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Abstract

In this thesis, we study how thermal leptogenesis is modified by the addition of a com-
plex scalar field S to the type-I seesaw extension of Standard Model (SM) with nr

right-handed sterile neutrinos νR,i, with i = 1, . . . , nr. Specifically, we extend the SM by
a global U(1)B−L symmetry under which S and νR,i are charged with charges +2 and
-1, respectively, while remaining singlets under the SM gauge group. After the U(1)B−L

spontaneous symmetry breaking, with the real part of S acquiring a non-vanishing vac-
uum expectation value, the coupling between S and νR,i generates a Majorana mass term
for the right-handed neutrinos and we recover the well known type-I seesaw Lagrangian.
In addition, two real scalars ϕ, massive, and θ, massless, are left after the U(1)B−L

breaking, which are coupled to the right-handed neutrinos and to the Higgs doublet.
We discuss the contributions of the interactions involving ϕ and θ to the requisite CP-
asymmetry, the production rates of right-handed neutrinos and the wash-out processes
in the Boltzmann equations for leptogenesis. After identifying the leading contributions,
we modify the ordinary Boltzmann equations and study the effects on the final baryon
asymmetry of the Universe.
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1

Introduction

In the field of theoretical physics of the fundamental interactions, two of the biggest
open questions are: the nature of neutrino masses; and the observed asymmetry between
matter and antimatter. The theoretical framework which describes almost everything
that happens in particle physics, the Standard Model (SM), is not able to account for
these two experimental pieces of evidence. In the last century the SM has been able
to explain and predict a lot of experimental observations, culminating in the discovery
of the Higgs bosons at CERN LHC in 2012 [1] [2], which led Peter Higgs and François
Englert to win the Nobel Prize in 2013 for theorizing its existence. At the same time we
now know that we need to go beyond it if we want to be able to account for the new
physics observed in neutrino experiments and in the Universe.

The discovery of neutrino masses is related to the experimental evidence of neutrino
oscillations [3], and after more than 20 years from it, it remains something for which we
don’t have an explanation (1.6).
Neutrinos come in three generations, as all the other SM particles: L. M. Lederman,
M. Schwartz and J. Steinberger in 1962 found out the existence of two different kind of
neutrinos, one associated to the electron and the other one to the muon µ [4]; evidences
for a third type of neutrino, the one associated with the τ lepton, were found in 2000
by the DONUT experiment [5]. The fact that they come in different families opened the
question of under which conditions there could be mixing between them.
Neutrino oscillations were discovered in 1998 when the Super-Kamiokande experiment
showed that µ neutrinos were disappearing with an L/E dependence, where L repre-
sents the neutrino travelled distance from production to detection and E its energy, in
agreement with an oscillatory behavior [6]. We now know that µ neutrinos oscillate into
τ neutrinos which cannot be detected by that experiment. T. Kajita for the Super-
Kamiokande collaboration and A. B. McDonald for the SNO collaboration [3] received
the Nobel Prize in Physics for "the discovery of neutrino oscillations, which shows that
neutrinos have a mass".
Experiments also tell us that neutrinos do not posses any electromagnetic charge and
so they could be indistinguishable from their antiparticles, the antineutrinos, i.e. they
could be Majorana particles, as Majorana pointed out in 1937 [7]. They are the only SM
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particle which can have this feature. This question is strongly related with the nature
of their masses and with the conservation or not of lepton number L.

Observations tell us also something else very interesting: in the Universe there is more
matter than antimatter [8], or equivalently, that the number of baryons, i.e. protons and
neutrons, is different from the number of antibaryons, i.e. antiprotons and antineutrons.
Up to our knowledge, all the structures we see in the Universe - stars, galaxies and
clusters - consist of matter, while antimatter in appreciable quantities is not present. The
(small) amount of antiprotons and positrons in cosmic rays can be explained by their
secondary origin in cosmic particle collisions or high energetic astrophysical processes and
no antinuclei, even as light as anti-deuterium or as tightly bounded as anti-α particles,
has ever been detected. Another evidence of the absence of cosmological antimatter can
be seen to be the absence of annihilation radiation pp̄ → ...π0 → ...2γ; this excludes
significant matter-antimatter mixtures in objects up to the size of clusters ≃ 20 Mpc.
Consequences of having an Universe which is a patchwork of distinct regions of matter
and antimatter have been studied in [9] but it can be excluded looking at the limits
on anomalous contributions to the cosmic diffuse γ-ray background and thanks to the
absence of distortions in the cosmic microwave background (CMB). Anyway, we cannot
exclude the vanishing of the average asymmetry for super-horizons scales; this would be
the case if the fundamental Lagrangian is C and CP symmetric and charge invariance is
broken spontaneously.

This project aims to address these two open problems in theoretical physics: the nature of
neutrino masses and the baryon asymmetry of the Universe (BAU). Between the various
extension of the Standard Model able to predict the presence of neutrino masses, and
explain their values, there is a class of models called seesaw models. These models are
mainly based on the fact that neutrinos are Majorana particles and that the addition to
the SM particle content of some new heavy degrees of freedom, e.g. the right handed
neutrinos (RHNs) in the type I seesaw, predicts the existence of the light neutrino masses.
Moreover, in models of this kind a mechanism which could account for the BAU is
naturally embedded. This mechanism is called Leptogenesis (LG). Its easiest realization
is within the framework of the type I seesaw and it is based on the L- C- and CP -
violating1 out-of-equilibrium decays of the RHNs in the early Universe.
The type I seesaw mechanism by itself does not give any explanation on the origin of
these new degrees of freedom, they are put in by hand. Anyway, it turns out that some
ultra-violet (UV) completions of the Standard Model such as Grand Unified Theories
(GUTs) predicts naturally the presence of RHNs and of the seesaw mechanism.

1Here L stands for lepton number, C for the charge conjugation and P for the parity.
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The thesis focuses on a model where we add to the SM particle content and symmetries
not only singlet RHNs νR,i with i = 1, . . . , nr but also a singlet complex scalar, called S,
and a U(1)B−L global symmetry, under which the RHNs have charge B − L = −1 and
the complex scalar 2. We study the implications of the U(1)B−L spontaneous symmetry
breaking at some energy scale vs far above the electroweak scale: the symmetry break-
ing will give the mass to the RHNs, generating automatically the usual type I seesaw
mechanism with its consequent LG.
The motivations that led us to consider such model are multiple.

1. We would like to find an origin to the heavy RHNs masses and not to simply
put their direct mass terms in the Lagrangian using the fact that a term like
∝ MRν

T
RC

†νR is invariant under the SM gauge symmetry group. But then, since
we know that LG can be realized in the simple type I seesaw scenario, we would
like to quantify the effects of adding new degrees of freedom coming from the scalar
singlet S. In fact, besides the standard Yukawa terms allowing for the νR’s decay,
we will have new interactions of the kind ∝ (S†S)(H†H) and ∝ SνT

RCνR which can
play a role in the LG process. In particular, we compute the new contributions to
the CP asymmetry factor arising from the new loop diagrams involving the scalar
S and the νR’s, as well as the modifications of the Boltzmann Equations for the
evolution of the RHN number densities when taking into account the possibility
for the scalar of decaying into two νR’s in the early Universe.

2. A model like this is pretty general. U(1)B−L is the only U(1) interaction, apart
from U(1)Y , which could be added to the SM ones since it’s non-anomalous. So,
our model can also be modified in this direction, considering instead of a global
U(1)B−L, a local one. Always working in this framework, if one fixes the number
of right handed neutrinos to be nR = 3, i.e. the same number of generations we
have in the SM, model like the one proposed here can be embedded into unified
theories. In fact, some of these models, like SO(10) GUTs [10] or Left-Right
symmetric models [11][12], use gauged symmetries like U(1)B−L at some stage of
their symmetry breaking pattern and their scalar sectors contain more than one
complex singlet under the SM interactions.

Moreover, many studies in the dark matter direction consider the global U(1)B−L,
not gauged, in extensions of the SM. These are the so-called dark matter Majoron
models: starting from the consequences of spontaneous symmetry breaking in terms
of particle spectrum, i.e. the existence of massless Goldstone bosons, one add a
small explicit symmetry breaking term in the Lagrangian to give a small mass to
the Goldstone boson, i.e. the Majoron. In this way, and under the right conditions,
the Majoron could become a viable dark matter candidate [13] [14] [15].
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Similar analyses to the one in this work have been done: in [16] the authors studied
the influence of adding a real scalar to the standard seesaw type I picture, considering
in the Lagrangian also direct mass terms for the RHNs; in [17] the authors looked at
the modifications in the CP asymmetry factor in a very general case when an arbitrary
number of RHNs, complex scalars and Higgs doublets are added to the theory; in [18] a
U(1)B−L model has been studied but without looking at the CP asymmetry factor and
focusing on the influence on the Boltzmann equations by 2 → 2 scattering νRνRSS in
the thermal bath, i.e considering a different region for the parameter space of the singlet
scalar; in [19] they considered the influence of the decay of a scalar into RHNs in the
early Universe, but in the different context of GeV sterile neutrinos and freeze-in LG.

This thesis is organised as follows. In Chapter 1 we give a brief review of the Standard
Model of particle physics mainly taken by [20]: we start from introducing its fundamental
symmetries and its particle content (1.1) and then we pass to more advanced topics like
spontaneous symmetry breaking (1.2)(1.3), the CKM matrix and its CP violation (1.4),
anomalies (1.5) and open problems of the Standard Model (1.6). Then Chapter 2 focuses
on neutrino masses and it is mainly based on [21]. We start by reviewing the concepts
of leptonic mixing (2.1) and neutrino oscillations theory and measurements (2.2). Then,
we address the problem of the nature of neutrino masses from a more theoretical point of
view (2.3), introducing the seesaw mechanism in some of its different realizations (2.4).
In Chapter 3 we introduce the problem of the baryon asymmetry of the Universe and we
explain why we need physics beyond the Standard Model to explain it. Then we give a
look into Leptogenesis and its basic ingredients like the CP asymmetry factor, Boltzmann
Equations and sphalerons. Chapter 3 is mainly based on the LG reviews by [22], [8] and
[23]. Chapter 4 is the one where we build our model and find the results. We first write
the whole Lagrangian and study the symmetry breaking pattern of the theory, looking for
the scalar mass eigenstates. We also find the mass basis for the right handed neutrinos
νR’s and finally look at the new contributions to the CP asymmetry given by the new
interactions involving the scalar singlet S. Then, we study how the presence of the new
scalar particle in the theory can influence thermal LG in certain region of the parameter
space: we first compute the analytical contributions to the Boltzmann Equations due
to the scalar decay into RHNs; then we look at their solutions for particular choices of
masses and couplings, to see what happens in particular to the prediction for the BAU.
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Chapter 1

The Standard Model of Particle
Physics

The SM of particle physics is the theory which describes three of the four known funda-
mental forces - the electromagnetic, weak and strong ones, with the exclusion of gravity.
It is based on the gauge symmetry group

GSM = SU(3)C × SU(2)L × U(1)Y . (1.1)

In this kind of theories, i.e gauge theories, we identify interactions with gauge groups:
the strong interactions is described by the SU(3)C gauge group, the weak interaction by
SU(2)L one and the hypercharge interaction by U(1)Y . Not all of these symmetries are
manifest in the world we live, some of them are hidden. We will come back on this in
Sec. (1.2). The gauge principle carries two crucial features:

i. The existence of gauge bosons. Gauge bosons are the mediators of the inter-
actions, i.e. the messengers which "carry" the information about the interaction
from a point in spacetime to another avoiding the action at a distance which would
violate the principles of special relativity.

ii. Renormalizability. Renormalizability is a property of quantum field theories
which allows us to reabsorb infinities coming out from loop integrals into the so-
called "bare parameters" in the Lagrangian, i.e parameters which are not directly
observable in experiments, and thus not physical. Renormalization gives us the
possibility of expressing observables as function of other observables (or of the
same observable measured at a different energy scale), i.e the possibility of making
predictions out of measurements, predictions which can be then tested in experi-
ments.

In this Chapter we are going to give a review of the SM mainly based on [20] and [24].
We will look first at its structure in terms of symmetries and particle content, arriving
to the various SM pieces of the Lagrangian in Sec. (1.1). Then the important feature
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of spontaneous symmetry breaking (SSB), characteristic of field theories, is introduced
first for the case of a global U(1) symmetry breaking in Sec. (1.2) and then looking to
its proper application in the SM, i.e the electroweak spontaneous symmetry breaking
(EWSSB), in Sec. (1.3). An introduction to CP violation and anomalies in the Standard
Model is given Sec. (1.4, 1.5) especially considering the CKM matrix and quark mixing
and the B and L anomalies respectively. Finally, we present a fast review of theoretical
and experimental problems of the SM in Sec. (1.6).

1.1 The particle content of the Standard Model

Differently from what happens in standard quantum field theory (QFT), where we have
no distinctions between interactions and matter because they are simply viewed as differ-
ent representations of the Lorentz group, in the SM we distinguish between them. Matter
are represented by the fermionic fields, the so-called fermions, i.e spin-1

2
particles; inter-

actions are represented by the bosons fields, or simply bosons, spin-0,1 particles. Charges
can be assigned to particles which are related to their transformation under the gauge
group actions: the charge related to SU(3)C is called color, the one related to SU(2)L is
the weak isospin and that related to U(1)Y is called the hypercharge Y . Now we under-
stand the meaning of the subscripts in Eq. (1.1): C stands for color, Y for hypercharge
while L stands for left, because of the nature of weak interaction.
Weak isospin and hypercharge can be related to the better known electric charge Q
thanks to the relation

Q = T3 +
Y

2
=

σ3 + Y

2
, (1.2)

where T3 = σ3/2 is the third generator of the SU(2) group and σi is the i-th Pauli matrix.
In 1956 the Wu experiment carried out by the physicist Chien-Shiung Wu showed

that parity 1 was not conserved by the weak interactions, it was actually maximally
violated by it. Parity was believed to be a fundamental symmetry of nature since it was
already established that the electromagnetic and strong interactions preserved it. But
the story was different for the weak interaction. After this discovery, as pointed out by
Steven Weinberg in [25], Marshak and Sudarshan came out in 1957 with the idea that the
right way to describe the weak current, and the weak interaction, was through a vector
minus an axial (V-A) current [26]. Therefore, nowadays, since weak interaction only
couples to left-handed particles and it is described by the SU(2)L group, we describe the
particle content of the theory using different representations for particles with different
chiralities.

1Parity is the transformation which takes the spatial coordinates xi → −xi. Being parity invariant
for a system, or a theory, means that the system, or the equation of motion of the theory, is invariant
under spatial invertion.
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Leptons Leptons in the SM come into three generations, or families: left chirality, i.e
left-handed, leptons like (νi, i)

T
L, with i = e, µ, τ are put in the fundamental representa-

tion of SU(2)L, SU(2)L doublets, while right-handed ones like eR, µR and τR are put into
the singlet representation of the same group.2 The group structure of the theory implies
also that all the particles in the same doublet have the same value of the hypercharge Y
and color. The hypercharge of the lepton doublets is YL = −1 while for the right handed
leptons YR = −2. All leptons are SU(3)C singlets.

As we can see already at this point, right handed neutrinos νR’s are missing. This
is because they would have Q = 0, and they would not be charged both under weak
nor strong interactions, thus being completely decoupled from the SM interactions. We
should be able to see them only through a mass term in the Lagrangian. But adding
mass terms in a chiral theory is not a trivial issue.

Quarks Quarks have both a weak and an electromagnetic charge. They also carry
color and they come into the same number of generations as leptons. We can divide
them into SU(2)L doublets(

u

d

)
L

(
c

s

)
L

(
t

b

)
L

and singlets,

uR dR cR

sR tR bR.

Differently from the lepton case, since quarks have an electric charge, all the doublets
components have their right-handed counterpart. What distinguishes quarks from lep-
tons is that they interact strongly, i.e they carry color; all the quarks, both left- and
right-handed are in fact in the fundamental representation of SU(3)C , i.e SU(3)C triplets.

