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Abstract 

 

In this work, we have utilized a neural mass model to simulate the audio-visual 

multisensory integration. The idea is to have a system, equivalent to some neuronal 

populations, that can perform some behavioral functions and should work in oscillatory 

conditions similar to EEG (Electroencephalography). We started from the work of (Ursino, 

Cona and Zavaglia, 2010) which consists of four interconnected neuronal populations 

(pyramidal neurons, excitatory interneurons, and fast and slow inhibitory interneurons). These 

four populations make up a cortical column, equivalent to one ROI (Region of Interest), 

which can produce oscillations at a certain frequency, similar to an EEG frequency band. We 

are concerned with conscious neural processing and attention which is why our focus is only 

on two frequency bands: Alpha and Gamma. The gamma rhythm is typically attributed to 

conscious neural processing while alpha rhythm is associated with attention mechanism i.e., 

to inhibit the functioning of a certain neural population. 

The interconnection of more than one ROI makes up a certain brain area dedicated to specific 

function. In our model, we have used four brain areas; Two dedicated to unisensory 

processing (one for auditory and other visual modality), one for multisensory processing, and 

one for generation of an alpha rhythm, which is used to implement an attention mechanism, to 

inhibit some external stimuli (either one modality or a portion of space). The unisensory and 

multisensory areas comprise of 180 ROIs to account for 180 degrees in the azimuthal space, 

while for alpha rhythm generation we used just one ROI which sends its output to other areas, 

as desired. The inputs are fed to unisensory areas while the multisensory area receives 

downstream connection from both. The area dedicated to alpha rhythm generation is 

connected to all the other three areas. The inputs to both auditory and visual unisensory areas 

are spatial impulses, constant in time, filtered by respective receptive fields. 

The model can perform different behavioral functions. It can solve causal inference problem 

in the multisensory area in case of dual modality inputs (i.e., one input for each visual and 

auditory modality). In particular, the multisensory area discriminates if both the inputs have 

the same cause or not. Furthermore, the unisensory areas can also provide inference about 

causes in case of multiple unisensory inputs like, for example, two inputs at different 

azimuthal positions in a single unisensory area. Apart from that, the model can simulate 

ventriloquism effect which elaborates the bias or shift in perception of auditory and visual 
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position when the two stimuli are closer to each other in azimuthal space. Our model can only 

perform one type of ventriloquism which is constant in time but varying in space. Finally, the 

model simulates attention modulation i.e., the human ability to focus on certain stimuli whilst 

inhibiting other ambient information. The model can either inhibit one modality completely 

while keeping the focus on the other or, it can inhibit a certain portion of azimuthal space in 

both modalities while maintaining the focus on the remaining portion.  
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Chapter 1 : Introduction 

 

1.1. Overview of the multisensory integration 

The interaction between living organisms and their immediate environment relies majorly 

on the sensory information, presented by the environment, and processed by living beings. In 

humans, specifically, the brain is the central region to process the sensory inputs which are fed 

through different modalities such as vision, audition, olfaction, somatosensation etc. The 

coexistence of various sensory modalities and our ability to process them separately or in 

conjunction with each other or even substitute one in the absence of any other allows an 

organism to have the best chances of survival. And what is more is that each of these 

modalities, tuned to several types of energy, produces a unique perceptual experience that 

enables a distinct view of outside world (Barry E. Stein and Meredith, 1993).  

The interaction between different sensory modalities is referred to “Multisensory Integration” 

which, as obvious, refers to the interaction between senses and the synthesis of each of their 

information (Stein and Stanford, 2008). The most frequent way to evaluate multisensory 

integration is to assess how well the cross-modal stimulus affects the response of an organism 

compared to individual stimuli. An example would be to assess the organism’s magnitude of 

response or the ability to respond to an event that provides both auditory and visual stimuli 

compared to when either of them are presented alone. Thus, the functional definition of 

multisensory integration is measuring statistical significance between the number of impulses 

elicited by cross-modal stimuli and the number of impulses evoked by either of stimuli 

individually (Meredith and Stein, 1983).  

Multisensory integration can either improve or worsen the response of a neuron which is 

usually called “Multisensory Enhancement” or “Multisensory Depression”. The occurrence of 

either of these in turn depends on relative physiological salience of the event (Stanford and 

Stein, 2007). Usually, multisensory enhancement leads to an increased likelihood of detection 

or initiation of a response to given stimuli. Conversely, in the multisensory depression the 

likelihood decreases to given stimuli. The speed at which a response can be generated is a 

significant parameter that aids in the detection of an event through multisensory integration 

facilitates. Apart from that, multisensory integration can also differ significantly between 

different neurons when they are exposed to different cross-modal stimulus combinations, 
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while the variations in magnitude reflect various underlying computations (Stein and 

Stanford, 2008). 

It is worth noting that that enhancement (or depression) is not just “super-additive” but can be 

sub-additive or simply additive. Super-additive integration is simply the traditionally 

understood enhancement that is, multisensory response not only exceeds the most vigorous of 

individual unisensory responses but also exceeds their sum. Additive integration is when 

multisensory response is simply the sum of individual unisensory responses, while sub-

additive integration refers to weaker multisensory response compared to the sum of the 

individual unisensory responses. Figure 1.1 depicts an example of such behaviors. 

 

Fig.1.1. Super-additive, Additive, and sub-additive neural responses (Stein and Stanford, 2008). 

Figure 1.1 shows how the woman and the cat respond to the incoming dog based on auditory 

and visual stimuli. As the dog is far away from them, both the stimuli are weak while the 

integration of senses is super-additive. In the second case the dog is at an optimal position 

where the induvial stimuli are now stronger, and their integration is simply their sum. The 
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third case shows subadditivity wherein the multisensory integration is smaller compared to 

the sum of both individual responses. It is evident that with the increase of individual 

unisensory stimuli the multisensory integration becomes proportionally smaller.  

Thus, concisely, multisensory enhancement is inversely related to individual modality 

responses/stimuli (Meredith and Stein, 1986). This phenomenon is usually referred to as the 

principle of “inverse effectiveness”. Strong and relevant unisensory stimuli are easily 

perceived and localized, thus limiting the need for any enhancement whereas weak stimuli 

tend to evoke neurons at lower rate and therefore the multisensory neuronal responses are 

subjected to enhancement. This provides a better outcome in terms of detection and 

localization of any input with faster processing times. Though neurons do seem to follow this 

principle, nevertheless, recent studies suggest that this is not always the case. Auditory and 

visual stimuli pertaining to perception of speech are not subjected to inverse effectiveness 

(Ma et al., 2009). 

Another peculiar aspect of multisensory neurons is “causal inference”. The brain first needs to 

understand whether two or more stimuli are generated from a single source or not. This is 

done based on the sensory similarity between incoming stimuli, for example their spatial or 

temporal proximity, and thus the brain is capable of producing multisensory enhancement or 

suppression. Although it is not as simple as it sounds since there are other factors involved 

like complexity of sensory input, prior knowledge of incoming stimuli and any expectation or 

likelihood of any stimulus. In case of multi-modal stimulus the causal inference is done 

explicitly by multisensory neurons while if there are multiple inputs from a unisensory 

modality then the unisensory neurons can also infer whether the inputs have same 

cause/source or not. 

  

1.2. Multisensory Illusions 

When there are slight spatial or temporal discrepancies in the different unisensory stimuli 

occurring in close spatial or temporal proximity then a conflict arises in the multisensory 

integration and thus we often perceive a shifted temporal or spatial event leading to an 

illusion. There are many illusionary effects known till now, but a few will be discussed here. 

One common illusion is the “ventriloquism effect” which is commonly attributed to a 

ventriloquist. The puppeteer is the one talking but since he controls the puppet’s lip 

movements, the observer perceives it as if the puppet were talking. This is due to the spatial 
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discrepancy in sensory information: Auditory information comes from the puppeteer’s mouth 

while the visual information comes from puppet and since there is only a slight spatial 

discrepancy between both, the localization based on auditory input is perceived as shifted in 

space towards the visual one. The reason being stronger visual localization ability compared 

to its auditory counterpart. 

Another effect is the McGurk effect (McGurk and Macdonald, 1976) which is arises during 

speech perception. Previously, speech perception was regarded as an auditory process, but 

new evidence suggests visual input also contributes significantly to understanding speech. 

And it is this influence of visual information that leads to the McGurk effect. For example, 

when we hear the sound “ba”, but the lip movements show “fa” then due to stronger influence 

of visual processing in the multisensory region, we perceive the word “fa”. Thus, the slight 

sensory conflict between both unisensory stimuli leads to illusionary effect where the 

stronger/more influential sensory modality takes the lead in our perceptual experience.  

Another type of illusion pertains to dominance of auditory dominance on the visual modality 

in temporal domain. When a visual stimulus is flashed accompanied by an auditory beep the 

subject perceives both correctly but when the same flash is accompanied by two beeps with 

less than 100ms temporal gap then the subject perceives two flashes (Shams, L; Kamitani, Y.; 

Shimojo, 2000). It is worth noting that although the auditory modality dominated in this case, 

it is misleading to say so. Dominance is neither of the modality nor the stimulus but rather the 

information that brain can extract from either modality to optimally estimate the spatial or 

temporal presence of the stimuli (Ernst and Bülthoff, 2004). Finally, it should be noted that 

only the audio-visual multisensory illusions are detailed here since this thesis is focused on 

that domain. 

 

1.3.Response time and Evoked potentials 

It is generally understood that the processing times for auditory stimuli are faster than the 

visual stimuli. This difference is usually in the range of 40-60 ms because of faster processing 

in the inner ear compared to retinal information processing (Barry E. Stein and Meredith, 

1993). While this is the case in normal unisensory behavior, nonetheless, in the case of 

multisensory stimuli the reaction time shortens, becoming comparably lower than individual 

reaction times to respective stimuli (Rowland et al., 2007). Furthermore, (Diederich and 
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Colonius, 2004) showed that trimodal (auditory, visual, and tactile) stimuli produced faster 

reaction compared to bimodal stimuli.  

On the neuronal level, the study of evoked potential provides both objective and diagnostic 

evidence of multisensory processing in the brain. Evoked potentials of multisensory stimuli 

are summed up to provide a better understanding of inputs while if the unisensory evoked 

potential is already high in magnitude then the summation in multisensory level is not 

effective. This phenomenon is consistent with the principle of inverse effectiveness: that is the 

magnitude of evoked potential increases with the prominence/relevance/importance of 

stimulus and with increased prominence there is less ambiguity for the humans so their 

response is quick. This correlation between evoked potential’s magnitude and the importance 

of stimulus provides insights about studying mentally retarded or dyslexic children who have 

difficulty in processing multisensory stimuli and so their evoked potentials are not properly 

summed up in multisensory level (Barry E. Stein and Meredith, 1993). 

 

1.4.Neural bases of Multisensory Integration 

The thesis focuses only on two sensory modalities: Auditory and Visual, and their 

interaction and integration in the multisensory region. The visual processing is mostly done 

by visual cortices that are part of occipital lobe of cerebrum which lies in the posterior region 

at the very back of brain. Auditory processing on the other hand is done by temporal lobe 

which has multiple areas dealing with speech synthesis and production, although speech 

production in general is quite a broad term encompassing multiple regions of brain. Temporal 

lobe lies on the lateral sides of brain around the region where ears are located. 

The traditional view regarding multisensory processing in human brain is that information 

coming from unisensory areas is fused and processed in another region of the brain. While 

recent studies show that even unisensory areas are implicated in multisensory processing. The 

receive inputs from other unisensory areas as well multisensory  association areas (Ghazanfar 

and Schroeder, 2006). It should be noted however that the focus of thesis is on the traditional 

definition of multisensory processing in the sense that the multisensory neurons, possibly 

representing a separate multisensory region in brain, are involved in multisensory integration. 

Therefore, they are placed at a higher hierarchical level in the model receiving inputs from 

both unisensory areas.  
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1.5. Electrophysiology of a Neuron 

Neuron is a basic building unit of the brain that serves the function of information 

processing, transmission, and storage. Neurons communicate with each other via synapses 

that serve as junction between them, and information is transmitted through chemical 

substances called neurotransmitters. Within a single neuron the information is transmitted by 

action potentials that are short, stereotyped pulses originating from cell-body of neuron called 

“Soma” and transmitted via axons that are nerve fibers carrying those electric pulses. A 

neuron receives multiple connections from other neurons at its dendritic side. The receiving-

end neuron is called post-synaptic neuron while the transmitting-end neuron is termed pre-

synaptic neuron. Though a single neuron can be both pre or post synaptic depending on 

whether it is at the receiving or transmitting end.   

There exists a potential in the pre-synaptic neuron that is sent towards post-synaptic neuron 

and when the temporal or spatial summation of all pre-synaptic voltage changes crosses a 

certain threshold (around -55mv) then the post-synaptic neuron produces an action potential. 

This potential is generated thanks to the ionic concentration differences between extra-cellular 

and intra-cellular fluids and the neuronal membrane serves as the boundary between these 

two. There are ionic channels (or non-gated ionic channels) in the membrane through which 

ions flow, due to diffusion and electrical gradients, so it is a semi permeable membrane 

allowing passage of some ions and molecules while blocking others. In essence, the sodium 

(Na+), potassium (K-), and chloride (Cl-) ions contribute significantly towards the genesis of 

action potential while many other ions have rather an insignificant effect on overall dynamics 

of system. 

In addition to these channels, there is another way of flow of ions which is Ionic pumps. 

These pumps, also located in the membrane, serve as active transport mechanism thus 

allowing passage of ions against the concentration and electric field gradients and so consume 

energy in form of ATP (Adenosine Triphosphate). The normal concentration gradient is a 

higher concentration of sodium ions outside the cell compared to inside and similar gradient 

for chloride ions while the opposite case with potassium ions. Additionally, there are negative 

proteins inside the cell and thus, at-rest, the potential difference between outside of the cell 



 

9 
 

with respect to the inside is -65mv (also called resting membrane potential) i.e., the inside of 

neuron is more negative compared to its outside.  

Finally, there is a third type of gate, that allows the passage of ions, called voltage-gated 

channels. These channels are voltage dependent and open or close depending on the 

membrane potential. Figure 1.3 represents a neuron membrane showing its selective 

permeability and membrane potential due to difference in ionic concentrations. Both the ionic 

channels and ionic pumps can be seen which work based on diffusion + electrical gradients, 

and active transportation, respectively. For ionic pumps, for every three sodium ions pushed 

outside the cell two potassium ions are pulled inside. 

 

Fig.1.3. Membrane potential of a neuron due to concentration gradient (Gazzaniga, Ivry and Mangun, 2013). 

