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Abstract

Il presente elaborato è la rielaborazione del lavoro condotto durante un tirocinio della
durata di tre mesi che ha avuto luogo presso la Facultè Polytechnique di Mons in Belgio.
In particolare, il tirocinio è stato svolto sotto la supervisione dei Professori Nicolas Gillis
e Arnaud Vandaele del Dipartimento di Matematica e Ricerca Operativa dell’Università
di Mons e dalla Professoressa Margherita Porcelli dell’Università di Bologna. La tesi
tratta in dettaglio e amplia l’articolo

G. Seraghiti, A. Awari, A. Vandaele, M. Porcelli and N. Gillis, Accelerated Algo-
rithms for Nonlinear Matrix Decomposition with the ReLU function, MLSP 2023, 17-20
September, 2023, Rome,

contenente i risultati ottenuti durante il tirocinio.
Lo stage si inserisce all’interno di un progetto europeo ERC1 dell’Università di Mons,

coordinato dal Prof. Nicolas Gillis. Il tema principale del progetto riguarda lo studio di
modelli per la decomposizione di matrici mediante altre matrici di rango più basso. Tale
problema è ricorrente in molte applicazioni tra cui la compressione di dati, la rimozione
del rumore da immagini o segnali e nell’ambito del machine learning. Un esempio di tale
decomposizione è la ben nota NMF (Nonnegative Matrix Factorization) che approssima
la matrice contenente i dati con elementi non negativi.

La NMF sfrutta l’ipotesi di linearità tra le variabili del modello approssimante. Ab-
bandonando questa ipotesi e inserendo una funzione non lineare nelle decomposizione
di rango basso, è possibile formulare il cosiddetto problema NMD (Non linear Matrix
Decomposition), che costituisce l’oggetto principale di questo elaborato. I modelli di
approssimazione non lineare sono diventati ancora più popolari dopo l’esplosione di in-
teresse nei confronti delle reti neurali. In molte di esse, infatti le funzioni di attivazione
dei vari livelli della rete sono non lineari.

L’obiettivo principale del tirocinio è stato trovare nuovi algoritmi in grado di af-
frontare in modo efficiente il problema NMD, accelerando i metodi già esistente, come
nel caso dell’Accelerated NMD (A-NMD), o proponendo nuove strategie risolutive basate
sull’ottimizzazione alternata come per il Three Blocks NMD (3B-NMD).

La prima parte dell’elaborato tratta brevemente alcuni concetti che saranno utili nel
1https://sites.google.com/site/nicolasgillis/projects/erc-cons
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seguito dell’eleborato come la minimizzazione alternata e introduce due dei più famosi
metodi utilizzati nel contesto dell’approssimazione di matrici di rango basso: la SVD
(Singular Value Decomposition) e la PCA (Principal Component Analysis).

Nel secondo capitolo, viene trattato il problema lineare della NMF, fornendo esempi
di applicazioni, dando le motivazioni che rendono tale fattorizzazione tanto utilizzata e
presentando i principali metodi risolutivi.

In seguito, viene introdotto il problema NMD cercando di fornire alcune chiavi di let-
tura e possibili interpretazioni intuitive che giustifichino l’utilità di tale decomposizione.
Inoltre, vengono presentati i metodi già esistenti per risolvere questo problema e i due
nuovi algoritmi: A-NMD e 3B-NMD.

Infine, vengono confrontati i vari metodi per la risoluzione del problema NMD su varie
tipologie di dati. Vengono messi in evidenza i vantaggi dell’utilizzo dei nuovi algoritmi
rispetto a quelli già esistenti, sia dal punto di vista dell’accuratezza della soluzione che
sotto l’aspetto computazionale.
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Introduction

One of the central problems in data analysis is extracting the underlying structure within
data sets; in other words, we want to isolate meaningful information in a data set that
can be used in several applications, such as data compression, noise filtering, reducing
the computational effort for further manipulation of the data, or to directly identifying
hidden structure in the data. In other words, we want to find a representation of our
data in another space which has a lower dimension and that is easier to manipulate or
to understand. Low-Rank Matrix Approximation (LRMA) arises in this context and
aims to reduce the size of the original data set and to keep the highest possible amount
of information. LRMA are essential in many fields of application in mathematics and
computer science such as:

• numerical linear algebra,

• signal and image processing;

• graph theory;

• data analysis, and machine learning to perform regression, prediction, clustering,
classification, and noise filtering.

What does it mean to compress information from a given data set X ∈ Rm×n, con-
taining n observations each composed by m measurable variables? In few words, it means
to look for r basis vectors of dimension m that give an easier and more meaningful rep-
resentation of the data, where r is much smaller then the original number of samples n
and the ambient dimension m, so r ≪ min(m,n). In many cases, this concept translates
in finding some factors U ∈ Rm×r and V ∈ Rr×n such that X ≈ UV . In general, data
compression is achieved when the number of entries needed to store the data is consid-
erably reduced. In other words r < mn

m+n
, since X has mn entries, while U and V have

only mr+ nr. When dealing with sparse matrices, we can define as nnz(X) the number
of nonzero entries and it is common use to require r < nnz(X)

m+n
.

One of the possible techniques that may be used in this context is Linear Dimen-
sionality Reduction (LDR). This class of methods requires a strong assumption which is
linearity and it means that each of the variable of the model is related to the others with
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a linear relation. This assumption simplifies consistently the models but it is not always
consistent with real-world phenomena. LDR uses a small number of basis elements in
order to represent each vector of the data set.

From a mathematical point of view, given a data set of n points xj ∈ Rm, LDR
finds a small number r < n of basis vectors uk ∈ Rm such that each data point is
well-approximated by a linear combination of these basis vectors, that is,

xj ≈
r∑

k=1

ukvkj ∀j

Introducing a matrix notation, the equivalence between LDR and LRMA model becomes
clear

[x1, x2, . . . , xn] ≈ [u1, u2, . . . , ur][v1, v2, . . . , vn],

equivalently
X ≈ UV,

where

• X ∈ Rm×n, and each column is a data point X(:, j) = xj;

• U ∈ Rm×r, is the matrix containing basis elements in the columns, that is,
U(:, j) = uj;

• V ∈ Rr×n is the matrix of the coordinates of data points in the base U , V (:, j) = vj.

Hence LDR provides a rank-r representation of the data set X in the basis U , using
the coordinates contained in V , which means that for every column we have

xj ≈ Uvj ∀j.

An illustrative example can be found in Figure 1.
LDR is a class of methods that comprises many different approaches. We will focus

on Nonnegative Matrix Factorization (NMF), that is one of the possible LDR techniques
and it requires the factors of the approximation U and V to be nonnegative. This
constraint is crucial in order to give an immediate interpretation to the decomposition
factors which highlights some important features of the original data.

What if the linearity assumption does not allow to catch the underlying structure of
the data? In many real-world phenomena, the relation between the different variables
is not linear. Think about phenomena involving rotations, or the evolution of prices in
the market; in these cases, one is forced to introduce some nonlinear function in the
approximation model and it happens also in data compression. Having this in mind, we
will introduce Nonlinear Matrix Decomposition (NMD), which is a new field in matrix
approximation that uses elementwise nonlinear functions to detect the hidden structure
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Figure 1: Approximation of three-dimensional data points with a two-dimensional sub-
space [1].

of the data which is recurrent both in the high-dimensional and low-dimensional repre-
sentation of the data set. NMD was firstly introduced by Saul in 2022 [2, 3] and it is
an open field of research. Furthermore, it is closely related to neural networks which
use non-linear functions as activation functions of the different layers. In particular, the
ReLU function defined as fReLU(·) = max(0, ·) is the first choice for hidden layers in
several neural networks. This connection motivates the matrix approximation model we
will discuss in this work which is denoted ReLU-NMD and that wants to find a low-rank
matrix Θ that approximates the original matrix X as X = fReLU(Θ) = max(0,Θ). In the
following chapters we will introduce the problem, show some of the motivations behind it
and present some of the algorithms that can be used to tackle the problem. In particular,
we will focus on two new algorithms that improves the state-of-the-art methods to solve
NMD: A-NMD and 3B-NMD. Those new methods were firstly presented in the paper

G. Seraghiti, A. Awari, A. Vandaele, M. Porcelli and N. Gillis, Accelerated Algo-
rithms for Nonlinear Matrix Decomposition with the ReLU function, MLSP 2023, 17-20
September, 2023, Rome.

and their MATLAB implementation is publicly available at https://gitlab.com/
ngillis/ReLU-NMD.

We will explain in detail the new algorithms for the NMD solution and they will
be compared with the state-of-the-art methods. Several tests will be reported both on
synthetically built and on real-world data sets.
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Chapter 1

Background material

This chapter is devoted to the description of some preliminary optimization tools which
will be useful in the next chapters of this thesis and will lay the groundwork for the
solution of several low-rank matrix approximation models. In particular, we present the
alternating optimization framework, which comprises optimization strategies that rely
on exploiting block-structured problems, i.e, problems that can be described with two
or more blocks of variables. The main advantage of a block decomposition method is
that, when some variables are fixed, it is possible to obtain one or more subproblems
of a special structure in the remaining variables. This can be useful in the solution of
many optimization problems, especially when the structure of the subproblems can be
conveniently exploited. Alternating minimization is used in many applications includ-
ing compressed sensing, sparse dictionary learning, Nonnegative Matrix Factorization
(NMF).

1.1 Alternating minimization
Let us introduce the block-structured optimization problem

min
x
f(x)

subject to x ∈ A = A1 × A2 × · · · × Am ⊂ Rn,
(1.1)

where f : Rn → R is a continuously differentiable function and the feasible set A is the
Cartesian product of closed, nonempty and convex subsets Ai ⊂ Rni , for i = 1, . . . ,m,
with

∑m
i=1 ni = n. Following the same structure, the vector x ∈ Rn is divided into m

blocks x = (x1, x2, . . . , xm). The family of algorithms called block-coordinate descent
algorithms, is among the most known alternating minimization in the literature. They
generate at each iteration a sequence of iterates {xk} such that

xk = (xk1, x
k
2, . . . , x

k
m).
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Each iteration contains several inner steps, each of those update one individual com-
ponent of xk. Following the same notation, the function value f(x) is also denoted
as f(x1, x2, . . . , xm) and for i = 1, . . . ,m the partial gradient of f with respect to xi,
evaluated at x is indicated by ∇if(x) = ∇if(x1, x2, . . . , xm) ∈ Rni .

We now introduce an algorithm that exploits the block structure of problem (1.1)
and that allows to minimize each block of variables independently. The block coordinate
descent (BCD) method for the solution of (1.1) is defined by the iteration:

xk+1
i = argmin

yi∈Ai

f(xk+1
1 , . . . , xk+1

i−1 , yi, x
k
i+1, . . . , x

k
m). (1.2)

In general the BCD method may not be convergent, meaning that it can produce a
sequence {xk} with limit points that are not critical points of the problem [4]. Indeed

Definition 1.1. A critical point of problem (1.1) is a point x̄ ∈ A such that∇f(x̄)T (y − x̄) ≥ 0,
for every y ∈ A.

Further hypothesis on the function f or on the constraint set A are needed in order
to guarantee the convergence of the method. We also fix the notation for the partial
updates of the the BCD method by defining the following vectors in A :

w(k, 0) = xk,

w(k, i) = (xk+1
1 , . . . , xk+1

i−1 , x
k+1
i , xki+1, . . . , x

k
m), i = 1, . . . ,m− 1,

w(k,m) = xk+1.

(1.3)

For convenience we also set w(k,m+ 1) = w(k + 1, 1).

1.1.1 Convergence analysis of the BCD method

We now present some properties of BCD that allow us to prove the convergence of the
BCD when only two blocks are taken into account. Note that we do not suppose any
further assumption on the objective function, which in particular, does not need to be
convex.

A line search algorithm: we recall some properties of an Armijo-type line search
algorithm along a feasible direction, which will be used in the sequel in the convergence
proofs presented in [5]. Line search is a standard optimization techniques that allows to
choose a proper step for several descent algorithms in order to prove the global conver-
gence.

Let {zk} be a given sequence in A and suppose zk = (zk1 , z
k
2 , . . . , z

k
m), with zki ∈ Ai,

for i = 1, . . . ,m. Assume that for all k, we can compute a search direction

dki = wk
i − zki with wk

i ∈ Ai, (1.4)

such that the following assumption holds:

9



Assumption 1 Let {dk} be the sequence of search directions from (1.4), then:

1. there exists a number M > 0 such that ∥dki ∥ ≤M for all k;

2. we have ∇if(z
k)Tdki < 0 for all k.

Line search algorithm (LS algorithm) Set γi ∈ (0, 1), δi ∈ (0, 1). Compute

αk
i = max

j=0,1,...
{(δi)j : f(zk1 , . . . , zki + (δi)

jdki , . . . , z
k
m) ≤ f(zk) + γi(δi)

j∇if(z
k)Tdki }. (1.5)

Then the following proposition holds

Proposition 1.1.1. Let {zk} be a sequence of points in A and let {dki } be a sequence
of directions such that Assumption 1 is satisfied. Let αk

i be computed by Algorithm LS,
then:

1. there exists a finite integer j such that αk
i = (δi)

j satisfies the condition in (1.5);

2. if {zk} converges to z̄ and

lim
k→∞

f(zk)− f(zk1 , . . . , zki + αk
i d

k
i , . . . , z

k
m) = 0, (1.6)

then we have
lim
k→∞
∇if(z

k)Tdki = 0. (1.7)

Let us observe that from the update in (1.2), w(k, i) defined in (1.3) is by construction
the global minimizer of f in the i−th component subspace, and therefore it satisfies the
necessary optimality condition:

∇if(w(k, i))
T (yi − xk+1

i ) ≥ 0 ∀yi ∈ Ai. (1.8)

The following proposition describes the properties of the sequence generated by BCD
and will allow us to guarantee the convergence of the algorithm in the 2-block case.

Proposition 1.1.2. Suppose that for some i ∈ {0, . . . ,m} the sequence {w(k, i)} admits
a limit point w̄. Then, for every j ∈ {0, . . . ,m} we have

lim
k→∞

f(w(k, i)) = f(w̄).
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Proof. Let us consider an infinite subset K ⊂ {0, . . . ,m} and an index i ∈ {0, . . . ,m}
such that the subsequence {w(k, i)}K converges to a point w̄. By the update in (1.2) we
have

f(w(k + 1, i)) ≤ f(w(k, i)). (1.9)

Then the continuity of f and the convergence of {w(k, i)}K imply that the sequence
{f(w(k, i))} has a subsequence converging to {f(w̄)}. Since {f(w(k, i))} is not increasing
by (1.9), it is bounded from below and converges to f(w̄). Then the assertion follows
immediately from the fact that

f(w(k + 1, i) ≤ f(w(k + 1, j) ≤ f(w(k, i) for 0 ≤ j ≤ 1,

and
f(w(k + 2, i) ≤ f(w(k + 1, j) ≤ f(w(k + 1, i) for i ≤ j ≤ m.

Proposition 1.1.3. Suppose that for some i ∈ {1, . . . ,m} the sequence {w(k, i)} admits
a limit point w̄. Then we have

∇if(w̄)
T (yi − w̄i) ≥ 0 ∀yi ∈ Ai (1.10)

and moreover
∇i∗f(w̄)

T (yi∗ − w̄i∗) ≥ 0 ∀yi∗ ∈ Ai∗ , (1.11)

where i∗ = i(mod m) + 1.

Proof. Let {w(k, i)}K be a sequence converging to w̄. From the continuity of ∇if and
from (1.8) we immediately get (1.10).

Let us prove (1.11), suppose at first i ∈ {1, . . . ,m}, so that i∗ = i+ 1. Reasoning by
contradiction, let us assume that there exists a vector ỹi+1 ∈ Ai+1 such that

∇i+1f(w̄)
T (ỹi+1 − w̄i+1) < 0. (1.12)

Then, letting
dki+1 = ỹi+1 − w(k, i)i+1 = ỹi+1 − xki+1.

