
Alma Mater Studiorum · Università di Bologna

SCHOOL OF SCIENCE

Laurea Magistrale in Matematica

Curriculum Advanced Mathematics for Applications

ANALYSIS AND IMPLEMENTATION
OF DICTIONARY LEARNING

TECHNIQUES IN A

DIGITAL TWIN FRAMEWORK

Supervising Professor:
Chiar.ma Prof.ssa
Margherita Porcelli

Co-supervisor:
Dott.ssa
Domitilla Brandoni

Presented by:
Laura Cavalli

III Session
Academic year 2022/23

This work is supported by the EUROCC Italy

National Competence Center.

The Competence Center is part of EUROCC project

funded by the European High-Performance

Computing Joint Undertaking (JU)

under grant agreement No 101101903.

2

Contents

Introduction 1

1 The Sparse Representation problem and the Matrix Dictionary Learn-

ing problem 3

1.1 Introduction to the Sparse Representation problem 3

1.2 Introduction to the Dictionary Learning problem 5

1.3 Alternative formulations of the DL problem 6

1.4 The algorithms . 7

1.4.1 Sparse Coding . 8

1.4.1.1 Orthogonal Matching Pursuit (OMP) Algorithm 8

1.4.1.2 OMP-QR . 10

1.4.1.3 OMP-Cholesky . 11

1.4.2 Dictionary Update . 12

1.4.2.1 Method of Optimal Directions (MOD) 12

1.4.2.2 K-SVD . 13

1.5 DL applications . 15

1.5.1 Choice of the DL algorithm . 15

1.5.2 Denoising . 20

1.5.3 Inpainting . 22

1.5.4 Classification . 22

1.5.5 Compression . 24

2 Deep Learning and Convolutional Neural Networks 25

2.1 Deep Feedforward Networks . 27

2.2 Convolutional Neural Networks . 30

2.2.1 Convolutional layer . 31

2.2.2 Hidden activation functions . 37

2.2.3 Pooling layer . 39

2.2.4 Fully connected layers and Output layer 43

2.2.4.1 Output activation functions 43

2.3 Training a (deep feedforward) neural network 44

2.3.1 The Gradient Descent method . 46

3

2.3.2 Backpropagation . 47

2.4 Training, Validation and Testing . 50

2.5 Overfitting and Underfitting . 50

3 Numerical Results 53

3.1 Brief introduction to Digital Twins . 53

3.2 Integration of Dictionary Learning techniques in a digital twin framework:

the workflow . 56

3.2.1 A first analysis of DL compression performances. 57

3.2.2 Analysis of DL compression performances through CNNs. 64

Conclusions 71

A Description of the databases 74

B Introduction to High Performance Computing clusters 76

B.1 General structure of a supercomputer . 76

B.2 What is a jobscript . 77

B.3 Architecture of a compute node . 78

B.4 Parallel Computing . 79

B.5 HPC in Cineca . 80

4

Abstract

Negli ultimi anni, la tecnologia dei Gemelli Digitali (Digital Twins) sta svolgendo un ruolo

cruciale in diversi contesti, dalla agricoltura intelligente alla manutenzione predittiva,

dalla sanità alla modellazione meteorologica, ottimizzando processi e prevenendo eventuali

guasti degli apparecchi. Un Gemello Digitale consiste in una replica virtuale di un

oggetto fisico, di un sistema o di un processo, aggiornata in tempo reale attraverso uno

scambio continuo di enormi quantità di dati tra sensori IoT (Internet of Things) nel

mondo reale e il sistema digitale. Questi dati posso essere utilizzati per addestrare sul

sistema digitale modelli di intelligenza artificiale che, eseguendo analisi automatiche sui

dati, sono in grado di prendere decisioni e attuarle sul sistema reale. Di conseguenza,

una gestione efficiente dei dati diventa essenziale per sfruttare al massimo il potenziale

di questa tecnologia. Questa tesi, pertanto, mira a presentare un metodo di compres-

sione basato sulla tecnica di Dictionary Learning (DL). Il Dictionary Learning mira a

trovare un dizionario di elementi, una “base” o “atomi”, che possano essere combinati

in modo sparso per approssimare efficacemente i dati originali. Grazie alle proprietà del

DL, vedremo come l’algoritmo di compressione presentato in questa tesi sia in grado di

comprimere dati senza avere un impatto significativo sull’accuratezza del modello di in-

telligenza artificiale e richiedendo però minime risorse computazionali, rendendolo adatto

ad essere implementato anche su dispositivi non complessi come i sensori per IoT.

Introduction

In the last years Digital Twin technology is playing a crucial role in several contexts,

from smart agriculture to predictive maintenance, from healthcare to weather modeling

in terms of energy and water savings, processes optimization and equipment failure

prevention. A Digital Twin can be described as an up-to-date virtual replica of a physical

object, system or process through a continuous exchange of massive data between IoT

(Internet of Things) sensors on real world and digital system and viceversa: these data

are commonly used to train AI models which perform automatic data analysis for decision

making [1]. As a consequence, an efficient data handling becomes essential to achieve the

full potential of this technology. To this end one of the most cost-effective solution can

be a data compression tool which has no significant impact on the AI model accuracy.

Among the available state-of-the-art tools to reduce data size we explore Dictionary

Learning (DL), a robust matrix factorization algorithm that, in contrast to deep neural

network based solutions, does not require powerful computer resources. This aspect

makes it suitable to run on light devices such as IoT sensors. In this thesis we applied

DL algorithms to compress different types of data and we compare the performance

of standard deep learning algorithms trained on both original and compressed data.

Dictionary Learning techniques seek to discover an overcomplete set of basis functions

(atoms) able to represent in a sparse manner a given set of data samples. In detail,

given a matrix of training signals Y ∈ Rm×N(m ≪ N), DL aims to find a dictionary

D ∈ Rm×n(m ≪ n) and a sparse matrix X ∈ Rn×N to represent Y ≈ DX. It can be also

formulated as a two variable, non-convex, constrained optimization problem of the form

min
D,X

∥Y −DX∥2F s.t. ∥xl∥0 ≤ s, l = 1, ..., N

∥dj∥2 = 1, j = 1, ..., n
(1)

where the sparsity level s is fixed and ∥.∥2F , ∥.∥2 and ∥.∥0 represent respectively the

Frobenius, L2 and L0 norm.

This thesis is structured as follows. The first two chapters contain an overview of

the existing literature. Specifically, the first chapter introduces the Sparse Represen-

tation and Dictionary Learning problems both from a mathematical and algorithmic

point of view, providing different methods and different formulations of the same prob-

lem. Furthermore, the chapter also mentions DL primary application domains such as

1

image denoising, inpainting, classification, and our focus, compression. The second chap-

ter contains an overview of the main structures of the Convolutional Neural Networks

(CNNs) architectures. This chapter plays a crucial role in presenting the techniques

through which we will evaluate the effectiveness of our compression methods. Indeed,

when evaluating the quality of DL compression, it becomes more meaningful to compare

the information resulting from the training via CNNs of both the original and compressed

datasets, rather than focusing exclusively on the error ∥Y − DX∥2F . The final chapter

presents the numerical results and contains our contribution to the problem. In particu-

lar, the purpose of the final chapter is to emphasize how Dictionary Learning techniques

provide a valuable tool for data compression within the context of Digital Twins. The

chapter first provides a brief introduction to Digital Twins, and then explores the ap-

plication of our compression algorithms in this context, analyzing their performances

on various frameworks and types of datasets. In particular, we focused on two differ-

ent types of data: images and timeseries. Our experiments show that the compression

algorithm developed in this thesis is able to compress a redundant dataset by up to

70/80%, maintaining nearly identical classification performance to the original dataset

and demanding minimal computational resources.

This work is the result of the internship founded by the european project EUROCC

Italy carried out at the HPC department of Cineca [2], a non-profit consortium com-

posed by 116 Italian universities and public institutions. Cineca is the most powerful

supercomputing centre for scientific research in Italy, providing support to the country’s

scientific community, public administrations and companies in different areas such as

high performance computing, artificial intelligence and quantum computing. Among the

many challenges faced at Cineca, undoubtedly one of them is dealing with an increasingly

larger amount of data generated by a wide variety of applications. Since 2022, Cineca

hosts Leonardo, the fourth most powerful supercomputer in the world, according to the

November 2022 TOP500 list [3].

All the codes necessary to reproduce the experiments shown in this thesis are available

at the following link: https://github.com/lauracavalli/DL4DT.git.

2

https://github.com/lauracavalli/DL4DT.git

Chapter 1

The Sparse Representation problem

and the Matrix Dictionary Learning

problem

In this chapter we will discuss the Sparse Representation problem, the Dictionary Learn-

ing problem and their main applications. We will show that Dictionary Learning is an

optimization problem which aims to find a matrix D ∈ Rm×n called Dictionary and a

sparse vector x ∈ Rn in order to obtain a good sparse representation y ≈ Dx for a class

of signals y ∈ Rm. This is achieved by minimizing the error between the signal y and its

sparse representation Dx in the least squares sense. It follows that, thanks to the spar-

sity of x, each signal is a linear combination of a few atoms, as the dictionary columns

are usually named. Sparse representation has a great appeal in signal processing and

related applications due to its ability to capture only the essentials of a signal. Its main

fields of application are data compression, denoising, inpainting and classification.

We now discuss the main aspects of the problem starting from the Sparse Represen-

tation problem.

1.1 Introduction to the Sparse Representation prob-

lem

Let us start by defining three key-concepts: Dictionary, Sparse Representation and Spar-

sity level.

Definition 1 (Dictionary).

A Dictionary D = [d1, ...,dn] ∈ Rm×n is a collection of n signals d1, ...,dn ∈ Rm

called atoms, such that D is:

3

• overcomplete (i.e. m ≪ n)

• normalized (∥di∥ = 1 ∀ i = 1, ..., n)

Definition 2 (Sparse Representation).

We say that a vector y has a sparse representation in the basis D = [d1, ...,dn] if it

can be written as a linear combination of a few atoms, i.e.

y =
n∑

j=1

xjdj =
∑
j∈S

xjdj

where S := { j | xj ̸= 0 } is the support of the signal.

Definition 3 (Sparsity level).

The Sparsity level s is defined as the number of atoms involved in the representation

of a single signal, i.e.

s := |S| = ∥x∥0 ,

where ∥x∥0 denotes the 0-norm of x and represents the number of non-zero elements of

the vector x. The notion of sparsity is not exactly defined, but it assumes that ∥x∥0 ≪ n

and, more often than not, ∥x∥0 ≪ m.

The goal of the Exact Sparse Representation problem is to find the sparsest repre-

sentation of a signal y given a dictionary D, which consists in finding the sparsest vector

x which is the solution of the linear system y = Dx, as reported below.

min
x

∥x∥0 s.t. y = Dx . (1.1)

In many cases, however, the signal y for which one wants to calculate the sparse represen-

tation is affected by noise. For this reason is more common to consider the Approximate

Sparse Representation, whose definition is presented below, instead of the exact one.

Definition 4 (Approximate Sparse Representation).

Given a dictionary D ∈ Rm×n and a noise vector v ∈ Rm such that ∥v∥22 = δ2, where

δ > 0 is a constant indicating the noise level of v, it is said that a signal y ∈ Rm admits

an approximate sparse representation if there exists a sparse vector x ∈ Rn such that

y = Dx+ v . (1.2)

The Approximate Sparse Representation problem of a signal can be therefore formu-

lated in two different ways, i.e. as

min
x

∥x∥0 s.t. ∥y−Dx∥2 ≤ δ (1.3)

4

or equivalently

min
x

∥y−Dx∥2 s.t. ∥x∥0 ≤ s (1.4)

where δ is a positive constant and s is a fixed positive integer, which constitute the toler-

ances, respectively, on the norm of the error in problem (1.3) and on the sparsity of the

solution in problem (1.4). All the problems above are NP-hard: there are no polynomial

time algorithms guaranteed to always solve it. However, there exist many algorithms for

solving sparse representation problems (1.3) and (1.4) which are guaranteed to succeed

under certain conditions. We will deepen this topic in section 1.4.1.

1.2 Introduction to the Dictionary Learning prob-

lem

As previously mentioned, the goal of Dictionary Learning is, given a signal y ∈ Rm, to

find both a dictionary D = [d1, ...,dn] ∈ Rm×n and a sparse vector of coefficients x ∈ Rn

such that

y ≈ Dx .

Actually, to better learn the dictionary D it is more meaningful working with several

signals instead of one signal at a time. For this reason, in many applications the following

matrix formulation of DL problem is used.

Given a matrix of training signals Y ∈ Rm×N(m ≪ N), DL aims to find a dictionary

D ∈ Rm×n(m ≪ n) and a sparse matrix X ∈ Rn×N to represent Y ≈ DX.

A visualization of the problem is given in Figure 1.1.

Figure 1.1: Matrix visualization of DL problem. Figure 5.1 in [4]

The DL problem can be formulated as a two variable, non-convex, constrained optimiza-

tion problem of the form

min
D,X

∥Y −DX∥2F s.t. ∥xl∥0 ≤ s, l = 1, ..., N

∥dj∥2 = 1, j = 1, ..., n
(1.5)

5

where the sparsity level s is fixed and ∥Y − DX∥2F represents the squared Frobenius

norm of the error matrix

∥Y −DX∥F =: ∥E∥F :=

√√√√ m∑
i=1

N∑
l=1

e2il .

The first constraint in (1.5) imposes that each signal yl has a sparse representation

with at most s non-zero coefficients, while the second one ensures that the columns of

the dictionary are normalized. This last property removes the indetermination due to a

possible multiplicative factor expressed through a diagonal matrix, that can multiply D

and divide X without changing the objective of (1.5).

Remark 1.2.1 (Properties of DL problem).

The DL problem (1.5) is non-convex due to the sparsity level constraints which

involves the l0-norm which actually is a semi-norm1. Furthermore, even though several

regularized formulation of the DL problem employ convex norms for the sparse represen-

tation, the DL problem itself is still non-convex due to the bi-linearity between D and X.

Non-convexity of the DL problem is a central issue since it implies the possible presence

of several local minima and the computation of the global minimum is not guaranteed.

Furthermore, the problem is even NP-hard. Finally, the DL problem formulated as in

(1.5) exhibits several symmetries, hence admits multiple global optima. In fact, for a

solution (D, X), the pair (DP,P−1X) is also a solution, where P is a permutation matrix
2 whose nonzero elements are ±1.

Despite the non-convexity of the problem and avoiding the permutation issues, there

exist actually some criteria under which a unique solution of (1.5) is guaranteed. These

criteria are shown in detail in [5], section 4, Theorem 3, but shortly we can state that if

there are enough signals and their representations are sparse, the solution to Y = DX

is unique.

1.3 Alternative formulations of the DL problem

The DL problem can be formulated not only as previously seen in (1.5), but in other

several ways, each one promoting a different aspect of the problem. Given an application,

we should therefore choose the most appropriate formulation according to the properties

of the problem that we want to emphasize. Formulations (1.6) and (1.7) below include

the minimization of the norm of X in the objective function, looking for the sparsest

representation matrix that best represents the signals in Y , according to the positive

1 A semi-norm satisfies all the properties of a norm except the homogeneity one, i.e. it is not always

true that ∥αu∥0 = α∥u∥0 with α ∈ R+.
2 A permutation matrix is a square binary matrix that has exactly one entry equal to 1 in each row

and each column and 0s elsewhere.

6

parameter λ. Furthermore, (1.7) replaces the 0-norm of X which promotes sparsity

with its convex relaxation represented by the 1-norm. This relaxation makes indeed the

problem easier to solve.

min
D,X

∥Y −DX∥2F + λ∥X∥0 s.t. ∥dj∥2 ≤ 1, j = 1, ..., n (1.6)

min
D,X

∥Y −DX∥2F + λ∥X∥1 s.t. ∥dj∥2 ≤ 1, j = 1, ..., n (1.7)

We stress that even though the objective function is only slightly different, these formu-

lations are not equivalent and the solutions indeed change.

Another formulation of the DL problem can be considered to enhance the sparsity of

the representation matrix X, imposing a constraint on the representation error as shown

below.

min
D,X

∥X∥0 s.t. ∥Y −DX∥2F ≤ ϵ . (1.8)

1.4 The algorithms

In this section we will focus on the minimization of the representation error as shown

in formulation (1.5) through an alternate optimization approach, which has been found

to be the most successful one. The alternate optimization approach consists in updating

a subset of the variables while keeping the others fixed, taking care to alternate the

subsets such that all variables are optimized. In the case of DL problem, this approach

splits the problem into two subproblems: sparse coding and dictionary update.

More precisely, given the signal matrix Y and an initial dictionary D, at each iteration

first the minimization problem in X is solved while D is fixed (sparse coding) and then

the minimization problem in D is solved while keeping X fixed (dictionary update).

Algorithm 1 below summarizes the procedure.

Algorithm 1: DL by Alternate Optimization [6]

Given the matrix of signals Y ∈ Rm×N , the sparsity level s, the initial

dictionary D ∈ Rm×n and the number of iterations K ;

for k=1,...,K do

Sparse coding : keeping D fixed, compute sparse representations X ;

Dictionary update: keeping the nonzero pattern Ω fixed, compute new

dictionary D (X may be changed or not);

Atoms normalization;

end

We stress that an initial dictionary is required at the beginning of Algorithm 1. The

typical initialization methods are either to select randomly n signals or to simply gen-

erate the atoms randomly. In both cases we must take care to normalize the atoms.