When the post-synaptic potentials, reaching a neuron, sum up and cross the threshold 

(typically -55mv) then the action potential is generated. Firstly, the sodium gates open 

allowing it to flow quickly into the cell. The neuron gets further depolarized because of this 

inflow of positive ions, which further depolarize it and cause opening of more channels. This 

cycle continues till the maximum number of sodium channels are opened and maximum 

depolarization is achieved with potential difference reaching around +35mv. It is done in a 

span of 1ms followed by opening of potassium channels allowing potassium ions to flow 

outside leading to repolarization or decrease in membrane potential. At this point the sodium 
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channels have started to close but since the potassium channels outlast the closing of sodium 

channels the decrement in membrane potential continues beyond the resting potential 

reaching values of around -90mv. This is called hyperpolarization (Gazzaniga, Ivry and 

Mangun, 2013). 

 

Fig.1.4. Graph of action potential and sodium and potassium conductance (Gazzaniga, Ivry and 

Mangun, 2013). 

Membrane potential during action potential is shown in figure 1.4. which is divided into 5 

phases. The first phase shows threshold crossing followed by opening of sodium channels 

which is also evident in the sodium conductance since it means more sodium flows inside the 

neuron. Phase 3 shows repolarization followed by hyperpolarization, showing continued 

outflow of potassium ions. Finally, phase 5 shows membrane potential coming to rest at 

around -65mv or -70mv showing the closure of potassium channels. 

 

1.6. Computational Models 

One of the earliest approaches to model a single neuron based on the action potential was 

by Hodgkin and Huxley where they used a voltage clamp experiment on squid giant axon. 

Their analysis led to the famous model of a neuron which can simulate the stereotypical 
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action potential. What has been stated in point 1.5 and figure 1.4 is represented in figure 1.5 in 

form of an equivalent electrical circuit. Sodium and potassium conductance are shown as gNa 

and gK respectively, while all other ions are merged into one variable called “Eq” which 

stands for equivalent value. Membrane capacitance is represented as C. Variable conductance 

are shown that represent ionic pumps as functions of membrane voltage. 

The circuit can be modelled as in equation (1). Note that for conciseness conductance are 

represented as simple variables although they are functions of time and membrane voltage. 

 𝐶
𝑑𝑉

𝑑𝑡
+ 𝑔𝑁𝑎(𝑉 − 𝑉𝑁𝑎) + 𝑔𝐾(𝑉 − 𝑉𝐾) + 𝑔𝐸𝑞(𝑉 − 𝑉𝐸𝑞) = 𝑖 (1.1) 

Here the terms 𝑔𝑁𝑎 and 𝑔𝐾 represent sodium and potassium conductance while 𝑔𝐸𝑞 represents 

the equivalent conductance of all other ions. 𝑉𝑁𝑎 and 𝑉𝐾 respectively denote Nernst potentials 

of sodium and potassium ions, and 𝑉𝐸𝑞 is the equivalent Nernst potential of all other ions.  

 

Fig.1.5. Electrical equivalent of Hodgkin and Huxley model.  

The current balance equation (1.1) is a concise representation of Hodgkin-Huxley model 

(detailed explanation can be found in literature). This model is quite robust as it can simulate 

the action potential in great detail but when it comes to modelling neuronal populations that 

may contain hundreds or thousands of neurons then the model becomes computationally 

expensive and therefore a simpler approach is needed. One such model is called Spiking rate 

model which tries to coarsely capture the stereotypical action potential in form of spikes or 

impulses. This approach considers the firing frequency as the output of post-synaptic neuron. 

A simple spiking rate model is shown in figure 1.6. 
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Fig.1.6. Block diagram of a spiking rate neuron model. 

N pre-synaptic impulse trains, represented as 𝜌𝑗 (subscript identifies pre-synaptic neuron’s 

number), sum up and weighted by some factor 𝑊𝑗, and multiplied by the synaptic dynamics to 

produce the synaptic current 𝑖𝑠 which is then passed through a sigmoidal process to provide 

the rate of firing of post-synaptic neuron. Note that the exact time of impulses is not known a 

priori thus for simplification, we replace the impulse trains 𝜌𝑗 with average spike rates 𝑟𝑗. 

Regarding this model some important assumptions are made which are as follows, 

1. Pre-synaptic neurons have uncorrelated activity. 

2. Synaptic dynamics are modelled as linear filter. 

Taking these assumptions into account, and assuming a first-order filter for simplicity, the 

output of post-synaptic neuron can be written as, 

 𝜏𝑠

𝑑𝑖𝑠(𝑡)

𝑑𝑡
= −𝑖𝑠(𝑡) + ∑ 𝑊𝑗𝑟𝑗(𝑡)

𝑁

𝑗=1

 (1.13) 

Here the subscript “s” means post-synaptic neuron while the last term in equation 1.13 

denotes the average weighted firing rate which is due to the first assumption. The above 

equation models the synaptic current which is then fed to a sigmoidal process. 

 𝑆(𝑡) =
𝑆𝑚𝑎𝑥

1 + 𝑒−𝑘(𝑖𝑠(𝑡)−𝑖𝑠0)
 (1.14) 

Smax is the maximum saturation value when 𝑖𝑠(𝑡) tends to positive infinity while S(t) becomes 

0 when 𝑖𝑠(𝑡) tends to negative infinity, and the central point is at Smax/2 when 𝑖𝑠(𝑡) tends to 0. 

Again, a concise representation of spiking rate model of neuron is given here. For further 

reading it is suggested to go through (Gerstner and Kistler, 2002). There are some other 

approaches to model a single neuron (like integrate and fire model or Fitzhugh-Nagumo 

model) but are not detailed here since it is evident that using single neuron models to simulate 
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a population of neurons would require immense computational power. Therefore, an 

alternative approach is desired that can simulate the macro dynamics of a neural population 

without providing any detail about their microscopic behavior. One such approach is to use 

neural mass model which is detailed in chapter 3. 
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Chapter 2 : Brain Rhythms 

 

2.1. Introduction to Major Frequency Bands 

On neuronal level information is encoded as rate of firing of action potentials but it is not 

enough to tell the complete story about functionality of brain. Typically, a single neuron 

receives inputs from many other neurons ranging from thousands to hundreds of thousands. 

While this is the sole means of communication between neurons, on the macro scale it is the 

post-synaptic potentials that sum up leading to the oscillatory activity of brain. These 

oscillations are then recorded by measurement systems (Electroencephalography or 

Magnetoencephalography) to study the brain.  

These oscillations are usually divided into five frequency bands. 

a. Delta (0.5 - 4 Hz) 

b. Theta (4 - 7 Hz) 

c. Alpha (8 – 13 Hz) 

d. Beta (13 – 30 Hz) 

e. Gamma (>30 Hz) 

Note that there is slight disagreement between the extreme values of these bands. For 

example, in some books you might find delta to be in 0.5-3.5 Hz range or Gamma to be in 30-

70 Hz range, nevertheless, the differences are quite small. Delta band is usually attributed to 

brain’s activity during deep sleep while theta band is considered to be related to memory 

encoding and retrieval (Ward, 2003). Alpha rhythm was traditionally considered to indicate 

cortical inhibition, but recent research shows that it is used as an attention modulation 

mechanism to inhibit distracting factors while the brain is focused on something. Thus, alpha 

plays a role in suppressing these unwanted inputs. For example, in memory scanning task the 

alpha power increases since the brain needs to inhibit any distractions. During the motor 

imagery task the alpha power is greater on those cortical sites coding for information that 

needs to be suppressed in order to focus on motor imagery, hence implementing an attention 

mechanism (Jensen et al., 2002; Cooper et al., 2003). 

Beta band is related with an increased conscious activity while gamma band is related to peak 

conscious performance by the brain. Gamma oscillations have a role in memory processing 

especially in memory recollection instead of simply experiencing something familiar. 
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(Burgess and Ali, 2002) observed the presence of higher gamma power in frontal and parietal 

lobes during recollection task if memory is recalled successfully. They also found that in such 

tasks, gamma was modulated by hippocampal theta which reflects the coordination between 

hippocampus and other cortical areas during memory recollection tasks. Gamma band also 

corresponds to attention mechanism. It has been shown that gamma power is at peak around 

300ms after the presentation of stimuli in different sensory modalities, but especially in visual 

processing (Keil, Gruber and Müller, 2001).  

There is also some correlation between gamma band and consciousness. Being visually aware 

leads to a rise in synchronized firing of neurons in gamma-band. In a study by (Rodriguez et 

al., 1999), the authors analyzed the EEG signals during shape recognition task where the 

subjects were shown different images, either containing a face or meaningless shadows. Those 

who perceived the faces had higher synchronized gamma activity compared to those who did 

not. Furthermore, (Tononi and Edelman, 1998) suggested that synchronized activity of 

neuronal firing occurring globally in the brain is the basis for consciousness while localized 

gamma synchrony is simply unconscious process until it interacts with the global process.  

Considering these factors, this thesis is designed to model auditory and visual neuronal 

populations and their multisensory integration in alpha-gamma bands. In unisensory or 

multisensory attentive process both populations show gamma oscillations. Alpha band 

modulation of gamma activity is used either to inhibit one modality, or to inhibit a portion of 

space, thus realizing an attentive suppression mechanism. Gamma modulated by alpha 

signifies that the stimulus is still processed, but is inhibited in higher brain areas, since the 

brain is focusing on the other stimulus. 

 

2.2. Alpha Rhythm Family 

Since Hans Berger's research, it has been observed that large, rhythmic alpha waves occur 

over the visual cortex, particularly when the eyes are closed and there are no eye movements. 

The appearance of these alpha waves is not triggered by a single cause but is rather a result of 

certain conditions. The alpha rhythm found in the occipital region is considered a fundamental 

brain wave. Alpha oscillations are present across the brain and can be weakened by various 

specific and non-specific stimuli and behaviors. Manipulations like opening the eyes, moving 

the eyes, engaging in visual imagery, and even mental activities like doing arithmetic 
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calculations can quickly and consistently block the ongoing alpha oscillations in the occipital 

region. 

Alpha waves are most prominent above the visual areas, but they can also be observed across 

a large part of the cortex, including the frontal eye fields responsible for eye movement 

control. The distinct frequencies of alpha waves in these areas demonstrate their relative 

independence so commonly alpha waves are faster in the occipital region and slower in more 

anterior regions. The alpha band is defined to have a frequency range between 8 to 13 hertz, 

although individual variations are substantial. Additionally, the average frequency of alpha 

waves varies based on factors such as age, gender, and intelligence. Alpha waves in infants 

are usually found below 7 Hz while peak activity is witnessed in earlier adulthood, and then 

gradual decrement with age (Buzsáki, 2006). 

Usually, these two attributes of alpha rhythm are considered in studies: Alpha power and 

Alpha frequency. Alpha power, typically pre-stimulus alpha power, is attributed towards 

excitability level of cortex and accounts for confidence levels too. The excitability level is 

somewhat a measure of excitability threshold i.e., higher alpha power means higher threshold 

to excite the cortex on a given stimulus and thus the probability of perceiving a stimulus 

becomes lower (Ergenoglu et al., 2004). While the alpha frequency accounts for sampling 

mechanism in the brain: Higher frequency alpha leads to greater accumulation of information 

is short span of time and thus providing quite accurate perception (Di Gregorio et al., 2022). 

These mechanisms are studied quite in depth, but the model used in this thesis relies only on 

alpha amplitude and therefore is restricted to amplitude related functionality.  

There is another rhythm that shares a similarity with the occipital alpha in terms of its 

frequency and, possibly, its underlying mechanisms, however, its occurrence and 

characteristics differ significantly. Unlike the alpha present in occipital lobe, this rhythm is 

not influenced by visual input; instead, it is present or produced due immobility of skeletal 

muscles. Merely making slight movements with a finger or toe can block it. This rhythm is 

commonly known “mu” rhythm. This motor-relaxation-associated rhythm has been studied by 

various researchers, leading to the use of different terms to describe it. There is also another 

type of rhythm like alpha and mu but found in temporal lobe and thus called “tau” rhythm. 

The basis of this rhythm is desynchronization in middle temporal lobe when subject receives 

auditory stimuli (Bastarrika-Iriarte and Caballero-Gaudes, 2019). 
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We have seen a family of alpha rhythms, sharing similar frequency characteristics, however, 

in subsequent discussion the term “alpha” would be used to denote this whole group of 

rhythms. Moreover, further focus will be put only on alpha and gamma rhythms and their 

interactions or influence in multisensory processing.   

 

2.3. Origin of Alpha Waves 

Although the exact mechanism of origin of alpha rhythms is still unknown, two major 

theories attempt to unfold this mystery. One theory explains this phenomenon through 

pacemaker model, that is, the endogenous oscillations from cortex and thalamus tend to 

entrain other brain regions and thus alpha activity is produced and propagated. Unlike the first 

theory that points towards a single group or a few groups of neurons producing alpha 

oscillations, the other theory makes assumptions on synaptic interactions between neurons 

that lead to production of alpha waves (Buzsáki, 2006). The former theory is the basis of this 

thesis since our model makes use of a single neuronal population or region dedicated only for 

producing and propagating alpha waves.  

Alpha waves are dominantly evidenced in occipital lobe of animals who have binocular 

vision, saccadic eye movements, and have a large visual cortex. Different studies have shown 

that concurrent electrical recording from occipital lobe and Lateral Geniculate Nucleus (LGN) 

in thalamus were in sync and thus it was deduced that there was a thalamic role in production 

of alpha waves. Thus, it is concluded that these waves emerge because of a complex 

interaction between specific types of neurons in the thalamus (GABAergic thalamic neurons) 

and cortical regions (thalamocortical neurons), accompanied by the amplification of signals in 

the neocortex (Buzsáki, 2006).  

The prevalence of alpha oscillations in circuits involving the thalamic nuclei indicates that the 

extent of alpha oscillations reflects how much the cortex is disconnected from processing 

inputs coming from the body and the environment. However, the relation between this 

disconnection from certain aspects of the environment and brain performance is not 

straightforward and so should not be interpreted as such (Buzsáki, 2006). It is also important 

to note that alpha oscillations are not exclusive to sleep patterns; rather, they are saliently 

present in the human scalp during various waking conditions (as evidenced from EEG), and 

not solely due to relaxed muscles or closed eyes, although these conditions do enhance the 

alpha power. 
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2.4. Inhibitory Networks in Brain  

Inhibitory networks in the brain help maintain stable rhythms. If a network comprises only 

of excitatory neurons then it will only converge to an irreversible unstable endpoint regardless 

of the initial condition, unaffected by complexity of synaptic connections. On the other hand, 

an inhibitory neuron integrated with a chain of excitatory neurons would ensure an overall 

stable response. In the brain, the pyramidal neurons are excitatory neurons that have long 

range connections to different regions, whereas short local connections are provided by 

interneurons that could be both excitatory and inhibitory. Additionally, minute modifications 

in the parameters of these networks will result in drastic changes in each neuron’s activity.  