From the fact that {w(k, i)}K is convergent, we have that the sequence {dki+1}K is
bounded. Recalling (1.12) and taking into account the continuity assumption on ∇if it
follows that there exists a subset K1 ⊂ K such that

∇i+1f(w(k, i))
Tdki+1 < 0 ∀k ∈ K1,

and therefore the sequence {dki+1}K1 and {w(k, i)}K1 are such that the Assumption 1
holds, provided that we identify {zk} with {w(k, i)}K1 .
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Now, for all k ∈ K1 suppose we compute αk
i+1 by means of Algorithm LS; then we

have
f(xk+1

1 , . . . , xk+1
i , xki+1 + αk

i+1d
k
i+1, . . . , x

k
m) ≤ f(w(k, i)).

Moreover, as xki+1 ∈ Ai+1, x
k
i+1 + dki+1 ∈ Ai+1, α

k
i+1 ∈ (0, 1], and Ai+1 is convex, it follows

that
xki+1 + αk

i+1d
k
i+1 ∈ Ai+1.

In addition, recalling that

f(w(k, i+ 1)) = min
yi+1∈Xi+1

f(xk+1
1 , . . . , xk+1

i , yi+1, . . . , x
k
m),

we can write

f(w(k, i+ 1)) ≤ f(xk+1
1 , . . . , xk+1

i , xki+1 + αk
i+1d

k
i+1, . . . , x

k
m) ≤ f(w(k, i)). (1.13)

By Proposition 1.1.3 we have that the sequences {f(w(k, j))} are convergent to a unique
limit for all j ∈ {0, . . . ,m}, amd hence we obtain

lim
k→∞,k∈K1

f(w(k, i))− f(xk+1
1 , . . . , xk+1

i , xki+1 + αk
i+1d

k
i+1, . . . , x

k
m) = 0.

Then, using Proposition 1.1.1, where we identify {zk} with {w(k, i)}K1 , it follows that

∇i+1f(w̄)
T (ỹi+1 − w̄i+1) = 0,

which contradicts (1.12), so that we have proved that (1.10) holds when i ∈ {1, . . . ,m−
1}. When i = m, so that i∗ = 1, we can repeat the same reasoning, noting that we
assumed w(k,m+ 1) = w(k + 1, 1)

The above result implies, in particular, that every limit point of the sequence {xk}
generated by BCD method is a critical point with respect to the components x1 and xm.
This means that it holds the following corollary.

Corollary 1.1.1. Let {xk} be the sequence generated by the BCD method and suppose
there exists a limit point x̄. Then we have

∇1f(x̄)
T (y1 − x̄1) ∀y1 ∈ A1, (1.14)

and
∇mf(x̄)

T (ym − x̄m) ∀ym ∈ Am, (1.15)
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Let us now consider the 2-blocks problem:

min
x
f(x) = f(x1, x2),

s.t. x ∈ X1 ×X2.
(1.16)

This type of problem is recurrent in many field of application and it may be useful to use
a two-block decomposition since it may allow to employ parallel techniques for solving
the subproblems. Furthermore in general the subproblems are way easier to solve than
the original problem. In addition for the two block BCD a proof of convergence in the
unconstrained case is given in [6]. Then the extension to the constrained 2Block BCD is
an immediate consequence of Corollary 1.1.1.

Corollary 1.1.2. Suppose that the sequence {xk} generated by the 2Block BCD method
has limit points. Then every limit point x̄ of {xk} is a critical point of (1.16)

In addition, we also mention that adding some convexity hypothesis on the objective
function, allows to prove the convergence of the general m−blocks BCD method. We
will not include those results in this thesis but they can be found in [5].

1.1.2 A proximal point modification of BCD method (PBCD)

We will now present a more general BCD method including a proximal step and we will
prove the convergence of the method without any assumption on the objective function
[5], also in the general m−block case. This type of algorithm has some close connections
with low-rank models for matrices, in particular with nonnegative matrix factorization
[7].

Proximal algorithms are tools for solving convex, nonsmooth, constrained, optimiza-
tion problems. In proximal algorithms, the base operation is evaluating the proximal
operator of a function, which involves solving a convex optimization problem. This
problem can be solved with standard methods, but it often admits closed form solutions
or can be solved very quickly with simple specialized methods.

Definition 1.2 (Proximal operator). Let f : Rn → R be a closed proper convex function,
The proximal operator proxf : Rn → Rn of f is defined by

proxf (y) = argmin
x

(
f(x) +

1

2
∥x− y∥22

)
. (1.17)

In the Proximal BCD (PBCD), we substitute the iteration in (1.1) with a proximal
step, see Algorithm 1.

The following proposition shows that the limit points obtained by the PBCD methods
are critical points of the problem (1.2).
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Algorithm 1 PBCD method
1: Set k = 0, x0 ∈ A, τi > 0 for i = 1, . . . ,m
2: for i = 1, 2, . . . ,m do
3: xk+1

i = argminyi∈Ai
{f(xk+1

1 , . . . , yi, . . . , x
k
m) +

1
2
τi∥yi − xki ∥2}.

4: end for
5: Set xk+1 = (xk+1

1 , . . . , xk+1
m ),

6: k = k + 1

Proposition 1.1.4. Suppose that the PBCD method is well defined and that the sequence
{xk} has limit points. Then every limit point x̄ of {xk} is a critical point of problem (1.2).

Proof. Let us assume that exists a subsequence {xk}K converging to a point x̄ ∈ A.
Define the vectors

w̃(k, 0) = xk,

w̃(k, i) = (xk+1
1 , . . . , xk+1

i , xki+1, . . . , x
k
m) for i = 1, . . . ,m.

Then we have

f(w̃(k, i)) ≤ f(w̃(k, i− 1))− 1

2
τi∥w̃(k, i)− w̃(k, i− 1)∥2, (1.18)

from which it follows

f(xk+1) ≤ f(w̃(k, i)) ≤ f(w̃(k, i− 1)) ≤ f(xk) for i = 1, . . . ,m. (1.19)

Reasoning as in Proposition 1.1.2, we obtain

lim
k→∞

f(xk+1)− f(xk) = 0,

and hence, taking the limit in (1.18) for k →∞ we have

lim
k→∞
∥w̃(k, i)− w̃(k, i− 1)∥ = 0, for i = 1, . . . ,m, (1.20)

which implies
lim

k→∞,k∈K
w̃(k, i) = x̄, i = 1, . . . ,m. (1.21)

Now, for every j ∈ {1, . . . ,m}, as xk+1
j is generated according to the rule in PBCD

algorithm (Algorithm 1), the point

w̃(k, j) = (xk+1
1 , . . . , xk+1

j , . . . , xkm),

satisfies the optimality condition

[∇jf(w̃(k, j)) + τj(w̃j(k, j)− w̃j(k, j − 1))]T (yj − w̃j(k, j)) ≥ 0 ∀yj ∈ Aj. (1.22)
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Then, taking the limit for k →∞, k ∈ K, recalling (1.20) and (1.21) plus the continuity
assumption on ∇f , for every j ∈ {1, . . . ,m} we obtain

∇jf(x̄)
T (yj − x̄j) ≥ 0 ∀yj ∈ Aj,

which proves our assertion.

1.1.3 Inertial Block Proximal method (IBP)

We now present a new efficient algorithm which includes a momentum step or equiv-
alently an extrapolation step in the BCD scheme, see [8]. Indeed, momentum is a
techniques which allows to use the information from previous iterations in a more clever
way and it helps reaching faster convergence rate. It was introduced at first by Polyak
in [9], where the descent direction of the algorithm is modified adding a momentum
term, equal to the difference of the two previous iterates, the deriving point is called
extrapolated point. Nesterov then, introduced the accelerated gradient method which
evaluates the gradient at the extrapolated point. Both the approaches share the idea
that, if the information from previous iterates is aggregated properly, it can produce a
richer overall picture of the function than the standard iteration, and thus has the poten-
tial to yield better convergence. In the convex setting it is possible to prove that those
techniques increase considerably the convergence rate of several algorithms, keeping the
computational cost almost unchanged. In this section we apply extrapolation techniques
to PBCD Algorithm 1.

Consider a particular instance of the problem in (1.1) which is a non-smooth, non
convex optimization problem of the form

min
x∈E

F (x), where F (x) := f(x) + r(x) (1.23)

• E = E1×, . . . , Es with Ei, being finite dimensional real linear spaces, equipped
with a norm ∥∥i.

• f : E → R is a continuous but possibly non-smooth, non-convex function.

• r(x) =
∑s

i=1 ri(xi) with ri : Ei → R∪{∞}, for i = 1, . . . , s, being proper and lower
semi-continuous functions.

One of the key features of IBP algorithm is the fact that it allows to choose randomly
or deterministically the block of variable to update; it was empirically observed that
randomization leads to better solution and faster convergence [10]. For this reason, in
IBP algorithm, Algorithm 2, includes an outer loop indexed by k and an inner loop,
indexed by j. At each iteration j of the inner loop only one block i ∈ {1, . . . , s} is
updated. So the notation we are going to use for the j-th iteration within the k-th
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outer loop of the algorithm is x(k,j), while the output, so the main generated sequenxe
is denoted x̃(k). We also suppose that every block has to be updated before starting a
new iteration of the outer loop. We will not go into the details on the choice of the
parameters of the model. Note only that the momentum parameter α(k,j)

i can either be
fixed or it can be selected using more aggressive strategies, for example some adaptive
techniques. Furthermore, the proximal parameter β(k,j)

i has to be tuned as well.

Algorithm 2 IBP method

1: Choose x̃(0) and initialize the needed parameters
2: for k = 1, 2, . . . do
3: x(k,0) = x̃(k−1).
4: for j = 1, 2, . . . , Tk do
5: Choose i ∈ {1, . . . , s} deterministically or randomly. Let yi be the value of the

i-th block before it wes updated to x(k,j−1)
i .

6: x̂i = x
(k,j−1)
i + α

(k,j)
i

(
x
(k,j−1)
i − yi

)
,

7: x
(k,j)
i = argmin

xi

F
(k,j)
i (xi) +

1

2β
(k,j)
i

∥xi − x̂i∥2.

8: end for
9: x̃(k) = x(k,Tk).

10: end for

1.2 Standard matrix approximation models
In this section, we describe two of the methods which are commonly used in order to
approximate a given matrix by another one of smaller rank. We start giving some general
notions about Singular Value Decomposition (SVD) theory and we will see how it can
be used to find the most meaningful information contained on a general data set. This
section will be particularly useful since many of the algorithms that will be presented in
the next chapters use SVD. We then introduce Principal Component Analysis (PCA),
that computes the variance and covariance of a given set of measurements in order to
detect the optimal set of variables to express the data in a more efficient and compact
way. This method is in general, particularly useful for dimensionality reduction and
denoising.

1.2.1 Singular Value Decomposition (SVD)

We now introduce the Singular Value Decomposition (SVD) of a given matrixX ∈ Rm×n.
SVD has some advantages that makes it one of the best options in many low rank
approximation models. At first, this decomposition always exists, also for rectangular
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matrices and moreover, fixing the rank of the approximation to r, it easily provides the
optimal rank-r approximation of X, meaning the rank-r matrix that has the smallest
error with respect to the original one. The drawback of this approach is that computing
the SVD is usually a difficult task and it requires a considerably high computational
cost, compared to others low-rank models, so if the dimension of the problem is large it
is not always possible to easily compute the SVD decomposition. Let us now state and
prove the theorem that defines the SVD and ensures the existence of this decomposition.
We start recalling a useful Lemma

Lemma 1.2.1. Given a matrix Q1 ∈ Rm×k, with orthonormal columns, there exists a
matrix Q2 ∈ Rm×(m−k) such that Q = (Q1, Q2) is an orthogonal matrix.

Theorem 1.2.1. Any matrix A ∈ Rm×n, with m ≥ n, can be factorized as

A = USV T , S =

(
Σ
0

)
, (1.24)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, and Σ ∈ Rn×n is diagonal,

Σ = diag(σ1, σ2, . . . , σn),

where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Proof. The assumption m ≥ n is not a restriction: in the other case just apply the
theorem to AT . Consider the maximization problem

sup
∥x∥2=1

∥Ax∥2.

Note that we are seeking for the supremum of a continuous function over a closed set, the
supremum is attained for some vector x. Set Ax = σ1y, where ∥y∥2 = 1 and σ1 = ∥A∥2.

Using Lemma 1.2.1 we can construct the orthogonal matrices

Z1 = (y, Z̄2) ∈ Rm×m, W1 = (x, W̄2) ∈ Rn×n.

Then
ZT

1 AW1 =

(
σ1 yTAW̄2

0 Z̄T
2 AW̄2

)
,

since yTAx = σ1, and ZT
2 Ax = σ1Z̄

T
2 y = 0. Set

A1 = ZT
1 AW1 =

(
σ1 wT

0 B

)
.

Then
1

σ2
1 + wTw

∥A1

(
σ1
w

)
∥22 =

1

σ2
1 + wTw

∥
(
σ1 + wTw

Bw

)
∥22 ≥ σ2

1 + wTw.
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But ∥A1∥22 = ∥ZT
1 AW1∥22 = σ2

1; therefore w = 0 must hold. Thus we have taken one step
toward a diagonalization of A. Proceed now by induction.

B = Z2

(
Σ2

0

)
W2, Σ2 = diag(σ2, . . . , σn).

Then we have

A = Z1

(
σ1 0
0 B

)
W T

1 = Z1

(
σ1 0
0 Z2

)σ1 0
0 Σ2

0 0

(1 0
0 W T

2

)
W T

1 .

Thus, by defining

U = Z1

(
1 0
0 Z2

)
, Σ =

(
σ1 0
0 Σ2

)
, V = W1

(
1 0
0 W2

)
,

The theorem is proved.

The columns ui, i = 1, . . . , n of U are called left singular vectors, while the ones, vi,
i = 1, . . . ,m of V are denoted right singular vectors, and the diagonal elements of Σ,
that are σi are the singular values.

Since S =

(
Σ
0

)
, it is possible to obtain a more compact formulation of the SVD,

exploiting the splitting U = (U1, U2), where U1 ∈ Rm×n and the product with the lower
part of S which contains only zero entries. Hence we get

A = U1ΣV
T (1.25)

furthermore, from the expression in (1.25) can be derived the following matrix equations:

Avi = σiui, ATui = σivi, i = 1, 2, . . . , n. (1.26)

The equations in (1.26) suggest the so called outer product formulation of the SVD, that
is an equivalent formulation obtained by a sum of matrices.

A =
n∑

i=1

σiuiv
T
i . (1.27)

Moreover, the following proposition holds

Proposition 1.2.1. Let A ∈ Rm×n, then the 2-norm of A is given by

∥A∥2 = σ1.
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Proof. Without lost of generality, assume that A ∈ Rm×n and m ≥ n, and let the SVD
of A be A = UΣV T . The norm is invariant under orthogonal transformations, therefore

∥A∥2 = ∥Σ∥2.

The result now follows, since the 2-norm of a diagonal matrix is equal to the absolute
value of the largest diagonal element. Recall that the diagonal elements of Σ are ordered
from the largest to the lowest. Then, it holds:

∥Σ∥22 = sup
∥y∥2=1

∥Σy∥22 = sup
∥y∥2=1

n∑
i=1

σ2
i y

2
i ≤ σ2

1

n∑
i=1

y2i = σ2
1.

The equality is reached at y = e1.

Let us now give some useful definitions.

Definition 1.3 (Range). The range of a matrix A is the linear subspace,

R(A)={y | y = Ax, for arbitrary x }.

Definition 1.4 (Null-space). The null-space of a matrix A is the linear subspace

N (A)={x | Ax = 0 }.

Assume that A has rank r, this implies that

σ1 ≥ σ2, . . . , σr > σr+1 = · · · = σn = 0.

Then, using the outer product form, we have

y = Ax =
r∑

i=1

σiuiv
T
i x =

r∑
i=1

σiv
T
i xui =

r∑
i=1

αiui.