The SU(3)C × SU(2)L × U(1)Y gauge invariant Lagrangian is made of some different
terms.
The electroweak part for one generation of fermions is given by

LEW,fermions =ēRiγ
µDR

µ eR + L̄iγµDL
µL+ Q̄iγµDL

µQ+

+ūRiγ
µDR

µ uR + ūRiγ
µDR

µ uR + h.c.,
(1.3)

where Di
µ is the covariant derivative needed for gauge invariance and it’s where the

interactions with the gauge bosons come from and we distinguished left (L) from (R)
2The index L or R stands for left-handed and right-handed respectively.
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interactions since the weak force is chiral: DL
µ = ∂µ + ig′ YL

2
aµ + ig b⃗µ·σ⃗

2
and DR

µ = ∂µ +

ig′ YR

2
aµ + 0. g′ is the U(1)Y gauge coupling, g is the SU(2)L gauge coupling, YL,R is the

hypercharge, aµ, biµ are the gauge bosons respectively for U(1)Y and SU(2)L.
The strong part of the Lagrangian involves only quarks and can be written as

LStrong,quarks = Q̄iiγ
µDS

µQi, (1.4)

where Qi = u, d, c, s, t, b (the strong force does not distinguish between left- and right-
handed particles) and DS

µ ≡ ∂µ + igs
g⃗µ·λ⃗
2

is the covariant derivative associated to the
SU(3)C strong interaction and λi are the eight Gell-Mann matrices, i.e the infinitesimal
generators of SU(3).
The kinetic Lagrangian for the gauge bosons,

Lkin,g.bos. = −
1

4
fµνf

µν − 1

4
F i
µνF

µν,i − 1

4
Gi

µνG
µν,i, (1.5)

where fµν = ∂µaν − ∂νaµ is the field strenght tensor for the Abelian U(1)Y gauge bosons
while F i

µν and Gi
µν are the extension to the non-Abelian case defined by [24]

F i
µν = ∂µb

i
ν − ∂νb

i
µ − gϵijkbkµb

j
ν , (1.6)

Gµν = ∂µg
i
ν − ∂νg

i
µ − gsf

ijkgkµg
j
ν , (1.7)

where ϵijk and f ijk are the structure functions respectively for SU(2) and SU(3).

Observations

i. Even if aµ and biµ are gauge bosons, i.e force carriers, they are not the same as
the photon γ and the massive bosons W± and Z0. For them, we need to ESSB to
happen.

ii. We have the same coupling to the gauge bosons for all the different fermions, and
this is typical of gauge theories. This is called universality and it’s extended also to
the self coupling between gauge bosons of non-Abelian gauge theories. Universality
is a consequence and a quantitative prediction of the theory.

iii. The number of gauge bosons is strictly related to the dimension of the symmetry
group, i.e the number of generators of the group, to which they are related. We
can see it as another strong prediction of the theory.

iv. There are no mass term in the Lagrangian so far because they would violate gauge
invariance.
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1.2 Spontaneous Symmetry Breaking

Spontaneous symmetry breaking (SSB) happens when a stable state, e.g the vacuum of
the system, transforms non-trivially, i.e it is not invariant, under certain symmetries of
the theory. These symmetries are then said to be spontaneously broken, or hidden, and
the vacuum state is called the broken state. The Lagrangian of the system is indeed
invariant under the broken symmetries, it is only the ground state which is not. Sponta-
neous symmetry breaking is one of the most important concepts in quantum field theory;
this is because SSB has different and interesting implications depending on the nature
of the symmetry which is broken. All these consequences has to do with the Goldstone
Theorem.

The Goldstone’s Theorem. Every continuous symmetry of the Lagrangian and bro-
ken by the vacuum implies the existence of a massless mode, i.e the existence of a mass
eigenstate with zero eigenvalue.

As an example we study the case of a U(1) symmetry breaking, which will be needed
later for the construction of our high energy theory invariant under a global U(1)B−L.

1.2.1 The Case of U(1) Symmetry Breaking

The Lagrangian of the U(1) theory can be written as [20],

L = ∂µϕ
†∂µϕ+m2ϕ†ϕ− λ

4
(ϕ†ϕ)2. (1.8)

The symmetry is given by ϕ(x) → eiαϕ(x) for constant α. The potential is V (ϕ) =

−m2|ϕ|2 + λ
4
|ϕ|4. To find the vacuum state of the theory we need to minimize the

potential, i.e to study its first and second derivatives. In this case, if m2 > 0, then the
theory is unstable around ϕ = 0 and the minimum condition is given by |ϕ|2 = 2m2

λ
.

This means that we have an infinite number of equivalent vacua |Ωθ⟩ parametrized by

θ with ⟨Ωθ|ϕ |Ωθ⟩ =
√

2m2

λ
eiθ. The structure of the vacua reflects the U(1) invariance.

Usually one chooses |Ω⟩ such that ⟨Ωθ|ϕ |Ωθ⟩ is real and equal to v =
√

2m2

λ
. Then the

physical degrees of freedom are represented by the oscillations around the true vacuum
|Ω⟩; to find them we parametrize the complex field ϕ(x) in terms of two real fields σ(x)

and π(x), both with zero vacuum expectation value. So,

ϕ(x) =

(√
2m2

λ
+

1√
2
σ(x)

)
ei

π(x)
Fπ , (1.9)
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with Fπ a real number. The potential then depends only on σ(x) and not on π(x) and
the Lagrangian becomes

L =
1

2
(∂µσ(x))

2+

(√
2m2

λ
+

1√
2
σ(x)

)2
1

F 2
π

(∂µπ)
2+

−
(
−m4

λ
+m2σ2 +

1

2

√
λmσ3 +

1

16
λσ4

)
.

(1.10)

Fπ is chosen in a way that the kinetic terms are canonically normalized. This Lagrangian
(1.10) describes a massive mode σ and a massless particle π, as expected for the Goldo-
stone’s Theorem, as pictured in Fig. (1.1).

It is important to note that the presence of the Goldstone Boson has nothing to do
with how we parametrize ϕ(x): writing

ϕ(x) =
2m√
λ
+ ϕ̃(x), (1.11)

would have led to a mass matrix with a zero eigenvalue for one of the two components
of ϕ̃(x).

In this model σ has a mass of mσ =
√
2m and represents radial oscillations in the

potential, while the Goldstone boson has a mass mπ = 0 and represents oscillations in the
flat direction of the potential. Goldstone bosons are also associated to shift symmetry,
which forbid them to acquire a mass and it’s related to the invariance of the Lagrangian
under

π(x)→ π(x) + Fπθ. (1.12)

So far we have only talked about spontaneously broken global symmetries. The same
mechanism works also for gauge symmetry breaking, but with different features. In
gauge theories spontaneous symmetry breaking is described by the Brout-Englert-Higgs
mechanism (BEH mechanism), and the same mechanism which represents the EWSSB
in the SM. What happens there is that the Goldstone bosons seem to have very similar
properties to the gauge bosons of the theory. In fact, it turns out that Goldstone bosons
in gauge theories are gauge-dependent and so we call them pseudo-Goldstone bosons.
In particular there is a gauge choice, the so-called unitary gauge, where the pseudo-
Goldstones completely disappear from the Lagrangian; they are absorbed by the gauge
bosons and give a mass to it.

The Brout-Englert-Higgs mechanism is able to explain gauge bosons masses with
spontaneous symmetry breaking and the Goldstone’s Theorem: the massless pseudo-
Goldstones are swallowed by the massless gauge bosons becoming their longitudinal



Chapter 1. The Standard Model of Particle Physics 11

Figure 1.1: Mexican hat potential often present in spontaneously bro-
ken theory. Masses squared are related to second derivatives of the poten-
tial: oscillations around the origin represents two tachyonic (negative m2)
modes; radial oscillations around a minimum are described by a positive
mass-squared mode while oscillations along the symmetry direction are re-
lated to the massless mode, i.e the Goldstone boson. The picture is taken

from [20].

polarization, and giving them the mass. In fact, a massless spin-1 particle has two
degrees of freedom, i.e two helicity states, while a massive spin-1 particle has three
degrees of freedom: the pseudo-Goldstone is the third one.

1.3 Electroweak Symmetry Breaking and Masses in

the Standard Model

At this point we can apply the notion of Sec. (1.2) to solve some of the problems left
from (1.1).

We know that:

Weak interaction is short-range. This means that the related gauge bosons are
massive. We have to find a way to give them a mass and we have to pay attention
in particular to the fact that SU(2) is a non-Abelian group and a direct mass term
in the Lagrangian is violating gauge invariance.

Leptons and quarks are massive. We know from experimental evidence that
fermions and quarks are massive, so we have to find a way to give them a mass;
this can’t be done adding terms like meL̄eRe in the Lagrangian since they would
violate gauge invariance.

We need a mass generation mechanism for both bosons and leptons masses.



Chapter 1. The Standard Model of Particle Physics 12

Where is electromagnetism? There is an other experimentally and theoretically
well-known interaction, the electromagnetic one, which is based on the U(1)EM

gauge group. It’s a long-range interaction and so the associated vector bosons, i.e
the photon γ is massless. In the SM there seems to be no trace of electromagnetism.
Can we find a way to embed U(1)EM in the SM?

In turns out that in the Standard Model we can solve all these issues using one single
mechanism, the Brout-Englert-Higgs Mechanism of SSB. Weinberg, Salam and Glashow
were able to apply this mechanism to the SM and showed that it was possible, with the
help of only a scalar particle, called the Higgs doublet H, to go from the SU(2)L×U(1)Y

symmetry at high energies, to the better known U(1)EM of electromagnetism. The last
one is indeed a manifest symmetry of the low-energy world we live, while the others are
hidden.

The astonishing fact is that, thanks to the symmetry breaking, also gauge bosons and
fermions acquire their masses. What we need to do is to add in the Lagrangian all the
possible terms compatible with the symmetries and including the scalar SU(2)L doublet
H = (H+, H0)

T , where H+ has an electromagnetic charge equals to +1 and H0 is the
neutral component.3 The new pieces in the Lagrangian are

LHiggs = (DµH)†(DµH)− V (H†H), (1.13)

where DµH = ∂µH + ig′ YH

2
aµH + ig b⃗µ·σ⃗

2
H, YH = 1 and the Higgs potential is given by

V (H†H) = m2H†H + λ(H†H)2. (1.14)

The symmetry breaking happens for m2 < 0. With the Higgs doublet there are new
invariant terms which can be added to our theory as

LY ukawa = −YL
i (L̄iH)eR,i − YD

ij (Q̄iH̃)dR,j − YU
ij(Q̄iH̃)uR,j + h.c., (1.15)

,for all the three generations of leptons and quarks: i, j run over the generations and so
eR stands for e,µ and τ , while uR and dR stands in general for the up and low component
of the doublet (not only for the up and down quark).
After the EWSSB, the Higgs field acquires a vacuum expectation value ̸= 0 along its
neutral component. It must be this way because U(1)EM remains unbroken and so to not
break gauge invariance in the Lagrangian only neutral components under the preserved
symmetries can acquire a vacuum expectation value ̸= 0. We then H0 =

1√
2
(0, v)T where

3Both these components are complex fieds with two real degrees of freedom, so we have four real
degrees of freedom in the Higgs doublet.
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the value for v =
√

−m2

λ
is obtained minimizing the potential. In the unitary gauge we

can write

H =
1√
2

(
0

v + h

)
, (1.16)

with h such that h0 = 0. This new field h is the degree of freedom describing the
oscillations around the true vacuum at low energies. Inserting (1.16) in Eq. (1.13),
Eq. (1.14), Eq. (1.15) we obtain the wanted mass terms for the fermions and for the
gauge bosons.

Since we are breaking SU(2)L × U(1)Y → U(1)EM , the Goldstone Theorem, when
applied to gauge theories (1.2.1), predicts the existence of three pseudo-Goldstone bosons,
which in our case, i.e working in the unitary gauge, are the three degrees of freedom
swallowed by the massless gauge bosons to gain their mass. Three massive gauge bosons
and a massless one come out after EWSSB from the covariant derivative in Eq. (1.13);
they are respectively the W±, Z0 bosons and the photon γ, the last one corresponding
to the unbroken U(1)EM gauge invariance. Fermion masses come from Eq. (1.15); since
we have no νR’s we cannot predict the masses of the neutrinos, on the contrary, we are
predicting them to be massless. It is worth to point out that it’s not trivial to be able
to give mass to both the component of the SU(2)L doublets only through one Higgs
field: this is peculiar in the SM and it’s a feature of minimality related to the nature
of the SU(2) group, for which H̃ ≡ iσ2H

∗ transform as a doublet, but has opposite
hypercharge Y with respect to H and can be used to give mass to the upper part of the
SU(2)L doublets. Otherwise we whould have needed an additional Higgs doublet.
The predictions of the EWSSB are not finished here. We expect also the existence of a
massive neutral scalar, a physical h field, with a mass of m2

h = 2λv2. This particle is the
one which has been discovered at CERN LHC in 2012 with a mass of mh = 125.35±0.15

GeV [1][2]. Also the relations between the SU(2)L and U(1)Y bosons biµ and aµ with the
physical W±

µ ,Z0
µ and Aµ(= γ) come out from the EWSSB. They can be written as,

W+
µ ≡

b1µ − ib2µ√
2

, (1.17)

W−
µ ≡

b1µ + ib2µ√
2

, (1.18)

Z0
µ ≡
−g′aµ + gb3µ√

g′2 + g2
= − sin θWaµ + cos θW b3µ, (1.19)

Aµ ≡
gaµ + g′b3µ√

g′2 + g2
= cos θWaµ + sin θW b3µ, (1.20)
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where cos θW ≡ g/
√

g′2 + g2 and sin θW ≡ g′/
√

g′2 + g2. The masses for the W± and Z0

bosons are predicted to be
MW =

gv

2
, (1.21)

MZ =
v

2

√
g2 + g′2. (1.22)

This is another strong prediction of the SM of particle physics: even if they belong to the
description of the same interaction, the weak interaction, the W bosons have different
mass with respect to the Z boson, in agreement with the experimental observations.

1.4 The CKM matrix and CP violation in the SM

In the Standard Model it happens that the quark mass eigenstates, i.e the physical states,
are not the ones which participate to the weak interaction [27]. The transformation
between the two different basis of mass and weak eigenstates can be described with a
unitary matrix, the so-called Cabibbo-Kobayashi-Maskawa (CKM) matrix. If we choose
by convention the charge +2/3 quarks (u,c,t) to be the pure states, then the flavour
mixing can be described by a 3× 3 matrix operating on the states d.s and b, i.ed

′

s′

b′

 = VCKM

ds
b

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


ds
b

 . (1.23)

The states d’,s’,b’ are the partners of u, c, t in the weak isospin doublets.

The CKM model allow us to preserve universality of the weak coupling while explain-
ing also the different transition rates inside a single quark family, e.g up and down, and
those connecting different families, e.g up and strange. In the CKM matrix is also in-
cluded the GIM mechanism which suppresses flavour-changing neutral-current (FCNC)
processes, which are experimentally non-observed. The Lagrangian density term for
charge current processes which involves quarks depends on the CKM matrix and can be
written as

LCC,CKM ∝ GF [ū c̄ t̄]γµ(1− γ5)VCKM

ds
b

Wµ + h.c. (1.24)

The CKM matrix can account for CP violation (CPV) in the Standard Model, if it
is complex regardless of the phase convention of the quark fermionic fields. Since it is
a 3 × 3 matrix, it can be parametrized in terms of three Euler angles and one complex
phase, which is responsible for weak CPV in the SM. Several parametrization are possible
for this kind of matrices; we write here the "canonical" one adopted by the Particle Data
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Group collaboration (PDG) [28] and proposed by Chau and Keung combining notations
already used by Maiani and Wolfenstein,

VCKM =

 c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13

 , (1.25)

where cij ≡ cos θij, sij ≡ sin θij, θij being the mixing angle between the ith and the jth
generation and δ13 is the phase for CPV. Using the matrices of the Yukawa couplings Yu

and Yd, which can be related to the diagonal mass matrices Mu and Md by Yd = UdMdU
†
d

and Yu = UuMuU
†
u, CPV here can be encoded in the commutator [20]

−iC = [Yu, Yd] =

[
UuMuU

†
u, UdMdU

†
d

]
= Uu[Mu, V MdV

†]. (1.26)

The matrix C is traceless and Hermitian, and its determinant is basis-invariant and given
by

detC = −16

v6
(mt −mc)(mt −mu)(mc −mu)(mb −ms)(mb −md)(ms −md)J, (1.27)

where, for any i, j, k and l

Im
{
(VijVklV

∗
ilV

∗
kj)
}
= J

∑
m,n

ϵikmϵjln. (1.28)

In terms of the "canonical" parameterization,

J = s12s23s31c12c23c
2
31 sin δ, (1.29)

where J is called the Jarlskog invariant and is fundamental because all weak CP violation
in the SM is proportional to Im{det[Yu, Yd]}, i.e. the Jarlskog invariant vanishes if and
only if there is no CP violation. From Eq. (1.25) is clear that if the CKM matrix is real
then J = 0 and we have no CPV. But it is not the only case; there is no CPV if we have
degenerate quark masses, as seen from Eq. (1.27): in fact, what happens in that case is
that we get an extra free phase rotation and then the δ-phase becomes non-physical and
can be removed.