The combination of excitatory and inhibitory elements in networks allows for self-

organization and is equipped with complex properties. However, even in the most 

straightforward connections between these units, the specific wiring details dictate the firing 

pattern. As depicted in figure 2.1, in a feedback network, increased firing of the pyramidal cell 

causes the inhibitory interneuron to discharge more frequently which in turn decreases the 

pyramidal neuron’s output. This is a classic example of negative feedback mechanism. On the 

other hand, in a feedforward inhibitory setup, when the interneuron is activated, it leads to 

decreased activity of the pyramidal cell. The excitatory input initiates depolarization in the 

pyramidal cell, but the subsequent feedforward inhibition rapidly repolarizes it, resulting in a 

narrower temporal window for discharging and consequently the system achieves an 

impressively precise spike timing of sub-milliseconds range (Buzsáki, 2006). 

 

Fig.2.1. Some examples of different topologies of excitatory(black)-inhibitory(grey) networks(Buzsáki, 2006).  

When simple feedback or feedforward relationships are altered, the firing patterns of the 

involved cells become more complex. For instance, when two interneurons are activated 
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together, their combined impact on the target pyramidal neuron depends on their interaction. 

In lateral inhibition things become more complicated since it is an extension of a feedback 

network but with higher complexity. To understand better, consider two pyramidal neurons 

sharing the same inhibitory interneuron and receiving same inputs. Now in this condition both 

neurons share common dynamics, but the condition becomes peculiar when one of the 

pyramidal neurons receives a stronger input. In this case it would tend to suppress the other 

neuron’s activity and the same would happen vice versa. The same situation would occur if 

the input to any one of the neurons reached slightly earlier in time than the other. Even with 

such minimal differences between intensities or temporal occurrences of inputs the network’s 

dynamics would differ significantly. It is important to note that the above example can be 

considered as a “winner takes all” mechanism since any of the neurons receiving stronger or 

earlier input would define network’s behavior. 

 

2.5. Gamma Rhythm 

One of the perplexing problems in neuroscience is understanding how the brain puts 

different pieces of sensory information together to perceive the external world. An apple’s 

shape and color are perceived through vision, its texture is felt through touch so how does the 

brain integrate this information to perceive an apple? Moreover, the brain is capable of 

comparing this incoming information to what is already saved inside, and all this is done in 

the matter of a few hundred milliseconds. This is known as the “binding problem”. Another 

similar problem is superimposition or segmentation problem that pertain to brain’s ability to 

segment different objects that are perceived simultaneously or how it can perceive different 

objects having superimposed features or patterns such as a salamander and leafy background 

(Buzsáki, 2006).  

One theory that explains this phenomenon is the feed-forward or hierarchical model. This 

assumes that simple neurons, located lowest in hierarchical level or in-front in feed-forward 

model, process simple features, but feature processing becomes more and more complex as 

neurons are placed at a higher hierarchical level. Although this theory got a lot of attention, 

there are a few problems with it. Firstly, it does not account for physiological feedback 

connections. Secondly, if such connectionism did exist then for each shape, color, texture, or 

any attribute or feature, there would be a corresponding neuron encoding that information and 

a different neuron would be required to code even slight variations in any of the feature. 
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Ultimately the brain would need almost an infinite number of neurons. Moreover, the brain 

consists of highly interconnected neurons but if a feed-forward approach is used to model 

neuronal connections then there would be a dead-end i.e., the last neuron in feed-froward 

network would have no further connection. Finally, this model is unable to explain how 

temporal processing is done in the brain.  

The alternate hypothesis is of temporal coherence or synchrony in which the temporal 

synchrony of neuronal firing is crucial. So, when we are perceiving an object, different brain 

regions, regardless of any “direct” connection and encoding different features, fire 

synchronously. Such synchronization does not represent causal connectionism as would have 

been the case for the feedforward model or hierarchical model but provides an acausal 

description of events temporally bounded together. Such synchrony is typically achieved via 

feedback connections. It is worth noting that neurons at many times fire randomly, because of 

continuous changes in post-synaptic potentials, therefore there exists a major problem: To 

achieve harmonious coexistence of different features, without any error due to random 

neuronal firing, the brain would need infinite number of connections between different 

neuronal populations (Buzsáki, 2006). 

A solution to this problem is the presence of oscillations which can synchronize in a few 

cycles leading to effective perception: for example, distinguishing between foreground and 

background. Such oscillations can function even in sparse connections. The earliest evidence 

in this regard was provided by (Gray et al., 1989). The authors measured local field potentials 

in cat’s visual cortex and found the presence of gamma band activity due to moving bars. In 

another study by (Burgess and Ali, 2002), the authors concluded that gamma oscillations 

arising from neurons in separate cortical columns can synchronize and thus are related to 

feature binding. For such type of binding it is necessary that the receptive fields of different 

neurons overlap otherwise the oscillations do not synchronize.  

  

2.5.1. Gamma Rhythm Generation 

The interneurons, which usually release the inhibitory neurotransmitter GABA 

(gamma-aminobutyric acid), are quite less in number in the cortical region and only make up 

one-fifth of overall cortical neuronal population, or even less (Buzsáki, 2006). Given this 

scenario, how does this small inhibitory population match up with the large excitatory 

pyramidal population? There are various approaches through which this small group keeps the 
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larger group in check. Firstly, the synaptic connectivity between interneurons-pyramidal 

neurons (around 5-15 synaptic connections between single interneuron and a pyramidal cell) 

is quite stronger compared to pyramidal-pyramidal connections. Secondly, the activation 

threshold for an interneuron is low and at times even a single action potential from a pre-

synaptic pyramidal neuron can cause the post-synaptic interneuron to fire (Buzsáki, 2006). 

Through these mechanisms the interneurons fire more rapidly than pyramidal cells and thus 

the overall effect of Inhibitory Postsynaptic Potentials (IPSPs), converging on a pyramidal 

neuron, becomes equal to Excitatory Postsynaptic Potentials (EPSPs). IPSPs are characterized 

by short rise and decay times and higher amplitudes than EPSPs which have lower amplitude 

but with longer temporal dynamics. Moreover, the IPSPs normally converge on cell body of 

post-synaptic neuron as compared to EPSPs which dominantly localize on dendrites of post-

synaptic cells. Consequently, the extracellular space, with high density of cell bodies or soma, 

is filled with high frequency currents in contrast to higher dendritic density areas. Thus, it is 

this connectivity and interplay of excitatory-inhibitory neurons that leads to cortical harmony 

and the global firing rates of neurons are kept in check. Furthermore, through such 

connectionism the excitability threshold of neurons can be lowered for brief periods of time 

allowing efficient message transmission and network modification (Buzsáki, 2006). 

The combined effects of these interneurons then exhibit gamma rhythm. It has been shown 

that inhibitory interneurons with fast dynamics (denoted as GABAA,fast) and slow dynamics 

(denoted by GABAA,slow) are crucial in maintaining different rhythms. Typically, GABAA,fast 

are needed for gamma generation and GABAA,slow for slower rhythm generation, like theta 

(White et al., 2000). Note that the subscript A here only means that they are type-A GABA. 

Nevertheless, the neuronal dynamics that lead to generation of different rhythms do not 

simply work standalone but rather there is constant activity in the brain and therefore the 

rhythms are not generated as separate entities but as a complex time series made up of 

spectrum of different frequencies contributing to overall brain function. For instance, the 

alpha-gamma rhythms are attributed to attention: Gamma is associated with conscious signal 

processing while alpha is related to focus or attention. In particular, a gamma rhythm 

modulated by alpha is implicated in subconscious stimulus processing in conditions when 

some stimuli are inhibited by brain to focus attention on something else. Moreover, a gamma 

rhythm modulated by a slower theta rhythm is implicated in learning and memory (Ward, 

2003).  
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Chapter 3 : Neural Mass Models 

 

3.1. Why Neural Mass Models? 

In the first chapter some of the computational models of single neurons were presented 

which can be used as basic units when modelling population dynamics. These single neuron 

models are quite detailed in terms of microscopic behavior of brain, that is, they explain the 

spiking dynamics of neurons well, and allow better understanding of spike timing, 

propagation of action potential, and synaptic interactions. Through this approach population 

models can be made more biologically plausible and the contribution of each single neuron 

towards overall dynamics of the population can be analyzed. Furthermore, very complex 

connections between different populations of neurons can be modelled starting from the 

spiking model of single neuron and the population models made from these single neuron 

models can effectively capture both micro and macroscopic behavior of brain regions. 

These models are quite robust in terms of mimicking neurophysiology but are quite 

computationally expensive, especially when creating very large networks containing hundreds 

of thousands of neurons, because the parameters in such models could number in the range of 

millions or even billions and parameter estimation becomes extremely difficult given that they 

need to be biologically relevant. So, these models tend to be very complex, and their analysis 

becomes a demanding job. Therefore, a different approach can be utilized. Instead of starting 

from single neuron model and working all the way up to a population, we can consider the 

population as a whole and model it directly without considering what happens on microscopic 

level. This approach may not seem biologically relevant, but on macroscopic scale it can 

simulate the behavior of a neuronal population. 

There have been numerous approaches towards these population models (also called Neural 

Mass Models or NMMs) since the 1970s. Earlier work by (Wilson and Cowan, 1972) was 

quite important as it laid the framework for researchers to work on coarse-grained models. 

Further work by (Lopes da Silva et al., 1974; Rotterdam et al., 1982) provided better insights 

to simulate alpha band activity. Subsequently, the model by (Jansen and Rit, 1995) gave a 

better physiological meaning to the computational model. They included three neuronal 

populations in their model (pyramidal cells that are excitatory and two groups of interneurons, 

both excitatory and inhibitory) and could simulate the different frequency rhythms but only by 

changing the synaptic connections and time constants. However, a ROI (region of interest) at 
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each time could only simulate a single type of rhythm. It was shown by (Grimbert and 

Faugeras, 2006) that the model was prone to instability so there was a strong limitation on the 

choice of parameters. Note that we have used the word “population” or “group” to refer to a 

single type of neuronal network (pyramidal cells or Interneurons) and the word “ROI” to refer 

to the whole structure (like a cortical column) of these interconnected groups or populations 

that can jointly generate one or more rhythms.  

An extension of Jansen and Rit model was done by (Wendling et al., 2002) wherein they used 

both fast and slow inhibitory interneurons and simulated epileptic activity. The physiological 

reality of having multiple rhythms coming from a single ROI was computationally possible 

thanks to the work by (David and Friston, 2003) where they generalized the Jansen and Rit 

model and included multiple populations to achieve this milestone. Similar study was done by 

(Sotero et al., 2007; Ursino et al., 2007) to generate multiple rhythms using multiple 

populations but with one population producing one rhythm only. Trying to come up with a 

way of having a population capable of generating more than one rhythms the study by 

(Zavaglia et al., 2008) made it possible. They used similar model as (Wendling et al., 2002) 

with 4 interconnected neuronal groups making up one ROI. By connecting three ROIs they 

were able to simulate two rhythms in a single ROI, with the other rhythms coming from other 

sources like a different ROI or an external oscillator.  

It is now evident that the computational model of different interconnected neuronal 

populations is able to generate a rhythm and the interconnected populations can work jointly 

to simulate one or more rhythms. The significant achievement of having one type of 

population capable of producing high frequency gamma rhythms was by (Jefferys, Traub and 

Whittington, 1996). In their work they simulated 40 Hz gamma rhythm using only inhibitory 

interneurons but with self-loop and an excitatory external input. However, the model is quite 

sensitive to external input’s oscillations and slight changes can cause unstable behavior. 

Following this work, the authors in (Ursino, Cona and Zavaglia, 2010) modelled a system 

with four ROIs and each ROI containing four neuronal populations (pyramidal, excitatory 

interneurons, GABAA,fast, and GABAA,slow interneurons). Moreover, the fast inhibitory 

interneurons within each ROI receive a self-loop which provides better oscillatory behavior in 

the gamma range. 

This latest description is the basis of this thesis, and the model will be presented in detail in 

the next chapter while the current chapter is dedicated to detail some historically significant 
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mass models, starting with Wilson-Cowan oscillator followed by Jansen and Rit model, and 

then the analysis of inhibitory interneuron population with self-loop.  

 

3.2. Wilson-Cowan Model 

The Wilson-Cowan model (Wilson and Cowan, 1972) is a mathematical description of 

interaction between excitatory and inhibitory populations. Its major goal is to simulate the 

macroscopic behavior of neuronal networks with no attention to detail on singular neuronal 

contributions. It was a significant milestone in computational neuroscience since researchers 

were struggling to find ways to model neural dynamics on a global scale. Their model is 

based on coarse-grained approach meaning that the system is simplified in terms of degrees of 

freedom so that there is a trade-off between complexity of model and its ability to effectively 

simulate the system’s dynamics. The way forward is to have a simpler model with less 

degrees of freedom and the information loss is acceptable such that the phenomenon under 

analysis can be studied optimally. Their coarse-grained approach makes use of mean-field 

equations that represent the proportion of active neurons, at a given moment in time, in a 

neuronal population. 

 

Fig.3.1. Pictorial depiction of Wilson-Cowal model. 
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Figure 3.1 elaborates the interaction of excitatory-inhibitory populations of neurons based on 

the Wilson-cowan model. The excitatory population is represented with E and inhibitory 

population with I, while a, b, c, d are constants showing synaptic strength, and lines 

connected by arrowhead are excitatory connections whereas circular shape at end represent 

inhibitory connection. Note that both populations receive self-connections too (a and d) which 

does not mean that the neurons excite or inhibit themselves; rather these represent 

interconnections between neurons in the same population. Finally, the inputs are denoted by ie 

and ii respectively, for excitatory and inhibitory populations, that are considered to be sum of 

currents incoming from other neuronal populations or external sources.  

The model equations can thus be written as (Kilpatrick, 2013), 

 𝜏𝑒

𝑑𝐸(𝑡)

𝑑𝑡
= −𝐸(𝑡) + [1 − 𝑟𝑒𝐸(𝑡)]𝑓𝑒(𝑎𝐸(𝑡) − 𝑏𝐼(𝑡) + 𝑖𝑒(𝑡)) (3.1) 

 𝜏𝑖

𝑑𝐼(𝑡)

𝑑𝑡
= −𝐼(𝑡) + [1 − 𝑟𝑖𝐼(𝑡)]𝑓𝑖(𝑐𝐸(𝑡) − 𝑑𝐼(𝑡) + 𝑖𝑖(𝑡)) (3.2) 

These are first order differential equations with time constants τe and τi, and E(t) and I(t) show 

the proportion of active neuronal populations at time instant t. Furthermore, the inputs to each 

population are time varying, which, for reasons of simplifications, can be assumed to be 

constant in some cases. The synaptic strength factors are crucial in determining the oscillatory 

activity of model and are carefully selected to mimic physiological values. fi and fe are 

nonlinear activation functions (equations 3.3 and 3.4) to show the proportion of active of 

inactive neurons. Typically, a sigmoidal function is used here with 0 meaning complete 

inhibition and 1 meaning complete excitation. 

