate programs using ScaFi’s constructs on a set of nodes connected via
ScalaLoci. The system can adapt to changes e.g. a node leaves the system and the
computed values change accordingly.

The behavior of the experiment is the following:

• the system is composed of a set of nodes, organized in a peer-to-peer archi-
tecture using ScalaLoci’s peers and ties;

• every node’s neighbors are the nodes that are directly connected to it;

• it is possible to run an aggregate program written in ScaFi on top of ScalaLoci
leveraging the Multitier Modules;

• aggregate computing execution model is supported and every phase of the
execution is executed on every node of the system by leveraging ScalaLoci’s
placement types;

• the system captures the dynamicity of the network allowing nodes to join
and leave the network;

19

20CHAPTER 4. TOWARDS A SEAMLESS INTEGRATIONOF SCAFI AND SCALALOCI

• messages containing neighbors’ exports are exchanged between nodes using
ScalaLoci’s reactives abstractions.

In Listing 4.4, the code of the integration between ScaFi (lines 5, 6) and
ScalaLoci (lines 1, 2, 4, 7) is shown by reporting the main method of the program
that runs on every node of the system. The code is a simplified version and omits
the creation of the context and the execution of the aggregate program. The latter
is defined in LogicalSystem.

1 @multitier trait Node extends LogicalSystem {

2 @peer type AGNode <: { type Tie <: Multiple[AGNode] }

3

4 def main(): Unit on AGNode = {

5 val ctx = // build context

6 val export = computeLocal(ctx)// execute round

7 remote.call(export)

8 }

9 }

Listing 4.1: First integration experiment’s main method

Neighbors that receive the node’s export are the nodes directly connected
with it. It is possible to get the list of connected nodes by using ScalaLoci’s
remote[P].connected, a reactive abstraction that provides a time-changing list
of currently connected peer instances of type P.

1 def updateConnections(nodes: Seq[Remote[AGNode]]): Local[Unit] on

AGNode = {

2 val remoteNodes = // get remote nodes list

3 val nodesToAdd = nodes diff remoteNodes

4 val nodesToRemove = remoteNodes diff nodes

5

6 nodesToAdd foreach addRemoteNode // nodes that will receive

node ’s export

7 nodesToRemove foreach removeExport // remove export of nodes

that left

8 }

9

10 def main(): Unit on AGNode = {

11 remote[AGNode]. connected observe updateConnections

12 // aggregate logics

13 }

Listing 4.2: Connections management

4.2. AGGREGATE BASE STATION 21

4.2 Aggregate base station

This experiment introduces a node that doesn’t run the aggregate program (e.g. a
base station) that monitors the other nodes and collects the output calculated by
each node connected to it.

This time the architecture is multi-client-server, where the base station is the
server and the nodes that run the aggregate program are the clients.

The behavior of the base station is implemented using multitier modules, specif-
ically using the concepts of “Monitor” and “Monitored” where the base station
acts as a monitor and observes the results computed by the aggregate nodes that
act as monitored.

1 @multitier trait Monitoring {

2 @peer type Node

3 @peer type Monitor <: Node { type Tie <: Multiple[Monitored] }

4 @peer type Monitored <: Node { type Tie <: Optional[Monitor] }

5

6 def monitorNode(remote: Remote[Monitored], output: EXPORT ,

exports: Map[ID , EXPORT]): Local[Unit] on Monitor = {

7 // collect output

8 }

9 }

Listing 4.3: Monitoring multitier module

1 @multitier trait AggregateBaseStation extends LogicalSystem with

Monitoring {

2 @peer type BaseStation <: Monitor { type Tie <: Multiple[AGNode]

with Multiple[Monitored] }

3 @peer type AGNode <: Monitored {

4 type Tie <: Multiple[AGNode] with Optional[BaseStation] with

Optional[Monitor]}

5

6 val currentNodeState: Evt[(EXPORT , Map[ID , EXPORT])] on AGNode

= // ...

7

8 def gatherValues (): Unit on BaseStation = {

9 currentNodeState.asLocalFromAllSeq observe { /* ... */ }

10 }

11

12 def main(): Unit on AGNode = {

13 // connections management

14 // aggregate logics

15 }

16 }

Listing 4.4: Monitoring multitier module

22CHAPTER 4. TOWARDS A SEAMLESS INTEGRATIONOF SCAFI AND SCALALOCI

4.3 Considerations

The experiments show that the integration between ScaFi and ScalaLoci is feasible
and that the two libraries can be used side-by-side. However, the integration is not
seamless and it requires a lot of boilerplate code to be written by the programmer.

The next step to be done is to modularize all the aggregate and ScalaLoci
constructs and provide a middleware that allows the developer to only write the
logic of the aggregate program and chose the architecture of the system (e.g. peer-
to-peer or client-server) specifying among which nodes the export exchange should
happen.