1.5 Global Anomalies in The Standard Model

Anomalies are symmetries of the classical theory which are not symmetries of the quan-
tum theory based on the same Lagrangian. This can happen because the quantum theory
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is not only determined by the action S but also by the measure of the associated Path In-
tegral (PI), and if a symmetry of the action is not a symmetry of the PI measure, then it
is anomalous. From Noether’s theorem [20] we know that continuous global symmetries
imply conserved currents, and so for the same reasons if a symmetry is anomalous, then
the associated Noether current will not be conserved. This can lead to problems with
Ward identities in gauge theories where massless spin-1 particles are coupled to these
currents and, as a consequence, to unitarity violation. So, to preserve unitarity, gauged
symmetries must be anomaly free. This is not the case for global symmetries, i.e global
anomalies don’t imply theoretical inconsistencies. Fortunately, the Standard Model is
free from gauge anomalies, but not from global ones. Examples of global anomalies in
the SM are baryon and lepton numbers; these global anomalies turn out to be relevant
for Leptogenesis.

1.5.1 B and L anomalies

Both baryon and lepton numbers are accidental symmetries of the Standard Model, i.e.
global symmetry of the Lagrangian which are not "imposed" by the symmetry structure
of the model itself. Baryon number is B = 1

3
for quarks and B = 0 for leptons, while

lepton number is L = 0 for quarks and L = 1 for leptons. For the respective currents we
have that,

∂µJB
µ = ∂µJL

µ =
3g2

32π2
ϵµναβF a

µνF
a
αβ, (1.30)

where as in Eq. (1.5) F a
µν is the SU(2) field strength. It is worth notice that the same

Eq. (1.30) implies that B − L is not anomalous, i.e. one cannot have a gauge boson
associated to B and L, while it is possible to associate one to B − L, which is what
happens in Grand Unified Theories [11] [10]. What is the physical consequence of having
∂µJ

B
µ ̸= 0? It is the existence of instantons and sphalerons, which play an important

role in the context of baryogenesis and/or leptogenesis. Sphalerons will be treated in
Subsec. (3.3.7).

1.6 Problems of the Standard Model

Even if the Standard Model is one of the cornerstones of physics and one of the great
triumphs of the 20th century, being experimentally verified in many ways, e.g its pre-
dictions for the electron anomalous magnetic moment, or the precision measurements of
the W± and Z0 masses, there are some questions it’s not able to answer [29] [30]:

• Neutrino Masses: As already said, in the Standard Model one cannot account for
neutrino masses [21], since there are not right-handed neutrinos νR’s in the theory
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and a mass term of the form ∝ νT
LC

†νL would violate gauge invariance. But, as it
will be explained in Chapter (2), we have experimental evidence of the fact that
neutrinos have a mass, and we would like to find a theoretical explanation for that.

• The Baryon Asymmetry of The Universe: The Standard Model by itself is not able
to explain the amount of asymmetry between the relic density of baryons and of
antibaryons, also known as matter-antimatter asymmetry [31]. This is one of the
"great mysteries in physics" and we are going to say more about it in Chapter (3).

• Dark Matter: We know that a significant fraction of matter in the Universe is non-
baryonic [32]. The first strong indication for this came from rotational velocity of
stars in galaxy [33][34]: evidences shows that the circular velocity flattens out at
high distances from the galaxy centre, a different behavior from the expected one
vc ∝ 1/

√
r. Since that, a huge amount of progress has been made on both the

theoretical and experimental fronts in understanding this missing matter [35] [36]
[14].

• The Hierarchy Problem: The hierarchy problem can be stated in different ways
and related to the concept of naturalness in scientific thought [37] and has to do
with renormalization in quantum field theories and the mass of the Higgs. Since
the Higgs is a scalar, there is no symmetry protecting its mass as in the case of
leptons with the presence of chiral symmetry, so what happens is that the mass
of the Higgs boson receives quadratic (and not logarithmic) corrections from the
heavy masses in the theory, e.g the top mass or heavier degrees of freedom added
in UV completion or beyond Standard Model (BSM) models [38].

• The Strong CP Problem: The problem refers to the CP violation term in the
QCD Lagrangian ∝ θGµνG̃µν , where θ is a parameter while Gµν is the QCD field
strength. We have no explanation for the θ-parameter being so small as measured,
i.e θ < 10−10 [39]. There is a concrete proposal due to Peccei and Quinn fore the
introduction of a new particle, the axion a, to solve this problem [40].

• Quantum Gravity: The Standard Model describes three of the four known funda-
mental interaction at the quantum level [29]. Gravity is only treated classically
since it’s very weakly coupled at the SM relevant energy, it can be considered as
an effective (classical) field theory valid at scales smaller than the Planck scale(
Mpl =

√
Gh
c3
≃ 1019GeV

)
.



18

Chapter 2

Neutrino Masses

In this Chapter, which is mainly based on [21], we are going to review first the concept
of leptonic mixing Sec. (2.1) which leads directly to the phenomenology of neutrino
oscillations in vacuum Sec. (2.2). Then we look to the problem of neutrino masses more
deeply and in particular to one of its possible solutions which is the so-called seesaw
mechanism Sec. (2.3) Sec. (2.4).

2.1 Leptonic Mixing

In this section we will show why the discovery of neutrino oscillations is a clear evidence
that neutrinos have a mass. If we assume that neutrinos have masses, we can describe
them using two different basis 1: the flavour basis, the one related to the SU(2) doublet
and weak interaction where each neutrino is associated to the correspondent charged
lepton, να, with α = e, µ, τ , and the mass basis, νi, with i = 1, 2, 3, where each neutrino
has a definite mass. The two basis are related by a unitary transformation, very similarly
to what happens with the CKM matrix, which in this case is called the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix:

νL,α =
3∑

i=1

UαiνL,i, (2.1)

The PMNS matrix enters in the charged-current (CC) Lagrangian, which can also be
expressed in terms of the mass eigenstates as,

LCC ⊃ −
g√
2

∑
α,i

ν̄iU
∗
αiγ

µPLlαWµ + h.c., (2.2)

where PL ≡ 1
2
(1 − γ5) is the left projector and we are in basis were the charged lepton

lα mass matrix is diagonal.
1We are also assuming that the two basis, i.e. the mass and the flavour ones, are different, as happen

in the quark sector of the Standard Model.
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Similar arguments to the ones for the CKM matrix holds for the PMNS one, but with
an important difference: if neutrinos are Dirac particles, i.e. their mass term in the
Lagrangian don’t violate lepton number, as happens for the charged leptons, the physical
degree of freedom of the PMNS matrix can be parameterized using three angles and one
complex phase, but if neutrinos are Majorana particles, then the physical complex CPV
phases become more than one. This will result in three physical phases, two of which
only entering in lepton number violating processes, e.g. the double beta decay. As in the
case of the quark mixing, CP violation can be parametrized by the Jarlskog invariant
and it is related to the complex nature of the PMNS matrix. As before, we cannot have
CPV with only two generations involved, and so Dirac CP violation becomes a genuine
3-neutrino mixing effect, whose physical impact depends on all the three mixing angles.

It can be shown that if neutrinos have a non-degenerate mass spectrum and there
is leptonic mixing, then neutrino oscillations happens. This effect is a manifestation of
quantum mechanics on macroscopic distances: in production and detection neutrinos
are well described by flavour states since the interacting Hamiltonian is diagonal on the
flavour basis. Every flavour state, as described by Sec. (2.1), is a coherent superposition
of states with different masses2. Then every massive component of the initial state
propagate with a different phase over long distances; this happens because during the
propagation the mass states are the eigenstates of the Hamiltonian. This leads to the
possibility that at the time of detection, when we have to project the flavour components
out, a different flavour is found with respect to the one of production.

2.2 Neutrino Oscillations (in Vacuum)

The oscillation probability can be derived in different ways, we follow the one in [21]
where plane-wave approximation is used. This approximation neglect the momentum
uncertainty necessary for coherence and so we need to assume that the initial state is
in a coherent superposition of massive states. A neutrino coming from a CC interaction
can be described as να, for some flavour α, but it can also be described as

|ν, t = 0⟩ = |να⟩ =
∑
i

U∗
αi |νi⟩ . (2.3)

2We are assuming that we can have coherence in the superposition thanks to the uncertainty on the
neutrino momentum at its production.



Chapter 2. Neutrino Masses 20

The propagation of the neutrinos is better described through the eigenstates of the free
Hamiltonian, i.e |νi⟩, which has eigenvalues Ei =

√
p2 +m2

i . We obtain

|ν, t⟩ = e−iĤt |να⟩ =
∑
i

U∗
αie

−iEit |νi⟩ . (2.4)

The probability of having a transition |να⟩ → |νβ⟩ can be obtained by

| ⟨νβ|ν, t⟩ |2 =
∣∣∣∣∑

i

UβiU
∗
αie

−iEit

∣∣∣∣2 ≡ P (να → νβ, t), (2.5)

where we used that ⟨νj|νi⟩ = δij. Since in all relevant situations neutrinos are highly
relativistic, we can make the following approximations:

Ei − Ej ≃
m2

i −m2
j

2p
, (2.6)

for commmon momentum p, and also L ≃ t. Considering also E ≃ p and defining
∆m2

i1 ≡ m2
i −m2

1 we can rewrite Eq. (2.5) as,

P (να → νβ, t) = | ⟨νβ|ν, t⟩ |2 =
∣∣∣∣∑

i

UβiU
∗
αi exp

{
−i∆m2

i1t

2E

}∣∣∣∣2. (2.7)

It is evident from Eq. (2.7) that neutrino oscillations between different flavours are pos-
sible only if there is leptonic mixing, i.e. if the PMNS matrix is ̸= 1, and if neutrinos
have masses. This is why the discovery of neutrino oscillations is a strong evidence of
the fact that neutrinos have non-zero masses and that the SM is not a complete theory.
We can notice that neutrino oscillations conserve lepton number L (but not lepton flavour
number Le, Lµ or Lτ ) and that the Majorana phases do not enter in the oscillation for-
mula, as expected since they are related to lepton number violating processes. Neither
the overall mass scale for neutrinos enters in the oscillation probability, only their squared
mass differences. Neutrino oscillations parameters are currently under measure using at-
mospheric, accelerator, reactor and solar neutrinos; every experiment is sensible to some
of the PMNS matrix parameters. Different experiments are needed to check consistency
in measurements and to try to catch all the different parameters. From [41] we know
that

• The ∆m2
21 mass splitting is known to be > 0 and with a value of 7.50(6.94−8.14)×

10−5 eV2 with a 3σ range.

• The ∆m2
31 is known less precisely and its sign is not established; we talk about

normal (NO) or inverted (IO) ordering. For NO we have ∆m2
31 = 2.55(2.47 −
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2.63) × 10−3 eV2 while for IO ∆m2
32 = −2.45(2.37 − 2.53) × 10−3 eV2 with again

considering a 3σ range.

For what concern the mixing angles we have:

• θ12 = 34.3(31.4− 37.4) for both NO and IO,

• θ23 = 49.26(41.20− 51.33) for NO and θ23 = 49.46(41.16− 51.25) for IO,

• θ13 = 8.53(8.13− 8.92) for NO and θ13 = 8.58(8.17− 8.96) for IO,

• Hints for leptonic CP violation have been reported, in fact the measued value for
the δ phase are δ = 194(128 − 359) for NO and δ = 194(128 − 359) for IO. No
information on the Majorana phases is currently available.

Future neutrino oscillations experiments aim to a better understanding of neutrino
mass ordering, CP violating processes and to the precise determination of the oscilla-
tion parameters. As we are going to show below, oscillation parameter, i.e low-energy
parameter, can be related to high energy ones coming from BSM theories, e.g seesaw
Lagrangian parameters.

2.3 Dirac or Majorana particles?

Neutrinos are neutral fermions, so they could be either Dirac or Majorana particles,
as pointed out by E. Majorana in 1937 [7]. In the first case particles and antiparti-
cles are different as in the case for electrons and positrons, in the second one there is
no distinction between a particle and its own antiparticle. In the SM only neutrinos
can be Majorana particles and this open an important window on the issue of lepton
number conservation. Lepton number is an accidental symmetry in the Standard Model
Lagrangian, it holds at a perturbative level but it’s not known if it is a property of an
ultimate theory of particles. Experiments are going on to put bounds on lepton number
violating processes, the most sensitive of which is the so-called [42] neutrinoless double
beta decay [43][44]. Understanding the nature of neutrinos is necessary since we want to
add to the SM Lagrangian their mass term in the right way making a big step forward
in the comprehension of Nature.

2.3.1 Dirac masses

If neutrinos are Dirac particles, to describe their masses we need to add to the theory
new degrees of freedom, the SM singlets right-handed neutrinos νR’s and a term in the
Lagrangian of the kind

Ly,ν = L̄YDH̃νR + h.c.. (2.8)
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After EWSSB this term generates a Dirac mass for the light neutrinos, given by

LDirac,ν =
v√
2
ν̄LYDνR + h.c. (2.9)

This Yukawa coupling and the resulting Dirac mass conserve lepton number and in
general they are not diagonal. But it is worth notice that a Majorana mass term for νR
would not violate any fundamental symmetry once added right handed neutrinos to the
theory; not including this kind of term means that we are promoting lepton number L

from an accidental symmetry to a fundamental one. We can also give an estimate of the
order of magnitude of the needed Yukawa couplings: if we suppose mv to be sub-eV, we
get that YD ≃ 10−12. This is a very small number and there is no explanation here for
the strong hierarchy between lepton masses.

2.3.2 Majorana Masses and the Weinberg Operator

In principle neutrinos can also have a Majorana mass term without the need of adding
the new particles to the theory. But we have to pay attention since νT

LC
†νL is not a

gauge invariant term. We can use the fact that L̄H̃ is gauge invariant and construct a
singlet combination through,

LMaj,EFF =
λ

Λ
LT H̃∗C†H̃†L+ h.c.. (2.10)

In this way we avoided to introduce new particles, but we came out with a dimension
5 operator, the so-called Weinberg operator, which can only be an effective operator,
normalized by a mass scale Λ in the denominator and suggesting the presence of new
physics at that scale. The analogy here is with the Fermi theory as low-energy realisation
of the W -mediated weak interaction. It is worth saying that the Weinberg operator is the
only D=5 operator admitted by the Standard Model, while the other effective operators
are higher dimensional. It also violates lepton number and after EWSSB leads to a mass
term of the kind,

LMaj,M =
λv2

2Λ
νT
LC

†νL + h.c. (2.11)

But, what gives rise to the Weinberg operator at high energies?

2.4 The Seesaw Mechanism

That of the seesaw is a mechanism which can explain the existence of neutrino masses
and also their smallness in terms of the presence and the heavy masses of new degrees
of freedom, for example the RHNs νR’s [45] [46]. This mechanism is naturally present
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in various extension and UV completion of the SM, e.g. unified theories, a fact that
makes it very appealing from a theoretical point of view [47]. Its advantage is that large
Yukawa couplings are allowed because the suppression of neutrino masses is due to the
heavy mass of the RHNs. The seesaw mechanism can be realized in different ways, which
can be classified in terms of the exchanged particle. The three main options are [21]:

• Type I seesaw for a singlet fermion NR, left panel in Fig. (2.1),

• Type II seesaw using heavy triplet scalars ∆, central panel in Fig. (2.1),

• Type III seesaw for triplet fermions ΣR, right panel in Fig. (2.1).

Figure 2.1: This picture, taken from [21], shows the diagrams contribut-
ing to light neutrino masses in the three seesaw realizations. ⟨H⟩ indicates
the vev of the Higgs field neutral component, ∆ is the scalar triplet and

Σ is the neutral component of a fermion triplet with mass MΣ.