 𝑓𝑗(𝑥) =
1

1 + 𝑒−𝛾𝑗(𝑥−𝑥𝑗)
          𝑗 ∈ {𝑒, 𝑖} (3.3) 

The factor 𝛶j is gain and xj is threshold depending on population type j (e or i). Before the 

nonlinear function there is a factor [1-rjJ(t)] (J∈{E,I}, j∈{e,i}) which defines the refractory 

period of these populations whereby the neurons are unable to fire, immediately following 

activation. In some subsequent studies this factor is often neglected but for sake of 

completeness it is reported here. Analyzing these equations regarding their stability we keep rj 

= 0, so the equations for isocline are, 

 𝐸(𝑡) = 𝑓𝑒(𝑎𝐸(𝑡) − 𝑏𝐼(𝑡) + 𝑖𝑒(𝑡)) (3.4) 

 𝐼(𝑡) = 𝑓𝑖(𝑐𝐸(𝑡) − 𝑑𝐼(𝑡) + 𝑖𝑖(𝑡)) (3.5) 
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Equation 3.3 is vertical isocline and 3.4 is horizontal. Keeping a constant current input for the 

excitatory population while 0 input for inhibitory, and setting some constant values for 

synaptic strengths, the resultant phase plane can be plotted as shown in figure 3.2.  

 

Fig.3.2. Phase plane plot of Wilson-Cowan model..  

 

Fig.3.3. Simulation of Wilson-Cowan model. 
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The values for this plot are taken from (Wilson, 1999) and simulated in MATLAB software. 

Through further analysis it can be shown that this system provides an asymptotically stable 

limit cycle describing the oscillatory nature of the model as depicted in figure 3.3. The 

existence of a limit cycle is restricted to significantly high values of input current and of 

course carefully selected synaptic strength values. In fact, if the current is too low then a 

stable equilibrium point would occur where the population activity would converge. Apart 

from that, to achieve different oscillatory bands the different values of time constants can be 

used.  

The model was initially developed for visual processes but then different studies extended it 

towards other sensory-motor and cognitive processes (Kilpatrick, 2013). Though this model 

provides a good analysis on oscillations, it is not quite physiological as its parameters have no 

relevant physiological meaning. Furthermore, it takes into account only the two neuronal 

populations (excitatory and inhibitory) in a certain brain region while there are a number of 

different types of neurons present in a cortical column. Moreover, the model assumes that a 

certain region of the brain can only have one rhythm at a time while that is not the case. 

Another simplification is the absence of a clear description of synaptic dynamics. Therefore, a 

better approach is needed that can account for these limitations. 

 

3.3. Jansen and Rit Model 

The Jansen and Rit model is also a coarse-grained or lumped parameter model which 

simulates a cortical column. The excitatory pyramidal neurons are in feedforward condition 

whilst receiving feedback connections from both excitatory and inhibitory interneurons. These 

interneurons can represent local or distant neurons feeding the inputs to pyramidal neurons. 

The neuronal population in each group is modelled by having two stages of processing: One 

for transforming the incoming average spike rate (average density of action potentials) into 

post-synaptic potentials (PSPs) and the other stage for transforming these PSPs back to 

average density of action potentials (Jansen and Rit, 1995). It is worth noting that the PSPs 

can be inhibitory (IPSPs) or excitatory (EPSPs), as a consequence of GABAergic or 

Glutamate based synapses.  

Th first stage of processing refers to sigmoidal relationship that transform PSPs (denoted by yi 

where i denotes post-synaptic population) to average density of action potentials or simply the 

spike rate (denoted by zi) of that population. Then the second stage of processing refers to 
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synaptic dynamics of a neuron in physiological reality. It is modelled by a second order 

differential equation. A simple single population model is shown in figure 3.4. The incoming 

post-synaptic potentials are weighted, summed up (positive or negative depending on 

excitatory or inhibitory synapses, respectively), and passed through a sigmoid to be 

transformed into spike rate. Then, the second order synaptic dynamics transform the spike rate 

to post-synaptic potential. 

 

Fig.3.4. Model of single population based on Jansen and Rit. 

Following the above representation, the equations for single population can be written as, 

 𝑣𝑖 = ∑ 𝑊𝑖𝑗𝑦𝑗

𝑗

(𝑡) (3.6) 

 𝑧𝑖(𝑡) = 𝑆(𝑣𝑖(𝑡)) =
2𝑒0

1 + 𝑒−𝑟(𝑣𝑖(𝑡)−𝑣0)
− 𝑒0 (3.7) 

 𝑦𝑖̈(𝑡) = 𝐺𝑖𝜔𝑖𝑧𝑖(𝑡) − 2𝜔𝑖𝑦̇ 𝑖(𝑡) − 𝜔𝑖
2𝑦𝑖(𝑡) (3.8) 

Here the subscript j represents presynaptic population while i represents post-synaptic 

population. Wij are the connectivity weights between pre and post synaptic populations and 

vi(t) is the weighted sum of PSPs of pre-synaptic populations, while yi is the PSP of post-

synaptic population. The value e0 is the maximum possible spike rate, r is related with the 

steepness of sigmoid function and, v0 is the PSP at which spike rate is 50% of overall value. 

Gi is the gain and 𝜔𝑖 is the inverse of time constant of the system. In the Laplace domain the 

synapse equations become, 

 𝐻𝑖(𝑠) =
𝐺𝑖𝜔𝑖

(𝑠 + 𝜔𝑖)2
 (3.9) 

 ℎ𝑖(𝑡) = 𝐺𝑖𝜔𝑖𝑡𝑒−𝑡𝜔𝑖 (3.10) 

 Following this single population model the schema  for complete model is shown in figure 3.5 

which contains three populations: Pyramidal neurons, Excitatory Interneurons, and Inhibitory 
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Interneurons. These interconnections follow following typical physiological rules, as defined 

previously in topic 2.4.  

a. Pyramidal neurons do not self-excite but do excite both excitatory and inhibitory 

interneurons. 

b. Excitatory interneurons only excite the pyramidal neurons. 

c. Inhibitory interneurons only inhibit the pyramidal neurons. 

d. External inputs (from pyramidal neurons in different cortical columns) can excite all 

three of these populations. 

For clarity of notations, the first subscript will be used for post-synaptic population while 

second subscript will be used for pre-synaptic population, for instance, Wep means the weight 

for PSP of pyramidal neurons (pre-synaptic) going towards excitatory interneurons (post-

synaptic). Similar notations are used for the rest of the variables as in equations 3.6-3.8, 

except that subscripts p, e, and i represent pyramidal, excitatory interneurons, and inhibitory 

interneurons, respectively, while n is the input. For sake of simplicity only one input is 

included in the excitatory interneurons’ population. 

 

Fig. 3.5. Jansen and Rit model of three interconnected populations. 
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Note that from now onwards the weights Wij will be replaced by Cep since in the next chapter 

the notation W would be used for other purposes. The equations for above schema can now be 

written as,  

Pyramidal Neurons 

 𝑣𝑝(𝑡) = 𝐶𝑝𝑒𝑦𝑒(𝑡) − 𝐶𝑝𝑖𝑦𝑖(𝑡) (3.11a) 

 𝑧𝑝(𝑡) = 𝑆 (𝑣𝑝(𝑡)) =
2𝑒0

1 + 𝑒−𝑟(𝑣𝑝(𝑡)−𝑣0)
− 𝑒0 (3.11b) 

 𝑦𝑝̈(𝑡) = 𝐺𝑝𝜔𝑝𝑧𝑝(𝑡) − 2𝜔𝑝𝑦𝑝̇(𝑡) − 𝜔𝑝
2𝑦𝑝(𝑡) (3.11c) 

Excitatory Interneurons 

 𝑣𝑒(𝑡) = 𝐶𝑒𝑝𝑦𝑝(𝑡) (3.12a) 

 𝑧𝑒(𝑡) = 𝑆(𝑣𝑒(𝑡)) =
2𝑒0

1 + 𝑒−𝑟(𝑣𝑒(𝑡)−𝑣0)
− 𝑒0 (3.12b) 

 𝑦𝑒̈(𝑡) = 𝐺𝑒𝜔𝑒 [𝑧𝑒(𝑡) +
𝑛(𝑡)

𝐶𝑝𝑒
] − 2𝜔𝑒𝑦𝑒̇(𝑡) − 𝜔𝑒

2𝑦𝑒(𝑡) (3.12c) 

Inhibitory Interneurons 

 𝑣𝑖(𝑡) = 𝐶𝑖𝑝𝑦𝑝(𝑡) (3.13a) 

 𝑧𝑖(𝑡) = 𝑆(𝑣𝑖(𝑡)) =
2𝑒0

1 + 𝑒−𝑟(𝑣𝑖(𝑡)−𝑣0)
− 𝑒0 (3.13b) 

 𝑦𝑖̈(𝑡) = 𝐺𝑖𝜔𝑖𝑧𝑖(𝑡) − 2𝜔𝑖𝑦𝑖̇(𝑡) − 𝜔𝑖
2𝑦𝑖(𝑡) (3.13c) 

To get the oscillatory activity the following parameter values were used (Jansen and Rit, 

1995). 

Parameter Detail Value 

Cep 
Average synaptic gain from Pyramidal population to 

Excitatory interneurons’ population 
135 

Cpe 
Average synaptic gain from Excitatory interneurons’ 

population to Pyramidal population 
0.8*135 

Cip 
Average synaptic gain from Pyramidal population to 

Inhibitory interneurons’ population 
0.25*135 

Cpi 
Average synaptic gain from Inhibitory interneurons’ 

population to Pyramidal population 
0.25*135 

Ge , Gp 
Excitatory Synaptic Gain (Same of Pyramidal neurons 

and Excitatory Interneurons) 
3.25 mV 
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Gi Inhibitory Synaptic Gain 22 mV 

v0 PSP at which 50% spike rate achieved 6 mV 

e0 Maximum Possible spike rate 2.5 s-1 

r Steepness of sigmoid slope 0.56 mV-1 

𝝎𝒆 , 𝝎𝒑 
Time constants of pyramidal neurons and excitatory 

interneurons 
100 s-1 

𝝎𝒊 Time constant of inhibitory interneurons 50 s-1 

Table 3.1. Parameter values for Jansen and Rit model. 

This model has been shown to be quite useful in simulating oscillatory behavior of neuronal 

populations in different frequency bands, especially lower frequency bands like delta, alpha or 

beta. It has been employed to simulate EEG/MEG brain activity (David and Friston, 2003), 

model epileptic conditions (Wendling et al., 2000), or to study brain dynamics using Dynamic 

Causal Modelling (DCM) (David et al., 2006). The model is quite robust and able to simulate 

different conditions pertaining to brain rhythms.  

 

3.4. Inhibitory Interneurons with Self-Loop 

In the previous mass models, populations in each ROI were either interconnected and thus 

received synaptic inputs from each other or received long range inputs from pyramidal 

neurons of other ROIs (Jansen and Rit, 1995; Wendling et al., 2002), and so the oscillatory 

activity was ensured. Conversely, a population simulated only via a white noise input could 

not achieve rhythmic behavior (Ursino, Cona and Zavaglia, 2010). But however, different 

studies evidenced that fast inhibitory interneurons can solely generate gamma rhythm as they 

are highly interconnected with each other (Bartos, Vida and Jonas, 2007). Computational 

studies in this regard have shown the same i.e., gamma rhythm can be generated by fast 

inhibitory interneurons alone without any influence of other neuronal populations (Jefferys, 

Traub and Whittington, 1996; Sotero et al., 2007).  

Following these approaches, a simplistic model of these interneurons is detailed in figure 3.6 

(Ursino, Cona and Zavaglia, 2010) that shows a self-loop along with any possible external 

input (from neural population within same ROI or pyramidal cells from other ROIs). This 

inhibitory population is the one with fast dynamics (GABAA,fast) and the input is simply white 

noise with zero mean. To analyze this system in an isolated manner the external input is kept 

zero and the non-linear block is linearized around the critical points of state vector Yf. 
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Fig.3.6. Fast inhibitory interneuron population with self-loop. 

The equations are thus written as, 

 𝑣𝑓(𝑡) = 𝐶𝑓𝑓𝑦𝑓(𝑡)  (3.14a) 

 𝑧𝑓(𝑡) = 𝑆(𝑣𝑓(𝑡)) =
2𝑒0

1 + 𝑒−𝑟(𝑣𝑓(𝑡)−𝑣0)
− 𝑒0  (3.14b) 

 𝑦𝑓̇ = 0  (3.14c) 

 𝑦𝑓̈(𝑡) = 𝐺𝑓𝜔𝑓𝑧𝑓(𝑡) − 2𝜔𝑓𝑦𝑓̇(𝑡) − 𝜔𝑓
2𝑦𝑓(𝑡) = 0 (3.14d) 
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Chapter 4 : Audio-Visual Multisensory Integration using 

NMM 

 

Modelling the audio-visual multisensory integration using NMM is the focus of this 

chapter and this thesis. The approach consists of Wendling’s model but with self-loop in fast 

inhibitory interneurons (GABAA,fast) as in (Ursino, Cona and Zavaglia, 2010). As summarized 

in chapter 1, the model replicated neuronal physiology as the individual sensory modalities 

are processed in their respective areas/regions in brain (unisensory processing) and then the 

information is fed to a higher hierarchical level that performs multisensory processing. In this 

case, the multisensory processing is considered to be done by multisensory neurons which are 

assumed at a higher hierarchical level. 

 

4.1. A single ROI 

Extending the previous work from Jansen and Rit model, and Wendling’s model the 

current approach to generate alpha-gamma rhythms makes use of four interconnected ROIs 

(each with four neuronal populations: pyramidal, GABAA,slow, GABAA,fast, and excitatory 

interneurons) along with self-loops in fast inhibitory interneurons with each ROI receiving 

excitatory input (from pyramidal cells of other ROIs or any other external input) at pyramidal 

neurons and inhibitory input at fast inhibitory interneurons. Although the neurophysiology 

evidences that the input to a certain ROI or a cortical column can be received at both types of 

interneurons as well as pyramidal cells (David, Harrison and Friston, 2005), the study by 

(Ursino, Cona and Zavaglia, 2010) proved that only the inputs at GABAA,fast and pyramidal 

neurons are enough to generate oscillations in a ROI. 

The model of a single ROI is represented in figure 4.1. The weights are denoted by Cij 

wherein the first subscript is for post-synaptic population and the second subscript is for pre-

synaptic population. Subscripts e, p, s, and f are respectively for excitatory interneurons, 

pyramidal neurons, GABAA,slow, and GABAA,fast interneurons. Furthermore, the synaptic 

dynamics of excitatory interneurons, pyramidal neurons, and excitatory inputs are considered 

to be same (Ge = Gp = Gl, 𝜔e = 𝜔p = 𝜔l). It can be seen that there are eight weight parameters 

(Cij) in one ROI. 
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Fig.4.1. Single ROI of 4 four interconnected populations.  