Chapter 5

Middleware requirements

The previous chapter presented the initial experiments of possible integration
between aggregate and multitier programming via ScaFi and ScalaLoci. However,
as previously mentioned, the integration can be improved by providing a middleware
that allows easily run aggregate programs on top of ScalaLoci. This chapter will
present the requirements for such middleware.

5.1 Business requirements

Since the main objective of the middleware is to provide a way to run aggregate
programs on top of ScalaLoci using ScaFi, the main business requirements are:

• The middleware can be used to deploy aggregate systems;

• The middleware should be flexible enough to allow different topologies;

• The middleware should be modular and extensible to support new topologies.

5.2 User requirements

The user requirements are identified from the perspective of the developer who will
use the middleware. The middleware should allow the programmer to:

• define the aggregate program to be executed;

• configure the sensors;

• configure the actuators;

• use some sort of topology configuration;

23

24 CHAPTER 5. MIDDLEWARE REQUIREMENTS

• specify their own topology;

• specify the frequency on which the aggregate program should be executed;

• allow to specify which nodes run the aggregate program and which not.

5.3 Functional requirements

The functional requirements, obtained from the user requirements, define what the
middleware should be able to do:

• add sensors and actuators to make them available to the aggregate program;

• remove sensors and actuators to not make them available to the aggregate
program;

• access data from local sensors and neighbor sensors;

• send data to actuators;

• collect the exports from the neighbors;

• create the context for the aggregate program;

• run the aggregate program on specific nodes of the topology;

• send the exports to the neighbors;

• take track of the neighbors according to a specific neighboring logic;

• given an aggregate program written in ScaFi and a topology written in
ScalaLoci, should generate the executable code for every node;

• allow execution on different topologies (e.g. ring, peer-to-peer, client-server);

• have a modular and extensible architecture.

Chapter 6

Design

This chapter discusses the design elements of the middleware by illustrating its
components and their interactions. For each module of the middleware, the
relevant design choices are discussed. Starting with an overview of the middleware’s
architectural structure, its components will be progressively broken down, providing
a granular understanding of each module’s function. The following section, some
relevant aspects of the implementation choices will be presented, mostly focusing
on the topology module and the communication between nodes aspects.

6.1 Middleware architecture

The middleware is structured into three primary modules: the configuration, the
topology, and the runtime. From a developer’s perspective, the requirements are
minimal. The user is tasked with outlining the aggregate program they wish to
execute and specifying the necessary sensors and actuators required for its seamless
operation. This abstraction is deliberate, allowing users to focus on core logic
without being burdened by underlying complexities.

The middleware comes equipped with predefined topologies. This implies that
users don’t have to manually design or implement network topologies. Instead, they
can rely on these ready-made structures. However, the middleware also defines a
generic topology that can be used to define custom topologies if needed.

Once the user’s input is processed and integrated with the chosen topology,
the middleware takes over the heavy task. Utilizing the ScalaLoci compiler, it
translates this amalgamated data into an executable that can be systematically
deployed across the nodes of the network.

The basic version of the architecture is depicted in Figure 6.1.

The middleware also allows the user to define a custom topology. In this case,
the user needs to specify the nodes involved and their type (aggregate or individual).

25

26 CHAPTER 6. DESIGN

The middleware will then deploy the components on the nodes according to the
topology. This architecture is depicted in Figure 6.2.

Aggregate
Program

Configuration Topology

Runtime

ScalaLoci
compiler Executable

Figure 6.1: Middleware architecture’s modules

Aggregate
Program

Configuration Topology

Runtime

Program

Topology
configuration

ScalaLoci
compiler Executable

Figure 6.2: Middleware architecture with topology configuration

6.1. MIDDLEWARE ARCHITECTURE 27

Runtime module

The runtime module is the core of the middleware. It is responsible for the execution
of the aggregate program and contains the communication strategy among the
nodes. The runtime module’s main component is the ScafiLociExecutor, which
is a ScalaLoci module. This class has all the logic and stores the data placed on an
AGNode (aggregate node) which is provided, through the Scala mechanism self-type,
by the Architecture module. The logic manages the execution of the aggregate
program using ScaFi constructs. A more detailed architecture of the component
can be seen in Figure 6.3.

«it.unibo.scafi .incarnations»
BasicAbstractIncarnation

AggregateProgram()

MiddlewareIncarnation

ScafiLociExecutor

state: EXPORT on AGNode
mid: ID on AGNode
remoteNodesIds: Local[Map[Remote[AGNode], ID]] on AGNode
localExports: Local[Var[(ID, Map[ID, EXPORT])]] on AGNode
main(): Unit on AGNode

ExportSerialization

«self»
AGNodeSensors

«self»
AGNodeActuator

«self»
Architecture

imports

Figure 6.3: Runtime module

ScafiLociExecutor imports functionalities from MiddlewareIncarnation al-
lowing the use of the aggregate constructs provided by ScaFi, such as AggregateProgram,
mid, EXPORT and ID.