This means that the left singular values generate the Range of the matrix A.
Furthermore, since Ax =

∑r
i=1 σiuiv

T
i x, we see that any vector z =

∑n
i=r+1 βivi is in

the null-space of A. Having this observations in mind, we can state the following theorem:

Theorem 1.2.2. (fundamental subspaces)

1. The singular vectors u1, u2, . . . , ur are an orthonormal basis in R(A) and

rank(A) = dim(R(A))=r.

2. The singular vectors vr+1, vr+1, . . . , vn are an orthonormal basis in N (A) and
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dim(N (A))=n− r.

3. The singular vectors v1, v2, . . . , vr are an orthonormal basis in R(AT ).

4. The singular vectors ur+1, ur+1, . . . , um are an orthonormal basis in N (AT ).

We now introduce the concept of numerical rank and its relation with the Truncated
SVD (TSVD). Assume that A is a low-rank matrix plus noise: A = A0 + N, with the
noise N which is small compared to the original matrix A0. In this situation, we call
numerical rank the number of large singular values. In other words, those singular values
which are above a fixed threshold and that with high probability contain the majority of
the information about the matrix A0, while the singular values small in absolute value
are related to the noise N . If we know the rank of A0, we can remove the noise finding a
matrix of the correct rank, which approximates A. The obvious way to do this is simply
to truncate the singular value expansion. Assume that the numerical rank is equal to k,
then we approximate

A =
n∑

i=1

σiuiv
T
i ≈

k∑
i=1

σiuiv
T
i =: Ak. (1.28)

The TSVD has several applications, for example it is widely used to stabilize the solution
of problems which are extremely ill-conditioned or to remove noise. Furthermore, it can
be applied in data compression, providing a lower rank approximation of a given matrix
A. The popularity of the TSVD is due to the fact that it is the solution of approximation
problems where one wants to approximate a given matrix by one of lower rank. The
following theorems indeed hold.

Theorem 1.2.3. Assume that the matrix A ∈ Rm×n has rank r > k. The matrix ap-
proximation problem

min
rank(Z)=k

∥A− Z∥2

has the solution
Z = Ak := UkΣkV

T
k ,

where Uk = (u1, . . . , uk), Vk = (v1, . . . , vk), and Σk = (σ1, . . . , σk). The minimum is

∥A− Ak∥2 = σk+1.

A proof of this theorem can be found in [11].

Theorem 1.2.4. Assume that the matrix A ∈ Rm×n has rank r > k. The matrix ap-
proximation problem

min
rank(Z)=k

∥A− Z∥F
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has the solution
Z = Ak := UkΣkV

T
k ,

where Uk = (u1, . . . , uk), Vk = (v1, . . . , vk), and Σk = (σ1, . . . , σk). The minimum is

∥A− Ak∥F =

(
p∑

i=k+1

σ2
i .

) 1
2

,

where p = min(m,n).

In order to prove Theorem 1.2.4 we state at first the following lemma
Lemma 1.2.2. Consider the mn−dimensional vector space Rm×n with inner product

⟨A,B⟩ = tr(ATB) =
m∑
i=1

n∑
j=1

aijbij

and norm
∥A∥F = ⟨A,A⟩

1
2 .

Let A ∈ Rm×n, with SVD A = UΣV T . Then the matrices

uiv
T
j , i = 1, . . . ,m, j = 1, . . . , n, (1.29)

are an orthonormal basis in Rm×n.
We are now ready to prove Theorem 1.2.4

Proof. Write the matrix Z ∈ Rm×n in terms of the basis in (1.29)

Z =
∑
i,j

ψijuiv
T
j ,

where the coefficients are to be chosen. For the purpose of this proof the coefficients of
Σ are called σij. Due to the orthonormality of the basis, and recalling that the matrix
A can be written as in (1.28), we have

∥A− Z∥2F =
∑
i,j

(σij − ψij)
2 =

∑
i

(σii − ψii)
2 +

∑
i ̸=j

ψ2
ij.

We can choose the second term to be zero. We then obtain the following expression
for Z:

Z =
∑
i

ψiiuiv
T
i .

Since the rank of Z is equal to the number of terms in this sum, we see that the constraint
rank(Z)=k, implies that we should have exactly k nonzero terms in the sum. To minimize
the objective function we then choose

ψii = σii i = 1, 2, . . . , k,

which gives the desired result.
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1.3 Principal Component Analysis (PCA)
Assume to have a data set X ∈ Rm×n, which can be interpretated as a set of observations
consisting of multiple measurements. The number of measurements is the dimension of
each sample. In general, we suppose to have n observations, that is n vectors in an
m-dimensional subspace, where m is the number of measurement types. The main goal
of PCA is to find a better representation of the data, meaning that it looks for the
most meaningful basis to re-express the data. This process can be very useful in order to
remove noise from the data or to reduce redundant variables, finding a lower dimensional
representation of the data.

How can we find this new base that better express the data set? The first assumption
that PCA makes is linearity, which means that the new base is a linear combination of
the previous base. This is a strong assumption that helps to simplify consistently the
problem.

In particular, if X is the given data set, we look for a new representation Y such that
they are related by a linear transformation P , that is

PX = Y. (1.30)

Let us fix the notation: pi are the rows of P , xi are the columns of X and yi are the
columns of Y . Note that in equation (1.30) P is the matrix that transform X into Y
and geometrically, it represents a rotation. The rows of P, {p1, p2, . . . , pm}, are a set of
new basis vectors that express the columns of X.

Writing the explicit product and defining the scalar product between two vectors a
and b as a · b we have

Y =

p1 · x1 · · · p1 · xn
... . . . ...

pm · x1 · · · pm · xn

 .

This means that each column is of the form

yi =

p1 · xi
...

pm · xi

 .

In other words, the j-th coefficient of yi is a projection on the j-th row of P . Therefore
the rows of P are indeed a new set of basis vectors for representing the columns of X.

How do we choose the matrix P? The choice of the basis depends on the features that
we want Y to express. Further assumptions beyond linearity are needed. Keep in mind
that the main goal is to identify and reduce redundancies between individual variables,
which are closely related to the concepts of variance and covariance. Consider two sets
of simultaneous measurements with zero mean in vector form

a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn).
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The covariance can be expressed as a dot product matrix computation

σ2
ab =

1

n− 1
abT . (1.31)

Take now into account m vectors x1, x1, . . . , xm and build the matrix

X =

x1
...
xm

 ,

then we can define the covariance matrix

SX =
1

n− 1
XXT . (1.32)

Note that SX is a square m×m matrix, that contains the variance of the measurements
in the diagonal and the off diagonal terms represent the covariance between measure-
ment types. So computing SX quantifies the correlations between all possible pairs of
measurements. The idea is to obtain a transformation Y such that the covariance matrix
SY satisfies certain properties. In particular, if we want to reduce redundancies, we want
each variable to co-vary as little as possible with the others. In other words we want
the off diagonal term to be zero, meaning that removing redundancies is equivalent to
diagonalize SY .

1.3.1 Solving PCA

Let us make another assumption on the matrix P which is typical of PCA: assume P is
an orthonormal matrix, that is {p1, p2, . . . , pm} are an orthonormal basis. Furthermore
we consider the directions pi with larger variance as the most important and we call
them principal.

We can formulate PCA problem as follows: find some orthonormal matrix P , where
Y = PX such that SY = 1

n−1
Y Y T is diagonalized. The rows of P are the principal

components of X.
Let us write SY in terms of the variable P ;

SY =
1

n− 1
Y Y T =

1

n− 1
(PX)(PX)T =

1

n− 1
(PX)XTP T =

1

n− 1
PAP T . (1.33)

Recall that A = XXT is a symmetric matrix and using the Spectral Theorem, it can
be diagonalized by the orthogonal matrix of its eigenvectors. So we select the matrix
P such that each row pi is an eigenvector of XXT . Following this reasoning, we find
A = P TDP , then, having in mind that P T = P−1, we have

SY =
1

n− 1
PAP T =

1

n− 1
(PP T )D(PP T ) =

1

n− 1
D (1.34)

SY is now diagonalized.
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1.3.2 Relation with SVD

Let X be an arbitrary m× n matrix and XTX be a rank r, square, symmetric, m×m
matrix. Let us now fix the notation:

• {v̂1, v̂2, . . . , v̂r} is the set of orthonormal n× 1 eigenvectors with associated eigen-
values {λ1, λ2, . . . , λr} of the symmetric matrix XTX

(XTX)v̂i = λiv̂i,

• σi =
√
λi are the singular values.

• {û1, û2, . . . , ûr} is the set of orthonormal m× 1 vectors defined by ûi = 1
σi
Xv̂i.

Note at first, that if λi are the eigenvalues of XTX, it holds

(Xv̂i)
T (Xv̂j) = v̂Ti X

TXv̂j = v̂Ti (λj v̂j) = λjδij.

This means that
∥Xv̂i∥2 = (Xv̂i)(Xv̂i) = λi = σ2

i .

From the definition of the vectors ûi, we can restate the singular values decomposition
as follows

Xv̂i = σiûi. (1.35)

We now construct the matrices which compose the singular value decomposition.
Note that since the rank of the matrix is r we have to fill the set of {v̂1, v̂2, . . . , v̂r} and
{û1, û2, . . . , ûr} with (n−r) and (m−r) orthonormal vectors respectively. Hence we can
define

V = [v̂1v̂2 . . . v̂n],

U = [v̂1v̂2 . . . v̂m],

Σ = [σ1σ2 . . . σr0 . . . 0].

Then we can write the expression in (1.35) in matrix form

XV = UΣ. (1.36)

Manipulating equation (1.36) we get

X = UΣV T ,

UTX = ΣV T ,

UTX = Z.

Note that the previous columns {û1, û2, . . . , ûr} are now rows in UT . Hence UT is a
change of basis from X to Z = ΣV T and it plays the same role of the matrix P in the
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PCA. This means that UT is a basis that spans the columns of X. Following the same
reasoning we can obtain the following equation

V TXT = Z, where Z = UTΣ.

Again the columns of V (or the rows of V T ) are an orthonormal basis transforming XT

into Z, meaning that the basis spans the rows of X. It starts now to become clear that
SVD and PCA are indeed closely related. Suppose to have an original matrix m× n X
and define a new n×m matrix Y as follows

Y =
1√
n− 1

XT .

This definition becomes clear analyzing Y TY.

Y TY =

(
1√
n− 1

XT

)T (
1√
n− 1

XT

)
=

1

n− 1
XXT = SX .

By construction Y TY is the covariance matrix of X and we have already seen that the
principal components of X are the eigenvectors of SX . So if we compute the SVD of Y ,
the columns of V contain the eigenvectors of Y TY = SX . Therefore the columns of V are
the principal components of X. This means that V spans the row space of Y = 1√

n−1
XT ,

therefore V spans the column space of 1√
n−1

X.
In conclusion, finding the principal components of X is equivalent to find an or-

thonormal basis that spans the column space of X and the first singular values are the
most meaningful ones.
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Chapter 2

Nonnegative Matrix Factorization
(NMF)

In this chapter we introduce Nonnegative Matrix Factorization (NMF) following the
presentation in [1]. NMF became popular after the seminal paper of Lee and Seung in
1998 [12]. It is one of the most used techniques in Linear Dimensionality Reduction
(LDR). It consists in solving a constrained optimization problem that allows to extract
important features from a given data set.

In other words, given a matrix X, NMF finds two factors U and V which approximate
X ≈ UV , and in many cases, they can be easily interpretated since they are constrained
to be elementwise nonnegative. From a mathematical point of view, given X ∈ R+

m×n

and r, approximation rank, we want to solve the problem

min
U ≥ 0, V ≥ 0

D(X,UV ) (2.1)

where D(X,UV ) measures the error between X and the approximation UV . The func-
tion D can be chosen in several ways and we will provide a brief overview based on
maximum likelihood estimation. In many practical applications, the presence of noise
does not always allow to obtain an exact decomposition X = UV , for this reason, the
error measure D(X,UV ) is often needed.

We will at first introduce the problem and some of the applications where it can
be found, providing some practical examples, such as features extraction in images and
documents classification. We then present some of the algorithms that can be applied
to solve the standard NMF problem. Most of the algorithms that will be shown use
alternating minimization, which was introduced in Chapter 1.
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2.1 Applications of NMF
Let us first introduce some of the possible applications of NMF. Given a matrix X,
we want to understand when it is useful to decompose the matrix as X ≈ UV , with
U, V ≥ 0. The main strength of NMF is the fact that its factors U, V are easily an
intuitively interpretable.

2.1.1 Features extraction in a set of images

The first application and maybe the most recurrent one is features extraction. Suppose
to have a set of vectorized grey-scale images. Vectorized means that the two-dimensional
images are transformed into a long one-dimensional vector, for example, by stacking the
columns of the image on top of each other. Collect all the vectors, columnwise in a
matrix X. This means that the element Xij contains the intensity of the i-th pixel of
the j-th image. Note that each of the elements of X is nonnegative. Finding a solution
of the general NMF problem in (2.1), means that we have two nonnegative matrices U
and V such that X ≈ UV . As mentioned in the previous section, the columns of U form
a basis for the column of X. Since U is nonnegative, its columns can be interpretated
as basis images, in other words, the columns of U are vectors of pixel intensities, whose
linear combinations allow us to approximate each input image. Furthermore, also V is
nonnegative and this means that all the coefficients in the linear combination are either
positive or zero, so no cancellations are allowed. Hence, each of the basis image must
correspond to a local feature that the original images share between each other. For
example, if the columns of X contains facial images, the columns of U would be linked
to eyes, noses, mustaches, and lips. The weighted sum of all the basis elements gives
the approximation of each of the original images (see Figure 2.1 for a visual example).
Another possible example is the features extraction of geometrical shapes. NMF can
distinguish between the edges that compose a given picture as Figure 2.2 displays with
the swimmer data set.

2.1.2 Text mining: topic modeling and document classification

Topic modeling is a type of statistical model which allows to detect the common "topics"
that a collection of documents share. Depending on the topic that a certain document
is about, one might expect some words to be more or less recurrent than others. The
"topics" produced by topic modeling techniques are clusters of similar words. In other
terms, topic modeling allows to detect the topic of each document from a collection based
on the words that it contains. The connection with document clustering is straightfor-
ward, each document is contained in the cluster related to a certain topic. See [13] for
additional information.
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Figure 2.1: NMF applied on the CBCL face data set with r = 49 (2429 images with
19× 19 pixels each). On the left is a column of X reshaped as an image. In the middle
are the 49 columns of the basis U reshaped as images and displayed in a 7× 7 grid and
V contains the coefficients. UV is the NMF reconstruction [1].

Figure 2.2: The top picture contains some sample images from swimmer data set, while
the bottom one are the NMF basis elements[1].

From a mathematical point of view, suppose that each column of the matrix X
corresponds to a document. This means that the columns of X are vectors of words
count and they are also nonnegative. For example Xij is the number of times the word
i appears in the document j. This is the so-called bag of words model. Find NMF of the
matrix X and obtain

X(:, j) ≈
r∑

k=1

U(:, k)V (k, j).

In this model, the columns of U are still nonnegative and they can be interpreted as
vectors of words count as well. Note that the number of columns of U is much smaller
than the columns of X, this means that the NMF has selected those words that better
express the whole set of documents. In fact, no cancellation are allowed because V is
nonnegative too, and hence each column of U must contain words that appear simultane-
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ously in these documents. The most intuitive interpretation is that the words contained
in each columns of U are all related to the same topic. Moreover, the columns of the
factor V indicate the importance of the topics discussed in the corresponding documents.
An intuitive illustration is given in Figure 2.3.

Figure 2.3: Illustration of the application of NMF to topic modelling, in which the basis
elements in the decomposition represent the main topics of the set of documents.[1].

NMF can be applied to several other fields such as blind hyperspectral unmixing in
which it allows to recover the different materials visible in an image only measuring the
intensity of the lights within a scene. Moreover, it can be used to separate audio sources
or in the analysis of chemical reactions or in geoscience and remote sensing. See [1] for
additional explanations.

2.2 Error measure
When designing NMF model, the choice of the error measure D(X,UV ) in (2.1) is
essential and it is used to evaluate the quality of the approximation. This quantity
depends directly on the statistical properties of the noise added to the low-rank matrix,
which, as it happens in the majority of real-life applications, it is unknown. Therefore,
one has to choose which error measure to use relying on some strategy.