Now this model can be mathematically written as, 

Pyramidal Neurons 

 𝑣𝑝(𝑡) = 𝐶𝑝𝑒𝑦𝑒(𝑡) − 𝐶𝑝𝑠𝑦𝑠(𝑡) − 𝐶𝑝𝑓𝑦𝑓(𝑡) (4.1a) 

 𝑧𝑝(𝑡) = 𝑆 (𝑣𝑝(𝑡)) =
2𝑒0

1 + 𝑒−𝑟(𝑣𝑝(𝑡)−𝑣0)
− 𝑒0 (4.1b) 

 𝑦𝑝̇(𝑡) = 𝑥𝑝(𝑡) (4.1c) 

 𝑥𝑝̇(𝑡) = 𝐺𝑝𝜔𝑝𝑧𝑝(𝑡) − 2𝜔𝑝𝑥𝑝(𝑡) − 𝜔𝑝
2𝑦𝑝(𝑡) (4.1d) 

Excitatory Interneurons 
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 𝑣𝑒(𝑡) = 𝐶𝑒𝑝𝑦𝑝(𝑡) (4.2a) 

 𝑧𝑒(𝑡) = 𝑆(𝑣𝑒(𝑡)) =
2𝑒0

1 + 𝑒−𝑟(𝑣𝑒(𝑡)−𝑣0)
− 𝑒0 (4.2b) 

 𝑦𝑒̇(𝑡) = 𝑥𝑒(𝑡) (4.2c) 

 𝑥𝑒̇(𝑡) = 𝐺𝑒𝜔𝑒 (𝑧𝑒(𝑡) +
𝑢𝑝(𝑡)

𝐶𝑝𝑒
) − 2𝜔𝑒𝑥𝑒(𝑡) − 𝜔𝑒

2𝑦𝑒(𝑡) (4.2d) 

Slow Inhibitory Interneurons 

 𝑣𝑠(𝑡) = 𝐶𝑠𝑝𝑦𝑝(𝑡) (4.3a) 

 𝑧𝑠(𝑡) = 𝑆(𝑣𝑠(𝑡)) =
2𝑒0

1 + 𝑒−𝑟(𝑣𝑠(𝑡)−𝑣0)
− 𝑒0 (4.3b) 

 𝑦𝑠̇(𝑡) = 𝑥𝑠(𝑡) (4.3c) 

 𝑥𝑠̇(𝑡) = 𝐺𝑠𝜔𝑠𝑧𝑠(𝑡) − 2𝜔𝑠𝑥𝑠(𝑡) − 𝜔𝑠
2𝑦𝑠(𝑡) (4.3d) 

Fast Inhibitory Interneurons 

 𝑣𝑓(𝑡) = 𝐶𝑓𝑝𝑦𝑝(𝑡) − 𝐶𝑓𝑠𝑦𝑠(𝑡) − 𝐶𝑓𝑓𝑦𝑓(𝑡) + 𝑦𝑙(𝑡) (4.4a) 

 𝑧𝑓(𝑡) = 𝑆 (𝑣𝑓(𝑡)) =
2𝑒0

1 + 𝑒−𝑟(𝑣𝑓(𝑡)−𝑣0)
− 𝑒0 (4.4b) 

 𝑦𝑓̇(𝑡) = 𝑥𝑓(𝑡) (4.4c) 

 𝑥𝑓̇(𝑡) = 𝐺𝑓𝜔𝑓𝑧𝑓(𝑡) − 2𝜔𝑓𝑥𝑓(𝑡) − 𝜔𝑓
2𝑦𝑓(𝑡) (4.4d) 

 𝑦𝑙̇(𝑡) = 𝑥𝑙(𝑡) (4.4e) 

 𝑥𝑙̇(𝑡) = 𝐺𝑙𝜔𝑙𝑢𝑓(𝑡) − 2𝜔𝑙𝑥𝑙(𝑡) − 𝜔𝑙
2𝑦𝑙(𝑡) (4.4f) 

This “complete” model of a single ROI is now capable of representing a neural circuit. Our 

model shall consist of 4 ROIs: two with intrinsic gamma band denoting conscious sensory 

processing, one with intrinsic alpha band which modulates attention, and one ROI with both 

bands to simulate multisensory processing. The generation of either alpha or gamma rhythm 

by any ROI depends on the choice of parameters used for that ROI. Specifically, the time 

constants (and some synaptic weights too) are crucial in maintaining a rhythm. From table 

4.1, the time constants of excitatory and fast inhibitory interneurons are kept low to generate 

gamma rhythm while higher values are used for alpha rhythm. It means that dynamics of both 

types of neurons need to be fast to generate faster rhythms. Conversely, the slow inhibitory 

interneurons’ dynamics are slow in gamma band as compared to alpha band.  

Moreover, the synaptic weightage from both slow interneurons and pyramidal neurons 

towards fast interneurons (Cfs and Cfp) are kept at higher value to generate gamma rhythm 

meaning, while weightage from slow interneurons to pyramidal neurons (Cps) is kept low 
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when generating gamma rhythm. Apart from these, all other values are kept similar. These 

points identify the importance of synaptic connectivity among different neural populations 

that lead to generation of rhythms.  

 Parameter Value for Alpha Value for Gamma 

Gain 

Ge 5.17 5.17 

Gs 4.45 4.45 

Gf 57.1 57.1 

Reciprocal of Time 

constant (s-1) 

𝜔e 66 125 

𝜔s 42 30 

𝜔f 300 400 

Table 4.1. Gain and time constants. 

 Parameter Value for Alpha Value for Gamma 

Synaptic Weights 

Cep 54 54 

Cpe 54 54 

Csp 54 54 

Cps 450 67.5 

Cfs 10 27 

Cfp 35 108 

Cpf 300 300 

Cff 10 10 

Table 4.2. Synaptic Weights. 

 Parameter Value 

Sigmoidal Characteristics 

e0 2.5 

r (mV-1) 0.56 

v0 15 

Table 4.3. Sigmoidal Characteristics. 

These values can be modified to even simulate the oscillatory behavior in theta, delta, or beta 

bands. Moving on with this model, a network of ROIs can now be modelled to simulate a 

neurophysiological phenomenon.  
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4.2. Model of Audio-Visual Multisensory Integration 

Based on the previous summary, the current approach is to have four brain areas, two 

for unisensory processing, one for modulating attention, and one multisensory area. Figure 4.2 

shows how these areas relate to each other.  

 

Fig.4.2. The complete model of 4 ROIs for audio-visual multisensory integration. 
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The inputs at unisensory areas are first passed through the receptive fields and are then 

processed by neural populations. These receptive fields and cross modal connections (bold 

black lines between Area 1 and Area 2) are trained (from a different model; details in 

subsequent topic) based on physiological definitions of auditory and visual information 

processing. The next level in hierarchy is a multisensory area which receives processed inputs 

from both unisensory areas and is able to simulate the physiology of ventriloquism, causal 

inference, and attention mechanism. These details will be further elaborated later. These areas 

receive further connection from another brain area that serves as the alpha rhythm generator 

to achieve attention mechanism. 

A1 (Area 1) and A2 (Area 2) are unisensory areas corresponding to visual and auditory 

modalities, respectively, while A4 (Area 4) is the multisensory level. A3 (Area 3) generates 

alpha rhythms and is the basis of attention mechanism: It sends alpha rhythm to all other ROIs 

to enforce attention. Each area consists of 180 ROIs which account for 1800 of spatial field in 

azimuthal direction, except for A3 which only has one ROI since it would send the same 

output (alpha rhythm) to every other ROI of all areas. Having this complete model, the inputs 

to each ROI are modelled by white gaussian noise plus the contribution of lateral and cross 

modal connections. Now obviously these connections are only valid for A1 and A2, while for 

A4 there are input connections coming from both unisensory areas and A3. 

The equations 4.1-4.4 are replicated for all 180 ROIs in each area therefore matrix notations 

are used: Simple capital letters denote 180x180 matrices, bold capital letters represent 180xN 

arrays (Vi, Zi, Yi, Xi, where i = p,e,s,f), small bold letters (m1, m2, 𝒘𝟏𝟑
𝒇

, 𝒘𝟐𝟑
𝒇 , ujk, njk, where 

j=p,f and k=1-4) represent 180x1 vectors, and simple small letters are scalar values. Note that 

there are two exceptions in these notations: zp3 and zf3, which are 1xN vectors, where N 

denotes the total number of discrete time samples. And since the variables are discretized in 

time, each variable is only taken at that instant of time, thus for example the variable 𝒁𝒑𝟐(𝑡 −

𝜏1) is a 180xN array in which each column represents activity of all 180 neurons at a given 

sampled instant. The inputs are connected in a way that they can account for time delay within 

these connections and thus are modelled as, 

 𝒖𝒑𝟏(𝒕) = 𝒏𝒑𝟏(𝒕) + 𝐿𝑒𝑥−𝑣𝒁𝒑𝟏(𝑡 − 𝜏1) + 𝑊𝑣𝑎
𝑝 𝒁𝒑𝟐(𝑡 − 𝜏1) + 𝒎𝟏 (4.5a) 

 
𝒖𝒇𝟏(𝒕) = 𝒏𝒇𝟏(𝒕) + 𝐿𝑖𝑛−𝑣𝒁𝒇𝟏(𝑡 − 𝜏1) + 𝑊𝑣𝑎

𝑓
𝒁𝒇𝟐(𝑡 − 𝜏1)

+ 𝒘𝟏𝟑
𝒇

𝑧𝑝3(𝑡 − 𝜏3) 
(4.5b) 
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 𝒖𝒑𝟐(𝒕) = 𝒏𝒑𝟐(𝒕) + 𝐿𝑒𝑥−𝑎𝒁𝒑𝟐(𝑡 − 𝜏2) + 𝑊𝑎𝑣
𝑝 𝒁𝒑𝟐(𝑡 − 𝜏2) + 𝒎𝟐 (4.6a) 

 
𝒖𝒇𝟐(𝒕) = 𝒏𝒇𝟐(𝒕) + 𝐿𝑖𝑛−𝑎𝒁𝒑𝟐(𝑡 − 𝜏2) + 𝑊𝑎𝑣

𝑓
𝒁𝒇𝟏(𝑡 − 𝜏2)

+ 𝒘𝟐𝟑
𝒇

𝑧𝑝3(𝑡 − 𝜏3) 
(4.6b) 

 𝒖𝒑𝟑(𝒕) = 𝒏𝒑𝟑(𝒕) + 𝒎𝟑 (4.7a) 

 𝒖𝒇𝟑(𝒕) = 𝒏𝒇𝟑(𝒕) (4.7b) 

 𝒖𝒑𝟒(𝒕) = 𝒏𝒑𝟒(𝒕) + 𝑤41
𝑝 𝒁𝒑𝟏(𝑡 − 𝜏4) + 𝑤42

𝑝 𝒁𝒑𝟐(𝑡 − 𝜏4) (4.8a) 

 𝒖𝒇𝟒(𝒕) = 𝒏𝒇𝟒(𝒕) + 𝑤43
𝑓

𝑧𝑝3(𝑡 − 𝜏4) (4.8b) 

Inputs m1 and m2 are spatial impulses at desired spatial positions (but constant in time) 

filtered through respective receptive field while m3 is a constant value. The inputs to each 

ROI are delayed by some time lag, as can be seen in each population. However, note that 𝜏4 is 

not a true delay but for sake of implementation a negligible value was used. Furthermore, the 

white gaussian noise inputs (𝑛𝑖𝑗(𝑡)   𝑖𝜖{𝑝, 𝑓}, 𝑗𝜖{1 − 4}) were chosen with zero mean and a 

variance of 5 units (µ=0, 𝜎𝑖
2=5: 𝑖𝜖{𝑝, 𝑓}). It can be noticed that each input has the contribution 

from lateral synapses within an area and cross modal synapses between areas. 

The variables 𝒘𝟏𝟑
𝒇

 and 𝒘𝟐𝟑
𝒇

 are related to modulating attention since they are cross-modal 

synapses from A3 to A1 and A2, respectively. A3 sends alpha rhythm to inhibit the influence 

of certain ROIs while focusing attention on others. Therefore, 𝒘𝟏𝟑
𝒇

 and 𝒘𝟐𝟑
𝒇

 are column 

vectors with 180 elements consisting of zeros which correspond to respective spatial 

positions. Wherever an inhibition is desired, we simply keep the corresponding elements 

equal to 45. So, for example if we need to inhibit the left half space (1-900) we can put the 

first 90 elements equal to 45 in both vectors. Conversely, if we want to inhibit one modality 

entirely while focusing attention on the other then one of the vectors (say 𝒘𝟏𝟑
𝒇

 for inhibiting 

visual modality) needs to have all elements equal to 45 and the other vector with all zeros. In 

this way the desired attention mechanism is achieved. 

Regarding the inputs, only two populations for every ROI are considered pyramidal and 

GABAA,fast, which can receive connections from pyramidal neurons in other ROIs. Infact, the 

literature suggests that only pyramidal neurons send long range connections to other types of 

neurons in other ROIs. Now although the “other types of neurons” could be anyone among 

pyramidal neurons, GABAA,fast, GABAAslowt or excitatory interneurons (Felleman and Van 

Essen, 1991), (Ursino, Cona and Zavaglia, 2010) showed that only the first two types of 

inputs contribute significantly to the overall model dynamics. Thus, in our model, the 
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pyramidal neurons receive white gaussian noise, the spatial impulse filtered by respective RF, 

and the lateral and cross-modal contributions as in equations 4.5a and 4.6a, while no 

contribution from A3 i.e., the alpha rhythm. Whereas, from equations 4.5b and 4.6b we see 

that GABAA,fast neurons receive cross-modal connections from A3 and in turn inhibit the 

pyramidal neurons of that ROI. The reason for this type of connectionism is that GABAA,fast 

neurons have very fast dynamics which is why when they receive the cross-modal inputs from 

A3 they tend to preserve it and propagate to other neuronal populations (in this case to 

pyramidal neurons). 

The arrays Lin-a, Lin-v, Lex-a, and Lex-v denote the lateral synapses within auditory and 

visual ROIs for both GABAA,fast and pyramidal populations respectively . These lateral 

connections are modelled to have gaussian characteristics as presented in equation 4.9. 