One thing to note is that the MiddlewareIncarnation extends ExportSerialization.
This is needed because the exports are automatically sent to the neighbors of the
node by ScalaLoci over the network.

Finally, the class adapts its behavior based on sensors data and actuation,
elements provided by AGNodeSensors and AGNodeActuator respectively.

Configuration module

AGNodeSensors is responsible for the management of local and neighboring sensors’
data. Sensor is the main interface that represents a generic sensor. It has a method
name of type CNAME that is a ScaFi element imported from MiddlewareIncarnation.

28 CHAPTER 6. DESIGN

NbrSensor and LocalSensor are two implementations of the Sensor interface. The
first one is used to represent a neighboring sensor (e.g. NBR Range) and the query
method returns the distance of a node from another according to the concrete
implementation logic; the second one is used to represent a local sensor (e.g. GPS,
temperature, etc.) and the query method returns the value of the sensor. It
is important to point out that AGNodeSensors uses the self-type mechanism to
require the Architecture module. This is needed to access the AGNode type and
to allow ScalaLoci’s modules composition.

In Figure 6.4 the architecture of the module is depicted.

Sensor

name: CNAME

MiddlewareIncarnation

NbrSensor

namespace: StandardSpatialSensorNames
query(nodeId: ID, id: ID): Future[SensorValue]

LocalSensor

query(): Future[SensorValue]

AGNodeSensors

localSensors: Local[Set[LocalSensor]] on AGNode
nbrSensors: Local[Set[NbrSensor]] on AGNode

«self»
Architecture

«it.unibo.scafi .platform»
StandardSpatialSensorNames

uses

usesuses

import

Figure 6.4: Configuration module

6.2. IMPLEMENTATION 29

6.2 Implementation

This section discusses some implementation details of the middleware regarding
the communication between nodes and the topology definition.

6.2.1 Node’s communication strategy

The communication strategy between nodes is encapsulated in the runtime module
and particularly in ScafiLociExecutor. The interaction between nodes leverages
the reactive constructs provided by ScalaLoci. In particular, the “export” exchange
between neighbors is implemented using a reactive variable Var that is placed on
the aggregate node. The variable is defined as follows:

1 var localExports: Local[Var[(ID , Map[ID , EXPORT])]] on AGNode

Leveraging the ScalaLoci’s method remote.call, after every node’s round it is
possible to update the variable of every connected node (in this case the neighbors)
with the new computed exports as shown in Listing 6.2.1.

1 def process(id: ID , export: EXPORT): Unit on AGNode =

2 localExports.transform {

3 case (myId , exports) =>

4 (myId , exports + (id -> export))

5 }

6.2.2 Topology definition with multitier modules

One interesting element of the middleware to discuss is the implementation of
the Topology component.It is used in ScafiLociExecutor to define the aggregate
node on which the aggregate logics is executed. This component (Listing 6.1) is
realized with multitier modules that are parametric on peer types, and can be used
leveraging Scala’s mixin composition. The Architecture trait contains the base
topology and can be extended by specializing AGNode and defining custom types.

1 @multitier trait Architecture {

2 @peer type AGNode <: { type Tie <: Multiple[AGNode] }

3 }

Listing 6.1: Architecture trait

As stated before, the middleware allows the developer to leverage a predefined
topology without having to worry about the deployment of the components. The
topology is defined in the topology module of the middleware and the possible
architectures are depicted in Figure 6.5.

30 CHAPTER 6. DESIGN

Figure 6.5: Default topologies provided

The user can also define a custom topology. In this case, the middleware
provides a generic architecture with AGNode (the nodes that will run an aggregate
program) and IndividualNode (the nodes that will run a different program) and
the user has to specify which nodes are of which type. The generic topologies are
depicted in Figure 6.6 along with a schematized representation of the network.

Figure 6.6: General topologies

Chapter 7

Evaluation

Upon the successful development of a middleware that merges the powers of
ScalaLoci and ScaFi, it becomes imperative to evaluate its efficacy, correctness, and
reliability. This chapter unfolds a series of carefully crafted case studies, shedding
light on the system’s capabilities, the advantages it brings to the table, and ensuring
that aggregate computing inherent properties, such as fault tolerance, remain intact.
Additionally, the case studies provide a reference on how it is possible to use the
middleware to develop aggregate systems.