It is in our purpose only to present some of the possible error measures that can
be included in the NMF model and to explain how they can be obtained as maximum
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likelihood estimators of statistical distributions of the noise. Suppose the matrix X
contains the observations of a random variable, X̃ij, defined by the parameter (Û V̂ )ij,
where the factors Û > 0 and V̂ > 0 are deterministic and unknown. The random variable
X̃ depends on the parameter as X̃ = N((Û V̂ )ij), where N(·) represents the noise and
it can be either additive or multiplicative. In the following, we always suppose that the
noise is independent and identically distributed (i.i.d.) and that the distribution of the
noise is centered in (Û V̂ )ij with variance σ.

Let us define the probability density function of X̃ij as p(X̃ij, (Û V̂ )ij, σ), then, since
the noise is i.i.d. the likelihood of the sample X with respect to (Û V̂ )ij and σ is

ℓ(X; Û V̂ , σ) =
∏
i,j

p(X̃ij, (Û V̂ )ij, σ). (2.2)

Given X, the parameters Û , V̂ , and σ can be estimated by solving the problem

min
U≥0,V≥0,σ

ℓ(X;UV, σ).

In order to simplify the expression in (2.2), the logarithm of the likelihood is usually
considered, multiplied by -1, and it is also possible to get rid of the parameter σ, which
does not play a role in the estimation of Û and V̂ . We then get an easier estimator of
the form

min
U≥0,V≥0,

D(X,UV ), (2.3)

for some D, specified below.
Let us present some of the possible i.i.d. noise model. We do not explicitly derive

the likelihood function which is out of the purposes of this thesis.

• Gaussian: let us suppose that the random variable X̂ follows a model with additive
noise X̂ = Û V̂ + N̂ , with N̂ which is i.i.d. Gaussian with 0 mean and standard
deviation σ. In this case, X̃ follows a Gaussian distribution,

X̃ij ∼ N
(
(Û V̂ )ij, σ

)
∀i, j and some σ.

Then the logarithmic likelihood is

D(X,UV ) =
∑
i,j

(X − UV )2ij = ∥X − UV ∥2F . (2.4)

• Uniform: each entry of X̃ follows the distribution

X̃ij ∼ U((Û V̂ )ij)− c, (Û V̂ )ij + c) ∀i, j,
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where U(a, b) is the uniform distribution in [a, b]. This is an additive noise, X̃ ∼
Û V̂ + Ñ with Ñij ∼ U(−c, c) for all i, j. From the maximum likelihood estimation
we get the following error measure

D(X,UV ) = max
i,j
|X − UV |ij = ∥X − UV ∥∞. (2.5)

• Laplace: the entries of X̃ follow the Laplace distribution, whose probability density
function is

p(X̃ij, (Û V̂ )ij, σ) =
1

2σ
e−

1
σ
|X̃ij−(Û V̂ )ij | ∀i, j.

We then get the corresponding maximum likelihood estimator

D(X,UV ) =
∑
i,j

|X − UV |ij = ∥X − UV ∥1. (2.6)

Since the property of the noise are in most case unknown, there are several techniques
in order to choose a suitable error measure such as cross validation or other statistical
approaches. In many cases the objective function is chosen empirically based on the type
of data to handle. In our case, we will mostly deal with images and the Frobenius norm
turns out to be particularly effective. Therefore, from now on we will focus on the model
whose objective function is described in (2.4), and we will refer to it as FRO-NMF.

2.3 Algorithms for Frobenius NMF
In this subsection we present some algorithms that can be used to tackle the standard
NMF problem (2.1).

We will focus on the particular case where the error measure D is the Frobenius
norm, so problem (2.1) becomes

min
U ≥ 0, V ≥ 0

∥X − UV ∥2F . (2.7)

In general, problem (2.7) is NP-hard (a proof of it can be found in [14]) and it is not
possible to guarantee the converge to a global minimum. Hence all the algorithms that
are mentioned in this section are iterative methods that attempt to attain convergence
to a critical point of problem (2.7).

Alternating minimization scheme Most of the iterative schemes used to solve NMF
problems are designed minimizing alternatively over the two factors U and V ; in other
words one minimizes U while keeping V fixed and viceversa. This is, in fact, a 2-block
coordinate descent (2-BCD) method and it is described in Algorithm 3.

Let us observe the following properties:
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Algorithm 3 Two-block coordinate descent framework
Input: nonnegative matrix X and factorization rank r.
Output: Two matrices U and V s.t. X ≈ UV.
1: Generate initial matrices U0 ≥ 0 and V 0 ≥ 0.
2: for k = 1, 2, . . . , maxit do
3: Uk=update(X,Uk−1, V k−1), typically such that

∥X − UkV k−1∥F ≤ ∥X − Uk−1V k−1∥F .

4: (V k)T=update(XT , (Uk)T , (V k−1)T ), typically such that

∥X − UkV k∥F ≤ ∥X − UkV k−1∥F .

5: end for

1. For almost all the error measures D, including the Frobenius norm, alternating
the minimization in U and V yields convex and easily solvable, either exactly or
approximately, subproblems.

2. It holds true that ∥X − UV ∥F = ∥XT − V TUT∥F , so the FRO-NMF problem is
symmetric in the variables U and V . We will focus on the following subproblem
for V but everything can be applied also to the one in U :

min
V≥0
∥X − UV ∥2F , (2.8)

note also that fixing U the subproblem in V is a linear regression model.

3. Provided that it holds ∥X−UV ∥2F =
∑n

j=1∥X(:, j)−UV (:, j)∥22, then solving (2.8)
is equivalent to solve

min
V (:,j)≥0

∥X(:, j)− UV (:, j)∥22 j = 1, . . . , n. (2.9)

However, in practice, these problems are rarely solved independently.

First order optimality conditions We now state the first order optimality condi-
tion for NMF. In the general case, consider the error measure D(X,UV ), suppose it is
differentiable and denote ∇VD(X,UV ) ∈ Rr×n the gradient of D(X,UV ) with respect
to V . Note that ∇VD(X,UV ) is a matrix of the form

[∇VD(X,UV )]k,j =
∂D(X,UV )

∂V (k, j)
.
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For the Frobenius norm we get

∇V ∥X − UV ∥2F = 2UT (UV −X).

Most NMF algorithms are first-order methods, which means that only the gradient
needs to be computed at each iteration and only convergence to a stationary point can
be achieved. The point (U, V ) satisfies the optimality condition of (2.7), also known as
Karush–Kuhn–Tucker (KKT) conditions if

U ≥ 0, ∇U∥X − UV ∥2F ≥ 0, ⟨U,∇U∥X − UV ∥2F ⟩ = 0,

V ≥ 0, ∇V ∥X − UV ∥2F ≥ 0, ⟨V,∇V ∥X − UV ∥2F ⟩ = 0.
(2.10)

Let us observe that from (2.10) , it can be shown that for the Frobenius norm, for any
stationary point (U, V ), it holds

argmin
α
∥X − αUV ∥2F =

⟨X,UV ⟩
⟨UV, UV ⟩

= 1,

from which we get

∥X − UV ∥2F = ∥X∥2F − 2⟨X,UV ⟩+ ∥UV ∥2F = ∥X∥2F − ∥UV ∥2F , (2.11)

so at stationarity it holds ∥UV ∥F ≤ ∥X∥F .
We now present some algorithms which follows the 2-BCD framework of Algorithm

3 and that differ for the strategies used to solve subproblems for U and V . All these
subproblems are Non Negative Least Square problems (NNLS) of the form

min
V≥0
∥X − UV ∥2F . (2.12)

2.3.1 Multiplicative Update (MU)

Before introducing the Multiplicative Update (MU) method, we review the rescaled
gradient descent method for constrained optimization problem:

min
v≥0

f(v), (2.13)

where f is twice continuously differentiable. The projected rescaled gradient updating
step takes the form

v+ = P(ṽ −B∇f(ṽ)), (2.14)

where ṽ is the current iterate, v+ is the next iterate, B is a diagonal matrix with positive
diagonal entries and it can be interpreted as an approximation of the Hesian matrix of f
in a Quasi-Newton method, and lastly, P(v) = max(0, v) is the projection on the feasible
set.
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Let ∇+f(v) > 0 and ∇−f(v) > 0 be such that ∇f(v) = ∇+f(v) − ∇−f(v). Take
B = diag

(
[ṽ]

[∇+f(v)]

)
and let A⊙ B be the elementwise product between matrices A and

B, the projected rescaled gradient descent method becomes

v+ = ṽ − [ṽ]

[∇+f(v)]
⊙ (∇+f(v)−∇−f(v)) = ṽ ⊙ [∇−f(v)]

[∇+f(v)]
. (2.15)

This method can be easily applied to each block-update in Algorithm 3. As an
example, for the FRO-NMF the explicit MU update takes the form

V ← V ⊙ [XV T ]

[UTUV ]
,

where we denote [A]
[B]

the componentwise division between the matrices A and B.

2.3.2 Alternating Nonnengative Least Square (ANLS)

The Alternating Nonnengative Least Square (ANLS) algorithm was first introduced by
Paatero and Tapper in [15] where they solved the subproblems in U and V in Algorithm
3 up to global optimality. This approach is in fact a 2-BCD method and we state the
following theorem which guarantees the convergence to a stationary point. In the general
2-BCD framework the convergence is guaranteed provided that the objective function in
continuously differentiable and if each block of variables belongs to a closed, convex set,
which is the case for FRO-NMF. Then it holds

Theorem 2.3.1. [5] The limit points of the iterates of an exact 2-BCD algorithm applied
to problem (2.7) are stationary points

Let us simplify the problem considering the case in which X and V have only one
column, denoted by x and v respectively and consider the problem:

min
v≥0

f(v), where f(v) = ∥x− Uv∥2F . (2.16)

The KKT conditions become

v ≥ 0, ∇vf(v) = UT (Uv − x) and vT∇vf(v) = 0.

Note that the KKT conditions are necessary and sufficient for the global optimality
since (2.16) is convex and it exists at least one point having v > 0, which means that
the interior of the feasible domain is not empty.

One of the possible strategies that can be used to tackle the problem and to solve it
with high accuracy is active-set method, see [16] for more details. Let us denote v∗ an
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optimal solution of the NonNegative Least Square (NNLS) problem in (2.16). Assume
to know the set

I = {i|v∗i > 0},

The complement of I contains the indices such that v∗i = 0 and it is called the active
set.
Let us restrict the problem to v(I), such that the unconstrained least square problem
becomes

min
v(I)
∥U(:, I)v(I)− x∥2. (2.17)

Solving the normal equations deriving from (2.17) we can compute the nonzero entries
of v∗, hence we solve the linear system

[∇vf(v)]I = 0
⇐⇒ [UT (Uv − x)]I = 0

⇐⇒ U(:, I)TU(:, I)v(I) = U(:, I)Tx.

This method is implemented in the MATLAB function lsqnonneg. Other methods
can be used to solve NNLS, for example, second-order methods such as interior point
method, can be used in order to reach high accuracy in the solution. The drawback of
these alternative approaches is the fact that in general, this higher order methods are
consistently more expensive and they can become not efficient if the dimension of the
problem is large.

2.3.3 Alternating least square heuristic (ALS)

An heuristic approach that can be applied to solve NMF is conceptually simple and
consists in solving the problem getting rid of the nonnegativity constraint and projecting
the solution in the feasible set. Hence we compute the NNLS solution for the block Y in
the following way

max

(
0, argmin

Y
∥X − UY ∥2F

)
.

The main advantage of this approach is that it is easy to implement and in some cases it
provides reasonable solution, for example when the input matrix is sparse and can be well
approximated using an elementwise operator such as the max(0, ·) function. However,
it comes with no theoretical guarantees of convergence and in fact, it often diverges in
practice, especially for dense input matrices.

2.3.4 Hierarchical Alternating Least Squares (HALS)

Hierarchical Alternating Least Squares (HALS) is an exact block coordinate descent
method where the blocks of variables are the rows of V . Each of the NNLS subproblem
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is then decomposed into smaller problems, one for each block. This is due to the fact
that the variables on a single row of V are independent, in fact it holds

∥X − UV ∥2F =
n∑

i=1

∥X(:, j)− UV (:, j)∥2F . (2.18)

Let us reformulate the univariate least squares problem as

argmin
v∈R+

∥x− uv∥22 = argmin
v∈R+

∥x∥22 − 2uvTx+ v2∥u∥22. (2.19)

The function in (2.19) is a quadratic with positive values and so convex function which
has a unique minimizer of the form max(0, uT x

∥u∥22
).

Let us now consider only the ℓ-th row of V , while other variables are kept fixed:

min
V (ℓ,:)≥0

∥X −
∑
k ̸=ℓ

U(:, k)V (k, :)− U(:, ℓ)V (ℓ, :)∥2F (2.20)

Define
Rℓ = X −

∑
k ̸=ℓ

U(:, k)V (k, :) = X − UV + U(:, ℓ)V (:, ℓ),

then (2.20) can be written as

min
V (ℓ,:)≥0

∥(Rℓ − U(:, ℓ)V (ℓ, :))∥2F .

It holds

∥(Rℓ − U(:, ℓ)V (ℓ, :))∥2F =
n∑

j=1

∥Rℓ(:, j)− U(:, ℓ)V (ℓ, j)∥2F ,

which are n independent univariate least square problems with closed-form solution

argmin
V (ℓ,j)≥0

∥X − UV ∥2F = max

(
0,
U(:, ℓ)TRℓ(:, j)

∥U(:, ℓ)∥22

)
∀ℓ, j.

In vector form we have

argmin
V (ℓ,:)≥0

∥X − UV ∥2F = max

(
0,
U(:, ℓ)TRℓ

∥U(:, ℓ)∥22

)
∀ℓ.

HALS cyclically updates each row of V as above, and similarly for the columns of U ;
see Algorithm 4.

HALS is an exact Block coordinate descent (BCD) method with 2r blocks of variables
updated cyclically. For a general BCD methods, in order to guarantee the convergence,
the following theorem can be invoked and relies on four conditions.
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Algorithm 4 Hierarchical alternating least squares (HALS)
Input: nonnegative matrix X and factorization rank r.
Output: Two matrices U and V s.t. X ≈ UV.
1: Generate initial matrices U0 ≥ 0 and V (0) ≥ 0.
2: for k = 1, 2, . . . , maxit do
3: for ℓ = 1, 2, ..., r do
4: V (ℓ, :)← max

(
0,

U(:,ℓ)TX−
∑

k ̸=ℓ(U(:,ℓ)TU(:,k))V (k,:)

∥U(:,ℓ)∥22

)
5: end for
6: for ℓ = 1, 2, ..., r do
7: U(:, ℓ)← max

(
0,

XV (ℓ,:)T−
∑

k ̸=ℓ U(:,ℓ)(V (ℓ,:)V (ℓ,:)T )

∥V (ℓ,:)∥22

)
8: end for
9: end for

Theorem 2.3.2. [17]The limit points of the iterates of an exact BCD algorithm to
minimize a given objective function are stationary points provided that the following
conditions hold:

1. the objective function is continuously differentiable,

2. each block of variables is required to belong to a closed convex set,

3. the minimum computed at each iteration for a given block of variables is uniquely
attained,

4. the objective function values in the interval between all iterates and the next (which
is obtained by updating a single block of variables) is monotonically decreasing.

As we have already seen for the ALS algorithm, the first two conditions are satisfied
by FRO-NMF in (2.7). Condition 3 and 4 are again satisfied since the algorithm for
the solution of FRO-NMF has closed-form solution for its subproblem and each of the
update monotonically decrease the objective function.

