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Abstract

The purpose of this Master Thesis is to study the Generalized Hydrodynamics
(GHD) of Integrable Quantum Field Theories perturbed by the famous T T̄ defor-
mation and its generalizations. These deformations are irrelevant, and therefore
alter dramatically the UV structure of the theory and are not renormalizable, but
are still considered consistent and interesting theories since they preserve the in-
tegrable structure of the underlying model. The specific focus of the work is to
find the average densities and currents related to conserved charges of generic spin,
which describe the flow of energy, momentum, and higher charges, between two
semi-infinite slabs prepared in two different states and placed in contact in the
origin, in the setup known as partitioning protocol. From a theoretical point of
view this is the most important protocol in out of equilibrium physics, since it is
simple enough to have an analytical description and in some situations to have an
analytical solution, but at the same time it is complex enough to gain practical
knowledge on the effect of inhomogeneities on integrable systems. In particular,
through a convenient way of rewriting the Thermodynamic Bethe Ansatz (TBA)
equations, I found exact expressions for the currents and densities in the conformal
limit, generalizing previously known results in several directions, with excellent nu-
merical validation. I have also performed an in-depth study of possible extensions
of the results out of the conformal point in the simplest possible theory, the free
fermion, obtaining interesting expressions for the lowest order corrections in terms
of special functions. Finally, I have performed numerical simulations which give
a perfect confirmation of the analytical results, and allow to gain insight on some
interesting aspects of the models which are not accessible analytically.
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Introduction

The theoretical study of non-equilibrium properties of quantum many-body and
statistical systems has undergone a dramatic development in the recent years fol-
lowing new experimental advances [1–5] which now allow to create practically iso-
lated atomic systems, and study their unitary evolution. In particular, the ma-
nipulation of one-dimensional systems has drawn attention to understanding the
out-of-equilibrium behaviour of integrable systems, in which an infinite number
of conserved quantities are present. It was early observed [1], that the presence
of these conserved charges leads to a lack of thermalization, which was then theo-
retically studied in the context of quantum quenches [6, 7]. Further, the fact that
these systems were found to be non-ergodic posed a challenge to the usual statisti-
cal mechanical view of closed systems with many degrees of freedom. The study of
quantum quenches led to the realization that the standard Gibbs ensemble, used in
the standard formulations of classical and quantum Thermodynamics, is unable to
describe the long-time behaviour of the observables in such systems, pointing to the
necessity of introducing the Generalized Gibbs Ensemble (GGE) [8–11], in which all
the conserved charges characterizing the integrable model are taken into account.
Later, in order to describe inhomogeneous situations, Generalized Hydrodynamics
(GHD) was proposed [12–15]. This theory is constructed from the postulate of local
maximization of entropy, as the standard theory of hydrodynamics, but under the
constraint of having infinitely many conserved charges, and it therefore describes
the dynamics of integrable systems at a mesoscopic scale, as usual hydrodynam-
cis does for classical fluids. In the context of Integrable Quantum Field Theories
(IQFT), with which this work is mostly concerned, the power of the GHD approach
is the possibility of using a quasiparticle description, which is the main feature of
the Thermodynamic Bethe Ansatz (TBA) [16], a well known framework to study
the thermodynamics of integrable models, of which GHD is essentially the inho-
mogeneous generalization. The main theoretical application of GHD was since the
beginning that of studying the non-equilibrium steady states (NESS) [12,15,17,18],
namely the formation of steady currents of energy and momentum between two
thermalized reservoirs placed in contact, the simplest and theoretically most signif-
icant out-of-equilibrium theory.

This work follows precisely this line of research, in the attempt to extend the
GHD description of Integrable Quantum Field Theories to theories perturbed by
the famous T T̄ deformation and its generalizations [19,20], irrelevant deformations
which have the property of preserving the integrability of the perturbed theory.
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As well known, the non-renormalizability of theories with irrelevant deformations
makes them particularly subtle to deal with, with many open questions regarding
the behaviour in the ultraviolet (UV) limit. Therefore, much space is dedicated
to understanding how this deformation affects the basic structure of the theory,
such as the TBA equations and the famous Y-systems [21], with particular focus
on the integrable theories of ADE type [22]. Subsequently, making use of TBA
techniques, and exploiting the peculiar form of the T T̄ deformation we find exact
expressions in the conformal limit for the higher spin NESS currents in a generic
theory with a T T̄ deformation. This original accomplishment generalizes previous
results by Medenjak, Policastro and Yoshimura [23, 24], and provides expressions
of great generality which relate the quantities of the perturbed theory to the ones
in the unperturbed theory. This could open the way to a new approach in the use
of TBA techniques in the context of T T̄ deformed theories. The structure of the
Thesis is as follows:

• In chapter 1 the theory of Integrable Quantum Field Theories in (1+1) di-
mensions is presented, in the framework of S-matrix theory. Since Conformal
Field Theories (CFTs) characterize the fixed points of the Renormalization
Group flows, the origin of integrable models as perturbations of CFTs is em-
phazised. Moreover, the T T̄ deformation is presented and its main features
discussed.

• Chapter 2 is dedicated to the study of the thermodynamics of IQFTs through
the Thermodynamic Bethe Ansatz. After a presentation of the main con-
cepts of this approach, namely of how the finite temperature properties of a
(1+1)-dimensional IQFT can be derived from its S-matrix, these are applied
specifically to T T̄ deformed theories.

• In chapter 3 we present the GHD approach to the study of integrable systems
out of equilibrium, focusing on the quasiparticle description which character-
izes the TBA approach and setting the ground for the study of the partitioning
protocol and the NESS currents.

• Chapters 4 and 5 contain the main original achievements of this work. In
chapter 4 the general solution to the partitioning protocol of T T̄ deformed
theories is presented, showing perfect accordance with previously known re-
sults, which are then generalized. Although the solution is only valid in the
conformal limit, in the second part of the chapter a thorough perturbative
analysis shows how one can exit the conformal point, in the simplest case of
the free fermion. Finally, chapter 5 is dedicated to numerical analysis of the
obtained results.
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Chapter 1

S-Matrix Theory and Integrability

Integrability is an extremely wide subject, applying to classical and quantum sys-
tems, spin chains, and field theories, both classical and quantum. It is not obvious
to provide a unique definition, although the key feature that all integrable systems
of the various kinds share is the fact that they are characterized by a certain num-
ber of conserved quantities in involution. The presence of these conserved charges
makes integrable theories in some sense the simplest theories possible, in which
the time evolution is the easiest it could be: in some sense, they are the oppo-
site of chaotic systems [25]. It is however highly nontrivial to find such conserved
charges, and therefore to construct generic integrable models, and even to determine
whether a given system is integrable or not. The main relevance of integrability in
the various possible systems is that integrable models turn out to be exactly solv-
able, where the notion of "solvability" differs depending on the context: in classical
systems, integrability allows to use angle-action variables, which in turn allow to
find the equations of motion by quadrature, as originally stated in a theorem by
Liouville. In QFTs, solvability is instead related to a constraint of elasticity of the
theory, and this leads to the possibility of determining the S-matrix of the theory
exactly [26, 27], together with the mass spectrum, and this gives the possibility to
find correlation functions, the thermodynamics of the theory through the TBA ap-
proach, the out-of-equilibrium dynamics through GHD, and much more. Therefore
we see that the natural framework in which to study integrable QFTs is that of
S-matrix theory, which is the field-theoretic generalization of the familiar scattering
theory of quantum mechanics. In this chapter, we give the theoretical foundations
to the theory of Integrable Quantum Field theories, showing how they can be con-
structed as relevant perturbations of conformal field theories, as was firstly done
in [28]. The main features of integrable QFTs, namely the elasticity and factoriza-
tion of the scattering, are proven following the original arguments by Parke [29].
Subsequently, we discuss the T T̄ deformation of such theories, which will be the
main focus of the following work.
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1.1 Integrable Field Theories

In two dimensional quantum field theories, there exists a subclass of theories which
exhibit integrability in the sense mentioned above, namely containing an infinite set
{Qi} of conserved charges (of which one has to be the Hamiltonian of the system,
otherwise the charges would not be conserved) such that:

[Qi, Qj] = 0 ∀i, j (1.1)

The presence of an infinite set of conserved charges provides extremely strong con-
straints on the possible structure of the S-matrix: in fact, these constraints are so
strong that they lead to non-trivial theories only in two dimensions (or in (1+1)-
dimension, if one takes a Minkowski perspective instead of an Euclidean one), as
stated by the Coleman-Mandula theorem [30], if one does not invoke supersymme-
try.1

We define a quantum field theory to be integrable if it is characterized by an
infinite set of conserved charges in involution, namely all commuting with each
other [26]. The most natural example of integrable field theories are conformal
field theories (CFTs), which as is well known constitute the fixed points of the
Renormalization Group flows [31]. In these theories it is possible to construct an
infinite set of conserved charges from the descendants of the stress-energy tensor
and its conjugate2. Indicating with Ts+1 the descendant of spin s+1 (we recall that
in conformal field theory the spin is given by the difference between the left and
right conformal dimensions) we have the conservation laws:

∂z̄Ts+1 = 0

∂zT̄s+1 = 0

and therefore we can build conserved charges from these currents, as proposed
in [28]:

qs(z) =

∮
z

dξTs(ξ)(ξ − z)s+n−1, n = 0,±1,±2, ... (1.2)

The modern view of quantum field theories is to consider them as trajectories in
coupling constant space, the Renormalization Group (RG) flows [32,33]. Therefore
it is natural to consider integrable field theories which arise by perturbing CFTs by
relevant operators, which drive the system away from criticality [28]. The pertur-
bation breaks the factorization into analytic and anti-analytic components, which
is a key feature of CFT, hence in general the integrability of the model will be lost.

1The intuition behind Coleman and Mandula theorem is essentially the same as Parke’s argu-
ment, which will be described below to prove the factorization of the scattering any scattering
process into two-particle scattering, which is the key to the simplicity of integrable theories.

2In a conformal field theory, given a primary field Φ, defined to be an eigenstate of the generator
L0 of the Virasoro algebra, one can construct descendant fields by acting with the generators L−n

of negative value, and these form the various levels of the highest weight representation related
to the original primary field. The stress energy tensor is a descendant of the identity opeartor,
which is a primary field.
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However, if the system still has a set of currents if components (Ts+1,Θs−1) which
satisfy the new conservation law:

∂z̄Ts+1 = ∂zΘs−1 (1.3)

Then one can still build conserved charges as

Qs =

∮
(Ts+1dz +Θs−1dz̄) (1.4)

and it can be shown that these charges are all in involution. We will not focus
on how these charges can be constructed, for this we refer to [26] and [28]. We
focus mostly on the consequences that integrability has on the properties of the S-
matrix, since they are what allows to introduce the Thermodynamic Bethe Ansatz
technology and hence to construct GHD. We start by giving a small example of the
power of integrability in lagrangian models.

1.1.1 A Lagrangian example

As will be developed in depth in the following sections, the main feature of integrable
models is that they give rise to purely elastic scattering with no particle production,
and this is what really makes the theories special (and solvable) compared to generic
QFTs. To see how this constrains the structure of a theory, following [27] we consider
the Z2 invariant lagrangian:

L =
1

2

[
(∂µφ)

2 −m2φ2
]
− g4

4!
φ4 (1.5)

If we consider the 2 → 4 particle production amplitude, this is given by the sum of
three possible diagrams admitted by the Feynman rules, and is easily found to be:

A =
i

48m2
g24 (1.6)

which implies that if we add to the lagrangian a term −g6
6!
φ6, where g6 = g24, the am-

plitude vanishes completely, and the production process is dynamically suppressed.
The same can be done to suppress all the (tree-level) processes which involve the
production of particles: the potential we obtain, which suppresses the production
for any particle number, is then given by:

V (φ) = m2

[
φ2

2
± g2

4!
φ4 +

g4

6!
φ6 ± ...

]
(1.7)

depending on the chosen sign, this gives rise to the Sinh-Gordon and the Sine-
Gordon model potentials, which are some of the most important integrable models,
and will be used again in chapter 5.
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Also, if we do not restrict ourselves to lagrangians with a Z2 symmetry but
we consider the most general Landau-Ginzburg model, the same discussion can be
repeated to find the potential:

V (φ) = m2

[
1

2
φ2 − g

6
φ3 +

g2

8
φ4 − ...

]
(1.8)

which is precisely the potential of the Bullogh-Dodd model, which is relevant in
the following because of its relation with the Yang-Lee singularity model, which
will be studied in chapter 5. Therefore we see that at the lagrangian level we can
build scalar theories in which particle production is dynamically suppressed, and
hence there is no inelastic particle production. This feature greatly simplifies the
structure of the theory compared to a generic QFT, in which the infinite amount of
possible processes is what makes an exact solution impossible to obtain. However,
the lagrangian formulation is not the most transparent and useful way to deal with
integrable models, since for example conformal field theories are not defined starting
from a lagrangian formulation but rather from an algebra of local fields, and the
same extends to their relevant perturbations. The natural framework is that of
S-matrix theory, which we now introduce.

1.2 S-matrix theory

In the theory of scattering, the S-matrix is a field theoretic generalization of the
quantum mechanical scattering matrix. It is based upon fundamental principles
which encode the most essential features of quantum mechanics and special rela-
tivity: from quantum mechanics we require the superposition principle, the con-
servation of probability, which is equivalent to unitarity of the evolution, and the
analiticity principle, while from special relativity we require the fundamental aspects
of Lorentz invariance, short rangedness of interactions which implements locality,
and the causality principle.

The requirement of the interactions being short-ranged allows to have well-
defined asymptotic states: in the initial and final states, the ingoing and outgoing
multiparticle states are free and hence can be characterized by their momentum
(and possibly by other quantum numbers), and therefore they can be expressed as

|i⟩ = |p1,i, ....pn,i⟩ , |f⟩ = |p1,f , ....pn,f⟩ (1.9)

The S-matrix is precisely defined starting from the superposition principle, which
implies that any final state can be expressed as |f⟩ = S |i⟩, and therefore the
amplitude of a transition |i⟩ → |f⟩ is given by

Sfi = ⟨f | S |i⟩ (1.10)

Therefore the S-matrix encodes all the information about all the possible scattering
processes of the theory, connecting the asymptotic initial and final states. In a
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generic QFT this is an extremely complicated object, since it has to take into
account scatterings with arbitrary number of particles in both sides, and it is related
to correlation functions by the LSZ reduction formula. In IQFT, however, we will
show that the structure is greatly simplified since any scattering process is factorized
in two-particle scatterings, and hence the entire S-matrix can be specified by only
a relatively small number of matrix elements. The requirement of conservation
of probability in scattering processes implies that the S-matrix is unitary, i.e. it
satisfies SS† = 1, which in turn implies the fundamental optical theorem. Lorentz
invariance ensures the independence of the amplitudes from the reference frame
which is used to measure the asymptotic momenta. In general we can express the
S-matrix in a way which highlights the non-trivial part of the scattering: considering
that in absence of any interaction the S-matrix is the identity, we have

S = 1 + i(2π)dδd
(∑

pf −
∑

pi

)
T (1.11)

where the modulus squared of the T-matrix determines the probabilities of generic
nondiagonal processes i→ f , as

Pi→f = (2π)dδd
(∑

pf −
∑

pi

)
|Tfi|2 (1.12)

Finally, the postulate of analyticity is of fundamental importance [34], as it allows
to extend the S-matrix elements to the entire complex plane. This in turn allows to
study its singularity structure over values of rapidities in C, which is related to the
determination of the bound states; then to obtain the bootstrap equations, which
essentially allow to solve the system, as will be explained below.

The most important kind of scattering which we are interested in is the two-
body scattering process, which takes the form i1 + i2 → f1 + f2. In this situation
T is dependent on the three independent relativistic invariants of the system, the
three Mandelstam variables s = (p1 + p2)

2, t = (p1 − p3)
2, u = (p1 − p4)

2, where
s is the energy in the centre of mass, t and u are the energies in the centre of
mass of the two scattering processes obtained by crossing symmetry. These are not
independent, since their sum is equal to the sum of the masses of the four particles,
therefore we can focus on s and t alone. We can study T as function of these
variables, but with the constraint of considering the physical strip to consist only
of the s ≥ m2

1 +m2
2. At each threshold of production of a new particle, the Optical

Theorem requires T to have a branch point, which then induce branch cuts. in the
case of a theory containing a single particle of mass m, this implies the presence of
a pole for each value of (nm)2, where n > 2. In this way we identify the physical
sheet of the theory on the complex plane as the sheet obtained without crossing
any of the cuts. Considering T as an analytic function over all the complex plane
allows to introduce the concept of crossing symmetry. First of all it is important to
note that the physical region with respect to s and t do not coincide. The "real"
process is the one in which s is the total energy in the center of mass frame, namely
i1 + i2 → f1 + f2, but we could also consider the scattering i1 + f̄3 → ī2 + f4, where
overhead bars are used to indicate the antiparticles. The requirement of crossing
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symmetry imposes that the amplitude of the second process can be obtained by
analytic continuation of T to the region in which t is physical and s is not. As
will be discussed in the following section, the unitarity and crossing invariance
conditions will prove essential to determine exactly the S-matrix in those situations
in which the system is integrable.

1.3 (1+1) dimensional Scattering Matrices

As discussed previously, (1+1)-dimensional theories may have the feature of being
integrable, namely to have infinitely many conserved charges. This poses strong
constraints on the structure of these theories, which turn out to be purely elastic and
with factorizable scattering. These two features allow then to evaluate exactly the
S-matrix element using the bootstrap approach, a general procedure which allows to
evaluate some quantities of a given theory by the requirement of internal consistency
of the theory itself. In this planar situation it is convenient to parametrize the
particles using their rapidities, such that energy and momentum are given by Ea =
ma cosh θa, and pa = ma sinh θa. Following [27], we can write a generic asymptotic
state as:

|A1(θ1), A2(θ2), ...An(θn)⟩ (1.13)

which is conveniently rewritten defining the noncommuting operators Ai(θ), which
create an asymptotic state by acting on the vacuum |Ω⟩:

|A1(θ1), A2(θ2), ...An(θn)⟩ = A1(θ1)A2(θ2)...An(θn) |Ω⟩ (1.14)

Since asymptotic states at t → −∞ need to have no interactions, we must order
the rapidities in the state as θ1 > θ2 > ... > θn. For the outgoing state, on the
other hand, the ordering has to be the opposite: θ1 < θ2 < ... < θn. Using this
formalism, the action of the S-matrix can be seen as providing the commutation
relations between the noncommuting operators An, thus giving rise to the famous
Zamolodchikov-Fadeev algebra3 [35]:

Aa1Aa2 ...Aan = Sb1b2...bn
a1a2...an

Ab1Ab2 ...Abn (1.15)

Now suppose that the system is integrable: we have a set of infinitely many charges
{Qs}, satisfying [Qs, Qs′ ] = 0. The requirement of commutativity of all the charges
is crucial, because it guarantees that we can diagonalize the charges simultaneously
and build the theory on their common eigenstates:

Qs |Aa(θ)⟩ := q(a)s esθ |Aa(θ)⟩ (1.16)

where the functional dependence on the rapidity guarantees that the operators
transform tensorially under Lorentz transformations, since they transform as s

3It is important to realize that this notation makes sense only because we are in one spatial
dimension, and this matches the "dimensionality" of a string of operators that we can build with
the symbols An. Extending this reasoning to higher dimensions would be impossible.
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copies of the two light-cone components of the momentum. This is then extended
to multiparticle states, for which we define the eigenvalue of each conserved charge
to be:

Qs |Aa1(θ1)...Aan(θn)⟩ =
(
q(a1)s esθ1 + ...+ q(an)s esθn

)
|Aa1(θ1)...Aan(θn)⟩ (1.17)

These few definitions are already sufficient to prove the two fundamental properties
of integrable S-matrix theories, following Parke’s arguments [29]: the elasticity and
factorizability of the scattering.

1.3.1 Elasticity of Scattering

The proof of the elasticity of the scattering simply follows from the action of the
conserved charges on multiparticle states given by equation (1.17). In fact, consid-
ering that by definition a conserved charge satisfies dQs

dt
= 0, then the value of the

total charge eigenvalue on a given multiparticle state has to be a constant of motion.
Therefore, considering an initial state represented by the string Aa1Aa2 ...Aan and
final state Ab1Ab2 ...Abm , equating the charge at t = ±∞ leads to:

q(a1)s esθ1 + ...+ q(an)s esθn = q(b1)s esθ
′
1 + ...+ q(bn)s esθ

′
m (1.18)

Since the system is characterized by infinitely many conserved charges, these will
give rise to an infinite number of constraints of this kind, which have to hold for
every possible configuration of the momenta/rapidities of the particles. The only
possible solution to these equation is then to have an equal number of particles on
both sides, n=m, and θi = θ′i and all the charges to be equal, up to permutations of
particles with the same quantum numbers. Therefore the scattering is purely elastic,
in the sense that the identity of the particles is preserved, up to a reshuffling of the
internal quantum numbers and of the rapidities of the particle, and importantly
there cannot be any particle production, as was discussed at the lagrangian level in
section 1.1.1 (an exception to this rule is related to the formation of stable bound
states, which as will be explained in the following are related to the poles of the
S-matrix).

1.3.2 Factorization and Yang-Baxter equations

As mentioned above, an intuitive explanation of the factorization of scattering pro-
cesses can be given by working on the same lines as in the case of the Coleman and
Mandula theorem, by considering the action of the conserved charges on localized
wavepackets. From the expression presented above we write in a generic way the
action of the charges on the particle states:

eiQs |Aa(p)⟩ = eiϕ(p) |Aa(p)⟩ (1.19)

Considering the state in a (strongly peaked) gaussian wavepacket given by the
expression:

ψ(x) ∝
∫ +∞

−∞
dpe−a(p−p0)2eip(x−x0) (1.20)
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and acting on it with eiQs using (1.19) we see that we obtain the transformed
wavefunction:

ψ̃(x) ∝
∫ +∞

−∞
dpe−a(p−p0)2eip(x−x0)eiϕ(p) (1.21)

Expanding ϕ(p) in powers of (p− p0) we see that the transformed wavefunction is
simply a new gaussian centered in x̃0 = x0 − iϕ(p) with same momentum as the
original one. This allows to devise a trick to deal with multiparticle scattering, as
is visualized in figure 1.1, as was first proposed in [29]. Although the two processes

Figure 1.1: A scattering in which all particles collide simultaneously, and a factor-
ized scattering. The two are related to each other by acting with conserved charges
on the wavepackets, and hence they lead to the same amplitudes.

are different in a generic QFT, because of integrability and equation (1.21) the two
scattering processes are identical: since the two situations can be obtained from
one another by the action of a charge which commutes with the hamiltonian, they
are the same process (by this we mean that the scattering amplitude is identical).
We see that the consequence of the equality of these two scatterings is that any
scattering process with an arbitrary number of incoming particles can be expressed
as a succession of two particle scatterings, by modifying the trajectory of each par-
ticle by the necessary amount acting with one of the higher spin charges. This also
implies that the total S-matrix will be a product of the two-particle S-matrices.
Moreover, following the same reasoning the scattering is also forced to satisfy the
famous Yang-Baxter (YB) equations [36–38]. In this situation the YB equation
represent a consistency condition of the factorized scattering above, which is graph-
ically represented in figure 1.2. This can be expressed as a overdetermined set of
constraints on the 2-particle S-matrix, which can be written as:

Sab
ij (θ12)S

cl
bk(θ13)S

nm
ac (θ23) = Sab

jk(θ23)S
nc
ia (θ13)S

ml
cb (θ12) (1.22)

where we have defined naturally θij = θi−θj. Since this set of constraints is overde-
termined, namely there are more constraints than amplitudes to be determined,
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=

Figure 1.2: Visual representation of the Yang-Baxter equation

only particular choices of the functional form of the S-matrix elements will satisfy
the equations. In the simplest case, that of a diagonal S-matrix (in which the only
nonvanishing terms have the form Sab

ab) the YB equations are automatically satisfied.

1.3.3 The Bootstrap programme

The Bootstrap Programme has the objective of determining all the elements of the
scattering matrix between all the particles of the system starting from a very simple
dynamical principle, namely that in integrable systems the bound states are placed
on the same footing as the asymptotic states, which is a consequence of the fact
that the elasticity of the scattering implies that the particles have a macroscopically
long lifetime (which is equivalent as saying that there is no particle production).
The bound states of a theory are associated to simple poles of the S-matrix, which
can be represented as

Skl
ij =

iR

θ − iunij
(1.23)

where the position of the pole, identified by unij, determines the mass of the bound
state mn through the relation:

m2
n = m2

i +m2
j + 2mimj cos(u

n
ij) (1.24)

Since this is Carnot theorem, it implies that the masses of the asymptotic and
bound state particles form a "mass triangle". We see that this allows to find all
the masses of the bound states starting from the asymptotic ones, and this is the
essence of the bootstrap approach. Focusing on diagonal theories (for nondiagonal
theories the exact determination of the S-matrix elements is particularly intricated,
and was studied in [39]) the S-matrix has only two indices, Sab = Sab

ab . The unitarity
and crossing symmetry which we considered above are able to fix completely the
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structure of the S-matrix:

Sab =
∏

x∈Aab

sinh( iπx+θ
2

)

sinh(−iπx+θ
2

)
(1.25)

This expression is valid if the particles are charged, i.e. if particles differ from
their antiparticle. If the particles are neutral, then the hyperbolic sine is simply
substituted by a hyperbolic tangent. Therefore we see that the S-matrix is almost
completely determined, except for the position of the poles, which are contained in
the set Aab. To determine this set the bootstrap approach comes into play. The
strategy is analogous to what was used to prove the factorization of the scattering,
namely that it is possible to change the trajectory of the particles by acting with
the higher spin conserved charges. This leads to the equivalence shown in 1.3, in
which the dashed line represents a bound state of the two full lines. The equality

=

Figure 1.3: The bootstrap approach is based on the equivalence of the two scatter-
ings depicted in figure: here, the dashed line is a bound state of the two continuous
lines.

of the two scattering processes above is expressed in terms of S-matrix elements as:

Sil̄(θ) = Sij(θ + iūkjl)Sik(θ − iūjlk) (1.26)

where the overhead bar represents an antiparticle (we assume that the bound state
is an antiparticle state l̄). Hence the strategy is clear: one needs to determine
the pole structure ukij, by imposing the bootstrap condition (1.26), and the mass
triangle equation (1.24). This is in practice performed iteratively, by starting with
the lightest particle, building the bound states, and iterating until the system closes.
In this way, it is possible to describe the entire physical content of the theory in terms
of a finite number of two-particle scattering amplitudes. This strategy has proven
extremely effective, and allows to find the particles, identified by {m1,m2, ...mn}
which constitute the theory, and their interactions, in all of the known statistical
systems which can be expressed as relevant perturbations of some CFT. This allows
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to implement the TBA technology, as will be developed in Chapter 2, which relies
deeply on the possibility of expressing the physical content of the theory in terms
of quasiparticles.

1.4 T T̄ deformations of IQFT

Many4 integrable models of interests, as studied in [28,35], are obtained as relevant
deformations of a Conformal Field Theory. The main feature of relevant deforma-
tions is that they are super-renormalizable in the UV, thus they don’t change the
structure of the theory in this limit, but still they drastically influence the theory
in the IR. Given a massive theory obtained in this way, it is immediately possible
to obtain the UV limit by taking the conformal limit, namely sending the mass to
zero. The behaviour of these theories is well studied and understood [41, 42], with
virtually infinitely many integrable theories which can be obtained by perturbing
known conformal models in this way, all of which then can be solved exactly (by
finding the S-matrix) via the bootstrap approach presented above, as thoroughly
discussed in [26].