 𝐿𝑒𝑥−𝐽 = 𝐿𝑒𝑥0−𝐽 ∗ 𝑒
−

𝐷(𝜃𝑘,𝜃)2

2𝜎𝑒𝑥
2

          𝐽𝜖{𝑉, 𝐴} 
(4.9a) 

 𝐿𝑖𝑛−𝐽 = 𝐿𝑖𝑛0−𝐽 ∗ 𝑒
−

𝐷(𝜃𝑘,𝜃)2

2𝜎𝑖𝑛
2

          𝐽𝜖{𝑉, 𝐴} 
(4.9b) 

Here the terms Lex0-J and Lin0-J represent strengths of lateral synapses, 𝜎𝑒𝑥
2  and 𝜎𝑖𝑛

2  are the 

variances of excitatory and inhibitory connections, respectively. These connections realize a 

gaussian disposition. The notable point in the above equations is the use of circular 

connectivity, that is, neurons at position 1 and 180 are connected in a circular fashion so they 

excite (or inhibit) other neurons in a gaussian manner. For example, the neurons encoding 

position 1 are at the same distance from neurons at positions 2 and 180, or from neurons at 

positions 3 and 179. Equation 4.10 shows the model of such connectivity. 

 𝐷𝑘(𝜃𝑘 , 𝜃) = {
|𝜃𝑘 − 𝜃|                      𝑖𝑓|𝜃𝑘 − 𝜃| < 90

180 −  |𝜃𝑘 − 𝜃|       𝑖𝑓|𝜃𝑘 − 𝜃| > 90
           (4.10) 

Here 𝜃𝑘 is the current neuron position while 𝜃 spans from 1 to 180 for each k (k=1…180). 

Note that the quantity 𝐷(𝜃𝑘 , 𝜃) is a matrix of 180x180 and 𝐷𝑘(𝜃𝑘, 𝜃) is the kth column of 

matrix 𝐷(𝜃𝑘 , 𝜃). Therefore, the arrays 𝐿𝑒𝑥−𝐽 and 𝐿𝑖𝑛−𝐽 are also matrices of same shape. A 

summary of input values is given in table 4.4. 

Parameter Value Parameter Value 

m1 intensity_v*800*Recv*m1 𝑤43
𝑓

 200 

m2 intensity_a*800*Reca*m2 𝑤41
𝑝

, 𝑤42
𝑝

 300 

𝑊𝑎𝑣
𝑓

 7*Wav Lex0V, Lex0A 12 
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𝑊𝑣𝑎
𝑓

 7*Wva Lin0V, Lin0A 9 

𝜏1 20ms 𝜏3 50ms 

𝜏2 20ms  𝜏4 0.1ms 

𝜎𝑒𝑥
2  2.5*2.5 𝜎𝑖𝑛

2  9*9 

m3 1000 intensity_v I*|𝑝𝑜𝑠_𝑣-90| + 0.3 

I  1/90/2 intensity_a 0.7*δ(n-pos_a) 

Table 4.4. Input Parameters. Equations 4.5 – 4.9. 

The right-hand members in first two rows (m1 and m2) are simply spatial impulses at desired 

positions and then filtered by RF to produce the right-hand members and thus the notation has 

been kept the same. Note that in these inputs the terms pos_v and pos_a are simply the 

positions between 10 and 1800 (inclusive) that we want to excite, and in the value of 

intensity_a, the small delta represents an impulse at position pos_a where n is the sample 

number of m2. Parameters 𝑊𝑣𝑎
𝑘  and 𝑊𝑎𝑣

𝑘  (where k=p,f) are cross-modal connections between 

A1 and A2, 𝑤43
𝑓

, 𝑤41
𝑝

 and 𝑤42
𝑝

 are cross modal connections between different areas with first 

subscript denoting post-synaptic area and second subscript refers to pre-synaptic area, Reca 

and Recv are receptive fields of auditory and visual areas, respectively. All these input values 

are taken from (Ursino, Cona and Zavaglia, 2010), except that some modifications are made 

to adapt the inputs to the characteristics of the neural mass model.  

These modifications include the synaptic time delays in A1 and A2 (denoted as 𝜏1 and 𝜏2, 

respectively) which are kept at 20ms, whereas the delay 𝜏3 from A3 is kept at half of alpha 

period i.e., 50ms. Through multiple simulations it was observed that longer delays (in A1 and 

A2) lead to slower rhythm generation by either area. Then the lateral connections’ variances 

and amplitudes were varied. At first, we selected same values as in (Ursino, Cona and 

Zavaglia, 2010) but the oscillations were not consistent with our desired goals thus the we 

increased the amplitudes and inhibitory variance while decreased the excitatory connections’ 

variance. We found that the model needed inhibitory activations covering large number of 

ROIs but with smaller amplitude compared to excitatory connections that needed to be higher 

in amplitude but with shorter coverage to other ROIs. In this way a harmonic oscillatory 

behavior was achieved. 

The receptive fields were weighted slightly differently since they are obtained from (Ursino et 

al., 2017) while from the NMM model of (Ursino, Cona and Zavaglia, 2010) it was seen that 

the inputs had an amplitude of 800. Moreover, the inputs now are not simply spatial impulses 
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but rather filtered through RF and so a wide band of neurons are active at same time thus we 

tuned the weights to achieve optimal oscillatory behavior of our NMM. The cross-modal 

connections, too, were tuned in this manner. Cross-modal connections with low weights did 

not have any significant effect on the target area (such as change in auditory position during 

ventriloquism effect) while higher weights led to collapse of oscillations altogether. Hence, 

using different values, we reached the optimally weighted connections for the model. The 

model was first tested without cross-modal connections and once it worked well with chosen 

lateral connections’ amplitude and variances only then the cross-modal inputs were also 

included and tuned accordingly. 

Finally, the input of visual modality was modulated by a linear trend to ensure the peripheral 

positions receive higher intensity input compared to central positions. In fact, the receptive 

field’s maximum amplitude at each position decreases from center to periphery and in order to 

get the system working in desired oscillatory condition it is necessary to increase the input at 

the periphery. Physiologically, this means that to excite the neurons near fovea a lighter 

intensity input would suffice while exciting peripheral neurons, comparably, a higher intensity 

input is required. 

 

4.3 Training Receptive Fields and Cross-Modal Connections 

The training was done in a previous work (Ursino et al., 2017) using Hebbian learning 

with a decay term. These values are directly used in this model with just some weight factors 

to optimally simulate the model in desired conditions. For auditory receptive field (Reca) the 

authors started with inputs having random distribution superimposed with noise and with 

equal strengths. Thus, after training, the RFs for each of 180 positions were distributed 

similarly without any significant changes in amplitude or shape. In the case of visual 

receptive field (Recv) the initial setup consisted of having more visual inputs near fovea 

compared to the peripheries and thus after training the RFs near fovea (central position) were 

sharp and had high amplitude while more broader RFs but with less amplitude were evident in 

the peripheral regions. Moreover, the barycenter of the RFs shifted towards the fovea. This 

reflects the idea of having higher likelihood to encounter an input near fovea as compared to 

peripheries.  

For cross-modal synapses, during training, there was a certain percentage of cross-modal 

stimuli, with visual and auditory inputs close in space. Moreover, the prior information of 
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preferred positions from visual and auditory stimuli was necessary to train them. Since the 

visual neurons had sharper RFs near fovea, the cross-modal connections from visual to 

auditory neurons after training resulted in higher excitation of auditory neurons closer to 

central region whereas the peripheral regions received less excitation. On the other hand, the 

cross-modal connections from auditory to visual neurons resulted in similar excitation profiles 

throughout most of the azimuthal space except at the peripheries which were highly excited. 

All the results are detailed in the next chapter. 

 

4.4. Calculating Position from Oscillations 

The final step for the model was to calculate the spatial position given the oscillations 

of some neurons. This step was calculated using the barycenter method. First, for each neuron 

the preferred spatial position was calculated using equation 4.11. 

 𝐾𝑖
𝑠 =

∑ 𝑟𝑖𝑗
180
𝑗=1 ∗ 𝑝𝑗

∑ 𝑟𝑖𝑗
180
𝑗=1

         𝑠 = 𝐴, 𝑉 (4.11) 

Here 𝑟𝑖𝑗 is the receptive field of ith neuron and 𝑝𝑗 is the distance in degrees calculated as, 

 𝑝𝑗 = {

[1 𝑡𝑜 89, 𝑗 − 90 𝑡𝑜 0]                       𝑗 < 90

[181 𝑡𝑜 𝑗 + 90, 𝑗 − 89 𝑡𝑜 180]     𝑗 > 90
[1 𝑡𝑜 180]                                          𝑗 = 90

 (4.12) 

Then the preferred position was shifted to ensure the left (1 to 90 degrees) vs right (91 to 180 

degrees) hemifields were equidistant from the central position (90th degre). To do so the prior 

input position information (pos_s, where s=a,v) was used.  

 𝑞𝑗 = 𝐾𝑗
𝑠 (4.13a) 

 𝑞𝑗 = {

[𝐾𝑗
𝑠 > (𝑝𝑜𝑠_𝑠 + 90)] − 180                    𝑝𝑜𝑠_𝑠 < 90

[𝐾𝑗
𝑠 < (𝑝𝑜𝑠_𝑠 − 90)] + 180                    𝑝𝑜𝑠_𝑠 > 90

𝐾𝑗
𝑠                                                                    𝑝𝑜𝑠_𝑠 = 90

 (4.13b) 

Equation 4.13b shows that the values in 𝐾𝑗
𝑠 which are greater than those in square brackets 

are subtracted (or added) by 180 to ensure the positions in left or right hemifields remain 

consistent. Finally, given the oscillations the barycenter, as perceived by brain, is calculated 

as, 

 𝐵𝑠 =
∑ 𝑎𝑛𝑗

𝑠180
𝑗=1 ∗ 𝑞𝑗

∑ 𝑎𝑛𝑗
𝑠180

𝑗=1

         𝑠 = 𝐴, 𝑉 (4.14) 
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The meaning of 𝑎𝑛𝑗
𝑠 is “activity of neurons” which is the mean activity of neurons in a certain 

time window. For ROI1 and ROI2 (corresponding to visual and auditory modalities) the time 

window was selected to be 80ms because it works in gamma rhythm and for ROI4 the 

window is set at 200ms since it works in alpha rhythm. These intervals correspond to 

approximately two periods of the corresponding rhythms. 
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Chapter 5  : Simulation and Results 

 

5.1. Receptive Fields and Cross-Modal Connections 

Previous implementations of the model were coded in MATLAB software. Firstly, 

from the work of (Ursino, Cona and Zavaglia, 2010), plots of receptive fields and cross-modal 

connections are shown in figures 5.1 to 5.4. In figures 5.1 and 5.2 the first plots refer to 

receptive fields corresponding to respective neurons. They are plotted for ROI 10 to 180 with 

20-unit steps (like 10,30,50...180). The second plots of each figure display the receptive fields 

of neuron number 80. It is evident that in visual RF the peak of the 80th neuron shifts to the 

position of 85, showing that the density of neurons is higher close to the fovea than in 

periphery. Another peculiarity is the shape of RFs: it can be seen that near the fovea the RFs 

are sharp with higher amplitudes compared to peripheries where the RFs are wider with lower 

amplitudes. 

 

Fig. 5.1. Visual Receptive Fields. 

Conversely, for the auditory modality the RFs are quite consistent in terms of shape and 

strengths and are uniformly distributed denoting the fact that auditory neurons encoding 

spatial positions are almost equidistant from each other. In figure 5.3 the preferred position of 

ROIs encoding for spatial positions are shown for both modalities. It is now clear from the 

first plot that the visual neurons tend to be biased towards the fovea or, in other words, there 

are more neurons encoding spatial positions closer to fovea compared to peripheral positions 
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where there are scarce neurons. In the case of auditory neurons, the receptive fields are quite 

linearly spaced from each other and thus encode spatial positions in an equidistant manner. 

 

Fig. 5.2. Auditory Receptive Fields. 

 

Fig. 5.3. Preferred spatial position of neurons. 

Concerning cross-modal connections, as previously stated, the cross-modal connections from 

auditory to visual neurons excite visual neurons in a similar way except for the peripheral 

ones which they excite the most. The connections from visual neurons excite the central 

neurons in auditory modality more than the peripheral ones, as evident from figure 5.4. Note 

that these plots are plotted in a similar manner as in figures 5.1 and 5.2, that is, the connection 

from each neuron (to other modality) are plotted from 10th to 180th neuron with 20-unit steps. 
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Fig. 5.4. Cross-Modal Connections. 

 

5.2. Inputs 

Inputs to both ROI1 and ROI2 are filtered through receptive fields. To start we give an 

impulse at desired spatial positions (700 for auditory and 1100 for visual modality in this 

example as shown in figure 5.5). Each ROI then receives the input (which is 1x180 column 

vectors) scalar multiplied with its receptive field. Thus, the inputs reaching each ROI assume 

gaussian type shape, where the neurons close to spatial impulse are the ones that are most 

excited. 

 

Fig. 5.5. Inputs. 
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Note that since each modality has different RFs, thus, to excite each ROI we need appropriate 

amplitude of input, therefore we see a lower value for visual modality and higher value for 

auditory modality. 

 

Fig. 5.6. Inputs processed through RFs. 

Figure 5.6 depicts the picture of inputs after being filtered by RFs. The first plot simply 

represents what neurons are excited when a certain spatial position is excited. As discussed 

previously, the neuron density is higher closer to fovea compared to peripheries thus the 

neuron most excited by impulse at 1100 is 123rd neuron for visual modality while no 

appreciable difference is observed for auditory modality, consistent with what was said 

earlier. These inputs (filtered by RF) are represented with respect to spatial position in the 

second plot of figure 5.6 and we can see the peak values are close to 70 and 110 degrees, for 

auditory and visual modalities, respectively. 

  

5.3. Oscillations and Position 

For each ROI, the spike rate is the variable of interest for analysis (Note that the spike 

rate of pyramidal population is of concern and subsequent use of “spike rate” would imply the 

spike rate of pyramidal populations only). From previous discussions, it is now evident that 

the unisensory regions would work in gamma band reflecting the conscious processing while 

if any of them is inhibited, that is, less attention or focus is put on it by brain, then the activity 

becomes gamma modulated by alpha. This is the case for ROI1 and ROI2 while ROI3 is only 

an alpha rhythm generator thus working only in alpha band and ROI4 reflects the 
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multisensory processing, always working in gamma modulated by alpha rhythm. Figures 5.7 

and 5.8 show the spike rates of visual and auditory modalities, respectively. In both figures 

the first plot depicts the activity of all 180 neurons while the second plot shows the most 

excited neuron’s activity. Ignoring the initial transient period, the activity of neurons that are 

excited can be seen oscillating in phase but with slightly different amplitudes which are 

evident from the first plots of both figures. 

 

Fig. 5.7. Spike rate of visual modality. 

 

Fig. 5.8. Spike rate of auditory modality. 

Moving on, the plots for ROI3 and ROI4 are given in figures 5.9 and 5.10. In 5.9, there is 

only one neuron population since its only role is to generate alpha rhythm while in 5.10 the 

first plot shows the activity of all multisensory neurons and the gamma modulated by alpha 
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rhythm can be seen. The second and third plots of 5.10 show the most excited neurons that 

come from both ROI1 and ROI2, since these both ROI excite the similar positioned neurons 

in multisensory region. 