7

Alternatively, before the formalization of the DL problem, it was common to solve these

types of problems as sparse representation problems by using fixed dictionaries such as

the Haar matrix [7] or the Discrete Cosine Transform (DCT) matrix [8] which are typi-

cally used in signal compression techniques. For this reason, an alternative initialization

of the dictionary is given by these two matrices. Since the DL problem has multiple local

minima and the algorithms are based on local optimization methods, it is expected that

different initializations may lead to different results.

1.4.1 Sparse Coding

In the sparse coding step, the dictionary D is fixed and the sparse representations X has

to be computed, leading to the following minimization problem

min
X

∥Y −DX∥2F s.t. ∥xl∥0 ≤ s, l = 1, ..., N . (1.9)

Remark 1.4.1. We notice that

∥E∥2F =
N∑
l=1

∥el∥22 =
N∑
l=1

∥yl −Dxl∥22 .

Hence, solving the sparse coding problem (1.9) is equivalent to solve N approximate

sparse representation problems, one for each signal

min
xl

∥yl −Dxl∥2F s.t. ∥xl∥0 ≤ s, ∀ l = 1, ..., N . (1.10)

As already mentioned at the end of section 1.1, in literature there exist many algo-

rithms for solving these sparse representation problems. They actually cannot find the

optimal solution in general, but some of them are guaranteed to succeed under certain

conditions and in general have a good practical behavior (see the conditions in section

1.5 of [6]). Among them we can detect two main classes of algorithms: greedy algorithms

which build the support by selecting one atom at a time based on a local objective, and

convex-relaxation-based algorithms which consists of replacing the 0-pseudo-norm with

an actual norm, obtaining a convex optimization problem. We will focus on greedy al-

gorithms since it has been noticed that they are usually very fast. In particular, we will

always use the Orthogonal Matching Pursuit (OMP) Algorithm for this task, because of

its good trade-off between quality and complexity.

1.4.1.1 Orthogonal Matching Pursuit (OMP) Algorithm

The Orthogonal Matching Pursuit ([9]) is an iterative greedy algorithm that selects at

each step the atom best correlated with the residual part of the signal. Then it produces

a new approximation by projecting the signal onto the dictionary elements that have

already been selected.

8

As shown in Algorithm 2, it starts from an empty support S = ∅ and error e = y

and, until the sparsity level s is not reached and/or the residual is greater than a given

error bound ϵ, OMP firstly chooses the atom which is the most correlated with the

current residual in order to minimize the next one, i.e.

dk where k = argmaxj /∈S |eTdj| .

Note that OMP never selects the same atom twice because, as we will see, the residual

is orthogonal to the atoms that have already been chosen. Then, after the update of S
atoms (S = S ∪ {k}), OMP computes the new coefficients by solving the following least

square problem

xS = argmin
ξ

∥y−DSξ∥2 , (1.11)

where DS is the restriction of the matrix D to the columns with indices from S. The

least squares problem (1.11) can be solved in different ways. The usual solution is given

by

xS = (DT
SDS)

−1DT
Sy , (1.12)

but later on we will discuss two more efficient approaches that have been proposed in

[10]. Finally it updates the residual e = y−
∑
j∈S

xjdj and checks the stopping criteria.

Algorithm 2: OMP with Naive approach [6]

Given the signal y ∈ Rm, the sparsity level s, the initial dictionary D ∈ Rm×n

and the stopping tolerance ϵ ;

Initialize S = ∅, e = y ;

while |S| < s and ∥e∥ > ϵ do

k = argmaxj /∈S |eTdj|;
S = S ∪ {k};
xS = (DT

SDS)
−1DT

Sy;

e = y−DSxS

end

As already mentioned, computing from scratch the least squares solution as in (1.12)

at each iteration is a naive approach. Since the current matrix DS is updated by sim-

ply appending one column, we could get a more efficient implementation by exploiting

the least square solution just computed at the previous iteration. The most famous

approaches make use of the Cholesky decomposition of DT
SDS ([11], section 2.2) or the

QR decomposition of DS ([11], section 2.3). Both approaches will be presented in the

following sections.

9

1.4.1.2 OMP-QR

We first focus on how the QR decomposition of DS can improve the naive formulation

of OMP. We use the following notation

DS = QR ,

where Q is an orthogonal matrix (i.e. QTQ = I) and R is an upper triangular matrix.

It is not restrictive to consider R as an invertible matrix, since if DS is not a full-rank

matrix, it is always possible to use the economic-QR.

Given a solution xS of (1.11), then xS also satisfies the normal equation

DT
SDSxS = DT

Sy . (1.13)

Considering the QR decomposition of DS we get

DT
SDSxS = DT

Sy ⇐⇒ RT QTQ︸ ︷︷ ︸
I

RxS = DT
Sy ⇐⇒ RTRxS = DT

Sy . (1.14)

Denoting with b := DT
Sy, OMP-QR finds x by solving the following two triangular linear

systems:

RTz = b ,

RxS = z .
(1.15)

Algorithm 3 shows how to simply update at each iteration the matrices R and Q in

order to compute the vector x only at the end of the algorithm, when the support S
is determined. Consider the i-th iteration of the OMP algorithm and denote with Qi

and Ri the matrices Q and R at the current iteration. We first find the atom dk of the

original dictionary which is the most correlated with the current residual, and we add

its index to the index set Si. Then, the direction of the new atom dk can be computed

by subtracting from it its least square projection onto the span of the atoms indexed

by Si−1, i.e. dk − Qi−1(Q
T
i−1dk). Then OMP updates Qi−1 by adding this unit-norm

direction

Qi :=

[
Qi−1

dk−Qi−1(Q
T
i−1dk)√

∥dk∥2−∥QT
i−1dk∥2

]
. (1.16)

Since DSi
= QiRi =

[
Di−1 dk

]
, we see that OMP can update R by

Ri :=

[
Ri−1 QT

i−1dk

0T
√
∥dk∥2 − ∥QT

i−1dk∥2

]
. (1.17)

Finally, OMP computes the residual recursively

ei = ei−1 − qiq
T
i y

where qi is the last column of Qi.

10

The whole procedure is summarized in Algorithm 3.

Algorithm 3: OMP with QR decomposition [11]

Given the signal y ∈ Rm, the sparsity level s, the initial dictionary D ∈ Rm×n

and the stopping tolerance ϵ ;

Initialize S0 = ∅, e0 = y and b = [] ;

for i = 1, ..., s do

k = argmaxj /∈Si−1

|dT
j ei−1|
∥dj∥2 ;

Update Si = Si−1 ∪ {k};

Update b =

[
b

dT
k y

]
;

Compute recursively the QR dec. of DSi
= QiRi by using (1.16) and (1.17);

ei = ei−1 − qiq
T
i y;

if ∥ei∥2 < ϵ then
stop

end

end

Compute xS by solving RTRxS = b as in (1.15).

1.4.1.3 OMP-Cholesky

An alternative approach uses the Cholesky decomposition of DT
SDS . The matrix DT

SDS

is indeed symmetric and positive-definite and it is updated every iteration by simply

appending a single row and column to it.

Consider the i-th iteration. We denote with Ai the matrix DT
Si
DSi

and with dk

the atom added at the current iteration. It is easy to check that, given the Cholesky

factorization of Ai−1 = Li−1L
T
i−1 ∈ R(n−1)×(n−1), the Cholesky factorization of

Ai =

[
Ai−1 v

vT c

]
∈ Rn×n where v = DT

Si−1
dk and c = ∥dk∥22 = 1

is given by Ai = LiL
T
i with

Li =

[
Li−1 0

wT
√
c−wTw

]
where w solves Li−1w = v .

Finally we have to compute the solution by solving the system LiL
T
i xS = DT

Sy. Notice

that the vector b := DT
Sy ∈ R|S| is simply updated at each iteration by adding the scalar

product dT
k y as its last component. This process is repeated until the sparsity constraint

is reached or the norm of the residual is under a certain threshold ϵ and it is reported in

detail in Algorithm 4.

11

Algorithm 4: OMP with Cholesky decomposition, [11] and [6]

Given the signal y ∈ Rm, the sparsity level s, the initial dictionary D ∈ Rm×n

and the stopping tolerance ϵ ;

Initialize S = ∅, e = y, L = 1, b = [] ;

while |S| < s and ∥e∥ > ϵ do

k = argmaxj /∈S |eTdj|;

Update b =

[
b

dT
k y

]
;

if |S| > 1 then

Compute w by solving the triangular system Lw = DT
Sdk;

Update L =

[
L 0

wT
√
1−wTw

]
;

end

Update S = S ∪ {k};
Compute new solution by solving : LLTxS = b;

e = y−DSxS ;

end

1.4.2 Dictionary Update

The second subproblem of the DL algorithm alternating approach is the dictionary up-

date that consists in solving the following minimization problem

min
D,(X)

∥Y −DX∥2F s.t. XΩc = 0

∥dj∥2 = 1, j = 1, ..., n
(1.18)

where the sparsity pattern Ω := { (i, l) | xil ̸= 0 } is fixed.

Remark 1.4.2.

XΩc = 0 is equivalent to the previous sparsity constraint ∥xl∥0 ≤ s,∀ l = 1, ..., N .

Several algorithms have been proposed for the dictionary update task. Some of them

consider formulation (1.18) as a minimization problem only in the variable D, while

others involve also the sparse matrix X. We will report an example of each type. A

complete review of dictionary update algorithms can be found in [6].

1.4.2.1 Method of Optimal Directions (MOD)

In this approach the dictionary update step is seen as a quadratic optimization problem

in the variable D. Due to the convexity of the error ∥Y −DX∥2F with respect to D, its

minimization amounts to setting to zero its gradient

∇(∥Y −DX∥2F) = 2(DX − Y)XT . (1.19)

12

Therefore, imposing (1.19) equal to zero, we get that dictionary update is carried out by

computing

D = Y XT (XXT)−1 = Y X† , (1.20)

where X† := XT (XXT)−1 represents the Moore-Penrose-Woodboury pseudo-inverse of

X. The main complexity of this dictionary update lies in the computation of the pseudo-

inverse X†. This issue can be overcome by using the Cholesky decomposition of the

matrix XXT as shown in [6], section 3.4.

1.4.2.2 K-SVD

The K-SVD method [12] presents a whole new approach to the dictionary update step,

which is done jointly with an update of the sparse representation coefficients related to

it, resulting in accelerated convergence.

K-SVD algorithm was purposely designed to be a direct generalization of the K-means

algorithm. This is possible due to a strong relation between the sparse representation

and clustering: in the latter each sample is represented by one of the descriptive vectors

{dk}Kk=1, while in the former each sample is represented as a linear combination of several

vectors {dk}Kk=1.

Specifically, K-Means algorithm is developed in two steps per each iteration:

• given {dk}Kk=1, assign the training samples to their nearest neighbor;

• given that assignment, update {dk}Kk=1 to better fit the samples;

K-SVD algorithm follows the same approach, since the dictionary update step updates

one column at a time, fixing all columns in D except one (dk) and finding a new column

dk and new values for its coefficients that best reduce the Mean Square Error (MSE).

The novelty of this algorithm and its similarity with K-Means, then, lies in two main

properties: firstly, the columns of D are computed sequentially and secondly, it allows

changing the relevant coefficients. This last property accelerates the descent of the error

since the subsequent column updates will be based on more relevant coefficients.

Using the same approach of Coordinate Descent methods ([6], section 3.3.2), we can

rewrite our objective function as

∥Y −DX∥2F = ∥Y −
n∑

i=1

dix
T
i︸ ︷︷ ︸

=DX

∥2F = ∥Y −
∑
i ̸=j

dix
T
i︸ ︷︷ ︸

=:Fj

−djx
T
j ∥2F = ∥Fj − djx

T
j ∥2F ,

where xT
i represent the i-th row of X. Therefore, ∀ j = 1, ..., n problem (1.18) can be

equivalently formulated as

min
dj ,xj

∥Fj − djx
T
j ∥2F s.t. XΩc = 0

∥dj∥2 = 1, j = 1, ..., n
(1.21)

13

Problem (1.21) can be seen as an attempt to approximate the matrix Fj with a rank-1

matrix given by djx
T
j . From this interpretation follow the idea to use the Singular Value

Decomposition (SVD) of Fj

Fj =
r∑

i=1

σj
iu

j
iv

jT
i

Easily follows that the solution of (1.21) is given by

dj = uj
1

xj = σj
1v

j
1

where σj
1,u

j
1,v

j
1 are respectively the singular value, the left singular vector and the right

singular vector of Fj with largest absolute value.

Finally, we must check whether this solution satisfies the constraints of the dictionary

update step (1.18). On one side, the singular vectors have norm equal to 1, hence the

normalization constraint is satisfied. However, on the other side, SVD usually does not

return sparse singular vectors, hence this routine could violate the sparsity constraint.

This issue can be easily overcome by projecting our problem onto the subspace defined

by the sparsity pattern Ω previously computed in the sparse coding step. For this reason,

(1.21) can be equivalently formulated as the following minimization problem

min
dj

∥PΩ(Fj − djx
T
j)∥2F = min

dj

∥ (Fj)Ij − djXj,Ij︸ ︷︷ ︸
:=EIj

∥2F , (1.22)

where PΩ ∈ Rs×m is the orthogonal projector on Ω and Ij := {l : |(j, l) ∈ Ω} represents

the indexes of the signals that are represented by the atom dj. Notice also that (Fj)Ij
and djXj,Ij are matrices in Rs×N where s ≤ m.

Remark 1.4.3. (on orthogonal projections)

An orthogonal projection is a linear operator from a space Ω to itself, such that it

can be written as P = QQT where Q has orthonormal columns. Follows that such P

is symmetric and P = P 2. Furthermore we can prove that the only eigenvalues of an

orthogonal projection are 0 and 1, hence follows that ∥P∥F = 1.

The K-SVD algorithm is reported in detail in Algorithm 5. Starting from the matrix

of signals Y ∈ Rm×N , the initial dictionary D ∈ Rm×n and the representation matrix

X ∈ Rn×N , it first defines the error E = Y − DX. Then, for each column of D, it

extrapolates (Fj)Ij (referred as F in the algorithm) from the error relative to Ij and

then, by considering the SVD of F, it computes dj and xj. It concludes each iteration

by updating the error with the values just found.

14

Algorithm 5: K-SVD Dictionary Update [6]

Given the matrix of signals Y ∈ Rm×N , the initial dictionary D ∈ Rm×n and the

representation matrix X ∈ Rn×N ;

E = Y −DX;

for j=1,...,n do

F = EIj + djXj,Ij ;

compute σ1,u1,v1 of F ;

dj = u1 and Xj,Ij = σ1v
T
1 ;

EIj = F − djXj,Ij ;

end

A drawback of the K-SVD method is the high computational cost of the SVD. How-

ever, it actually needs only the first singular vectors, which can be computed much easier

than the full SVD. Furthermore, there exist many implementations of SVD routine de-

veloped in the most used programming languages (for example the Matlab function svds

which computes the truncated SVD).

To overcome even more the computational complexity of SVD, in [13] has been pro-

posed the Approximated K-SVD (AK-SVD) where the algorithm converges to the first

singular values and vectors of Fj ∀ j = 1, ..., n without explicitly computing them

through SVD. The idea behind this algorithm consists in optimize first the atom and

then the associated representations, not simultaneously like in K-SVD. This implies a

splitting of the problem into two smaller subproblems, one on the atom first and the

next on the representation. For further details on AK-SVD we recall [6], section 3.5.

1.5 DL applications

As already mentioned at the beginning of this chapter, DL problem has a great appeal in

various applications due its ability to “capture the essentials of a signal” [6]. Therefore,

once we have clarified which DL algorithm we prefer to use and why, we will start this

section by providing in Example 1 an elucidation of the meaning behind this phrase.

Afterward, we will focus on main problems like denoising, inpainting, classification and

compression, as presented in [6]. In particular, compression tasks, which form the central

focus of this thesis, will be further examined in Chapter 3.

1.5.1 Choice of the DL algorithm

For the implementation of the Dictionary Learning algorithm presented in Algorithm

1, we started from the Python library dictlearn [14] that implements many different

version of DL algorithms.

15

For what concern the sparse coding step, the library allows to choose between OMP-

Cholesky algorithm or a custom algorithm. Since the most famous OMP approaches are

OMP-Cholesky and OMP-QR we also implemented our own version of the OMP-QR

algorithm. This can be easily integrated in the main algorithm of the library by simply

setting the transform_algorithm parameter of DictionaryLearning function as the

name of the custom function. We then proceeded to compare their performances by

looking at the decrease of the error

∥Y −DX∥F√
mN

(1.23)

with respect to the iterations and the elapsed time. Since QR and Cholesky factorizations

are both direct approaches to solve the same problem (1.12), we expect they return

the same solution but with different computational times. We, therefore, run the DL

algorithm either with OMP-Cholesky or OMP-QR for the sparse coding step and both

times with K-SVD for the dictionary update step on artificial data Y,D,X generated with

the Python function make_sparse_coded_signal from the sklearn.datasets library.

In this way we are sure that DX is a sparse representation of Y . For both algorithms

was generated the same random initial dictionary of size 20×50 and 1500 data signals of

dimension 20 with sparsity level equal to three. The number of iterations was set equal to

100. As we expected, we can see from Figure 1.2 that the error trends exactly coincide.

However, while the DL algorithm implemented with OMP-QR for sparse coding step

requires 19.11 seconds to conclude the iterations, the DL algorithm implemented with

OMP-Cholesky, with its 28.22 seconds, is slightly slower to conclude the iterations.