In recent years, however, there has been an increasing interest in the study of
irrelevant deformations of CFTs. These perturbations are non-renormalizable,
and hence alter drastically the theory in the UV, but leave it unaltered in the in-
frared; moreover, in general they break the UV completeness, in the sense that the
UV limit of such theories is not in general a consistent local QFT. This signals in
general the fact that we are dealing with effective theories, although also interpre-
tations involving a string-like behaviour have being studied. This means that the
RG flow of the theory is of the type shown in figure 1.4.

Figure 1.4: Renormalization group flow of a T T̄ deformated theory, where the
parameter t corresponds to the α in the following, figure taken from [43].

Compared to other irrelevant perturbations, as the one studied in [44], the T T̄
4Although, as noted in [40], QFTs which are connected to a UV fixed point by a RG flow form

only a set of measure zero in the set of all possible (effective) QFTs
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deformation and its generalizations have the very special feature, as shown in [19,45]
that it is an integrable deformation, i.e. it preserves the conserved charges of the
integrable model which is being perturbed5. Also, it has been shown that the effect
of this perturbation at the S-matrix level consists in a simple introduction of a
CDD factor, as first proposed in [20], namely a term in front of the S-matrix of
the unperturbed theory with the property of not introducing any new poles. As
explained later, this implies that the TBA equations are modified in a very simple
way, by a simple change of the scattering kernel.

1.4.1 Definition of the deformation

Following [19], we claim that starting from a generic IQFT (massive or massless)
it is possible to construct a series of scalar fields Xs which give rise to integrable
perturbations. A perturbation to some field theory of action Ag identified by a set
of parameters {gi} can be defined in terms of variations of such parameters as:

δA =
∑
i

∫
d2zδgiO

i(z) (1.27)

where the Oi(z) are some operators of the algebra of local fields, which in principle
can give rise to both relevant and irrelevant perturbations. In particular, integrable
perturbations can be built starting from the currents (Ts+1,Θs−1) and (T̄s+1, Θ̄s−1)
which characterize the (unperturbed) integrable model; it was shown in [45] that
we can construct the composite scalar field:

lim
z→z′

(
Ts+1(z)T̄s+1(z

′)−Θs−1(z)Θ̄s−1(z
′)
)
= Xs + total derivatives (1.28)

where here we use z as a collective label for the analytic and anti-analytic coor-
dinates. Hence these fields can be explicitly constructed for any IQFT, and they
can be shown to be irrelevant since their mass dimension is [mass]2s+2. Placing
the theory on a cylinder, where the spectrum becomes discrete and given by some
eigenstates |n⟩, the scalars Xs satisfy the important relations:

⟨n|Xs |n⟩ = ⟨n|Ts+1 |n⟩ ⟨n| T̄s+1 |n⟩ − ⟨n|Θs+1 |n⟩ ⟨n| Θ̄s+1 |n⟩ (1.29)

This is of fundamental importance in the determination of the energy spectrum
discussed in the following section. The modification of the action generated by
such operators can be easily found following from (1.27):

d

dα
Aα ∝

∫
Xsd

2z (1.30)

In fact, this type of perturbations essentially generate the entire set of transfor-
mations which preserve the integrability of a theory, except for some situation a

5The "solvability" of this perturbation is actually stronger than this, in that also in non-
integrable theories it is always possible to find the spectrum of the perturbed theory as a function
of the spectrum of the unperturbed one.
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finite set of extra perturbations exist and have to be added. In some sense, given
the space Σint of all integrable quantum field theory, the integrable perturbations
constitute its tangent space TΣint, as discussed in [19]. The fundamental operator
is the first of the series, X1 = T T̄ , which coincides with the product of the ana-
lytic and anti-analytic components of the stress-energy tensor. We observe that the
X1 deformation can be defined direcly at the lagrangian level (if the theory has a
lagrangian description) in terms of a parameter α, as:

L(α+δα) = L(α) + δα detT (α)
µν (1.31)

where Tµν is the energy-momentum tensor. This approach is particularly useful
when one is interested in a holographic or string description (it has been shown
that the deformation is equivalent to coupling the theory to 2D topological gravity,
in which the cosmological constant Λ is a function of the parameter α of the T T̄ ).
However, we will only put the focus on the S-matrix, since it is what we need to
study Generalized Hydrodynamics.

1.4.2 Consequences on the theory

We focus on the case of X1, which is the T T̄ deformation, which can be obtained
solely in terms of the components of the energy-momentum tensor. The arising of
terms of this type in statistical mechanics has been studied for example in flows
between minimal conformal models [46–48], the most famous example being the
spontaneous supersymmetry breaking flow from the tricritical Ising model to the
Ising model [49]. The property of being integrability preserving simply means that
the operators Xs commute with the local integrals of motion of the original inte-
grable model, up to total derivatives which vanish in the integrals. This implies a
preservation of the conserved charges in the perturbed model. Besides this funda-
mental property, this particular perturbation has another key feature, namely that
the energy levels of the perturbed theory can be found exactly once the spectrum of
the unperturbed theory is known. In particular, from (1.29) it is possible to prove
that each energy level satisfies the differential equation:

∂

∂α
Eα + Eα

∂

∂R
Eα +

P 2

R
= 0 (1.32)

where R is the radius of the cylinder on which the theory is defined (i.e. the inverse
temperature). This is the well known inviscid Burger equation in one dimension,
which assuming as initial condition the conformal energy and momentum

E(R) =
2π

R

(
∆+ ∆̄− c

12

)
, P (R) =

2π

R

(
∆− ∆̄

)
(1.33)

can be exactly solved to give

Eα =
R

2α

(
−1 +

√
1 +

4αE(R)

R
+

4α2P (R)2

R2

)
(1.34)
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This signals the presence of a strange effect which can happen if α < 0, namely that
the square root becomes negative. This transition, called Hagedorn Transition,
is actually very general and not present only in the CFT situation. [50, 51]. It
was first observed in the TBA context in [52, 53], as a natural consequence of the
introduction of a CDD factor in the S-matrix, and is related to the theory not being
complete in the UV, but being only an effective theory.

The second consequence on the structure of the theory is the very simple way
in which the S-matrix is modified. We can actually define the Xs deformation by
multiplying the S-matrix by a CDD (Castillejo, Dalitz, Dyson) factor [20]. These
factors arise because the bootstrap approach outlined above is only able to fix the
S-matrix up to a scalar meromorphic function Φ(θ), bounded in the physical strip,
satisfying

Φ(θ)Φ(−θ) = 1 Φ(iπ + θ)Φ(iπ − θ) = 1

These properties guarantee that the resulting S-matrix still satisfies unitarity, cross-
ing and Yang-Baxter equations, but it still alters the theory dramatically. In the
present case, the CDD factor takes the form:

Skl
ij (θ) −→ eiδ

(t)
ij (θ)Skl

ij (θ) (1.35)

Where δ(t)ij (θ) = tmimj sinh(sθ). We observe that this factor is diagonal, and this
will come useful in the discussion of the perturbed TBA equations to be analyzed
in the following.

The presence of the Hagedorn transition is of great importance since it signals
that something strange takes place in the ultraviolet limit, which is interpreted as
the presence of a shortest distance in the theory (this simply means that the theory
is effective, and some cutoff has to be introduced at some high energy scale). In
particular, in general the perturbed theory is not UV complete, where by this we
mean that it is not always the case that the UV limit of these theories is a con-
sistent local QFT. However, as was shown in [54], this problem can be generally
circumvented by adding higher perturbations of the generalized T T̄ type, and this
allows to find the UV completion, which in general is not unique. Let us now be
more precise. The formulation of the problem is the following: since our theory is
constructed starting from an S-matrix, on which the T T̄ deformation has a very
simple effect, is it in general possible to find a local quantum field theory which
can give this S-matrix (and hence this scattering theory) using the familiar QFT
reduction formulae? The study of [54] shows that this is true only if one is free
to add arbitrary number of higher perturbations. This is not necessarily a dra-
matic problem, since there exist consistent scattering matrices which do not have
a underlying consistent QFT. As noted for example in [50], this signals the fact
that the theory underlying these S-matrices are string theories and not QFTs. In
fact, it was conjectured that except for the situations in which there is a local field
theory underlying the S-matrix, the Hagedorn transition is always present, being
the rule rather than the exception (as mentioned earlier the set of QFTs which are
connected to a UV fixed point has measure zero out of the set of all effective QFTs).
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In this work, we will not focus particularly on these delicate aspects, and will not
explore the aspects related to string theory. We will consider regimes in which the
Hagedorn transition does not take place, namely the positive α case, but also the
negative α seen as an effective field theory, with α small enough.
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Chapter 2

Thermodynamic Bethe Ansatz

The Thermodynamic Bethe Ansatz (TBA) provides an extremely powerful tool
which allows to extract the Thermodynamics of a Quantum Field Theory from its
S-matrix.1 First proposed in [16] (as a generalization of [37]) for two simple diagonal
theories, it has later been applied to a vast range of diagonal theories [21,22,55,56]
and even extended to non-diagonal theories, [47, 57–62]. In this chapter, we will
present the fundamental derivation of the TBA for diagonal theories and state its
extension to non-diagonal ones. We will show that in many relevant situations the
TBA equations can be recast in the extremely general form of the Y-systems.

In this discussion we follow [16], and consider relativistic field theories in (1+1)
dimensions defined on a torus, namely a cylinder with periodic boundary condi-
tions. Making use of the mirror symmetry of the theory, namely the invariance of
the theory under double Wick rotation, we can choose as time axis both of the di-
rections along the torus, and hence we can quantize the theory in two different ways.
Denoting by x and y the two directions of the torus, of lengths L and R respectively,
we can either quantize using y as "time direction", with Hamiltonian which can be
defined from the corresponding components of the stress-energy tensor:

HL =
1

2π

∫
Tyydx (2.1)

Equivalently we can consider the x axis as time, to obtain the mirror hamiltonian:

HR =
1

2π

∫
Txxdy (2.2)

The key idea of the TBA framework is the presence of a mirror symmetry, which
implies the equivalence of the statistical mechanics obtained in the two quantization
approaches. Considering the situation L ≫ R, i.e. the limit in which the torus

1Actually, in light of the remarks made in the previous chapter, this method only requires a
scattering theory and not a QFT. The only thing which is necessary to apply this method is the
knowledge of the elements of the S-matrix which are found via the bootstrap approach, irrespective
that the underlying theory be a local QFT, a string theory, or anything else.
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becomes an infinite cylinder, the statistical physics of the two systems becomes
greatly simplified: in the first case, the partition function is dominated by the
ground state energy of the theory E(R)2:

ZL(R) = e−LE(R) (2.3)

while in the second case we need to evaluate the partition function in the thermo-
dynamic limit (since the spatial direction goes to infinity, and we assume that the
number of particles which constitutes the system grows correspondingly), and this
is immediately found in terms of the free energy density:

ZR(L) = e−LRf(R) (2.4)

The mirror symmetry implies the fundamental relation:

E(R) = Rf(R) (2.5)

and by dimensional considerations, this can be written conveniently as:

E(R) = −πc(r1, r2, ...rn)
6R

(2.6)

Where c is the so called scaling function of the theory, and the {ri} are all the
dimensionless variables which can be constructed from the various length scales of
the system. In the standard case, studied for example in [55, 56], the only two
relevant scales are m and R, and therefore there is only one parameter r = mR. If
the T T̄ perturbation is introduced, also the additional combination r′ = m2α will
have to be considered. The TBA approach is quite transparent: by considering the
second of the two quantization schemes, with time direction on the R axis, we will
find f(R) from entropy maximization. This will allow us to evaluate the partition
function, and immediately also the ground state energy, and the scaling function,
thus solving the thermodynamics of the theory. In the following, since R has the
statistical interpretation of the inverse temperature of the system, we will use R
and β interchangeably, where β = T−1.

2.1 Derivation of the thermodynamics

2.1.1 The Bethe Wavefunction

Here we follow closely the original proof proposed by Zamolodchikov in [16]. Con-
sidering a diagonal IQFT in the torus geometry, we can obtain its spectrum as a
set of n particles Aa, a=1,... n, as explained in the previous sections. If the scat-
tering is diagonal we can express the S-matrix as Sab(θ) = eiδab(θ), where the δab

2Recall the usual approach to deal with finite temperature quantum statistical mechanics,
in which the inverse temperature β becomes the length of the time direction in the Euclidean
formulation. This is easily seen by Wick rotating the generating functional of some QFT.
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are the scattering shifts. In general, in relativistic field theories the wavefunction
formalism is not appropriate to describe the systems because of particle creation
and annihilation. However, the integrability of the theory ensures elasticity of the
scattering, and this implies that the evolution of the system conserves the identity
of the quasiparticles and their momenta. Moreover, in configuration space we can
consider regions in which all the particles are well separated, and since we assume
short range interactions they are free (in the sense that the spatial separation of
the particles is much larger than the correlation lenght of the system, given by
ξ = 1/m1, the mass of the lightest particle). Therefore in each of these regions we
can associate to the system a wavefunction of the form [55]

ϕ(x1, x2, ...xn) = exp

(
i
∑
j

pjxj

) ∑
Q∈Sn

A(Q)Θ(xQ) (2.7)

where the sum is over all the permutations of the particles, A(Q) are coefficients,
and

Θ(xQ) =

{
1, if xQ1 < xQ2 < ... < xQn

0, otherwise

Since our system is 1-dimensional, we can view any exchange of two neighbouring
particles as a multiplication of the wavefunction above by the corresponding S-
matrix element. We note that this immediately highlights a striking feature of such
systems arising because of the presence of a single spatial dimension: the statistics
of the particles is inseparable from their interactions. That is, it is impossible to
distinguish between, for example, interacting bosons and free fermions (as far as the
exchange properties are concerned) and viceversa. This leads to the introduction
of the definition of the particle type. First of all we recall that the unitarity of the
S-matrix implies that S2

aa(0) = 1, and hence it can only be Saa(0) = ±1. Then,
indicating the particle statistics as (−1)Fa = ±1 if the particle is a boson or a
fermion, we define the type as

ta = −(−1)FaSaa(0) (2.8)

Hence we refer to particles with ta = ±1 as being of fermionic or bosonic type re-
spectively. Having made this premise, we can impose periodic/antiperiodic bound-
ary conditions to the wavefunction on the torus, which by the comment made above
imply that:

exp(ipiL)
∏
j ̸=i

S(θi − θj) = ±1 (2.9)

which, focusing on the fermionic case 3 can be rewritten as:

miL sinh θi +
∑
j ̸=i

δij(θi − θj) = 2πni (2.10)

3Although there is no rigorous proof, there is strong evidence [55,56] of the fact that there are
no consistent interacting theory with particles of bosonic type: the only possible theory in this
scenario is the trivial one, with S-matrix equal to the identity.
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We can consider the values of ni as quantum numbers which specify completely the
Bethe state together with the rapidities of the various particles:

|ψ⟩ = |n1, θ1;n2, θ2, ...nN , θN⟩ (2.11)

2.1.2 Thermodynamics

In the thermodynamic limit, where N → ∞ and L→ ∞, the spectrum of rapidities
becomes continuous, and therefore we can introduce a rapidity density (per unit
length) ρra(θ), where the r label will be clarified below. Recalling that the energy of
a single particle is simply m cosh θ, we see that the total energy of the system and
the quantization condition can be expressed as:

E [ρra(θ)] =
∑
a

∫ +∞

−∞
ma cosh θρ

r
a(θ)dθ (2.12)

ma

2π
sinh θai +

∑
b

(δab ∗ ρrb)(θi) =
na
i

L
(2.13)

Where the ∗ in the second equation represents a convolution. If the second equation
is satisfied, i.e. there exist some ni which are admissible quantum numbers corre-
sponding to some θai which solve the equations, the na

i are called roots and they
contribute to the ρra(θ). However, to compute the total density of states we must
also consider the holes of the theory, which arise for example as a consequence of
the selection rules related to the particle type discussed above. The holes give rise
to a density ρha(θ), and we can compute the total density of states as

ρa(θ) = ρha(θ) + ρra(θ) (2.14)

It is clear that, defining Ja(θ) =
ma

2π
sinh θai +

∑
b(δab ∗ ρrb)(θi) we can express the

total density as:

ρa(θ) =
d

dθ
Ja(θ) =

ma

2π
cosh θai +

∑
b

(φab ∗ ρrb)(θi) (2.15)

The kernels φab are the derivatives of the scattering shifts, φab(θ) =
d
dθ
δab(θ), and

hence the logarithmic derivatives of the S-matrix elements. The strategy we now
use to derive the thermodynamic of the system is to obtain the entropy from the
number of ways to distribute particles in the accessible energy levels given by the
root density. Since we have that the number of particles in a given rapidity interval
is na = Lρra(θ)∆θ and the total number of accessible states is Na = Lρa(θ)∆θ, we
have that the ways of distributing the particles in the levels is:

Ωa =
(Lρa(θ)∆θ)!

(Lρra(θ)∆θ)!(L(ρa(θ)− ρra(θ))∆θ)!
(2.16)

This allows to compute the entropy in the usual way, obtaining:

S[ρa, ρ
r
a] =

∑
a

∫ +∞

−∞
(ρa ln ρa − ρra ln ρ

r
a − (ρa − ρra) ln (ρa − ρra)) (2.17)
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Now, we can obtain the free energy as f = E − TS, and this is a constrained
maximization problem which can be solved using Lagrange multipliers, leading to
the final expression for the extremum condition:

maR cosh θ = ϵa(θ) +
∑
b

(φab ∗ Lb)(θ) (2.18)

where ϵa is defined by the equationρra
ρa

= 1
1+exp ϵa

, while La = ln(1+e−ϵa). Finally, by
the constrained maximization we obtain the free energy and the partition function,
expressed in terms of the ϵa which solve equation (2.18):

f(R) = − 1

2πR

∑
a

∫ +∞

−∞
ma cosh θ ln(1 + e−ϵa)dθ (2.19)

Z(L,R) = exp

(
L

2π

∑
a

∫ +∞

−∞
ma cosh θ ln(1 + e−ϵa)dθ

)
(2.20)

We clearly see that the whole problem of obtaining the thermodynamics of the
theory reduces to finding the solution of the set of coupled integral equations (2.18),
the so called TBA equations. The term νa = maR cosh θ is the driving term of the
theory, and as it will become clear later will be modified depending on the situation
we are investigating: in the Generalized Gibbs Ensemble, used to describe the long
time dynamics of inhomogeneous integrable systems, the driving term will contain
terms associated to all the infinite conserved charges. Note that the essence of this
discussion is that we can build maximal entropy states for IQFTs. This is crucially
important for the Hydrodynamical description of these theories, since the main idea
of Hydrodynamics is to consider local maximization of entropy instead of global.
Therefore this framework almost automatically leads to the formulation of GHD,
as will be presented in chapter 3.

2.1.3 The scaling function

As mentioned above the scaling function is related to the definition of the gound
state energy and is given by c(r) = −6RE0

π
. Focusing without loss of generality on

a theory with a single particle of mass m=1 in the spectrum, we thus have:

c(r) =
3

π2
r

∫ +∞

−∞
cosh θ ln(1 + e−ε(θ))dθ (2.21)

In general this integral cannot be computed exactly (the only exceptions being the
free boson and the free fermion, as will be discussed in chapter 4) except in the
UV and IR limits. While in the infrared the solution is that of free particles where
ϵa ≈ r cosh θ, and the c function is solved in terms of Bessel functions, for r → 0
it can be studied observing that the L-functions and n-functions form pleateaus of
constant value in the region − ln 2

r
≪ θ ≪ ln 2

r
. The constant value is solution of

the constant TBA equation:

εa =
∑
b

Nab ln(1 + e−εb), Nab = −
∫ ∞

−∞

dθ

2π
φab(θ) (2.22)
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This structure is clearly visible from figure 2.1. Observing that in this limit we can

Figure 2.1: Behaviour of the L-functions in the scaling Lee-Yang model, for dif-
ferent values of x = ln(2/r). For r → 0, which corresponds to x→ ∞, the solutions
clearly form plateaus of constant height, which is determined by solution of (2.22).

approximate r cosh θ ∼ êθ−ln(2/r), one can introduce the equation which describes
the system at the edges of the plateau:

eθ = ε̃+ φ ∗ L̃ (2.23)

and this allows to find the UV scaling function, as:

c(0) =
6

π2

∫ ∞

0

dθL̃eθ (2.24)

This can be computed by making use of (2.23) to substitute eθ with the derivative
of the right hand side, and standard computations lead to the final expression:

c(0) =
6

π2
L

(
1

1 + eϵ0

)
(2.25)

where L is Roger’s dilogarithmic function, which is essentially a different normal-
ization of the more common dilogarithm Li2(z) =

∑
k

zk

k2
, defined as:

L(x) = Li2(x) +
1

2
ln(x) ln(1− x) (2.26)
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and ϵ0 appearing in the expression of the scaling function is the one computed via
the constant TBA equations. A generalization of this expression, which for now has
only led to partial results, will be discussed in the following sections and especially
in appendix A.

2.1.4 Diagonal Theories Encoded in Dynkin Diagrams

The authors of [55, 56] studied the S-matrix and thermodynamics of a vast range
of diagonal theories which can be associated to Lie algebras. What they discovered
was a series of striking features of these theories which show the strong relation with
the underlying Lie structure, which are shown in the table below [63]. Moreover,

Lie Algebra Scattering Theory
# nodes in the Dynkin diagram #particles of the spectrum

Coxeter number g S-matrix poles at multiples of θ = iπ
g

Incidence matrix Universal S-matrix structure
Symmetry of the Dynkin diagram Charge Conjugation

in these theories the masses and all the conserved charges of higher spins can be
arranged into eigenvectors of the incidence matrix Gab of the Dynkin diagram of
the corresponding Lie algebra, such that:

∑
b

Gabq
(s)
b = 2 cos

(
πs

g

)
q(s)a (2.27)

This last equation will be crucially important in the following. It is possible to
make use of this relation also to find the universal structure of the TBA equations,
as was first proposed in [21] and rigorously proven in [22]. To do so, we make use
of the fundamental relation, proven in [22], for the S-matrix of such theories:

Sab

(
θ +

iπ

g

)
Sab

(
θ − iπ

g

)
=
∏
c

Sac(θ)
Gbce−2πiGabΘ(θ) (2.28)

We can use this to rewrite equation (2.18) in a universal form. To do so we consider
equation (2.28) and take the logarithmic derivative to obtain a relation between the
kernels, which we then Fourier transform:

φab

(
θ +

iπ

g

)
+ φab

(
θ − iπ

g

)
=
∑
b

Gbcφac(θ)− 2πδ(θ)Gab (2.29)

2 cosh

(
kπ

g

)
φ̃ab(k) =

∑
b

Gbcφ̃ac(k)− 2πGab (2.30)
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Using the matrix identity (1 + A)−1 = 1− (1 + A)−1A, we can obtain:(
1− φ̃

2π

)−1

= 1−
(
1− φ̃

2π

)−1(
− φ̃

2π

)
= (2.31)

1 + (2πφ̃− 1)−1 = (2.32)

1 +

(
−G−1

(
2 cosh

kπ

g
−G

)
− 1

)−1

= (2.33)

= 1− G

2 cosh(kπ
g
)

(2.34)

which in components reads (δab− φ̃ab

2π
)−1 = δab− Gab

2 cosh( kπ
g
)
. Now we are ready to find

the expression of the TBA equations which highlights the underlying Lie structure.
Considering equation (2.18), we can Fourier transform it, multiply by δab− Gab

2 cosh( kπ
g
)
,

and sum over the repeated index. Using the relation just obtained, it is easy to see
that we obtain the relation:

ν̃a(k) = ϵ̃a(k) +
1

2π

∑
b

L̃b(k)φ̃ab(k)∑
a

(δac − R̃(k)Gac)ν̃a(k) =
∑
a

(δac − R̃(k)Gac)(ϵ̃a(k) +
1

2π

∑
b

L̃b(k)φ̃ab(k))

ν̃a(k) = ϵ̃a(k) +
1

2π

∑
b

R̃(k)Gab(ν̃b(k)− ϵ̃b(k)− L̃b(k))

Where we have called R̃(k) = 1
2 cosh( kπ

g
)
. Fourier transforming back to rapidity space

we obtain the final expression:

νa(θ) = ϵa(θ) +
1

2π
φ ∗

∑
b

Gab(νb − ϵb − Lb)(θ) (2.35)

Where we have introduced the universal kernel φ = g

2 cosh gθ
2

. This equation clearly
shows how the entire TBA equation structure can be encoded in the Dynkin diagram
via G.

2.2 Non-Diagonal Case

The discussion made above is valid only for diagonal theories, in which the S-
matrix simply reduces to the exponential of the phase shift. In non-diagonal theo-
ries, however, the solution becomes more complicated, and it involves the difficult
problem of diagonalizing the transfer matrix, as was studied in a particular case
in [39,57]. In most situations, however, the TBA equations for nondiagonal theories
were proposed without a complete formal derivation by following physical intuition,
as in [22, 47, 59, 61]. As discussed above, the elasticity of the S-matrix implies that
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the only major change that can affect a multiparticle state after a scattering is
a reshuffling of the quantum numbers of the particles involved in the scattering.
Hence the main feature of non-diagonal theories is that there are two different kind
of particles arising in the TBA description: the massive quasiparticles which ap-
pear also in the diagonal case and a set of massless particles, the magnons, which
are those responsible for the modification of the quantum numbers of the scattered
particles. Following [58], and extending the discussion of the previous section, we
focus on the theories which can be encoded in a product of Dynkin diagrams, which
we write as G⋉H, where G is the Dynkin diagram related to the massive particles,
which works analogously as above, while H is a new Dynkin diagram related to the
magnonic excitations of the system. The product implies that to each massive node
on the "horizontal direction" of the product of graphs there are several associated
massless nodes on the "vertical direction", hence we will refer to the nodes using
two indices: a,b,c,... referring to the horizontal position, and i, j, k,... referring to
the vertical position. In this notation, we write the general TBA equations as:

νia = εia +
1

2π
∗

(∑
b

Gab

(
νia − Λi

a

)
+
∑
j

HijL
j
a

)
(2.36)

These theories describe minimal models perturbed by the ϕ13 deformation (which is
the least relevant operator) in the case G is trivial, while for G nontrivial they de-
scribe the coset model Gk×GL/Gk+l perturbed by the least relevant operator ϕid,id

adj .
Relevant physical examples include for instance the tricritical Ising model perturbed
by the vacancy operator t, which generates the flow to the ising model through the
supersymmetry preserving direction.4 Diagonal and non-diagonal theories which
can be encoded in Dynkin diagrams in this fashion admit an extraordinarily gen-
eral formulation in terms of Y-systems.

2.3 Y-systems

As first noted in [21], in some situations the TBA equations can be recast in an
extremely general form, that of the Y-system. The main feature of these theories
is that their structure is strongly related to some Lie algebra in the diagonal case
or to the aforementioned more sophisticated structures which can be represented
as products of Dynkin diagrams in the non-diagonal case. The Y-system equation
is far more general than the original TBA equation, in the sense that the same
Y-system can describe several different theories: for example, in [63] it was shown
that systems with different driving terms (in the GGE setup, to be described in
the next section) admit the same Y-systems; in [64], moreover, it was shown that
also introducing T T̄ perturbations does not alter the Y-system. The specific model
can be reobtained from the Y-system once the asymptotic behaviour is fixed. The
generality of this formulation allows for example even to use the Y-system pole

4Interestingly, this flows to the Ising model precisely along the T T̄ direction.
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structure to find the excited states and energy, something which cannot be done
from the sole TBA equations [65,66].