The problem with seesaw models is that having such heavy new particles is very
difficult to test nowadays. And also from the theoretical point of view, if we do not
have some mechanism which can stabilize the electroweak scale, like supersymmetry,
then the new physics scale will induce quadratic corrections ∝M2

NEW to the Higgs mass
[48], as we have seen in Sec. (1.6). Lowering the mass scale is possible, if we lower
the Yukawa couplings; a lot of attention has been devoted to the TeV scale for new
physics since it’s the one accessible at LHC, where the presence of new particles, i.e.
scalar and fermion triplet as well as sterile neutrinos, would leave some characteristic
signature. Allowing for even small couplings lowers the scale further to GeV, MeV and
even eV heavy neutrinos. These low energy seesaw realizations have interesting features,
keV right-handed neutrinos can be a candidate for dark matter if they are stable on
cosmological timescales [49], while GeV sterile neutrinos could be at the origin of the
baryon asymmetry of the Universe via the LG via oscillations mechanism [50][51].

2.4.1 Type I Seesaw

The type I seesaw mechanism is the simplest extension of the Standard Model which
can account for neutrino masses and also for their smallness. It is naturally predicted in
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different UV completion of the SM, as in SO(10) GUT models or in left-right symmetric
theories. It also has the added features that LG can be embedded in it to provide an
explanation for the BAU, thanks to the L-, C- and CP-violating out-of-equilibrium RHNs
decays. We have to introduce at least 2 sterile neutrinos NR,j with j > 1 to reproduce
the two squared mass differences observed in neutrino oscillations experiments. The NR,j

are fermions with no SM gauge numbers, i.e they are singlet of the SM. We choose to
work in this section in the mass basis for right-handed neutrinos, i.e the basis where the
mass matrix MN is diagonal, without loss of generality .

The most general Lagrangian which respects the Standard Model gauge symmetries
is

Ltype−I = −
∑
j,α

L̄αY
D
αjH̃NR,j +

∑
j

1

2
NT

R,jC
†MN,jNR,j + h.c., (2.12)

where y is a 3×j, in general non diagonal, matrix. As we can see, this seesaw Lagrangian
breaks lepton number by two units and predicts Majorana neutrinos. After EWSSB, the
Yukawa term induces a Dirac mass term

mD ≡
Y Dv√

2
(2.13)

and to find the mass eigenstates of the system we need to diagonalize a Lagrangian of
the form

Ltype−I,mass =
1

2

[
(νc

L)
T NT

R

]
C†

[
0 mD

mT
D MN

][
νc
L

NR

]
+ h.c. (2.14)

which is of the Dirac+Majorana type. If we consider the limit of mD ≪ MN , typical
of the seesaw situation, then one set of the mass eigenstates will be given by nearly-
sterile neutrinos, i.e the heavy neutrinos remain mainly in the sterile neutrino direction
and have a mass ≃ Mj, the other set will be given by the active light neutrinos, which
acquire a small mass of the order,

mν ≃ −mD
1

MN

mT
D. (2.15)

We see from Eq. (2.15) that the larger MN the smaller are the neutrino masses (for
fixed Yukawas); so the smallness of neutrino masses is due here to the large hierarchy
between the two energy, or mass, scales. Notice that we have a mixing between the heavy
neutrinos and the active ones, but since it’s of the order sin2 θ = mν/MN . For instance,
if we take the new scale MN to be the GUT scale, i.e 1012 − 1014 GeV, we are able to
predict neutrino masses of order mν = 0.1− 1 eV.
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2.4.2 Casas-Ibarra Parameterization

We just saw that with the type I seesaw mechanism we can explain the small masses
of active neutrinos through the introduction of new heavy degrees of freedom, which
introduce a new mass scale MN and which are coupled to the Standard Model Higgs
and left-handed neutrinos through Yukawa couplings. These parameters are all related
to the high-energy theory but they can be connected to the low-energy ones, i.e the ones
appearing in neutrino oscillations: charged lepton masses, neutrino masses, the angles
and the phases of the PMNS matrix.

Parameterizing the seesaw means finding a way to relate the high energy parameters to
the low energy ones. It is worth noticing here that for 3 sterile neutrinos, a type I see-saw
model presents 3 heavy masses and a non-diagonal complex Yukawa matrix with 9 real
parameters and 6 phases [52]; of all these parameters we can in principle measure only
3 light neutrino masses, 3 mixing angles and 3 phases, if we also assume to be able to
experimentally reach the Majorana phases. So we see that there are some "unknown"
parameters, which turns out to be relevant for LG.
The seesaw can be parameterized in various way. One can adopt a "top-down parame-
terization", where the input parameters are chosen to be all the high-energy ones present
in Eq. (2.12) and in such a way that they can reproduce the known neutrino oscillations
data. Another way is to use a "bottom-up" point of view, starting from experimental
data about neutrino masses and then finding out a proper form for the Yukawa matrix
Yν able to reproduce these data.
A very general approach to the "bottom-up" parameterization has been given in [53] by
Casas and Ibarra and it goes under the name of Casas-Ibarra parameterization. To find
it one starts from Eq. (2.15) and define the K matrix to extract the Higgs vev v as

K = mν/v
2. (2.16)

Both Eq. (2.15) and (2.16) are not defined at low energy but at the "Majorana scale",
MN and so in order to compare them to the experiment values one has to run them down
to low energies through RGE. Working in the basis where the charged lepton Yukawa
matrix is diagonal (also gauge interactions are flavour-diagonal), we can diagonalize the
K matrix by the PMNS matrix U ,

UTKU = diag(k1, k2, k3) ≡ DK, (2.17)
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where U is the unitary matrix which relates flavour to mass eigenstates, i.e.|νe⟩|νµ⟩
|ντ ⟩

 = U

|ν1⟩|ν2⟩
|ν3⟩

 . (2.18)

If we choose ki ≥ 0, then U can be written as

U = V · diag(e−iϕ/2, e−iϕ′/2, 1), (2.19)

where ϕ and ϕ′ are CP violating phases and V has the ordinary form in Eq. (1.25). On
the other hand, since RHNs are Majorana particles, we can always choose to diagonalize
their mass matrix MN and to work in the eigenstates basis, i.e.

U †
RMNU

∗
R = DN = diag(M1,M2,M3), (2.20)

where Mi ≥ 0. From Eqs. (2.16) and (2.17) we have

DK = UT (Y D)T
1√
DN

1√
DN

Y DU, (2.21)

or
1√
DK

DK
1√
DK

= 1 =
1√
DK

UT (Y D)T
1√
DN

1√
DN

Y DU
1√
DK

, (2.22)

which can be rewritten as

1 =

[
1√
DN

Y DU
1√
DK

]T[
1√
DN

Y DU
1√
DK

]
, (2.23)

whose solution can be written in terms of an orthogonal matrix R3, i.e

R ≡ 1√
DN

Y DU
1√
DK

. (2.24)

In order to reproduce the low energy parameters, i.e. the light neutrino masses, mixing
angles and CPV phases, contained respectively in DK and U , the most general Yukawa
matrix Y D is given by [53]

Y D =
√

DNR
√

DKU
†. (2.25)

This parameterization, besides being very general, also collect the additional nine pa-
rameters present in the high energy theory and not imprinted in the low energy one in
these two matrices: DN and R (three unknown positive mass eigenvalues for the RHN
and three complex parameters defining R). Anyway, it can be shown that in practical

3R can be also complex provided that it satisfies RTR = 1
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cases the number of relevant free parameters can be drastically reduced.
Some particular choices for the R-matrix can be to put it directly to R = 1 or to select
Y D such that it can be written as Y D = WDY with W unitary and DY diagonal.

2.4.3 Variants of the Seesaw

Triplet Scalars (Type II)

Neutrino masses can be generated also by tree level exchange of an SU(2)-triplet scalars
[54]. These scalars must be color-singlet and carry hypercharge YT = +2. The minimal
model is with a single triplet T and the relevant part in the Lagrangian are given by

LType−II = −M2
T |T |2 +

1

2
(yT,αβL

T
αTLβ +MTλHH

T iσ2T
†H + h.c.), (2.26)

where MT is a real mass parameter, λL a symmetryc 3 × 3 matrix of dimensionless
complex Yukawa couplings and λH is the dimensionless complex coupling between the
Higgs and the triplet. The contribution to neutrino masses from this model is

[mII ]αβ = yTαβ
λHv

2

MT

(2.27)

Also this model involves lepton number violation because the co-existence of yT and
λH does not allow a consistent way of assigning a lepton charge to T . The complex nature
of these two couplings can also provide a new source of CPV in the theory, leaving space
for explanation for the BAU [55].

We can give a look to the degrees of freedom of this model: there are eleven param-
eters beyond those of the Standard Model, 8 real and 3 imaginary ones. As before in
Subsec. (2.4.2), 9 of these can be determined from the light neutrino parameters, while
the other 2 (MT and |λH |) are related to the full energy theory.

Triplet Fermions (Type III)

One can also generate neutrino masses by the tree level exchange of an SU(2)-triplet
fermion Ψa

i
4, color-singlets and with hypercharge 0 [56] [57]. The relevant part of the

Lagrangian takes the form

LType−III = −
1

2
MiΨ

a
iΨ

a
i + yT,αkσ

a
ρλL

ρ
αH

λΨa
k + h.c. (2.28)

Here, Mi are real mass parameters and the yT,αk are the complex Yukawa couplings.
4i denotes a heavy mass eigenstates while a is an SU(2) index.
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The mass contribution to the neutrino masses in this case is

[mIII ]αβ = yT,αk
v2

Mk

yT,βk. (2.29)

This model violate again lepton number because the co-existence of λT and MT does not
allow a consistent way of assigning a lepton number to Ψi and provide for new sources
of CPV via the yT couplings.
As in the standard type I seesaw model, here we have 18 parameters beyond those of the
Standard Model: 12 real and 6 imaginary.
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Chapter 3

Why Leptogenesis?

That of the Baryon Asymmetry of the Universe (BAU) is a beautiful and very challenging
mystery in theoretical physics because we do not have an unique and verified theory to
explain it. In Sec. (3.1) we review its experimental evidences, in Sec. (3.2) why the SM
by itself is not enough, and then we go deeply in the study of Leptogenesis, in particular
defining and computing in detail the contribution to the CP asymmetry factor ϵiα, in
Sec. (3.3.1), and the equations needed to study the lepton asymmetry evolution during
the history of the Universe, the Boltzmann equations for LG, in Sec. (3.3.6).

3.1 The Baryon Asymmetry of the Universe

To explain the baryon asymmetry of the Universe we can argue either that the asymme-
try was already there as an initial condition or that it has been generated dinamically
during the evolution of the Universe. There are some reasons to believe that the baryon
asymmetry of the Universe must have been generated dinamilcally in the Early Universe.
For example, if a baryon asymmetry were an initial condition, it must have been a highly
fine-tuned one, i.e. for every ∼ 2 · 109 antibaryons we needed ∼ 2 · 109+1 baryons. Also,
if we believe that inflation is the reason why we have a CMB radiation with such an
uniform temperature, then we also have to recognize that any primordial baryon asym-
metry would have been exponentially diluted away by inflation. Two questions can arise
at this point: how much baryon asymmetry do we observe in our Universe? Are we able
to explain it with our current knowledge or is new physics required?

The baryon asymmetry of the Universe can be defined in two equivalent ways:

η ≡ nB − nB̄

nγ

∣∣∣∣
0

= (6.21± 0.16)× 10−10, (3.1)

Y∆B ≡
nB − nB̄

s

∣∣∣∣
0

= (8.75± 0.23)× 10−11, (3.2)

where nB, nB̄, nγ, s are the number densities of baryons, antibaryons, photons and
entropy, the subscript 0 stands for "at present time", while the numerical value comes
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from combined CMB and large scale structure data (WMAP 5 year data, Baryon Acoustic
Oscillations and Type Ia Supernovae). Since the entropy density is given by

s = g∗(2π
2/45)T 3, (3.3)

where g∗ is the number of degrees of freedom in the plasma and T is its temperature, and
is conserved during the expansion of the Universe, it is convenient to work with Y∆B.
Eq. (3.1) and Eq. (3.2) differ only by a numerical factor, i.e. Y∆B = (nγ0/s0)η ≃ η/7.04.
A third way to express the asymmetry is in terms of the baryonic fraction of the critical
energy density,

ΩB ≡ ρB/ρcrit, (3.4)

where ρ are energy densities and the relation with η can be written in terms of the
present Hubble parameter h ≡ H0/100 km s−1 Mpc−1 = 0.701± 0.013.

η = 2.74× 10−8ΩBh
2. (3.5)

The value of the baryon asymmetry of the Universe can be inferred from observations in
two independent ways. The first way is from big bang nucleosynthesis (BBN), because
deuterium D and 3He abundances are very sensitive to η and can be inferred by various
observations. It turns out that there is a range for η which is consistent with all the
abundances of these four light elements, which is (at 95% CL) [58]

4.7× 10−10 ≤ η ≤ 6.5× 10−10, (3.6)

or
0.017 ≤ ΩBh

2 ≤ 0.024. (3.7)

The second way to determine ΩB is from looking at the CMB anisotropies [59] [60]. To
a very good approximation, the CMB spectrum is that of a blackbody radiation with a
constant temperature T . So, the most interesting observables become the temperature
fluctuations Θ(n̂) ≡ ∆T/T , where n̂ represents the direction in the sky. One can study
the main features of the CMB applying fluid mechanics to the cosmological plasma and
treating it as a perfect photon-baryon fluid, neglecting dynamical effects due to gravity
and the baryons. If cs is the speed of sound in the baryon-free fluid, ρ the photon energy
density and p the photon pressure, then it holds

Θ̈+ c2sk
2Θ = 0, (3.8)

where for photons cs ≡
√

ṗ/ρ̇ =
√

1/3. In the anisotropy spectrum the relevant features
are: the existence of peaks and troughs, the location of the first peak and the spacing
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between adjacent peaks. To study it we need to include baryons and gravity correction
in our analysis, since the physical effect of baryons will be to provide extra gravity and to
enhance the compressional phase. This will translate into enhancement of the odd peaks
in the spectrum and so we can measure the odd/even peak disparity to constrain the
baryon energy density. The modifications from baryons and gravity can be understood
from the addition of their effects to Eq. (3.8),

Θ̈+ c2sk
2Θ = F, (3.9)

where F is the forcing term due to gravity and now cs = 1/
√

3(1 + 3ρB/4ργ). Assuming
a ΛCDM model with a scale-free power spectrum for the primordial density fluctuations,
the fit to the observations from WMAP5 gives (at 2σ) [61]

0.02149 ≤ ΩBh
2 ≤ 0.02397. (3.10)

The crucial time for primordial nucleosynthesis (BBN) is when the thermal bath temper-
ature drops below T ≃ 1 MeV, while the crucial time for CMB is that of recombination,
i.e. when the temperature fell below T ≃ 1 eV and neutral hydrogen can be formed. The
non-trivial fact that we have consistency between these two independent predictions is
a triumph of the hot big-bang cosmology.

3.2 Can the SM Explain the BAU?

We would like to have a theory which can explain such a value for ΩB. As being pointed
out by Sakharov in [62], to generate dynamically a baryon asymmetry we need to satisfy
three conditions:

I. Baryon number violation: This condition is required if we want to go from a
symmetric Universe, i.e. with Y∆B = 0 to a non-symmetric state with Y∆B ̸= 0.

II. C and CP violation: If either C or CP are conserved, then processes which involves
baryons would have the same rate as their C- or CP-conjugate ones involving
antibaryons. This will result in no net baryon asymmetry generation.

III. Out of equilibrium dynamics: Equilibrium distribution functions neq are deter-
mined only by the particle energy E, its chemical potential µ and its mass. The
mass is the same for particles and antiparticles thanks to the CPT theorem; when
charges are not conserved, e.g the baryon number (B), the corresponding chemical
potentials vanish, leading to nB =

∫
d3p
(2π)3

neq = nB̄. Equilibrium forces us to have
the same number of baryons and antibaryons.
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These three ingredients are all present in the SM but what happens is that it’s not
able to reproduce quantitavely the observed BAU.