0 10 20 30 40 50 60 70 80 90 100
4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

0.18

0.2

0.22

iteration

∥Y
−
D
X
∥2 F

error vs iterations

chol qr

Figure 1.2: DL with OMP-QR and OMP-Cholesky compared.

16

A different way to test the quality of a DL algorithm is to check if the optimized

dictionary coincides with the “true” oneD. Of course looking at the error ∥D̂−D∥F is not

meaningful since, as we have seen, the DL problem is invariant to atoms permutations. A

more relevant analysis can be done by sweeping through the atoms of the true dictionary

and finding the closest one in the computed dictionary by measuring the distance between

the atoms as

1− |d̂
T
d| ,

where d̂ and d are respectively atoms of the optimized dictionary and the true dictionary.

A distance less than 0.01 is considered a success. Taking the ratio between the number

of true atoms that can be found in the optimized dictionary D̂ and the total number

of atoms we obtain the recovery ratio of the DL algorithm. Taking the mean value out

of 50 trials we get that DL algorithm both with OMP-QR and OMP-Cholesky and the

K-SVD for the dictionary update step can recover more than 90 %.

Since the algorithms are equivalent but the use of OMP-Cholesky seems to lead to a

more time consuming DL algorithm, from now on we will always use our implementation

of OMP-QR for the sparse coding step. Moreover, as already shown in equation (1.10),

the OMP algorithm computes the columns of the sparse matrix X separately, splitting

the sparse coding problem (1.9) in several subproblems independent from each other. For

this reason the custom OMP-QR algorithm can be further accelerated by parallelizing the

code, making maximum use of the avaiable resources of an HPC cluster. In particular,

for this task we employed the multiprocessing Python library [15] (in particular its

Pool object), a package that enables the creation of processes through an API similar

to the threading module. Specifically, whenever OMP-QR was used, we partitioned the

signal Y into four distinct blocks and conducted individual OMP-QR processes on each.

For further details on Marconi100 architecture and on the functioning of an HPC cluster

see Appendix B and [16].

Figure 1.3 reports the same experiment shown in Figure 1.2 while also incorporating

the representation of the error’s behavior throughout the iterations of the DL algorithm

implemented with the parallel version of OMP-QR for the sparse coding step and K-SVD,

as always, for the dictionary update step.

We can notice that the error trends still coincide, as expected, but the latest added

algorithm takes 8.89 s to conclude the iterations. Therefore, the DL algorithm imple-

mented with our parallel version of OMP-QR has a speed-up of 2.15 with respect to

the DL with serial OMP-QR. It cannot scale properly, but the cause might be that the

matrix Y is not sufficiently large to need the use of 4 CPUs.

17

0 10 20 30 40 50 60 70 80 90 100
4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

0.18

0.2

0.22

iteration

∥Y
−
D
X
∥2 F

error vs iterations

chol serial qr parall qr

Figure 1.3: DL with serial OMP-QR, parallel OMP-QR and OMP-Cholesky compared.

For what concern the dictionary update step, the library allows to choose among

several different algorithms such as K-SVD, AK-SVD, MOD and many others through

the fit_algorithm parameter of DictionaryLearning algorithm. We decided to focus

on K-SVD and AK-SVD, comparing the behaviour of the error with respect to the

iterations running the DL algorithm always with parallel OMP-QR for the sparse coding

step and either K-SVD or AK-SVD for the the dictionary update step. We set the

number of iteration as K = 20 and we run it on a random dataset with N = 6000

samples of m = 784 features each and a trained dataset with n = 800 atoms and sparsity

level s = 10.

From the theory we know that, while in K-SVD the decrease is maximal, AK-SVD

only progresses towards the minimum (see [6] for further details), therefore we expect

this last one less accurate, but slightly faster. In Figure 1.4 we report the error trends.

The error trends are as expected. Moreover, the DL algorithm, when employing

AK-SVD during the dictionary update phase, concludes its iterations in 93.49 seconds,

whereas with K-SVD, it takes 96.73 seconds. In the following analysis we will prioritize

achieving a lower error over reducing computational time. For this reason, from now on

we will always use the K-SVD algorithm for the dictionary update step.

Concluding, in all the numerical experiments in this thesis, unless stated otherwise, we

will always use the DL algorithm implemented with our parallel version of OMP-QR for

the sparse coding step and the K-SVD algorithm (imposing fit_algorithm = "ksvd")

for the dictionary update step. Where needed, we will refer to this algorithm as

“DL ompqr parallel ksvd”.

18

0 2 4 6 8 10 12 14 16 18 20
0.11

0.11

0.11

0.11

0.11

0.11

0.11

iteration

∥Y
−

D
X
∥2 F

error vs iterations

aksvd ksvd

Figure 1.4: DL with K-SVD and AK-SVD compared.

Example 1.

So far, we often wrote that DL techniques are able to “capture the essential of a

signal”. The goal of this example is to show and clarify what we mean by this phrase.

In previous sections we have shown that, thanks to DL factorization, a signal can be

always written as a linear combination of few atoms. For this reason we expect these

atoms to be able to capture the most important features of the given signal. Figure

1.5 and Figure 1.6 shows the most representative atoms of the learned dictionary of two

images with different geometric patterns. As expected, in the first case (Fig. 1.5) the

atoms detect the boundary of the circles and the circles themselves, while in the second

one (Fig. 1.6) the main features are stripes of different width and in different positions.

Both the original images have dimensions 256 × 256 pixels and they have been split in

15376 patches of 10 × 10 pixels (stepsize = 2) to train a dictionary of n = 150 atoms.

The sparsity target was set to s = 1 and the DL process was iterated K = 10 times.

Figure 1.5: On the left: original image with discs. On the Right: some atoms of the

dictionary.

19

Figure 1.6: On the left: original image with stripes. On the Right: some atoms of the

dictionary.

We additionally report in Figure 1.7 how the atoms of the starting dictionary look

like, in order to show how they change during the optimization process: from random

vectors they gradually get the shape of the most relevant features of the signal.

Figure 1.7: Atoms of the random starting dictionary.

1.5.2 Denoising

The goal of Denoising, as the word suggest, is to remove or reduce some noise from a

signal (an image in this case), while preserving its essential features and details. This

type of problem is usually approached by splitting the noisy image y in N patches of

dimensions
√
m ×

√
m which are then vectorized and collected in a matrix of training

signals Y ∈ Rm×N . Assuming at first that an appropriate dictionary D is given, the

Denoising process is equivalent to solve the following problem

min
xi

∥xi∥0 s.t. ∥yi −Dxi∥2 ≤ ϵ i = 1, ..., N (1.24)

where ϵ is positive and proportional to the noise variance σ2. Having the dictionary D

fixed, problem (1.24) can be easily solved by OMP algorithms presented in section 1.4.1.

Given xi ∀i = 1, ...N solutions of problem (1.24), the denoised image is then given by

Z = [z1, ...zN] := [Dx1, ...DxN].

Introducing also the learning phase of the dictionary, i.e. first solving the DL problem

min
X,D

∥X∥0 s.t. ∥yi −Dxi∥2 ≤ ϵ, i = 1, ..., N

and then computing the denoised image by Z = DX, we can achieve even better results.

Example 2 shows a full denoising process via DL applied to the image “Lena”.

20

Example 2.

We started by applying an additive random noise of magnitude ≈ 10e−2 and splitting the

image in 15625 patches, 8 × 8 pixels each (stepsize = 2). We then applied both the usual

DL algorithm and the version with OMP-Cholesky for the sparse coding step for K = 30

times, learning a dictionary of n = 441 atoms and setting the sparsity level as s = 10.

Finally we merged the patches to visualize the reconstructed image. As expected, from

Figure 1.8 we can see that the images have almost the same quality, indeed the one

which used OMP-QR has PSNR3 equal to 79.23 while the PSNR of the one denoised

with OMP-Cholesky is about 79.05.

Figure 1.8: Attempts of denoising with DL techniques.

3Peak signal-to-noise ratio (PSNR) is the ratio between the maximum possible power of an image

and the power of corrupting noise that affects the quality of its representation

21

1.5.3 Inpainting

The Inpainting problem can be considered as a special case of denoising, where parts of

the signal are simply missing. Inpainting task consists in filling the gaps in the signal by

training a dictionary using the available parts of the signal.

Given a patch y, we denote the corrupted components index set as I = {i : yi is

corrupted} and with yIc the vector obtained by removing the corrupted components (i.e

whose indexes are in I) from y. DIc is the matrix obtained by removing from D the

columns whose indexes are in I. Finally, we can compute the sparse coefficient x̂ solving

the usual sparse coding step (with respect to yIc and DIc) and the corrupted image is

recovered following the rule

ŷi =

yi, if i /∈ I

(Dx̂)i, if i ∈ I
.

We remark that the order in which the pixels are restored plays an important role, since

the restored pixels are used for the computation of the remaining missing pixels: a hole

in an image is naturally filled from the exterior to the interior. In order to do so we must

distinguish the target region Ω (area to be inpainted), its boundary ∂Ω and the source

region which is the remaining area. Then for all pixels on the target boundary ∂Ω is

assigned a priority P (p) which states the order in which pixels will be recovered.

1.5.4 Classification

Sparse representation can be very useful in supervised classification problems, thanks to

its ability, again, to catch the essentials of a signal.

Let us take into consideration, for example, the well-known MNIST dataset [17]. This

is made of hundreds of images representing handwritten digits, each one paired with its

label. The dataset is split in a training set made of 60 thousands images of 28 × 28

pixels each and in a training set with the remaining 10 thousand images.

Figure 1.9: example of some elements of the MNIST dataset

22

Therefore the signal matrix Y ∈ R784×60000 can be visualized as

and we can also define the label matrix H ∈ R10×60000

which contains the labels of each training image, i.e. if Y (:, i) contains the digit p then

H(:, i) = ep = p -th canonical vector.

The image classification process via DL is divided into training and testing steps.

In the training step, given the dataset Y we find D and X such that Y ≈ DX

using DL techniques. It is interesting to notice that the columns of the dictionary D are

compressed representations of the redundant information contained in Y , as we can see

from Figure 1.10.

Figure 1.10: Visualization of the most significant atom for each digit.

From the sparse representation just found, we can then compute the classifier W which

is defined as

W := argmin ∥H −WX∥F ,

i.e. W is a link between the sparse representation of an image and its label.

Finally the testing step follows: given a new image ŷ we first compute its sparse

representation x̂

x̂ = argmin
x

∥ŷ−Dx∥2 s.t. ∥x∥0 ≤ s ,

and then, given ĥ := W x̂, compute the prediction of its class as

p̂ = argmax
p

|ĥ|p .

23

Often the two stages of the training step are summed up into a unique minimization

problem formulated as

min
D,X,W

∥Y −DX∥2F + α∥H −WX∥2F .

This formulation forces the representation matrix X to both represent the dataset Y and

to classify well.

1.5.5 Compression

Compression is the most known and intuitive application of DL in real-world problems.

Indeed, if the dictionary is known, a signal y ∈ Rm can be represented by just s values

contained in the vector x. Also in the case with a learned dictionary this approach is

convenient for the representation of the signals in Y as Y ≈ DX. Indeed the coefficient

matrix X ∈ Rn×N is very sparse, having just sN non-zero elements. In addition the

number of atoms n is variable and the number of samples N is usually very huge. There-

fore, if N, s and n are such that mN ≫ mn+ sN , Dictionary Learning representation is

clearly convenient, achieving a compression rate of

Compressed size

Uncompressed size
=

mn+ sN

mN
≈ s

m

for high values of N . The most famous examples of compression are JPEG and JPEG-

2000 [18] which are applications of sparse representation problem using the Discrete

Cosine Transform (DCT) matrix as fixed dictionary. In Chapter 3, dedicated to numeri-

cal experiments, we will explore the DL compression properties, taking into consideration

different types of dataset and studying the behaviour of the error and other metrics as

we modify the parameters n and s.

24

Chapter 2

Deep Learning and Convolutional

Neural Networks

Since ancient times mankind has always described in myths and legends its fantasies

on mechanical beings with human-like characteristics. However, the formal foundation

of Artificial Intelligence (AI) as a scientific discipline emerged only in the mid-20th cen-

tury. In 1956, a group of researchers organized the Dartmouth Conference, considered

the birthplace of AI, where they aimed to explore how machines could simulate human

intelligence. Artificial Intelligence is, indeed, a multidisciplinary field that focuses on

creating intelligent machines capable of performing tasks that typically require human

intelligence, such as to perceive, reason, learn, and make decisions, mimicking or sur-

passing human cognitive abilities. Since then, AI experienced less fortunate periods as

the so called “AI winter” in 1960s and 1970s as well as the recent times of prosperity

called “AI renaissance” fueled by the exponential growth in computing power and the

availability of big data which has provided useful resources for training AI algorithms.

Furthermore, the birth of Deep Learning, a subfield of Machine Learning, with its ability

to automatically learn hierarchical representations, has revolutionized AI applications

across various fields, such as image recognition, speech synthesis, and language transla-

tion, leading to unprecedented progresses and pushing the boundaries of what is possible

in Artificial Intelligence.

In this chapter we will focus on the formal definition of these three fascinating areas

as AI, Machine Learning and Deep Learning introducing also the concept of Neural

Networks, the quintessential example of Deep Learning models. Let us start by giving a

brief introduction to each concept, focusing both on their main differences and common

aspects.

Artificial Intelligence (AI) is a broad field, which refers to the use of technologies

to build machines and computers that have the ability to mimic cognitive functions

associated with human intelligence, such as being able to see, understand, and respond

to spoken or written language, analyze data, make recommendations, and more [19]. An

example of AI is MYCIN [20], an computer program developed at Stanford University

25

in the 1970s which uses AI to simulate the judgment of a human in the diagnosis and

treatment of bacterial infections. MYCIN, using a vast amount of information about

various bacteria, their characteristics, the symptoms they cause, and the effectiveness of

different antibiotics against specific infections and following some previously set rules,

was able to generate a list of possible diagnoses and recommend appropriate antibiotic

treatments by asking questions to the patients about their symptoms, laboratory results,

and medical history by a text-based interface. These programs can be powerful tools

in assisting complex decision-making tasks, but they are limited to the knowledge and

rules explicitly programmed into them and may not adapt to new situations or learn

from experience like machine learning-based approaches.

Machine Learning (ML) is a field of AI that automatically enables a machine

or system to learn and improve from experience, by extracting patterns from raw data.

An application of Machine Learning techniques in real life is for example spam e-mail

filtering. Indeed, ML algorithms can be trained to identify patterns that differentiate

spam from legitimate e-mails by simply looking at their contents. The potential of

this system is that, over time, it keeps improving its performance by incorporating user

feedback and retraining the model with new data.

Deep Learning is a particular kind of Machine Learning that achieves great power

and flexibility by learning to represent the world as a nested hierarchy of concepts, with

each concept defined in relation to simpler concepts [21]. The adjective deep comes from

an attempt to visualize a deep graph, i.e. with many layers, showing how the concepts

are built on top of each other. The most powerful and famous Deep Learning application

at the moment is GPT-4 [22] on which Chat-GPT is based. Chat-GPT is a state-of-the-

art language model developed by OpenAI able to answer questions, provide information,

and engage in conversations with humans on a wide range of topic in a way that mimics

completely natural human conversation.

Figure 2.1 illustrates the relationship among these three different AI disciplines and

a timeline showing the periods in which they have been developed.

Figure 2.1: A Venn diagram showing how AI, ML and Deep Learning are related.

26

2.1 Deep Feedforward Networks

The fundamental example of a deep learning model is the Deep Feedforward Neural

Network (DFNN), which is a particular kind of Artificial Neural Network, or simply

Neural Network (NN). A NN is a computing system initially designed to emulate the

biological neural networks that constitute animal brains. As well as in our brain the in-

formation spreads from one neuron to another through synapses, a NN can be seen as a

directed graph whose vertices, called nodes, represent the neurons and whose edges rep-

resent the connections between them. Each neuron processes the information it receives

by applying some nonlinear function of a weighted sum of the incoming connections.

The nodes of such a network are ordered and they can be aggregated into groups, called

layers, which are connected with each other in a hierarchical way. There exist three

types of layers : the first layer is called input layer and is made of the input variables,

similarly the last one is called output layer and is made of the output variables of the

neural network. Finally, the hidden layers are all the layers in between and contain all

the variables which are neither inputs nor outputs. The purpose of the hidden layers is

to capture and transform the input data into more abstract and higher-level represen-

tations. When there is one or more hidden layers we talk about Deep Neural Networks

(DNNs).

Formally speaking, the NN architecture is a machine learning procedure whose goal

is to determine an operator F which approximates a given functional 1

f : V(0) → V(L)

through a minimization process of a loss functional. Notice that the functional f is

known only on a subset of the domain V(0) called training set and that V(L) represent

the output space. Recalling the idea of hidden layers just introduced, the approximant

functional F can be obtained by the following composition

F = F (0) ◦ ... ◦ F (L) , (2.1)

where F (l) : V(l) → V(l+1) for each l = 0, ..., L , represents the operations performed

between the l-th and the (l+1)-th layer and takes in input a function h(l) : G(l) → R which

represents the l-th layer. In practical implementations, the domains G(l) are discrete sets

{1, ..., Nl} and h(l) usually denotes {h(l)(j)}j∈G(l) . In a DFNN, each F (l) acts on h(l) by

first applying a linear operation on it and then a nonlinear one. We will denote the linear

operation as

W (l)h(l) + b(l) , (2.2)

where W (l) : V(l) → V(l+1) is a linear operator that can be represented as Nl+1 × Nl

matrix {W (l)(j, i)}j∈G(l+1),i∈G(l) whose elements are called weights and b(l) ∈ V(l+1) is a

further additive element often referred to as bias term. The nonlinear function will be

1notation from [23].