The middleware satisfies the requirements presented in Chapter 5:

• Various test scenarios were created to deploy aggregate systems, demonstrat-
ing the middleware’s capability to run them on top of ScalaLoci

• Multiple options were provided for topology configurations, ensuring flexi-
bility. Developers could also specify custom topologies, allowing for unique
deployment scenarios

• The middleware’s modular design allows the user to define custom topologies
and aggregate programs

• The middleware provides a way to specify the frequency of the aggregate
program’s execution

• The aggregate program can be executed on specific nodes as specified by the
developer

• The middleware has mechanisms to add, remove, and access data from both
local and neighbor sensors

• The system collects correctly exports from neighbors and creates the context
accordingly

31

32 CHAPTER 7. EVALUATION

Based on the user and functional requirements, a series of test cases were
designed. Each test case aims at a specific requirement or a group of related
requirements, ensuring comprehensive coverage.

7.1 Case studies

The criteria for choosing the case studies are based on showing both the abilities
of the middleware to manage the neighbors of a node and the capabilities of the
aggregate programs to recover from failures. The tested aggregate programs are
the following:

• NeighboursId: a program that returns the set of the IDs of the node’s
neighbors

• AverageTemperature: the aggregate program that computes the average
temperature of the network, considering the value of a local temperature
sensor on each node

• Gradient: the aggregate program that computes the minimum distances
from source nodes. This example uses two kinds of sensors: a local sensor
“Source”, that returns true on the source nodes, and a neighboring sensor
(nbr range) “NbrHopCount”, that counts the distance from a source node by
calculating the number of hops from it.

The topologies used are the following:

• General Hybrid Multi-Client-Server: a hybrid topology where the
nodes are divided into two groups: clients and servers. The clients are
the AGNodes (i.e. execute an aggregate program) and are connected with
other AGNodes as well as to a server. The server is an IndividualNode
and executes a different program. The topology is defined by extending the
GeneralHybridClientServer trait.

• General Pure Multi-Client-Server: a pure topology similar to the previ-
ous one where each node is an AGNode (the server as well). The topology is
defined by extending the GeneralPureClientServer trait

• General Hybrid Peer to Peer: a hybrid peer-to-peer topology where each
node can be either an AGNode or an IndividualNode. The aggregate nodes
execute an aggregate Program. The topology is defined by extending the
GeneralHybridP2P trait

7.1. CASE STUDIES 33

The topologies to extend are the ones presented in Section 6.2. The following
code snippets show how the topologies are extended to define the nodes involved
in the case studies.

1 @multitier trait MyHybridClientServer extends

GeneralHybridClientServer {

2 @peer type Client <: AGNode

3 @peer type Server <: IndividualNode

4 }

Listing 7.1: General hybrid multi-client-server topology

1 @multitier trait MyPureClientServer extends

GeneralPureClientServer {

2 @peer type Client <: AGNodeClient

3 @peer type Server <: AGNodeServer

4 }

Listing 7.2: General pure multi-client-server topology

1 @multitier trait MyHybridP2P extends GeneralHybridP2P {

2 @peer type Type1Peer <: AGNode

3 @peer type Type2Peer <: IndividualNode

4 }

Listing 7.3: General hybrid peer-to-peer topology

Table 7.2 presents an overview of the different case studies that were developed
to evaluate the middleware. Each case study is crafted to simulate real-world
scenarios. The table delineates each case study emphasizing the specific topologies
employed and the aggregate program executed.

Aggregate Program Topology
AverageTemperature Hybrid Multi-Client-Server
AverageTemperature Pure Peer to Peer
Gradient Pure Peer to Peer
NeighboursId Pure Ring
NeighboursId General Hybrid Multi-Client-Server
NeighboursId General Pure Multi-Client-Server
AverageTemperature General Hybrid Peer to Peer

Table 7.2: Case studies configurations

An example of the code needed to run one of the case studies is shown in
Listing 7.4. The code describes a multitier application named MySystem. This ap-

34 CHAPTER 7. EVALUATION

plication leverages our previously introduced ScafiLociExecutor class, that uses the
AverageTemperature aggregate program. Additionally, the application is provided
with sensors (AGNodeSensors) and actuator (MyActuator) modules, alongside the
dedicated topology defined in MyClientServerHybrid.

1 @multitier object MySystem

2 extends ScafiLociExecutor(new AverageTemperature ())

3 with AGNodeSensors

4 with MyActuator

5 with MyP2P {

6 def main(): Unit on Node = {

7 on[Type1Peer] {

8 println("Hello AGNode")

9 runAggreteProgram ()

10 } and on[Type2Peer] {

11 println("Hello Individual Node")

12 runIndividualProgram ()

13 }

14 }

15 }

Listing 7.4: Case study example code

7.2 Preservation of fault tolerance

One of the cornerstones of aggregate computing is fault tolerance. It is imperative
that despite the new integrations and functionalities introduced by the middleware,
this essential property remains unaffected. A random set of nodes in the network
was made unresponsive to test the middleware’s ability to correctly rearranges
nodes’ neighborhood. The middleware ensures that aggregate programs continue
to run correctly on the remaining active nodes that eventually compute the correct
updated values.