2.3.5 Accelerated HALS (A-HALS)

In all the first order methods, such as MU and HALS, it is crucial to tune properly the
number of inner iterations when solving the NNLS subproblems in U and V . This aspect
goes beyond the choice of the optimization method and it has to be taken into account
in the designing of every 2-BCD for NMF. More in details, the main computational cost
is in computing the gradient. Hence, to update V , we need to compute both UTX in
O(nnz(X)r) and (UTU)V in O((m + n)r2) operations. Note that for ANLS, since the
subproblems are solved exactly, there is no need to choose the number of inner iterations.
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The main idea in Alternating HALS (A-HALS) is to update several times the factor
V , while keeping U fixed. In this way the computational cost of the alternating procedure
is considerably decreased but we loose in terms of guarantees of convergence. Indeed,
as explained above, the first gradient when updating V has a computational cost of
O(nnz(X)r + (m + n)r2) and it includes the computation of UTX in in O(nnz(X)r)
and UTU in in O(mr2). As long as U is not updated, those quantities may be stored
and the next computation of the gradient in the subproblem for V requires only O(nr2)
from (UTU)V . Therefore, the first computation of the gradient is much more expensive
than the following ones, in particular it is (1 + nnz(X)+mr

nr
) times more expensive. This

reasoning suggests that updating V only once would be a waste of computation. Of
course, it is not necessary to update V to many times since U will be modified at the
next iteration, hence high accuracy in solving NNLS problem is not required.

The following heuristic works well in practice [7]:

• Perform at most 1 + α nnz(X)+mr
nr

updates of V , where α ∈ [0.5, 1],

• Add a stopping criteria based on the comparison between two successive iterations
and the first update:

∥V (t) − V (t−1)∥2 ≤ δ∥V (1) − V (0)∥2,

where V (t) is the current iterate of the NNLS problem and usually δ is fixed to 0.1.

2.3.6 Extrapolated NMF algorithm

As it usually happens in first order methods [18], one can consider the possibility to
add momentum between the updates of U and V in the 2-BCD algorithm for NMF
(Algorithm 3). Let us first introduce the general extrapolation scheme that will be used
to accelerate NMF algorithms. Assume to have an optimization scheme such that the
next iterate is computed only based on the previous one (e.g. gradient descent or a
coordinate descent), that is

xk+1 = update(xk),

for some function update(·) that depends on the objective function and the feasible set.
The idea is to define a new sequence of iterates yk with y0 = x0 and modify the above
scheme as follows

xk+1 = update(xk) yk+1 = xk+1 + βk(xk+1 − xk),

where βk is the momentum parameter at iteration k, and it can be either kept fixed or
chosen adaptively.

Figure 2.4 allows to have an intuition of the meaning of the extrapolation scheme:
the direction of (xk+1−xk) is in between the direction obtained with the original update
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applied to yk and it allows to accelerate the convergence. For example, in gradient
descent in smooth, convex optimization, it improves the convergence of the method from
O(1\k) to O(1\k2).

Figure 2.4: Illustration of extrapolation scheme[19].

The scheme can be applied to NMF as follows and it can be included in every method
seen so far, in order to solve the NNLS subproblems. Given Y 0 = V 0 and Z0 = V 0,
compute for t = 1, 2, . . .

U t = update(X, Y t−1, Zt−1),

Zt = Zt(βt) = U t + βt(U
t − U t−1),

V t = update(XT , (Zt)T , (Y t−1)T ),

Y t = Y t(βt) = V t + βt(V
t − V t−1).

Since NMF is nonconvex, tuning the parameter βt is not trivial and it can be either
kept fixed or various heuristic approaches can be applied [19]. In general, the extrapo-
lation strategy increases the speed of convergence of the NMF algorithms as it can be
seen for extrapolated A-HALS (E-A-HALS) in [1], but convergence to stationary points
is not yet understood for such schemes. Furthermore, note that after the extrapolation
step the factors are not guaranteed to be nonnegative, for this reason it is also possible to
add a projection step of the form Zk = max(0, Zk) either at the end of the minimization
or at each iteration; see [19] for further information.

Let us now present one of the possible heuristic that can be efficiently introduced in
order to tune the parameter βt in the extrapolation scheme. The first question to answer
is: is it possible to have a closed-form expression for the best β parameter? The answer
is yes, and it is the solution of the problem

β∗ = argmin
β
∥X − Zt(β)Y t|2F (2.21)
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but empirically, evaluating β∗ at each iteration does not work well because β∗ is closed
to zero for most steps of the procedure.

Hence in [19], Andersen proposes proposes a new strategy to choose β. It will increase
the objective function in some cases ∥X−Zt(β)Y t|2F > ∥X−Zt(0)Y t|2F , but it will allow
a larger decrease at the next step. At first, fix the parameters 1 < γ̄ < γ < η, β1 ∈ (0, 1).
The heuristic update of βk starts from an initial value β0 ∈ [0, β̄], where β̄ = 1 is an
upper bound. As long as the error decreases, increase the value of βk+1 by a factor γ,
that is βk+1 = min(γβk, β̄). Increase also the upper bound by a factor γ̄ < γ if it is
smaller than one, hence β̄ = min(γβ̄, 1). The usefulness of β̄ is to keep in memory the
last value of βk that allowed the decrease of the objective function. In fact if the error
increases, βk+1 is reduced by a factor η > γ and the upper bound β̄ is set to the previous
value that allowed the decrease of the objective function, that is, βk−1. See Algorithm 5
that summarize all the procedure.

Algorithm 5 Update of βk
Input: 1 < γ̄ < γ < η, β1 ∈ (0, 1).
Output: βk parameter for the extrapolation step.
1: Set β̄ = 1.
2: if error decreases at iteration k then
3: Increase βk+1 : βk+1 = min(γβk, β̄),
4: Increase β̄ : β̄ = min(γ̄β̄, 1).
5: else
6: Decrease βk+1 : βk+1 = βk+1\η,
7: β̄ = βk−1.
8: end if

2.3.7 The Inertial Block Proximal method for NMF

We present now the Inertial Block Proximal method (IBP) alternating minimization
introduced in Section 1.1.3 applied to NMF problem. In particular we give an alternative
formulation of the general NMF problem, which we recall here

min
V≥0,U≥0

∥X − UV ∥2F . (2.22)

We want to express it in an equivalent form that is similar to the general problem we
considered to introduce IBP algorithm in (1.23), that is

min
x∈E

F (x), where F (x) := f(x) + r(x). (2.23)

In our case we consider f(U, V ) = ∥X − UV ∥2F and r1(U) = IRm×r
+

(U), and
r2(V ) = IRr×n

+
(V ), where IS is the indicator function of the set S. Furhtermore notice
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that UV =
∑r

i=1 U:iVi:, hence NMF can be written as a function of 2 × r variables U:i

and Vi:. We recall that IBP algorithm includes a proximal step of the form

x
(k,j)
i = argmin

xi

F
(k,j)
i (xi) +

1

2β
(k,j)
i

∥xi − x̂i∥2,

where βi is the proximal parameter. So we want to solve the subproblem with respect
to the variable U , keeping V fixed, that is solving the problem

argmin
U :i≥0

∑
∥X −

i−1∑
q=1

U:qVq: −
r∑

q=i+1

U:qVq: − U:iVi:∥2 +
1

2βi
∥U:i − Û:i∥2, (2.24)

where Û:i comes from the extrapolation step, see Algorithm 2.
The solution of problem (2.24) is

max

(
0,
XV T

i: − (UV )V T
i: + U:iVi:V

T
i: + 1\βiÛ:i

Vi:V T
i: + 1\βi

)
. (2.25)

As it happens for HALS, in order to reduce the computational cost, it is better to
update each variable several times, before doing so for the other one.
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Chapter 3

Nonlinear Matrix Decomposition
(NMD)

Although it is widely used, LDR is not the unique approach that one can choose in
order to perform dimensionality reduction of a given data set. In fact, depending on
the type of data and on the relation that each variable has with the others, a linear
estimator may not be the best possible choice and it is worthy to introduce a Nonlinear
Matrix Decomposition (NMD). In this chapter we will follow the presentation in [2, 3].
We have seen in Chapter 2, that when dealing with nonnegative data, a given matrix
X can be approximated by two nonnegative factors U and V , decreasing the rank of
the original matrix and compressing the information. Other techniques may be used
instead, for example, as mentioned in Chapter 1, one can compute the Singular Value
Decomposition (SVD) of the matrix X, obtaining a lower rank approximation Θ. In
many cases, such decompositions can help to analyze high-dimensional data in terms of
a much smaller number of degrees of freedom.

In some practical applications and in general, when we want to describe physical
processes, introducing nonlinearity is needed. For example, almost all neural networks
uses non linear functions as activations in the different layers. Having this fact in mind,
we introduce the NMD problem.

Given a sparse nonnegative matrix X, we want to estimate a low rank matrix Θ
from which it is easy to recover the original one by applying an elementwise non linear
function f . In general, we look for a matrix Θ such that

X ≈ f(Θ).

The form of this nonlinearity can be purposefully tailored to reveal low-dimensional
structure in sparse data. Thanks to its close connection with neural networks, a common
choice between nonlinearities is the ReLU function

fReLU(·) = max(0, ·). (3.1)
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In the following sections we will construct some nonlinear models suitable for sparse
nonnegative matrices and we will present some iterative strategies that can be applied
to solve them. Sparse nonnegative matrices arise in many fields of application. Widely
recurrent in image processing where they can represent the edges of objects, they can also
record links in a social networks or the word count in a corpus of documents. When those
matrices are very large one is usually interested in finding a low-rank matrix, reducing
the degrees of freedom, that does not match exactly the original one but still provides a
close approximation.

3.1 Motivation and intuitive idea behind ReLU-NMD
Starting from a sparse nonnegative matrix X, the aim of the NMD is to find a new
matrix Θ such that X ≈ f(Θ) and f is an elementwise non linearity. From now on we
will focus on the case where f is equal to the ReLU function in (3.1), commonly used in
hidden layers of neural networks. Hence the problem consists in finding Θ such that the
approximation

X ≈ max(0,Θ),

is accurate up to a certain degree of freedom. In this section, we present the main ideas
that motivate NMD models, the main differences with linear models for low-rank approx-
imations, in particular with NMF, and the connection of NMD with neural networks.

3.1.1 Mining zeros of sparse data

The main and most intuitive idea that stands behind NMD and in particular behind
dimensionality reduction using the ReLU function, is mining zeros of sparse data, as
explained in [2]. In other words, the NMD model uses the ReLU function to map all the
negative values of the matrix Θ into zeros of the original matrix X. In this way it is
possible to strategically choose the negative values in Θ, so that the rank of the matrix is
reduced, as shown in Figure 3.1. The idea is somehow similar to what usually happens in
matrix completion, in which we construct an approximation of a given matrix by filling
its missing entries in such a way that the rank is reduced. In both cases, the larger
the number of missing elements, the more flexibility one has to complete the matrix
with a low-rank model; this is the reason why the sparsity of the original matrix is an
unavoidable hypothesis. As a consequence of this fact, if the matrix X contains mostly
zero entries NMD has much more chances to discover low-rank decompositions than
TSVD.

Let us consider the example in [2] to show how an elementwise nonlinearity can model
large disparities in rank between the matrices Θ and X.
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Figure 3.1: Example of mining zeros of sparse data in NMD approximation: X is a
sparse nonnegative matrix and Θ is the NMD approximation such that max(0,Θ) = X.
The idea is to replace zero values of X (shown in red) with strategically chosen negative
values (shown in yellow). The more X is sparser and the more are the chances to lower
the rank of Θ [2].

Theorem 3.1.1. Let α > 0, and consider the n× n circulant matrices with elements

Θij = 1− α
[
1− cos

2π

n
(i− j)

]
, (3.2)

and
Xij = max(0,Θij). (3.3)

It holds that X is full rank for α ≥ 1
2 sin π

n
sin π

2n
, and rank(Θ)=3 for all n ≥ 3.

At first we show that rank(Θ)=3. Let us define the orthogonal column vectors
c, s, u ∈ Rn, with elements

ci = cos
2πi

n
, si = sin

2πi

n
, ui = 1, i = 1, . . . , n. (3.4)

These vectors are the eigenvectors of Θ with nonzero eigenvalues. This fact can be proved
writing

Θ = (1− α)uuT + α(ccT + ssT ). (3.5)

This decomposition establishes that rank(Θ) = 3 for all n ≥ 0. Note that this result
holds for all values of α /∈ {0, 1}.
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The second step is to prove that X has full rank. At first we show that the diagonal
elements of X are all equal to one; then we show that the remaining (off diagonal)
elements of X are either zero or sufficiently small that none of its eigenvalues can deviate
too far from unity. To simplify the analysis we take into account a fixed value of α, but
it is not difficult to show that the result also holds for all larger values of α. Let

α ≥ 1

2 sin π
n
sin π

2n

, (3.6)

substitute the value of α in (3.2), which after some calculations yields

Θij = 1−
sin2 π

n
(i− j)

sin π
n
sin 2π

n

. (3.7)

Note that Σii = 1, and hence from (3.3) it also holds Xii = 1 for all terms in the diagonal.
In addition, among the off-diagonal terms, we see that Σij < 0 and hence Xij = 0 unless
i − j = 1 mod n. Then we evaluate (3.7) for the elements just above or below the
diagonal and we observe that each row of X has exactly two positive off-diagonal terms,
bounded by

Xi,i±1 = 1−
sin π

n

sin 2π
n

= 1−
(
2 cos

π

n

)−1

<
1

2
. (3.8)

From this last result, we have shown not only that Xii = 1 everywhere on the diagonal,
but also that

∑
j ̸=i |Xij| < 1. It follows from the Gershgorin circle theorem that X has

no zero eigenvalues and hence must be of full rank. The particular choice of α in (3.6)
was convenient for this proof, but note that any larger choice pushes X even closer to
the identity matrix (and its eigenvalues closer to unity). The theorem is then proved.

Furthermore, when α is very large, the matrix X reduces to the identity matrix. This
means that the identity matrix of any size n can be approximated by a nonlinear model
applied to a low-rank matrix of rank 3.

3.1.2 NMD vs NMF

As it has been explained in Chapter 2, given a nonnegative matrix X, the goal of NMF
is to find a low-rank factorization X ≈ UV , such that the factors U, V are constrained
to be nonnegative. Such factors are usually discovered minimizing the error in Frobenius
norm and in many cases, the minimization strategy consists in splitting the problem into
two subproblems to be solved independently. The popularity of NMF is due both to the
effectiveness in solving the subproblems using closed-form or multiplicative updates, and
to the interpretability of its low-rank models. Thanks to the fact that the factor U and
V are nonnegative, NMF is able to discover parts-based representation of data, meaning
it can isolate all those different features, the data are made of. For example, NMF can
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express some images of faces as a combination of the different facial features, such as
eyes, nose and lips, which represent the basis elements of the linear decomposition. These
representations are notably different than those discovered by SVD, whose factors do not
have such an intuitive interpretation.

Even more evident is the difference in motivation between NMF and NMD. At first,
NMD’s approximation matrix Θ does not have a practical interpretation since it allows
negative values. In this sense, NMD is more similar to PCA, in fact, both of the methods
are based on the assumption that although the data are embedded in an high dimensional
vector space, most of the variability is captured by much lower dimensional manifold[12].
NMD wants to detect those features that both the high-dimensional expression and his
embedding in lower-dimensional manifold share, namely pattern manifold. While NMF
seeks parts-based representation of data, NMD looks for pattern manifolds of the data.
These are two types of low-dimensional structures that can exist in high-dimensional
data. Furthermore, it is well known that not all pattern manifolds can be described by
linear model and here it becomes essential to introduce nonlinearity in order to express
the data in terms of its essential degrees of freedom. In conclusion, even though NMF can
in some cases easily express relevant information in terms of much more easier factors,
giving them an intuitive representation, it cannot reveal other types of low-dimensional
structures.

Let us present an example of pattern manifold that can be revealed by the NMD
model. This example is closely related to the construction shown in Theorem 3.1.1. In
particular, we consider the case when a large value of the parameter α is chosen; hence,
the original matrix X is close to the identity matrix of order n. Define

Θij = 1− α
[
1− cos

2π

n
(i− j)

]
,

and
Xij = max(0,Θij).