27

denoted with s(l+1) : V(l+1) → V(l+1) and called activation function. Summing up, each

layer h(l+1) is obtained as a function of the previous layer by the following recursive

formula

h(l+1) := F (l)(h(l)) = s(l+1)(W (l)h(l) + b(l)) . (2.3)

The architecture of a Deep FNN is shown in Figure 2.2.

h(0)(1) h(1)(2)

h(1)(1)

h(1)(3)

h(2)(2)

h(2)(1)

h(2)(3)

h(3)(0)

Figure 2.2: An example of DFNN with one input variable (green), two hidden layers

(blue) of 3 variables each and one output variable (red).

To better understand how a neural network works in practice, in Example 3 we report

the most simple example of a DFNN, the McCulloch-Pitss neuron.

Example 3. (The McCulloch-Pitts (MCP) neuron [24])

The McCulloch-Pitts neuron is a precursor of DFNNs. It is the first attempt of a math-

ematical representation of the neural activity and it dates back to 1943. MCP neuron’s

architecture, as shown in Figure 2.3, consists of some inputs h(0)(1), h(0)(2) ∈ {0, 1}
which represent the signal received by the neuron, a weighted summation function which

linearly combines the inputs with weights W (0)(1, 1),W (0)(1, 2) ∈ {−1, 1} representing

the strength and influence of the connection and a thresholding function s which returns

1 if the weighted sum of the inputs exceeds a threshold represented by the bias b, and

0 otherwise. In other words, if the signal is enough strong its information is passed

forward, otherwise it is stopped. Generalizing to more input variables, given the input

vector h(0) = [h(0)(1), ..., h(0)(N0)]
T , the neuron will return an output F (h(0)) ∈ {0, 1}

which can be mathematically formulated as

F (h(0)) = s

(
N0∑
i=1

W (0)(1, i)h(0)(i)− b

)
,

where s is the activation function

s(z) =

1, if z ≥ 0

0, otherwise
.

28

∑
s

Activate

function

h(0)(1)

h(0)(2)

Bias

b

F (h(0))

Output

W
(0)(1, 1)

W
(0
) (1

, 2
)

Inputs

Figure 2.3: Visualization of MCP neuron with 2 inputs variables. We reported in green

the free parameters.

Example 3 not only describes clearly how a neuron works, but also shows how a

neural network can be seen as a tool able to approximate a target functional f(h(0)) by

learning the right parameters, such as the weights {W (l)(j, i)}j∈G(l+1),i∈G(l) and the bias

{b(l)(i)}i∈G(l) , which drive F (h(0) ;u) to match with the given functional f(h(0)). For sake

of simplicity, u denotes the parameters u = (w, b) = ({W (l)(j, i)}j∈G(l+1),i∈G(l) , {b(l)(i)}i∈G).
We conclude this section with a pivotal result: the Universal Approximation The-

orem. The theorem, reported below, states that a standard multilayer feed-forward

network with a single hidden layer containing a finite number of hidden units and with

arbitrary activation function can universally approximate any function in C(Rm), the

space of continuous functions on Rm. The output units are always assumed to be linear

and, for notational convenience, we explicitly formulate the theorem only for the case

with only one output unit.

Theorem 1. Universal Approximation Theorem [25]

Let s be an arbitrary activation function. Let H ⊆ Rm be compact.

Then for all f ∈ C(H), for all ϵ > 0 : there exist n ∈ N , b(i),W (0)(i, j),W (1)(i) ∈ R, i ∈
{1, ..., n}, j ∈ {1, ...,m} such that

F (n)(h(1), ..., h(m)) =
n∑

i=1

W (1)(i)s

(
m∑
j=1

W (0)(i, j)h(j) + b(i)

)
is an approximation of the function f ; that is

∥f − F (n)∥ < ϵ ,

where n denotes the number of hidden units.

For further details and the proof of the theorem we recall [25]. Moreover, Kurt Hornik

showed in [26] that it is not the specific choice of the activation function, but rather the

29

multilayer feedforward architecture itself which gives neural networks the potential of

being universal approximators, stressing out the importance of the network of being

deep.

Remark 2.1.1. (On the importance of HPC in Deep Learning)

We conclude this section showing how the use of HPC, presented in detail in Ap-

penidix B, plays a fundamental role in Deep Learning. GPT-4 [22], whose abilities have

already been introduced at the beginning of this section, is a great example. Indeed,

GPT-4 parameter details are undisclosed but rumored to be around 100 trillion. Train-

ing such a massive neural network in a canonical way would take years and years, this is

why all the latest neural networks, taking advantage of their highly parallelizable nature,

make an impressive use of GPU and HPC to speed up computational times and lower

the costs. The exact settings of GPT-4 are still not known, but what is known is that

the training of GPT-3, its previous version, was done on 1024 GPUs and took 34 days

[27].

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a particular kind of neural networks de-

signed for processing grid-like structured data such as time-series or images. Its name is

due to the use of the convolution function as linear operator W (l) in at least one of its

layer l. In detail, as shown in Figure 2.4, a CNN is usually composed by three different

types of layers: convolutional layers, pooling layers and fully connected layers. Indeed,

the hidden layers of such a network are given by the sequentially application of a con-

volutional layer, a nonlinear activation function and a pooling layer several times, while

the output layer is returned only after passing through many fully connected layers. For

this reason, in CNN context, (2.1) can be rewritten more specifically as 2

F = ϕ ◦Υk ◦ ... ◦Υ1 ◦ Π ◦ s ◦ T
Ψ

(L)
f

◦ ... ◦ Π ◦ s ◦ T
Ψ

(0)
f

,

where :

• T
Ψ

(l)
f

: V(l−1) → V(l) represents the l-th convolutional layer, with l ∈ {1, ..., L};

• s : V(l) → V(l) represents a nonlinear layer;

• Π : V(l) → V(l) represents a pooling layer;

• Υj : V(L) → V(L) represents the fully connected layers, with j ∈ {1, ..., k},

• ϕ : V(L) → V(L) represents the nonlinear output layer.

In this section we will walk through the basic workings of a CNN, following all the steps

layer by layer.

2notation from [28].

30

Figure 2.4: Architecture of a CNN [29].

2.2.1 Convolutional layer

CNNs use convolutional layers to extract local features from the input images. Each

convolutional layer consists of multiple learnable filters, also called kernels, that scan the

input data in a sliding window manner, as it will be shown later. The kernels are small

matrices that convolve with local patches of the input to produce activation maps, also

known as feature maps. Each filter is specialized in detecting a particular pattern or

feature. By applying multiple filters, the network can learn different features at different

layers.

Notice that time series are defined by a finite number of observation through a finite

time-interval and images are defined by a finite number of pixels. Therefore, in this

context, it would be more realistic to assume the inputs in a discrete and finite domain.

For this reason, we start with the definition of discrete convolution function in one-

dimensional case.

Definition 5. [21]

Given two functions h, k : Z → R, we define the discrete convolution between h and

k as

(h ∗ k)(t) :=
∞∑

m=−∞

h(m)k(t−m) . (2.4)

In CNN terminology, the first argument, h, is often referred to as the input and the

second one, k, as the kernel. Notice that the convolution function is symmetric, since

(h∗k)(t) :=
∞∑

m=−∞

h(m)k(t−m︸ ︷︷ ︸
=:a

) =
∞∑

t−a=−∞

h(t−a)k(a) =
∞∑

a=−∞

k(a)h(t−a) =: (k∗h)(t) .

This implies that (h ∗ k)(t) can be equivalently rewritten as

(h ∗ k)(t) =
∞∑

m=−∞

k(m)h(t−m) . (2.5)

31

In this type of application is likely to have the kernel k with finite support in a discrete

set as {−M,−M + 1, . . . ,M − 1,M}. We therefore can rewrite (2.5) as

(h ∗ k)(t) :=
M∑

m=−M

k(m)h(t−m) .

However, for computational issues, in many neural network libraries cross-correlation

function is preferred to convolution. Cross-correlation is defined as

(h ⋆ k)(t) :=
∞∑

m=−∞

h(m)k(t+m) . (2.6)

Similarly to convolution, cross-correlation is symmetric as well, hence (2.6) can be rewrit-

ten as

(h ⋆ k)(t) :=
∞∑

m=−∞

k(m)h(t+m) .

In machine learning applications the input is usually a multidimensional array of data:

black and white images are two dimensional and RGB images are three dimensional. We

therefore conclude reporting the definition of convolution (2.7) and cross-correlation (2.8)

in N-dimensional case :

(h∗k)(t1, ..., tm) :=
∞∑

m1=−∞

∞∑
m2=−∞

...
∞∑

mN=−∞

h(m1, ...,mN)k(t1−m1, t2−m2, ..., tN −mN)

(2.7)

(h⋆k)(t1, ..., tm) :=
∞∑

m1=−∞

∞∑
m2=−∞

...
∞∑

mN=−∞

h(m1, ...,mN)k(t1+m1, t2+m2, ..., tN +mN)

(2.8)

where h, k : ZN → RN .

Applying everything presented so far to NN context we obtain a formal definition of

convolutional layer. Recalling the notation used in (2.3), a convolutional layer is defined

as

h(l+1) = s(l+1)(W (l)h(l) + b(l)) = s(l+1)(Ψ
(l+1)
k ⋆ h(l) + b(l)) , (2.9)

where {Ψ(l+1)
k }k=1,...,nl+1 is the set of filters associated to the (l + 1)-th layer. Equation

(2.9) can be further developed by replacing the convolution Ψ
(l+1)
k ⋆ hl with its matricial

form, as shown in detail at the end of Example 4.

Example 4.

Being a linear operator, discrete cross-correlation between the input and the kernel

can be equivalently formulated in a matricial way. Given, for example, an image H as

input data h and a matrix K with the set of learnable parameters representing the kernel

k, the operation described by discrete cross-correlation, as we will see in this example,

32

is equivalent to slide across the height and width of the input image, performing a dot

product between the kernel and restricted portions of the input image.

Suppose having an image of dimension 3× 4 pixels and a 2× 2 kernel defined as

X :=

a b c d

e f g h

i j k l

 , K :=

[
w x

y z

]
.

To determine the cross-correlation between them, we start by computing the dot-

product between the 2 × 2 portion of the image X in the upper-left corner (the green

highlighted part in Figure 2.5) and the kernel K. Then, we set the stride which is

a parameter that control how far, i.e. how many pixels, the filter will move from one

portion of the image to the next one. In this example we set the stride equal to one, there-

fore we shift the filter by one column and repeat the dot-product, as shown in Figure 2.6.

Figure 2.5: First convolution

Figure 2.6: Second convolution

33

We repeat it until all the portion of the image have been taken into consideration

according to the dimension of the image, of the kernel and the stride. In Figure 2.7 are

shown all the 2× 2 portions of the image X that are multiplied to the kernel K.

Figure 2.7: How a 2 × 2 filter passes through the entire image with the stride equal to

1.

Finally, putting all the information together, cross-correlation can be also expressed

as a single matrix-vector multiplication as shown in Figure 2.8, in which the matrix is

very sparse, because the kernel is small with respect to the input, and has few distinct

values. Notice that each row of such a matrix is the same as the previous one, just shifted

to the right by 1.

Figure 2.8: An example of cross correlation convolution in two dimensions represented

as matrix multiplication. [21]

34

A real-case example on how discrete cross-correlation actually affects an input image

is shown in detail in Example 5.

Example 5.

In this example we will illustrate the impact of discrete cross-correlation on an image,

pointing out its ability to extract local features. Let us consider three simple filters

defined as

K1 =

1 0 −1

1 0 −1

1 0 −1

 , K2 =

 1 1 −1

0 0 0

−1 −1 −1

 , K3 =

−1 −1 −1

−1 8 −1

−1 −1 −1

 .

As their structure suggests, we expect K1 to promote vertical features, K2 to encour-

age horizontal ones and K3 to detect the contours. Picking up the image with vertical

stripes already used in Example 1, Figure 2.9 shows both the original image and the

output of the convolution between the image and the three filters K1,K2 and K3.

Figure 2.9: Effect of convolution between an image with vertical stripes (upper left

corner) and K1,K2 and K3 filters.

As expected, convolution with K1 catches the vertical lines of the image, while con-

volution with K2, which should emphasize horizontal features, returns a black image as

expected, since the original image has not any horizontal pattern. Convolution with K3

highlights, instead, the left and right edge of each stripe.

35

Convolution leverages three important ideas that can help improving a machine learn-

ing system: sparse interactions, parameter sharing and equivariant representations [21].

Let us describe each one of them in detail.

• sparse interaction :

in trivial neural network every output unit interacts with every input unit. Convo-

lution neural networks, as already noticed, are characterized by sparse interaction,

since the kernel is smaller than the input. This implies the storage of fewer pa-

rameters, reducing the memory requirement of the model. Figure 2.10 shows that

in an usual neural network each node affects all the units in the next layers, while

in a convolutive one it affects only some of them. However, in a deep convolutive

network, although direct connections are sparse, a unit is indirectly connected to

all or most of the input layer.

z3

z2

z1

z4

z5

y3

y2

y1

y4

y5

z2

z1

z4

z5

z3 y3

y2

y1

y4

y5

z2

z1

z4

z5

z3 y3

y2

y1

y4

y5

w3

w2

w1

w4

w5

Figure 2.10: On the left : convolutional neural network, z3 affects 3 units.

In the middle : nonsparse neural network, z3 affects all units. On the right : convolutional

neural network, all the units z in the first layer affect w3.

• parameter sharing :

in a traditional NN, each element of the kernel matrix is used exactly once when

computing the output of a layer. In a convolutional NN, instead, each member of

the kernel is used almost at every position of the input. Therefore, if there are m

inputs and n outputs, in the traditional case the kernel matrix K requires m × n

parameters, while, in the convolutional case, k parameters are enough, where k is

usually several orders of magnitude less than m. Since m and n are usually roughly

the same size, k is almost insignificant compared to m× n.

In Example 4, k is equal to 4 which is much lower than m × n = 12 × 6 = 72.

Thanks to sparse interaction and parameter sharing, convolution is by far more

36

efficient than dense matrix multiplication in terms of memory requirements.

• equivariant representations :

a function f is said to be equivariant to a function g when applying g to the input

before applying f yields the same output as applying f to the output of g, i.e.

f(g(x)) = g(f(x)). The convolution of the filter with the input of the layer allows

the network to be equivariant to translation. Indeed, given a translation operator

Tv, follows that

([Tvh] ⋆ k)(t) =
∑
m

Tvh(m)k(t+m) =
∑
m

h(m+ v)k(t+m) = (2.10)

=
∑
m

h(m)k(t+m+ v) =
∑
m

h(m)k((t+ v) +m)) = (2.11)

=[Tv(h ⋆ k)](t) (2.12)

Therefore, shifting the intensity of all image pixels to the right by one unit and

then applying convolution yields the same result as first applying convolution then

shifting. The same does not hold with other transformations like rotation or scaling,

for which other mechanisms are needed [30].

2.2.2 Hidden activation functions

After each convolution and also at the very end of the network, an activation func-

tion is applied element-wise to introduce nonlinearity into the network, providing great

approximation flexibility to the model. The introduction of nonlinearity is crucial: con-

sider, for example, a neural network with the identity as activation function at each layer.

The depth of the model would be no more meaningful, since the NN could be simply

reformulated with just one linear combination of the input variables. Linear models are

indeed appealing due to their simplicity and therefore reliability, but they have the ob-

vious defect that they cannot learn any complex task. That is the reason why nonlinear

activation functions play a pivotal role in NN.

We distinguish two types of activation functions: the hidden ones, explored in this

section, are used for the computation of the hidden units, while the output ones, pre-

sented in sub-section 2.2.4.1, return, as the word suggests, the output units. The former

are designed to capture the most important features of the signal and add nonlinearity

to the model, while the choice of the latter depends on the type of the model output we

want to obtain. For further details we recall [21]. Let us focus now on the most used

hidden activation functions.

The Rectified Linear Unit Activation Functions (ReLU) and its generalizations

are right now the most used activation functions for hidden units in CNNs because of

their property to be piecewise linear. Applying these functions to the output of a linear

37

transformation yields a nonlinear transformation still remaining very close to linear, pre-

serving many of the properties that make linear models easy to optimize. The “classic”

ReLU is defined as

ReLU : R → R :

ReLU(z) = max{0, z} .

It follows that it is zero when the argument is negative and equal to the argument when

it is equal or greater than zero, as shown in Figure 2.11.

Figure 2.11: Rectified Linear Unit Activation Function.

A drawback of ReLU is that all the negative values become zero immediately gen-

erating the so called “dead neurons”, which are neurons with negative (and potentially

high) weights and bias that, being cancelled by ReLU, will no longer be updated in

the following layers. The presence of dead neurons reduces, with no doubt, the model’s

capacity to get much information as possible from data. To overcome this problem has

been proposed a couple of slightly different versions of ReLU activation function which

are shown in Figure 2.12 and defined as

Leaky / Parametric ReLU(z) =

z, if z ≥ 0

αz, otherwise
= max{0, z}+ αmin{0, z} .

We talk about Leaky ReLU when the parameter α is set equal to 0.01, otherwise, if α

is learned with the other neural-network parameters, it is called Parametric ReLU.