7.3 Scafi-Loci middleware on Android devices

ScalaLoci, with its support for Scala.js, offers a unique advantage when it comes
to creating cross-platform applications. Recognizing this potential, an exploration
was initiated to delve deeper into the feasibility of deploying the middleware on
Android devices.

For the experiments, it was used Scala.js, a compiler that translates Scala code
to JavaScript, to facilitate running of the middleware on Android. The advantage
here is twofold. Firstly, the ubiquity of JavaScript ensures that the code is portable
across various platforms, including mobile browsers and hybrid mobile application

7.3. SCAFI-LOCI MIDDLEWARE ON ANDROID DEVICES 35

frameworks. Secondly, with Scala.js, developers can maintain a single codebase in
Scala, which can then be targeted to both JVM-based backends and JavaScript
frontends, ensuring code consistency and reduced development effort. As mentioned,
ScalaLoci is already compatible with Scala.js and to compile the middleware to
Javascript it was sufficient to add the lines of code in Listing 7.5 and to configure
the build tool (sbt) accordingly, as well as choose the communication protocol to
use. In this example, the communication protocol used is WebSocket.

1 object BaseStation extends App {

2 platform(platform.jvm) {

3 val port = 8080

4 val server = new Server ()

5 // server configuration

6 multitier start new Instance[HybridSystem.Server](

7 listen[HybridSystem.Client] {

8 jetty.WS(context , "/ws/*")

9 }

10)

11 // server start

12 }

13 }

14

15 object AGNodeBS1 {

16 @JSExportTopLevel("main")

17 def main(args: Array[String]): Unit = {

18 platform(platform.js) {

19 multitier start new Instance[HybridSystem.Client](

20 connect[HybridSystem.Server] {

21 webnative.WS("ws ://10.0.2.2:8080/ ws/")

22 })

23 }

24 }

25 }

Listing 7.5: ScalaLoci code to enable the compilation of Scala both to JVM bytecode
and to Javascript

This way, the code written on HybridSystem.Client (i.e. the aggregate node
in this example) can be directly run on Android and the communication between
the server and the client is made through WebSocket.

However, it is important to note that a proper serialization of the exports is
required since all the libraries used must be compatible with Scala.js.

36 CHAPTER 7. EVALUATION

7.4 Middleware limitations

At the time of writing, the middleware has some limitations that prevent it from
being used in a production environment. The goal of this section is therefore to
provide an overview of the main shortcomings of the middleware.

7.4.1 Neighboring logic

In the current design of the middleware, the logic for determining a node’s neighbors
is primarily based on connectivity — nodes that are directly connected are consid-
ered neighbors. This simplistic approach, while effective for many use cases, might
not cater to the diverse needs of certain applications or scenarios. For instance, in a
dense network, just because two devices are connected doesn’t necessarily mean they
should be interacting as neighbors. The real-world context might require a different
logic. Devices could be deemed neighbors based on their geographical distance, as
given by GPS coordinates. Similarly, Bluetooth strength could be a determinant
of how close two devices are, with only those within a certain strength threshold
treated as neighbors. Such an approach would be beneficial in applications like
location-based services, disaster response systems, etc. where the physical location
and proximity of nodes matter more than just network connectivity.

7.5 Different nodes interaction

The middleware currently supports the interaction between aggregate and individual
nodes by accessing the reactive variable exposed by the middleware. However,
there could be more efficient ways to enable this interaction.

7.6 Middleware and pulverization

As mentioned in the state-of-the-art chapter, some works have been done to pair the
pulverization concepts with ScalaLoci. However, this thesis focus doesn’t address
this particular aspect of aggregate computing. Nevertheless, the middleware
could be extendend to support pulverization concepts by allowing to execute
ScafiLociExecutor components on different nodes.

7.6.1 Scalability concerns

The middleware has been tested for a defined set of scenarios. However, as the
number of nodes or the complexity of interactions increases, there might be more

7.6. MIDDLEWARE AND PULVERIZATION 37

challenges arising. Ensuring scalability as the network grows remains an area of
concern.

7.6.2 Limited Error Handling

The middleware currently only relies on the aggregate and ScalaLoci constructs
to handle errors. This could be not enough to ensure a robust error-handling
mechanism.

7.6.3 Performance evaluation

The performance of a middleware, especially one designed for distributed systems,
is an essential factor in determining its efficacy and reliability. While the initial
development and deployment phases have focused on functionality and compatibility,
the absence of a comprehensive performance evaluation leaves potential bottlenecks
and inefficiencies unaddressed.