 

Fig. 5.9. Spike rate of ROI3 (Alpha rhythm generator). 

 

Fig. 5.10. Spike rate of multisensory neurons. 

To get a better idea about frequency the PSD of these spike rates is shown in figure 5.11. Note 

that these signals were high pass filtered at 4 Hz passband to remove the initial transient 

effect. Both ROI1 and ROI2 are working in gamma band (around 35Hz), ROI3 is working 

around 10Hz as expected, and finally the multisensory ROI is oscillating in gamma modulated 

by alpha rhythm, which is evident from the two peaks, one at 10Hz and the other at around 

35Hz. Particularly, the ROI4 seems to have two major peaks at 10Hz and 35Hz but there is 
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also a comparable peak at around 20Hz which could be due to the slight uneven interplay of 

ROI1 and ROI2 leading to this effect in ROI4. ROI4 provides the PSD of both barycenter 1 

and 2 that respectively refer to the two unisensory inputs. 

 

Fig. 5.11. PSD of spike rates of all ROIs. 

From the oscillatory behavior, the position information was calculated as defined in topic 4.4 

and plotted in figure 5.12.  

 

Fig. 5.12. Spatial position calculated from oscillations. 

The barycenter reflects the position information of each ROI. From the first plot it is clear that 

given the inputs of auditory and visual modalities at 700 and 1100, respectively, the barycenter 

at each time step in the two unisensory areas show almost the same position perception. The 



 

52 
 

barycenter is plotted considering the average of signal in a certain time window. For 

unisensory regions the barycenter is quite accurate but for the multisensory regions it is not 

the case. There is some error in calculating the position in multisensory area. One reason for it 

is that when calculating the barycenter in multisensory area, we simply took into account the 

average of both RFs of unisensory modalities. This approach is not quite physiological since 

multisensory neurons have a different spatial register for RFs of different modalities (further 

details in next chapter).  

 

Fig. 5.13. Position accuracy in unisensory (visual) vs multisensory area. 

 

Fig. 5.14. Position accuracy in unisensory (auditory) vs multisensory area. 

To better represent the position accuracy for each area we simulated the model for each 

unisensory input ranging from 200 to 1600 (not included very extreme values since some 
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neurons at the opposite ends were excited due to use of circular distance which caused 

improper calculation of position information). Figures 5.13 and 5.14 represent the position 

information calculated for each unisensory modality separately and compared with 

multisensory position information. The errors in multisensory position perception, when a 

single unisensory input is applied, are plotted in the right-sided subplots in both figures. 

 

5.4. Causal Inference 

To get the model’s behavior regarding causal inference the first attempt for analysis 

consists of keeping the visual input around fovea (at 900) and varying auditory input location 

to see when the model starts to perceive two inputs as one. The perception of causes is 

processed in multisensory layer and although there is a slight error in spatial localization in 

multisensory layer, nonetheless, the identification of cause(s) is evident. At about 530 (370 

distance between A-V inputs) the differentiation between causes disappears in dual-modality 

setup. The results shown in figure 5.15 depict the situation in detail.  

 

Fig. 5.15. Causal Inference (Pos_v = 900,Pos_a = [520, 530]). 

In case of more peripheral inputs the situation changes: The ability to perceive separate causes 

increases. Figure 5.16 shows that the ability to differentiate causes in dual modality inputs 

stands at 240. Similar situation can be witnessed in the left periphery (1-900) since the neurons 

are connected in circular fashion with symmetric RF on left and right sides so for brevity the 

results are not shown here. 
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Fig. 5.16. Causal Inference (Pos_v = 1600,Pos_a = [1350,1360]).  

In case of inputs only in a single modality, both the unisensory and multisensory areas can 

provide causal description. For visual modality the ability to differentiate inputs around fovea 

stands at 170 as shown in figure 5.17. One visual input is at 900 and the other at 1080, both the 

unisensory and multisensory areas can distinguish between them while there is no distinction 

between two inputs when one input is at same position (900) and the other input is applied at 

1070. This is evident in both unisensory and multisensory areas. On the other hand, when the 

inputs are in peripheries the situation changes. The ability to distinguish between inputs 

decreases to 370 as represented in figure 5.18.  

 

Fig. 5.17. Causal Inference in visual modality around fovea (Pos_v1 = 900, Pos_v2 = [1080, 1070]). 



 

55 
 

 

Fig. 5.18. Causal Inference in visual modality around periphery (Pos_v1 = 1600, Pos_v2 = [1230, 1240]). 

In case of auditory modality, since the RFs are uniform throughout the azimuthal space, there 

is no distinction between central or peripheral regions and thus only one example is shown in 

figure 5.19. The ability to distinguish between inputs stands at around 610-630. Note that we 

tried to simulate the same results by applying second auditory input (Pos_a2) at both 1520 and 

1530 but there was no appreciable change in multisensory area, as can be seen in figures 5.20 

and 5.21, thus we increased the range by a couple of degrees. Finally, it should be noted that 

the RFs are symmetric in the left and right side of azimuthal space so the same results can be 

obtained on the other side. 

 

Fig. 5.19. Causal Inference in auditory modality (Pos_a1 = 900, Pos_a2 = [1540, 1510]). 
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Fig. 5.20. Causal Inference in auditory modality (Pos_a1 = 900, Pos_a2 = [1540, 1530]). 

 

Fig. 5.21. Causal Inference in auditory modality (Pos_a1 = 900, Pos_a2 = [1540, 1520]). 

 

5.5. Ventriloquism 

To simulate ventriloquism effect, we put the visual input at 900 while the auditory 

input was varied from 500 to 1300 with an increment of 100, and the position error at each 

instant was plotted against audio-visual position difference as shown in figure 5.22. The error 

in visual position remained less than 10 while the auditory position had significant error. This 

error was highest (40) at ± 200. 
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Fig. 5.22. Ventriloquism (Pos_v = 900, Pos_a = [500-1300]). 

 

5.6. Attention Modulation 

In the first instance, we put all elements in column vector 𝒘𝟏𝟑
𝒇

 equal to 0 and in 𝒘𝟐𝟑
𝒇

 

equal to 45. This ensures that the alpha rhythm is transmitted to A2 (auditory modality) only, 

resulting in inhibition of that area. The inputs for visual and auditory areas were put at 1100 

and 700, respectively. It can be seen from figure 5.23 that the unisensory areas process the 

respective inputs while in the multisensory area the auditory information is inhibited.  

 

Fig. 5.23. Spatial position in unisensory and multisensory areas during attention modulation. 
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Fig. 5.24. Spike rate of visual modality. 

 

Fig. 5.25. Spike rate of auditory modality during attention modulation. 

 

Fig. 5.26. Spike rate of multisensory area during attention modulation. 
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Fig. 5.27. PSDs of spike rates of all areas during attention modulation. 

The oscillatory behavior of visual and auditory modalities can be seen in figures 5.24 and 

5.25, respectively. The visual modality works in gamma band as usual while the auditory 

modality has gamma rhythm modulated by alpha. And for the multisensory area, figure 5.26 

shows that indeed the neurons that are excited by the auditory input do not oscillate at all in 

this area. Further evidence can be found in figure 5.27 which depicts the PSDs of all four 

areas. From figure 5.25, in the auditory modality, the peak at 10Hz can be seen along with a 

very small peak at about 37Hz while no significant effect is observed in rest of the modalities’ 

spectra. 

The above results show how one modality can be entirely inhibited keeping the attention on 

the other. Another way to observe the mechanism of attention modulation is, for example, by 

inhibiting a certain spatial region in both modalities. In the following, we show inhibition of 

both unisensory modalities in the left half of azimuthal space i.e., 10-900. The inputs for visual 

modality are applied at 600 and 1200 while for auditory modality the inputs are provided at 

400 and 1400. Figures 5.28 and 5.29 show examples of positions (both unisensory and 

multisensory) without and with inhibition, respectively. Note that since inputs in both left and 

right side of space are quite close to each other they are identified as having one cause in the 

multisensory region, as depicted in figure 5.28.  
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Fig. 5.28. Position information without inhibition. 

 

Fig. 5.29. Position information with inhibition.  

The spike rate behavior of the above example is shown in figures 5.30 and 5.31 for both 

visual and auditory modalities, respectively. Since only the left half of azimuthal space is 

inhibited, the most excited neurons corresponding to left-side inputs are gamma-modulated-

by-alpha while right-side inputs are only in gamma rhythm. The PSDs present the same 

information as in figure 5.27 so for brevity they are not shown here. 
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Fig. 5.30. Spike rate of visual modality during inhibition of left half of azimuthal space.  

 

Fig. 5.31. Spike of auditory modality during inhibition of left half of azimuthal space. 

Finally, we show the phase opposition of alpha rhythm between inhibited unisensory area 

compared to multisensory area; figure 5.32 depicts this example. We applied the visual and 

auditory inputs at 1100 and 700, respectively, then inhibited the auditory modality. The activity 

of auditory modality is now, of course, in gamma modulated by alpha band which is the same 

as the multisensory area’s activity but in opposite phase and therefore the activity is nullified. 

To compare the phases, we show, in figure 5.32, the activity of a single ROI (that was not 

inhibited) of multisensory area is shown along with the activity of highest excited ROI of 

auditory area. Both are in opposite phase and thus their combined effect is nulled out as 

shown in the last subplot of figure 5.26. 
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Fig. 5.32. Phase comparison between inhibited modality vs multisensory area. 
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Chapter 6 : Concluding Remarks 

 

6.1. Discussion 

There have been multiple approaches to model multisensory integration using 

different techniques such as Bayesian modeling (Ursino et al., 2017), neural mass model 

(Moran and Reilly, 2006), and spiking neuron models (Lim, Keniston and Cios, 2011). The 

focus of this thesis is to use a neural mass model to realize audio-visual multisensory 

integration. Starting from a model of single ROI, to simulate oscillatory behavior of EEG in a 

certain frequency band, we moved forward to include 180 degrees of azimuthal space in each 

unisensory and multisensory modality.  The model is then capable of simulating some of the 

physiological phenomenon pertaining to audio-visual multisensory integration such as 

ventriloquism, modulating attention, and causal inference. 

The first aspect that deserves attention is the use of receptive fields (RFs) for respective 

unisensory modality. These receptive fields explain the excitation profile of all 180 ROIs 

given a spatial impulse at a certain position. After the ROIs are excited, they tend to oscillate 

in either alpha or gamma band or in gamma-modulated-by-alpha band depending on the 

choice of various parameters (as explained in chapter 4). The amplitude of spatial impulse 

was different for auditory modality compared to visual one. Now although most of the 

parameters for each modality are quite the same, since the RFs were different therefore a 

different value was needed to excite the ROIs of respective modalities. Furthermore, in the 

visual modality the amplitude of impulse was modulated by a linearly increasing function 

from the central position (90th degree) towards either periphery.  

This means that to excite the central region close to fovea a weaker input was required 

compared to peripheries where stronger input was needed to ensure the correct oscillatory 

pattern of ROIs. Physiologically it can be considered equivalent to, for example, more light 

being cast on an object that is present in the peripheral azimuthal space of eyes in order to 

excite ample number of retinal receptors for proper perception. While this is the case for 

visual modality, the auditory modality has quite uniform RFs throughout azimuthal space thus 

there is no need to vary the input amplitude. 

Based on these inputs the excited ROIs started oscillating and from these oscillations we 

calculated the azimuthal position in both unisensory and multisensory areas. In the unisensory 
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areas the respective RFs are used to calculate positions, so we see that they are quite accurate. 

On the contrary, in the multisensory we simply used the average of both auditory and visual 

RFs to calculate position(s). We assumed that only the oscillatory information should be used 

to find position and not any a priori information about position from either unisensory areas. 

When calculating position in multisensory area, unisensory RFs in both modalities influence 

this calculation; since the RFs are different there is an obvious error in the multisensory 

position information. However, this error is not quite high. It follows a sinusoidal shape, as 

can be seen in figures 5.13 and 5.14, and is highest around 40 degrees away from central 

region for both modalities, standing at about 6-7 degrees.  

Regarding the model’s capability to infer causes/sources given multiple unisensory stimuli, 

the modal performed quite well in single modality compared to dual modality. In case of 

single modality, we provided two spatial impulses of the same unisensory modality at 

different positions. In the visual one, when one impulse was applied at the very center (900) 

and other impulse was varied, the modal could distinguish between causes when the 

azimuthal distance was about 270. This ability to distinguish causes decreased near periphery 

to 370 when the first impulse was shifted to 1600 (see figures 5.17 and 5.18). This seems quite 

natural since the region near fovea consists of a dense population of neurons while sparsely 

populated neurons are found in peripheries.  

Given the wider but uniform RFs of auditory modality, we only simulated one example of 

causal inference. One impulse was kept at 900 and the other one varied. To effectively 

distinguish between causes the auditory impulses needed to be at least 630 apart from each 

other (see figures 5.19 to 5.21). Finally, for the dual modality case, when one impulse in each 

unisensory modality was applied the model could distinguish causes when they were 

separated by 370 near central region and this distance decreased near peripheries to 240 (see 

figures 5.15 and 5.16). Also note that in case of unisensory conditions the unisensory position 

information was sufficient to infer causes while in dual modality case the multisensory 

position information was needed for causal inference.  

These data were compared to the work on causal inference by (Cuppini et al., 2017). The 

authors simulated a model for causal inference comprising two unisensory layers encoding 

auditory and visual stimuli and another downstream layer for multisensory integration which 

received connections from both unisensory layers. They showed that two unisensory inputs in 

visual modality could be distinguished (as having separate causes/sources) when they were 
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200 apart but did not talk about any differences occurring in central versus peripheral visual 

space. In the same paper, they showed that the same inputs but for auditory modality were 

perceived as having a single cause. Similarly, in the dual modality case, where one auditory 

and one visual input was applied at 200 distance from other, the model perceived it as having 

single cause. In case of visual modality our model performs almost the same while in auditory 

modality a larger distance is needed to distinguish between causes. This, of course, is due to 

wider auditory RFs. 

The case of dual modality in our model is quite strange: In central region the ability to infer 

causes should be higher compared to peripheries but it is the opposite in our model. From 

figure 5.13 we see that in case of only visual input the barycenter of peripheral ROIS of 

multisensory area is shifted towards the center. Whereas in figure 5.14 we see the exactly 

opposite i.e., given only auditory input the barycenter of peripheral ROIs of multisensory area 

are shifted away from the center. Therefore, when peripheral inputs to both unisensory 

modalities are applied, these biases actually improve the causal inference ability compared to 

central region. 

Regarding the ventriloquism effect, our model can only work in the spatial domain without 

considering the temporal aspects (like temporal ventriloquism such as sound-induced flash 

illusion). The model can simulate ventriloquism with maximum auditory shift occurring at 200 

to 300 distance from the center (900) while for the visual modality the maximum shift is 

always less than 10. The data for visual modality is quite consistent with the data from 

previous work of (Ursino et al., 2017), whereas the auditory modality performs slightly less. 