2.3.1 Diagonal Y-systems

We proceed from equation (2.35) in order to find the generalized expression of the
Y-system. Summing equation (2.18) evaluated in θ± = θ ± iπ

g
, we obtain

νa(θ
+) + νa(θ

−) = ϵa(θ
+) + ϵa(θ

−) +
1

2π

∑
b

[
φab(θ

+) + φab(θ
−)
]
∗ Lb (2.37)

νa(θ
+) + νa(θ

−) = ϵa(θ
+) + ϵa(θ

−) +
1

2π

∑
b,c

Gbcφac ∗ Lb(θ)−
∑

GabLb(θ) (2.38)

where we have used equation (2.29). Thus we see that if we subtract again equation
(2.18) evaluated in θ and multiplied by

∑
bGab, we obtain:

νa(θ
+) + νa(θ

−)−
∑
b

Gabνb(θ) = ϵa(θ
+) + ϵa(θ

−)−
∑
b

Gab(ϵb(θ) + Lb(θ)) (2.39)

where the left hand side of this equation vanishes because of (2.27) and of the
periodicity properties of the hyperbolic cosine in the imaginary direction. Therefore,
defining the Y function to be Ya(θ) = exp(ϵa(θ), we obtain:

ϵa(θ
+) + ϵa(θ

−) =
∑
b

Gab(ln(1 + eϵb)) (2.40)

Ya(θ
+)Ya(θ

−) =
∏
b

(1 + Yb(θ))
Gab (2.41)

which is the famous Y-system. This extremely general equation contains all the
information of the TBA equations, and in fact much more. Its stationary solutions
(θ independent) can be used to find the UV central charge of the theory, thus they
lead immediately to the conformal limit. Moreover, the periodicity of the Y-system
can be related to the conformal dimension of the perturbing field: it was shown
in [21] that Ya(θ + iπP ) = Yā(θ), where P = g+2

g
. This is in relation with the

dimension of the perturbing field, which can be expressed as ∆ = 1− 1
P
.

2.4 Non-Diagonal theories

As was investigated in [58, 61], the discussion made in the previous section can
be generalized also to non-diagonal theories by encoding them in the product of
Dynkin diagrams. Here we just state the final expression, although the proof can
be performed following directly from what was done in the previous section, having
some care in the treatment of the second Dynkin diagram H. The Y-system appears
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as a direct generalization of the one for diagonal theories, with an additional term
coming from the magnonic theory:

Y i
a (θ

+)Y i
a (θ

−) =
∏
b

(1 + Y i
b (θ))

Gab

∏
j

(1 + (Y j
a (θ))

−1)−Hij (2.42)

For a theory with a single massive node and several massless nodes, namely a
conformal minimal model perturbed by ϕ13, this can be expressed in exctly the
same form as the diagonal theory, except for defining Ỹ = exp(−ε), and in this case
the equations become:

Ỹ i(θ+)Ỹ i(θ−) =
∏
j

(1 + Ỹ j(θ))Hij (2.43)

which have the same structure as the previous ones.

2.5 TBA in the presence of T T̄ deformations

The particularly simple way in which the T T̄ deformation alters the S-matrix of the
underlying theories, which was discussed in section 1.4.2, leads immediately to a
simple modification of the TBA equations through the introduction of an additional
term in the scattering kernel. In particular, since in general we have φ = −i d

dθ
lnS,

the addition of the CDD factor leads to:

φα
ab = φ0

ab − αmamb cosh θ (2.44)

where α is a parameter of dimension [M ]−2 which characterizes the strenght of the
coupling. Focusing on a theory containing a single particle in which the mass is
normalized to 1, postponing a more general discussion to later, the TBA equations
contain a term which can be expressed as:

φα ⋆ L(θ) = φ0 ⋆ L(θ)− α cosh ⋆L(θ) (2.45)

which can be simplified by observing that:

cosh ⋆L(θ) =
1

2π

∫ ∞

−∞
cosh(θ − θ′)L(θ′)dθ′

=
1

2π
cosh θ

∫ ∞

−∞
cosh θ′L(θ′)dθ′ − 1

2π
sinh θ

∫ ∞

−∞
sinh θ′L(θ′)dθ′ .

Now (at least when the system is at equilibrium), it is easy to infer from the TBA
equations that the symmetry of the L-function is preserved by the addition of the
deformation, if the original kernel is symmetric5 (and this is the case in the situations

5This observation simply follows from the fact that in the convolution it is possible to move
all the θ dependence on the kernel part, without any change the L-function itself. Therefore, the
symmetry follows from the symmetry of the cosh
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of interest) and therefore the second integral in the above expression vanishes. On
the other hand, the first integral is simply the TBA free energy:

Eα
0 = − 1

2π

∫ ∞

−∞
cosh θL(θ)dθ , (2.46)

and therefore we can simplify conveniently the equations above as:

φα ⋆ L(θ) = φ0 ⋆ L(θ) + αEα
0 cosh θ (2.47)

This finally leads to the final TBA equation:

εα(θ) = (β − αEα
0 ) cosh θ − φ0 ⋆ Lα(θ) (2.48)

which shows that in general the effect of the perturbation can be represented as a
redefinition of the inverse temperature, β → β − αEα

0 .6 In the presence of several
different particles of different masses, the discussion is essentially the same, and one
easily sees that the structure of the equations is:

εα,i = νi − αmi

∑
j

Eα
0,j cosh θ −

∑
j

φij
0 ⋆ Lα,j(θ) (2.49)

= νi − αmiE
α
0 cosh θ −

∑
j

φij
0 ⋆ Lα,j(θ) (2.50)

As discussed above, of particular interest in the TBA setting are those theories which
can be encoded in a Dynkin diagram or in a product of a massive and a magnonic
diagram. In this case there is still the possibility of recasting the equations in a
sort of "universal" form as was in the unperturbed theories. This expression, by
carrying on the observation that we can simply redefine the inverse temperature
and hence the driving term: one obtains the equation, which will be used in the
following:

νai = εai + φg ∗ {
∑
b

Gab(ν
b
i − Λb

i)−
∑
j

HijL
a
j}+ (2.51)

+
∑
b

αmamb(cosh ∗Lb
i)−

∑
b

αGabmamb(φg ∗ cosh ∗Lb
i)(θ) (2.52)

This is simply obtained by the substitution

ν → ν −
∑
b

αmamb cosh θ (2.53)

And can also be immediately proven rigorously using the usual procedure to find
the universal form of the TBA equations, [22,61]. This expression shows clearly that

6In [19], this effect was reabsorbed as a modification of the bare mass, rather of the inverse
temperature, by a factor containing Fα = Eα/β; the perspective we use here was rather that
which was used in [24].
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in magnonic theories the perturbation only affects the massive part of the diagram,
while the magnonic nodes are left untouched. As will be shown in the following,
the possibility of writing the equations in this particularly simple way will have
drastic consequences on the properties of the out of equilibrium dynamics of the
system, and will allow us to greatly simplify the GHD equations of the theory, which
will be exactly solvable in terms of the solutions of the unperturbed theory. The
expression found above can be used to show the important fact that the Y-systems
in T T̄ deformed theories are not altered, a fact which was already implicitly known
in [64].
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Chapter 3

Integrable Systems Far From Equilib-
rium

One of the greatest challenges of modern theoretical physics is the study of quan-
tum systems out of equilibrium. The theoretical research in this field has flourished
in the latest years because of the recent developments in the experimental control
of quantum systems, especially in the field of ultracold trapped atoms. These ex-
perimental setups provide an ideal playground to experiment on virtually isolated
quantum systems, in and out of equilibrium, thanks to the possibility to simu-
late any many-body hamiltonian with extreme effectiveness in the tuning of the
parameters. In particular, it has been clear since [1] that integrable systems ex-
hibit a rather peculiar behaviour compared to any other model. This is related
to the lack of thermalization in such systems, which implies the non-ergodicity of
their time evolution, hence the impossibility of describing the long-time relaxation
using the standard statistical ensembles. Therefore, a novel approach is needed to
study the out of equilibrium dynamics of integrable systems. The study of quantum
quenches of integrable models has then led to the formulation of the Generalized
Gibbs Ensemble, from the constructive principle of maximization of entropy, first
introduced in [8], and studied in a number of contexts including spin chains [67–69]
and field theories [10, 70, 71] then even observed in [72]. Generalized Hydrody-
namics then arose as the extension of usual hydrodynamics to integrable systems
which are described by a GGE [12,15], and allows to study out of equilibrium and
inhomogeneous integrable systems at a mesoscopic level using the usual tools of
hydrodynamics. Far from being a purely theoretical and abstract theory, also GHD
has been experimentally verified, as in [73,74].

3.1 Quantum Quenches

The absence of thermalization in integrable systems has been studied in depth by
studying quantum quenches [6, 7, 75]. A quantum quench is a very simple protocol
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which can be set up in the following way: a quantum system is prepared in an
eigenstate (for simplicity, the ground state) of some initial hamiltionian H0. At time
t=0, the hamiltonian is abruptly modified (for example by changing a parameter, or
by introducing a further term VI to the hamiltonian) and the system then evolves
according to the final hamiltonian. This simply means that the system is found
in a superposition of the eigenstates of the hamiltonian HI which then determines
the time evolution. Considering a subsystem of finite number of particles N, what
one would expect to observe is that this should thermalize and be described by a
standard thermodynamic ensemble in the long time limit: however, this is not what
is observed if the system is integrable [13]. An important observation in this regard
has been the fact that the same physical system which showed no thermalization
when confined in one spatial dimension, instead behaved "normally" when in two
or three dimensions. This is a clear signal of the involvement of integrability (or
at least dimensionality-related effects), which as well known is absent in in higher
dimensions (as explained in the first chapter, in the case of QFT this is due to
Coleman and Mandula theorem).

Consider a many-body quantum system characterized by some time-independent
Hamiltonian H. The evolution of the system prepared in an some initial state |ψ(0)⟩
is then given by the unitary time evolution |ψ(t)⟩ = exp(−iHt) |ψ(0)⟩. Although
the evolution is purely unitary, the system is expected to thermalize for large t [76].
If the initial state is not an eigenstate of the hamiltonian which controls the time
evolution, as in the quench situation, it will in general have nontrivial superposition
with several eigenstates |n⟩, namely we will write |ψ(0)⟩ =

∑
cn |n⟩. It is clear that

if we consider the entire system, assuming that it has been prepared in a pure
state, then it would be impossible for it to "relax" to a stationary state, because
that would mean that averages of observables should become time-independent:
considering that the average of any observable on the time-evolved state can be
expressed as

⟨ψ(t)|O |ψ(t)⟩ =
∑
m,n

⟨ψ(0)⟩n ⟨m⟩ψ(0)e−i(En−Em)t (3.1)

To reach a stationary state I should have

lim
t→∞

lim
L→∞

⟨O⟩ = Tr[ρsO] (3.2)

where L is the size of the system and ρs is a some statistical ensemble which is
supposed to describe the system. This is clearly impossible due to the oscillatory
behaviour present in equation (3.1). However, a way out is to consider only subsys-
tems of the total system of lenght L [14,68]. This is equivalent to considering only
local operators O, which act on a finite portion of the system. In this way we choose
a specific subsystem A, and consider all the rest as a bath. In this case, the density
matrix of the reduced system is obtained by the usual procedure of tracing out the
degrees of freedom related to the bath, namely ρA = TrĀ[ρ] Supposing that the only
conserved quantity of the system is the energy, we make the following assumption
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on the time evolution [6]: under time evolution, the reduced density matrix of a
finite subsystem will retain only the minimum possible amount of information on
the initial state. This means that, if energy is the only conserved quantity, the
minimal information retained by the final density matrix will precisely depend only
on the energy of the system. Therefore we can introduce a Gibbs density matrix
ρG = e−βGH

Z
, where βG is fixed by the initial condition. In the case of integrable

systems the application of the same postulate leads to the need of introducing a new
ensemble: requirement of minimum information now has to take into account the
conservation of an infinite set of conserved charges which were described chapter 1,
and therefore the ensemble which has to be used has to be of the form [8]:

ρGGE =
1

ZGGE

e−
∑

n λnQn (3.3)

where the λn are generalized chemical potentials and the Qn are all the conserved
charges of higher spin which appear in the theory. This is the Generalized Gibbs
Ensemble (GGE), which we will derive on more general grounds in the following
section.

3.2 Generalized Gibbs Ensemble

We found in the previous section that in order to describe the long time behaviour
of subsystems of integrable models we need to introduce a density matrix which
takes into account the presence of all the higher conserved charges. This can be
formally and rigorously justified by an argument based on the maximization of
entropy. The problem of finding the correct quantum statistical ensemble which
describes some quantum system is essentially the problem of maximizing the en-
tropy S = −Tr[ρ ln ρ], subject to the constraints given by the conservation laws
of a system1. This constrained maximization problem can be solved introducing
Lagrange multipliers βi and α, such that the maximum of entropy corresponds to:

δTr

[
ρ

(
ln ρ+

∑
i

βiQi + α

)]
= 0 (3.4)

Tr

[
δρ

(
ln ρ+

∑
i

βiQi + α

)]
= 0 (3.5)

which actually implies a precise expression for the density matrix:

ρ ∝ e−
∑

i βiQi (3.6)

1Although the idea of entropy maximization in thermodynamic processes was known since the
beginning of statistical mechanics, the idea to reverse the process and build statistical mechanics
from the maximization of entropy istelf was proposed in [77]. In fact, this work provided already
the first hint towards the generalized Gibbs ensemble, in a procedure which is essentially the same
as the one which is discussed here.
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For an infinite number of charges, this is precisely the Generalized Gibbs Ensem-
ble. The generalized inverse temperatures βn are to be fixed by solving the self-
consistency problem for the initial conditions:

⟨Qs⟩ =
Tr{QsρGGE}

ZGGE

(3.7)

Although this seems like a rather intuitive and not particularly formal proof, it
has been rigorously proven that for particular choices of initial state in quadratic
theories the system does indeed relax to a steady state described by the GGE [78,79].
It is worth stressing that in general, except for free theories, it is an insormountable
problem to actually evaluate averages as (3.7), and it is also a highly nontrivial
question to understand how to evaluate the infinite sum over the charges.

3.2.1 The problem of Quasilocality

The questions of exacly which charges need to included into the sum, and how
to deal with the convergence of the infinite sum in the exponential, are highly
nontrivial. It was early observed in spin chains [80–82] that including only the
usual integer spin charges is in general not sufficient to properly describe the system
and can lead to incorrect predictions. This has led to the introduction of a new
set of charges [83] satisfying a novel form of locality, called quasilocality. In spin
chains, while local charges act on a finite number of sites, quasilocal ones act on
an infinite number of sites but with an exponential decay which make the integrals
convergent. These new charges were then soon used in [84], to find the definitive
expression for the GGE in spin chains. Extensions to IQFT were firstly proposed
in [85], where new semilocal charges where defined by taking the scaling limit in
such a way to keep the product of the lattice spacing and the number of sites in a
given interval fixed (sending n→ 0 and a→ 0, where a is the lattice spacing. Also,
it became clear that in field theories with non-diagonal scattering (as the magnonic
theories discussed in section 2.4) a GGE constructed with the standard integer spin
charges was not sufficient to fix the magnonic densities, since as discussed above
all the charges of integer spins vanish on the magnonic configurations. In [86] an
extensive study was carried out on the sine-Gordon model, exploiting the fact that
such model can be seen as the continuum limit of the inhomogeneous XXZ chain,
which was studied in [15]. Hence, taking the scaling limit of the previously found
lattice quasilocal charges, they could find that these give rise in the continuum
limit to a set of fractionary spin charges, which however appeared to be local in
the above sense. These had exactly the same spin values as the famously nonlocal
charges found in [87,88], and appeared to be a generalization of [89]. However, the
exact relation between these different sets of fractionary spin charges is still an open
question, and no progress has been made since the publication of [86].
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3.2.2 TBA and Y-systems in GGE

It is easy to observe that the TBA equations can be immediately generalized in the
situation in which the system is described by a Generalized Gibbs Ensemble. We
recall that the main step in the derivation of the thermodynamics of a IQFT was the
maximization of the free energy, under the constraint of conserving the total energy.
Having an infinite set of conserved charges, the problem can simply be extended by
maximizing a generalized free energy [90] instead of the usual free energy. This very
simple procedure can be applied both to the diagonal and nondiagonal case, and
it shows that the only modification to the theory is a modification of the driving
term. In the diagonal case, we can follow the derivation presented in 2.1.2 up to
the expression for the entropy 2.17. At this point, we simply need to substitute:

βE(θ) −→
∑
n

βnQn (3.8)

This then has to be substituted in the free energy to give rise to a generalized free
energy which has to be maximized instead of the standard one. Taking the eigen-
values of the higher spin conserved charges to be of the form cosh(sθ) (although the
same is valid also if one considers hyperbolic sines or exponentials) one immediately
obtains:

νa(θ) = εa(θ) +
∑
b

φab ∗ Lb(θ) (3.9)

where this time the driving term has been upgraded to a generalized driving term:

νa(θ) =
∑
s

βsqs (3.10)

where qs are the higher spin conserved charges. The generalization to the non-
diagonal case presents no further difficulty, as one can see following the derivation
of [57], where as here one simply has to promote the free energy to a generalized
free energy.

If the discussion of the standard TBA equation can be easily generalized to the
GGE both in the diagonal and nondiagonal case, this is not true for the Y-system
structure. As it was first discovered in [63], in the diagonal theories discussed in
section 2.1.4 the Y-system is exactly preserved in the GGE. This observation is
based on the previously stated property of the eigenvalues of the conserved charges,
which satisfy the fundamental relation:∑

b

Gabq
s
b = 2qsa cos

(
πs

g

)
(3.11)

In the derivation of the Y-system in the standard Gibbs case, this relation was
exploited only in its mass version

∑
bGabmb = 2ma cos(

πs
h
), but the fact that it

is so general allows to extend the reasoning also to the GGE. The derivation is
trivial: we observe that, in the derivation of section 2.3.1, the explicit form of
the driving term was only used to show that the left hand side of equation (2.39)
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vanished. Hence, we just need to show that the driving term still satisfies the
condition νa(θ

+) + νa(θ
−) =

∑
bGabνb(θ). If we take the driving term to be of the

form νa =
∑

s βsqs cosh sθ, we can easily see that the equation is indeed true:

νa(θ
+) + νa(θ

−) =
∑
s

βsq
s
a cosh sθ

+ +
∑
s

βsq
s
a cosh sθ

− = (3.12)

=
∑
s

βsq
s
a

(
cosh sθ+ + cosh sθ−

)
=

∑
s

βsq
s
a

(
cosh

(
sθ +

iπs

g

)
+ cosh

(
sθ − iπs

g

))
=

=
∑
s

βsq
s
a2 cos

πs

g
cosh sθ =

∑
s

βs
∑
b

Gabq
s
b cosh sθ =

∑
b

Gabνb

And therefore this immediately implies that the Y system can be obtained also in
this situation and has exactly the same expression as in the standard Gibbs case.
In the case of non-diagonal scattering however the discussion is different, and I
have shown that the Y-system will be modified by an exponential factor due to
the presence of the fractionary spin charges discussed in the previous section. This
small result, which I have shown in the context of quantum field theory, is essentially
equivalent to what was found in [11] in the case of spin chains. The core of the
argument is the fact that there are charges of spin given by [86]:

s =
2k

p
, k = 1, 2, ... (3.13)

These charges, found for the sine-Gordon model, are then immediately moved to the
purely magnonic theories described above, which are obtained from the restricted
Sine-Gordon model. In the expression p indicates the minimal model of interest,
which we refer to as Mp. Performing the discussion as above we see that we
have to consider an additional term. Focusing on theories in which G is trivial,
we see from (3.12) that if only integer spin charges are present we should have
νa(θ

+) + νa(θ
−) = νa(θ). However, in the presence of fractionary spin charges the

cosine term does not vanish, and we have

νa(θ
+) + νa(θ

−) =
∑
s

qsa cosh(sθ) cos(
kπ

p
) (3.14)

where s is given by (3.13). Therefore in the final expression this term will not
vanish, so we will have a Y-system containing an extra term, namely

Y i
a (θ

+)Y i
a (θ

−) = eλ
∏
b

(1 + Y i
b (θ))

Gab (3.15)

where λ =
∑

s/∈N q
s
a cosh(sθ) cos(

kπ
p
) contains all the information on the fractionary

spin charges. Although for more general quantum field theories the exact expres-
sion for higher spin charges are not known, it is natural to assume that the same
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expression could be extended with no particular modifications to a non-diagonal
theory with several massive nodes (of the form G ⋉H)

It is interesting to observe that the effect of the T T̄ deformation and its general-
izations is at the TBA level equivalent to moving from the standard Gibbs Ensemble
to a GGE, where the driving term is modified by some hyperbolic cosines and hy-
perbolic sines (these last ones only if the system is out of equilibrium). Hence the
two results we have discussed, that the Y-system in the presence of a T T̄ deforma-
tion and in a GGE are the same as in the standard theory, are essentially the same
result: in fact, considering the T T̄ TBA equations with a generic term ν which
might in principle contain hyperbolic cosines and sines of any spin,

εα(θ) = ν(θ)− φα ⋆ Lα(θ) (3.16)

This can be expressed in the most general situation as

εi = νi − αmiE
α
0 cosh θ + αmiP

α
0 sinh θ +

∑
j

φij
0 ⋆ Lα,j(θ) (3.17)

where we have introduced the sinh term which is nonzero if the system is not at
equilibrium, and the term

Pα
0 = − 1

2π

∫ ∞

−∞
sinh(θ)L(θ)dθ (3.18)

which is analogous to Eα
0 . Clearly this is equivalent to a modification of the driving

term, by modifying the coefficients β±1 of cosh θ and sinh θ respectively. Therefore
a simple application of the arguments of [63] leads to the conclusion that the Y-
system are preserved by the introduction of the perturbation. The same discussion
is valid for the deformations of generalized type, in which the TBA is modified by
a term cosh(sθ).

3.3 Generalized Hydrodynamics

Generalized hydrodynamics is to the GGE what ordinary Hydrodynamics is to
the standard Gibbs Ensemble. As is well known, Hydrodynamics is introduced to
describe many-particle systems (both classical and quantum) which are found in
non-equilibrium or inhomogeneous situations. The regime of interest of Hydrody-
namics is a mesoscopic one, in which the variations happen on a scale which is much
larger than the atomic scale, but still small enough compared to a macroscopic scale
to consider infinitesimal elements which still contain a (thermodynamically) signif-
icant number of constituents. As in the classical case, also in the quantum case the
dynamics at large enough scales is expected to admit a hydrodynamical description.
The theory can therefore be obtained by local maximization of entropy; the main
effect of integrability will be the same as what led to the GGE, namely the fact
that the entropy will be constrained by the infinite number of conservation laws.

41



The procedure is the following: one can divide the fluid of interest in mesoscopic2

fluid cells, in which the entropy is locally maximized in the way described above.
Local entropy maximization means that averages of local quantities ⟨O(x, t)⟩ tend
to averages evaluated in a generalized Gibbs ensembles ⟨O⟩β(x,t) where the de-
pendence on spacetime appears only in the generalized inverse temperatures of the
GGE. Hence, in the context of the quasiparticle TBA description, we just need to
introduce a spacetime dependence in the density ρ, the n-functions, eccetera, which
in equilibrium situations are functions of rapidity alone3: this spacetime dependence
indicates the fact that the various quantities are now related to the specific fluid
cells. We now consider for simplicity a theory of a single particle, but the exten-
sion to more general theories is straightforward [12]. In this context the conserved
charges in equation (3.6) can be expressed as integrals of local densities qi which
satisfy the conservation law:

∂tqi(x, t) + ∂xji(x, t) = 0 (3.19)

This is the Euler equation, which simply expresses the conservation laws of the
system. The functions appearing in the Euler equations are local functions. In the
local entropy maximization context, however, these can be taken as the averages
over the fluid cells, with the derivative meaning the variation with respect to the
neighbouring cells. These quantities are qi = ⟨qi⟩β(x,t), and ji = ⟨ji⟩β(x,t). Since we
will mostly consider these ones from now on, by a slight abuse of notation we will
use the same symbol for the densities and their average in the GGE. Considering
that in general j and q are related by the equation of state of the system, which can
be simply expressed as j = j(q), the conservation equation becomes

∂tqi(x, t) +∇qj(x, t)∂xqi(x, t) = 0 ⇒ ∂tqi(x, t) + J(q)∂xqi(x, t) = 0 (3.20)

where clearly J(q) := ∇qj(x, t). Considering a driving term of the form ν(θ) =∑
βshs(θ), where the hs are one particle eigenvalues of the conserved charges of

the system, as defined in chapter 2, the associated densities are naturally defined
in terms of the density of quasiparticles ρp(θ):

qs =

∫
dθρp(θ)hs(θ) (3.21)

Differentiating the TBA equation with respect to βs it is possible to obtain:

qs =

∫
dθ

2π
E(θ)n(θ)hdrs (θ) (3.22)

2Namely cells which are large enough to contain a statistically relevant number of particles, but
still small enough compared to the macroscopic world, such that we can consider the variations
of the thermodynamical quantities as smooth functions in space and time.

3The essence of the TBA technology is precisely that we can build maximal entropy states for
IQFTs, through the quasiparticle description. In fact, the TBA equations are simply a consequence
of the constrained maximization of entropy. Therefore the step to a hydrodynamic description
(GHD) appears straightforward.
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where we have introduced the dressing operation, which is defined implicitly as:

hdrs
.
=

∂ε

∂βs
= hs + φ ⋆ (nhdrs ) (3.23)

The dressing operation may be interpreted as the modification that the one-particle
eigenvalues (such as energy and momentum) undergo because of the (elastic) in-
teractions between the quasiparticles. Similarly, crossing arguments imply that the
currents are given by

js =

∫
dθ

2π
p(θ)n(θ)hdrs (θ) (3.24)

It is important to observe that these expressions are valid both in a homogeneous
and equilibrium situation, and in inhomogeneous and out of equilibrium situations.
The only difference will be in the fact that in one case entropy will be globally
maximized, and all the quantities appearing in the integrals will be dependent on
the rapidity alone. In the second case, the quantities will have to be considered
as (slowly) varying in space and time. The initial focus of GHD [12] was precisely
that of studying the transport due to these conserved currents, which can only be
found exactly in some very special situations: most of the next chapters will be
dedicated to their evaluation in T T̄ perturbed theories. It is possible to introduce
the effective velocity of the particles as

veff (θ) =
(E ′)dr(θ)

(p′)dr(θ)
=

(p)dr(θ)

(E)dr(θ)
(3.25)

This represents a dressing of the free velocity, which would be simply tanh θ as in
usual relativistic contexts, due to the effects of the interactions. The interpretation
is simple because of the elasticity of the scatterings, which allows to use the mo-
mentum of single particles as a conserved quantity4. Therefore the effective velocity
is a sort of group velocity which takes into account the scatterings which a quasi-
particle undergoes between the asymptotic initial and final states. The effective
velocity allows for a further integral representation of the currents:

js =

∫
dθveff (θ)ρp(θ)hs(θ) (3.26)

An important observation at this stage is the following: although we have used the
qi to describe and fix the state, we can equivalently use the n-function or the den-
sity. The simple reason for this is that these quantities fix each other via relations
arising from the TBA technology and the hydrodynamical equations. Therefore we
can view them as different bases we can choose to proceed with the hydrodynamical

4Although in general the momentum of a particle might be changed in an elastic scattering,
we can identify quasiparticles by keeping trace of the momentum, instead of the original particles
themselves. Therefore the quasiparticles are objects which always carry the same momentum
between one scattering process and the next.
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description. If one takes the Euler equations, and substitutes the integral expres-
sions of the currents and densities, it is possible to move the attention on a different
basis: the conservation laws become

∂tρp(θ, x, t) + ∂x(v
eff (θ, x, t)ρp(θ, x, t)) = 0 (3.27)

where the (x,t) dependence of the density represents the fact that this function
is the density of the fluid cell placed at position (x,t). It is moreover possible to
show that the n-functions give the normal modes of GHD, in the sense that they
diagonalize the above expression:

∂tni(θ, x, t) + veff∂xni(x, t) = 0 (3.28)

This is the fundamental expression of GHD. It allows, for example, to deal with the
partitioning protocol problem, which will be the main interest of the next chapter.