Usually, in CNNs context, this step is called Detector Stage.

38

Figure 2.12: Leaky or Parametric ReLU Activation Function.

2.2.3 Pooling layer

After the image has passed through a convolutional layer and ReLU activation func-

tion, the next step is the Poolying layer. Pooling layers are used to downsample the

feature maps generated by the convolutional layers while retaining the most salient in-

formation. It helps reducing the computational complexity of the network and provides

a form of translational invariance, meaning the network can still recognize patterns even

if they are slightly shifted. The most common type of pooling used in CNNs is max

pooling. In max pooling, each region of the input feature map is divided into small sub-

regions, and the maximum value within each sub-region is selected as the representative

value for that region. This process effectively captures the most prominent feature within

each region and reduces the number of parameters. Another common type of pooling is

average pooling, where instead of selecting the maximum value, the average value within

each region is computed. By selecting the maximum or average value within each region,

slight variations in the position or orientation of the features are less likely to affect the

overall result. This property is referred to as “Invariance to local translation” and it can

be very useful if we care more about whether some feature is present than exactly where

it is.

See Figure 2.13 for an example of how max-pooling works and its advantages.

39

0.1

1.

0.2

0.1

1.

1.

1.

0.2

0.3

0.1

1.

0.2

0.3

1.

1.

1.

Figure 2.13: On the left : a view of the output of a convolutional layer. The first layer

shows the units given by the detector stage while the second one shows the outputs of

max-pooling with a pooling region width of three pixels. On the right : a view of the

same network after the input has been shifted down by one pixel. Each value in the first

layer has changed, but only half of the values in the second layer have changed, because

the max pooling units are only sensitive to the maximum value in the neighborhood, not

its exact location [21].

Remark 2.2.1. (Difference between translation Equivariance and Invariance)

In section 2.2.1 we have proved that convolution operator is equivariant to translations,

while in this section we have stated that max-pooling is invariant to local translations.

These two properties are often confused due to their similar names, but they actually have

different natures. The first one, translation equivariance, means that to every shift of

the input correspond the same shift to its convolution, while the second one, translation

invariance, is the ability to ignore positional translations of the input. The combination

of these two properties leads the whole CNN model to be translational invariant. Indeed,

consider a generic hidden layer h(l) of a CNN. We know that the next hidden layer h(l+1)

is given by a combination of a convolutional layer, the ReLU and a pooling layer as

h(l+1) = F (l)(h(l)) = Π ◦ s ◦ T
Ψ

(l)
f
(h(l)). (2.13)

Equation (2.13) proves how translation equivariance of convolution and translation in-

variance of max pooling lead to a translation invarance to the whole model. Since in

hidden and output layers does not occur any translation, we can just focus on the case

of translation of the input layer h0 for a vector v as follows.

In the next layers the CNN proceeds as if there were no translation. CNN’s translation

invariance is a crucial property. When determining whether an image contains an a face,

for example, the location of the eyes with pixel-perfect accuracy will not be needed : the

basic information the model needs is just the presence of an eye on the left side of the

face and an eye on the right side of the face

Before moving to the description of the last layers of a CNN, as the fully connected

layers and the output layer, we report in the following a real-case example showing how

convolutional and pooling layers actually affect an input image.

40

Example 6.

In this example we trained a real CNN with two convolutional layers made of, respec-

tively, 32 and 64 filters of 3×3 size, each one followed by ReLU activation function and a

max-pooling layer with a pooling region width of two pixels on the full MNIST dataset.

Figure 2.14 summarizes all the characteristics of this CNN. Choosing as sample image

Figure 2.14: Profile of the considered CNN.

the digit shown in Figure 2.9, the goal of this example is looking at which changes it

undergoes passing through all these layers.

Figure 2.15: sample image representing digit 5 from MNIST training set.

41

In particular, Figure 2.16 and 2.17 show how the two convolutional layers affect it.

Figure 2.16: Visualization of the output of the first convolutional layer.

Figure 2.17: Visualization of the output of the second convolutional layer.

42

First of all, we notice that, while the first layer is able to catch the most important

feature of the sample acting as an edge detector, in contrast, digging deeper into the

network, some results more abstract, catching finer details. Furthermore, according to

what we stated in the previous sections, the size of the output decreases after each layer.

Indeed, looking at the column “Output Shape” of the CNN profiler in Figure 2.14, we

can see that, starting from a 28 × 28 image, we get 32 images of size 26 × 26 pixels

after the first convolutional layer made of 32 filters , which become 13× 13 images after

the first max-pooling layer. Since the second convolutional layer is made of 64 filter,

this layer returns 64 images of size 11 × 11 pixels which become 5 × 5 after the last

max-pooling layer.

2.2.4 Fully connected layers and Output layer

After several convolutional and pooling layers, the resulting feature maps are flattened

into a 1-dimensional vector and fed into one or more fully connected layers. These layers

resemble traditional neural network layers, where each neuron is connected to every

neuron in the previous layer. The fully connected layers perform high-level reasoning

and classification based on the learned features.

The final fully connected layer in the CNN is the output layer, returned by the

output activation function. Its configuration depends on the specific task the CNN

is designed for. For example, in image classification, the output layer may consist of

neurons representing different classes, and the network’s output would be a probability

distribution over these classes, indicating the likelihood of the input image belonging to

each class. Let us see in detail a couple of output activation functions.

2.2.4.1 Output activation functions

In CNNs the most used activation functions are the Sigmoid and Softmax.

The Sigmoid or Logistic activation function is the most simple one. It is defined as

sigmoid : R → (0, 1) :

sigmoid(z) =
1

1 + e−z
.

Its shape is shown in Figure 2.18.

43

Figure 2.18: Sigmoid activation function.

Since its codomain is the real interval (0, 1), the Sigmoid activation function is es-

pecially used for models where the output has to be a probability. In particular, it is

an ideal activation function for binary classification problems such as the usual e-mail

spam classifier which uses the Sigmoid to determine the probability of an e-mail to be

classified as spam or not. For multiclass classification, as the recognition of digits in

MNIST dataset, we can use instead the Softmax function. The Softmax function is

defined as

softmax : Rn → (0, 1)n :

softmax(z)i =
ezi∑n
j=1 e

zj
, ∀ i = 1, ..., n

where n is the number of classes. Softmax with n = 2 returns exactly Sigmoid, indeed

given z = [z, 0] follows that

softmax(z)0 =
ez

e0 + ez
=

ez

1 + ez
=

1

1 + e−z
= sigmoid(z) ,

softmax(z)1 =
e0

e0 + ez
=

1

1 + ez
= 1− sigmoid(z) .

2.3 Training a (deep feedforward) neural network

Once the design of a NN is determined and, in particular, of a CNN, the next task is

training it. The training of a neural network is a supervised learning process which learns

to optimize its parameters (weights and biases) by minimizing an average loss function

usually defined as

R(u; ŷ,y) = R(w, b; ŷ,y) =
1

n

n∑
i=1

L(ŷi − yi)

which quantifies, sample by sample, the discrepancy between the predicted output of

the network (ŷ := F (h(0);u)) and the true output (y := f(h(0))) and then computes

44

the average value over all the n samples. The choice of the “fiducial term” L depends

on the specific task the neural network is designed to solve. Different tasks, such as

classification or regression, may require different types of loss functions. Here follow the

most used terms.

• Mean Squared Error (MSE): commonly used in regression problems, where

the goal is to predict continuous values. It measures the average squared difference

between the predicted and true values, i.e.

MSE(u; ŷ,y) =
1

n

n∑
i=1

(ŷi − yi)
2 .

• Binary Cross-Entropy: used in binary classification tasks, where the goal is to

classify inputs into one of two classes. It measures the dissimilarity between the

predicted probabilities and the true binary labels as

BCE(u; ŷ,y) = − 1

n

n∑
i=1

yi · log(ŷi) + (1− yi) · log(1− ŷi) .

• Categorical Cross-Entropy: used in multi-class classification problems, where

the goal is to classify inputs into one of several mutually exclusive classes. It

computes the average dissimilarity between the predicted class probabilities and

the true class labels by generalizing the formula above as

CCE(u; ŷ,y) = − 1

n

n∑
i=1

M∑
j=1

yji · log(ŷ
j
i) ,

where M is the number of classes.

Binary and Categorical Cross-Entropy loss functions’ formulations are based on the

definition of Entropy and Cross-Entropy used in Information Theory. In this field, the

Entropy of a random variable represents the average level of “information” or “surprise”

of the variable’s outcomes and it is defined as follow.

Definition 6.

Given a discrete random variable X, which takes values in X and has distribution p :

X → [0, 1], the Entropy of X is defined as

Hp(X) := −
∑
x∈X

p(x) log(p(x)) .

Notice that −log(p(x)) = log
(

1
log(p(x))

)
, hence the more an event is unlikely to hap-

pen, i.e. p(x) close to 0, the more we get information from this event if it actually

happen, i.e. the more is the Entropy. Similarly, when an event is almost sure, i.e. p(x)

is close to 1, we do not gain much information when it occurs.

Cross-Entropy is nothing more than a generalization of the Entropy and it is defined

as follow.

45

Definition 7. [31]

Given p and q two different probability distributions over the same underlying set of

events X , the Cross-Entropy of the distribution q relative to a distribution p over a

given set X is defined as

Hpq(X) := −
∑
x∈X

p(x) log(q(x)) ,

If p(x) would match to q(x), Cross-Entropy and Entropy values will obviously match

as well.

The loss functions just described are often non-convex, due to the nonlinearity of the

activation functions in the hidden layers. This implies that neural networks are usually

trained by using iterative, gradient descent-based algorithms that simply drive the cost

function to a very low value, rather than providing the convergence to a global minimum.

We therefore briefly recall how the gradient-descent method works.

2.3.1 The Gradient Descent method

Gradient descent, also called steepest descent or batch gradient descent, is a first-order

iterative optimization algorithm for finding a local minimum of a differentiable function

f : Rn → R. Starting from an initial approximation x0, the algorithm aims to move

iteratively along the steepest descent direction towards a minimum of f . We call “descent

direction for f at x” a step p that makes an angle of strictly less than π
2
radians with

−∇f(x), i.e. a p such that

pT∇f(x) < 0 . (2.14)

It follows that the steepest descent direction for f at x is p = −∇f(x), making it clear

why it is also called “gradient descent”. The whole procedure is summarized in Algorithm

6.

Algorithm 6: (Batch) Gradient Descent Algorithm [32]

Given a starting solution x0, the number of iterations maxit and the stopping

tolerance ϵ

for k = 0, ...,maxit do

compute ∇f(xk);

compute stepsize γ;

compute xk+1 = xk − γ∇f(xk) ;

if ∥∇f(xk+1)∥ ≤ ϵ then
return. (xk+1 is the approximate solution)

end

end

46

The algorithm produces a descending sequence of approximations {xk}, indeed, re-
calling (2.14) and assuming γ positive and sufficiently small, follows that

f(xk+1)− f(xk) = f(xk − γ∇f(xk))− f(xk) =

= f(xk)− γ(∇f(xk))
T∇f(xk) +O(γ2)− f(xk) < 0

The Gradient Descent algorithm plays an important role in the training of a neural

network, since it is employed in the minimization of the loss function R with respect to

any weight or bias in the network. Denoting with W (l)(j, k) the weight which connects

the k-th neuron in the (l−1)-th layer and the the j-th neuron in the l-th layer, and with

b(l)(j) the bias relative to the j-th neuron of the l-th layer, the goal is to compute the

following partial derivatives
∂R

∂W (l)(j, k)
,

∂R

∂b(l)(j)
(2.15)

The algorithm designed for the computation of such partial derivatives is called Back-

propagation and it is described in the following section.

2.3.2 Backpropagation

Backpropagation algorithm is an efficient way to compute the gradients of the loss func-

tion with respect to the model’s parameters and it is entirely based on the Chain Rule

of Calculus, whose definition is reported here.

Definition 8. [21]

Let x be a real number and let f ,g : R → R. Suppose that y = g(x) and z = f(g(x)) =

f(y). Then the chain rule states that

dz

dx
=

dz

dy

dy

dx
.

Generalizing to x ∈ Rm, y ∈ Rn, g : Rm → Rn and f : Rn → R, if y = g(x) and z = f(y),

then
∂z

∂xi

=
∑
j

∂z

∂yj

∂yj
∂xi

.

Now we are ready to compute the partial derivatives in (2.15). Let us start from the

partial derivative of R with respect to the weights. From the Chain Rule, we know that

∂R

∂W (l)(j, k)
=

Nl∑
i=1

∂R

∂z(l)(i)

∂z(l)(i)

∂W (l)(j, k)
(2.16)

where the sum is over all neurons i of the l-th layer and z(l)(i) =

Nl−1∑
m=1

W (l)(i,m)h(l−1)(m)+

b(l)(i) is the weighted input to the i-th neuron in layer l, i.e. h(l)(i). Of course, the

47

weighted input z(l)(i) of h(l)(i) neuron depends on the weight W (l)(j, k) only when i = j

and m = k, so
∂z(l)(i)

∂W (l)(j, k)
vanishes when i ̸= j. Therefore (2.16) becomes

∂R

∂W (l)(j, k)
=

∂R

∂z(l)(j)

∂z(l)(j)

∂W (l)(j, k)
=: δ(l)(j)h(l)(k) , (2.17)

where, for sake of simplicity, we denoted with δ(l)(j) the partial derivative
∂R

∂z(l)(j)
. For

what concern the partial derivative of the cost function with respect to the bias, we can

proceed similarly obtaining

∂R

∂b(l)(j)
=

Nl∑
i=1

∂R

∂z(l)(i)

∂z(l)(i)

∂b(l)(j)
=

∂R

∂z(l)(j)

∂z(l)(j)

∂b(l)(j)
=

∂R

∂z(l)(j)
= δ(l)(j) . (2.18)

Summing up, thanks to backpropagation, the gradients of the loss function in (2.15) can

be computed as

∂R

∂W (l)(j, k)
= δ(l)(j)h(l)(k) ,

∂R

∂b(l)(j)
= δ(l)(j) .

The computation of δ(l)(j), which we recall corresponds to
∂R

∂z(l)(j)
, strongly depends on

the shape of the cost function R, hence we cannot further develop this partial derivative

here, but we can say that it heavily depends on the outputs, since the cost function is

defined on the outputs as well. Moreover, notice that all the loss functions seen at the

beginning of this section are defined as an average over the cost functions Ri of each

training sample i, as R =
1

n

n∑
i

Ri. This property allows us to compute separately the

partial derivatives
∂Ri

∂b
and

∂Ri

∂W
for each single training sample which is more straight-

forward, and then take the average of the gradients of all the training samples using

therefore just one step of gradient descent in each iteration. However, the number of

training samples can be quite large and processing all of them at each iteration in one

go can be computationally expensive and memory-intensive. This problem can be solved

by considering at each iteration only a subset of the training sample. Such a subset is

usually referred to as batch. When the gradient in gradient descent algorithm is not

computed using the entire training dataset at each iteration, but only with the samples in

the batch, we talk about “Mini-Batch Gradient Descent”. Usually the batch samples are

extracted at random, therefore the Gradient algorithm becomes a stochastic optimiza-

tion process. The algorithm can be iterated many times on the training dataset. The

number of these iterations is referred to as epochs. For further details about stochastic

gradient algorithms in Machine Learning we refer to [33].

In the next page we sum up everything seen so far in this chapter in an single

algorithm which describes the training phase of a CNN.

48

Algorithm 7: Training of a CNN

Set max epoch = #epochs, L = #layers, β = #batches, t = batch size, maxit =

maximum number of iterations for each batch, s activation function, Π pooling

layer function, {Υj}j=1,...,r fully-connected layers functions, ϕ softmax function,

ϵ the stopping tolerance and γ stepsizea.

Given a dataset D compute the training set T (r) = {(x1, y1), ..., (xN , yN)}.
Split the training set T (r) in batches {Bk}k=1,...,β s.t.

Bk = {(xk, yk), ..., (xk+t, yk+t)}.
for epoch = 1,...,max epoch do

for Bk in {Bk}k=1,...,β do

for (xi, yi) in Bk do

h(0) = x̂i

Compute the predicted outputs ŷi

for l = 1, ..., L do

h(l) = Π(s(W (l)h(l−1) + b(l)))

end

ŷi = ϕ ◦Υr ◦ ... ◦Υ1(h(L)),

Compute the loss functions Ri

Ri = loss(ŷi − yi) , where loss refers to che custom loss function

end

R =
1

t

k+t∑
i=k

Ri

if R < ϵ then
break

end

for l = L− 1, ..., 1 do

for (xi, yi) in Bk do
Compute the partial derivatives with backpropagation
∂Ri

∂b(l)(j)
= δ(l)(j)

∂Ri

∂W (l)(j, k)
= δ(l)(j)h

(l)
i

end

Update the parameters with Gradient Descent

W (l)(j, k) = W (l)(j, k)− γ

k+t∑
i=k

∂Ri

∂W (l)(j, k)

b(l)(j) = b(l)(j)− γ

k+t∑
i=k

∂Ri

∂b(l)(j)

end

end

end

aThe stepsize can be constant or diminishing through the iterations. The choice of the stepsize

is crucial for the convergence of the algorithm and different stepsizes define distinct methods. Such

methods are reviewed in [33].