I. B is violated in the SM by the triangle anomaly. The triangle anomaly leads to
processes that involve nine left-handed quarks (three of each generation) and three
left-handed leptons (one from each generation), with the selection rule ∆B = ∆L =

±3, which implies that the sphalerons do not mediate proton decay. It has been
showed in [63] that, if at zero temperature the rate for this kind of processes is
highly suppressed, at a sufficiently high temperatures it can exceed the expansion
rate of the Universe, becoming non-negligble and possibly giving origin to the
BAU if also the Weinberg-Salam phase transition (electroweak phase transition) is
strongly first order.

II. The weak interactions of the SM violates C maximally and trace of CPV can be
find in the Kobayashi-Maskawa mechanism. This CPV can be parametrized and
quantified by the Jarlskog invariant and turns out to be of order 10−20. Since there
are also no kinematic enhancements in the thermal bath [64][65], it is not possible
to generate the baryon asymmetry observed in the Universe, i.e Y∆B ≃ 10−10 with
such small CPV. We need a new source of CPV, beyond the Kobayashi-Maskawa
phase, if we want to account for baryogenesis.

III. Departure from thermal equilibrium in the Standard Model happens with the
EWSSB [66] [67]. We need a strong first order phase transition for succesful baryo-
genesis, but lower bounds on the Higgs mass imply the electroweak phase transition
(EWPT) is not enough. This is why we need a different kind of departure from
thermal equilibrium in the early Universe, both due to new BSM physics or to a
modification of EWPT itself.

Baryogenesis requires new BSM physics. We need to extend the SM accounting for
new sources of CPV and a different departure from thermal equilibrium either through
new symmetry breaking processes, e.g U(1)L, U(1)B−L, L-R breaking or through a mod-
ification of the EWPT.
There are various models and mechanisms for baryogenesis, some of them are:

GUT baryogenesis [68] [69] [70]. It tries to explain the baryon asymmetry in
the out-of-equilibrium decays of heavy bosons in Grand Unified Theories (GUTs).
These heavy bosons come from the gauge nature of Unified Theories and their
pattern of symmetry breakings. GUT baryogenesis has some problems with the
non-observation of proton decay, which puts a lower bound on the decaying boson
mass and as a consequence on the reheat temperature after inflation. Not only,
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since the heavy bosons generate in their decays a B+L asymmetry, and since the
SM sphalerons, which violates B+L, are in equilibrium at high temperatures they
can destroy the asymmetry present. GUT leptogenesis can be a solution [31][71].

Electroweak baryogenesis [72] [73]. It tries to explain the BAU using the EWPT
as departure from equilibrium. Since we know that in the SM the EWPT is not
enough first order for having succesful baryogenesis, we have to modify in some
way the scalar potential to change the nature of the symmetry breaking (also we
need to provide new sources of CPV). Examples of this are the 2HDM (two Higgs
doublets model), where the Higgs potential has more parameters and violates CP
or the MSSM (minimal supersymmetric SM), where the presence of a light stop,
i.e. the supersymmetric partner of the top, modifies the Higgs potential in the
required way and there are new CP violating phases [74]. Attention must be paid
for example in the case of MSSM where LHC constraints on the stop mass as well
as those on EDM essentially rule out this scenario [75][76].

Leptogenesis. It was invented by Fukugita and Yanagida in [77]. New particles -
singlet RHNs - are introduced to explain neutrino masses via the seesaw mechanism.
Their Yukawa couplings can provide the necessary new source of CPV. Departure
from thermal equilibrium occurs if the Yukawa interactions are slow enough, i.e.
Γ ≤ H when T ≃M of the RHNs. L-violation comes naturally from the Majorana
nature of the new particles and the Standard Model sphalerons can convert it into
a baryon asymmetry.

3.3 Leptogenesis

LG by itself can be realized in different ways.

Thermal LG is the scenario where the lepton asymmetry comes from heavy Ma-
jorana neutrinos in the thermal bath. Usually two different pictures are considered:
the RHNs are produced by scatterings in the thermal bath starting from a van-
ishing initial abundance, i.e YNi

(0) = 0; they are already at equilibrium with the
thermal bath at the time when LG begins, i.e YNi

(0) = Y eq
Ni

. Then the evolu-
tion of the RHNs densities can be determined only as a function of the seesaw
parameters and of the reheat temperature of the Universe. One can then consider
some limits for the RHN masses, e.g the hierarchical singlet neutrinos, where
M1 ≪ M2 ≪ M3 or the opposit limit of non-hierarchical RHNs, arriving to the
so-called Resonant Leptogenesis scenario [78], for which the heavy Majorana
neutrinos are quasi-degenerate, i.e M2 −M1 ≃ ΓD,2/2. In this situation there are
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resonances in the CP asymmetry factor which can take it to O(1) allowing us to
lower the scale of LG.

Supersymmetric (SUSY) LG is the study of LG in the case of supersymmetric
models. SUSY can give origin to new mechanism, e.g Affleck-Dine LG or soft LG.
From the point of view of SUSY Thermal LG there are only some small qualitative
and quantitative differences, e.g we have to consider also the sneutrino Ñ1 decay,
there are twice the number of states running in the loops, and so on. In the soft
LG scenario [79] [80] some small SUSY breaking terms are added in the Lagrangian
which provide additional sources of lepton number and CP violation.

One can consider Non-Thermal Leptogenesis, where the RHNs (or only some
of the RHNs generation) are assumed to be produced in the early Universe but
not at equilibrium with the thermal bath, e.g thanks to the inflaton decay [81],
or in preheating [82]. In the SUSY scenario the singlet sneutrino Ñ could be the
inflaton, producing a lepton asymmetry in its decay [83].

LG via oscillations is the idea proposed by Akhmedov, Rubakov and Smirnov
(ARS) that if the RHNs are at the electroweak scale (or below) then CPV effects
leading to LG can be induced by the coherent superposition of different RHNs mass
eigenstates.

Depending on the temperature at which LG occurs one can consider also flavour
effects and solve the matrix density equations instead of working in the one-flavour
regime approximation. In this thesis we will work in the framework of thermal LG with
hierarchical singlet neutrinos and we will mainly consider the case with vanishing initial
abundance for the Ni number densities. Also, we are going to consider the one-flavour
regime.

A potential drawback of thermal LG with hierarchical masses Mi’s is the lower bound
on M1 [84] given in Subsec. (3.3.5), which makes the model difficult to test and which
gives a lower bound on the reheat temperature [85][86].

3.3.1 CP Asymmetry

We consider the CP asymmetry for the Ni decay in lepton flavour α and in zero temer-
ature field theory, since thermal corrections can be neglected in first approximation. It
can be defined in terms of the right-handed neutrinos width as, [22]

ϵiα ≡
Γ(Ni → LαH)− Γ(Ni → L̄αH̄)∑
α Γ(Ni → LαH) + Γ(Ni → L̄αH̄)

. (3.11)
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It turns out that at tree level we cannot have CP violation: this can be shown using
unitarity but also simply looking at the decay rates. In fact, the tree level decay Γ(Ni →
LαH) can be written in terms of [87]

M(Ni → LαH) = Y∗
αiūαPRui, (3.12)

where Yαi is the Yukawa coupling of the seesaw Lagrangian. The CP conjugate process,
i.e Γ(Ni → L̄αH

†) will be related to

M(Ni → L̄αH
†) = −YαiūαPLui. (3.13)

The two amplitudes in Eqs. (3.12) and (3.13) differs only by the Yukawa coupling, i.e
Y∗

αi vs Yαi, and by the projectors, i.e PL vs PR. However, these differences give the same
contribution after squaring the amplitude and properly taking the usual sum/average
(trace) over internal states, i.e 1/2

∑
spins |M|2. Since decay widths are proportional to

this factor, we obtain Γ(Ni → LαH) = Γ(Ni → L̄αH
†). We need to look for CPV in the

contribution given by the loop diagrams.

3.3.2 Implications of Unitarity in CP Violation in Decays

We can use unitarity and CPT invariance to show where the CP asymmetry come from
and to obtain constraints on it. Simply starting from the unitarity of the S-matrix,
written as S = 1 + iT , we can write

1 = S†S = (1− iT †)(1 + iT ) = 1− iT † + iT + T †T, (3.14)

where T is the transition matrix, defined as ⟨f |T |i⟩ ≡ (2π)4δ4(pi − pf )M(i→ f) [20] .
From Eq. (3.14)

T †T = i(T † − T ) (3.15)

which, when sandwiched between the initial and final states |i⟩, |f⟩, i.e considering the
matrix elements, gives

⟨f |T †T |i⟩ = ⟨f | i(T † − T ) |i⟩ . (3.16)

Since we are dealing with Hilbert spaces, it holds that

⟨f |T † |i⟩ = ⟨i|T |f⟩∗ , (3.17)

and so, from Eq. (3.16)
iT ∗

if − iTfi =
[
T †T

]
fi

(3.18)
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Taking then modulus square of iTfi = iT ∗
if −

[
T †T

]
fi

and considering that Tfi, T ∗
if and[

T †T
]
fi

are complex numbers with a real and an imaginary part, e.g Tfi = TR
fi + iT I

fi,
we can write

|Tfi|2 =
∣∣iT ∗R

if − T ∗I
if − [T †T ]Rfi − i[T †T ]Ifi

∣∣2, (3.19)

Performing some algebra and collecting some terms,

|Tfi|2 =
∣∣∣(−T ∗I

if −
[
T †T

]R
fi
) + i(T ∗R

if −
[
T †T

]I
fi
)
∣∣∣2, (3.20)

|Tfi|2 = (T ∗I
if )

2 + (
[
T †T

]R
fi
)2 + 2T ∗I

if

[
T †T

]R
fi
+

+(T ∗R
if )2 + (

[
T †T

]I
fi
)2 − 2T ∗R

if

[
T †T

]I
fi

we obtain
|Tfi|2 = |Tif |2 +

∣∣∣[T †T
]
fi

∣∣∣2 + 2T ∗I
if

[
T †T

]R
fi
− 2T ∗R

if

[
T †T

]I
fi
, (3.21)

Considering then that (T ∗R
fi ) = (TR

fi) and (T ∗I
fi ) = −(T I

fi) we can rewrite the relation
above as

|Tfi|2 − |Tif |2 =
∣∣∣[T †T

]
fi

∣∣∣2 − 2Im
{[

T †T
]
fi
Tif

}
, (3.22)

How is this result related with CP asymmetry factor? We need to use CPT invariance
to show it: from CPT we have that |M(f → i)|2 =

∣∣M(̄i→ f̄)
∣∣2, which in the case of a

Majorana state |i⟩ becomes

|M(f → i)|2 =
∣∣M(i→ f̄)

∣∣2.
And so, since

|Tfi|2 ≃ |M(i→ f)|2,

and
|Tif |2 ≃ |M(f → i)|2 ≃

∣∣M(̄i→ f̄)
∣∣2 ≃ ∣∣M(i→ f̄)

∣∣2.
The relation

|Tfi|2 − |Tif |2 = |Tfi|2 −
∣∣Tf̄ i

∣∣2 = ∣∣∣[T †T
]
fi

∣∣∣2 − 2Im
{[

T †T
]
fi
Tif

}
, (3.23)

tells us that the CP violation in a process like an Ni decay can first arise in the loop
corrections: the first non-zero contribution is given by the term −2Im

{[
T †T

]
fi
Tif

}
,

while the
∣∣∣[T †T

]
fi

∣∣∣2 is higher order in the couplings. We can also write

[
T †T

]
fi
=
∑
k

T †
fkTki =

∑
k

⟨f |T † |k⟩ ⟨k|T |i⟩ =
∑
k

⟨k|T |f⟩∗ ⟨k|T |i⟩ . (3.24)
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Figure 3.1: In this figure, taken from [8], the diagrams contributing to
the CP asymmetry factor ϵiα are shown. On the left we have the tree-level
amplitude, in the centre the wave diagram contributions and on the right

the vertex contribution.

This important result, known under the name of Cutkosky Rules, or Optical Theorem,
shows that the loop amplitude in Eq. (3.23) has an imaginary part when there are branch
cuts corresponding to intermediate on-shell particles.

3.3.3 Standard Contribution to the CP asymmetry

We want now study the CP asymmetry factor in standard Thermal Leptogenesis. This
computation was first carried out in [88] and [89]. We can first rewrite Eq. (3.11) in terms
of Eq. (3.23): writing the decay width Γ(Ni → lαϕ, l̄αϕ

†) in terms of the amplitude |M|2

and the phase-space integration factors dΠlϕ,l̄ϕ̄, we obtain

ϵiα =

∫
dΠlϕδ̃|M|2 −

∫
dΠl̄ϕ̄δ̃|M̄|2∑

α

∫
dΠlϕδ̃|M|2 +

∫
dΠl̄ϕ̄δ̃|M̄|2

, (3.25)

and considering that

dΠlϕ =
d3pld

3pϕ
2El2Eϕ

=
d3pl̄d

3pϕ̄
2El̄2Eϕ̄

= dΠl̄ϕ̄, (3.26)

the relation betweenM and T given in (3.3.2), the CP asymmetry factor becomes,

ϵiα =

∫
dΠlαϕ(2π)

4δ4(Pi − Pf )
(
−2Im

{[
T †T

]
fi
Tif

})
2
∑

α

∫
dΠlαϕ(2π)

4δ4(Pi − Pf )|M(i→ f)|2
. (3.27)

In the one flavour regime, one has to sum over the flavour index α in Eq. (3.27),

ϵi ≡
∑
α

ϵiα. (3.28)

The denominator is the common part of all the different contribution, shown in Fig. (3.1),
to the asymmetry factor ϵiα. The factor of 2 in front comes from the fact that at tree
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level the decay rates are the same both in the Ni decay and in its CP conjugate one.
The details are shown in Append. (B.1). The decay rate for the right handed neutrinos
is

ΓNi
=

(Y†Y)iiMi

8π
(3.29)

while the denominator of Eq. (3.27) is given by

1

8π

∑
α

|Yαi|2M2
i . (3.30)

We can define here a useful dimensionful parameter which represents the decay rate ΓD

and will be used later; it has to do with the washout scenario of the LG process, and in
the literature is usually referred to as

m̃ ≡
∑

m̃αα ≡
∑
α

Y∗
α1Yα1v

2

M1

=
(Y†Y)iiv

2

Mi

= 8π
v2

M2
1

ΓD. (3.31)

The contribution to the CP asymmetry in the numerator of Eq. (3.27) are given by
the interference between the tree-level diagram and the one loop diagrams in Fig. (3.1):
the two diagrams in the centre (one with l and the other with l̄) will give the wave
function corrections to the CP asymmetry while the one the left the vertex correction.
The details of the computations for this contributions can be found in Append. (B.1.1),
(B.1.2) and (B.1.3). After having defined z ≡M2

j /M
2
i , what we obtain is

ϵwave−1
iα =

1

8π

1

(Y†Y)ii

∑
j ̸=i

Im
{(

Y†Y
)
ji
YαiY

∗
αj

} √z
1− z

(3.32)

for the wave contribution with the antilepton l̄ running in the loop;

ϵwave−2
iα =

1

8π

1

(Y†Y)ii

∑
j ̸=i

Im
{(

Y†Y
)
ij
YαiY

∗
αj

} 1

1− z
(3.33)

for the wave contribution with the lepton l running in the loop;

ϵvertexiα =
1

8π

1

(Y†Y)ii
Im
{(

Y †Y
)
ji
Y⋆

αjYαi

}√
z

[
1− (1 + z) ln

(
1 +

1

z

)]
, (3.34)

for the vertex diagram contribution.
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So, summing all Eqs. (3.32), (3.33) and (3.34) we obtain the total contribution

ϵiα =
1

8π

1

(Y†Y)ii

∑
j ̸=i

Im
{(

Y†Y
)
ij
YαiY

∗
αj

} 1

1− z
+

+
1

8π

1

(Y†Y)ii
Im
{(

Y †Y
)
ji
Y⋆

αjYαi

}
g(z),

(3.35)

where g(z) is a loop function defined as

g(z) =
√
z

[
1

1− z
+ 1− (1 + z) ln

(
1 +

1

z

)]
. (3.36)

From (3.35) we can notice two different things:

I. Resonances can appear from the terms of the form (1 − z)−1 ∝ (M2
i −M2

j )
−1 if

Mi ∼ Mj, this is the case of the so-called resonant leptogenesis, where a strong
enhancement in the value of ϵiα can lead to lowering significantly the RHN mass
scale.[78] There is also a singularity in the resonant term for Mi = Mj. Anyway this
singularity can be regulated by using for example effective field theory approaches
based on resummation [90].