3.3.1 The partitioning protocol

One of the most popular problems in hydrodynamics, dating back to Riemann, is the
Partitioning Protocol. Its theoretical importance is related to its relative simplicity,
compared to other more general out of equilibrium protocols, which allows for an
analytical description and in some situations (most notably in pure CFTs, as in [91])
even an exact solution. It consists in solving the Euler equation (3.28) with piecewise
constant initial conditions, separated in the origin of the coordinates. For example,
we can consider the infinite (x,t) plane as divided in two halves, which are separately
thermalized at two different temperatures TL and TR, and then put in contact, as
shown in figure 3.1. If we consider a generic GGE, we could also consider the two

Figure 3.1: Visualization of the Riemann problem for two thermalized halves.
Image taken from [12].

halves to be characterized by all the different inverse temperatures and not only
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by temperature, such that we will have two sets {βs
L} and {βs

R} for any value of
s which is chosen by the initial condition. The time evolution of the system will
give rise to matter and energy currents between the two halves, and the theoretical
effort is precisely in the direction of evaluating the steady state currents (NESS:
non equilibrium steady states) through the origin x=0. We can express the initial
condition in n as

n(θ, x, 0) =


nL(θ) = n(θ)

∣∣∣
{βs

L}
for x < 0

nR(θ) = n(θ)
∣∣∣
{βs

R}
for x > 0

(3.29)

We can make use of the manifest symmetry under dilatation of the system, and
consider the variable ξ = x/t, to which we refer as ray, to rewrite the conservation
equations as: (

veff − ξ
) ∂n
∂ξ

= 0 (3.30)

which has to be solved with the above initial conditions. The solution to this differ-
ential equations can be either shocks, rarefaction waves, or contact discontinuities.
However, the linear degeneracy of GHD, namely the fact that the effective velocity
does not depend on the corresponding mode n, implies that the solution has to be
made of contact discontinuities. These are characterized by veff = ξ, and ∂n

∂ξ
→ ∞

which gives rise to the discontinuity. Hence for each value of the rapidity we can
solve the equation by finding ξ⋆(θ) such that the implicit equation is solved (since
as stated above we must have veff = ξ):

ξ⋆(θ) = veff (θ, ξ⋆(θ)) (3.31)

At this point there will be a jump. Requiring that the effective velocity is monotonic
we require that there is a single value of ξ⋆ for each value of theta which satisfies
the above equation, and therefore the solution will be

n(θ, ξ) = nL(θ)Θ(ξ∗(θ)− ξ) + nR(θ)Θ(ξ − ξ∗(θ)) (3.32)

If the effective velocity is monotonic (as will be in all the situation considered in
the following chapter) this solution is also expressed in the form

n(θ, ξ) = nL(θ)Θ(θ − θ∗(ξ)) + nR(θ)Θ(θ∗(ξ)− θ) (3.33)

The NESS refers to the ray ξ = 0, and so we can remove it from the above expression
and consider a generic θ⋆ = θ⋆(0)

n(θ) = nL(θ)Θ(θ − θ∗) + nR(θ)Θ(θ∗ − θ) (3.34)

This is the solution to the partitioning protocol in GHD. Finding this value of the
n-function can then be used to find the currents and densities presented above,
usually numerically using a recoursive algorithm which will be presented in chapter
5, but in some special case analytical solutions can be extracted.
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GHD has been extended and generalized in several directions: it can take in ac-
count the presence of external forces which break integrability, if these vary slowly
in spacetime as is usually necessary in hydrodynamics, it has been studied by going
further than the Euler scale including diffusive higher order contributions. In fact,
as explained in [13] it is reasonable to expect that, in contrast to standard hydrody-
namics, in the context of integrable systems the derivative expansion is meaningful
at all orders, and describes the system more and more precisely. In practice, what
has to be done is to consider higher order in the expansion of the generalized chem-
ical potentials: what we have assumed above is that around some point x0 they can
be expanded β(x) =

∑
∂nxβ|x0(x − x0)

n. To obtain the Euler scale, which is what
we have used, one takes the expansion to the lower order. The first correction is
the diffusive correction, which in the classical hydrodynamic case gives the viscosity
term of the Navier-Stokes equations. GHD has also been "quantized" [92] to intro-
duce quantum fluctuations, which become relevant in low entropy states, and lead
to correlations between the mesoscopic fluid cells at different positions. However,
the basic ingredients presented above are all we need for the discussion in the next
chapters, which will be devoted mainly to the study of the average currents and
densities of the perturbed theories.
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Chapter 4

Generalized Hydrodynamics of T T̄ de-
formed theories: exact results

In this chapter we present analytical results for the generalized hydrodynamics of
integrable field theories with T T̄ deformations. The main theoretical achievement
of this work is presented, namely the proof that the values of the GHD average
conserved densities and currents of the perturbed theories can be expressed entirely
in terms of non-perturbed quantities. This in particular allows to find expressions
for the average densities and currents of higher spin of T T̄ perturbed CFTs, a result
which generalizes prior known results in which only the energy and momentum
currents were found, [24]. In the second part of the chapter a thorough perturbative
analysis for the free fermion is presented, together with a study of the scaling
function of the perturbed theory, which allows to understand qualitatively how the
structure of the solution is changed out of the conformal point. Since in Generalized
Hydrodynamics the systems which admit analytical solutions are very few, any exact
result is clearly interesting per se, as numerical solutions often fail to give a clear
physical understanding of the phenomena at play. In this case, in particular, the
exact solution shows clearly the effect that the perturbation has on the theory, since
it is exactly decoupled. In the next chapter, the analytical results will be tested
numerically, providing an extremely precise validation in the conformal limit.

4.1 TBA and dressing of T T̄ deformed theories

For simplicity, we start by considering a theory of a single particle. Generally, in
situations where only one particle is present the mass is normalized to one, but
here we will keep it explicit for reasons which will become clear in the following.
As discussed in section 2.5, the TBA equations are:

ε(θ) = mβ cosh θ − φα ⋆ L(θ) , (4.1)
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where the kernel is modified by the perturbation as

φα = φ0 − αm2 cosh θ

If we consider an equilibrium situation, namely the standard TBA context in which
there is global maximization of entropy, making use of the properties of the hyper-
bolic cosine this can be rewritten introducing the TBA ground state energy

Eα
0 = −m

2π

∫ ∞

−∞
cosh θL(θ)dθ , (4.2)

and consequently equation (4.1) becomes:

ε(θ) = mβ cosh θ −mαEα
0 cosh θ − φ0 ⋆ L(θ) (4.3)

= mβ̂ cosh θ − φ0 ⋆ L(θ) (4.4)

where we have reabsorbed the perturbation term in a redefinition of temperature as
β̂ = β−αEα

0 . The TBA equations for T T̄ -perturbed theories were famously studied
in [20]. One feature that is easy to prove in a similar way is the similar modification
of the TBA equations if we consider a more general perturbation, namely where the
factor Φα(θ) is replaced by

Φ(θ) = e
−i

∑
s∈S

αs sinh(sθ)

(4.5)

With the introduction of such term, the TBA equations of the perturbed theory
look like the TBA equations of the unperturbed theory in a GGE with couplings
which are now related to the perturbation parameters αs, with driving terms of the
form cosh(sθ) (and also sinh(sθ) if the system is not at equilibrium). In this case,
(4.3) becomes instead

ε(θ) =
∑
s

mβ̂s cosh(sθ)− φ0 ⋆ L(θ) (4.6)

where the modified generalized temperatures are modified analogously (but not
in exactly the same way, since in their definition the energy does not appear).
In [64] it was shown that the Y -system of these new TBA equations and of the
TBA equations of the underformed theory is the same, a result which is essentially
equivalent to that of [63], and which constitutes an alternative proof to the one
presented in chapter 2. Although this work is mostly concerned with the study of
the standard perturbation with s=1, a discussion on the extension of the theory
to generalized deformations is presented at the end of the chapter. Except for a
few complications, the main discussion is analogous, and exact expressions for the
currents can be obtained also in that situation. Observe that out of equilibrium
the situation is much more complex, and it is not possible to reabsorb entirely the
perturbation as a redefinition of temperature. Therefore in this situation it the
solution of the perturbed theory is not always obvious, but as will be shown in this
chapter it is only possible to obtain it in the conformal limit.
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The particular factorization of the T T̄ term into a hyperbolic cosine and a
hyperbolic sine part becomes crucial when one evaluates the dressing of the physical
quantities which is necessary to study the conserved currents and densities of the
theory (both in and out of equilibrium). Starting from (4.1), and recalling that the
dressing equation can be obtained by the definition hdrs = ∂ε(θ)

∂βs
, it is easy to see that

the dressing equation becomes:

hdrs (θ) = hs(θ) + φα ⋆ (nh
dr
s )(θ) , (4.7)

so in the deformed theory we simply have to include an additional term:

φα ⋆ (nh
dr
s )(θ) = φ0 ⋆ (nh

dr
s )(θ)−m2α cosh ⋆(nhdrs )(θ) , (4.8)

Performing the same considerations as above, the hyperbolic cosine can be rewritten
in an extremely interesting way, which will turn out to be particularly useful in the
following:

m2 cosh ⋆(nhdrs )(θ) =
m2

2π

(
cosh θ

∫ ∞

−∞
cosh θ′n(θ′)hdrs (θ′)dθ′ − sinh θ

∫ ∞

−∞
sinh θ′n(θ′)hdrs (θ′)dθ′

)
= E(θ)qαs − p(θ)jαs , (4.9)

Here qαs and jαs are the average density and the average current associated to the
conserved quantity whose one-particle eigenvalue is hs(θ) in the deformed theory,
and E, p are the (bare) energy and momentum of a single quasiparticle, simply
given by E(θ) = m cosh(θ) and p(θ) = m sinh(θ). Therefore the final expression we
obtain is:

hdrs (θ) = hs(θ)− αE(θ)qαs + αp(θ)jαs + φ0 ⋆ (nh
dr
s )(θ) . (4.10)

The extension to more complicated systems, such as many particle systems, is
only slightly more involved. We consider the system to be described by the kernels
φab, and therefore the T T̄ deformed TBA equation is

εa = νa −
∑
b

φab ∗ Lb(θ) +
∑
b

αmamb(cosh ∗Lb)(θ) (4.11)

Proceding analogously to what was done for a single particle we find the dressed
quantities and then use the properties of the hyperbolic cosine to simplify the second
convolution:

hdra,s(θ) = ha,s(θ) +
∑
b

φab ∗ nbh
dr
b,s(θ)− α

∑
b

mamb(cosh ∗nbh
dr
b )(θ)

= ha,s(θ) +
∑
b

φab ∗ nbh
dr
b,s(θ) + αma

∑
b

(jsb sinh(θ)− qsb cosh (θ))
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The second sum can be simply evaluated to give the total spin-s densities and
current, qs and js respectively 1:

hdra,s(θ) = ha,s(θ) +
∑
b

φab ∗ nbh
dr
b,s(θ) + αma(js sinh θ − qs cosh θ) (4.12)

= ha,s +
∑
b

φab ∗ nbh
dr
b,s(θ) + αpa(θ)js − αEa(θ)qs

which is essentially the same as the situation above, except that we see that each
particle is coupled to the total currents and densities. As shown explicitly in [64],
it is always possible to reabsorb the T T̄ term into the TBA equations through a
redefinition of the inverse temperature (in general, if we are dealing with a general-
ized T T̄ deformation it will be reabsorbed in some generalized inverse temperature
βs appearing in the GGE). Consider equation (4.12) at equilibrium, with thermal
driving term νa = maβ cosh θ: we will have js = 0. Then simply I can reabsorb
the perturbing term by sending β → β̂. Therefore it is expected that all physical
results of the perturbed theory can be obtained by simply making this substitution.
If the system is out of equilibrium, however, the situation is more complicated if
one starts with thermal driving terms (as in the partitioning protocol), and other
subtleties need to be considered, as will be studied in the following.

4.2 The free fermion

In order to investigate the structure of the TBA equations it is convenient to start
with the simplest case, namely the free fermion. In this situation, φ0(θ) = 0 and the
TBA equations can be solved exactly, even for the T T̄ -perturbed theory, at least in
the conformal limit. We have

ε(θ) = mβ cosh θ −mαEα
0 cosh θ , (4.13)

with
Eα

0 = −m

2π

∫ ∞

−∞
cosh θ log(1 + e−(β−αEα

0 )m cosh θ)dθ , (4.14)

This is a non-linear equation for E0, which can be solved exactly by using Bessel
functions, essentially generalizing the standard way of approaching the TBA of a
free fermion proposed initially in [55]. Postponing a more general discussion to the
end of the chapter, we observe that for m ≪ 1 we can expand the logarithm, and
introduce the modified Bessel function of second kind:

Ka(z) =

∫ ∞

0

e−z cosh t cosh atdt (4.15)

1This is only valid if all the particles are massive. In the presence of magnonic nodes there is
a subtlety arising from the fact that the perturbation does not affect directly all the nodes of the
diagram: this is however only a small complication.
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So to obtain:

Eα
0 =

m

2π

∞∑
n=1

(−1)n

n

∫ ∞

−∞
cosh θe−n(β−αEα

0 )m cosh θdθ

=
m

π

∞∑
n=1

(−1)n

n
K1(n(β − αEα

0 )m) ≈ m

π

∞∑
n=1

(−1)n

n2(β − αEα
0 )m

=
1

π(β − αEα
0 )

∞∑
n=1

(−1)n

n2
= − π

12(β − αEα
0 )

= − πc

6(β − αEα
0 )
, (4.16)

where we have used the expansion of the Bessel function for small argument,
K1(z) ∼ 1

z
, and we have introduced the central charge of the free fermion c = 1/2

to relate with more general theories. We observe that for α = 0 we recover the
known result E0

0 := − πc
6β

. From (4.16) we obtain a quadratic equation in Eα
0

α(Eα
0 )

2 − βEα
0 − πc

6
(4.17)

which can be immediately solved to find the expression:

Eα
0 =

β

2α

(
1±

√
1 +

2απc

3β2

)
, (4.18)

We see that, for α < 0 the energy can become complex and has a square root branch
point. This is related to the famous Hagedorn transition [51] that is often discussed
in the context of T T̄ perturbations. In order to avoid this complication, we limit
ourselves to the α > 0 part. Moreover, of the two possible signs we will take only
the - sign, as it is the one for which the energy remains finite as β → ∞, namely as
T → 0. Introducing the scaling function in an obvious way we see that we obtain
precisely the same result which was obtained in [23,24], (up to a redefinition of the
perturbing constant α = −σ/2 to match the notation of these works):

cα = −3β2

πα

(
1±

√
1 +

2απc

3β2

)
(4.19)

Interestingly, the scaling function is β dependent also in the conformal limit. This
fact has extremely important consequences: for example, this clearly implies that
the scaling function outside the critical point cannot be written as c(r), solely as
function of the parameter r = mβ, because otherwise it would become constant
in the conformal limit. As discussed in the following, this is a consequence of the
addition of a new length scale in the system through α. As mentioned before, the
effect of the perturbation can be seen as a redefinition of the temperature. We
therefore can define a notion of deformed inverse temperature:

β̂ = β − αEα
0 =

β

2

(
1∓

√
1 +

2πcα

3β2

)
. (4.20)
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This equation coincides exactly to what was found in [24]. Observe that the above
expression can be obtained for a generic massive theory through a simple observa-
tion: the perturbed energy at temperature β is equivalent to the unperturbed one
at temperature β̂.

Eα
0 (β) = −m

2π

∫ ∞

−∞
cosh θ log(1 + e−β̂ cosh θ+φ∗L(θ))dθ = E0

0(β̂) (4.21)

Using then the fact that E0
0(β) := − πc

6β
in the conformal limit, we can obtain again

expression (4.16):
Eα

0 = − πc

6(β − αEα
0 )

(4.22)

which then lead to the same expressions as above for Eα
0 and β̂, this time valid for

any kernel. This observation is essentially the same as in both [19,20], namely that
the solution of the Burgers equation is of the form

Eα(β) = E0(β − αEα(β)) (4.23)

where the difference in sign is just due to the convention on the sign of the parameter
α of the perturbation.

The large mass limit

It is interesting to consider what happens to the theory in the opposite limit, namely
when m→ ∞. In this situation we can try to expand the logarithm in the integral
of the energy, since the exponential is infinitesimal:

Eα
0 ≈ −m

2π

∫ ∞

−∞
cosh(θ)e−(β−αEα

0 )m cosh(θ)dθ (4.24)

which is again the modified Bessel function K1:

Eα
0 ≈ −m

2π
K1((β − αEα

0 )m) (4.25)

This shows an interesting duality compared to the CFT limit. However, in this case
we cannot expand the Bessel function in the same way as we did before, but we
have to use the large argument expansion K1(z) ∼

√
2π
z
e−z and therefore:

Eα
0 ≈ −

√
m

2π(β − αEα
0 )
e−(β−αEα

0 )m (4.26)

Which clearly gives zero in the IR limit (for β ̸= 0, which is obviously the case). This
is consistent with the fact that the T T̄ perturbation is irrelevant, and therefore does
not alter the infrared structure of the theory, and the energy continues to behave
the same as in the unperturbed theory(in the unperturbed case, since the theory
flows to the trivial fixed point at infinity, we have c=0 for m→ ∞).
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4.2.1 NESS in T T̄ perturbed free fermion

Before giving the complete derivation of the charges and current densities in a
generic interacting theory, we start by studying them in the context of the free
fermion to test the ground. The results obtained in the following sections will then
be shown to reconcile perfectly with the simplest ones considered here. As dis-
cussed above, in the free fermion the effect of the perturbation can be reabsorbed
in a redefinition of temperature, β → β̂, where in the conformal limit this de-
formed temperature is given by (4.20). Using the dressing equation (4.10), we can
immediately compute the effective velocity of the theory as (recall that in general
jE = qP ):

veff (θ) =
sinh θ − αjαE cosh θ + αjαP sinh θ

cosh θ − αqαE cosh θ + αjαE sinh θ
(4.27)

The crucial quantity in the partitioning protocol is the value θ∗ in equation (3.34),
which is found by setting the effective velocity to zero. This can be easily found:

veff (θ∗) = 0 ⇔ tanh(θ∗) =
αjE

1 + αjp
(4.28)

which means that
θ∗α = arctanh

αjαE
1 + αjαp

(4.29)

Numerically, this can be used to find the currents and densities in a self-consistent
fashion. If we are interested however in an analytical result, this is only possible in
the conformal limit, m → 0. In the following general discussion we will show that
in the conformal limit:

lim
m→0

θ∗α = 0 (4.30)

Therefore, in the conformal limit the value of the θ∗α is precisely the same as in the
free fermion without the perturbation. This makes the study of the partitioning
protocol much easier. Consider the expression for the currents and densities:

jαs =

∫
dθ sinh(θ)n(θ) (hs(θ)− α cosh θqαs + α sinh θjαs ) (4.31)

qαs =

∫
dθ cosh(θ)n(θ) (hs(θ)− α cosh θqαs + α sinh θjαs ) (4.32)

Since θ∗α = θ∗0 = 0, it is clear that the n-function is exactly the same as the one for
the nonperturbed theory except for the above discussed redefinition of temperature.
Therefore the integrals which appear are precisely the densities and currents of the
partitioning protocol of a free fermion at temperatures β̂R and β̂L:∫

dθ sinh(θ)n(θ)hs(θ) = j0s (β̂) (4.33)∫
dθ cosh(θ)n(θ)hs(θ) = q0s(β̂) (4.34)
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And hence in particular
∫
dθ sinh(θ)n(θ) cosh(θ) = j0E,

∫
dθ cosh(θ)n(θ) cosh(θ) =

q0E, and the same for the momentum. We thus obtain the system of equations in
the perturbed current and density:{

jαs = j0s − αqαs j
0
E + αjαs j

0
p

qαs = q0s − αqαs q
0
E + αjαs j

0
E

(4.35)

Assuming that the charges and currents of the unperturbed theory are known (and
they are exactly, see [93]) this is a system of equations for two unknowns jαs and
qαs . It can be solved immediately to give:q

α
s (β) =

q0s+αq0pj
0
s−αj0pq

0
s

1−αj0p+αq0E−α2j0pq
0
E+α2j0Eq0E

∣∣∣
β̂

jαs (β) =
j0s+αj0sq

0
e−αj0Eq0s

1−αj0p+αq0E−α2j0pq
0
E+α2j0Eq0E

∣∣∣
β̂

(4.36)

The fact that the quantities on the right hand side are to be evaluated at the
modified temperature will be from now on given as understood, since it will always
be the case. Therefore we use the compact notation qαs = qαs (β) and q0s = q0s(β̂),
jαs = jαs (β) and j0s = j0s (β̂)

Postponing the consistency checks to the general discussion to be done in the
next section, we observe that, while these results for the partitioning protocol are
only valid in the conformal limit, if we consider an equilibrium situation they are
exact at all temperatures. In fact, it is easy to see that the n-function at equilibrium
is always the same up to a redefinition of temperature, and not only in the conformal
limit. Therefore we get the exact equilibrium expression for the conserved charges
at all temperatures2:

qαs =
q0s − αj0pq

0
s

1− αj0p + αq0E − α2j0pq
0
E

(4.37)

4.2.2 A comment on the conformal limit of T T̄ deformed
theories

The conformal limit of a massive theory is defined as the limit in which the corre-
lation lenght diverges, or equivalently the mass tends to zero. In the usual TBA
context, since the only two length scales of the theory are identified by β and 1/m,
the process of sending the correlation length to infinity is equivalent to sending
β → 0. In this limit one obtains expressions at the dominant orders in β which
coincide with the conformal values (which, if one starts with a conformal limit or
approach the conformal limit sending m → 0 are valid for all values of β). The
presence of only two lenght scales is also at the root of the possibility of writing
the scaling function c in terms of just r=mβ, as clarified in [55]. However, in the

2While the currents associated to cosh(sθ) vanish at equilibrium, the odd ones (like the mo-
mentum current) do not. In this section we have for simplicity restricted the attention to the
computation of currents and densities associated to even charges, but there is no additional com-
plication if one wants to extend the discussion also to the odd charges.
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present context we have an additional lenght scale, namely
√
α. (Interestingly, this

lenght scale can be related to a peculiarity which was discussed in [94]: the effect
of the T T̄ deformation can be understood as an aquisition of a width of the funda-
mental particles, which thus are no longer pointlike, and this in turn is equivalent
to a change of the metric.). Therefore in this situation the conformal limit is not
simply obtained by sending the inverse temperature to zero. In the perturbed situ-
ation, if one wanted to do the usual trick, and approach the conformal limit without
modifying the mass, one also would have to send α → 0 together with the inverse
temperature. The two procedures lead to exactly the same analytical results in the
conformal limit, but perhaps the m → 0 procedure is more transparent, especially
when one attemps to to find numerical solutions, as will be shown in the following.
Note that α is not renormalized as the mass is varied, as would happen for a relevant
coupling. This happens because, considering a massive theory as a relevant defor-
mation of a CFT, the mass is determined by the properties of the corresponding
relevant field, as (see [26])

m ∝ λ
1

2−2∆ (4.38)

where λ is the coupling and ∆ the conformal dimension of the corresponding field.
Therefore a modification of the mass corresponds to a modification of the parameter
λ. However, in the T T̄ deformed case the α couples to the physical mass m just
defined, and it is a completely free parameter. Although this peculiarity has not
been yet investigated in depth, it is possible that this is related to the fact that in
such theories the conformal (massless) limit does not coincide with the UV limit,
as is instead the case in the more standard theories which are usually studied in the
TBA context, which are obtained as relevant perturbations of CFTs. The presence
of three different lenght scales, and two different dimensionless parameters,r = mβ
and r′ = m2α, implies that the scaling function will depend on any combination
of the two, except in the conformal limit, in which only the combination which
eliminates the mass (α/β2) will survive. In particular, to obtain the conformal
limit in practice we can follow the original procedure by Zamolodchikov. Consider
a free theory with no T T̄ deformation and thermal driving term, such that ε(θ) =
mβ cosh θ. As we take the conformal limit, m → 0, this would appear to vanish
identically. However, we have to consider that as the mass goes to zero the particles
become relativistic, id est their rapidity would diverge. So we can imagine to match
the divergence of the hyperbolic cosine with the vanishing of the mass. In particular,
considering θ = θ0 + θ̃, where θ0 → ∞, we can impose that M = meθ0 is constant
along the RG flow, and

mβ cosh θ ∼ mβ

2
eθ =

mβ

2
eθ0eθ̃ =

M

2
βeθ̃ (4.39)

(sometimes the factor 2 is absorbed in the new mass scale M). This becomes the
driving term of TBA equation for the right movers of the CFT in the massless limit,
and we will have an analogous expression with opposite sign in the exponential for
the left movers. In the case of theories perturbed by T T̄ a similar discussion can be
performed. Considering (4.1), we see that it might seem that the mass term cannot
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be reabsorbed since it is squared. Here comes at hand the expression in terms of
the energy, such as (4.13). The fact that we can write:

ε(θ) = mβ cosh(θ)−mαEα
0 cosh θ (4.40)

implies that we can use exactly the same trick as above on the two terms separately,
so we will have in the conformal limit:

ε(θ) = (β − αEα
0 )
M

2
eθ̃ (4.41)

Hence we see immediately that the notion of β̂ remains consistently defined upon
varying the mass of the particles and flowing to the CFT limit 3. This will allow
in the following sections to apply the obtained results to the pure CFT case, which
we will assume to be defined as the limit we just discussed. As before, this par-
ticularly simple expression is only valid at equilibrium: in a partitioning protocol,
for example, the deformation would also introduce an interaction term between the
right and left movers of the theory, as in [23].