49

2.4 Training, Validation and Testing

To asses the approximation quality of a NN we must introduce the concept of training,

validation and test set. These sets are subsets of the available data and have different

purposes. The training set is the largest subset of data used to train a NN as just shown

in section 2.3. The training set can consist of just input data without any guess of their

output, in the case of “unsupervised” training, or, as in our case, can consists of input

data and corresponding known output values or “targets” as happens in the “supervised”

case. During the training phase, the model learns from this data by adjusting its internal

parameters, such as weights and biases, to minimize the difference between predicted

outputs and the true labels. The validation set is a disjoint subset of data that is used

during the training process to fine-tune the model’s hyperparameters. Hyperparameters

are configuration settings that determine the network structure and that cannot be

learned directly from the training data. Examples of hyperparameters are the number

of hidden layers, batch size, which is the number of samples in a batch, and epochs.

By evaluating the model’s performance on the validation set, different combinations of

hyperparameters can be compared, and the best configuration can be selected. This helps

to prevent overfitting, a new concept presented in detail in section 2.5. Finally, the test

set is the remaining disjoint subset of data and it is used to assess the final performance

of a trained neural network model. It simulates real-world scenarios by providing data

that the model has never encountered before. The test set should be representative of

the data that the model is expected to handle in practice. By evaluating the model on

the test set, it is possible to estimate how well it will perform on unseen data.

2.5 Overfitting and Underfitting

Overfitting and Underfitting are two common problems that occur when training machine

learning models. These issues arise when the model’s performance does not generalize

well to new, unseen data. We talk about overfitting when a machine learning model

performs exceptionally well on the training data but fails on validation/test data. In

other words, an overfitted model has learned the training data too closely, including

noise or random fluctuations, instead of capturing the underlying patterns of the data.

A clear sign of overfitting is therefore a low training error, but an high validation/test

error. On the other side, underfitting occurs when a model is too simple and not only it

fails on new data, but performs badly also on training data. It is characterized by high

training and validation/test errors. Figures 2.19 and 2.20 show the typical behaviour of

the accuracy and loss function, respectively in an overfitted and underfitted model with

respect to the number of epochs.

50

Figure 2.19: Behaviour of accuracy and loss function in a overfitted model.

Figure 2.20: Behaviour of accuracy and loss function in a underfitted model.

The plots shown in the Figures 2.19 and 2.20 result from two neural networks trained

on 500 digits of MNIST’ training set and tested on 100 digit of MNIST’ test set. In

particular, Figure 2.21 report the profiler of the CNN used for the overfitted example,

while Figure 2.22 shows the profiler of the CNN used for the underfitted example.

51

Figure 2.21: Profiler of the overfitted model.

Figure 2.22: Profiler of the underfitted model.

52

Chapter 3

Numerical Results

The purpose of this final chapter is to show the significant utility of Dictionary

Learning (DL) techniques in real-world applications. In particular, we will emphasize

how DL provides a valuable tool for data compression within the context of Digital Twins.

The chapter is organized as follows: in section 3.1 we will provide a brief introduction

to Digital Twins, while in section 3.2 we will explore the application of DL in this

context, analyzing its performance on various types of datasets and frameworks. All the

codes necessary to reproduce the experiments shown in this chapter are available at the

following link: https://github.com/lauracavalli/DL4DT.git.

3.1 Brief introduction to Digital Twins

Digital twins are up-to-date virtual replicas of physical objects, systems, processes

or any entity we want to represent digitally. These state-of-art technologies have differ-

ent fields of application, ranging from manufacturing to healthcare, education to urban

simulations. In particular, digital twin technologies play an important role in Industry

4.0, the fourth industrial revolution, where the digitalisation of the production systems

has revolutionized manufacturing processes, increasing productivity and profitability, re-

ducing the impacts of disruptions and enabling data-driven decision-making. Figure 3.1

helps visualize how a digital twin approximately works.

53

https://github.com/lauracavalli/DL4DT.git

Figure 3.1: Schematic representation of a digital twin [34].

As reported in [35], the origin of the Digital Twin concept can be traced back to the

1960s when NASA first introduced the idea of “twinning” for their Apollo program. The

concept involved creating physical duplicates on Earth that accurately matched their

systems in space. This allowed them to simulate various scenarios, test different cases

and conditions, and evaluate the behavior and performance of their systems. However,

the concept did not gain significant traction until the early 2000s when Michael Grieves

introduced the notion of digital twins in the manufacturing industry. Subsequently, in

2017, Gartner recognized it as one of the top 10 strategic technology trends, and many

industry giants adopted the concept, gaining increased attention and significance.

This section provides an outline of a typical workflow for a digital twin.

The first step is collecting data and information of the physical system, such as tem-

perature, pressure and other relevant variables, by using various types of sensors such as

IoT devices which send periodic updates on the status of their connected devices. With

“IoT (Internet of Things) device” we refer to a physical device, placed on the system,

which is connected to internet and has the ability to send and receive data. With the

help of IoT devices, the relevant data are transmitted to a middleware platform, where

they are collected and processed. The next step is to generate meaningful information

from raw data collected so far. During this stage, big-data architectures and analy-

sis techniques can be used for deriving business decisions. Furthermore, deploying AI

and Machine Learning algorithms can enhance the transformation process by predicting

trends, detecting correlations and providing insights. As a result, a digital twin not

only enables to digitally represent in real-time the physical counterpart of the system

and monitor its current values, but also allows an analysis of future scenarios, detecting

incoming anomalies or find its best settings. Finally, after completing all the analyses, a

feedback is sent to an interfaces on the physical system through web or mobile platforms

that would allow users to visualize real-time updates of the physical systems and inform

the user of the outcome, which may include warning about an incoming anomaly, sug-

gesting future system developments, or providing advice on how to proceed in a given

situation. Figure 3.2 provides a schematic overview of the three fundamental layers that

54

constitute a digital twin. On the left, there is the “hardware” component, which is com-

posed of IoT sensors placed on the physical system, which could range from a car or a

plane to an industrial process or even an entire city. Additionally, this layer includes

actuators that detect the process output message and actuate it within the system. In

the middle, we have the “middleware” phase, where the collected data are transmitted,

stored, and processed within the digital counterpart. Finally, on the right, the “software”

layer is presented. Here, the data play a crucial role in generating analytics, dashboards,

digital simulations of the environment, and designing future states of the system with

the assistance of AI and ML techniques. To handle these vast amount of data 1 and

perform such computationally-intensive tasks, HPC system are often employed in this

stage, enabling the DT framework to operate at its full potential, allowing for more so-

phisticated simulations, real-time monitoring, optimization, and integration of advanced

technologies such as the training of massive neural networks on extensive datasets.

Figure 3.2: Components of a digital twin system. Image taken from a presentation of

IoTwins [37], an European project which aims to lower the barriers for the uptake of

Industry 4.0 technologies to optimize processes and increase productivity, safety and

environmental impact through the digital twin.

Let us now analyze the advantages and disadvantages of digital twin technologies.

As mentioned earlier, some of their advantages include real-time monitoring, predictive

maintenance, and the ability to simulate potential scenarios.

1For example in the “M100 ExaData” project [36] were collected 49.9 T in two year and a half, with

sampling rate of few seconds.

55

They also offer highly-informed decision support, optimized scheduling and increased

efficiency, all of which contribute to faster development cycles and cost savings.

However, in order to make sure the digital twin represent a synchronized real-time

copy of the physical system, the network connecting the physical and digital systems

should fulfill a set of requirements such as low latency of real-time communication, data

security and quality. Regarding the last two requirements, it is essential to implement

measures such as authentications and Blockchain technologies to ensure that data cannot

be intercepted or modified by untrusted external users during their transmission. As for

latency, a high level of synchronization can ensures the digital twin and the represented

entity mirror each other as closely as possible and offer a high quality of experience of

users in real time communications. This task, however, is not easy to achieve, due to the

large amount of data required to establish a reliable digital representation. To reduce the

communication latency two techniques can be used: deploying high speed network links

by using high speed cables such as optical fibers, or data compression. The purpose of

the next section is to demonstrate that DL techniques can indeed improve digital twins’

synchronization providing an exceptional compression tool.

3.2 Integration of Dictionary Learning techniques in

a digital twin framework: the workflow

As already mentioned, reducing data latency is one of the main challenges within the

DT context. To overcome this problem we propose the following workflow. First of all,

the data are collected from the physical device and represented as a matrix Y . The

entire process of DL factorization is then applied to Y , resulting in the extraction of the

dictionary D and the sparse matrix X. Both D and X are transmitted to the digital

counterpart. Subsequently, the compressed data Ỹ is restored on the digital system

using D and X as Ỹ = DX, making it possible to apply AI techniques. Sometimes,

repeating this procedure every time data need to be transferred between the two systems

could be impractical. In such situations the dictionary D can be computed only once

and stored both on the physical and digital system. Consequently, whenever there is

a need to compress and transfer data, the physical system only needs to compute the

sparse matrix X using sparse coding techniques and send it to the digital system. The

latter approach shows several advantages. Firstly, Sparse Coding demands significantly

lower computational resources compared to full DL, as proved in Chapter 1. Secondly,

transmitting only the sparse matrixX is considerably easier and faster than sending both

the dictionary D and the sparse matrix X separately. Moreover, users have the flexibility

to specify under which conditions the dictionary D has to be updated, in order to have

more reliable results. For example, a reasonable choice can be updating the dictionary

after a fixed period of time or when the accuracy of the AI algorithm on the compressed

dataset starts to decrease too much. We will refer to these conditions as user conditions

56

in the forthcoming Algorithm 8. As we will prove, this workflow is very effective since

DL techniques allow to massive compression preserving main important features of the

dataset.

The workflow above has been schematically resumed in the following algorithm.

Algorithm 8: Workflow of a digital twin process with DL techniques.

Collect data on the physical counterpart as a matrix Y .

Send Y to the digital system.

Compute the dictionary D and the sparse matrix X with DL factorization of Y

on the digital system.

i = 0

while True do

if i==0 then
Send the dictionary D to the physical system and store it.

end

else
Compute X with sparse coding on the physical system.

Send X to the digital system.

end

i = i+ 1

Compute Ỹ = DX on the digital system.

Apply ML algorithm using Ỹ as dataset.

if user conditions then
break

end

end

3.2.1 A first analysis of DL compression performances.

This section will explore the performance of our DL algorithm “DL ompqr parallel ksvd”

on two types of datasets, images and timeseries, and show how its behavior changes

varying the parameters such as the number of atoms n and sparsity level s. For images,

we employed the well-known MNIST dataset [17], while for timeseries, we used the FordA

dataset [38]. Detailed descriptions of both datasets can be found in Appendix A.

For both datasets, we analyzed the behaviour of the error

E =
∥Y −DX∥F√

mN
(3.1)

with respect to the iterations. The number of iterations has been set equal to K = 20

for MNIST and K = 40 for Ford-A. The sparsity level s was set based on the number

of classes kp of the database. In the case of the MNIST dataset, we set the sparsity

level as s = 2kp, 3kp and 5kp as if we want to consider 2, 3 or 5 samples for each class,

57

while for the Ford-A dataset, which is less redundant, we set s = 20kp, 25kp and 30kp.

The number of atoms, denoted as n, was set based on the compression percentage we

wanted to achieve which were 40, 50, 60, 70 % . With MNIST dataset we pushed the

compression up to 80 %, due to its significant redundancy. The compression percentage

cp is defined as

cp =

(
1− mn+ sN

mN

)
× 100 .

Figures 3.3, 3.4 and 3.5 present an analysis of the DL performance on the MNIST

dataset. In detail, Figure 3.3 shows the error’s behaviour with respect to the iterations

for s = 20 and different compression rates, Figure 3.4 considers s = 30 and Figure 3.5

considers s = 50. In this last case we do not report the scenario with 40 and 50 %

of compression, as they would have required over 24 hours to complete 20 iterations.

From the theory we know that our algorithm does not converge to a solution, but that

it produces, instead, a descending sequence of approximations. Therefore, fixed the

parameters s and n, we expect the error to decrease at each iteration.

0 4 8 12 16 20
3 · 10−2
4 · 10−2
5 · 10−2
6 · 10−2
7 · 10−2
8 · 10−2
9 · 10−2

0.1
0.11
0.12
0.13
0.14

iteration

∥Y
−
D
X
∥2 F

s = 20

40% 50% 60% 70% 80%

Figure 3.3: DL on MNIST : error w.r.t n. iterations for s = 20

58

0 4 8 12 16 20
2 · 10−2
3 · 10−2
4 · 10−2
5 · 10−2
6 · 10−2
7 · 10−2
8 · 10−2
9 · 10−2

0.1
0.11
0.12
0.13

iteration

∥Y
−
D
X
∥2 F

s = 30

40% 50% 60% 70% 80%

Figure 3.4: DL on MNIST : error w.r.t n. iterations for s = 30.

0 4 8 12 16 20
2 · 10−2
3 · 10−2
4 · 10−2
5 · 10−2
6 · 10−2
7 · 10−2
8 · 10−2
9 · 10−2

0.1
0.11
0.12
0.13

iteration

∥Y
−

D
X
∥2 F

s = 50

60% 70% 80%

Figure 3.5: DL on MNIST : error w.r.t n. iterations for s = 50.

As expected the error shows a descending behaviour with respect to the number

of iterations. In particular, after 20 iterations the algorithm reaches an error between

0.023 and 0.05, requiring around 17 hours : therefore, the parallelization of OMP-QR is

crucial; otherwise the algorithm would have required an impractical amount of time to

finish the iterations. Furthermore, we expect that, when the number of atoms n is held

constant, the error decrease as the parameter s increases, as signals are represented by

a larger number of atoms. Similarly, we expect that increasing n leads to even better

results, as a broader set of atoms can be chosen as the most representative for each

signal. Figure 3.6 shows the error’s behaviour with respect to the sparsity level n, for

59

different values of s while Figure 3.7 reports the same experiment with respect to the

compression percentage.

0.6 1.2 1.8 2.4 3 3.6

·104

2.1

2.8

3.5

4.2

4.9

·10−2

n

∥Y
−
D
X
∥2 F

error vs n

s = 20 s = 30 s = 50

Figure 3.6: DL on MNIST : error w.r.t the number of atoms n

30 40 50 60 70 80 90
2.1

2.8

3.5

4.2

4.9

·10−2

compression percentage

∥Y
−
D
X
∥2 F

error vs cp

s = 20 s = 30 s = 50

Figure 3.7: DL on MNIST : error w.r.t the compression percentage

The obtained results coincide with our expectations. Furthermore, we observe that

DL techniques can yield remarkably high levels of compression. For instance, it can

achieve 80% compression with an error of 0.034, or even achieve an error as low as 0.024

with a compression percentage of 40%.

60

These impressive compression performances are due to the redundant nature of the

MNIST dataset, which is a result of its low variability. Indeed, as shown in Figure

3.8, the MNIST dataset consists of about 6.000 images for each digit all sharing the

same background and frequently showing digits in identical positions or with similar

handwriting styles.

Figure 3.8: Some examples of MNIST’ digit 0.

At this point the reader could wonder when an error value can be consider satisfactory.

For this reason we reported in Figure 3.9 different reconstructed digits of MNIST dataset

with the corresponding error. This visual representation helps understanding whether

an error can be considered acceptable or not.

Figure 3.9: From left to right : error = 0, error = 0.02, error = 0.21.

For a more robust analysis let us now move on timeseries dataset.

Figure 3.10 analyzes the DL performance on FordA dataset. In detail, it shows the error’s

behaviour with respect to the iterations for s = 30, 40 and 50 and different compression

percentages. As before, fixed the parameters s and n, we expect a descending behaviour

the error. Furthermore, we expect an higher overall error compared to the previous case,

as Ford-A is a more complex dataset. However, we also expect shorter computational

times due to its significantly smaller size.

61

0 4 8 12 16 20 24 28 32 36 40

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

iteration

∥Y
−

D
X
∥2 F

s = 40

0 4 8 12 16 20 24 28 32 36 40

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

iteration

∥Y
−

D
X
∥2 F

s = 50

0 4 8 12 16 20 24 28 32 36 40

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

iteration

∥Y
−

D
X
∥2 F

s = 60

40% 50% 60% 70%

Figure 3.10: DL on FordA dataset: error w.r.t n. iterations (s = 40, 50, 60).

62

As expected the error shows a descending trend as the number of iterations increases.

In particular, after 40 iterations the algorithm reaches an error between 0.02 and 0.048,

similarly to those obtained in the previous case, and requires around 20 minutes, which

is significantly less than the 20 hours of the previous case.

Figures 3.11 and 3.12 show the relation between the error and, respectively, the

compression percentage and the number of atoms n. As before, we expect that, when

the number of atoms n is held constant, the error decrease as the parameter s increases, as

signals are represented by a larger number of atoms. Similarly, we expect that increasing

n or, equivalently, the compression percentages leads to better results.

500 750 1,000 1,250 1,500 1,750 2,000

2.1

2.8

3.5

4.2

4.9

5.6

6.3

7
·10−2

n

∥Y
−
D
X
∥2 F

error vs n

s = 40 s = 50 s = 60

Figure 3.11: DL on Ford-A : error w.r.t the number of atoms n

30 40 50 60 70 80

2.1

2.8

3.5

4.2

4.9

5.6

6.3

7
·10−2

compression percentage

∥Y
−
D
X
∥2 F

error vs cp

s = 40 s = 50 s = 60

Figure 3.12: DL on Ford-A : error w.r.t the compression percentage

From Figure 3.12 we can see that, in the same context as above, even with a compres-

sion of 70 % we can reach an error equal to 0.034. This proves that DL is an excellent

63

candidate for compression tasks also for timeseries datasets. Nevertheless, as already

mentioned, is clear that compressing time series can be more challenging if compared

to a dataset such as MNIST, since they represent real-world data with more complex

patterns.