II. At least two right handed neutrinos are needed, otherwise the combination of
Yukawa couplings in (3.35) becomes real and the CP asymmetry vanishes.

In this work we are mainly going to use the one flavour regime approximation, where the
asymmetry factor becomes,

ϵi ≡
∑
α

ϵiα =
1

8π

1

(Y†Y)ii

∑
j ̸=i

Im
{(

Y †Y
)2
ji

}
g(z). (3.37)

3.3.4 CP Violation in Scatterings

CP violation also occurs in 2 → 2 scattering processes, the leading ones are those in-
volving the top quark, and with an Higgs exchange in s- or t-channel. Scattering can
also involve the gauge bosons, with processes like NL → H̄A or NH → l̄A [91] . The
relevant part of the Lagrangian for these scattering in the mass basis of the Ni’s, the
charged leptons and the quarks is,

Lscatt. = −yiαN̄iH̃
†Lα − ytQ̄H̃t+ h.c.. (3.38)

As in the case of the CP asymmetry from the Ni decay, also with scatterings it arises
from the interference between the tree level amplitude and the one-loop ones, as shown
in Fig. (3.2).



Chapter 3. Why Leptogenesis? 40

Figure 3.2: s-channel diagrams Qt̄ ←→ Nαli scatterings which con-
tributes to the CP asymmetry. The Higgs can also be exchanged in a

t-channel process QNα ←→ tli. The picture is taken from [91].

What one finds out is that this source of CPV gives an important contribution to the
generation of a lepton asymmetry only at high temperatures and that the approximation
of the CP asymmetry factor from scattering being the same of the one from the RHNs
decay is good in the case with hierarchical Majorana neutrino masses. What happens is
that, for example, in a strong washout regime, where the final lepton asymmetry is almost
independent from early times conditions, the final results are essentially unaffected by the
inclusion of new sources of CPV, while in the weak washout the effects of the scatterings
CP violation is to reduce the final asymmetry.

3.3.5 The Davidson-Ibarra Bound

If we assume a hierarchical spectrum for the right handed neutrinos and that the dom-
inant contribution to the lepton asymmetry comes from the N1 decay, i.e. the lightest
RHN [8], then

ϵ1 ≡
∑
α

ϵ1α ≃
3

16π

1

(Y†Y)11

∑
j ̸=1

Im
{
(Y†Y)2j1

}M1

Mj

, (3.39)

and, working with three generations of RHNs and the Casas-Ibarra parameterization
Eq. (2.25) for the Yukawas, Eq. (3.39) becomes,

ϵ1 ≃
3

16π

M1

v2

∑
imνi Im{R2

1i}∑
i mνi |R1i|2

. (3.40)

Using the orthogonality condition
∑

i R
2
1i = 1 we obtain the Davidson-Ibarra (DI) bound

[84]

|ϵ1| ≤ ϵDI =
3

16π

M1

v2
(mν3 −mν1) =

3

16π

M1

v2
∆m2

atm

mν1 +mν3

(3.41)

where mν1 (mν3) is the lightest (heaviest) light neutrino mass. Considering Y∆B(∞) ≥
Y CMB
B ≃ 10−10 we can obtain bounds on M1 and mν1 ; for succesful LG under these

assumptions we need M1 ≥ 109 GeV for mν1 ≤ 0.1 eV which in turn implies a reheating
temperature after inflation TRH ≥ 109 GeV. It is worth to say that the violation of one
of the assumption allows us to lower someway the RHNs scale.
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3.3.6 Boltzmann Equations for Leptogenesis

If we want to study thermal LG we need also to use thermodynamics in the early Universe
[92]. In fact, the evolution of the hot plasma in time happens while mantaining thermal
equilibrium, but the cosmologically important events focus on those epochs where some
species decouple from the thermal bath, e.g BBN or Recombination. Qualitatively, the
decoupling happens when the interaction rate of the particle species and the expansion
rate of the Universe are of the same order, i.e Γ ∼ H, but for making predictions we need
a more quantitative approach which is given by the Boltzmann Equation, a very useful
tool to describe the out-of-equilibrium dynamics of the species in the thermal bath. The
Boltzmann Equation can be written in terms of operators as

L̂[f ] = Ĉ[f ], (3.42)

where f is thermal distribution function which can be of the Fermi-Dirac type or pf the
Maxwell-Boltzmann one, L̂[f ] is the Liouville operator and Ĉ[f ] is the collision operator,
and both operators applies to f .
The Liouville operator is defined as

L̂ = pµ
∂

∂xµ
− Γµ

νρp
νpρ

∂

∂pµ
, (3.43)

where xµ is the 4-vector of the spatial coordinates, pµ is the 4-momentum and Γµ
νρ are

the Christoffel symbols defined in Append. (A.1). The collision operator Ĉ[f ] describes
instead the scattering amplitude considering also the thermal distribution function of
the particles. The Liouville operator depends instead on the metric used for describing
the physical situation; in this context we are considering the Robertson-Walker metric,
defined in Append. (A.2). If also the distribution function f only depends on the energy
and the time, i.e f = f(E, t) the Boltzmann Equation becomes,

L̂[f(E, t)] = E
∂f

∂t
− ȧ

a
|p⃗|2 ∂f

∂E
. (3.44)

The expansion of the Universe can be described in this context by the scale factor
a = a(t), or using the Hubble parameter defined as,

H(t) ≡ ȧ(t)

a(t)
, (3.45)

which, as a function of the temperature T of the thermal bath becomes

H(T ) =

√
8πG

3
ρr =

√
8πG

3

√
πg⋆
30

T 2 ≃ 1.66
√
g⋆

T 2

MPL

, (3.46)
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or in terms of z = M1/T

H(z) ≃ 1.66
√
g⋆

M2
1

MPL

1/z2. (3.47)

It’s often more useful working with the particle yelds Yi, which are related to the particle
number density ni and the entropy density of the Universe s through

Yi =
ni

s
. (3.48)

Writing also the collision operator Ĉ[f(E, t)] as

Ĉ[f(E, t)] = γij...
ab...

(
nanb...

neq
a neq

b ...
− ninj...

neq
i neq

j ...

)
, (3.49)

where γij...
ab... is the thermal cross-section defined in Append. (E.1), we can rewrite the

Boltzmann Equation in Eq. (3.42) for the case of a process (i + j → a + b) where the
particles a and b are in equilibrium with the thermal bath, i.e na = neq

a and nb = neq
b , as

dYi

dz
= −Di(Y

2
i − (Y eq,

i )2), (3.50)

where Di is some factor which depends on z, H(Mi) and the thermal cross section γij
ab.

With thermal LG what happens is that we have as initial condition for our Universe
some abundance of RHNs, which can be YNi

(0) = 0 or YNi
(0) = Y eq

Ni
, which is then

modified in time thanks to the interacting terms in the Lagrangian with the leptons
and the Higgs and can be studied with Boltzmann equations. At the same time, since
processes involving RHNs Ni’s (decay and scattering) are CP violating, they create a
lepton asymmetry yields ≡ Y∆L which can again be tracked with Boltzmann Equations.
In LG, one usually works directly with the ∆α ≡ B

3
− Lα, since the sphalerons conserve

B − L.
We always have to solve a system of coupled Boltzmann equations, but we can use
different approximations depending on the case of study.[8] For example, if LG occurs
at T ≥ 1012 GeV , then the charged lepton Yukawa interactions are out of equilibrium,
i.e we are not able to distinguish flavours, and this defines the one flavour regime. We
can also reduce the number of equations in the system if we assume that the reheating
temperature after inflation is such that Ni with i > 1 are not produced [93] and then
only the dynamics of N1 is relevant. Then the evolution of the N1 density and lepton
asymmetry can be described by the following (classical) BEs

dYN1

dz
= −D1(YN1 − Y eq

N1
), (3.51)
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dY∆α

dz
= ϵ1D1(YN1 − Y eq

N1
)−W1Y∆α , (3.52)

where z ≡M1/T as always,

D1(z) =
γN1z

sH(M1)
= K1z

K1(z)

K2(z)
, (3.53)

is the decay term which depends on the n-th order modified Bessel function of second
kind Kn(z) and on the Hubble parameter evaluated at the masses of N1, i.e

H(M1) ≡ H1 = z2H(z) ≃ 1.66
√
g⋆

M2
1

MPL

. (3.54)

The Boltzmann Equation (3.51) depend also on the adimensional parameter [94]

K1 ≡
m̃1

m∗ , (3.55)

which determines the washout regime (weak or strong). The parameter m∗ is the anal-
ogous of m̃ with the Hubble parameter and it’s defined as

m∗ ≡ 8π
v2

M2
1

H(T = M1) ≃ 1.1× 10−3eV. (3.56)

As we can see, the equation for the lepton asymmetry, Eq. (3.52) depends on two different
kind of contributions, which acts as opponents: there is a term which tends to increase
the lepton asymmetry and it’s proportional to the N1 thermal decay width, with the
CP asymmetry factor ϵ1 ≡

∑
α ϵ1α as proportionality constant, and an other term which

tends to erase the asymmetry created given by

W1(z) =
1

2
D1(z)

Y eq
N1
(z)

Y eq
l

. (3.57)

The parameter defined in Eq. (3.55) helps to distinguish two different regimes:

Strong washout regime. In this regime, defined by K1 ≫ 1, at T ∼ M1 the
N1 number density is at thermal equilibrium and the total lepton asymmetry is
YL ∼ 0 since any asymmetry created has been washed out thanks to the equilibrium
condition for the decay and its inverse process. Only when the temperature drops
and the inverse N1 decay gets out of equilibrium, i.e their rate ΓID < H, the
asymmetry created through the decay survives contributing to Y∆B.

Weak washout regime. In this scenario, the the total decay rate, i.e Γ(N1 →
LαH), is small when compared to H(M1). As a consequence the N1 number density
does not reach its equilibrium distribution during the evolution of the Universe
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Figure 3.3: Left and right panels shows respectively the lightest RHN
number density and the absolute value of the lepton asymmetry, as a
function of z = M1/T , in the case of vanishing initial RHN density. Here

M1 = 1014 GeV and the washout factor is K1 = 10.

but at the same time any lepton asymmetry which is created for z < 1 will not be
erased, differently from what happens in the strong washout case. An example of
the weak washout scenario is shown in Fig. (3.3).

Fig. (3.3) shows the N1 number density (left panel) and the absolute value of the baryon
asymmetry (right panel) both as a function of z = M1/T in the case of vanishing initial
abundance, i.e. YN1(0) = 0. As one can see from the left panel, in this situation the
RHN number density slowly increases with time thanks to its interactions with the SM
particles, reaching its equilibrium distribution. Then, if we look to the right panel, which
represents the BAU, we can notice the presence of a dip for z ≃ 1: it represents a change
of sign in the baryon asymmetry. This behaviour is peculiar of the vanishing initial
abundance case, i.e. the case when YN1(0) = 0, an it is due to the fact that, for z ≪ 1, is
the inverse N1 decay which populates the thermal bath of the RHN species, generating
in this way an asymmetry in some "direction", e.g. destroying more antileptons than
leptons, but then, when the RHNs reach their equilibrium distribution, it is their decay
which dominate the production of the asymmetry, symmetry which now will have the
opposite sign with respect to the one created before. The presence of the dip will not
be present in the case of thermal initial abundance for the RHNs density studied in
Sec. (4.14). It is worth to say here that we have to obtain a positive value for the
BAU, i.e. we must have more baryons than antibaryons; in our scenario, i.e. thermal
LG, this can always be done thanks to the freedom in the choice of some phases in the
Casas-Ibarra parameterization, given in Eq. (2.25).
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Figure 3.4: Instanton and Sphaleron processes in the topology of a Yang-
Mills vacuum; on the y-axis is shown the energy density of the gauge field
while on the x-axis is present the winding number (or Chern-Simons) NCS ,
which represents the topological charge of the system. These processes

leads to a ∆NCS = 1. The figure is taken from [95].

3.3.7 Sphalerons

Since what is observed in the Universe is a baryon asymmetry, it is important for LG
to have a mechanism which can translate the lepton asymmetry into the BAU. Here we
want to give a qualitative introduction [22] of the mechanism which is used to account
for this conversion. This mechanism has to do with the anomalous B + L violation
introduced in Sec. (1.5). One can show, from Eq. (1.30), that the anomaly term is a
total derivative,

ϵµναβF a
µνF

a
αβ = ∂µK

µ, (3.58)

so it cannot contribute at any order in perturbation theory. However, it can give a
contribution to the path integral through a field configuration which is locally gauge
equivalent to 0, but which is topologically stable. These configurations violate B and
L, i.e act as sources for B + L ≡ B + Le + Lµ + Lτ , at the same time preserving
B−L ≡ B−Le−Lµ−Lτ , which is non-anomalous. If such configurations are suppressed
at low energies, they are very frequent in the early Universe, where the temperature T

is far above the Electroweak scale, i.e the scale of Electroweak phase transition, leading
to rapid B + L violation and to important consequences for LG.
In fact, if we consider the rate of this kind of solutions, what happens is that, at zero
temperature, their action is given by:∣∣∣∣ 1

4g2

∫
d4xFA

µνF
µνA

∣∣∣∣ ≥ ∣∣∣∣ 1

4g2

∫
d4xFA

µνF̃
µνA

∣∣∣∣ ≥ 64π2N

4g2
, (3.59)
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where N is the integer change in the fermion number. Since the rate of the process is,

Γinst ∝ e−Action ∼ e−4π/αW , (3.60)

it’s too small to be observed. This processes correspond to tunneling configurations and
are called instantons. We can have a glimpse of what this non-perturbatuive solutions
look like considering the ground state of the gauge field as a periodic potential, like
in Fig.(3.4): then the instantons represents the vacuum fluctuations between different
minima with a ∆NCS = 1 (∆B = ∆L = nf∆NCS, with nf = 3 being the number of
flavours).
With the same analogy, one can imagine that at a finite temperature, thanks to thermal
effects, there can be fluctuations able to climb over the energy barrier; these configura-
tions, in the presence of the Higgs vacuum expectation value, are the sphalerons [96].
The rate of the sphaleron is, differently from the instanton one, Boltzmann suppressed:

Γsph ∝ e−Esph/T , (3.61)

where Esph = 2BmW/αW is the height of the barrier at T = 0 and 1.5 ≤ B ≤ 2.75 is a
parameter related to the Higgs mass. We are interested in the rate at the Leptogenesis
temperatures [97], which are far above the EWPT. This rate has been estimated as [98]
[99]

Γ /B+L ≃ 250α5
WT. (3.62)

So, at temperatures below 1012 GeV and above EWPT, B +L violating processes are in
equilibrium, i.e. faster than the Hubble expansion rate H. So, what happens is that the
lepton asymmetry produced in the N1 decay implies a baryon excess of

Y∆B ≃ A
∑
α

Y∆α , (3.63)

where A depends on the model we are considering, in particular A = 12/37 in the
Standard Model and A = 10/31 in the MSSM [22] [100].
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Chapter 4

Scalar-Singlet Assisted Leptogenesis

In this chapter we are going to study how the standard picture of thermal LG is modified
in a model where, in addition to the SM particle content and symmetry group, an
arbitrary number nr of RHNs νR’s, a complex scalar singlet S and a U(1)B−L global
symmetry are added. Thermal LG depends is usually studied within the formalism of
Boltzmann equations. In our model these equations will be influenced by the presence of
these new scalars ϕ and θ coupled to the right handed neutrinos Ni. A similar analysis
has been done in [18] where the contribution to leptogenesis Boltzmann equations given
by the presence of new interactions between the Majorana heavy neutrinos and scalars
coming from a dynamically broken U(1)B−L is considered. What differs from our case
is the parameter space considered: the focus there is on Ni’s annihilation into the two
scalars, i.e contributions coming from scatterings, and not on the scalar decay into N1’s.
Moreover, they consider mainly the case where both ϕ and θ are massless, or at least
massive but with masses mϕ,mθ ≤M1. A similar idea was investigated in [19] where the
influence of new scalar degrees of freedom in generating RHNs at the GeV scale and their
consequent freeze-in is studied in the scenario of LG via oscillations (ARS leptogenesis).
First we write in detail all the different parts of the Lagrangian of the model Sec. (4.1).
Then we analyze the symmetry breaking chain, considering first the U(1)B−L spontaneous
symmetry breaking Sec. (4.2), Sec. (4.3) and then looking at the vacuum structure of the
system after EWSSB Sec. (4.6) finding the scalar mass eigenstates. Also the mass basis
for the RHNs is found Sec. (4.5). Then the contribution of the two new scalars degrees
of freedom ϕ and θ to the CP asymmetry factor Eq. (3.27) are computed in Sec. (4.7). In
Sec. (4.8) we compute the analytical contributions to the Boltzmann equations for LG
given by the new interactions between the scalars ϕ, θ and the RHNs; in particular we
consider the situation where the scalar can decay in a couple of the lightest RHNs, i.e.
when the condition mϕ > 2M1 holds. Then a study of the relation between the Yukawa
parameters, the washout/decay factor and the N1 mass is done in Sec. (4.9). We obtain
then the results for different values of the washout K1 parameter and initial condition
YN1(0) in Sec. (4.11), Sec. (4.12), Sec. (4.13) and Sec. (4.14).
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4.1 The Lagrangian of The Model

The Lagrangian with the global U(1)B−L symmetry, nr νR’s (SM singlets w/ B−L = −1)
and 1 S SM singlet complex scalar w/ B − L = 2 will be made by,

L = LSM + Lkin(νR,S) + Lseesaw + Lpotential. (4.1)

To write it expicitly we need to consider all the symmetries respecting renormalizable
terms; in particular we cannot neglect the couplings between the Standard Model Higgs
H and the new scalar singlet. Since S is a complex field, it can be written as

S(x) =
ϕ(x) + iθ(x)√

2
=

ρ(x)√
2
eiπ(x)/f . (4.2)

At very high energies, if we suppose that both the U(1)B−L and the electroweak gauge
SU(2)L×U(1)Y are unbroken, i.e. if high-energy symmetry restoration happens, we can
write the potential in the following form:

−Lpotential = Vscalars(H, S) = m2(H†H) + λ(H†H)2+

+ Λ(H†H)(S†S) + µ2(S†S) + λs(S
†S)2.