4.3 The general solution to the T T̄ deformation in
interacting theories

Having tested the ground with the free fermion, we can move to study generic
theories (for now, with a single particle type) specified by a generic scattering
kernel φ. Since all the masses would eventually cancel anyway, we can directly
not write them from the beginning.4 In this situation, the TBA equation is of the
form (4.1). To be as general as possible, we will not specify until the end which
particular context we are working with, but the two situations we have in mind are
the equilibrium case and the partitioning protocol. We start making an observation
on the dressing equation in the unperturbed theory. Considering the convolution
as an integral operator T acting on hdr, we can write 4.10 as

hdr0 (θ) = h(θ) +Tn0(θ)h
dr
0 (θ) (4.42)

hdr0 (θ) = (1−Tn0(θ))
−1h(θ) (4.43)

where, following [13], we have treated formally the integral operator: the above
equation should be understood as a formal power series in T:

f(T) =
∞∑
n=0

f ′(0)

n!
Tn (4.44)

3Clearly, the value of Eα
0 varies along the flow. However, the exact result for β̂ in the conformal

limit guarantees that there are no pathologies arising, and this value remains finite.
4This is only true in the standard case. In the generalized deformations, studied at the end

of the chapter it will be necessary to keep them explicit. We will come back to this problem in
section 4.6.
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where the powers of the integral operator are interpreted as multiple convolutions.
Therefore we are identifying the dressing operation in the free theory with the
action of the integral operator (1−Tn0(θ))

−1 on the bare charge eigenvalues. The
addition of the T T̄ deformation leads to the addition of two extra terms in the
dressing equations, and the above manipulation leads to:

hdrα (θ) = (1−Tnα(θ))
−1(h(θ)− αqαs cosh θ + αjαs sinh θ) (4.45)

which we rewrite conveniently as:

hdrα (θ) = h̃α − αqαs Ẽα + αjαs P̃α (4.46)

where we can take αqαs and αjαs outside of the action of the convolution because of
its linearity. The charges with the tilde are defined as:

h̃(θ) = (1−Tnα(θ))
−1h(θ) (4.47)

This is almost identical to the dressing found above for the non-perturbed theory,
since the integral operator T is the same in the two situations, except for the dif-
ference in the n-function, which in this situation will contain the information of the
perturbation through the modification of the temperature, through a modification
of θ∗, and possibly through other effects. Therefore, only in those situations in
which the two n-functions are in some way comparable, as it was in the case of
the free fermion, they will have the same effect. The situations in which this in-
deed happens will be analyzed further on. For now, we can use the equation above
substituting them in the equations for the currents and densities, as done above:

jαs =

∫
dθ sinh(θ)n(θ)

(
h̃αs (θ)− αẼα(θ)q

α
s + αP̃α(θ)j

α
s

)
(4.48)

qαs =

∫
dθ cosh(θ)n(θ)

(
h̃αs (θ)− αẼα(θ)q

α
s + αP̃α(θ)j

α
s

)
(4.49)

Introducing the tilded charges and currents q̃αs , j̃αs defined in an obvious way from the
corresponding tilded dressed quantities, we obtain again a system of two equations
in the two unknowns jαs , qαs :{

jαs = j̃αs − αqαs j̃
α
E + αjαs j̃

α
P

qαs = q̃αs − αqαs q̃
α
E + αjαs q̃

α
P

(4.50)

This can be solved easily to give the final expressions:q
α
s =

q̃αs +αq̃αp j̃
α
s −αj̃αp q̃αs

1−αj̃αp +αq̃αE−α2j̃αp q̃αE+α2j̃αE q̃αp

jαs =
j̃αs +αq̃αE j̃αs −αj̃αE q̃αs

1−αj̃αp +αq̃αE−α2j̃αp q̃αE+α2j̃αE q̃αp

(4.51)

For the moment it seems that these equations add nothing to our understanding of
the problem, since we are not able to find the tilded quantities exactly. However,
we now analyze two fundamental situations in which the two expressions above can
be written in terms only of (potentially) known quantities, namely the equilibrium
situation and the partitioning protocol. In these situations, the relationship between
the tilded and unperturbed quantities can be clarified, and this allows to solve the
system exactly in terms of potentially known quantities.
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4.3.1 System at equilibrium

We stated above that the system greatly simplifies if nα and n0 are the same func-
tions. Considering a system at equilibrium, described by a standard Gibbs en-
semble, with driving term β cosh θ, it is clear that this is the case, because of the
arguments made at the end of section 4.1: the currents and densities calculated
using nα can be exactly calculated from n0 simply by adding a prescription of mod-
ifying the temperature, β → β̂. It is then clear that the operation (4.47) is exactly
equal to the dressing operation in the free theory at the modified temperature. This
means that we can make the identifications:{

q̃αs → q0s
j̃αs → j0s

(4.52)

where the implicit convention that the quantities with apex 0 are evaluated in β̂
and those with apex α are evaluated in β is being used. Hence the above system
becomes (assuming that in the unperturbed theory we are only considering even
charges, such that j0s = 0 it is immediate to see from (4.50) that necessarily this
implies jαs = 05):

qαs =
q0s − αj0pq

0
s

1− αj0p + αq0E − α2j0pq
0
E

(4.53)

This can be further simplified by collecting some terms:

qαs =
q0s(1− αj0p)

(1 + αq0E)(1− αj0p)
=

q0s
1 + αq0E

(4.54)

Hence we have obtained the complete set of conserved charges at equilibrium for a
T T̄ deformed theory in terms only of the non-perturbed quantities evaluated at the
temperature β̂, as we found previously for the free theory. Note that this equation
is valid at any temperature, and it is exact. However, for generic non-conformal
theories β̂ is difficult to compute exactly, the only exception being the free fermion,
in which progress towards a perturbative expression can be made thanks to the
properties of the Bessel functions, as discussed in section 4.5. Therefore in general
this equation will lead to formal expression in terms of a β̂ which can be evaluated
precisely only for small α or small β. However, this expression is still extremely
useful since approximate expression for β̂ can usually be found in various regimes:
for example, for β ≫ α we have β̂ ≈ β, so we can evaluate (4.53) at the real
temperature. Another problem is then that the values of the unperturbed currents
and densities are unknown out of the critical point for all theories of interest (even
for the free fermion, the exact expression which can be found is so intricated, since
expressed as a series of Bessel functions, that it is scarcely useful).

A consistency check for this expression can be done by analyzing the free fermion
in the conformal limit. In this situation, the conserved charges can be found in a

5Actually, this is only true if αjp is different from one.
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different way as follows: observing that the dressing becomes hdrs (θ) = hs(θ) −
α cosh(θ)qαs , the charges can be easily computed:

qαs (β) =
1

2π

∫ ∞

−∞
cosh θ′n(θ′)hdrs (θ′)dθ′ (4.55)

=
1

2π

∫ ∞

−∞
cosh θ′n(θ′)hs(θ

′)dθ′ − αqαs
1

2π

∫ ∞

−∞
cosh2 θ′n(θ′)dθ′

=
1

2π

∫ ∞

−∞

cosh θ′ cosh(sθ′)

1 + eβ̂ cosh θ′
dθ′ − αqαs

1

2π

∫ ∞

−∞

cosh2 θ′

1 + eβ̂ cosh θ′
dθ′ . (4.56)

Here we have taken hs(θ) = cosh(sθ) but we could have taken a combination of
cosh(sθ) and sinh(sθ). The integrals can be computed in the limit of β ≪ 1. We
have that

1

1 + eβ̂ cosh θ′
= e−β̂ cosh θ′

∞∑
n=0

(−1)ne−nβ̂ cosh θ′

=
∞∑
n=1

(−1)n+1e−nβ̂ cosh θ′ , (4.57)

and thus we can again make use modified Bessel functions, this time of higher order,
to rewrite the integrals:∫ ∞

0

cosh θ cosh(sθ)e−A cosh θdθ =

∫ ∞

0

cosh(s+ 1)θ e−A cosh θdθ

−
∫ ∞

0

sinh θ sinh(sθ)e−A cosh θdθ

= Ks+1(A)−
s

A
Ks(A) , for A ̸= 0

Using now the asymptotic expansion for the generic modified Bessel function, i.e.
Ks(x) ∼ s!2s−1

xs for x ∼ 0, we can rewrite it to obtain a sum which can be solved
exactly in terms of the Riemann zeta function:

qαs =
1

π

∞∑
n=1

(−1)n+1

(
Ks+1(nβ̂)−

s

nβ̂
Ks(nβ̂)

)
− αqαs

π

∞∑
n=1

(−1)n+1

(
K2(nβ̂)−

1

nβ̂
K1(nβ̂)

)

≈ 1

π

∞∑
n=1

(−1)n+1

(
s!2s

(nβ̂)s+1
− s!2s−1

(nβ̂)s+1

)
− αqαs

π

∞∑
n=1

(−1)n+1

(
2

(nβ̂)2
− 1

(nβ̂)2

)

=
1

π

∞∑
n=1

(−1)n+1

(
s!2s−1

(nβ̂)s+1
− αqαs

(nβ̂)2

)
. (4.58)

Using the known sum:
∞∑
n=1

(−1)n+1

ns+1
= ζ(s+ 1)(1− 2−s) (4.59)
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we obtain the final expression:

qαs =
s!2s−1ζ(s+ 1)(1− 2−s)

πβ̂s+1
− αqαs π

12β̂2
, (4.60)

which can finally be rewritten as

qαs =
s!2s−1ζ(s+ 1)(1− 2−s)

πβ̂s+1
(
1 + απ

12β̂2

) . (4.61)

This expression can be used to test the validity of the fundamental expression (4.53),
using the result found in [93], in which the non-perturbed conserved charges are
found to be given by (here they are directly evaluated at the modified temperature,
since it is what we need):

q0s =
s!

2πβ̂s+1
(2s − 1)ζ(s+ 1) =

s!2s−1

πβ̂s+1
(1− 2−s)ζ(s+ 1) (4.62)

and in particular qE = π
12β2 = jP

6. Therefore, substituting these free results into
(4.53), with the modification of the temperature prescription, we get:

qαs (β) = q0s
1− αq0E
1− α2q2E

∣∣∣
β̂
=

q0s
1 + αq0E

∣∣∣
β̂

=
s!

2πβ̂s+1
(2s − 1)ζ(s+ 1) =

s!2s−1(1− 2−s)ζ(s+ 1)

πβ̂s+1
(
1 + απ

12β̂2

) (4.63)

This is precisely the same as (4.61), and hence expression (4.53) leads to consistent
results which are in agreement with the previous results known for unperturbed
theories. Although these results are only valid in the conformal limit, expression
(4.67) is valid for all values of m. Therefore, we expect that going to higher orders
in the expansion of the Bessel functions would still lead to consistent results.

4.3.2 Partitioning Protocol

We can now investigate how to deal with the system (4.51) in the most typical of
out of equilibriums situations, the partitioning protocol. In this case, the situation
is more complicated since it is not enough to consider a modification of the tem-
perature. In fact, in the context of the partitioning protocol the n-function of the
system is not only determined by β, but also by the angle θ∗, and can be expressed,
assuming the effective velocity to be monotonic, as (since we are interested in the
NESS we can set ξ = 0):{

nα(θ) = nL
α(θ)Θ(θ − θ∗α) + nr

α(θ)Θ(θ∗α − θ)

veff (θ∗α) = 0
(4.64)

6The equality jp = qE not strictly always valid. However, it is valid up to terms which are
always negligible in the conformal limit, since they diverge slower than 1/βs+1.

60



Since it is reasonable to assume that the effective velocity is monotonic, a claim
which will be proven true below, we are not losing any generality with these con-
straint. The main difference with the equilibrium case is that now it is not only
enough to modify the inverse temperature, since we also have θ∗α ̸= θ∗0. In the most
general case the solution to the partitioning protocol has to be evaluated numeri-
cally as it is usually done in GHD, using a recursive approach. However, proceeding
in line to what was done for the free fermion, we can show that in the conformal
limit one can take θ∗α ≈ θ∗0 and obtain consistent results. In fact, the identity is not
exact, but as far as the integrals are concerned it makes no difference. To see this,
we observe that since veffα = pdrα /E

dr
α , we can find θ∗ by finding the zeros of the

dressed momentum:

pdrα (θ∗α) = p̃α(θ
∗
α)− αqαp Ẽα(θ

∗
α) + αjαp p̃α(θ

∗
α) = 0 (4.65)

Using the fact that qp = jE we see that the zero of the dressed momentum corre-
sponds to:

p̃α

Ẽα

:= ṽeff =
αjαE

1 + αjαp
(4.66)

In general, the solution of this equation will lead to a θ∗α different from that of the
unperturbed theory. However in the conformal limit we can use make use of the fact
that the solutions for the n-functions give a plateau around θ = θ∗. This happens
for both the perturbed and unperturbed case, the only difference being that it is
necessary to go to lower values of m in order to see the plateau as α is increased.
The plateau structure is shown in figure 4.1.

The key observation is that in the presence of the plateau the exact position
of the zero of the effective velocity is totally irrelevant. The value of n(θ) in the
plateau is independent on temperature, because it can be found in terms of the
solutions to the constant TBA equations [16]. In a partitioning protocol, the value
of θ∗ is important because it allows to divide the integrals in the right and left part,
but this makes no difference in this situation, since the n-function is continuous in
the separation point and constant over a large portion of space (going to infinity
as m → 0). Therefore in this limit we can set θ∗α = θ̃∗, and the results of the
integrals will be exactly identical. But from the definition of the tilded quantities
we see that to find θ̃∗ one simply has to solve a partitioning protocol which is
identical to the one of the unperturbed theory, up to the shift of temperature. So
finally we see that in the conformal limit, also in the case of a partitioning protocol,
the T T̄ can be obtained as functions of the unperturbed quantities with the now
familiar prescription β → β̂. We observe that, although this is a (extremely precise)
approximation at small but finite m, it is exact in the conformal limit. Therefore the
expressions that will be obtained in the following are expected to be exact in the
conformal limit, and this will be strongly confirmed by the numerical simulations
in chapter 5.

Therefore, since the tilded quantities simply correspond to the unperturbed
dressed quantities, system (4.51) can be rewritten as:
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Figure 4.1: Since in the two halves of the partitioning protocol the effect of
the perturbation is a redefinition of temperature, then clearly the usual plateau
structure will still be preserved. In particular, in the conformal limit the n-function
tends to the same value on both sides, although the two temperatures are different.
Note however that the effect of the perturbation remains still visible by the presence
of an asymmetry.

q
α
s =

q0s+αq0pj
0
s−αj0pq

0
s

1−αj0p+αq0E−α2j0pq
0
E+α2j0Eq0p

jαs =
j0s+αq0Ej0s−αj0Eq0s

1−αj0p+αq0E−α2j0pq
0
E+α2j0Eq0p

(4.67)

These expressions are one of the main theoretical achievements of this work. They
allow to find the conserved densities and currents at any spin, once the unperturbed
ones are known, and as shown in the next section can be used in particular to
generalize the result of [23,24] to higher spin charges and currents. Moreover, they
can be easily generalized to theories in which there are several massive particles,
and with some modifications also to magnonic theories, in which there are both
massive and massless excitations.

Relationhip with previously known charges

As a test of the fundamental expression just found, we now show that it can be used
to recover correctly the results of [24]. Since their study regarded T T̄ perturbations
of pure CFTs, the unperturbed charges we need to substitute in (4.67) are the
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famous energy and momentum currents first studied in [91], which were shown to
be:

j0E =
cπ

12

(
1

β2
L

− 1

β2
R

)
(4.68)

q0E =
cπ

12

(
1

β2
L

+
1

β2
R

)
(4.69)

A feature which famously characterizes the pure CFT situation, as clear from the
two expressions above, is the separation into a contribution coming from the left
reservoir and one coming from the right reservoir. This is essentially related to the
separation of the TBA equations into two parts related to the right and left movers
of the theory, which in pure CFT are completely free. However, substituting them
in equation (4.67), we obtain:

jαE =
j0E

1− α2(q0E)
2 + α2(j0E)

2

=
j0E

1− α2( cπ
12
)2
(

1

β̂2
L

+ 1

β̂2
R

)2
+ α2( cπ

12
)2
(

1

β̂2
L

− 1

β̂2
R

)2
=

j0E
1− (απc

6
)2 1

β̂2
Lβ̂

2
R

=
cπ
12

1− (απc
6
)2 1

β̂2
L
ˆ̂
β2
R

(
1

β̂2
L

− 1

β̂2
R

)
(4.70)

and similarly, observing that the denominator is exaclty the same,

qαE =
q0s + α ((j0E)

2 − (q0E)
2)

1− α2(q0E)
2 + α2(j0E)

2

=
cπ
12

1− (απc
6
)2 1

β̂2
L
ˆ̂
β2
R

(
1

β̂2
L

+
1

β̂2
R

+
πcα

3β̂2
Rβ̂

2
L

)
(4.71)

These two results are exactly what was obtained through a different approach in [24],
and therefore this provides a substantial confirmation of the validity of expression
(4.67) in the conformal limit. Following the notation of [24], we now define cLR :=

1
1−(απc

6
)2 1

β̂2
L

ˆ̂
β2
R

, to write the compact results:

jαE =
cπ

12
cRL

(
1

β̂2
L

− 1

β̂2
R

)

qαE =
cπ

12
cRL

(
1

β̂2
L

+
1

β̂2
R

+
πcα

3β̂2
Rβ̂

2
L

)
The main feature of this result, compared to the CFT situation, is the absence of
factorization into right and left. The perturbation can be interpreted precisely as
the addition of an interaction term between the right and left movers, which arises
because the S-matrix is no longer trivial.
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Generalization of previous results

While in [23, 24] only the energy and momentum currents were found, the method
presented in this work allows to generalize the result to charges and currents of any
spin. We start by noting that for a generic unperturbed theory these are not known
analytically; however expression (4.67) is still useful in that it greatly reduces the
computational effort of solving the partitioning protocol numerically. Moreover,
there are situations in which such charges are known, for example the free fermion
and conformal field theories. The situation for the free fermion was studied above,
while for CFTs it is possible to use recently found, and still unpublished, values of
the unperturbed conserved charges at any spin [95] (although a particular example
of these formulae can be found in [93]):

j0s ∝
(
T s+1
L − T s+1

R

)
(4.72)

q0s ∝
(
T s+1
L + T s+1

R

)
(4.73)

The complete proof of this behaviour is provided in appendix A. The proportionality
constant is equal for the two quantities, and we shall call it G(s)7. Substituting in
the fundamental equation (4.67), and observing that again the denominator is still
the same and gives the cLR factor, we get:

jαs = cLR(j
0
s + αj0sq

0
E − αq0sj

0
e )

= cLR

(
j0s +

απc

6
G(s)(T̂ s+1

L T̂ 2
R − T̂ s+1

R T̂ 2
L)
)

From which we obtain the final expression for the higher spin currents:

jαs = G(s)cLR

((
T̂ s+1
L − T̂ s+1

R

)
+
απc

6
(T̂ s+1

L T̂ 2
R − T̂ s+1

R T̂ 2
L)
)

(4.74)

For the charge densitites the calculations are essentially identical, and therefore:

qαs = cLR(q
0
s + αj0s j

0
E − αq0sq

0
e)

= cLR

(
q0s −

απc

6
G(s)(T̂ s+1

L T̂ 2
R + T̂ s+1

R T̂ 2
L)
)

Which lead to the final expression:

qαs = G(s)cLR

((
T̂ s+1
L + T̂ s+1

R

)
− απc

6
(T̂ s+1

L T̂ 2
R + T̂ s+1

R T̂ 2
L)
)

(4.75)

These two expressions for the densities and currents in the perturbed theory are the
main theoretical finding of this work. The results shows clearly that the presence of
the T T̄ deformation breaks the left-right factorization also in the higher currents, as

7This quantity is an integral which in general cannot be evaluated exactly, except for the free
fermion. It consists of integrals which are generalizations of those which are performed to find the
UV central charge in the TBA context, which are solved by dilogarithmic functions. Therefore, it
appears natural that also these integral might be solved by higher order polylogarithms, although
for now we have shown this only for the free theory.
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we expected. The two expressions provide a generalization of equations (4.70) and
(4.71), to which they reduce exactly when s=1. It is worth making a comment on
the relationship between the results of [24] and the results of this work. In [24], the
model considered is a pure CFT perturbed by the irrelevant deformation. Therefore,
the theory they investigate is defined on the critical surface of the starting CFT.
In the present context, we start by considering a massive theory, which itself is
a relevant perturbation of a CFT, and consider the irrelevant deformation of this
theory. The theories we consider are therefore on some sort of "critical surface"
(although it is not critical, since there is no critical point) of the massive theory,
namely the submanifold in renormalization group space spanned by the irrelevant
deformations of this massive theory. What we do taking the conformal limit is
therefore to move back along the direction of the relevant perturbation, dragging
all the massive irrelevant surface in the flow. The fact that the results coincide
means simply that the "critical" massive surface becomes the real critical surface
when the mass goes to zero. Since in the TBA context massive theories are usually
more transparent than CFTs, the technique shown in this work could be seen as a
method of studying irrelevant perturbations of CFT more generally, by studying first
the perturbation of the massive theory and then sending m→ 0, without having to
deal with the more complicated technicalities which usually have to be introduced
in the TBA formulation of pure CFT. In the next chapter we will compare these
results with numerical simulations of a partitioning protocol and this will confirm
that (4.74) and (4.75) are exact results in the conformal limit.

Monotonicity of the effective velocity

To conclude we can make a comment on the monotonicity of the effective velocity.
Using expression (4.46), we see that the effective velocity can be expressed as:

veff =
p̃α − αqαs Ẽα + αjαs p̃α

Ẽα − αqαs Ẽα + αjαs p̃α
(4.76)

And its derivative, after some algebraic manipulation, and suppressing the α
label which is now assumed implicitly, becomes:

dveff

dθ
=

(p̃′Ẽ − Ẽ ′p̃)(1− αqs + αjs)

(Ẽ − αqsẼ + αjsp̃)2
(4.77)

Where the prime indicates a rapidity derivative. Therefore we see that the sign
of the derivative of the effective velocity is entirely given by the behaviour of the
term p̃′Ẽ − Ẽ ′p̃, since the denominator is always positive and the other term in the
numerator does not depend on θ (this only means that the sign is fixed. It is not
obvious from here that it is always positive, although the simulations show that this
should be the case. Anyhow, this does not technically affect the monotonicity prop-
erty which is needed in the discussion above). This can be conveniently rewritten
as:

p̃′Ẽ − Ẽ ′p̃ = Ẽ2dṽ
eff

dθ
(4.78)
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Since in the conformal limit the quantities with the tilde become the quantities
in the unperturbed theory, we see that if the effective velocity is monotonic in
the unperturbed situation it remains so in the perturbed case, and therefore the
discussion made above can be applied. On the other hand, if the original theory
has a non-monotonic velocity then clearly this will remain the same also in the
presence of the perturbation, and the theory will be significantly more complicated.
A situation of this sort has been studied for example in [93]. Although the analytical
proof shows the monotonicity in the conformal limit, since it is sufficient in the
discussion above, numerical simulations show that the monotonicity appears to be
preserved for any value of the mass. In particular, the effect of the presence of T T̄
is mostly that of introducing an asymmetric deformation of the effective velocity,
as shown in figure 4.2

Figure 4.2: Numerical study of the monotonicity of the effective velocity shows
that the claimed result about its monotonicity should be valid also out of the con-
formal limit.

Indeed, the numerical analysis highlights another peculiar feature: it is clear
that the zero of the effective velocity deviates only sligthly from the unperturbed
value even out of the conformal limit (clearly, this is valid when α is not too large).
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Therefore this justifies the attempt to look for perturbative corrections to the above
solution as θ∗α ≈ θ∗0, as will be investigated in the end of this chapter. We note that
the structure of the effective velocity appears a bit odd. In fact, if we consider
the effective velocity to be the velocity at which the dressed quasiparticles move,
by taking into account all the interactions which might take place, this should
be between -1 and 1, since we work with natural units and we are dealing with
relativistic systems. Although this might seem a proof of the inconsitency of the
discussion, this is not the case, and the reason is simply that the effective velocity
in the perturbed theories can be shown not to have the interpretation as a group
velocity. Let us now make a comment on this point. In general, the effective velocity
is defined by equation (3.25). The interpretation as a "dressed" group velocity arises
because it is usually possible to write:

veff =
dEdr

dpdr
(4.79)

which coincides with a dressed version of the textbook group velocity vg = dω
dk

. This
is not always the case, obviously, because in the original definition the derivative
is inside the dressing and not outside. In fact, in the T T̄ deformed theories it
is possible to show that equation (4.79) is not actually valid! To see this we use
the free fermion for simplicity. The effective velocity in this simple case is given
by equation (4.27). Hence to check the validity of (4.79) we need to evaluate the
derivative:

dEdr

dpdr
=

dθ

dpdr
dEdr

dθ
(4.80)

where we use the generic dressing equations (4.10) to obtain:

dEdr

dpdr
=

sinh θ − αqαE sinh θ + αjαE cosh θ

cosh θ − αqαP sinh θ + αjαp cosh θ
(4.81)

which is different from the effective velocity. Therefore, we see that in the per-
turbed situation we have a behaviour which is subtly different from what happens
normally. This might imply that also the usual notion of dressing has to be taken
with additional care, as will be also clear when studying the generalized deforma-
tions, in which an even more strange behaviour of the effective velocity will be
observed. In any case, this discussion clarifies the reason why the behaviour of the
effective velocity is not inconsistent and does not imply some sort of superluminal
propagation.

4.4 Systems with several particle types

The discussion can be generalized to the case of multiparticle systems. As proven
above, for systems with more than one particle type the dressing equation can be
written as

hdra = ha +
∑
b

φab ∗ nbh
dr
b + αma(js sinh θ − qs cosh θ) (4.82)
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The presence of a nested sum over all particle types makes this system extremely
complicated to deal with. However, we can apply a similar reasoning to what was
done previously, to obtain formally the dressing in the perturbed context as function
of the free one. Since the discussion is extremely formal, in the two following
sections we will show in two particular situations how it can be applied in practice.
Considering (4.82), we can rewrite it in matrix form introducing the matrix of
integral operators φ̂ of components Tabnb (we recall that T is just the expression
of the convolution between φ and the argument as a single integral operator), and
obtain:

hdr = h+ φ̂hdr + α(jsp(θ)− qsE(θ)) (4.83)

where hdr = (hdr1 , h
dr
2 , ...), and similarly for the other terms. This can be formally

inverted as:
hdr = (1− φ̂)−1(h+ α(jsp(θ)− qsE(θ))) (4.84)

The inversion of a matrix of integral operators is delicate and has to be dealt with
carefully. In this context, as done above for a single particle, we define it as its
Taylor expansion, namely

(1− φ̂)−1 =
∑
n

φ̂n (4.85)

which must converge for physical reasons, otherwise the dressing operation would
be ill-defined. To make the contact with the discussion made above, we now see
that (if the above considerations on the n-functions are still applicable) then we can
again see the operation (1− φ̂)−1h := h̃ where h̃→ hdr0 in the conformal limit, and
therefore also in this case we can express the dressing in the perturbed theory as:

hdr = hdr0 − αqsE
dr
0 + αjsp

dr
0 (4.86)

Therefore we see that the possibility of writing the equations in this way is purely
given by the way in which the T T̄ contribution factorizes in the dressing equation.
In this context we are interested in the total currents and densities, so we sum over
the various components (multiplying each by the corresponding mass):∑

a

mah
dr
a =

∑
a

mah
dr
a,0 + α

∑
a

ma(qsE
dr
a,0 + jsp

dr
a,0) (4.87)

and so we can compute the total charges:

qs =
∑
a

ma

∫
hdra,0 + α(qsE

dr
a,0 + jsp

dr
a,0)na(θ) cosh θ (4.88)

= q0s − αqsq
0
E + αjsq

0
p (4.89)

which is precisely the same as above. Similarly, we can find for the currents the
same expressions which se found previously:

js = j0s − αqsj
0
E + αjsj

0
p (4.90)
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Hence the system of equations which allow to find the currents and densitites is
exactly the same as in the single-particle case, and the solution will be exactly the
same as that given in (4.67). In the next sections, we will show explicitly with
two examples that the inversion of the matrix of the integral operators is a sound
procedure which lead to the claimed result.