As shown in Theorem 3.1.1, X has full rank, while rank(Θ)=3. This example arises
naturally from a data set of sparse one-dimensional images, in which each image is a
symmetric blip-three pixels wide, and darkest in its center pixel—against a light back-
ground, see Figure 3.2 in the left for an example of blip. All these images are related by
simple translation, in fact, if we order each image based on the central pixel of the blips,
it is clear that each successive image is obtained from the previous one, by shifting the
pixels of one position. Moreover, the global data set is invariant under translation. This
peculiarity is reflected also in the eigenvectors of the matrix Θ, which indeed turn out to
be the simple Fourier modes. Let us point out that this structure is not obvious looking
only at the original space of images, when viewed as vectors of pixel values, while it
becomes evident looking at the eigenvectors of the low rank approximation. In addition
the rank of the matrix Θ represents a dimensionality in which the data’s underlying
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manifold can be embedded. In conclusion, the data set X can be viewed as arising from
a pattern manifold of one-dimensional translations, and the essential structure of this
manifold is reflected in the much lower rank matrix Θ.

Figure 3.2: Example from [2], the matrixX contains a data set of sparse, one-dimensional
images in which a blip is translated across a light background. The picture shows how
the pattern manifold of X is reflected in the lower rank matrix Θ, such that
X = max(0,Θ). The structure of both the expression of the data is invariant under
translation.

The idea of expressing data in terms of pattern manifolds in lower-dimensional spaces
is becoming more and more popular since it has been associated to the the neural re-
sponses that underlie brain activity[20]. In particular, there may be a connection between
lower-dimensional embedding and the way the brain perceives different stimuli from the
same object, translations, rotations, different light exposure, etc. Let us give an intuitive
idea of this connection. Suppose to have a collection M of images deriving from the same
object but varying its orientation. Each image can be seen as a point in the Cartesian
plane. The set M is a continuous curve in the image space and it can be described by
one degree of freedom: the angle of rotation of the object. Even though the dimension
of the image space M is equal to the number of images, it is a one dimensional manifold
embedded in that higher-dimensional space. The retinal image is a collection of signals
from photoreceptor cells. If this number are taken to be coordinates in an abstract image
space, then an image is represented by a point. Hence, images from the same object will
lay on the same manifold. Human brain is able to understand that a given image comes
from the same object even though it is, for example rotated. This fact suggests that it
can also equate between images coming from the same manifold and distinguish between
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the images from different manifolds. How the brain represents image manifold is yet
unknown.

3.1.3 NMD as neural network

The popularity of nonlinear models is increasing since neural networks became more and
more relevant, especially in machine learning applications. Indeed most of the activation
functions used in neural networks’ layers are nonlinear. Consider a neural network with
bottom layer of r hidden units, a top layer of d visible units and an r × n matrix W
connecting nodes in these layers (see Figure 3.3). Assume r < d such that the net is
trying to explain a larger set of activities in the visible layer by a smaller one in the hidden
layer. Mathematically, starting from n points of dimensionality d, (x1, x2, . . . , xn), we
want to estimate a weight matrix W and infer a corresponding set (h1, h2, . . . , hn) of
hidden patterns of dimension r, such that

xi ≈ f(Whi), (3.9)

where f is an elementwise nonlinearity. The ReLU function for example, is commonly
used in hidden layers of several nets. From equation (3.9) it is clear the connection of
this type of models with the low-rank, nonlinear models that we are presenting in this
thesis. Indeed, given a d × n data set X, and let the r × n matrix H represent the
network’s pattern, then (3.9) reduces to X ≈ f(Θ), where Θ = WH is a matrix of rank
r.

Figure 3.3: Two layers network in which the bottom layer encodes a lower-dimensional
representation of the pattern of activities in the top layer, constrained to nonnegative
values.
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Chapter 4

Algorithms for ReLU-NMD

In this chapter we present the main algorithms that have been developed in order to
solve NMD models. The NMD problem we consider in this thesis is the following: Given
X ∈ Rm×n and r < min(m,n), solve

min
Θ∈Rm×n

∥X −max(0,Θ)∥2F such that rank(Θ) = r. (4.1)

We will refer to this problem as ReLU-NMD. ReLU-NMD makes sense only if X is
nonnegative, since max(0,Θ) ≥ 0. Moreover, X should be relatively sparse for ReLU-
NMD to provide advantages compares to the TSVD: if X has mostly positive entries,
the solution of ReLU-NMD will be similar to that of the TSVD, since Θ will need to
contain mostly positive entries.

As far as we know there are no existing algorithms designed to tackle the problem
directly. In fact, it is neither differentiable nor convex and the nonlinearity arising in the
objective function in (4.1), makes the problem difficult to solve. ReLU-NMD has been
recently investigated by Saul in [2], where he introduced another formulation for it, the
so-called latent variable model. The main advantage of the latent variable formulation is
that it allows one to move the nonlinearity from the objective function to the constraints,
opening the possibility of exploring new solution strategies.

In this section, we quickly resume the general theory of latent variable models and we
introduce expectation-minimization (EM) algorithm, which is commonly used to solve
this type of problems. Then we formulate the latent variable model for NMD and we
present some possible solution strategies: Naive-NMD algorithm, EM-NMD algorithm,
introduced at first in [2], then the new methods A-NMD and 3B-NMD, which constitute
the main contribution of this thesis, see [21].
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4.1 The latent variable model theory
The word "latent" simply means "unobserved". Latent variables are random variables
that we assume to exist underlying our data. In contrast with the usual approach of
a regression model, in which one tries to learn a mapping from stimuli to responses, in
latent variable models, the goal is to identify simplified structures in a set of observed
responses. In the following we will consider x to be the observed data, and z to be the
latent random variable. In particular, we will construct a general latent variable model
in terms of two pieces:

• Prior probability over the latent: z ∼ p(z),

• Conditional probability of observed data x|z ∼ p(x|z)

Starting from the quantities above, it is possible to derive the probability of the observed
variable x, which is obtained integrating over the latent variable. This means that in the
continuous case, we have:

p(x) =

∫
p(x|z)p(z) dz, (4.2)

or summing in the case of discrete latent variables z1, z2, . . . , zm:

p(x) =
m∑
i=1

p(x|z = zi)p(z = zi), z ∈ {z1, z2, . . . , zm}. (4.3)

We now introduce two steps which are at the base of expectation-minimization (EM)
algorithm, which is an iterative method for finding the maximum likelihood estimate for
a latent variable model. It consists of iterating between two steps (“Expectation step”
and “Maximization step”, or “E-step” and “M-step” for short) until convergence.

1. Inference step: refers to the problem of inferring the latent variable z from the
data x. The posterior over the latent given the data is specified by Bayes’ rule:

p(z|x) = p(x|z)p(z)
p(x)

, (4.4)

recalling that the denominator is obtained integrating the numerator, in fact
p(x) =

∫
p(x|z)p(z) dz. This is the so called E-step in which one tries to infer the

distribution of the latent variable z. In practice, the standard way of proceeding is
assuming z to have a certain distribution, for example Gaussian and in this phase,
the statistics (mean and variance) of the random variable are estimated.

2. Learning step: in order to be precise we introduce the dependency to the pa-
rameters of the model, which we will call σ, and we write the model as specified
by

p(x, z|σ) = p(x|z, σ)p(z|σ). (4.5)
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The learning step consists in updating the model parameters σ such that the like-
lihood is increased, so we maximize the marginal probability:

σ̂ = argmax
σ

p(x|σ) = argmax
σ

∫
p(x, z|σ) dz. (4.6)

In this way we perform the M-step which gives a new estimate of the model’s
parameters.

4.2 Latent NMD and Naive algorithm
We now introduce the latent variable Z, such that max(0, Z) = X that allows to bring
the nonlinearity from the objective to the constraints in ReLU-NMD model. Note that
Z is not constrained to be non negative. We directly write the latent model, in order to
give some intuitive ideas about it and we will refer to it as Latent NMD. Latent NMD
is formulated in [2] as follows

min
Z,Θ
∥Z −Θ∥2F such that

{
rank(Θ) = r,

max(0, Z) = X.
(4.7)

Furthermore, observe that: first, the bottom constraint enforces that the elements of
X can be perfectly recovered from those of Z, and second, the objective function in (4.7)
is bounded below by zero and only obtains this minimum value when X = max(0,Θ).
Let us now present some possible techniques that can be used to solve this latent NMD
problem.

Naive algorithm A simple algorithm to tackle the reformulation (4.7) is based on
alternating optimization [2], see Chapter 1. In other words, at each step, we minimize at
first with respect to the variable Z keeping Θ fixed and then we use the new approxima-
tion of Z to update Θ. Given a sparse, nonnegative matrix X, let I+ = {(i, j) | Xij > 0}
and I0 = {(i, j) | Xij = 0}. At each iteration, Z and Θ are computed alternatively: the
optimal solution for Z, when Θ is fixed in (4.7), is given by

Zij =

{
Xij if (i, j) ∈ I+,
min(0,Θij) if (i, j) ∈ I0.

(4.8)

The optimal solution for Θ when Z is fixed is the rank-r TSVD of Z. We will refer to
this algorithm as Naive NMD, see Algorithm 6.
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Algorithm 6 Naive NMD
Input: X, Z0, Θ0, r, maxit.
Output: A rank-r matrix Θ s.t. X ≈ max(0,Θ).

1: Set Zk
ij = Xij for (i, j) ∈ I+ and for k = 0, 1.

2: for k = 0, 1, . . . , maxit do
3: Zk+1

ij = min(0,Θk
ij) for (i, j) ∈ I0.

4: [U,D, V ] = TSVD(Zk+1, r).
5: Θk+1 = UDV T .
6: end for

Furthermore, in [3], Saul mentions that it is possible to accelerate the above simple
scheme by an additional momentum term on the update of Z, with fixed Polyak momen-
tum parameter [9]. Denoting by Zk+1, the k + 1-th iterate, after Zk+1 is computed via
(4.8), it is updated as

Zk+1 ← Zk+1 + α(Zk − Zk−1), (4.9)

where α ∈ (0, 1). We will refer to the accelerated Naive algorithm as A-Naive, see
Algorithm 7.

Algorithm 7 A-Naive NMD
Input: X, Z0, Θ0, r, maxit.
Output: A rank-r matrix Θ s.t. X ≈ max(0,Θ).

1: Set Zk
ij = Xij for (i, j) ∈ I+ and for k = 0, 1.

2: for k = 0, 1, . . . , maxit do
3: Zk+1

ij = min(0,Θk
ij) for (i, j) ∈ I0.

4: Zk+1 ← Zk+1 + βk(Z
k+1 − Zk).

5: [U,D, V ] = TSVD(Zk+1, r).
6: Θk+1 = UDV T .
7: end for

Note that in both algorithms the TSVD must be computed. This can be easily done in
MATLAB using the function svd for full matrices or svds for matrices in sparse format.
In alternative it also possible to evaluate the eigenvectors and eigenvalues, of the matrix
(Zk+1)TZk+1, which correspond to the singular values. This task can be completed using
the function eig in MATLAB. We observed that for small matrices and in particular as
long as (Zk+1)TZk+1 can be computed explicitly, eig is more efficient than svd or svds.

52



4.3 The EM-NMD algorithm
Let us now construct the expectation-minimization algorithm for NMD, in order to solve
problem (4.7). Suppose to start from an original matrix X of dimension m × n, where
each m-dimensional column represents a single instance of the data set and n denotes
the number of such examples. The idea is to consider a m × n matrix Θ, such that
rank(Θ) = r and use it to parameterize a Gaussian latent variable model. In particular,
given the matrix Θ, a distribution over the nonnegative matrices is generated. We sample
a gaussian random variable of variance σ2, namely Zij for each of the element Θij

Zij ∼ N (Θij, σ
2). (4.10)

Note that the model is parameterized by two parameters, Θ and σ2 which as to be
estimated in the M-step. Then we get the matrix X deterministically from the nonlinear
map, in our case, from the ReLU function and we have

Xij = max(0, Zij). (4.11)

The next step is to construct the likelihood of the data X, which, as shown in
(2.2), depends elementwise on the marginal distribution p(Xij|Θij, σ

2). The goal is to
maximize the likelihood with respect to the matrix Θ and to the variance σ2. Let us first
compute the marginal ditribution for an individual observed element by integrating over
the value of its corresponding latent variable Zij that are consistent with the observation
Xij = max(0, Zij).

We have to take into account two possible cases: Xij = 0 and Xij > 0. Observe that
for the zero elements of X, max(0, z) = 0 if and only if z ≤ 0. Thus we have

p(Xij = 0|Θij, σ
2) =

∫ 0

−∞
p(Zij = z|Θij, σ

2) dz = Φ(−Θijσ
−1), (4.12)

where Φ(·) is the cumulative distribution function for a normal distribution with zero
mean and unit variance.

For what it concerns non negative elements, since Xij = max(0, Zij), it is clear that
Xij = Zij if and only if Zij > 0. Hence, for positive values of x, it holds

p(Xij = x|Θij, σ
2) = p(Zij = x|Θij, σ

2), (4.13)

where Zij is normally distributed by (4.10). We now observe that given the elements of
Θ, the elements of X are conditionally independent, which means that we can write

log p(X|Θ, σ2) =
∑
ij

log p(Xij|Θij, σ
2). (4.14)
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Maximizing this sum we estimate the parameter of our model. Note that since we have
the expression of p(Xij = 0|Θij, σ

2) and p(Xij = x|Θij, σ
2), we can proceed by applying

the EM scheme, in order to solve the optimization problem of maximizing the expression
in (4.14).

The EM algorithm consists in two phases, first the E-step or Inference in which we
try to infer the distribution of the latent variable Z. In particular, since Z in our case,
is gaussian distributed, we compute the posterior mean and variance. The second step is
the M-step, in which we use the posterior statistics to reestimate the model’s parameters
Θ and σ2.

Inference (E-step) At first, recall that to each observed matrix element Xij is as-
sociated a latent variable Zij, whose posterior distribution is given by Bayes’ rule as in
(4.4)

p(Zij|Xij,Θij, σ
2) =

p(Xij|Zij,Θij, σ
2)p(Zij|Θij, σ

2)

p(Xij|Θij, σ2)
. (4.15)

Note that the first term in the numerator, p(Xij|Zij,Θij, σ
2) is equal to one if

Xij = max(0, Zij) and zero otherwise. Hence the posterior distribution in (4.15) splits
in two cases:

• Xij = 0, it is a right-truncated gaussian, that has no probability mass for the values
of Zij > 0.

• Xij > 0, the posterior distribution reduces to a Dirac delta centered at Zij = Xij.
This case is trivial.

At each iteration of the EM-NMD, in the E-step we compute the posterior mean and
variance of Zij which are denoted by

Z̄ij = E[Zij|Xij,Θij, σ
2], (4.16)

¯δZij
2
= E[(Zij − Z̄ij)

2|Xij,Θij, σ
2], (4.17)

respectively. In order to explicitly compute those statistics, we introduce some elemen-
tary functions, in particular let

ϕ(z) =
1√
2π
e−z2\2,

be the probability density function for a normal distribution with zero mean and unit
variance, Φ, its cumulative distribution function, and ψ(z) = ϕ(z)\Φ(z) their ratio.
Define γij = σ−1Θij, then we rewrite the likelihood and the statistics of the latent
variables as follows; we do not include the explicit computation which is out of the
purposes of this work.
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• Likelihood
p(Xij = 0|Θij, σ

2) = Φ(−γij),

p(Xij = x|Θij, σ
2) =

1√
2πσ2

e−
1

2σ2 (x−Θij)
2

.

• Posterior mean(Z̄ij)
E[Zij|Xij = 0,Θij, σ

2] = Θij − σψ(−γij),
E[Zij|Xij = x,Θij, σ

2] = x.

• Posterior variance ( ¯δZij
2
)

V ar[Zij|Xij = 0,Θij, σ
2] = σ2[1 + γijψ(−γij)− ψ(−γij)2],

V ar[Zij|Xij = x,Θij, σ
2] = 0.