(4.3)

Having added to our model nr SM singlet RHNs νR’s, we will have in our Lagrangian
also a seesaw part which is going to account for the RHNs masses after the U(1)B−L

SSB.
The seesaw Lagrangian is given by

−Lsee−saw = L̄LY
∗
DH̃νR +

1

2
νT
RCYRSνR + ν̄RY

T
DH̃

†LL +
1

2
ν̄RY

†
RS

∗νc
R, (4.4)

where YD and YR are respectively a 3 × nR and a nR × nR (in general non-diagonal)
matrices. Notice that we cannot add a direct mass term for νR’s because it would violate
the U(1)B−L symmetry of the model.

4.2 Symmetry Breaking and Goldstone Theorem

4.2.1 The Unbroken Phase

The high-energy potential invariant under the

(SU(3)C × SU(2)L × U(1)Y )gauge × U(1)B−L,global
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symmetry group is given by Eq. (4.3). The minimum energy configurations of the system
can be obtained studying first and second derivatives of the potential with respect to
the various fields in it. Writing H†H = |H|2 and S†S = |S|2 we can clearly see that the
potential is a function only of the modulus squared of the scalar fields, as it should be
thanks to the symmetries. The potential then becomes

Vscalars(H, S) = m2|H|2 + λ|H|4 + Λ|H|2|S|2 + µ2|S|2 + λs|S|4. (4.5)

The conditions for the critical points can be written as

∂V

∂|H|
= 2m2|H|+ 4λ|H|3 + 2Λ|H||S|2 = 0, (4.6)

∂V

∂|S|
= 2µ2|S|+ 4λs|S|3 + 2Λ|H|2|S| = 0, (4.7)

which are satisfied by

|H| = 0, |H|2 = −m2 + Λ|S|2

2λ
, (4.8)

|S| = 0, |S|2 = −µ2 + Λ|H|2

2λs

, (4.9)

and we can see that in the region of the parameter where m2,µ2, λ, λs > 0 and also
Λ > 0, the only viable situation is the one for which |H| = 0 and |S| = 0 .

Is this a maximum or a minimum for our potential?
To understand it we need to look at the Hessian, the second derivatives matrix, given by

∂2V

∂|H|2
= 2m2 + 12λ|H|2 + 2Λ|S|2, (4.10)

∂2V

∂|S|2
= 2µ2 + 12λs|S|2 + 2Λ|H|2, (4.11)

∂2V

∂|S|∂|H|
=

∂2V

∂|H|∂|S|
= 4Λ|H||S|. (4.12)

When we evaluate the Hessian matrix in our stationary point, i.e. |H| = 0 and |S| = 0,
we obtain

∂2V

∂|H|2
= 2m2,

∂2V

∂|S|2
= 2µ2, (4.13)

∂2V

∂|S|∂|H|
=

∂2V

∂|H|∂|S|
= 0, (4.14)
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which means that it’s positive definite in that specific point and this identifies such a
point as a (at least local) minimum.

So, this shows that at sufficiently high energies we can perform perturbation theory
around the origin, i.e around {|H| = 0, |S| = 0}, which represents the vacuum of the
system and no spontaneous symmetry sreaking has happened so far.

4.2.2 The U(1)B−L Spontaneous Symmetry Breaking

Spontaneous symmetry breaking of the U(1)B−L global symmetry happens if for some
physical reasons, e.g. thermal effects while the temperature T of the thermal bath drops
down, the values of µ2 in Eq. (4.3) becomes negative. If this happen, then the potential
becomes,after sending µ2 → −µ2,1

Vscalars(H, S) =m2(H†H) + λ(H†H)2 + Λ(H†H)(S†S)− µ2(S†S) + λs(S
†S)2

=m2|H|2 + λ|H|4 + Λ|H|2|S|2 − µ2|S|2 + λs|S|4.
(4.15)

We now can repeat the procedure in Subsec. (4.2.1) to see what has happened to the old
vacuum state, i.e. if the minimum configuration of the potential has changed. The entire
procedure is carried on in section Append. (C.1). What we find is that the minus sign in
front of µ2 makes a great difference; the point {|H| = 0, |S| = 0} is no more a minimum,
moreover, being the Hessian matrix indefinite when evaluated there, we know that it
represents a saddle point for the potential. In fact, it is still representing a minimum in
the "|H|-direction" while it has become a maximum in the "|S|-direction". But we find
also a minimum configuration represented by the condition{

|H| = 0, |S|2 = µ2

2λs

≡ v2s
2

}
. (4.16)

We point out here that this condition represents a set of points of equivalent minima
which reflects the U(1)B−L symmetry of the theory even if, when we choose one point
between all of them as vacuum for the system, the original symmetry seems to be lost.
This is the meaning of broken, or hidden, symmetries.

4.2.3 U(1)B−L and Goldstone Theorem

As pointed out in Sec. (1.2), it is a very important result for field theories the one
known as the Goldstone Theorem, which tells us that every time we have a spontaneous
breaking of a continuous and global symmetry, then a massless particle, the Goldstone

1In this way we continue working with µ2 > 0 and factorize out its change of sign in the minus in
front.
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Boson, enters the game. More precisely, the number of independent Goldstone modes
will be the same as the number of the generators broken by the vacuum configuration.

Should we expect any Goldstone bosons after the U(1)B−L symmetry breaking? And
how many of them? And, if so, where are they, since in the Hessian matrix in Ap-
pend. (C.13) has only positive eigenvalues which means no massless particles?
We have broken a global U(1)B−L symmetry and being U(1) a continuous group, we
expect our model to predict the presence of Goldstone bosons. More precisely, the
breaking of the U(1) symmetry is complete and since its dimension is one, we expect the
presence of one Goldstone boson. To find it, we must look more deeply into the different
degrees of freedom of the scalar which is driving the symmetry breaking, i.e the complex
field S.
We can parameterize the most general complex field through its real and imaginary parts,
using its radius and a phase, i.e.

S(x) =
1√
2
(ϕ(x) + iθ(x)) =

ρ(x)√
2
ei

π(x)
f . (4.17)

We choose to work with the ϕ(x) and θ(x) parameterization and the potential becomes

Vscalars(H,ϕ, θ) = m2|H|2 + λ|H|4 + Λ

2
|H|2(ϕ2 + θ2)

−µ2

2
(ϕ2 + θ2) +

λs

4
(ϕ2 + θ2)2.

(4.18)

The minima are found in Append. (C.1). First, we find the following stationarity condi-
tion: |H|0 = 0, since the electroweak symmetry is not broken, and

ϕ = 0, ϕ2 + θ2 =
µ2

2λs

≡ v2s , (4.19)

θ = 0, ϕ2 + θ2 =
µ2

2λs

≡ v2s , (4.20)

which reflects the ones obtained for |S| in Sec. (4.2.2). Notice the U(1) symmetry of the
theory reflected in the fact the stationarity condition are only given in terms of ϕ2 + θ2,
which represents a circle. Looking then at the Hessian we find again that the origin is
no more a minimum and that instead the minimum condition is the one given by

ϕ2 + θ2 =
µ2

2λs

≡ v2s . (4.21)
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But we find also something new: if we choose as configuration the one given by ϕ0 = vs

and θ0 = 0, then the second derivatives evaluated at the minimum will give

∂2V

∂|H|2
= 2m2 + Λv2s ,

∂2V

∂ϕ2
= 2µ2, (4.22)

∂2V

∂θ2
= −µ2 + λsv

2
s = 0,

∂2V

∂|H|∂θ
=

∂2V

∂θ∂|H|
= 0, (4.23)

∂2V

∂|H|∂ϕ
=

∂2V

∂ϕ∂|H|
= 0,

∂2V

∂ϕ∂θ
=

∂2V

∂θ∂ϕ
= 0. (4.24)

The eigenvalue correspondent to the θ field is 0. This means that if we Taylor expand
around that minimum configuration, the quadratic term in θ vanishes, telling us that
oscillations along the θ direction will be described by massless modes. We found the
Goldstone boson. As shown in Append. (C.2), choosing a different vacuum between the
ones respecting ϕ2 + θ2 = v2s only corresponds to a rotation of the ϕ field into the θ

one, creating a mixing which can always be taken back to a diagonal form looking for
the scalar mass eigenstates and so there is no loss of generality in considering the case
{|H| = 0; θ = 0; ϕ2 = v2s}, as we should have expected from the beginning thanks to the
U(1)B−L symmetry.

4.3 The Potential After U(1)B−L Symmetry Breaking

Having found out that after U(1)B−L Symmetry Breaking the field ϕ(x) takes a vacuum
expectation value vs we can now proceed in writing the potential using a different pa-
rameterization for the S field, i.e. sending ϕ → ϕ + vs, so that S = 1√

2
(ϕ + vs + iθ). In

this way both ϕ and θ are describing dynamical oscillations around the true vacuum of
the theory, i.e ϕ0 = 0 and θ0 = 0 and the potential can be written as,

V (H,ϕ, θ) = m2(H†H) + λ(H†H)2 + Λ(H†H)(S†S) + λs

(
S†S − v2s

2

)2

=

= m2|H|2 + λ|H|4 + Λ

2
|H|2ϕ2 +

Λ

2
|H|2θ2 + Λ

2
|H|2v2s + Λvs|H|2ϕ+

+λsv
2
sϕ

2 +
λs

4
ϕ4 +

λs

4
θ4 + λsvsϕ

3 + λsvsϕθ
2 +

λs

2
ϕ2θ2.

Our model predicts:

I. A mass term for the scalar field ϕ of the value m2
ϕ = 2λsv

2
s ;

II. A CP odd massless particle θ, i.e. the Goldstone boson, known also as the Majoron;

III. Self-interactions for both the ϕ and the θ fields;
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IV. Interaction between the two degrees of freedom of the scalar S, ϕ and θ;

IV. Interactions between the SM Higgs H and the new degrees of freedom ϕ and θ; these
terms will be important in our following analysis on Leptogenesis. Notice that if
it’s present an interaction term of the form |H|2ϕ, we don’t have the correspondent
|H|2θ term.

But what is going to happen after EWSSB?

4.4 The Seesaw Lagrangian

After the U(1)B−L symmetry breaking, i.e. when the oscillation around the vacuum state
are described by ϕ and θ in S = 1√

2
(vs+ϕ+ iθ), something very interesting happens also

in the seesaw Lagrangian

−Lsee−saw = L̄LY
∗
DH̃νR +

1

2
νT
RCYRSνR + ν̄RY

T
DH̃

†LL +
1

2
ν̄RY

†
RS

∗νc
R, (4.25)

which becomes,

−Lsee−saw = L̄LY
∗
DH̃νR + νT

RC
YRϕ

2
√
2
νR + νT

RC
YRvs

2
√
2
νR + νT

RC
YRiθ

2
√
2
νR+

+ ν̄RY
T
DH̃

†LL + ν̄R
Y†

Rϕ

2
√
2
νc
R + ν̄R

Y†
Rvs

2
√
2
νc
R − ν̄R

Y†
Riθ

2
√
2
νc
R.

(4.26)

We can notice that:

I. The νR become massive with MR = YRvs√
2

mass matrix and a Majorana mass term
in the Lagrangian

−LνR,Maj. =
1

2
νT
RC

YRvs√
2

νR +
1

2
ν̄R

Y†
Rvs√
2

νc
R; (4.27)

II. Interactions between the νR’s and the scalars ϕ,θ which will be the relevant ones
for our studies on LG;

III. We can use the fact that MR is symmetric, being a Majorana mass term, i.e.
MR = MT

R, which means M†
R =

Y†
Rvs√
2

= M∗
R =

Y∗
Rvs√
2

. This implies Y†
R = Y∗

R. So,

−LνR,Maj. ⊃ L̄LY
∗
DH̃νR + ν̄RY

T
DH̃

†LL +
1

2
νT
RCMRνR +

1

2
ν̄RM

∗
Rν

c
R. (4.28)
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4.5 The Right Handed Neutrinos Mass Basis

So far we have written only the scalar potential in its proper mass basis; the Majorana
mass matrix in Eq. 4.28 is in general not diagonal and so we have to look for the right-
handed neutrinos mass eigenstates which we are going to call N ’s. Since MR is symmetric,
we can diagonalize it through MR = URDNU

T
R where UR is an unitary matrix and DN is

the diagonal matrix with the right-handed neutrinos mass (real) eigenvalues. The mass
eigenvalues for DN can also be chosen to be real.
The Lagrangian in the mass basis for the RHNs will be given by

−LνR,Maj. =
1

2
νT
RCURDNU

T
RνR +

1

2
ν̄R(URDNU

T
R )

∗νc
R =

=
1

2
νT
RURCDN(U

T
RνR) +

1

2
ν̄RU

∗
RDNU

†
Rν

c
R

(4.29)

If we define NR ≡ UT
RνR, the mass terms can be finally rewritten as,

−LNR,Maj. =
1

2
NT

RCDNNR +
1

2
N̄RDNN

c
R (4.30)

Considering the inverse transformation, i.e. νR = U∗
RNR (and ν†

R = N †
RU

T
R ), we can

write the entire Lagrangian in terms of the scalar mass eigenstates and the right-handed
neutrino ones.