38 CHAPTER 7. EVALUATION

Chapter 8

Conclusion

Digital evolution has made distributed systems vital in today’s computing landscape.
The transition from standalone systems to complex networks of devices presents
both opportunities and challenges. The rise of pervasive computing, Internet of
Things (IoT), and cyber-physical systems intensifies the role of distributed systems.
Traditional Cloud computing faces limits and Edge Computing can help bridge the
gap between data generation and data processing. By computing closer to data
sources, it offers reduced latency and more context-sensitive operations. Merging
cloud and edge, harmonizes centralized and decentralized processing, crafting a
comprehensive strategy for distributed systems.

Aggregate programming and multitier programming represent two advanced
paradigms in the field of software development. Aggregate programming emphasizes
a collective approach where the focus isn’t on a single device but on a coordinated
ensemble of devices. Instead of treating each device as an individual unit, this
model views the collective as the primary computing entity, leading to solutions
that are inherently decentralized and robust against individual device failures. On
the other hand, multitier programming is concerned with programming different
components or “tiers”, such as the client and server layers, in a single compilation
unit. Multitier programming facilitates programming distributed systems as well
as their deployment. This way allows targeting specific devices for the creation
of complex distributed applications. Together, these programming paradigms
offer a comprehensive toolkit for addressing the multifaceted challenges of modern
distributed system design.

This thesis embarked on a journey, aiming to explore and bridge the unique
attributes of aggregate and multitier programming. Because of the growing need
for distributed systems that can handle the intricacies of coordination among a
multitude of devices, the middleware elaborated in this thesis showcases a solution
that leverages the synergy between ScalaLoci and ScaFi. The middleware proves the
possibility of executing aggregate programs across varied architectures—whether

39

40 CHAPTER 8. CONCLUSION

Cloud, Edge, or a hybrid combination.
The executed case studies underscore the middleware’s potential. They not only

demonstrate its adaptability across varying architectures but also validate its utility
in scenarios with simultaneous requirements of both aggregate and “individual”
programming.

However, there is most certainly room for improvements and feature expansion.
The middleware, in its current form, encapsulates vast potential, but there are clear
avenues for further optimization and expansion, particularly concerning enhanced
node interactions, extended topology configurations, and comprehensive support
for platforms like Android. Additionally, performance assessment remains a critical
facet warranting further exploration.

8.1 Future work

The middleware, in its current form, encapsulates vast potential, but there are
clear avenues for further expansion to make it more robust and complete. The
following are some of the possible aspects that can be addressed in future work.

• A prominent limitation identified in the middleware is the simplistic approach
toward determining a node’s neighbors, primarily based on direct connectivity.
As outlined in the Middleware Limitations (Section 7.4), this method may
not be optimal for all scenarios. Future research can focus on incorporating
geographical data, like GPS coordinates, utilizing Bluetooth signal strength
as a metric, etc.

• The middleware currently supports a limited set of topologies. Future work
can focus on expanding the topologies to include more complex structures.
Also, the provided hybrid architectures assume that every node is connected
to the base station. This assumption can be relaxed allowing for different
configurations.

• The absence of pulverization concepts in the integration with ScalaLoci, could
be addressed in the future as there are potential areas of exploration. One of
them could be, for example, facilitating the ScafiLociExecutor’s components
to operate on diverse nodes.

• Finally, it would be useful to provide the developer with a DSL, to easily
configure every aspect of the middleware in a declarative way.

Bibliography

[1] Jacob Beal and Mirko Viroli. “Aggregate Programming: From Foundations
to Applications”. In: Formal Methods for the Quantitative Evaluation of
Collective Adaptive Systems: 16th International School on Formal Methods
for the Design of Computer, Communication, and Software Systems, SFM
2016, Bertinoro, Italy, June 20-24, 2016, Advanced Lectures. Ed. by Marco
Bernardo, Rocco De Nicola, and Jane Hillston. Cham: Springer International
Publishing, 2016, pp. 233–260. isbn: 978-3-319-34096-8. doi: 10.1007/978-3-
319-34096-8_8. url: https://doi.org/10.1007/978-3-319-34096-8_8.

[2] 2023. url: https://en.wikipedia.org/wiki/Multitier_programming.

[3] Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. “Distributed
System Development with ScalaLoci”. In: 2.OOPSLA (2018). doi: 10.1145/
3276499. url: https://doi.org/10.1145/3276499.

[4] Roberto Casadei et al. “ScaFi: A Scala DSL and Toolkit for Aggregate
Programming”. In: SoftwareX 20 (2022), p. 101248. issn: 2352-7110. doi:
https://doi.org/10.1016/j.softx.2022.101248. url: https://www.
sciencedirect.com/science/article/pii/S2352711022001662.

[5] Giorgio Audrito et al. “A Higher-Order Calculus of Computational Fields”.
In: ACM Trans. Comput. Logic 20.1 (2019). issn: 1529-3785. doi: 10.1145/
3285956. url: https://doi.org/10.1145/3285956.