Learning: In the M-step, starting from the current estimate of Θ and σ2 and including
the new statistics from the E-step (posterior mean and posterior variance), we get the
updated parameters Θ̃ and σ̃2. Also in this case, the computation of the final results
is not included, since it may be of less interest than the final result itself. We simply
recall that the EM algorithm works, at each iteration, by calculating a surrogate for the
log-likelihood that is easier to optimize [22]. Following this idea the surrogate that it has
been chosen in [2] is given by

E
[
log p(Z|Θ̃, σ2)|X,Θ, σ2

]
=

E

[
−mn

2
log(2πσ̃2)− 1

2σ̃2
∥Z − Θ̃∥2F |X,Θ, σ2)

]
=,

− mn

2
log(2πσ̃2)− 1

2σ̃2

∑
ij

[
(Z̄ij − Θ̃ij)

2 + ¯δZij
2
]
.

(4.18)

By maximizing the expression in (4.18) we complete the M-step and we get the new
estimate of the model’s parameters. This maximization is straightforward.

In particular, Θ̄ is updated solving the following optimization problem

Θ̄ = argmin
Θ
∥Θ− Z̄∥F such that rank(Θ) = r. (4.19)

The optimal solution of (4.19) is the TSVD of rank r of the matrix Z̄ which comes from
the previous E-step. This step represents the main computational cost of the algorithm,
since computing TSVD may be very expensive for large dimensional matrices. The
variance of the latent variable Z is updated as follows

Θ̃2 =
1

mn

∑
ij

[
(Z̄ij − Θ̃ij)

2 + ¯δZij
2
]
. (4.20)

The final result of the EM algorithm is a nonlinear low-rank decomposition
X ≈ max(0,Θ), where the error of the approximation is modeled by the magnitude of
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σ2. Note that the optimization of the loglikelihood in (4.14) is not convex so it is not
possible to guarantee the convergence of the EM algorithm to a global maximum. This
also mean that the final result may also depend on the initialization of the method.
Furthermore, in [3] a momentum step as in (4.9) is added to the algorithm, we will refer
to the accelerated EM algorithm as A-EM.

4.4 Aggressive momentum NMD (A-NMD)
In this section we present an heuristic acceleration technique that speeds up the con-
vergence of the naive algorithm (Algorithm 6). In the naive algorithm, it is used a
Polyak-type extrapolation as shown in (4.9), with a fixed momentum parameter. In
addition, even though the variables involved in the alternating minimization process are
two, Z and Θ, the extrapolation is applied to the variable Z only. One possible expla-
nation for this choice is the fact that the extrapolation procedure on the variable Θ,
i.e.

Θk+1 ← Θk+1 + βk(Θ
k −Θk−1), (4.21)

can modify the rank of the matrix. Recall that the constraint that we have on the
approximation matrix Θ is that it has to be of a fixed rank(Θ) = r. In other words,
performing extrapolation on Θ increases the rank of the approximation, meaning that
we are adding more information during the minimization process. Note that if one wants
to apply extrapolation to the variable Θ, this should be avoided in the last iteration of the
algorithm. On the other hand, if we are not at convergence, we can use the extrapolated
Θk to compute the new Zk+1 in the successive iteration, and in practice, it considerably
accelerates the convergence of the Naive algorithm.

Following this idea, we now present the aggressive momentum NMD (A-NMD), that
was firstly introduced in [21]. The A-NMD algorithm uses a more aggressive Nesterov-
type extrapolation with an heuristic approach to tune the momentum parameter βk. The
Z−update takes the form

Zk+1 ← Zk+1 + βk(Z
k+1 − Zk), (4.22)

where βk is chosen adaptively. The first difference between A-NMD and A-Naive is that,
instead of the Polyak-type extrapolation, here we have a Nesterov-type extrapolation.
The overall procedure is described in Algorithm 8 and we note that the algorithm uses
extrapolation for both variables, Z and Θ. The adaptive choice of the momentum param-
eter allows the algorithm to be less sensitive to that parameter, and to adapt depending
on the problem at hand.

The adaptive scheme is based on the procedure in [19] for NMF. In that scheme,
the momentum parameter, βk at iteration k, is updated based on the decrease/increase
of the objective function. Let the hyperparameters be 1 < γ̄ < γ < η. The momentum
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parameter is multiplied by γ as long as the objective function is decreasing, unless it
reaches the adaptive upper bound β̄. If the objective function decreases, we set β̄ =
min(1, γ̄β̄), meaning that we increase β̄ by a factor γ̄ < γ. On the contrary, if at
iteration k the error increases, the momentum parameter is divided by the factor η and
we update the upper bound β̄ as βk−1, meaning that β̄ keeps track of the latest value
of β that allowed the decrease of the objective function. Algorithm 8 summarizes this
strategy. The update of Z and Θ is only accepted if the error decreases, otherwise the
parameters are updated while they keep the same value for the next iteration.

Algorithm 8 Aggressive momentum NMD (A-NMD)

Input: X, Z0, Θ0, r, 1 < γ̄ < γ < η, β0 ∈ (0, 1), maxit.
Output: A rank-r matrix Θ s.t. X ≈ max(0,Θ).

1: Set β̄ = 1, Zk
ij = Xij for (i, j) ∈ I+ and for k = 0, 1.

2: for k = 0, 1, . . . , maxit do
3: Zk+1

ij = min(0,Θk
ij) for (i, j) ∈ I0.

4: Zk+1 ← Zk+1 + βk(Z
k+1 − Zk).

5: [U,D, V ] = TSVD(Zk+1, r).
6: Θk+1 = UDV T .
7: Θk+1 ← Θk+1 + βk(Θ

k+1 −Θk).
8: if ∥X −max(0,Θk+1)∥F<∥X −max(0,Θk)∥F then
9: βk+1 = min(β̄, γβk), β̄ = min(1, γ̄β̄).

10: else
11: βk+1 = βk\η, β̄ = βk−1,
12: Zk+1 = Zk, Θk+1 = Θk.
13: end if
14: end for
15: Θ = Θk+1.

4.5 Three blocks NMD (3B-NMD)
All the algorithms presented so far share a common aspect: they all require the com-
putation of a rank-r TSVD at each step. This fact may be a problem when considering
problems of large dimension. For this reason, we now introduce the new Three block
NMD (3B-NMD) [21] that exploits a three blocks variable splitting, which allows to
avoid the TSVD computation. In particular, we substitute Θ ∈ Rm×n by the product
WH, where W ∈ Rm×r and H ∈ Rr×n, being r the desired rank of the NMD. Hence we
reformulate the latent NMD problem in (4.7) as follows

min
Z,W,H

∥Z −WH∥2F such that max(0, Z) = X.
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Note that it is not needed anymore to require rank(Θ) = r, indeed, due to the splitting
Θ = WH, it holds rank(Θ) ≤rank(W )∗rank(H) ≤ r. In other words we are solving
a slightly more general case of the Latent NMD problem (4.7), in which we require
only rank(Θ) ≤ r. In practice nothing changes because usually, the original, sparse,
nonnegative matrix X has a rank of order min(n,m) > r. Even though the rank of the
approximation matrix Θ can be smaller than r, there is no reason for the algorithms
to give as output a matrix of rank(Θ) < r, since it has to approximate an higher rank
matrix.

The overall procedure is presented in Algorithm 9 and it is again an alternating
optimization between the variables Z, W , and H. As for Θ-update, the minimization
subproblems for W and H have closed-form solutions; in fact, they can be obtained
simply by solving matrix least square problems (backslash in MATLAB) which requires
O(mnr) operations, instead of the O(mnr2) operations for the TSVD. In addition, both
the matrix Hk(Hk)T and (W k+1)TW k+1 are r × r with r << min(m,n) so in general
the solution of each subproblem can be computed easily also when dealing with large
data. Solving the subproblems for W and H in more efficient ways is an open field
of research, for example some stochastic techniques, such as randomized least squares,
may be applied in order to further reduce the computational cost of the algorithm. To
accelerate this block-coordinate descent method scheme, we also use Nesterov momentum
extrapolation, after the computation of Z and of Θ = WH.

Algorithm 9 Momentum three-block NDM (3B-NMD)

Input: X, Z0, W 0, H0,r, β, maxit.
Output: Two matrices W and H s.t. X ≈ max(0,WH).
1: Set Zk

ij = Xij for (i, j) ∈ I+ and k = 0, 1.
2: for k = 0, 1, . . . , maxit do
3: Zk+1

ij = min(0,Θk
ij) for (i, j) ∈ I0.

4: Zk+1 ← Zk+1 + β(Zk+1 − Zk).
5: W k+1 ← argminW∥Zk+1 −WHk∥2F .
6: Hk+1 ← argminH∥Zk+1 −W k+1H∥2F .
7: Θk+1 ← W k+1Hk+1

8: Θk+1 ← Θk+1 + β(Θk+1 −Θk).
9: end for

10: W = W k+1, H = Hk+1.

Note that 3B-NMD does not use an adaptive strategy for the momentum parameter
β, because we have observed that it is not as effective as in the naive case, described in
the previous section. This is a topic for further research.
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Chapter 5

Numerical results

In this chapter, we present the numerical results and some applications of ReLU-NMD
on different data sets. At first, we describe one possible initialization strategy based on
nuclear norm theory that can be used to detect a suitable starting point. Recall that
up to our knowledge, there are no convergence results for ReLU-NMD, and choosing an
appropriate starting point may improve consistently the performance of the algorithm.

We compare the following algorithms for ReLU-NMD: A-NMD, 3B-NMD from [21],
Naive-NMD, A-Naive-NMD, EM-NMD and A-EM by Saul [2], applied to synthetic and
real-world data set. As a baseline, we will also report the result of the projection of the
TSVD, that is, max(0, Xr) where Xr is the rank-r TSVD of X. The first goal, indeed, is
to show that in some cases, ReLU-NMD models can be used to achieve a better low-rank
approximation than the one obtained by the TSVD, which is the state-of-the-art in this
field.

All tests are preformed using Matlab R2021b on a laptop Intel CORE i5-1135G7 @
2.40GHz 8GB RAM. The codes are available online at https://gitlab.com/ngillis/
ReLU-NMD.

5.1 Initialization strategy
We provide at first an initialization strategy that can be adapted to all the mentioned
algorithms, using the nuclear norm. Recall that not having any global convergence
guarantees suggests that choosing a suitable starting point may have an impact in the
minimization process.

Definition 5.1. Let X be a matrix, and denote σi(X) its singular values, then the
nuclear norm of X is the sum of its singular values,

∥X∥∗ =
∑
i

σi(X)

.
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The nuclear norm has been used as a convex surrogate of the rank function, akin to
the ℓ1 norm used as a convex surrogate for the ℓ0 norms [23], this particular property of
nuclear norm makes it useful in several contexts in which the minimization of the rank
is substituted by its convex surrogate. We the give the following definitions.

Definition 5.2 (Convex Envelope). Let C be a given convex set. The convex envelope
of a (possibly nonconvex ) function f : C → R is defined as the largest convex function
g such that g(x) ≤ f(x) for all x ∈ C.

Theorem 5.1.1. The convex envelope of rank(X) on the set {X ∈ Rm×n : ∥X∥ ≤ 1} is
the nuclear norm ∥X∥∗.

Definition 5.3. Let f : Rn → R be a convex function. The subdifferential of f at
x0 ∈ Rn is the compact convex set

∂f(x) = {d ∈ Rn : f(x)− f(x0) ≥ ⟨d, x− x0⟩, ∀x ∈ Rn}

We now formulate a new problem which is closely related to ReLU-NMD, but in this
new instance we focus on minimizing the rank as objective function. Note that this is a
remarkable difference between problem (5.1) and ReLU-NMD, since in the second case,
the rank is fixed to r. Assume there exists an exact rank-r ReLU-NMD solution but we
do not know the rank r, the rank identification problem can be reformulated as follows:

min
Θ

rank(Θ) such that X = max(0,Θ), (5.1)

which is a hard problem in general, since it is neither differentiable or convex. We then
recall Theorem 5.1.1 that allows to built a slight relaxation of problem (5.1) which is
easier to solve. Replacing the rank with the nuclear norm, obtaining the following convex
relaxation:

min
Θ
∥Θ∥∗ such that Θij = Xij for (i, j) ∈ I+,

Θij ≤ 0 for (i, j) ∈ I0. (5.2)

where I+ = {(i, j) | Xij > 0} and I0 = {(i, j) | Xij = 0}.
To solve (5.2), we resort to a standard projected subgradient strategy [23]. A sub-

gradient method is a more general case of gradient descent, which can be applied to
functions which are not differentiable but convex as it happens in (5.2) and it gives at
each step a descend direction which lies in the subdifferential of the objective function.
The new iterate is then computed projecting the subgradient step into the feasible set.
Therefore, update Θ as follows

Θk+1 = Π(Θk − αkYk), Yk ∈ ∂∥Θk∥∗,
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where Π(·) is the projection onto the feasible set (which is easy to compute), and ∂∥Θk∥∗
is a subgradient of the nuclear norm at Θk, given by [24]

∂∥Θ∥∗ =
{
UV T + P : P and Θ have orthogonal row

and column spaces, and ∥P∥ ≤ 1
}
, (5.3)

where (U,Σ, V ) ∈ Rm×r ×Rr×r ×Rn×r is a TSVD of Θ and ∥.∥ is the operator norm (or
induced 2-norm) of a matrix. In our implementation, we used P = 0.

Note that the solution is only used for initialization and hence we do not need high
accuracy. In addition, in the experiment part the step αk is selected using a backtracking
approach. Moreover, the solution of (5.2) is not guaranteed to be of rank smaller than
r, and hence we use the rank-r TSVD of the last iterate as an initialization for the
ReLU-NMD algorithms presented in the previous sections. The idea that stands behind
this initialization procedure is the fact that imposing the constraint X = max(0,Θ) and
decreasing the rank of Θ at each step of the projected gradient algorithm, we are getting
closer to the optimal solution of rank-r ReLU-NMD problem (3.1).

5.2 Datasets
We present now the data sets used to validate the results produced by each algorithm.
At first, we show a preliminar analysis on synthetic data set, that is a data set built to
fit the ReLU-NMD problem and then we also test some real word data sets, which are
well-known in the numerical analysis litterature.

• Synthetic data set: the matrix X ∈ Rm×n is generated as X = max(0,WH),
where the entries of W ∈ Rm×r and H ∈ Rr×n are obtained from the normal
distribution, that is, W = randn(m,r) and H = randn(r,n) in MATLAB. Since
the probability for X to have a positive entry is equal to that of having a negative
entry (by symmetry), X has, on average, 50% of its entries equal to zero. Note
that X can be potentially full rank but at least, we know that it exists one solution
to the problem, which is given by Θ = WH. When working with synthetic data,
all algorithms are stopped when

relative error =
∥X −max(0,Θ)∥F

∥X∥F
≤ 10−4, (5.4)

where Θ is the current solution. Note that, given the non-convexity of ReLU-NMD,
there is no guarantee that an algorithm converges to such a small relative error.
However, for the synthetic data as generated above, this is always the case.
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• MNIST dataset: MNIST is a large database of small, square 28 × 28 pixel
grayscale images of handwritten single digits between 0 and 9. It consists of a total
of 70,000 handwritten images of digits. All images are labeled with the respective
digit that they represent. There are a total of 10 classes of digits (from 0 to 9).
The data set is widely used to test several machine learning algorithms and it is
particularly suitable for recognition and compression methods. See Figure 5.1 for
an example of different digits.

Figure 5.1: Example of randomly picked 28× 28, greyscale images of handwritten digits
from MNIST data set.

• CBCL data set: the CBCL data set, was used in the seminal paper of Lee and
Seung [25] in the context of NMF. Each column of the data set matrix contains a
greyscale, vectorized facial image of size 19× 19, see Figure 5.2. The total number
of images in is 2429. This data set is particularly suitable for features extraction
applications because of the variety of the images in it. It is one of the most used
in NMF because the factors of the decomposition can be easily interpretated and
they correspond to different facial features such as eyes, nose and mouth.