4.4.1 Magnonic case

We start by considering the simplest case, namely a magnonic theory with a single
massive excitation, since in this situation the T T̄ deformation will only act on a
single term (since it is mass-dependent). The Dynkin representation of this theory is
given by a single massive node with several magnons forming the adjacency matrix
of the Dynkin diagram of An. The structure of this theory is particularly simple,
since the T T̄ perturbation acts only on the single massive node of the theory. To
obtain this equation we can start from equation (2.52):

νai = εai + φg ∗ {
∑
b

Gab(ν
b
i − Λb

i)−
∑
j

HijL
a
j}

+
∑
b

αmamb(cosh ∗Lb
i)−

∑
b

αGabmamb(φg ∗ cosh ∗Lb
i)(θ)

which in the present case gets simplified drastically since we take G = 1, and
therefore the perturbed TBA equations becomes:

νi = εi − φ ∗
∑
j

HijLj + δi1αm
2
i (cosh ∗Li) (4.91)

where now φ = 1
cosh θ

. Since we have a single mass we can normalize it to one, so
the final TBA equation in this situation becomes:

νi = εi − φ ∗
∑
j

HijLj + δi1α(cosh ∗Li) (4.92)

In order to deal with the system we consider the simplest situation, with one massive
particle and one particle (which corresponds to the Tricritical ising model perturbed
by ϕ13). In this case the equation above give rise to two dressing equations, where
1 and 2 indicize the particle and the magnon respectively::{

hdr1 = h1 −Tn2h
dr
2 − αE1(θ)q

s
1 + αp1(θ)j

s
1

hdr1 = h2 −Tn1h
dr
1

(4.93)

It is easy to see that in the absence of the perturbation the dressing operation can
be formally inverted to give:{

hdr1 = (1−Tn2Tn1)
−1(h1 −Tn2h2)

hdr2 = (1−Tn1Tn2)
−1(h2 −Tn1h1)

(4.94)
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So, proceeding by analogy with what was done in the case of a single particle, we
want to write the perturbed charge densities and currents in terms of the tilded
quantities, defined analogously as above (recall that the tilded quantities are ob-
tained by the dressing of the unoerturbed theory where just the n-function is mod-
ified). Then, we will show that in relevant physical situations the tilded quantities
correspond to the quantities from the nonperturbed theory. Therefore we can take
system (4.93) and invert it:{

hdr1 = (1−Tn2Tn1)
−1(h1 −Tn2h2 − αE1q

s
1 + αp1j

s
1)

hdr2 = (1−Tn1Tn2)
−1(h2 −Tn1h1 − αqs1Tn1E1 + αjs1Tn1p1)

(4.95)

To transform this in the tilded quantities we now observe that p2 = E2 = 0,
hence from equation 4.94 we see that Ẽ1 = (1 − Tn2Tn1)

−1(E1), Ẽ2 = (1 −
Tn1Tn2)

−1(−Tn1E1), and similarly for the momenta. Hence:{
hdr1 = h̃1 − αqs1Ẽ1 + αjs1p̃1

hdr2 = h̃2 − αqs1Ẽ2 + αjs1p̃2
(4.96)

And this leads for the usual system of equations for qs and js: in this case, we will
have four equations because of the presence of two particles

qs1 = q̃s1 − αqs1q̃
E
1 + αjs1 q̃

p
1

js1 = j̃s1 − αqs1j̃
E
1 + αjs1 j̃

p
1

qs2 = q̃s2 − αqs1q̃
E
2 + αjs1 q̃

p
2

js2 = j̃s2 − αqs1j̃
E
2 + αjs1 j̃

p
2

(4.97)

Now, the discussion is identical as before. At equilibrium, the n-function is only
changed by the shift in the temperature and therefore the tilded quantities corre-
spond to the dressing in the unperturbed theory with β → β̂. The same is valid for
the partitioning protocol, where now one has to take in consideration two different
θ∗ for the two particles, but it is immediate to see that the same considerations as
above apply. Therefore we get the final system:

qs1 = qs10 − αqs1q
E
10 + αjs1q

p
10

js1 = js10 − αqs1j
E
10 + αjs1j

p
10

qs2 = qs20 − αqs1q
E
20 + αjs1q

p
20

js2 = js20 − αqs1j
E
20 + αjs1j

p
20

(4.98)

which can be easily solved as before: the first two equations have exactly the same
solution as before, while the second ones can be fund by substituting the results of
the first two. We are mainly interested in the total densitites and currents, which
are obtained by summing the two to obtain:{

qs = qs0 − αqs1q
E
0 + αjs1q

p
0

js = js0 − αqs1j
E
0 + αjs1j

p
0

(4.99)
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where qs1 and js1 can be found solving (4.67). It is immediate to see that it is only
terms which depend on the massive particle which make the densities and currents
deviate from their unperturbed value, as expected.

In the case of theories with a larger number of magnons the discussion is exactly
the same, with the sole difference of having to deal with much more complicated
systems of equations. However, one can convince himself that the solution for the
total charges is always of the form given by (4.99), which therefore provide the
general solution for magnonic problems of this kind. We notice that this is slightly
different from the discussion above, and this is related to the fact that in this
situation I only have the perturbation on the first node, and not on all the nodes
as would happen in a massive theory.

4.4.2 ADE theories

For theories of ADE type the discussion follows directly from what was done in
section 4.4. However, in this context we can provide an additional argument in
support of the solidity of the discussion made previously, which does not involve
the inversion of a matrix of integral operators. We consider the TBA equations,
which can be obtained from (2.52) by neglecting the terms related to the magnonic
Dynkin diagram H:

hdra −
∑
b

Gabφ∗ (1+nb)h
dr
b = ha−

∑
b

Gabφ∗ [hb − α(qsEb − jspb))]−αqsEa+αj
spa

(4.100)
Since we are interested in the total currents and densities, we sum over the particle
type a, and observe that we can write

∑
aGab = c̃b, where the constant c̃b is simply

the number of links that start from node b:∑
a

hdra −
∑
b

c̃bφ∗(1+nb)h
dr
b =

∑
a

ha−
∑
b

c̃bφ∗[hb − α(qsEb − jspb))]+
∑
a

(−αqsEa+αj
spa)

(4.101)
Relabeling the index b to a and rearranging the equations we obtain:∑

a

(1− c̃aT(1 + na))h
dr
a =

∑
a

(1− c̃aT)(ha − αqsEa + αjspa) (4.102)

This can be compared to the free case in which by the same argument we would
have

∑
a(1 − c̃aT(1 + na))h

dr
a =

∑
a(1 − c̃aT)ha, we see that (4.102) is essentially

equivalent to the unperturbed theory in which the object which has to be dressed in
the equations to find qαs and jαs is precisely (ha−αqsEa+αj

spa), which leads again
to the usual result (under the assumptions made above for the general theory). Note
that since we are equating two sums, this is not necessarily the unique solutions,
but this subtlety is of no interest. As long as this is a solution, since we are only
interested in the total densities and currents, in any case the final expressions will
be the same. Therefore, for this class of theories we do not even need to make use
of subtle procedures such as the inversion of integral operators to show the validity
of expression (4.67), giving further corroboration to the previously obtained results.
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4.5 Going out of the conformal point

All the results obtained thus far are applicable only in the conformal limit. This is
also true at equilibrium: even if the expression we found is valid at all temperatures,
the expression of β̂ is only known for β → 0. It is however instructive to try to
study, at least perturbatively, how the system can be treated outside the critical
point. To do so, we focus on the case of a free fermion, for which we can find
some analytical expressions thanks to the absence of the scattering kernel. The
discussion will highlight the peculiarity of the scaling function in the presence of
T T̄ deformations.

4.5.1 The scaling function

Focusing on the scaling function, we start by studying it in the absence of the
perturbation, as done in [56]. Proceeding analogously as above, and using the
properties of the modified Bessel functions, we can obtain the value of c for every
value of r:

c(r) =
6r

π2

∫
dθ cosh θ ln(1 + e−r cosh θ)

=
6r

π2

∞∑
n=1

(−1)n−1

n
K1(nr)

=
1

2
− 3r2

2π2

[
ln r − 1

2
− lnπ + γE

]
+

− 6

π

∞∑
n=1

(√
(2n− 1)2π2 + r2 − (2n− 1)π − r2

2(2n− 1)π

)
(4.103)

where γE is Euler-Mascheroni constant. This property of the free theory becomes
useful in the present context thanks to the observation made in (4.21), that Eα

0 (β) =

E0
0(β̂): out of the conformal limit, we will have E0

0(β̂) = −πc(r̂)

6β̂
, where c is the

unperturbed scaling function which we just found exactly and r̂ := mβ̂. Since β̂
is a function of Eα

0 (β), the evaluation of the expression above allows to find the
modified temperature exactly. It is possible to compute exactly the lowest order
corrections to Eα

0 and β̂. To do so, we need to rewrite the sum by expanding the
square root in series:

√
(2n− 1)2π2 + r2 = (2n− 1)π

∞∑
k=0

(
1/2

k

)(
r2

(2n− 1)2π2

)k

(4.104)

= (2n− 1)π + (2n− 1)π
r2

2(2n− 1)2π2
+

∞∑
k=2

(
1/2

k

)(
r2

(2n− 1)2π2

)k

(4.105)
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where we see that the first two terms cancel out . Therefore the scaling function
becomes:

c(r) =
1

2
− 3r2

2π2

[
ln r − 1

2
− lnπ + γE

]
+ 6

∞∑
k=2

(
1/2

k

)
r2k

π2k

∞∑
n=1

1

(2n− 1)2k−1
(4.106)

The sum in n can be exactly solved using the Riemann zeta function, thanks to the
expression

∞∑
n=1

1

(2n− 1)p
= (1− 2−p)ζ(p) (4.107)

and therefore we reach the final expression:

c(r) =
1

2
− 3r2

2π2

[
ln r − 1

2
− ln π + γE

]
+6

∞∑
k=2

(
1/2

k

)
r2k

π2k
(1−21−2k)ζ(2k−1) (4.108)

This formulation shows clearly that the sum only contains terms of O(r4), and can
then be truncated at the desired order to find corrections to the expression for Eα

0

discussed above. We can approximately simplify the sum even more by observing
that

(1− 21−2k)ζ(2k − 1) = η(2k)
ζ(2k − 1)

ζ(2k)
≈ η(2k) for k > 2

where η is the Dirichlet function; also, η(x) ≈ 1 for x large, and the approach to this
value is very fast even for the lowest term in which the argument is 4. Therefore
we can set to 1 all these terms, and obtain a sum which is exactly solved:

c(r) ∼ 1

2
− 3r2

2π2

[
ln r − 1

2
− lnπ + γE

]
+ 6

∞∑
k=2

(
1/2

k

)
r2k

π2k

=
1

2
− 3r2

2π2

[
ln r − 1

2
− lnπ + γE

]
+ 6

(
−1− r2

2π2
+

√
π2 + r2

π

)
In any case, we will only consider the first term in the square bracket, since the

second term is subleading, and the presence of the logarithm already makes it
difficult to solve. Considering the above mentioned fact that Eα

0 = −πc0(r̂)

6β̂
, and

further using that Eα
0 = β−β̂

α
from the definition of β̂, we obtain an expression

relating the inverse temperature to the modified inverse temperature, which holds
away from criticality:

β

α
=
β̂

α
− π

12β̂
+
β̂m2

4π

[
ln β̂m+ χ

]
−

∞∑
k=2

(
1/2

k

)
β̂2k−1m2k

π2k−1
(1−21−2k)ζ(2k−1) (4.109)

where χ = −1
2
− lnπ + γE, and this can be solved (at least numerically) to find

the value of β̂ at all orders.8 The presence of the logarithm makes it anyway
8Note that, however, the radius of convergence of the expansion of the square root we have

used is only 1, by Cauchy-Hadamard theorem, according to which the radius of convergence of a
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Figure 4.3: Behaviour of the exact scaling function and its derivative as a function
of the argument, as given in equation (4.103). We see that the correct conformal
limit c=1/2 is obtained as the argument tends to zero.

extremely challenging to invert the expression to find β̂ as function of β, even at
the lowest orders. However, an approximate solution can be found using Lambert
functions. We are interested in the lowest order corrections in m, which represents
the behaviour of the theory just outside the critical point. For m ≈ 0, it is justified
to neglect entirely the sum, which contains terms O(m4)), and therefore we are left
with:

β

α
=
β̂

α
− π

12β̂
+
β̂m2

4π

[
ln β̂m

]
(4.110)

We have also neglected the χ term, since it is a next order correction, and in any
case in is easy to reintroduce it at the end of the calculations. We can start by
finding the modified temperature at β = 0. Exponentiating the truncated equation
(4.110) at β = 0 we obtain:

β̂ =
πα

12β̂
− αβ̂m2

4π

(
ln β̂m

)
⇒ 4π

αm2
=

π2

3β̂2m2
− ln β̂m

⇒ β̂m exp

(
− π2

3β̂2m2

)
= exp

(
− 4π

αm2

)
power series can be evaluated as 1

R = lim supn→∞ (|cn|)1/n, where cn are the coefficients of the
series. In the present case, we have lim supn→∞ (|

(
1/2
k

)
|)1/n = 1. Hence the expression above can

only be used to study the deviation from the conformal point for small values of β.
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This equation can be solved exactly using the Lambert function W (x) [96], which
is defined by the equation

W (x)eW (x) = x (4.111)

To reduce to a form solvable by the Lambert function, we introduce t = 1

m2β̂2
, then

take square of both sides:

√
t exp

(
π2

3
t

)
= e

4π
αm2

t exp

(
2π2

3
t

)
= e

8π
αm2

2π2

3
t exp

(
2π2

3
t

)
=

2π2

3
e

8π
αm2

This can immediately be solved using the defining equation of the Lambert function
(4.111), and substituting t = m−2β̂−2 one obtains:

β̂(β = 0) =

√
2π2

3

m

√
W
(

2π2

3
e

8π
αm2

) ≡ β̂0 (4.112)

Note that using the defining relation eW (x) = x
W (x)

, this can be rewritten as:

β̂0 =
exp 1

2
W (η)

m exp( 4π
αm2 )

=

√
2π2

3ηm2
exp

1

2
W (η) (4.113)

where we have introduced the parameter η = 2π2

3
exp( 8π

αm2 ). This expression will be
useful in the following. For m→ 0 β̂0 is finite, since the Lambert function behaves
asymptotically as the logarithm of the argument. In particular, the limit can be
evaluated:

lim
m→0

β̂(β = 0) =

√
πα

6
(4.114)

which corresponds precisely to the result which can be obtained in the β → 0 limit
of equation (4.20), with c=1/2. If β ̸= 0, the solution in terms of Lambert funtions
is not exact, but if we require the temperature to still be small (with respect to√
α, so that β̂(β = 0) ≈

√
πα
6

≫ β. The procedure is analogous to what was done
before, with the introduction of an extra term:

4πβ

αβ̂m2
=

4π

αm2
− π2

3β̂2m2
+ ln β̂m

β̂ exp

(
− π2

3β̂2m2
− 4πβ

αβ̂m2

)
=

1

m
e−

4π
αm2

mβ̂ exp

(
− π2

3m2β̂2

(
1 +

12ββ̂

πα

))
= e−

4π
αm2
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Unfortunately, despite the great similarity with the previous one, this equation is
not exactly solvable in terms of Lambert functions, because of the extra term in the
exponential in the left hand side. Although generalizations of the Lambert functions
exist, there appear to be no generalization yet which allows to deal with this type
of equation9. However, assuming that β is small as mentioned above, we perform
an approximation which restores the possibility of using Lambert functions: we can
approximate the β̂ appearing in the term 12ββ̂

πα
with its value at β = 0, since adding

extra terms would only lead to higher order corrections in β, which we neglect.
Doing so we obtain:

mβ̂ exp

(
− π2

3m2β̂2

(
1 +

12

πα
ββ̂0

))
= e−

4π
αm2 (4.115)

which can be solved exactly as before, with the addition of an extra β-dependent
term:

β̂ =

√
2π2

3

√
1 + 12

πα
ββ̂0

m

√
W
(

2π2

3

(
1 + 12

πα
ββ̂0

)
e

8π
αm2

) (4.116)

Notice that we have neglected for simplicity the χ term, which can anyway be rein-
serted trivially, by adding a term e−2χ into the Lambert function. In any case, this
correction is neglible for small values of m. Again, we can test if expression (4.116)
lead to the correct conformal limit, when compared to the conformal definition
(4.20). Indeed, we see that

lim
m→0

β̂ =

√√√√πα

12

(
1 + β

√
12

πα

)
≈
√
πα

12
+
β

2
(4.117)

which is precisely the correct result, as can be seen by expanding the conformal
expression to first order in β. By using the same relation with the exponential of
the function, we can obtain an expression similar to (4.113),

β̂ =

√
2π2

3ηm2
exp

(
1

2
W (η(1 +K exp (

1

2
W (η))))

)
(4.118)

where the new parameter is K = 12β
πα

√
2π2

3ηm2 . Therefore we see that this suggests
that the complete solution will be given by infinitely many "nested" Lambert func-
tions: this can be seen by iterating the calculation to reach higher values of β, by
substituting the i-th obtained value of β̂(in this notation we have computed above

9While the usual Lambert function allows to evaluate xex = a, generalizations have been
studied to deal with equations as (x − a)(x − b)...(x − c)ex = z. However, in this situation we
would need a solution to the problem xe(x−a)(x−b)...(x−c) = z, which have never been studied. The
two lead to different functions which cannot be reduced to one another, since intricated square
roots appear in this attempt for any possible reparametrization.
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β̂0 and β̂1) into the expression for the i+1-th component. This will lead to the
equation:

β̂i+1 =

√
2π2

3

√
1 + 12

πα
ββ̂i

m

√
W
(

3π2

2

(
1 + 12

πα
ββ̂i

)
e

8π
αm2

) (4.119)

which is finally expressed as the nested exponential formula:

β̂ =

√
2π2

3ηm2
exp

(
1

2
(W (η(1 +K exp(

1

2
W (η(1 +K exp(

1

2
W (...))))

)
(4.120)

This is the exact expression of β̂ for any value of temperature, with mass at sec-
ond order. We see that this becomes extremely complicated; going higher order
in the mass, introducing m4 terms, would make the solution even more intricated.
Therefore we see that an exact solution at any mass appears impossible to obtain,
although the nice structure of equation (4.120) gives some hope. Perhaps some spe-
cial property of the Lambert functions may allow us to go further in the description
to simplify the higher orders of the expansion (this would be a necessary step if
the attempt to generalize the function in this direction is undertaken); in any case
the results which is obtained by the iteration for i → ∞ is exact at any β, and
corresponds to the second order in the mass. In light of the considerations made
above, we could even venture to define a novel generalized function, with will need
to have the properties just found: this extension could even in principle allow to
consider evaluations at higher orders in m. We define the modified function as the
inverse of the expression:

x = ze(z−z1)(z−z2)...(z−zn) ⇒ z = W̃z1,...zn(x) (4.121)

Although an in-depth study of these functions is well beyond the scope of this thesis,
we see that in terms of these functions the solution would simply be:

β̂ =
3/π2

mW̃0, 12β
παm

(
π2

3
exp( 4π

αm
)
) (4.122)

Comparison with the result found above shows the relation between these gen-
eralized functions to the standard Lambert function. We leave a more thorough
investigation of the properties of such functions for following research: this would
be a study of interest because generalizing the function even more would allow to
solve also for the higher orders in the mass.

It is then easy to study the small temperature (large β) asymptotics. It is
immediate to obtain that the modified temperature satisfies a formal quadratic
expression:

β̂2 − ββ̂ − απc(β̂)

6
= 0 (4.123)
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Which leads to the expression:

β̂ =
β +

√
β2 + 2απc(β̂)

3

2
(4.124)

This is identical to the one obained above, except for the fact that we have the
full complicated scaling function, which is plotted with its derivative in figure 4.3.
We see however clearly that for β → ∞ the modified temperature tends to the
unperturbed temperature, because the scaling function vanishes, and β̂ ≥ β for any
values of m, β, and α (in the range α > 0 considered in this work).

β̂ ≈ β for β → ∞ (4.125)

The behaviour of the modified temperature is shown in figure 4.4, for m=1 and
different values of α. It is obvious from the plot and from the consideration we
just made that the T T̄ perturbation only affects the low-β region, by increasing the
value of β̂. Similarly, it is mostly effective if the mass is small, while its effects are
negligible for m→ ∞, and this is related to the perturbation being irrelevant.
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Figure 4.4: Value of β̂ at different values of temperature. As expected, for large β
the two coincide, while for small β the modified temperature tends to a value which
is solution to the equation β̂2 = απc(β̂)

6
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4.5.2 Monotonicity of the scaling function and c-theorem

This discussion shows clearly that the possibility of obtaining exact results, even at
the lowest orders in perturbation theory, is extremely specific to the free fermion,
and already extremely complicated. We can however check in general the properties
of the scaling function of the perturbed theory cα, which we define in the most
natural way in the TBA context:

Eα
0 = −πc0(r̂)

6β̂
= −πcα(r)

6β
(4.126)

where the c-function c0 is the one evaluated in (4.103). From this we see again that
we can relate the scaling function of the perturbed theory, cα, to the one in the free
theory evaluated at β̂:

cα(r) =
βc(r̂)

β̂
(4.127)

which can be expressed solely in terms of the modified temperature as:

cα(r) = c0(r̂)

(
1− απ

6

c0(r̂)

β̂2

)
(4.128)

In the unperturbed theories, the scaling function is a monotonically decreasing
function, as stated in the famous c-theorem [42]10. The c-theorem however is con-
structed only to follow the RG flow of integrable theories constructed as relevant
deformations of CFTs, therefore it is not obvious that it should apply to theories
with irrelevant deformations, especially because the UV structure of these theories
is rather obscure. Hence it is interesting to analyse the structure of the scaling
function in this theory, to check wether it is or not decreasing along the flow, and
therefore if some sort of formulation of the c-theorem might still apply, as was
already investigated in [97–99].

Before doing this we stress a very simple yet fundamental fact: since in this
context the theory depends on two dimensionless quantities, which we define as
r = mβ and r′ = m2α, then the c-function of the perturbed theory will not in
general be a pure function of the quantity r, but will be a function of r, r′, r/r′,
and in principle any combination of these quantities. This is quite obvious when
compared to the results obtained in [23] regarding the scaling function, which is
not a constant (neither in β nor in α) even in the conformal limit. Specifically, in
that work they obtain a functional dependence on r2/r′, which is the same result
shown in expression (4.19). Therefore, as was remarked also above, it is not so
obvious which is the correct way to approach the conformal limit, and if this limit
corresponds to the UV limit of the theory. Hence we will refer to the conformal limit
as equivalent to the massless limit of the theory, which leads to the results of [24].
The flow is therefore a flow with respect to the variation of the mass parameter,

10Although the c-function of Zamolodchikov’s theorem and the scaling function of the TBA
context are different functions, they are generally believed to carry the same information.
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from zero in the conformal limit, and increasing to obtain a generic massive theory.
Starting from equation (4.127), we obtain:

∂cα
∂m

= β

(
∂c0(r̂)
∂m

β̂ − c0(r̂)
∂β̂
∂m

β̂2

)
(4.129)

=
β

β̂2

(
∂c0(r̂)

∂r̂

∂r̂

∂m
β̂ − c0(r̂)

∂β̂

∂m

)
(4.130)

=
β

β̂2

(
∂c0(r̂)

∂r̂
β̂2 − c0(β̂)

∂β̂

∂m

)
(4.131)

To find the mass derivative of the modified temperature we can use −πc0(r̂)

6β̂
= β−β̂

α
,

from which we obtain, rearranging and differentiating with respect to m:

β = β̂ − απc0(r̂)

6β̂
(4.132)

0 =
∂β̂

∂m
− απ

6β̂2

(
β̂2∂c0(r̂)

∂r̂
− c0(r̂)

∂β̂

∂m

)
(4.133)

∂β̂

∂m
=

απ
6

∂c0(r̂)
∂r̂

1 + απc0(r̂)

6β̂2

(4.134)

which substituted in (4.131) leads to:

∂cα
∂m

=
β

β̂2

∂c0(r̂)

∂r̂

 β̂2

1 + απ
6

c0(r̂)

β̂2

 (4.135)

which is always decreasing with m, since the term in the parenthesis is positive while
the free c-function c0 is always decreasing with its argument, as shown in figure 4.3
for the free fermion. The monotonic behaviour might suggest that some c-theorem
might still hold in theories with irrelevant deformations. A similar discussion can
be found in [97]. Figures 4.5a and 4.5b show the monotonic behaviour for different
values of temperature and α.

An important observation is that the monotonic behaviour is not observed when
considering the functional dependence of cα on β, and this is a further indication
of the fact that something completely new is happening, related to the presence
of two length scales in the system. This is shown in figure 4.6. The difference of
monotonicity of cα with respect to m and β is a necessary and sufficient condition
to conclude that the scaling function does not depend on r only. The interplay of
the two different adimensional factors r and r’ will give rise to an interesting range
of phenomena which would be interesting to study more thoroughly in the future.
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(a) The scaling function in terms of the mass, at fixed β = 1 and at different values of α. As
expected, the scaling function is monotonic, and the effect of the perturbation is to decrease its
value in the conformal limit.
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(b) The scaling function in terms of the mass, at fixed α = 0.1 and at different values of β. We
see that, when the inverse temperature becomes comparable to the value of α, the behaviour of
the scaling function changes drastically. In particular, for β ≈ α we see that it drops to extremely
small values.

Figure 4.5: Behaviour of cα as function of the mass, varying β and α.

4.5.3 First Corrections in the Partitioning Protocol

The main assumption which was used to study the partitioning protocol was that
θ∗α = θ∗0 in the conformal limit, and this allowed to obtain the exact result for
higher currents and densities. As in the previous sections, we only consider the
case of the free fermion, since it is the only one in which it is plausible to obtain
some analytical results, and we study the first order correction to the results found
above. The correction can be found by expanding the integrals as function of the
parameter θ∗ ≈ αjαe

1+αjαp
≈ 0 (where we have already expanded the arctangent which

we obtained previously). This leads to corrections first to the energy and momentum
currents, which propagate to corrections to all the higher currents. It is clear that
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Figure 4.6: The non-monotonic behaviour of the scaling function with respect to
the inverse temperature is shown here for different values of the mass, for α = 0.1.
We note that, for m → 0, the plot is exactly what was found in [24], namely a
β-dependent scaling function which tends to c=1/2 for large β. We observe that
the plot is a function of β̂ and not of β, but since the modified temperature is
monotonic in β the change of variables would not alter the monotonicity structure
of cα.

the addition of such a term will lead to significant complication of the expressions
already at the level of the free theory. Following the discussion of section 4.2.1,
we need to solve the system (4.32), this time with θ∗ non-zero, but still small. For
simplicity, we only consider the corrections at first order. We write conveniently
expression (4.32) as:

jαs = Ips − αIpeq
α
s + αIppj

α
s (4.136)

qαs = Ies − αIeeq
α
s + αIepj

α
s (4.137)

where the constant factors are defined as

Iij =

∫ ∞

−∞
hi(θ)hj(θ)n(θ)

=

∫ θ∗

−∞
hi(θ)hj(θ)

1

1 + eβ̂R cosh(θ)
+

∫ ∞

θ∗
hi(θ)hj(θ)

1

1 + eβ̂L cosh(θ)

Expanding the integrals at fist order in θ∗, and focusing only on energy and mo-
mentum for simplicity, it is possible to obtain:

Iee ≈ q0e +

(
1

1 + eβ̂R

− 1

1 + eβ̂L

)
θ∗ +O(θ∗)2

Ipe ≈ j0e +O(θ∗)2

Ipp ≈ j0p +O(θ∗)3
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hence only one term gets a correction. Note that here the quantities q0e , j0e , j0p are not
only the quantities of the unperturbed theory, but they are the quantities evaluated
in the conformal limit, namely the well known result by Bernard-Doyon. This leads
to the following system, defining k = 1

1+eβ̂R
− 1

1+eβ̂L
:

jαe = j0e − αj0eq
α
e + αj0pj

α
e

qαe = q0e + kθ∗ − α(q0e + kθ∗)qαe + αj0e j
α
e

jαp = j0p + αj0e j
α
e + αj0pj

α
p

(4.138)

Substituting θ∗ ≈ αjαe
1+αjαp

, it can be solved exactly. As anticipated, the expressions
which one obtains are rather involved, and we report here the correction to the
energy current:

jαe =
1 + α2(2(j0e )

2 − j0pq
0
e) + (αj0p − 1)

√
1 + 2αq0e + 4α2kj0e + α2(q0e)

2

2(α2(j0e − k) + 2α3kj0p + α4((j0e )
3 − k(j0p)

2 − j0e j
0
pq

0
e))

(4.139)

These calculations show explicitly that obtaining even the lowest order corrections
becomes quickly extremely complicated even for the simplest possible theory. At

higher orders in θ∗, we would have to consider even terms as
(

αjE
1+αjp

)2
and this would

make the system virtually impossible to solve, even just at second order. Therefore,
a perturbative approach as this one does not lead to particularly interesting results,
and we can say that the power of the methods developed in this work to obtain
exact solutions is mostly limited to the conformal case. As stressed previously,
this should not be seen as a particular weakness of the theory, since it is the rule
rather than the exception exact solutions in GHD are extremely hard to find, even
in unperturbed theories.