Let us now step back and revisit the context of digital twin. We have observed that

DL techniques offer an exceptionally valuable compression tool, facilitating the data

transfer from physical system to its digital counterpart. Nevertheless, as our ultimate

goal is to process and extract valuable insights from the data, when evaluating the quality

of DL compression, it becomes more meaningful to compare the information resulting

from ML processes which are trained both the original and compressed datasets, rather

than focusing exclusively on the error (3.1).

In the following section we will illustrate this concept and explore a couple of digital

twin applications, simulating a digit recognition process using the MNIST dataset and

employing the timeseries data for anomaly detection.

3.2.2 Analysis of DL compression performances through CNNs.

So far, we did not go into the details about how digital counterpart’s structure is. There

exists various kinds, but, for this project we used HPC systems, in particular Cineca’s

Marconi100 cluster [39]. Indeed, for both our tasks, image recognition and anomaly

detection, we utilized Convolutional Neural Networks (CNN) that can be easily imple-

mented and parallelized, for instance with Horovod [40], on HPC clusters. This is another

advantage of digital twin systems : transferring data to a more powerful machine capa-

ble of performing more advanced computations is more convenient than attempting to

replicate the same process on the physical counterpart.

Let us start by evaluating MNIST compression through DL by building a CNN specif-

ically designed to detect the various digits present in the dataset and examining its

performance on the compressed dataset. For this purpose, we choose the convolutional

neural network with two convolutional layers with ReLU activation function, two max-

pooling layers and softmax as output function reported in Figure 3.13 as suggested in

[41].

64

Figure 3.13: Profiler of the CNN used for digit recognition on the MNIST dataset

After training the CNN on both original and compressed datasets, the next step is

to asses the CNN’s performance on the same test set. In particular, in both this case

and the following one, we will not use the original test set but the one obtained by

multiplying the dictionary Dtrain learned from the training set with the sparse matrix

obtained applying the parallelized OMP-QR on the dictionary Dtrain and the original

test set. We used a DL compression with sparsity level s equal to s = 20, 30, 50 and

different compression percentages. To evaluate the performance of the CNN, we used

the accuracy, which is defined as the ratio of the number of correct predictions over

the total number of predictions. Table 3.2.2 and Figure 3.14 compare the test accuracy

achieved by the CNN trained on the original dataset with the ones obtained by training

the CNN on the compressed datasets. We expect that increasing the compression rate

will lower the accuracy. Our hope is that the accuracy obtained with the compressed

dataset remains comparable to the one obtained with the original dataset.

65

s n % compr. accuracy

/ / 0 % 99.23 %

20 10469 80 % 97.22 %

20 16469 70 % 96.81 %

20 22469 60 % 97.49 %

20 28469 50 % 97.04 %

20 34469 40 % 96.79 %

s n % compr accuracy

/ / 0 % 99.23 %

30 9704 80 % 97.03 %

30 15704 70 % 97.38 %

30 21704 60 % 97.39 %

30 27704 50 % 97.09 %

30 33704 40 % 96.91 %

s n % compr accuracy

/ / 0 % 99.23 %

50 8173 80 % 97.69 %

50 14173 70 % 97.62 %

50 20173 60 % 97.28 %

50 26173 50 % 96.84 %

50 32173 40 % 97.1 %

Table 3.1: Accuracy of different compression settings with s = 20, 30 and 50 on MNIST

dataset.

0 40 50 60 70 80
0.96

0.97

0.98

0.99

1

compression percentage

ac
cu
ra
cy

accuracy vs % compression

s = 20 s = 30 s = 50

Figure 3.14: Accuracy with respect to the compression percentage

As expected, the accuracy computed on the compressed datasets is lower than the one

computed on the original dataset. Despite not matching exactly the original accuracy,

we still achieve extremely good results, reaching even an accuracy of 97.7 % with a

compression of 80%. Differently from what we expected, we notice that the accuracy

remains almost constant as the compression percentages decreases. This is probably

due to the redundant nature of the MNIST dataset, which makes it possible to achieve

66

high accuracy levels even with high levels of compression. A natural question arises

regarding the accuracy achieved when the dataset undergoes random compression, such

as preserving only 20% of samples chosen randomly. In these scenarios, we find that

the randomly compressed dataset can achieve 92% accuracy, which is quite lower than

the 97.7% accuracy obtained with our DL compression. In a context with more complex

data, we would expect a more significant difference between the accuracy achieved with

random compression and that achieved with our technique.

Let us now explore how the accuracy is distributed among the individual classes.

Figure 3.15 presents a comparison of the test accuracy of each class obtained from the

original dataset, depicted in grey, and the accuracy related to the compressed datasets

with s = 20, 30, 50 and a compression percentage of 60 %, represented in green,blue and

red, respectively.

0 1 2 3 4 5 6 7 8 9
0.92

0.94

0.96

0.98

1

s=20 s=30 s=50 noDL

Figure 3.15: Comparison of test accuracy of each MNIST digit between original dataset

and its compressed versions.

All classes achieve a good level of accuracy; however, we notice that, while the com-

pression has no significant impact on the recognition of digits 0 and 1, the other digits

appear to be more challenging for the CNN to recognize. For example, digit 9 has a

recognition accuracy of 94,45 % with s = 60 and 60 % of compression, while with the

original dataset it can reach 98,3 %.

We will now perform the same analysis on the FordA dataset. We expect less accu-

rate results as a timeseries dataset is less redundant compared to the MNIST dataset.

In this examples we need a CNN able to perform anomaly detection. For this task we

used the CNN reported in Figure 3.16 with three one-dimensional convolutional layers

with ReLU activation function, one global average pooling layer and softmax as output

function as suggested in [42].

67

Figure 3.16: Profiler of the CNN used for anomaly detection on the FordA dataset.

Let us have a look to the comparison of the test accuracy achieved by the CNN

trained on the original dataset with the test accuracy obtained by the CNN trained

on the compressed dataset. For this analysis, as shown in Table 3.2.2, we considered

s = 30, 40 and 50 with several compression percentages. The same results are also

graphically presented in Figure 3.17.

s n % compr accuracy

/ / 0 % 96.31 %

40 1872 40 % 90.45 %

40 1512 50 % 90.23 %

40 1152 60 % 89.77 %

40 792 70 % 90.19 %

s n % compr accuracy

/ / 0 % 96.31 %

50 1800 40 % 90.89 %

50 1440 50 % 90.72 %

50 1080 60 % 90.41 %

50 719 70 % 90.87 %

68

s n % compr accuracy

/ / 0 % 96.31 %

60 1728 40 % 90.19 %

60 1368 50 % 89.96 %

60 1008 60 % 90.85 %

60 648 70 % 90.85 %

Table 3.2: Accuracy of different compression settings with s = 40, 50 and 60 on Ford-A

dataset.

0 40 50 60 70

0.9

0.93

0.96

compression percentage

ac
cu
ra
cy

accuracy vs % compression

s = 40 s = 50 s = 60

Figure 3.17: Accuracy with respect to the compression percentage

Also in this case we can not reach the original accuracy level. However, we obtained

an overall accuracy that almost reaches 91 % even with high levels of compression. These

are very promising results considering the real-world nature of the dataset and that a

random compression of 60 % of the original dataset would reach an accuracy of only

52 %. This result confirms what was mentioned above: the more complex the dataset

becomes, the more essential automatic compression techniques like DL become crucial if

compared to random dataset reduction.

Now, let us explore the accuracy of normal (label -1) and problematic (label 1)

measurements separately. Figure 3.18 presents a comparison of the test accuracy levels

of the two classes obtained from the original dataset, depicted in green, and from the

compressed datasets with s = 40, 50, 60 and a compression of 60 %, represented in green,

blue and red respectively.

The DL compression on this timeseries dataset is highly satisfactory, as a CNN trained

on the dataset compressed by 60% can detect problematic measurements with an accu-

racy of 87.94 %. We recall that the Ford-A dataset is a balanced dataset, with 1846

training samples and 681 test samples for the problematic measurements and 1755 train-

ing samples and 639 test sample for the good ones.

69

−1 0 1
0.8

0.85

0.9

0.95

1

s=40 s=50 s=60 noDL

Figure 3.18: Comparison of test accuracy of each class between original dataset and its

compressed versions.

We conclude this section with one final example, which, by using everything we have

seen so far, demonstrates how Dictionary Learning can be introduced into the Digital

Twin context and its actual efficiency.

Example 7.

This example aims to reproduce the workflow presented in Algorithm 8. Let us start

by using our “DL ompqr parallel ksvd” algorithm on a large amount of data, as we aim

for a rather extensive dictionary to make the model more robust. In this example, we

apply the algorithm to the entire training MNIST dataset with s = 30 and 60 % of

compression. After some time, a new dataset, smaller than the starting one, is collected

on the physical counterpart and needs to be transmitted to the digital system. We

simulate the new dataset by using a portion of the test MNIST dataset, specifically the

first 5000 samples. This time, we do not need to recompute the DL on the new dataset,

but only its sparse representation X1 by means of our version of OMP-QR with respect

to the dictionary D previously computed. Therefore, we can transfer only the matrix

X1 to the supercomputer and train the neural network on the new dataset DX1. The

neural network has been tested on other 3000 samples coming from the MNIST test

set, getting an accuracy of 92 %. Summing up, the pros of this workflow is that the

DL algorithm, which takes long time and more computational resources, is used only

occasionally, and in its place, we prefer OMP, in particular OMP-QR, which is lighter

and faster. Furthermore, the data transmission is reduced to transferring only the sparse

matrix X1, whose size is at most 3(s × N), instead of m × n + 3(s × N). We cannot

replicate the same experiment using the Ford-A dataset because its test set, consisting

of only 1320 samples with 500 features each, is too small to extract sufficient simulated

new data and the corresponding test samples needed to achieve an accurate recognition

level while ensuring an overcomplete dictionary.

70

The numerical experiments presented in this chapter prove that DL technique is an

great valuable compression tool, achieving high compression rates of up to 70/80 % while

maintaining accuracy levels similar to the ones achieved without compression. Thus,

Dictionary Learning offers a powerful tool that can significantly enhance the digital

twin framework’s capabilities, speeding up data transmission and significantly reducing

latency between the physical and digital systems.

71

Conclusions

The purpose of this thesis was to introduce a new efficient and lightweight compression

tool within the Digital Twins framework. In particular, among the available compression

techniques, we explored Dictionary Learning (DL), a robust matrix factorization algo-

rithm that, in contrast to deep neural network based solutions, does not require powerful

computer resources, making it well-suited for deployment on lightweight devices like IoT

sensors. Furthermore, it also has minimal impact on the accuracy of AI models trained

on compressed data.

The first chapter introduced the basis of the DL problem, presenting it as a two

variable, non-convex, constrained optimization problem which aims to find a matrix

D ∈ Rm×n called Dictionary and a sparse vector x ∈ Rn in order to obtain a good

sparse representation y ≈ Dx for a class of signals y ∈ Rm. As we have seen, this goal is

achieved by minimizing the error between the signal y and its sparse representationDx in

the least squares sense. This optimization problem can be addressed with an alternate

optimization approach, which, in this context, consisted in splitting the optimization

problem into two subproblems: sparse coding step and dictionary update step. For

each problem many different techniques and strategies can be used. At the end of

the first chapter we have shown that the DL technique that is more suitable for our

purposes employes OMP-QR for the sparse coding step and KSVD for dictionary update.

Therefore we decided to use such an implementation for the rest of the work. Clarified

our DL algorithm, in the second chapter we gave an overview of Convolutional Neural

Networks (CNNs) architecture.

The core of this thesis lays in Chapter 3. Besides introducing the Digital Twin con-

text which has been the background of our applications, this chapter mainly presented

the numerical results obtained with our “DL ompqr parallel ksvd” algorithm. To this

end, we considered two different type of applications: first we focused on images, ap-

plying our algorithm on MNIST dataset and then on timeseries, considering the FordA

timeseries dataset. The numerical experiments reported in Chapter 3 show how effective

the algorithm “DL ompqr parallel ksvd” is. In particular, on very redundant dataset,

such as MNIST, the algorithm has an excellent behaviour, managing to compress the

dataset up to 80 % while preserving key information and therefore keeping the digit

recognition accuracy almost unchanged. Indeed, while the recognition accuracy of the

original dataset is around 99 %, the accuracy of the dataset compressed up to 80 % with

72

DL technique is around 97.5 %. In more complex and less redundant dataset such as

Ford-A dataset, the essential information are more difficult to detect and the algorithm

is less effective. Indeed, starting from an anomaly detection accuracy of 96 % with the

original dataset, with our algorithm we can reach at most an accuracy of 91 % with a

compression of 30 %. It is worth noticing that in the latter setting with a random com-

pression we would have obtained an accuracy of 52 %. Due to the low computational cost

of the OMP-QR algorithm, this approach allows for on-device data compression, partic-

ularly useful with devices like IoT sensors, effectively reducing data exchange between

devices while retaining the most crucial information. The results presented in this thesis

would not have been possible without the HPC resources provided by Cineca that gave a

substantial acceleration to the whole workflow almost dubling the speed of the OMP-QR

algorithm and the training of the Neural Networks through parallelization techniques.

In conclusion, we can state that the compression algorithm “DL ompqr parallel ksvd”

effectively reduces the dataset’s memory demand, resulting in faster data transmission

and reduced latency between distinct systems. It achieves this while demanding minimal

computational resources and maintaining nearly identical classification performance to

the original dataset. Such a compression tool can be extremely powerful and helpful

whenever there is a consistent exchange of data, such as within a Digital Twin context.

Further investigations on different datasets can be carried out to prove the effectiveness

of the DL on a wider range of contexts. For instance, a new interesting scenario could be

considering larger and less redundant dataset, such as ImageNet [43], or sparse matrices,

an option that would be of particular interest in the context of some Digital Twins where

the data are collected in LiDAR format.

73

Appendix A

Description of the databases

The theories and models presented in this thesis have been tested mainly on two different

types of data : images and timeseries. Here follows a detailed description of each dataset

that was used.

• Images

1. MNIST dataset :

the MNIST database (Modified National Institute of Standards and Technol-

ogy database) [17] is a large database made of 28 × 28 images representing

handwritten digits from 0 to 9 made by high school students and employees

of the United States Census Bureau. It contains 60,000 training images and

10,000 testing images. Figure A.1 shows some sample images from MNIST

test dataset.

Figure A.1: Some sample images from MNIST dataset.

74

The dataset can be easily imported from Keras with the Python command

tensorflow.keras.datasets.mnist.load_data().

• Timeseries

1. FordA :

the FordA [38] is part of the WCCI 2008 Competition Program and was mo-

tivated by an automotive application. This dataset is a balanced timeseries

dataset from the UCR archive and it is made of 3601 training instances and an-

other 1320 testing instances. The training set provided also the classification

labels, where +1 indicates the presence of a specific symptom and -1 indicates

that the symptom does not exist. The problem is a binary classification task.

The full description of this dataset can be found at [44].

75

Appendix B

Introduction to High Performance

Computing clusters

The goal of this appendix is to provide a brief overview of High Performance Computing

clusters, with specific emphasis on those employed in this thesis.

A supercomputer, also called computing cluster, is a group of hundreds of servers,

called nodes, connected together to create a single, more powerful machine. As we

can imagine, they are becoming more and more interesting lately because of two of

their main properties: their ability to deal with large amount of data and their speed

in returning results. There exist different types of computing clusters: we will focus on

High Performance Computing (HPC) ones. Their strength lies in their ability to perform

high-speed parallel processing of complex computations on multiple servers. This could

be crucial in several applications such as Urgent Computing. We talk about Urgent

Computing when supercomputers are involved for emergency computations that would

have taken too long otherwise. Cineca has used Urgent Computing techniques in the

Exscalate4CoV project ([45],[46],[47]), cooperating with traditional research to shorten

the time for the development of drugs against Coronavirus.

B.1 General structure of a supercomputer

These are the main steps and components of a supercomputer:

1. Login nodes : first of all the user needs to interface with the machine. For this

reason there exist the login nodes which let the user work with their files and data

and interact with the Scheduler.

2. Scheduler and Master Node : the task of the Scheduler is to assign compute

nodes with certain characteristics required by the user on a previously written

jobscript, while the task of the Master node is running the Scheduler and orga-

nizing how the computational resources are distributed among users. These two

components represent a fundamental part of an HPC machine since they allow to

76

optimize the use of the cluster satisfying hundreds or thousands of users which

require different resources at different times.

3. Compute nodes: nodes made of CPUs, memory and GPUs which actually runs

the user’s algorithm. We will focus on their architecture in the next section.

4. Parallel Filesystem: it is designed to perform I/O operations in parallel, allowing

simultaneous access to the filesystem from multiple nodes.

Figure B.1 schematically sums up the architecture of an HPC cluster.

Figure B.1: HPC cluster architecture [48]

B.2 What is a jobscript

The user can communicate with the cluster and runs its own algorithms on some com-

pute nodes by submitting a text-file called jobscript to the Scheduler.

The jobscript is a text file that defines the resources (SLURM directives in MAR-

CONI100 [49]), the software needed, the variables and the actual algorithm (variables

environment and execution line)

An example of a jobscript is reported in the next page.