The authors showed that auditory modality shifted to a maximum of ~70 whereas in our model 

the auditory shift stands at about 3.80. One might suppose that this influence is proportional to 

the strengths of cross-modal connections so normally a higher strength used for cross-modal 

connection should lead to higher shifts. However, this was not the case for our model. 

Increasing the strength of cross-modal connections did provide a slightly higher shift but it 

was insignificant and further increase in strength only lead to loss of oscillations. 

Finally, the model is capable of simulating attention: it can focus on a certain portion of 

azimuthal space whilst inhibiting the other, or it can inhibit one unisensory modality 

completely while focusing the attention on the other. This mechanism is realized in the 

multisensory area but not in the unisensory modalities. From figure 5.25 we see the activity of 

unisensory modality, in gamma-modulated-by-alpha rhythm, during inhibition. This activity is 



 

66 
 

now in opposite phase compared to the gamma-modulated-by-alpha activity of multisensory 

area as in figure 5.32. Therefore, when the multisensory area receives the inputs from both 

unisensory areas, the area whose activity is in opposite phase has its effect nulled out in the 

multisensory area as depicted in last subplot of figure 5.26. This is how attention mechanism 

is realized. In terms of human behavior this is equivalent to stating that the brain regions 

dedicated to unisensory processing process a number of stimuli all the time, but it is our 

conscious focus on a certain stimulus that leads to attention being modulated towards it while 

all other ambient information is inhibited. This focusing or attention process takes place in the 

multisensory areas.  

 

6.2. Future Work 

There are some aspects that need to be modified to achieve even better functioning of our 

model. These include, 

1. Receptive Fields (RFs) 

2. Cross-modal connections 

The RFs were trained in a separate work by (Ursino et al., 2017). The authors used a static 

model whereas our model is temporally dynamic (i.e., oscillatory) and thus in future we could 

train the RFs specifically tuned to our model which will ensure the proper excitation profile 

given a spatial impulse at certain position. Moreover, in the calculation of barycenter from 

oscillations we used preferred position of each neurons (denoted by 𝐾𝑗
𝑠, where s=a,v and j 

ranges from 1 to 180). Of course, these preferred positions were calculated based on RFs and 

thus the unisensory position information was quite accurate. However, as we saw in the 

previous chapter, in the calculation of position in multisensory area there was some error. This 

error is attributed to improper use of both auditory and visual RFs when calculating position 

from oscillations. In future, we could train a separate RF for multisensory area which would 

have the influence of both unisensory RFs to ensure accurate calculation of position. It won’t 

be easy since, of course, the RF of multisensory neurons varies depending on the presence of 

an auditory or visual input. Indeed, there are two RFs for each multisensory neuron. A way 

forward could be to calculate both visual and auditory RF for each multisensory neuron. 

Finally, the cross-modal connections too were trained using the static model by the same 

authors therefore, the next approach could be to train them based on our dynamic model.  



 

67 
 

References: 

Barry E. Stein and Meredith, M. A. (1993) The Merging of the Senses. MIT Press. 

Bartos, M., Vida, I. and Jonas, P. (2007) ‘Synaptic mechanisms of synchronized gamma 

oscillations in inhibitory interneuron networks’, Nature Reviews Neuroscience, 8(1), pp. 45–

56. doi: 10.1038/nrn2044. 

Bastarrika-Iriarte, A. and Caballero-Gaudes, C. (2019) ‘Closing eyes during auditory memory 

retrieval modulates alpha rhythm but does not alter tau rhythm’, NeuroImage, 197(May 

2018), pp. 60–68. doi: 10.1016/j.neuroimage.2019.04.053. 

Burgess, A. P. and Ali, L. (2002) ‘Functional connectivity of gamma EEG activity is 

modulated at low frequency during conscious recollection’, International Journal of 

Psychophysiology, 46(2), pp. 91–100. doi: 10.1016/S0167-8760(02)00108-3. 

Buzsáki, G. (2006) Rhythms of the Brain, Rhythms of the Brain. doi: 

10.1093/acprof:oso/9780195301069.001.0001. 

Cooper, N. R. et al. (2003) ‘Paradox lost? Exploring the role of alpha oscillations during 

externally vs. internally directed attention and the implications for idling and inhibition 

hypotheses’, International Journal of Psychophysiology, 47(1), pp. 65–74. doi: 

10.1016/S0167-8760(02)00107-1. 

Cuppini, C. et al. (2017) ‘A biologically inspired neurocomputational model for audiovisual 

integration and causal inference’, European Journal of Neuroscience, 46(9), pp. 2481–2498. 

doi: https://doi.org/10.1111/ejn.13725. 

David, O. et al. (2006) ‘Dynamic causal modeling of evoked responses in EEG and MEG’, 

NeuroImage, 30(4), pp. 1255–1272. doi: 10.1016/j.neuroimage.2005.10.045. 

David, O. and Friston, K. J. (2003) ‘A neural mass model for MEG/EEG: Coupling and 

neuronal dynamics’, NeuroImage, 20(3), pp. 1743–1755. doi: 

10.1016/j.neuroimage.2003.07.015. 

David, O., Harrison, L. and Friston, K. J. (2005) ‘Modelling event-related responses in the 

brain’, NeuroImage, 25(3), pp. 756–770. doi: 10.1016/j.neuroimage.2004.12.030. 

Diederich, A. and Colonius, H. (2004) ‘Bimodal and trimodal multisensory enhancement: 

Effects of stimulus onset and intensity on reaction time’, Perception and Psychophysics, 



 

68 
 

66(8), pp. 1388–1404. doi: 10.3758/BF03195006. 

Ergenoglu, T. et al. (2004) ‘Alpha rhythm of the EEG modulates visual detection 

performance in humans’, Cognitive Brain Research, 20(3), pp. 376–383. doi: 

10.1016/j.cogbrainres.2004.03.009. 

Ernst, M. O. and Bülthoff, H. H. (2004) ‘Merging the senses into a robust percept’, Trends in 

Cognitive Sciences, 8(4), pp. 162–169. doi: 10.1016/j.tics.2004.02.002. 

Felleman, D. J. and Van Essen, D. C. (1991) ‘Distributed hierarchical processing in the 

primate cerebral cortex’, Cerebral Cortex, 1(1), pp. 1–47. doi: 10.1093/cercor/1.1.1. 

Gazzaniga, M. S., Ivry, R. B. and Mangun, G. R. (2013) Cognitive Neuroscience: The Biology 

of the Mind. 4th edn. W. W. Norton & Company. 

Gerstner, W. and Kistler, W. M. (2002) Simplified spiking neuron models. 

Ghazanfar, A. A. and Schroeder, C. E. (2006) ‘Is neocortex essentially multisensory?’, Trends 

in Cognitive Sciences, 10(6), pp. 278–285. doi: 10.1016/j.tics.2006.04.008. 

Gray, C. M. et al. (1989) ‘Oscillatory responses in cat visual cortex exhibit inter-columnar 

synchronization which reflects global stimulus properties’, Nature, 338(March), pp. 334–337. 

Di Gregorio, F. et al. (2022) ‘Tuning alpha rhythms to shape conscious visual perception’, 

Current Biology, 32(5), pp. 988-998.e6. doi: 10.1016/j.cub.2022.01.003. 

Grimbert, F. and Faugeras, O. (2006) ‘Bifurcation analysis of Jansen’s neural mass model’, 

Neural Computation, 18(12), pp. 3052–3068. doi: 10.1162/neco.2006.18.12.3052. 

Jansen, B. H. and Rit, V. G. (1995) ‘Electroencephalogram and visual evoked potential 

generation in a mathematical model of coupled cortical columns’, Biological Cybernetics, 

73(4), pp. 357–366. doi: 10.1007/BF00199471. 

Jefferys, J. G. R., Traub, R. D. and Whittington, M. A. (1996) ‘Neuronal networks for 

induced “40 Hz” rhythms’, Trends in Neurosciences, 19(5), pp. 202–208. doi: 

10.1016/S0166-2236(96)10023-0. 

Jensen, O. et al. (2002) ‘Oscillations in the alpha band (9-12 Hz) increase with memory load 

during retention in a short-term memory task’, Cerebral Cortex, 12(8), pp. 877–882. doi: 

10.1093/cercor/12.8.877. 

Keil, A., Gruber, T. and Müller, M. M. (2001) ‘Functional correlates of macroscopic high-



 

69 
 

frequency brain activity in the human visual system’, Neuroscience and Biobehavioral 

Reviews, 25(6), pp. 527–534. doi: 10.1016/S0149-7634(01)00031-8. 

Kilpatrick, Z. P. (2013) ‘Wilson-Cowan Model’, Encyclopedia of Computational 

Neuroscience, pp. 1–5. doi: 10.1007/978-1-4614-7320-6. 

Lim, H. K., Keniston, L. P. and Cios, K. J. (2011) ‘Modeling of multisensory convergence 

with a network of spiking neurons: A reverse engineering approach’, IEEE Transactions on 

Biomedical Engineering, 58(7), pp. 1940–1949. doi: 10.1109/TBME.2011.2125962. 

Lopes da Silva, F. H. et al. (1974) ‘Model of brain rhythmic activity - The alpha-rhythm of 

the thalamus’, Kybernetik, 15(1), pp. 27–37. doi: 10.1007/BF00270757. 

Ma, W. J. et al. (2009) ‘Lip-reading aids word recognition most in moderate noise: A 

Bayesian explanation using high-dimensional feature space’, PLoS ONE, 4(3). doi: 

10.1371/journal.pone.0004638. 

McGurk, H. and Macdonald, J. (1976) ‘Hearing lips and seeing voices (McGurk Effect)’, 

Nature, 264(5588), pp. 746–748. 

Meredith, M. A. and Stein, B. E. (1983) ‘Interactions among converging sensory inputs in the 

superior colliculus’, Science, 221(4608), pp. 389–391. doi: 10.1126/science.6867718. 

Meredith, M. A. and Stein, B. E. (1986) ‘Visual, auditory, and somatosensory convergence on 

cells in superior colliculus results in multisensory integration’, Journal of Neurophysiology, 

56(3), pp. 640–662. doi: 10.1152/jn.1986.56.3.640. 

Moran, R. J. and Reilly, R. B. (2006) ‘Neural mass model of human multisensory 

integration’, Annual International Conference of the IEEE Engineering in Medicine and 

Biology - Proceedings, pp. 5559–5562. doi: 10.1109/IEMBS.2006.259588. 

Rodriguez, E. et al. (1999) ‘Perception’s shadow: Long-distance synchronization of human 

brain activity’, Nature, 397(6718), pp. 430–433. doi: 10.1038/17120. 

Rotterdam, A. van et al. (1982) ‘A model of the spatial-temporal characteristics of the alpha 

rhythm’, 44(2), pp. 283–305. doi: https://doi.org/10.1016/S0092-8240(82)80070-0. 

Rowland, B. A. et al. (2007) ‘Multisensory integration shortens physiological response 

latencies’, Journal of Neuroscience, 27(22), pp. 5879–5884. doi: 10.1523/JNEUROSCI.4986-

06.2007. 



 

70 
 

Shams, L; Kamitani, Y.; Shimojo, S. (2000) ‘What you see is what you hear’, Nature, 

408(December), p. 788. 

Sotero, R. C. et al. (2007) ‘Communicated by Olivier Faugeras Realistically Coupled Neural 

Mass Models Can Generate EEG Rhythms’, Neural Computation, 512, pp. 478–512. 

Available at: https://www.mitpressjournals.org/doi/pdf/10.1162/neco.2007.19.2.478. 

Stanford, T. R. and Stein, B. E. (2007) ‘Superadditivity in multisensory integration: Putting 

the computation in context’, NeuroReport, 18(8), pp. 787–792. doi: 

10.1097/WNR.0b013e3280c1e315. 

Stein, B. E. and Stanford, T. R. (2008) ‘Multisensory integration: Current issues from the 

perspective of the single neuron’, Nature Reviews Neuroscience, 9(4), pp. 255–266. doi: 

10.1038/nrn2331. 

Tononi, G. and Edelman, G. M. (1998) ‘Consciousness and complexity’, Science, 282(5395), 

pp. 1846–1851. doi: 10.1126/science.282.5395.1846. 

Ursino, M. et al. (2007) ‘Use of a neural mass model for the analysis of effective connectivity 

among cortical regions based on high resolution EEG recordings’, Biological Cybernetics, 

96(3), pp. 351–365. doi: 10.1007/s00422-006-0122-4. 

Ursino, M. et al. (2017) ‘Development of a bayesian estimator for audio-visual integration: A 

neurocomputational study’, Frontiers in Computational Neuroscience, 11(October). doi: 

10.3389/fncom.2017.00089. 

Ursino, M., Cona, F. and Zavaglia, M. (2010) ‘The generation of rhythms within a cortical 

region: Analysis of a neural mass model’, NeuroImage, 52(3), pp. 1080–1094. doi: 

10.1016/j.neuroimage.2009.12.084. 

Ward, L. M. (2003) ‘Synchronous neural oscillations and cognitive processes’, Trends in 

Cognitive Sciences, 7(12), pp. 553–559. doi: https://doi.org/10.1016/j.tics.2003.10.012. 

Wendling, F. et al. (2000) ‘Relevance of nonlinear lumped-parameter models in the analysis 

of depth-EEG epileptic signals’, Biological Cybernetics, 83(4), pp. 367–378. doi: 

10.1007/s004220000160. 

Wendling, F. et al. (2002) ‘Epileptic fast activity can be explained by a model of impaired 

GABAergic dendritic inhibition’, European Journal of Neuroscience, 15(9), pp. 1499–1508. 

doi: 10.1046/j.1460-9568.2002.01985.x. 



 

71 
 

White, J. A. et al. (2000) ‘Networks of interneurons with fast and slow γ-aminobutyric acid 

type A (GABA(A)) kinetics provide substrate for mixed gamma-theta rhythm’, Proceedings 

of the National Academy of Sciences of the United States of America, 97(14), pp. 8128–8133. 

doi: 10.1073/pnas.100124097. 

Wilson, H. R. (1999) Spikes, Decisions, and Actions: The Dynamical Foundations of 

Neuroscience. Oxford University Press. 

Wilson, H. R. and Cowan, J. D. (1972) ‘Excitatory and Inhibitory Interactions in Localized 

Populations of Model Neurons’, Biophysical Journal, 12(1), pp. 1–24. doi: 10.1016/S0006-

3495(72)86068-5. 

Zavaglia, M. et al. (2008) ‘The effect of connectivity on EEG rhythms, power spectral density 

and coherence among coupled neural populations: Analysis with a neural mass model’, IEEE 

Transactions on Biomedical Engineering, 55(1), pp. 69–77. doi: 

10.1109/TBME.2007.897814. 

 