4.6 Generalized Deformations

It is possible, with some caveats, to extend the discussions of this chapter to the
case of a generalized T T̄ deformation, in which the kernel gets modified by a factor
cosh sθ. Since the calculations in this situation become more complicated, and this
section serves more as an illustration, we will focus on the free fermion theory, and
assume boldly that the results will apply with eventual small modifications also in
the general interacting case. As stated before, the generalized deformation affects
the TBA equations in a simple way:

ε(θ) = ν(θ) + αs cosh sθ ∗ L(θ) (4.140)

where αs is a dimensionless parameter, of which we do not know the mass depen-
dence exactly. We see that, in order to absorb the perturbation into a redefinition of
the generalized inverse temperatures we need to have in the driving term the same
cosh sθ. So for simplicity we consider the case ν(θ) = βs cosh sθ, namely a situation
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in which the system is described by a GGE with only one nonzero potential. This is
the only situation in which some of the integrals can be solved exactly, or reduced
to the integrals discussed in the previous sections, and therefore we focus solely on
this case since we are interested in finding analytical results 11. We will consider
a TBA with driving term containing potential βs = msβs at spin s: this is the
situation in which Zamolodchikov’s argument explained in section 4.2.2 can be still
applied. At equilibrium, we can repeat the calculations made above analogously,
as:

ε(θ) = msβs cosh(sθ) + αs cosh(sθ) ⋆ L(θ)

= msβs cosh(sθ) + αs cosh(sθ)

∫
dθ′

2π
cosh(sθ′)L(θ′)

Now, we can define a generalization of the free TBA energy that we considered
before:

Ẽα
0 = −m

s

2π

∫
dθ cosh(sθ)L(θ) (4.141)

where the tilde used here should not be confused with the tilded quantities of section
4.3. This object is interpreted as the analogous of Eα

0 for higher spin charges, and we
will refer to it as a generalized energy. Introducing this quantity the TBA equation
becomes:

ε(θ) = msβs cosh(sθ)− αs

ms
Ẽα

0 cosh(sθ) (4.142)

hence this allows to find a self consistent equation for the generalized energy:

Ẽα
0 = −m

s

2π

∫
cosh(sθ) log(1 + e−(βs− αs

m2s Ẽ
α
0 )ms cosh(sθ)) (4.143)

In order to avoid divergencies we impose that α/ms goes to zero as m goes to zero.
Solving the integral in terms of Bessel functions as above, and performing a change
of variables sθ → θ to remove the spin in the exponent, leads to an analogous
expression:

Ẽα
0 =

ms

2πs

∑
n

(−1)n

n

∫
cosh(θ) exp (−nms(βs − αs

m2s
Ẽα

0 ) cosh(θ))

=
ms

2πs

∑
n

(−1)n

n
K1(−nms(βs − αs

m2s
Ẽα

0 ))

=
−πc

6s(βs − αs

m2s Ẽα
0 )

Where we still have a mass term, contrarily to the standard case in which all the
mass dependence gets canceled. But now we see clearly that in the conformal limit

11It is known that the TBA equations become problematic when there are two hyperbolic cosine
with different arguments, as there are convergence issues, so we directly avoid also this problem.
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this leads to a vanishing of the energy, making the theory unphysical. Therefore we
have several reasons to assume that the value of the parameter αs has the form:

αs = αm2s (4.144)

Where α has the dimensions of [M ]−2s.12 This is a direct analogy with the standard
T T̄ case, where s=1. In this situation, the energy remains finite, and in particular
the difference with the usual case is the addition of a factor s and a modification of
the inverse temperature dependence as β → βs. This leads to the expression:

Ẽα
0 =

βs

2

(
1−

√
1 +

2πcα

3sβ2s

)
(4.145)

Therefore, defining the modified inverse temperature by analogy as above, as

β̂s = βs − αẼα
0 (4.146)

this leads to the expression:

β̂s =
βs

2

(
1 +

√
1 +

2πcα

3sβ2s

)
(4.147)

The final expression for the modified inverse temperature is therefore

β̂ =
β

21/s

(
1 +

√
1 +

2πcα

3sβ2s

)1/s

(4.148)

In terms of these objects the (equilibrium) TBA equation becomes simply:

ε(θ) = β̂sms cosh(sθ) (4.149)

where eventually one can add a interacting term through the addition of a kernel.
Therefore it should be possible to carry a similar analysis as for the standard case.
This clearly requires (4.144) to hold. In a many particle theory, this should look
something like:

αs = αms
im

s
j (4.150)

Now, we can also proceed by analogy with 4.2.2, since the modified inverse temper-
ature has no mass dependence, to find the CFT limit of (4.149): for right movers
and left movers respectively, we will have:

εR(θ) =
M sβ̂s

2
esθ̃ , εL(θ) =

M sβ̂s

2
e−sθ̃ (4.151)

where as usualM = meθ0 , with θ0 the divergent part of the rapidity. In the following
two sections we discuss how the previous results can be extended to include these
generalized perturbations.

12Note that this form of αs is the only one which allows to use Zamolodchikov argument pre-
sented in 4.2.2 also on the perturbing term, in order to reabsorb the infinity of the hyperbolic
cosine into the vanishing of the masses. Therefore we have a double reason to take this mass
dependence.
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4.6.1 Free fermion charges

Setting now m=1, we move to the evaluation of the charges: the discussion is slightly
more involved than before because both the spin of the perturbation and the spin
of the charge of interest will have to be considered separately, but we can essentially
generalize the results of 4.3.1. We start by observing that, in the presence of a spin
s in the deformation, even at equilibrium we cannot use the trick of writing the
dressing at some spin s in terms of the charge density of the same spin. This is
because we have:

hdrs̃ = hs̃ − α cosh(sθ)

∫ ∞

−∞
cosh(sθ′)n(θ′)hdrs̃ (θ′) (4.152)

where s is the spin appearing in the modified kernel, while s̃ is the spin of the charge
we are performing the dressing operation on. We can avoid this problem in the case
of the energy, since the dressing operation can be exchanged between the terms of
the integral, such that one obtains (assuming equilibrium from the start):

Edr = cosh θ − αqs cosh(sθ) (4.153)

From this it is possible in a first instance to find the charge density of the same spin
s corresponding to the spin of the perturbation:

qs =
1

2π

∫
dθ cosh (θ)n(θ)hdrs (θ) =

1

2π

∫
dθEdr(θ)n(θ)hs(θ)

=
1

2π

∫
dθ(cosh θ − αqs cosh sθ)n(θ) cosh(sθ)

=
1

2π

∫
dθ(cosh θ − αqs cosh sθ)

∑
n

(−1)n+1e−nβ̂ cosh(sθ) cosh(sθ)

=
1

2πs

∫
dθ(cosh

θ

s
− αqs cosh θ)

∑
n

(−1)n+1e−nβ̂ cosh(θ) cosh(θ)

where in the last step we have changed the integration variable. Now we can use
the modified Bessel function exactly as done for the standard perturbation:

qs =
∑
n

(−1)n+1 1

πs

[(
K1+1/s(nβ̂)−

1

snβ̂
K1/s(nβ̂)

)
− αqs

(
K2(nβ̂)−

1

nβ̂
K1(nβ̂)

)]
(4.154)

which is clearly identical to (4.58) except for the substitution s→ 1
s
, and hence the

final solution for the charges is identical up to this substitution: defining s′ = 1/s,
we simply rewrite 13

qαs =
(s′)2Γ(s′)2s

′−1ζ(s′ + 1)(1− 2−s′)

πβ̂s′+1
(
1 + απ

12β̂2

) . (4.155)

13Note that since s′ is not an integer we cannot use the factorial as we did above, but we need
to use instead sΓ(s): the two expressions coincide for integer values.
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Now, the knowledge of this fundamental charge allows to find the charges of all the
others, with spin s̃ different from that of the perturbation:

qs̃ =
1

2π

∫
dθEdr(θ)n(θ)hs̃(θ) (4.156)

=
1

2π

∫
dθ(cosh θ − αqs cosh sθ)n(θ)hs̃(θ) (4.157)

which can then simply be solved by analogy and substituting (4.155), obtaining the
complicated expression for the generic-spin charge densities:

qαs̃ = q0s −
α

8π
qαs

[
(2|s−s̃| − 2) · (|s− s̃|!)

β̃|s−s̃|
ζ(|s− s̃|) + (2s+s̃ − 2) · (s+ s̃)!

β̃s+s̃
ζ(s+ s̃)

]
(4.158)

where s is the spin of the perturbing operator and s̃ is the spin of the generic charge
that we are taking into consideration, q0s is the charge in the unperturbed theory,
while qαs is (4.155). Therefore the equilibrium situation can be dealt with in a rather
straightforward way, althouth the exact expressions become much more intricated.

4.6.2 Non-Equilibrium

On the other hand, the main discussion which was presented in sections 4.3 on-
wards, which allowed to solve the partitioning protocol with great generality in the
conformal limit, relied essentially on the possibility of writing the dressing of a spin
s quantity in terms of the density and current at that precise spin. In the present
case this is in general not true, except for the energy and momentum which satisfy:

Edr = m cosh(θ)− αms cosh(sθ)qs + αms sinh(sθ)q−s (4.159)
pdr = m sinh(θ)− αms cosh(sθ)js + αms sinh(sθ)j−s (4.160)

where the -s is used to indicate the odd spin densities and currents, which in general
will be different from zero if the system is not at equilibrium (in this notation, we
would have q1 = qE, and q−1 = qP , and similarly for the currents). At least in the
conformal limit, we can use the equality qs = j−s and viceversa (which is the same
as qE = jp and jE = qp), to obtain:

Edr = m cosh(θ)− αms cosh(sθ)qs + αms sinh(sθ)js

pdr = m sinh(θ)− αms cosh(sθ)js + αms sinh(sθ)qs

Therefore we see that the discussion presented for the standard s=1 T T̄ cannot
be applied directly, because it is not possible to obtain a close solvable system
containing the quantities at a fixed spin s. The main difficulty arising when the
generalized deformations are introduced regards the effective velocity. As already
clear from (4.159), contrarily to what happened for the standard deformation in this
case the dressed energy vanishes for two quasi-symmetric values of the rapidity, as
shown in figure (4.7). This behaviour is quite problematic, and rather unique,
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Figure 4.7: In the presence of generalized deformations the effective velocity ex-
hibits a peculiar behaviour, namely it diverges at two values of rapidity which
corresponds to the zeros of the dressed energy. This makes the solution to the
partitioning protocol extremely interesting in the non-conformal case. More work
should be done to give an interpretation to these singularities.

although it had been observed already for the hard rods in GHD. First of all, the
solution to the partitioning protocol described in chapter 3 requires to have a smooth
effective velocity, which is clearly not the case, and therefore the general solution
will not be given by a stacking of contact discontinuities as usual. Another strange
feature is the asymptotic behaviour: usually, the hyperbolic tangent-like shape of
the effective velocity implies that it is negative for negative values of the rapidity,
and positive for positive values, but this is not the case in the present situation.
This inverted behaviour might suggest unphysical and puzzling phenomena such as
the flow of energy from the coldest to the hottest side of the partitioning protocol,
unless the solution for the n-function is significantly different from the one we have
in the case of continuous effective velocities, namely (3.34). These features signal
an interesting kind of transition taking place: the fact that the dressed energy
can become negative implies that, for example, the TBA quasiparticle density also
becomes negative, since:

ρp(θ) =
1

2π
n(θ)Edr(θ) (4.161)

These are all unusual properties whose physical meaning is not clear at this stage
and is left for future investigation. Fortunately, however, the situation greatly
simplifies in the conformal limit, in light of the following observation: as m → 0,
the two poles are moved to ±∞, disappearing completely as m = 0. Moreover, it is
also easy to see that in the conformal limit the central part of the effective velocity,
is exactly the arctangent (this is exact, since we are dealing with the free fermion).
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This can be easily shown by calculating the effective velocity from (4.159):

veff =
m sinh(θ)− αms cosh(sθ)js + αms sinh(sθ)qs
m cosh(θ)− αms cosh(sθ)qs + αms sinh(sθ)js

(4.162)

To take the limit we make the assumption that the currents and densities are well
behaved functions in the conformal limit, as it happens in the standard T T̄ case,
and this immediately implies that:

lim
m→0

veff = tanh(θ) (4.163)

This behiour is shown in figure 4.8, and it is completely different from the standard

Figure 4.8: In the conformal limit, the effective velocity becomes a perfect hyper-
bolic tangent, exactly as in a free theory. In this sense the effect of the perturbation
modifies the structure of the theory less than in the s=1 T T̄ case studied above. To
favour the convergence of the numerical simulation, which is greatly spoiled by the
higher value of s (equal to 2 in this case) which tends to overflow the hyperbolic
cosines in the TBA equations, also the temperatures have been taken extremely
small in this case, T = O(10−5)

T T̄ context, in which it is easy to show that:

lim
m→0

vs=1
eff =

sinh(θ)− αjα cosh(θ) + αqα sinh(θ)

cosh(θ)− αqα cosh(θ) + αjα sinh(θ)
(4.164)

because all the masses cancel in the fraction. In this sense the conformal limit of
the generalized theories is even easier, since we have a perfect arctangent so it is
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not even necessary to repeat the considerations on the flatness of the n-functions
which were instead necessary above, precisely because the effective velocity is of the
form (4.164). These considerations justify the idea of using the same strategy used
above also in this situation. The main problem resides in the aforementioned fact
that here it is not possible to obtain immediately a closed system for the currents
and densities, since the spin of the perturbation will always appear. A way out is
to define modified densities and currents as:

qss̃ :=

∫ ∞

−∞
cosh(sθ′)n(θ′)hdrs̃ (θ′)

jss̃ :=

∫ ∞

−∞
sinh(sθ′)n(θ′)hdrs̃ (θ′)

where again s is the spin of the perturbing term, and s̃ is the spin of the charge of
which the average is being calculated. Observe that

n(θ) ≡ ns(θ) =
1

1 + eβ̂s cosh(sθ)
(4.165)

So what we are doing is taking the cosh sθ which performs the averages with the
same spin as the n-function. These objects do not have the interpretation of con-
served currents and densities, but appear to be their natural generalizations. It is
thus possible to perform the same discussion as above in terms of these new quan-
tities, and this would allow to find the values of these charges in the perturbed
theory in terms of the ones of the unperturbed theory. The unperturbed versions
of these object are easy to compute in the case of the free fermion, and in the
general theory a similar discussion to that which will be done in appendix A can
be performed: their meaning can be understood as the density associated to a spin
s̃ charge with a driving term containing a cosh(sθ) potential. It is easy to convince
oneself that these quantities are easy to compute from the quantities we already
studied in chapter 4. Starting with the case s̃ = s we see immediately:

(j0)ss =

∫
sinh(sθ)

cosh(sθ)

1 + eβs cosh(sθ)
= (4.166)

1

s

∫
sinh(θ)

cosh(θ)

1 + eβs cosh(θ)
=

1

s
j11(β

s) = G(s, s)
(
T 2s
L − T 2s

R

)
(4.167)

where j11 is the standard CFT energy current. The same discussion can be applied
for the densities, hence we obtain:

(q0)ss = G(s, s)
(
T 2s
L + T 2s

R

)
(j0)ss = G(s, s)

(
T 2s
L − T 2s

R

)
where G(s, s) = πc

12s
. Similarly, always considering a driving term of the form

βs cosh(sθ), the energy currents and densities are easily computed:

js1 =

∫
sinh(sθ)

cosh(θ)

1 + eβs cosh(sθ)
=

1

s

∫
sinh(θ)

cosh(θ/s)

1 + eβs cosh(θ)
=

1

s
j11/s(β

s)
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where j11/s(β
s) are the current found above, for example in (4.74), only evaluated

at a value of spin 1/s, and at temperature βs (although our result was technically
valid for integer values of spin, there is no difficulty in extending it to contain also
1/s), hence the final result is

js1 =
1

s
G(1/s)(T 1+s

L − T 1+s
R ) (4.168)

and the same for the density:

qs1 =
1

s
G(1/s)(T 1+s

L + T 1+s
R ) (4.169)

while all the other generic currents will contain terms as s̃/s:

jss̃ =

∫
sinh(sθ)

cosh(s̃θ)

1 + eβs cosh(sθ)
=

1

s

∫
sinh(θ)

cosh( s̃
s
θ)

1 + eβs cosh(θ)
=

1

s
j1s̃/s(β

s) (4.170)

which then leads to the last interesting current in the unperturbed theory:

jss̃ =
1

s
G(s̃/s)(T s̃+s

L − T s̃+s
R ) (4.171)

Now we can use the same approach as in the standard case, although the calcula-
tions are slightly more intricate. We show how to obtain the energy current as an
illustration. First of all we consider the general dressing operation of the charge at
spin s, which coincides with the spin appearing in the T T̄ deformation:

hdrs = hs − αqss cosh(sθ) + αjss sinh(sθ) (4.172)

We see immediately that we obtain exactly the same system as the one we had
in the main discussion, for qss and jss , by simply multiplying by cosh(sθ)n(θ) or
sinh(sθ)n(θ) and integrating over the rapidities, and the solutions are immedi-
ately14:

(qss)
α =

(q0)ss − α((q0)ss)
2 + α((j0)

s
s)

2

1− α2((q0)ss)
2 + α2((j0)ss)

2

(jss)
α =

(j0)ss
1− α2((q0)ss)

2 + α2((j0)ss)
2

Then it is possible to obtain the charges and currents of the form qs1, j
s
1, again

starting from (4.172), and this time multiplying by sinh(θ)n(θ) and integrating
over rapidities; the result depends on the two quantities just found:

(qs1)
α = (q0)s1 − α(q0)s1(q

α)ss + α(j0)s1(j
α)ss

(js1)
α = (j0)s1 − α(j0)s1(q

α)ss + α(q0)s1(j
α)ss

14The only difference with (4.67) is that here we have introduced immediately the fact that the
odd currents are equal to the even charges, and viceversa, in the conformal limit.
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These are already solved since (qα)ss and (jα)ss are known. Substituting the ex-
pressions for the charges in the unperturbed theory, (4.168), and the results for
(qα)ss and (jα)ss, one has:

(js1)
α = G(1/s)

(
T̂ s+1
L − T̂ s+1

R + 2αG(s, s)
(
T̂ 2s
L T̂

s+1
R − T̂ 2s

R T̂
s+1
L

))
(1− 4α2G(s, s)2T̂ 2s

L T̂
2s
R )

(4.173)

Observe that this is not the usual energy current. The energy current would be:

jE =

∫
dθ sinh(θ)ns(θ)E

dr(θ) (4.174)

while this current we have found is a generalized version,

js1 =

∫
dθ sinh(sθ)ns(θ)E

dr(θ) (4.175)

So it is not clear what interpretation to give to this object. The "real" energy
current can be computed from (4.159), which implies that:

jE =

∫
sinh(θ)ns(θ) cosh(θ)− α(js1)

0(qs1)
α + α(qs1)

0(js1)
α (4.176)

The first integral cannot be easily reduced to known quantities, but from the dis-
cussion of appendix A it is easy to see that the temperature dependence will be
again of the form (T 2

L − T 2
R) as in the case of the thermal GGE. We will refer to the

prefactor generically as G1s, which for the s=1 case will have to reduce to known
quantities to have the correct limit, while for s>1 it is possible to evaluate it only for
the free fermion. Considering all the pieces together we obtain the final expression
for the energy current (from now on we don’t write the hat on the temperatures for
legibility):

jE = G1s(T
2
L − T 2

R) +
4α2G(1/s)2G(s, s)T 1+s

L T 1+s
R (T 2s

L − T 2s
R )

s2(1− 4α2G(s, s)2T 2s
L T

2s
R )

where the s2 in the denominator comes from the 1/s appearing in the definition
of the current (4.168). Since for s=1 this has to reduce to the result of [24], we
consider:

jE(s = 1) =
(T 2

L − T 2
R) [G − 4α2(GG(1, 1)− G(1)2)T 2

LT
2
R]

1− 4α2G(s, s)2T 2s
L T

2s
R

(4.177)

and therefore we see that in order to have the correct value for s=1 we need to have
G = G(1)2G(1, 1)−1, such that the second term in the square bracket vanishes. But
this is simply π

24
= G(1). The other values G1s are computed for the free fermion in

the appendix. The final equation for the energy current is conveniently expressed
as:

jE = G1s(T
2
L − T 2

R) +
4α2G(1/s)2G(s, s)TLR(3s+ 1, s+ 1)

s2(1− 4α2G(s, s)2T 2s
L T

2s
R )

(4.178)
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where for compactness we have introduced the composite temperature-dependent
function:

TLR(a, b) = T a
LT

b
R − T a

RT
b
L (4.179)

which satisfies TLR(a, b) = −TLR(b, a) = −TRL(a, b) and TLR(a, a) = 0, properties
which immediately show that the correct limit is obtained when s=1. Also, the first
property implies the (obvious) fundamental fact that the currents vanish when the
two temperatures are equal. By analogy with the previous situation, we can define
the prefactor cLR = (1− 4α2G(s, s)2T 2s

L T
2s
R )

−1. Note that the values of Gss = πc
12s

are the same for every theory, upon changing the central charge c, since they are
associated to the evaluation of the integral G(1) of appendix A. So they are easily
known quantities. This is not the case instead for G(1/s) and G1s, which in the free
fermion can be computed using expression (5.5), while it is unknown for generic
theories. For example, the s=2 case can be expressed as:

jE(s = 2) =
ln 2

8π
(T 2

L − T 2
R)− α2πc

24
G(1/2)2cLRTLR(7, 3) (4.180)

where we have used the exact expression for G12. Repeating essentially the same
derivation one is lead to a similar expression for the conserved densities:

qE =
π

24
(T 2

L + T 2
R) + αG2

1/scLR

(
αGssT(LR)(3s+ 1, s+ 1)− 1

2
T(LR)(s+ 1, s+ 1)

)
(4.181)

where the T(LR) are the symmetrized versions of the functions defined above,

T(LR)(a, b) = T a
LT

b
R + T a

RT
b
L (4.182)

Again it is easy to see that in the case s=1 expression (4.181) reduces to the ex-
pression of [24]. The procedure can also be generalized to arbitrary spins, leading
to analogous expressions. As highlighted by the complicated expression for the
equilibrium charges (4.158), and the one just found for the energy current, how-
ever, the situation becomes rapidly more involved if one attempts to compute the
currents for higher spins, when the spin of the charge is different from the spin of
the perturbation. It is important to realize however that the reasoning is always in
principle applicable, if enough information on the unperturbed quantities is acces-
sible. Although the calculations in this section have been performed only for the
free fermion, the main discussion made for the standard T T̄ deformation indicates
clearly that this result for the partitioning protocol should be valid for a generic
theory, simply by modifying the central charge which appears in the expressions.
In fact, the formal discussion in which we considered the inversion of the integral
operators should be still applicable in this context. Therefore we see that the equi-
librium discussion can be extended with no particular problem to the general case.
However in this situation it is the behaviour out of the conformal limit which is
particularly puzzling, since the density of quasiparticles can become negative, and
this has strange implications on the energy flows. This situation is clearly extremely
difficult to treat analytically, and therefore numerical studies will be necessary to
study these interesting phenomena.
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Chapter 5

Generalized Hydrodynamics of T T̄ de-
formed theories: numerics

Although the results obtained in the previous chapter appear solid because of the
several discussed comparisons with previously known results, numerical testing is
the final analysis needed to check the overall validity of the theoretical framework
presented, in particular of the two expressions (4.74) and (4.75), and their general-
izations proposed in section 4.6. These expressions show the behaviour of densities
and currents in the m → 0 limit, and to test them is rather straightforward. First
of all, one can simulate a partitioning protocol, in the standard way which will be
explained below, to obtain the numerical values of the currents jsimul for different
values of m. Since we are interested in the NESS currents, we evaluate them for
ξ = 0. Then, one can normalize these currents by the factor which appears in the
analytical expression (such as (4.74) for the currents) in order to obtain a quantity
which should not depend neither on the choice of α nor of the temperatures:

jnorm =
jsimul

cLR

((
T̂ s+1
L − T̂ s+1

R

)
+ απc

6
(T̂ s+1

L T̂ 2
R − T̂ s+1

R T̂ 2
L)
) (5.1)

In the conformal limit this is expected to tend to the value of G(s), which in the
case of the free fermion can be computed exactly, whereas in other situation only
numerically, but still quite easily solving the integrals shown in appendix A. Clearly,
to check that the overall dependence on the temperature is correctly given by (4.74)
it is enough to check that jnorm is independend from TL and TR, since it means
that through (5.1) we are removing all the temperature dependence. Several other
minor checks, such as regarding the monotonicity of the effective velocity which we
have shown in the conformal limit, can be also performed, and some interesting
quantities relevant for the TBA can be studied. In this chapter we show the perfect
agreement of the analytical results with the simulations. In the final part we also
address the intuition presented in [94], namely the interpretation of the effect of the
T T̄ deformation as the introduction of a finite lenght of the particles.
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5.1 Simulating GHD protocols

The approach which is usually followed to simulate the different GHD protocols is
to solve recursively the integral equations which characterize the theory, namely
the TBA equations and the dressing equations, and use the results to compute all
other relevant quantities appearing in the system, such as n-functions, densities,
ground state energy, and currents. To find the TBA pseudoenergies, for example,
it is sufficient to start the iterative process by setting as first step the energy equal
to the driving term, ε0(θ) = ν(θ)1. Then, after i iterations the approximated
pseudoenergy will be:

εi(θ) = ν(θ) + φ ∗ L(εi−1)(θ) (5.2)

If nothing patological happens with the algorithm, it is natural to expect that the
"true" pseudoenergy will be the limit of the sequence:

ε(θ) = lim
i→∞

εi(θ) (5.3)

Numerically, the algorithm can be set to stop once the difference between two the
pseudoenergies at the i-th and (i+1)-th iterations is below a certain value. Since
in general this approach is known not to have particular convergence issues, we do
not bother with the eventuality of pathologies in the approach to the solution: the
presence of a term exp(− cosh(θ)) inside the L-function should in any case make
everything converge eventually, even if the kernel contains hyperbolic cosine terms
coming from the T T̄ .

A similar method can be applied immediately also to the dressing operation,
although with some more complications: taking as 0-th order approximation the
bare quantity, hdr0 (θ) = h(θ), the iteration becomes

hdri (θ) = h(θ)− φ ∗ (nhdri−1) (5.4)

While the TBA equation could be iterated directly, here it is necessary to find the
n-function first. In the partitioning protocol, one can perform a circular argument,
to find both the quantities at the same time. First, note that to find n it is sufficient
to find the numerical value of θ∗, and then use (4.64). The iterative algorithm is
defined as follows: one starts with θ∗0 = 0, then this value can be used to find n0 and
hence the dressed energy and momentum using (5.4). These quantities can then be
used to find the corresponding approximated effective velocity using (3.25), which
can be set to zero to finding the new value for θ∗1. Iterating this process, we can
perform the algorithm until the error in θ∗i reaches a certain threshold. Therefore
in this way it is possible to obtain the dressed quantities and n(θ) simultaneously.
Once these quantities are known, any quantity relating to the partitioning protocol
can be immediately computed, since all that is needed are integrals containing the
bare quantities, the dressed quantities, and the n-function. Hence it is possible

1Note that here the 0 subscript does not refer to the unperturbed theory as above, but just as
the 0-th approximation of the pseudoenergy
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for instance to obtain the values of jsimul and hence of jnorm at different values of
the parameters and of the masses, which can then be used to compare with the
analytical expressions.