77

#!/bin/bash

#SBATCH --job-name=myname

#SBATCH --output=job.out

#SBATCH --error=job.err

#SBATCH --account=account_name

#SBATCH --mail-type=ALL

#SBATCH --mail-user=user@email.com

#SBATCH --time=00:30:00

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=36

#SBATCH --gres=gpu:4

#SBATCH --cpus-per-task=2

#SBATCH --mem=10GB

#SBATCH --partition=partition_name

echo "I’m working on MARCONI100!"

B.3 Architecture of a compute node

These are the nodes dedicated to computations.

They are made of 2 or more CPUs, a great amount of memory, one or more GPUs.

We now give some details of the two Processing Units :

• CPU (Central Processing Units) : its primary tasks are to perform calcu-

lations and manage the data necessary to run the applications. Every CPU has

multiple cores (from 32 to 56) which are the actual chips that performs calcula-

tions and it is connected to the server memory and to the I/O devices.

• GPU (Graphics Processing Units) : its main characteristic is having a very

high number of cores (hundreds) and therefore being able to exploit an incredibly

high level of parallelism, at a price of low memory. For these reasons it allows

to deliver an higher number of FLOPS (Floating Point Operations per Second),

but it needs to pass trough to the GPU to store data, which requires a significant

transferring time.

78

B.4 Parallel Computing

At the begging of this appendix we stated that the strength of an HPC cluster lies in

its “parallel computing ability”. In this section we will explain better what “Parallel

Computing” means and how it can be applied.

Parallel Computing is the simultaneous use of multiple compute resources to solve a

computational problem. The problem is indeed broken into discrete parts whose instruc-

tions are executed simultaneously, with the advantage of being time and cost saving.

In a cluster, Parallelism can be expressed in various forms:

• Shared memory parallelism (threading): all the instances share the same mem-

ory that the initial process allocated. Therefore the communication between the

instances is fast, but sharing the memory could create overlapping problems.

• Distributed memory parallelism (task): each instance has its own memory.

There is no more the overlapping problem but there is a performance loss caused

by a slow communication.

• Hybrid parallelism: it combines the previous two methods and it is the most

used form in real applications. For example, in an HPC cluster could be convenient

setting a threading parallelism within each node while a task parallelism between

nodes.

To measure the goodness of the parallelisation effort we need to compare the time

of serial execution with the time of parallel execution. We can do it by the Speedup (

S := Tserial

Tparallel
) or Efficiency (E := S

p
, where p is the number of cores).

Lastly, we have to take into account also the dimensions of the problem, because, clearly,

the bigger the problem dimensions, the higher the computing time. This issue can

be overcome by distributing the work across more processors. Here comes into play

the definition of Scalability which is the ability of a parallel system to proportionate

increase in parallel speedup with the addition of more processors. Figure B.4 shows the

behaviour of Speedup, on the top, and Efficiency, on the bottom, with respect to the

number of processors and for different problem sizes. We can see that as the dimension

of the problem grows, speed-up will grow as well, if enough parallel processors are added.

Actually, there exist two different types of Scalability : we have Strong Scalability

when, fixed the problem dimension, the efficiency does not decrease while increasing the

number of cores. We have Weakly Scalability when the efficiency does not decrease when

problem dimension per processor is kept almost unchanged.

79

Figure B.2: Speed up and Efficiency with respect to number of processors and problem

sizes [50].

B.5 HPC in Cineca

Cineca is a non-profit consortium whose members include the Italian Ministry of Edu-

cation, the Italian Ministry of Universities and Research, 69 Italian universities and 27

national public research centres, for a total of 112 members. As of today, it is the largest

Italian supercomputing centre and one of the most important worldwide. It supports

the European and Italian scientific community by means of high performance computing,

develops management systems for the university administrations, designs and develops

information systems for businesses, health care organizations and public administration

[2].

For the purpose of this thesis we employed the following Cineca clusters:

• Marconi100 : Marconi100 is an IBM system installed in 2020 and dismissed in

July 2023. It was composed by 980 nodes, each one made of two IBM POWER9

AC922 CPUs running at 3.1GHz featuring 16 cores each and 4 threads per core.

This configuration added up to a total of 32 cores and 128 threads per node.

Additionally, each node was equipped with 256 GB of memory and 4 paired GPUs

connected by a technology developed by NVIDIA called NVLink 2.0. Figure B.5

80

illustrates the architecture of a Marconi100 node. In 2020 was in the top 10 of the

TOP500, the list of the 500 most powerful supercomputer in the world [3].

Figure B.3: architecture of a MARCONI100 node [16]

• Galileo100 : Galileo100 was installed in August 2021 as a replacement for Galileo.

It serves as Cineca Tier-1 infrastructure dedicated to scientific research and is co-

funded by the European ICEI (Interactive Computing e-Infrastructure) project.

This infrastructure was engineered by DELL and consists of 528 computing nodes.

Each node is equipped with two Intel Cascade Lake 8269 processors running at

2.4GHz, with each processor having 24 cores. Specifically, these 528 nodes are

distributed in the following manner: 348 are standard or “thin” nodes, while 180,

called “fat” nodes, are designated as data processing.

Furthermore, Cineca hosts and manages also Leonardo, a new supercomputer that

has been recently installed in the new data center located in the Technopole of Bologna. It

is one of the three pre-exascale systems announced by EuroHPC Joint Undertaking [51].

The main goal of Leonardo is to support European academic and industrial researchers

to develop applications able to tackle the most urgent challenges affecting our times,

as climate change, pandemics, weather forecasting and prediction of extreme events,

formulation of new materials. With its 4992 computing nodes providing 250 PetaFLOPS

in computational power, 2800 TeraBytes of RAM and 110 PetaBytes of storage, Leonardo

reached the 4th position on the November 2022 TOP500 list.

81

Bibliography

[1] Mohsen Attaran and Bilge Gokhan Celik. Digital twin: Benefits, use cases, chal-

lenges, and opportunities. Decision Analytics Journal, 6:100165, 2023.

[2] CINECA. Cineca-organization. https://www.cineca.it/en/about-us/

organization.

[3] the list TOP500. List of top-500 supercomputers. https://www.top500.org/.

[4] D. Brandoni. Dottorato di ricerca in Matematica. Tensor-Train decomposition for

image classification problems. 2022.

[5] M. Aharon, M. Elad and A. Bruckstein. On the uniqueness of overcomplete dictio-

naries, a practical way to retrieve them. Linear Algebra Appl. 416(1), 48–67 (2006).

[6] B. Dumitrescu and P. Irofti. Dictionary Learning Algorithms and Applications.

Springer, 2018.

[7] Wikipedia. Haar wavelet. https://en.wikipedia.org/wiki/Haar_wavelet.

[8] Dave Marshall. The discrete cosine transform (dct). https://users.cs.cf.ac.

uk/Dave.Marshall/Multimedia/node231.html.

[9] J. A. Tropp. Greed is good: Algorithmic results for sparse approximation,” IEEE

Trans. Inf. Theory, vol. 50, pp. 2231–2242, Oct. 2004.

[10] S. A. Chen, S. Billings and W. Luo. Orthogonal least squares methods and their

application to nonlinear system identification,” Intl. J. Contr., vol. 50, no. 5, pp.

1873–1896, 1989.

[11] M.G. Sturm, B.L. Christensen. Comparison of orthogonal matching pursuit imple-

mentations, in Proceedings of European Signal Processing Conference (EUSIPCO),

Bucharest (2012), pp. 220–224.

[12] M. Aharon, M. Elad and A. Bruckstein. K-SVD: an algorithm for designing over-

complete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11),

4311–4322 (2006).

82

https://www.cineca.it/en/about-us/organization
https://www.cineca.it/en/about-us/organization
https://www.top500.org/
https://en.wikipedia.org/wiki/Haar_wavelet
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node231.html
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node231.html

[13] M. Rubinstein, R. Zibulevsky and M. Elad. Efficient implementation of the K-SVD

algorithm using batch orthogonal matching pursuit. Technical Report CS-2008-08,

Technion University,Haifa. 2008.

[14] B. Dumitrescu and P. Irofti. dictlearn. https://pypi.org/project/dictlearn/

#description.

[15] Python.org. multiprocessing — process-based parallelism. https://docs.python.

org/3/library/multiprocessing.html.

[16] CINECA. Ug3.2: Marconi100 userguide. https://wiki.u-gov.it/confluence/

display/SCAIUS/UG3.2%3A+MARCONI100+UserGuide.

[17] Kaggle. Mnist dataset. https://www.kaggle.com/datasets/hojjatk/

mnist-dataset.

[18] G.K. Wallace. “The JPEG picture compression standard, ” IEEE Transaction

on Consumer Elecronics, Multimedia Engineering, Digital Equipment Corporation,

Maynard, Massachussetts. Vol. 38, No. 1, Feb. 1992.

[19] Google cloud. Artificial intelligence (AI) vs. machine learning (ML). https://

cloud.google.com/learn/artificial-intelligence-vs-machine-learning.

[20] Edward Hance Buchanan, Bruce G; Shortliffe. Rule-based expert systems : the

MYCIN experiments of the Stanford Heuristic Programming Project. Reading, Mass.

: Addison-Wesley, 1984.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[22] OpenAI. Gpt-4. https://openai.com/gpt-4.

[23] N. Montobbio. Dottorato di ricerca in Matematica. A metric model of the visual

cortex. 2019.

[24] W. S. McCulloch and W. Pitts. A logical calculus of ideas immanent in nervous

activity. 1943.

[25] Balázs Csanád Csáji. MSc thesis. Approximation with Artificial Neural Networks.

2001.

[26] K. Hornik. Approximation Capabilities of Muitilayer Feedforward Networks. Neu-

ral Networks, vol. 4, 1991. https://web.njit.edu/~usman/courses/cs677_

spring21/hornik-nn-1991.pdf.

[27] J. Casper P. LeGresley M. Patwary† V. Korthikanti D.Vainbrand P.Kashinkunti

83

https://pypi.org/project/dictlearn/#description
https://pypi.org/project/dictlearn/#description
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.2%3A+MARCONI100+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.2%3A+MARCONI100+UserGuide
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://cloud.google.com/learn/artificial-intelligence-vs-machine-learning
https://cloud.google.com/learn/artificial-intelligence-vs-machine-learning
http://www.deeplearningbook.org
https://openai.com/gpt-4
https://web.njit.edu/~usman/courses/cs677_spring21/hornik-nn-1991.pdf
https://web.njit.edu/~usman/courses/cs677_spring21/hornik-nn-1991.pdf

J.Bernauer† B. Catanzaro† A. Phanishayee M. Zaharia D. Narayanan, M. Shoeybi.

Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-

LM. NVIDIA, Stanford University, Microsoft Research, 1991. https://arxiv.org/

pdf/2104.04473.pdf.

[28] F.Bertoni. Dottorato di ricerca in Matematica. LIE SYMMETRIES IN CORTICAL

INSPIRED CNNS. 2022.

[29] Mathworks. What are convolutional neural networks? — in-

troduction to deep learning. https://it.mathworks.com/videos/

introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.

html.

[30] T.S. Cohen and M. Welling. Group equivariant convolutional networks. 2016.

[31] Wikipedia. Cross-entropy. https://en.wikipedia.org/wiki/Cross-entropy.

[32] M.Porcelli. Power point presentation of the class in matrix and tensor techniques

for data science, part 2. 2021/2022.

[33] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-

scale machine learning. SIAM Review, 60(2):223–311, 2018.

[34] Jinkang Guo Zhihan Lv. Application of Digital Twins in multiple fields.

Multimed Tools Appl 81, 26941–26967, 2022. https://doi.org/10.1007/

s11042-022-12536-5.

[35] Maggie Mashaly. Connecting the Twins: A Review on Digital Twin Technology its

Networking Requirements, Procedia Computer Science. Procedia Computer Science,

Volume 184, Pages 299-305, 2021. https://doi.org/10.1016/j.procs.2021.03.

039.

[36] Di Santi C. Molan M. et al. Borghesi, A. M100 exadata: a data collection cam-

paign on the cineca’s marconi100 tier-0 supercomputer. https://doi.org/10.

1038/s41597-023-02174-3.

[37] IoTwins. Big data platform for optimized and replicable industrial and facility

management models. https://www.iotwins.eu/.

[38] A. Bagnall. Forda dataset. http://www.timeseriesclassification.com/

description.php?Dataset=FordA.

[39] CINECA. Marconi100, the new accelerated system. https://www.hpc.cineca.it/

hardware/marconi100.

[40] LF AI & Data Foundation. Horovod official website. https://horovod.ai/.

84

https://arxiv.org/pdf/2104.04473.pdf
https://arxiv.org/pdf/2104.04473.pdf
https://it.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html
https://it.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html
https://it.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html
https://en.wikipedia.org/wiki/Cross-entropy
https://doi.org/10.1007/s11042-022-12536-5
https://doi.org/10.1007/s11042-022-12536-5
https://doi.org/10.1016/j.procs.2021.03.039.
https://doi.org/10.1016/j.procs.2021.03.039.
https://doi.org/10.1038/s41597-023-02174-3
https://doi.org/10.1038/s41597-023-02174-3
https://www.iotwins.eu/
http://www.timeseriesclassification.com/description.php?Dataset=FordA
http://www.timeseriesclassification.com/description.php?Dataset=FordA
https://www.hpc.cineca.it/hardware/marconi100
https://www.hpc.cineca.it/hardware/marconi100
https://horovod.ai/

[41] fchollet. Simple mnist convnet. https://keras.io/examples/vision/mnist_

convnet/.

[42] hfawaz. Timeseries classification from scratch. https://keras.io/examples/

timeseries/timeseries_classification_from_scratch/.

[43] Princeton University Stanford Vision Lab, Stanford University. Imagenet webpage.

https://www.image-net.org/.

[44] Joerg D. Wichard. Classification of ford motor data. http://www.j-wichard.de/

publications/FordPaper.pdf.

[45] CINECA. Dall’urgent computing all’ai per la sanità del futuro. https://www.

cineca.it/news/dallurgent-computing-allai-la-sanita-del-futuro.

[46] CINECA. Exscalate4cov progetto di riferimento in eu-

ropa per il coronavirus. https://www.cineca.it/news/

exscalate4cov-progetto-di-riferimento-europa-il-coronavirus.

[47] CINECA. Exscalate4cov - un caso di urgent computing. https://www.youtube.

com/watch?v=OLf3frVgQl4.

[48] Giacomo Guiduzzi. Development of ai benchmarks to monitor the performances of

a supercomputer.

[49] SLURM. Sbatch commands on slurm. https://slurm.schedmd.com/sbatch.html.

[50] P.Dagna. Introduction to parallel computing. https://learn.cineca.

it/pluginfile.php/8669/mod_resource/content/1/01-Introduction_to_

Parallel_Computing.pdf.

[51] EuroHPC Joint Undertaking. The european high performance computing joint un-

dertaking (eurohpc ju). https://eurohpc-ju.europa.eu/index_en.

85

https://keras.io/examples/vision/mnist_convnet/
https://keras.io/examples/vision/mnist_convnet/
https://keras.io/examples/timeseries/timeseries_classification_from_scratch/
https://keras.io/examples/timeseries/timeseries_classification_from_scratch/
https://www.image-net.org/
http://www.j-wichard.de/publications/FordPaper.pdf
http://www.j-wichard.de/publications/FordPaper.pdf
https://www.cineca.it/news/dallurgent-computing-allai-la-sanita-del-futuro
https://www.cineca.it/news/dallurgent-computing-allai-la-sanita-del-futuro
https://www.cineca.it/news/exscalate4cov-progetto-di-riferimento-europa-il-coronavirus
https://www.cineca.it/news/exscalate4cov-progetto-di-riferimento-europa-il-coronavirus
https://www.youtube.com/watch?v=OLf3frVgQl4
https://www.youtube.com/watch?v=OLf3frVgQl4
https://slurm.schedmd.com/sbatch.html
https://learn.cineca.it/pluginfile.php/8669/mod_resource/content/1/01-Introduction_to_Parallel_Computing.pdf
https://learn.cineca.it/pluginfile.php/8669/mod_resource/content/1/01-Introduction_to_Parallel_Computing.pdf
https://learn.cineca.it/pluginfile.php/8669/mod_resource/content/1/01-Introduction_to_Parallel_Computing.pdf
https://eurohpc-ju.europa.eu/index_en

	Introduction
	The Sparse Representation problem and the Matrix Dictionary Learning problem
	Introduction to the Sparse Representation problem
	Introduction to the Dictionary Learning problem
	Alternative formulations of the DL problem
	The algorithms
	Sparse Coding
	Orthogonal Matching Pursuit (OMP) Algorithm
	OMP-QR
	OMP-Cholesky

	Dictionary Update
	Method of Optimal Directions (MOD)
	K-SVD

	DL applications
	Choice of the DL algorithm
	Denoising
	Inpainting
	Classification
	Compression

	Deep Learning and Convolutional Neural Networks
	Deep Feedforward Networks
	Convolutional Neural Networks
	Convolutional layer
	Hidden activation functions
	Pooling layer
	Fully connected layers and Output layer
	Output activation functions

	Training a (deep feedforward) neural network
	The Gradient Descent method
	Backpropagation

	Training, Validation and Testing
	Overfitting and Underfitting

	Numerical Results
	Brief introduction to Digital Twins
	Integration of Dictionary Learning techniques in a digital twin framework: the workflow
	A first analysis of DL compression performances.
	Analysis of DL compression performances through CNNs.

	Conclusions
	Description of the databases
	Introduction to High Performance Computing clusters
	General structure of a supercomputer
	What is a jobscript
	Architecture of a compute node
	Parallel Computing
	HPC in Cineca