Figure 5.2: Example of facial 19× 19, greyscale images from CBCL data set.
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5.3 Numerical results for synthetic data set
Let us now show the results of the different NMD-algorithms when applied to synthetic
data, meaning to data designed in order to produce the results expected from the theory.
Of course, this is not a complete validation process for the algorithms, but it gives an
idea of the behaviour of each algorithm and it is also useful for tuning the parameters
of the models. In the following, we will show different preliminary analysis for the
initialization strategy, we test different acceleration techniques for the naive algorithm,
that is Algorithm 7 and in conclusion, we will include a comparison between the new
algorithms A-NMD and 3B-NMD with the-state-of-the-art EM-NMD and A-EM.

5.3.1 Effectiveness of initialization

Let us first validate the effectiveness of the nuclear norm initialization. As stated before,
this initialization strategy provides us with a better starting point for our algorithms. To
prove this, we look at the relative error in (5.4) for the following initialization techniques:

• Random initialization where Θ is a rank-r matrix, generated in the same way as
X, and which we scale optimally as follows Θ← α∗Θ where

α∗ = argmin
α
∥X − α max(0,Θ)∥F =

⟨X,max(0,Θ)⟩
∥max(0,Θ)∥2F

.

• The initialization Θ taken as the rank-r TSVD of X.

• The nuclear norm minimization strategy: few iterations of projected subgradient
method starting from random initialization and optimal scaling as described above.

We test the initialization for different values of the rank r = 8, 16 and size of the
matrix X ∈ Rm×n, with m = n = 500, 1000, 1500, 2000. The results are collected in
Table 5.1. We observe that the nuclear norm allows an initial solution with significantly

r = 8 r = 16
m = n rand TSVD ∥.∥∗ rand TSVD ∥.∥∗
500 0.95 0.40 0.36 0.95 0.36 0.32
1000 0.95 0.41 0.38 0.95 0.37 0.33
1500 0.95 0.41 0.38 0.95 0.38 0.33
2000 0.95 0.41 0.38 0.95 0.38 0.33

Table 5.1: Initial relative error of three initializations: random initialization and scaling,
the rank-r TSVD, and the nuclear norm initialization (∥.∥∗).
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smaller relative error: a reduction from a factor 2 to 3 compared to a random initializa-
tion, and about 10% improvement compared to the TSVD. Hence, all the experiments
in the following of this work are initialized using the nuclear norm strategy. Note that in
general, solving problems such as the one in (5.2) that require to minimize the nuclear
norm is a difficult task. It can be tackled using some sophisticated and computationally
expensive techniques to solve it at optimality, such as interior point methods, but we do
not look for an accurate solution in this context. This is the reason why few iterations
are performed and it is used only as initialization.

5.3.2 Naive algorithms comparison

We now show the results on synthetic data for the algorithms that share the naive scheme
in Algorithm 6, with different acceleration strategies. In particular, we compare:

• Naive Algorithm: the standard and easiest algorithm that can be used to solve
ReLU-NMD [2]; see Algorithm 6.

• A-Naive: Naive algorithm adding a Polyak extrapolation step only on the variable
Z, Θ is not modified; see Algorithm 7

• A-NMD: Naive algorithm using Nesterov acceleration step on both the variables
Z and Θ with adaptive momentum parameter [19];

We considered matrices of different sizes fixing the rank to r = 32. Even though there are
no convergence guarantees for any of the presented algorithms, when synthetic data are
taken into account, the tolerance in (5.4) is always achieved. Table 5.2 reports the total
time and iterations needed to reach a relative error as in (5.4). We considered averaged
values over 5 different synthetic matrices, with 5 different random initializations, post-
processed using the nuclear norm algorithm.

Naive A-Naive A-NMD
Size time iter time iter time iter
500 1.84 110 0.78 44 0.57 32
1000 7.21 87 2.85 33 2.28 27
1500 11.4 80 4.40 29 3.71 25
2000 21.2 78 8.19 28 6.80 24

Table 5.2: Average computational time needed to satisfy condition in (5.4) on synthetic
data with r = 32 [21].

We observe that A-NMD outperforms Naive and A-Naive: it is about 4 times faster
than Naive, and 20% faster, on average, than A-Naive. Note that the cost per iteration
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between the algorithms is almost the same for all of them, but A-NMD needs less iter-
ations to reach the given tolerance, thanks to the adaptive technique used to tune the
momentum parameter. In the following experiments, we will therefore only compare the
other algorithms with A-NMD.

5.3.3 New algorithms VS state-of-the-art algorithms

Let us now present the results of the-state-of-the-art algorithms in [2] and [3] on synthetic
data, compared to the new solution strategies introduced in section 4.4 and 4.5. In more
details, we highlight the improvements in the performance, in terms of reduction of the
relative error in different cases. In particular, we compare the expectation-minimization
algorithms in simple form and with Polyak extrapolation, EM-NMD and A-EM respec-
tively with A-NMD and 3B-NMD.

Table 5.3 reports the total time and iterations needed to satisfy condition in (5.4),
for a fixed rank r = 32, for the EM algorithm of Saul (EM-NMD), its accelerated variant
(A-EM), as well as our proposed algorithms A-NMD and 3B-NMD. Table 5.4 reports
the same quantities for fixed dimensions m = n = 1000, but with different values of
the rank, r. We run the experiments on 5 synthetic matrices, with 5 different random
initializations, post-processed using nuclear norm algorithm and we display the average
values.

A-NMD 3B-NMD EM-NMD A-EM
Size time iter time iter time iter time iter
500 0.64 33 0.08 23 2.2 101 1.0 43
1000 2.4 27 0.24 24 8.1 78 3.9 36
1500 3.6 24 0.46 24 12.8 70 6.5 35
2000 6.7 25 0.81 24 22.1 66 11.6 34

Table 5.3: Time needed to satisfy condition in (5.4) for synthetic matrices of increasing
dimension with r = 32 [21].

A-NMD 3B-NMD EM-NMD A-EM
r time iter time iter time iter time iter
8 2.0 33 0.22 22 10.1 97 4.4 42
16 2.0 24 0.20 24 7.7 77 3.5 36
32 2.2 23 0.22 24 7.4 72 3.6 33
64 2.5 23 0.25 25 8.4 66 3.7 32

Table 5.4: Computational time needed to satisfy condition in (5.4) when approximating
synthetic data of fixed size n = m = 1000 for different values of the rank, r [21].
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We observe that A-EM performs better than EM-NMD, as expected, and hence we
will report only the results for A-EM in the section on real-world data sets. Then, we
observe that A-NMD performs better than A-EM (almost twice faster in all cases), while
3B-NMD outperforms all other algorithms, being more than 10 times faster than A-EM.
This behaviour can be explained by the fact that 3B-NMD does not need to perform a
TSVD in the minimization process, so the average computational cost per iteration is
consistently reduced. Furthermore, note that, even though the cost per iteration between
A-NMD and A-EM is similar, the total time to reach the convergence is lower for the
A-NMD algorithm, since it takes less iterations that A-EM. In conclusion, when working
with synthetic data, the new 3B-NMD and A-NMD algorithms are more effective then
the state-of-the-art EM-NMD and A-EM.

5.4 Numerical results for the MNIST Data set
The experiments in this section are computed on 28 × 28 grayscale images of MNIST
handwritten digits [26], where X is generated by concatenating vectorized images into
a matrix of size 784 × n where n = 500 or n = 50000, depending on the experiment.
To compare the ReLU-NMD algorithms, we do not consider the usual relative error
anymore, since, working with real world data, it does not allow to observe remarkable
differences between the methods. This is because there is no more a convergence of the
error to zero but the error becomes flat when it reaches a certain tolerance. We then
define the following quantity:

err(t) =
∥X −max(0,Θ(t))∥F

∥X∥F
− emin, (5.5)

where Θ(t) is the solution at time t, and emin is the smallest relative error obtained by
any algorithms within the allotted time. Since err(t) converges to zero for the algorithm
that computed the best solution, we can represent the error in log scale. Thanks to
this property, the results are better visualized both in terms of initial convergence and
quality of the final approximation. We obtained a continuous approximation of err(t)
interpolating some samples using a cubic spline approach. Figure 5.3 (a) displays the
results on the MNIST data set with r = 32 with 500 images (50 images of each digit),
with a timelimit of 10 seconds. Although 3B-NMD converges initially faster, A-NMD
eventually catches up and generates the best solution. As before, A-EM is outperformed.
We can observe that using a relative small data set, A-NMD is the algorithm that has
better performance since the adaptive strategy on the extrapolation parameter allows to
have a faster decrease. Note that in this situation the cost per iteration is not extremely
high, since we are taking into account only 500 images.

Figure 5.3 (b) displays the results on the MNIST data set with r = 32 with all the
50000 images, with a timelimit of 20 seconds. In this case, 3B-NMD converges initially
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faster and A-NMD does not have time to catch up. Note that the more is increased the
dimension of the data set and the more the computational cost of the TSVD becomes
high. Due to this fact 3B-NMD is considerably faster than the other algorithms since it
can perform more iterations in the given timelimit. In any case, 3B-NMD and A-NMD
both perform well, outperforming the state-of-the-art algorithm A-EM.
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Figure 5.3: Average value of the error (5.5) of A-NMD, 3B-NMD and A-EM on small
(a) and large (b) portion of the MNIST data set.

Figure 5.4 compares the algorithms with the baseline, TSVD, in terms of relative
error as the rank increases, and provides the average time per iteration, for 50000 images
of MNIST and a runtime of 20 seconds. These results confirm the effectiveness of the
3B-NMD in order to deal with large data, the cost per iteration being smaller than that
of A-NMD and A-EM. In addition, note that all the ReLU-NMD algorithms approximate
the dataset with considerably higher accuracy than the TSVD, as expected. This means
that solving ReLU-NMD model, we get a better low rank approximation than the one
obtained using the TSVD approach.
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Figure 5.4: Final relative error on m = 50000 images from MNIST dataset, after 20
seconds and average iteration time for increasing value of the rank r.

5.5 Application of ReLU-NMD: compression of sparse
NMF basis

We here present a first application of ReLU-NMD, which is new to the best of our
knowledge, that is the compression of sparse nonnegative dictionaries, e.g., the factors
generated by NMF, see Chapter 2. For this experiments we considered the CBCL facial
data set, see Figure 5.2 for an example. Each column of the data matrix X ∈ R361×2429

contains a vectorized facial image of size 19 × 19. The NMF decomposition, X ≈ UV
where U ≥ 0 and V ≥ 0, allows one to extract sparse facial features as the columns of
U . To do so, we have used one of the NMF code from gitlab.com/ngillis/nmfbook/,
requiring some sparsity constraints, and used a rank-100 NMF to obtain U ∈ R361×100, a
nonnegative sparse matrix (in fact, 85% of the entries are equal to zero); see Figure 5.6 (a)
for an illustration. Further compressing the NMF factor U using the TSVD does not work
as Figure 5.5 (a) shows, with a relative error larger than 70%; see also Figure 5.6 (b).
This is because NMF tends to generate factors U whose singular values are all large.
This means that the information is spread among all the singular values and considering
only some of them, we loose some pieces of information. However, ReLU-NMD does
not have this limitation, since it works using an elementwise operator and it looks for
manifold patterns: it can approximate well such sparse full-rank matrices (e.g., the
identity matrix [2], see Chapter 3). Denoting Û = max(0,Θ) the approximation matrix
obtained by a ReLU-NMD algorithm, we first evaluate the relative error as in (5.4)
between U and Û . Results are displayed for increasing values of the rank in Figure 5.5 (a).

68



We also evaluate the error of the compressed NMF

eNMF = min
V̂≥0

∥X −max(0, Û)V̂ ∥F
∥X∥F

, (5.6)

see Figure 5.5 (b). In these experiments, we fix a time limit of 20 seconds and a tolerance
of 10−4 for the relative error as a stopping criteria. It is clear that the TSVD is not able
to compress the features with high accuracy while all the other algorithms can reach
a low relative error for small values of the rank. For such data sets, it appears that
A-NMD reaches the best solution. For example, with r = 20, it is able to reach almost
the same accuracy on the NMF problem as the original factor of size 100. This is the
behaviour that could be predicted since the data set which is taken into account is quite
small and the cost of the TSVD is not too high. However, increasing the dimension of
the data set the 3B-NMD becomes more efficient, since the average cost per iteration
is considerably lower than the other algorithms. Figure 5.6 shows an example of a
rank r = 20 reconstruction of the original rank r = 100 NMF factor. It is clear that
the reconstruction provided by A-NMD and 3B-NMD are visually more similar to the
original factor, while the TSVD reconstruction is affected by some visible noise.

8 12 16 20 24

Rank

10
-3

10
-2

10
-1

10
0

N
M

D
 r

e
la

ti
v
e
 e

rr
o
r

TSVD

A-NMD

3B-NMD

A-EM

(a) Error on U .

8 12 16 20 24

Rank

0.05

0.1

0.2

0.3

0.4

N
M

F
 r

e
la

ti
v
e
 e

rr
o
r

TSVD

A-NMD

3B-NMD

A-EM

NMF error

(b) Error on X; see (5.6).

Figure 5.5: Compression of a 361-by-100 NMF basis, U , of the CBCL data set. Image (a)
shows the error on the NMF basis U ≥ 0. Image (b) shows the NMF error after U is
replaced by its approximation; see (5.6).
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(a) Original r = 100 (b) TSVD r = 20

(c) A-NMD r = 20 (d) 3B-NMD r = 20

Figure 5.6: (a) Original factor U of NMF with 100 columns reshaped as facial features,
and its rank-20 approximations by (b) TSVD, (c) A-NMD, and (d) 3B-NMD.
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Conclusions

Low-rank approximation models are an open and challenging field of research. The main
goal is to express a given set of data, contained in a matrix X as another matrix Θ which
has lower rank. We presented both linear and nonlinear models and discussed when one
should be preferred to the other one.

Firstly, the well-known SVD and PCA methods have been described giving some
existence guarantees and investigating the relation between the two. They both look
for the most meaningful vector base to express a given data set, that means detecting
which are the principal directions that can better express the highest possible amount
of information.

Secondly, we introduced one example of Linear Dimensionality Reduction (LDR)
which is the Nonnegative Matrix Factorization (NMF). It decomposes a given matrix X
as the product of two nonnegative factors U and V . The strength of NMF factorization
is the intuitive interpretation of its factors and the possibility to split the problem in two
subproblems, one for each variable, which are in general easier to solve. These aspects
make it very popular in data compression, features extraction from images, text mining,
etc.

Thirdly, we presented the Nonlinear Matrix Decomposition (NMD) which becomes
useful when the relation between the variables in the data is not linear. In contrast
with NMF, NMD does not look for a representation of the data in a different base,
while it seeks those features that remain constant both in the original matrix and in its
low-rank approximation. In particular, we focused on the so called ReLU-NMD poblem
which involves the ReLU function fReLU = max(0, ·), widely used in machine learning
applications. We presented the state-of-the-art algorithms developed by Saul [3, 2] and
we introduced the new methods A-NMD and 3B-NMD [21] which use new acceleration
techniques and a new variable splitting which, to the best of our knowledge, are new in
this context.

Finally, we validated the results testing the algorithms on different data sets. It
is clear from the results that both the new algorithms perform in most cases better
than the state-of-the-art methods. In particular, the adaptive strategy to select the
momentum parameter in the A-NMD accelerates consistently the naive scheme described
in [2] and makes this algorithms particularly efficient when dealing with small size data.
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At the contrary, the 3B-NMD scheme does not include the Truncated Singular Value
Decomposition (TSVD) step and it reduces the computational cost per iteration. Thanks
to this property, the numerical results show that it is the most efficient algorithm for
data sets of large dimension. Furthermore, the subproblem deriving from the variable
splitting in the 3B-NMD have closed form solution and they can be easily solved.

Our future research plan includes further investigating the ReLU-NMD model. In
particular, we want to focus on the case when the approximation rank of the matrix Θ is
equal to 1, since we expect to prove that the problem is NP-hard. From the algorithmic
point of view, we plan to develop a stochastic version of the 3B-NMD that will allow to
further reduce the computational cost of the procedure. Furthermore, the convergence
properties of both algorithms will be explored too.
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