The comparison between the analytical results and the simulations is straight-
forward: jnorm has to tend to G(s) for m → 0 in order for our result (4.74) to be
true. This clearly has to be valid for all values of α, TL and TR. In the case of
generalized deformations, the result will depend on the various different parame-
ters which appear in the equation, but the procedure is identical. In the following
sections, we show that the analytical results of this work agree very well with sim-
ulations performed on three fundamental examples of relativistic theories, namely
the free theory, the sinh-Gordon model, and the Lee-Yang model. Extensions to
theories with several particle types requires a slightly more intricate procedure, to
take into account the coupling between the various dressing equations, but the main
procedure is exactly the same.

5.2 Free fermion

The case of the free fermion is the simplest, since as shown in Appendix A we can
even use the exact values of G(s) for the comparison, where:

G(s) = s2s

4π
(1− 2−s)Γ(s)ζ(1 + s) (5.5)

Figure 5.1 shows the normalized currents compared to the values of G(s). The
convergence to the conformal value is exact and also extremely fast, with slower
convergence as the spin is increased. In the plots, the dots represent the simulated
values of the currents at the different values of the mass, normalized as in (5.1),
and the dashed lines the analytical expected value of (5.5). The variable on the x
axis is one which is usually used when studying the approach to conformal limits,
namely

x = ln(2/r), m =
2

β
e−x (5.6)

This is used to present more clearly the conformal limit as x → ∞. In the simula-
tion, since it is the mass which is varied to reach the conformal limit, the two tem-
peratures and α enter as parameters. However, repeated simulations show clearly
that the result in the conformal limit is completely independent by the choice of
these three parameters, as expected (since the normalization is precisely performed
to remove the temperature and α dependence), although clearly the behaviour for
small values of x (and hence large masses) will strongly depend on this choice, since
the analytical expressions have no predictive power in this regime 2

2even if the expressions (4.67) were at least approximately valid out of the conformal limit,
using arguments such as the fact that the zero of the effective velocity appears not to change only
slightly from the correct value, it is the unperturbed results which are strictly dependent on the
conformal limit, and hence make the simulated results deviate significantly from the analytical
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Figure 5.1: The bullet points are the numerical values of the normalized currents,
evaluated at four different values of spins. The dashed lines are the values of
G(s) at which the normalized currents are expected to tend in the conformal limit,
calculated by (5.5). The plot is done against the variable x = ln(2/r), and therefore
the conformal limit is reached as x→ ∞.

5.2.1 Generalized T T̄

Similar results are also found for the generalized deformations discussed at the end
of the previous chapter. The three discussed currents, namely jss , js1, and jE are
found to be in good agreement with the analytical expressions, in which we have
used the values of the constants G exactly calculated in appendix A. As the spin of
the perturbation is increased, the convergence of the algorithms becomes incredibly
slow, because of the hyperbolic cosine in the kernel which gives a strongly divergent
term. This signals a clear strength of the expressions obtained, since together with
giving exact expressions they also allow to greatly simplify the computational effort
of numerically studying such models by relating their solution to the solutions of the
unperturbed theory. Since the non-conformal situation is problematic because of
two divergences of the effective velocity, it is necessary to take extremely low value

prediction. Therefore only expressions (4.75) and (4.74) are problematic, while (4.67) is still
approximately true. If we had access to unperturbed expressions out of the conformal limit, we
could extend the result with high precision.
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of the masses to see the correct results. To obtain this without spoiling convergence
the simulations have been performed at small temperatures, TL, TR ≈ 10−8, and
hence β ≈ 108, such that the mass can be extremely small even if x is of order
unity.

Figure 5.2: In the deep conformal limit, also the results obtained in section 4.6
appear to be verified. The parameters of the simulation are TL = 5·10−8, TR = 10−8,
α = 0.01.

5.3 Interacting theories

5.3.1 Scaling Lee-Yang model

The scalng Lee-Yang model, first studied in [16] as the first example of application
of the TBA technology, is built from the Lee-Yang minimal model, a minimal non-
unitary conformal model with central charge c = −22/5 and effective central charge
ceff = 2/5, perturbed by the only relevant operator of the theory, of dimensions
(−1/5,−1/5). The spectrum of the theory consists of a single particle B, and
therefore the S-matrix has only one element, which can be found via the bootstrap
approach presented above, and is shown to be [100]:

SBB(θ) =
sinh θ + i sinhπ/3

sinh θ − i sinhπ/3
(5.7)
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Figure 5.3: Also the comparison with the scaling Lee-Yang theory shows an ex-
tremely rapid convergence to the conformal expected values. Therefore the theo-
retical results appear to be confirmed also in the case of interacting theories. The
values of G(s) are clearly smaller than the free fermion values, because the (effec-
tive) central charge is smaller.

Recalling that the kernel appearing in the TBA equations is the logarithmic deriva-
tive of the S-matrix, we obtain immediately:

φ = − 4
√
3 cosh(θ)

1 + 2 cosh(2θ)
(5.8)

In this situation, the factors G(s) cannot be computed exactly, so they have to be
evaluated by solving numerically the integral in (A.9), which in the conformal limit
is equivalent to solve

s2s

4π

(
βm

2

)s ∫ ∞

−∞
cosh(sθ)L(θ) (5.9)

The numerical result of this integral can be compared to the simulations3. The
results are shown in figure 5.3, which shows again an extremely fast convergence

3Note that in this situation it is the effective central charge that has to be used in equations
(4.20) and (4.74), as is standard in the TBA context: when quantizing a theory on the cylinder,
the relevant quantity is ceff = c− 24∆min, see for example [26].
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to the expected values. As should be expected, the values of G(s) are smaller than
in the case of the free fermion, as they depend on the plateau solution of the TBA
equations and this in turn determines the central charge, which is smaller for this
model than in the free case. This gives a small confirmation of the idea that these
objects, as discussed in appendix A, are some sort of generalization of the central
charge of the theory, and perhaps could be obtained as functions of the central
charge itself.

5.3.2 Sinh-Gordon Model

The Sinh-Gordon model is an integrable model defined by the lagrangian

L =
1

2
(∂ϕ)2 − m2

g2
(cosh(gϕ)− 1) (5.10)

This can be seen as a CFT of central charge c = 1 (the free boson) perturbed by the
hyperbolic cosine term, or equivalently as the perturbation of a Liouville CFT by
the relevant vertex operator e−

√
2gϕ. In any case, the application of the c-theorem

shows that cuv = 1, so this is the value we need to use to evaluate β̂ and the other
quantities in the conformal limit. The exact S-matrix for the model is

SBB =
tanh 1

2
(θ − iπB)

tanh 1
2
(θ + iπB)

(5.11)

where the factor B is expressed in terms of the coupling g as B = g2

4π
1

1+ g2

8π

. The

kernel of the theory is given by

φ =
2 cosh θ sin( g2π

g2+8π
)

cosh2 θ sin2( g2π
g2+8π

) + sinh2(θ) cos2( g2π
g2+8π

)
(5.12)

We focus on the reflectionless point g =
√
8π, for which the kernel greatly simplifies:

φ =
2

cosh θ
(5.13)

The simulation with this model shows a much slower convergence compared to the
other two, but still leads to excellent results, as shown in figure 5.4. This is not a
suprise, since it is well known that the convergence of GHD algorithms involving the
Sinh-Gordon model is particularly slow compared to other models (The convergence
issues are actually related to the TBA structure in general, since for example the
L-functions do not form plateaus in this situation). Again, we see also that the
values of G(s) in this case are larger than in the two previous situations, and this
could be related to the fact that the UV central charge of the model is c=1, and this
provides a further hint to the fact that the G(s) could be functionally dependent
on the UV central charge in some way.4

4However, simply giving a look at the expression of the higher spin charges for the free case
shows that this dependence cannot be particularly easy. It is reasonable to imagine that if the G(s)
can be expressed in terms of c this will be a consequence of some special property of polylogarithms
of Zeta functions, as it happened in the calculation of [16] of the central charge.
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Figure 5.4: In the Sinh-Gordon model the convergence to the conformal value is
much slower, but still in the conformal limit all the currents tend to the correct
results.

5.4 Out of the Conformal limit

As clear from all the figures of the last section, the results which have been obtained
are only valid in the CFT limit. An interesting question to consider is wether this
is related to the fact that the discussion performed in this work is strictly valid in
that limit, or if it is a fault of the unperturbed currents and densities (4.72). That
is, we can ask if, although equations (4.75) and (4.74) clearly appear to be wrong
in the conformal limit, the fundamental expression (4.67) is at least approximately
valid in a massive theory. This is suggested by a numerical analysis of the effective
velocity, which shows that the θ∗ of the perturbed theory is still very close to that of
the unperturbed theory even for massive theories, and therefore all the discussion
of chapter 4 should apply. Since we do not know the analytical expression of
the unperturbed quantities for massive theories, we need to simulate them. The
approach is quite simple: it is necessary to simulate the unperturbed currents and
densities (at inverse temperature β̂ which is found numerically using the definition
β̂ = β−αEα

0 since the analytical expression is not valid out of the conformal limit),
substitute the simulated values in (4.67), and compare the result with the direct
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Figure 5.5: The numerical values compared to the dashed lines calculated from
(4.67) using the values of the unperturbed theory. It is clear that the results coincide
not only in the conformal limit, as it should be, but also in the large mass limit.
The plot uses generic values of temperatures of the two halves, and its shape is
largely independent on them. (the value of r in the plot is actually rL, since it is
different for the two sides). As in the simulations of the previous section, also in
this situation the error becomes increasingly large as the spin is increased

simulation of the perturbed theory, evaluated at the real temperature β. In this
way we can test the validity of (4.67) without having to take in consideration the
validity of expressions like (4.72). The simulations show clearly that the range of
validity of the expression is not only the conformal limit, but also in the large mass
limit, as can be seen from figure 5.5. This was expected by considerations on the
modification of the effective velocity, and is valid for all three of the models studied
in the previous section. The deviation between the formula and the real value of the
current is mostly visibe in the intermediate region m ≈ α, namely outside of the two
interesting limits. By increasing the value of α while keeping all other parameters
fixed, the discrepance keeps growing in this intermediate region of the mass values,
as clear by the comparison of figures 5.5 and 5.6. However the results show clearly
that expression (4.67) should be at least perturbatively valid when α is small: by
introducing higher corrections as in 4.5.3 one could have results of higher precision.
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Figure 5.6: By increasing the value of alpha, while keeping the temperatures fixed,
the disagreement between the predicted and simulated value grows significantly
larger. However the validity of the results in the m → ∞ and m → 0 is clear for
any value of α.

The most interesting check that can be performed out of the conformal pointis a
test of the equilibrium expression (4.53), which we claimed is valid for any value of
the temperature. Indeed, at equilibrium the effect of the perturbation is (as already
found by other authors) exactly identical to the modification β → β̂, with no further
change. This claim is perfectly confirmed by figure 5.7, which shows the first three
values of spin for the free fermion. Simulations for the Lee Yang scaling model and
for Sinh-Gordon model lead to analogously perfect result. Therefore we see that the
approach of this work allows to obtain exact results out of the conformal point in
the case of equilibrium charges (and clearly also of equilibrium odd-spin currents,
which do not vanish at equilibrium).

5.5 Width of fundamental particles?

Once the algorithm discussed above to evaluate the basic TBA quantities is set
up, it is then easy to study how the statistical quantities of the system vary as a
function of α. For example one can study the partition function, the free energy, the
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Figure 5.7: As expected, the charges at equilibrium given by formula (4.53) are
valid for every value of the mass, as exactly confirmed by the simulations. Here the
values of α and β are chosen freely, but no essential difference is observed varying
them.

number of quasiparticles, and all of the relevant quantities which were introduced in
chapter 2. In this section, to conclude the thesis, we focus on an interesting aspect
related to the TBA density of quasiparticles, expressed as ρp in the discussion above,
and the total number of these quasiparticles (per unit length) which is simply the
integral of the density over all rapidity space. This will allow us to give a numerical
test of an idea first appeared in [94], namely that the effect of the T T̄ perturbation
is to give a finite width to the fundamental particle which constitute the system.
The considerations of these sections are just meant to give an intuition, a visual
explanation of the effect that the perturbation has on the theory.

As shown in figures 5.8 and 5.9, except for a slight antisymmetric deformation,
the main visible effect of the perturbation on the particle density is to reduce it
drastically as α is increased. The double peak structure of the solution is charac-
teristic of the small r situation: increasing the mass (or the inverse temperature)
the two peaks merge and form a maximum in the middle. This is simply related to
the fact that the peaks are located in θ = ± ln(2/r), by considerations which mimic
those used to discuss the constant plateau TBA. Hence for r ≳ 2 this would become
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Figure 5.8: Values of ρp at equilibrium for different values of α.The symmetry of
the system is preserved by the deformation, which only appears to have the effect
of reducing the overall density. For different values of the simulation parameters
another effect might show, namely a merging of the peaks as a consequence of the
increase of the effective inverse temperature. This second effect dominates if the
peaks are close enough in the beginning, namely if m ∼ α.

negative, meaning that the peaks merge in θ = 0 5. Since the net effect of the T T̄
perturbation is a net increase of the inverse temperature as β is substituted by β̂,
this could lead to an effect of this type, namely a merging of the peaks. However,
in general this effect appears clearly much less visible than the drastic reduction
of the height of the peaks. This is indeed what happens in figure 5.8: the peaks
slightly move towards the origin, but this effect is overshadowed by the reduction
of the density of states. The behaviour of the density also implies that the total
number of quasiparticles of the system will have a strong α dependence. There is
a clear physical intuition behind this fact: following [94], let us suppose that each
fundamental particle has a width equal to some parameter l0, which we assume to
have a functional dependence on α, monotonically increasing with the parameter.

5Note that this behaviour is the opposite of that of the n-function, in which the peaks merge
in the conformal limit and are well separated when the mass is increased, as was used to solve the
partitioning protocol.
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Figure 5.9: In the non-equilibrium (partitioning protocol) situation, the densities
appear not only to be reduced, but also to undergo a slight antisymmetric defor-
mation, which is induced by the current factor in expression (4.10). Also in this
case an interesting and rich phenomenology can be observed by studying various
configurations of the parameters.

Then, except for an eventual transient region when α is small (where the quantifi-
cation of this depends on the situation), we will have a saturation of the number
of particles per unit length, due to the fact that the particles themselves occupy an
increasing amount of space:

N

L
∝ l0(α) (5.14)

Therefore a study of N
L

as a function of α will allow to test this prediction of
the model.We can use dimensional considerations to make educated guesses on the
expression for l0(α). Since the only dimensional quantities of the system are m, α
and β, a combination with dimension [M ]−1 will have to be constructed through
their combinations. Since α has the units of [M ]−2, the most natural possibility is
something like l0(α) = mα, and in fact this is the one which was found in [94] for
relativistic massive particles. This is indeed confirmed by the plot of figure 5.10,
which shows a saturation of Nα for values of α large enough. Clearly, increasing
the value of m this effect becomes visible for lower values of α, while for m of order
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unity the simulation overflows before this effect becomes relevant.

Figure 5.10: In the massive case the result proposed in [94] is conformed by
the simulations: since the value of Nα saturates for α large enough, we infer that
the particles acquire a width l0 = mα. In order to amplify the visibility of the
saturation, the simulation is performed with m=40.

In the conformal limit this is clearly not the case (since m=0), so we might have
two possibilities: either the particles don’t acquire a length or the length will not
involve the mass, something as l0(α) =

√
α, which dimensionally is still acceptable.

This is indeed what the simulations predict when computing the total number of
particles, as shown in 5.11. This plot, in which the mass parameter was taken as
m = 10−8 ≈ 0 (not zero because the algorithms would fail) show that after a small
transient until α ≈ 10 the value of N

√
α saturates to a fixed value k, showing

that we can interpret the length of the particles as l0 = k
√
α, as suggested by the

dimensional considerations. This hints at the possibility of extending the theoretical
description of [94] in order to extend their result to the massive case, in order to
explain this difference in the behaviour.

In conclusion, numerical simulations provide very robust confirmation of the
predictions of this work. To explore the behaviour out of the conformal point,
this approach is the only possible way to follow, since the analytical solutions are
inadequate and a perturbative solution is unfeasable in practice. An interesting line
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Figure 5.11: Number of particles per unit lenght as a function of the parameter
α, multiplied by

√
α, in the case m ≈ 0. The plot clearly shows that N∝ 1√

α
,

suggesting a lenght of the particles given by l0 ∝
√
α

of research which we will pursue in the future is precisely the numerical study of the
generalized T T̄ deformations, which out of the conformal limit exhibits novel and
strange behaviours, such as the divergence of the effective velocity, which completely
spoils the possibility of finding the n-function in the standard manner.
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Conclusion and Outlook

In this work we have discussed the out of equilibrium dynamics of Quantum Field
Theories with T T̄ deformations in the framework of Generalized Hydrodynamics.
We have done this by building a general theoretical approach which, by considering
a perturbed massive theory and successively taking the massless limit, allows us to
obtain exact solutions to the Riemann problem of Hydrodynamics in the conformal
limit. Thanks to the particular factorization of the TBA equations, exact analytical
expressions for the average higher spin currents and densities have been obtained,
with excellent numerical validation. These expressions both generalize and repro-
duce the results of [24]. The achieved results show that it is possible to encode
the effect of the perturbation into expressions of unperturbed quantities, with a
dependence on the perturbing parameter α which is purely algebric. This leads
to a great simplification of the problem, both from the conceptual and numerical
viewpoint, since simulations involving perturbed theories show significantly slower
convergence rates, and expressions such as (4.67) can be used to reduce drastically
the duration of numerical simulations.

Although it is a common feature that the out of equilibrium dynamics of Quan-
tum Field Theories is only exactly solvable in the CFT limit, a thorough pertur-
bative analysis has been performed in order to go beyond the massless case for the
simplest possible theory on which the T T̄ deformation can act, namely the free
theory. With the help of special functions, we found interesting expressions for the
lowest order corrections at m ∼ 0. We have conjectured that extensions to higher
orders (and eventually some exact results) could be obtained by introducing a new
class of generalized Lambert functions, of which we outlined the main features,
although a precise mathematical definition and characterization of such functions
constitutes a mathematical challenge which is far beyond the scope of this thesis.

All the results obtained have also been generalized to find similar expressions
which are valid in higher spin T T̄s deformed theories, in which the term appearing
in the TBA equations is a generic cosh(sθ). In particular, this configuration exhibits
an even nicer behaviour compared to the standard deformation, since the effective
velocity of the perturbed theory tends exactly to the unperturbed effective velocity
in the conformal limit. Out of the conformal limit, however, the study of the gener-
alized deformations leaves a number of essential questions open. In particular, the
behaviour of the effective velocity exhibits some completely novel and unexpected
features: for example, it presents divergences at several points where the dressed
energy is vanishing, and this implies a failure of the standard GHD solution of the
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partitioning protocol in terms of contact discontinuities; also, it implies that the
dressed energy becomes negative, and this could lead to a negative energy density,
currents flowing in the "wrong" direction (from the cold slab to the hot one), and
other striking and unexpected phenomena. It is yet unclear whether these solutions
have to be discarded as unphysical, or have some deep physical meaning, or if they
are actually even solutions, since the non-analyticity of the effective velocity could
imply the need for a completely different solution of the Riemann Problem. This
study will mainly have to be performed numerically, using the techniques described
in the last chapter, because of the difficulties inherent in the purely theoretical
approach.

Therefore it is clear that together with answering many interesting questions re-
garding the structure of IQFTs with irrelevant deformations, this thesis also leaves
several important problems open. In particular, the main prospected lines of fur-
ther research regard the study of the strange behaviour of the effective velocity
which has been observed and discussed, and the related peculiar behaviours aris-
ing in the T T̄s deformations, which would imply a rethinking of the approach to
solve the partitioning protocol, and could shed light on the serious issues mentioned
above. Moreover, a complete study of the scaling function and hence of β̂ for the
free fermion can be in principle performed,along the lines of the famous discussion
of [56], if generalizations of the Lambert functions can be defined. Although this is
work for mathematicians, it should be possible to at least define more precisely what
the properties of these new special functions should be. Finally, another direction
which has been left completely untouched is the study of more complicated hydro-
dynamical quantities, such as correlation functions, or the hydrodynamic matrices,
to test if also in this case it would be possible to obtain them as functions of the
unperturbed quantities as was found above. This would imply a complete decou-
pling of the perturbation in any Hydrodynamical problem, and could have profound
implications on a complete characterization of the effect of the T T̄ deformation on
Integrable Quantum Field Theories.
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Appendix A

Higher currents in CFT

We now prove the aforementioned expression for the NESS currents and densities
in pure CFT, following the discussion of [95], with some original additions. We will
assume that the effective velocity is a monotonic function of the rapidity, which is
the case in all the situations of interest for this work. We consider TBA systems in
GGE which take the form:

εs(θ) = βs cosh(sθ)− φ ∗ Ls(θ) (A.1)

We normalize the mass to 1, and look for expressions for the densities and currents
qs and js related to the one-particle eigenvalues hs = cosh sθ. The idea of the
calculation follows Zamolodchikov’s approach to the study of the CFT limit of the
TBA equations [16]. The densities are evaluated as:

qs =

∫ ∞

−∞

dp

2π
n(θ)hdrs (θ)

=

∫ θ∗

−∞

dθ

2π
cosh(θ)nR(θ)h

dr
s (θ) +

∫ ∞

θ∗

dθ

2π
cosh(θ)nL(θ)h

dr
s (θ)

=

∫ θ∗+xR

−∞

dθ

2π
cosh(θ − xR)n

−
R(θ)h

dr
s (θ − xR)

+

∫ ∞

θ∗

dθ

2π
cosh(θ + xL)n

+
L(θ)h

dr
s (θ + xL)

where x = ln(2/β). Now, in the conformal limit, as well known, the solutions to the
TBA equations form plateaus centered in θ = 0. For the inverse temperature going
to zero we can approximate the hyperbolic cosines with exponentials, with ±θ for
the right and left movers respectively. We obtain two TBA equations for the right
and left movers, and therefore two dressing equations, namely:

ε±s (θ) = 2s−1e±sθ − φ ∗ L±
s (θ) (A.2)
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From which we get to the following equations:

ε′s
±(θ) = ±s2s−1e±sθ + φ ∗ n±

s ε
′
s
±(θ) (A.3)

hdr±s = h±s + φ ∗ n±
s ε

′
s
±(θ) (A.4)

hdr±s = ± 1

sβs
ε′s

± (A.5)

and so we obtain:

qs =
2s−1

2πβs+1
R

∫ θ∗+xR

−∞
e−θn−

R(θ)(e
−sθ)dr +

2s−1

2πβs+1
L

∫ ∞

θ∗−xL

eθn+
L(θ)(e

sθ)dr (A.6)

We now assume that ekθ and e−kθ are dressed using nR(θ) and nL(θ) respectively, in
the conformal limit. Under this assumption the above interals can be solved thanks
to (A.5), and the final result after integration by parts is:

qs = G(s)
(

1

βs+1
L

+
1

βs+1
R

)
(A.7)

and similarly for the currents:

js = G(s)
(

1

βs+1
L

− 1

βs+1
R

)
(A.8)

where the unknown prefactor in front is defined by:

G(s) = s2s

4π

∫ x

−∞
L−(θ)e−sθ (A.9)

where x has to be taken in the limit going to infinity. Clearly, for s=1 this corre-
sponds to a well known integral which has to be solved in the TBA context to find
the central charge in the UV limit, expression (2.21).

However, for higher spins there appears to be no way to solve the integral exactly,
except for the free theory. It appears natural that, since for s=1 the result is
expressed in terms of the dilogarithmic function, the result for higher spin could
be in a similar way be expressed in terms of higher order polylogarithms. This is
indeed the case for the free theory, as can be easily computed, using the fact that,
since eθ = ε in the absence of the kernel, then ekθ = εk, but also eθ = ε′. Hence,
neglecting the ± superscript for simplicity:

G(s) ∝
∫ ∞

0

L(θ)esθdθ =

∫ ∞

0

L(θ)εs−1(θ)ε′(θ)dθ (A.10)

=

∫ ∞

ϵ0

L(ε)εs−1dε =

∫ ∞

ϵ0

ln(1 + e−ε)εs−1dε (A.11)

This integral can be solved exactly, through this original expression:∫
ln(1 + e−x)xs−1dx =

s+1∑
p=2

(s− 1)!

(s+ 1− p)!
Lip(−e−x)xs+1−p (A.12)
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where Lip(x) :=
∑∞

k=1
xk

kp
is the p-th order polylogarithm. This however is just a

formal calculation, since in the free case we have ϵ0 = 0, and therefore the final
expression that one obtains is:

G(s) = s2s

4π
(1− 2−s)Γ(s)ζ(1 + s) (A.13)

which indeed corresponds to the result obtained in (4.62), as can be seen after
substituting s! → sΓ(s). Therefore, the expression in terms of polylogarithms is
purely formal, since essentially all terms are canceled by the fact that ε0 = 0.
However, this shows the plausibility of the idea that the prefactor can be expressed
in terms of polylogarithms as a direct generalization of the standard s=1 case, even
in interacting theories. A definitive proof of this, however, is still beyond grasp.

A similar discussion can be applied to the "generalized" currents, defined by an
expression of the form:

q̃ks =

∫
dθ

2π
cosh(θ)ns(θ) cosh

dr(kθ) (A.14)

where ns is built using a driving term which contains only the cosh(sθ) term. These
currents arise naturally when studying the T T̄s deformed theories with s>1. By
performing a shift of variables θ → θ/s it is easy to see that in light of the previous
discussion the temperature dependence will turn out to be independent on s:

q̃ks =
1

2πs

∫
dθ cosh

(
θ

s

)
n1(θ) cosh

dr

(
k

s
θ

)
(A.15)

where the only influence of the spin s remaining in the n-function is in the temper-
ature, which is substituted by βs. Now lets consider the case of a free fermion in a
partitioning protocol: this integral immediately becomes:

q̃ks =
1

2πs

∫ ∞

0

dθ cosh

(
θ

s

)
nL(θ) cosh

(
k

s
θ

)
+

1

2πs

∫ 0

−∞
dθ cosh

(
θ

s

)
nR(θ) cosh

(
k

s
θ

)
which can be immediately evaluated in terms of the familiar modified Bessel func-
tions, observing that the second integral can be moved from 0 to ∞ by parity.
Focusing on the left component:

(q̃ks )L =
1

2πs

∑
n

(−1)n+1

∫ ∞

0

cosh(θ/s) cosh(kθ/s) exp(−nβs cosh(θ))

=
1

4πs

∑
n

(−1)n
[
K 1+k

s
(βs(n+ 1)) +K 1−k

s
(βs(n+ 1))

]
(A.16)

In the conformal limit, using the usual small argument expansion of k, and reintro-
ducing the right part which is calculated analogously, we obtain:

q̃ks =
2

1+k
s

8πs
Γ

(
1 + k

s

)
η

(
1 + k

s

)(
T 1+k
L + T 1+k

R

)
(A.17)
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where Γ and η are the Euler and Dirichlet functions respectively. The main feature
of this solution is the interesting temperature dependence, which has no information
of the value of the perturbing spin s. For k=1, we get the values which were
necessary in the study of the energy current in the generalized context:

q̃1s =
2

2
s

8πs
Γ

(
2

s

)
η

(
2

s

)(
T 2
L + T 2

R

)
(A.18)

which confirms the T 2 dependence used in the main text. For the currents the
discussion is similar and leads to the same result except for the difference between
the temperatures:

j̃1s =
2

2
s

8πs
Γ

(
2

s

)
η

(
2

s

)(
T 2
L − T 2

R

)
(A.19)

and this confirms the claimed value for G12 used above, since η(1) = ln 2
2π

and Γ(1) =
1. Note that for s=1 this reduces to the expression found above (A.13), where the
s used above corresponds to the k in this context.
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