[6] Jacob Beal, Danilo Pianini, and Mirko Viroli. “Aggregate Programming
for the Internet of Things”. In: Computer 48.9 (2015), pp. 22–30. doi:
10.1109/MC.2015.261.

[7] Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi. “A Survey of
Multitier Programming”. In: ACM Comput. Surv. 53.4 (2020). issn: 0360-
0300. doi: 10.1145/3397495. url: https://doi.org/10.1145/3397495.

[8] Pascal Weisenburger and Guido Salvaneschi. “Multitier Modules”. In: 33rd
European Conference on Object-Oriented Programming (ECOOP 2019). Ed.
by Alastair F. Donaldson. Vol. 134. Leibniz International Proceedings in Infor-
matics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer

41

https://doi.org/10.1007/978-3-319-34096-8_8
https://doi.org/10.1007/978-3-319-34096-8_8
https://doi.org/10.1007/978-3-319-34096-8_8
https://en.wikipedia.org/wiki/Multitier_programming
https://doi.org/10.1145/3276499
https://doi.org/10.1145/3276499
https://doi.org/10.1145/3276499
https://doi.org/https://doi.org/10.1016/j.softx.2022.101248
https://www.sciencedirect.com/science/article/pii/S2352711022001662
https://www.sciencedirect.com/science/article/pii/S2352711022001662
https://doi.org/10.1145/3285956
https://doi.org/10.1145/3285956
https://doi.org/10.1145/3285956
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1145/3397495
https://doi.org/10.1145/3397495

42 BIBLIOGRAPHY

Informatik, 2019, 3:1–3:29. isbn: 978-3-95977-111-5. doi: 10.4230/LIPIcs.
ECOOP.2019.3. url: http://drops.dagstuhl.de/opus/volltexte/2019/
10795.

[9] Roberto Casadei et al. “Pulverization in Cyber-Physical Systems: Engineering
the Self-Organizing Logic Separated from Deployment”. In: Future Internet
12.11 (2020). issn: 1999-5903. doi: 10.3390/fi12110203. url: https:
//www.mdpi.com/1999-5903/12/11/203.

[10] Gianluca Aguzzi et al. “Towards Pulverised Architectures for Collective
Adaptive Systems through Multi-Tier Programming”. In: 2021 IEEE In-
ternational Conference on Autonomic Computing and Self-Organizing Sys-
tems Companion (ACSOS-C). 2021, pp. 99–104. doi: 10 . 1109 / ACSOS -
C52956.2021.00033.

[11] Pascal Weisenburger and Guido Salvaneschi. “Developing Distributed Sys-
tems with Multitier Programming”. In: Proceedings of the 13th ACM In-
ternational Conference on Distributed and Event-Based Systems. DEBS ’19.
Darmstadt, Germany: Association for Computing Machinery, 2019, 203–204.
isbn: 9781450367943. doi: 10.1145/3328905.3332465. url: https://doi.
org/10.1145/3328905.3332465.

[12] Saverio Giallorenzo et al. “Multiparty Languages: The Choreographic and
Multitier Cases”. In: 35th European Conference on Object-Oriented Program-
ming (ECOOP 2021). Ed. by Anders Møller and Manu Sridharan. Vol. 194.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Ger-
many: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 22:1–22:27.
isbn: 978-3-95977-190-0. doi: 10 . 4230 / LIPIcs . ECOOP . 2021 . 22. url:
https://drops.dagstuhl.de/opus/volltexte/2021/14065.

[13] George Zakhour, Pascal Weisenburger, and Guido Salvaneschi. “Type-Safe
Dynamic Placement with First-Class Placed Values”. In: vol. 32. 2023. doi:
https://doi.org/10.1145/3622873.

[14] Pascal Weisenburger and Guido Salvaneschi. “Implementing a Language for
Distributed Systems: Choices and Experiences with Type Level and Macro
Programming in Scala”. In: CoRR abs/2002.06184 (2020). arXiv: 2002.06184.
url: https://arxiv.org/abs/2002.06184.

[15] Giorgio Audrito et al. “Functional Programming for Distributed Systems
with XC”. In: 36th European Conference on Object-Oriented Programming
(ECOOP 2022). Ed. by Karim Ali and Jan Vitek. Vol. 222. Leibniz Inter-
national Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 20:1–20:28. isbn: 978-3-
95977-225-9. doi: 10.4230/LIPIcs.ECOOP.2022.20. url: https://drops.
dagstuhl.de/opus/volltexte/2022/16248.

https://doi.org/10.4230/LIPIcs.ECOOP.2019.3
https://doi.org/10.4230/LIPIcs.ECOOP.2019.3
http://drops.dagstuhl.de/opus/volltexte/2019/10795
http://drops.dagstuhl.de/opus/volltexte/2019/10795
https://doi.org/10.3390/fi12110203
https://www.mdpi.com/1999-5903/12/11/203
https://www.mdpi.com/1999-5903/12/11/203
https://doi.org/10.1109/ACSOS-C52956.2021.00033
https://doi.org/10.1109/ACSOS-C52956.2021.00033
https://doi.org/10.1145/3328905.3332465
https://doi.org/10.1145/3328905.3332465
https://doi.org/10.1145/3328905.3332465
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://drops.dagstuhl.de/opus/volltexte/2021/14065
https://doi.org/https://doi.org/10.1145/3622873
https://arxiv.org/abs/2002.06184
https://arxiv.org/abs/2002.06184
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://drops.dagstuhl.de/opus/volltexte/2022/16248
https://drops.dagstuhl.de/opus/volltexte/2022/16248

BIBLIOGRAPHY 43

[16] Roberto Casadei et al. “Engineering collective intelligence at the edge with
aggregate processes”. In: Engineering Applications of Artificial Intelligence
97 (2021), p. 104081. issn: 0952-1976. doi: https://doi.org/10.1016/
j . engappai . 2020 . 104081. url: https : / / www . sciencedirect . com /
science/article/pii/S0952197620303389.

[17] Roberto Casadei. “Macroprogramming: Concepts, State of the Art, and Op-
portunities of Macroscopic Behaviour Modelling”. In: CoRR abs/2201.03473
(2022). arXiv: 2201.03473. url: https://arxiv.org/abs/2201.03473.

[18] Mirko Viroli, Roberto Casadei, and Danilo Pianini. “On Execution Platforms
for Large-Scale Aggregate Computing”. In: Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Computing:
Adjunct. UbiComp ’16. Heidelberg, Germany: Association for Computing
Machinery, 2016, 1321–1326. isbn: 9781450344623. doi: 10.1145/2968219.
2979129. url: https://doi.org/10.1145/2968219.2979129.

[19] Peri Tarr et al. “N Degrees of Separation: Multi-Dimensional Separation of
Concerns”. In: Proceedings of the 21st International Conference on Software
Engineering. ICSE ’99. Los Angeles, California, USA: Association for Com-
puting Machinery, 1999, 107–119. isbn: 1581130740. doi: 10.1145/302405.
302457. url: https://doi.org/10.1145/302405.302457.

[20] Roberto Casadei, Gianluca Aguzzi, and Mirko Viroli. “A Programming
Approach to Collective Autonomy”. In: Journal of Sensor and Actuator
Networks 10.2 (2021). issn: 2224-2708. doi: 10.3390/jsan10020027. url:
https://www.mdpi.com/2224-2708/10/2/27.

[21] Roberto Casadei and Mirko Viroli. “Coordinating Computation at the Edge:
a Decentralized, Self-Organizing, Spatial Approach”. In: 2019 Fourth In-
ternational Conference on Fog and Mobile Edge Computing (FMEC). 2019,
pp. 60–67. doi: 10.1109/FMEC.2019.8795355.

https://doi.org/https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/https://doi.org/10.1016/j.engappai.2020.104081
https://www.sciencedirect.com/science/article/pii/S0952197620303389
https://www.sciencedirect.com/science/article/pii/S0952197620303389
https://arxiv.org/abs/2201.03473
https://arxiv.org/abs/2201.03473
https://doi.org/10.1145/2968219.2979129
https://doi.org/10.1145/2968219.2979129
https://doi.org/10.1145/2968219.2979129
https://doi.org/10.1145/302405.302457
https://doi.org/10.1145/302405.302457
https://doi.org/10.1145/302405.302457
https://doi.org/10.3390/jsan10020027
https://www.mdpi.com/2224-2708/10/2/27
https://doi.org/10.1109/FMEC.2019.8795355

	Abstract
	Introduction
	Motivations and goals
	Thesis outline

	Background
	Aggregate computing
	Assumptions made by aggregate programming
	Execution model

	ScaFi
	Multitier programming
	ScalaLoci
	Multitier modules

	State of the art
	Multitier pulverized aggregate computing

	Towards a seamless integration of ScaFi and ScalaLoci
	Dynamic connections
	Aggregate base station
	Considerations

	Middleware requirements
	Business requirements
	User requirements
	Functional requirements

	Design
	Middleware architecture
	Implementation
	Node's communication strategy
	Topology definition with multitier modules

	Evaluation
	Case studies
	Preservation of fault tolerance
	Scafi-Loci middleware on Android devices
	Middleware limitations
	Neighboring logic

	Different nodes interaction
	Middleware and pulverization
	Scalability concerns
	Limited Error Handling
	Performance evaluation

	Conclusion
	Future work

	Bibliography