L = LSM +
1

2
(∂µϕ)(∂

µϕ) +
1

2
(∂µθ)(∂

µθ)− l̄LY
∗
DH̃U∗

RNR − N̄RU
T
RY

T
DH̃

†lL+

−1

2
NT

RCDMNR −
1

2
N̄RDMN c

R −
1

2
NT

RC
U †
RYRU

∗
R√

2
ϕNR −

1

2
N̄R

UT
RY

∗
RUR√
2

ϕN c
R+

−1

2
NT

RC
U †
RYRU

∗
R√

2
iθNR +

1

2
N̄R

UT
RY

∗
RUR√
2

iθN c
R −

(
m2 +

Λvs
2

)
(H†H)+

−λ(H†H)2 − Λ

2
(H†H)ϕ2 − Λ

2
(H†H)θ2 − Λvs(H

†H)ϕ+

−λs

4
ϕ4 − m2

s

2
ϕ2 − λsvsϕ

3 − λs

4
θ4 − λs

2
ϕ2θ2 − λsvsϕθ

2

Defining now

I. YDUR ≡ YD −→ Y∗
DU

∗
R ≡ YD

∗ and UT
RYD

T = (YD
∗)† = YD

T

II. U †
RYRU

∗
R ≡ YR −→ UT

RYR
†UR = UT

RYR
∗UR ≡ YR

† = YR
⋆ and, since we are

working with real masses, the Yukawa couplings YR will be real too and so YR =

Y†
R.
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After the electroweak symmetry breaking the seesaw Lagrangian will give origin to
neutrino masses in the usual way, but with the difference that now we have a relation
also for the masses of the right handed neutrinos, i.e DN = (vsYR)/

√
2. The masses of

the light neutrinos will be instead given by Eq. (2.15),

mν ≃ −
1√
2
YD

v2

vsYR

YT
D, (4.31)

where we used that
mD =

YDv√
2
. (4.32)

We can then rewrite the whole Lagrangian as

L = LSM +
1

2
∂µϕ∂

µϕ+
1

2
∂µθ∂

µθ − l̄LYD
∗H̃NR − N̄RYD

T H̃†lL −
1

2
NT

RCDMNR+

−1

2
N̄RDMN c

R −
1

2
NT

RC
YR√
2
ϕNR −

1

2
N̄R
YR

⋆

√
2
ϕN c

R −
1

2
NT

RC
YR√
2
iθNR +

1

2
N̄R
YR

⋆

√
2
iθN c

R+

−
(
m2 +

Λvs
2

)
(H†H)− λ(H†H)2 − Λ

2
(H†H)ϕ2 − Λ

2
(H†H)θ2 − Λvs(H

†H)ϕ+

−λs

4
ϕ4 − m2

s

2
ϕ2 − λsvsϕ

3 − λs

4
θ4 − λs

2
ϕ2θ2 − λsvsϕθ

2.

Defining the Majorana fermion N = NR + N c
R such that N = N c and writing left and

right projectors explicitly, we obtain the following form for the Lagrangian,

L = LSM +
1

2
∂µϕ∂

µϕ+
1

2
∂µθ∂

µθ − L̄LYD
∗PRH̃N+

− N̄YD
TPLH̃

†LL −
1

2
DNN̄N − YR

2
√
2
N̄Nϕ− i

YR

2
√
2
N̄γ5Nθ+

−
(
m2 +

Λvs
2

)
(H†H)− λ(H†H)2 − Λ

2
(H†H)ϕ2 − Λ

2
(H†H)θ2+

−Λvs(H†H)ϕ− λs

4
ϕ4 − m2

s

2
ϕ2 − λsvsϕ

3 − λs

4
θ4 − λs

2
ϕ2θ2 − λsvsϕθ

2.

(4.33)

4.6 The Breaking of Electroweak Symmetry

We need to find from our model the physics we see at low energy and from the Standard
Model we know that at low energy the electroweak symmetry is broken down to U(1)EM ,
the electromagnetic gauge symmetry group. So, also in our model EWSSB must be
viable. It is also interesting to see what happens in our with EWSSB because it is more
difficult than in the usual SM case: the potential contains an allowed interaction between
the Higgs H and the new scalar S, i.e. the new scalars ϕ and θ, which makes things not
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trivial. What one can do, starting from Eq. (4.3), is to write the Higgs field as

H =
1√
2

(
0

h

)
, (4.34)

in a way that H†H = 1
2
h2, then perform derivatives of the potential V (h, ϕ, θ) with

respect to the various field, looking for the stationarity conditions: ∂ϕV = 0, ∂θV = 0

and ∂hV = 0 and at the end study the Hessian matrix to find the minima.
We parameterize the Higgs field in this way because we know that the component which
can take a vacuum expectation value after the symmetry breaking can only be along
the neutral component with respect to the unbroken symmetry, i.e the component with
electric charge Q = 0, since U(1)EM is the unbroken symmetry of the theory. We are
also already working in the unitary gauge so that we don’t see the pseudo-Goldstones
bosons appearing after symnmetry breaking.
It turns out that an easier way to study the minimum configurations of the potential
after EWSSB is to start directly from Eq. (4.18) and to consider that for having EWSSB
there must be also m2 < 0. Then we send m2 → −m2 and consider the parameterization
for the Higgs field in Eq. (4.34), so that the potential becomes,

V (h, ϕ, θ) = −m2

2
h2 +

λ

4
h4 +

Λ

4
h2(ϕ2 + θ2)− µ2

2
(ϕ2 + θ2) +

λs

4
(ϕ2 + θ2)2. (4.35)

The study of the stationary configurations is done in Append. (C.3). The minimum of
the potential is given by the system of conditions,

h2
0 =

m2 − Λ
2
(ϕ2

0 + θ20)

λ
, (4.36)

ϕ2
0 + θ20 =

µ2 − Λ
2
h2
0

λs

, (4.37)

where we are again free to choose and work with θ0 = 0 without loss of generality,
obtaining

h2
0 =

λsm
2 − Λ

2
µ2

λλs − Λ2

4

, ϕ2
0 =

λµ2 − Λ
2
m2

λλs − Λ2

4

, θ0 = 0. (4.38)

Notice that in the limit where Λ→ 0, i.e in the limit where the Higgs and the new scalar
fields are decoupled, we recover the vacuum expectation values θ and ϕ took after only
the U(1)B−L symmetry breaking. The EWSSB, because of the term Λ|H|2|S|2 present
in the potential, is modifying the vacuum also in the θ and ϕ direction. We can also
look at the Hessian matrix of the system evaluated in the selected minimum to study



Chapter 4. Scalar-Singlet Assisted Leptogenesis 57

the mass spectrum of the system:

∂2
hhV =

2λλsm
2 − Λλµ2

λλs − Λ2

4

, ∂2
ϕϕV =

2λλsµ
2 − Λλsm

2

λλs − Λ2

4

, ∂2
θθV = 0,

∂2
hϕV = ∂2

ϕhV =
Λ
√

λλsm2µ2 − Λ
2
(λsm4 + λµ4) + Λ2

4
m2µ2

λλs − Λ2

4

, (4.39)

∂2
hθV = ∂2

θhV = 0, ∂2
ϕθV = ∂2

θϕV = 0.

At this point, we can note two things:

I. We have also here a zero eigenvalue in correspondence of the derivatives with
respect to the θ field. As in Subsec. (4.2.3), this means that mθ = 0 even after the
EWSSB, as expected from the Goldstone theorem.

II. After EWSSB we obtain also a mixing between the two scalars h and ϕ. This
means that if we want to find the mass eigenstates of the potential, they will be
linear combinations of the two fields and, consequently, there will be some mixing
between the SM Higgs and this new singlet scalar.

Anyway since in our case LG happens far above the electroweak scale, we are going to
work with H,ϕ and θ as scalar degrees of freedom.

4.7 The Scalar Contributions To The Asymmetry

In this section, we give the results for the new contributions to the CP asymmetry
factor given by the interaction between the N ’s and the two scalars ϕ and θ. These are
computed in detail in Append. (D).
The first contribution to be considered is the interference between the tree-level Ni decay
and the following 1-loop diagram, with the scalar ϕ running in the loop

Ni

Lα

H

pi

pj

Nj

pϕ

ϕ

pk

Nk

pH

pα

It is important to notice that since we need to produce on-shell loop particles to have a
non-zero CP asymmetry injection, the condition Mi > Mj+mϕ must hold. For example,
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we won’t have CP injection in the decay of the lightest RHN, since it is not able to
produce a heavier Nj.
The general result for the first wave function correction is obtained in Append. (D.0.1)
and yields:

ϵwave,ϕ
iα =

(
1

128π

)
1∑

α |Yαi
D |2

∑
j,k ̸=i

Im
{
Yjk⋆

R Ykα⋆
D Yji

RY
iα
D

} 1

1− rki
×

×
[
√
rji(1 +

√
rki) +

1

2
(1 + rji − σi)(1−

√
rki)

]
√
ρij.

(4.40)

where the following quantities has been defined:

σi =
m2

ϕ

M2
i

, rji =
M2

j

M2
i

, (4.41)

ρij = (1− rji − σi)
2 − 4rjiσi. (4.42)

In our model we are considering the addition of a SM complex scalar singlet S to the
usual RHN extension of the SM particle content. So, since we have a very simple relation
as Eq. (4.26) between MN and YR, and since we want to work in the RHNs mass basis
and MN is also symmetric being a Majorana mass matrix, what happens is that when we
diagonalize the matrix MN we are automatically diagonalizing also the RHNs Yukawa
matrix YR. This means that Yjk

R = δjkY
jk
R ≡ Yj

R, and that we cannot induce a RHNs
mixing through the new scalar degrees of freedom ϕ. The main consequence is that we
cannot satisfy the fundamental kinematical condition to put on-shell the particles in the
loop of Append. (D.0.1), i.e we cannot have Mi > Mj + mϕ for a massive ϕ. So, in
our model ϵwave,ϕ

iα = 0. For the same reason also the vertex contribution given by the
interference with the diagram

Ni

Lα

H

pi

ϕ

pα

Nj

pH

Nk

vanishes. Let’s see if something different happens when we consider the CP-odd degrees
of freedom of the U(1)B−L scalar, i.e the Majoron θ. This particle is massless and so in
principle the kinematical condition for the on-shell loop is satisfied. Anyway, we have
to say that we don’t expect a ϵwave,ϕ

iα ̸= 0 because the lack of mixing in the RHNs-θ
interaction leads also to a combination of Yukawa couplings which is real. The 1-loop
diagram we have to consider for this case is,



Chapter 4. Scalar-Singlet Assisted Leptogenesis 59

Ni

Lα

H

pi

pj

Nj

pθ

θ

pk

Nk

pH

pα

In this case the kinematical condition becomes Mi > Mj +mθ, but with mθ = 0, so in
principle itcan be satisfied even without mixing. Performing the computation for the CP
asymmetry Eq. (3.27) and before performing phase space integrations, we obtain from
Append. (D.0.2),

ϵwave,θ
iα ∝ 1

8

Im
{
Yαi

DYkj,∗
R Ykα,∗

D Yij
R

}
p2k −M2

k

Tr
{
−PL/pα

(
/pk −Mk

)(
/pj +Mj

)(
−/pi +Mi

)}
.

(4.43)

If we then consider diagonal RHNs Yukawa couplings, i.e if Yij
R = δijY

ij
R = Yi

R; when we
start with an |Ni⟩ initial state, then Eq. (4.43) takes the form

ϵwave,θ
iα ∝ 1

8
Im
{∣∣Yiα

D

∣∣2∣∣Yi
R

∣∣2}Tr
{
−PL/pα

(
−/pi +Mi

)}
. (4.44)

This contribution is again identically 0 because |Yiα
D |

2|Yi
R|

2 has no imaginary part.

At this point we can say that, in some sense, adding this new complex scalar singlet
S and a U(1)B−L global symmetry is natural and do not modify the value of the CP-
asymmetry ϵiα. But we have to pay attention saying that the new scalar does not
modify the whole Leptogenesis process, since it can modify through its interactions the
Boltzmann Equation for the RHNs yields YNi

which are another fundamental block in
thermal Leptogenesis.
It is also worth noting that modifications to the CP asymmetry factor occurs in more
complex situations, like where one add more than one complex scalar singlets to the
theory, or has more than one Higgs doublets, or both, as shown in [17]. Modifications
can also be present if one put by hand a direct mass term for the RHNs, as done in [16]
where they consider not a complex, but a real scalar singlet. We repeat here that our
idea was that of studying a minimal model where the new scalar degrees of freedom ϕ

and θ and the U(1)B−L symmetry have the power of generating dinamically the seesaw
type-I mechanism and giving a UV explanation for it. At the same time we wanted to
focus on a model which can be embedded into other theories, e.g Majoron dark matter
models where the presence of the U(1)B−L Goldstone boson becomes a candidate for dark
matter when there are small symmetry-violating terms in the Lagrangian which gives
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to it a small mass, [14][13] or theories which aim to be UV completion of the Standard
Model, as GUT theories.

4.8 Boltzmann Equations Again

After having showed that ϵiα is not modified in its form by the addition of one new
complex scalar singlet S, which drives, after symmetry breaking, the mass mechanism
for neutrinos, we can go on studying how Boltzmann equations for the right handed
neutrinos are modified by the new terms in the Lagrangian. The leading order effects
will be the one due to the decay of the massive scalar ϕ, if kinematics conditions are
verified, i.e. mϕ > 2Mi. We need to include the contribution to the N1’s density in the
thermal bath due to the process

ϕ

Ni

Ni

pϕ
pi

p′i

The decay of the new degrees of freedom ϕ can help to thermalize the Ni density, i.e
taking the N1 number density to its equilibrium distrubution, even in the case of a weak
washout regime for example, giving an enhancement in the creation of the lepton (and
then of the baryon) asymmetry.
We study the case where mϕ > 2M1 and the scalar can decay into a couple of the lightest
RHN N1’s. The formalism used is the one presented in [22]. It holds that(

ẎN1

)
ϕ−decay

= [ϕ←→ N1N1], (4.45)

where

[ϕ←→ N1N1] ≡
Yϕ

Y eq
ϕ

γϕ
N1N1

−
(
YN1

Y eq
N1

)2

γN1N1
ϕ = yϕγ

ϕ
N1N1

− y2N1
γN1N1
ϕ , (4.46)

γab...
ij... is the thermal cross section defined in Append. (E.1) and also

(
ẎN1

)
ϕ−decay

is defined
as (

ẎN1

)
ϕ−decay

≡ sH1

z

(
dYN1

dz

)
ϕ−decay

(4.47)

.
In our situation γN1N1

ϕ = γϕ
N1N1

and if we also assume that the scalar ϕ is in thermal
equilibrium with the bath, thanks for example to its interactions with the Higgs boson
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in Eq. (4.33), then yϕ ≃ 1 and the equation we need to solve is,(
ẎN1

)
ϕ−decay

= [ϕ←→ N1N1] ≃ (1− y2N1
)γN1N1

ϕ . (4.48)

The complete computation is carried out in Appendix E and gives an analytical result
in the limit of mϕ ≫M1

2, which is, in terms of the N1 yield, YN1 ,

(
dYN1

dz

)
ϕ−decay

=
1

Y 2
eq,N1

(
Y 2
eq,N1

− Y 2
N1

)(Y 1
R)

2m3
ϕM1

16(2π)3

(
1− 4M2

1

m2
ϕ

)K1

(
mϕ

M1
z
)

sH1

(4.49)

This results can be rewritten in terms of the particle number density N1 ≡ n1a
3, using

the relation between the entropy density s and the comoving volume a3,

s =
2π2

45

1

a3
, (4.50)

giving

(
dN1

dz

)
ϕ−decay

=
1

Neq,1neq,1

(
N2

eq,1 −N2
1

)(Y 1
R)

2m3
ϕM1

16(2π)3

(
1− 4M2

1

m2
ϕ

)K1

(
mϕ

M1
z
)

H1

. (4.51)

Substituting then in Eq. (4.51) the value of neq,1 from Appendix E and writing all in
terms of the decay parameter Kϕ, defined as:

Kϕ =
Γϕ
D

H1

=

(
1

32π

)
(Y 1

R)
2 mϕMPL

1.66
√
g⋆M2

1

(
1− 4M2

1

m2
ϕ

) 3
2

, (4.52)

we obtain the result we were looking for:(
dN1

dz

)
ϕ−decay

=
1√

1− 4M2
1

m2
ϕ

(
mϕ

2M1

)2

KSz
K1(z

mϕ

M1
)

K2(z)

(
N2

eq,1 −N2
1

)
Neq,1

. (4.53)

The decay parameter Kϕ defined in Eq. (4.52) is an adimensional parameter which tends
to describe the strength of the scalar decay width Γϕ

D, found in Append. (E.15), with
respect to the Hubble parameter evaluated at T = M1. It is somewhat similar to
the washout parameter K1, but in this case we are not describing any kind of washout
because the ϕ decay into N1’s and its inverse decay are not creating or deleting any lepton
asymmetry. Kϕ helps us to understand if the scalar decay is at equilibrium during the
evolution of the Universe, especially at T = M1. What we expect is that if Kϕ ≫ 1

2The approximation is good already from mϕ ≥ 3M1
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then the scalar ϕ is playing an important role in taking the N1 number density at its
equilibrium distribution independent from what is the value of K1, while if Kϕ ≪ 1 then
the ϕ decay is weak and if the N1’s are able to reach equilibrium depends only on their
standard Yukawa interactions, parameterized by K1.

4.9 The Washout and Decay Parameters

In this section we are going to make an analysis of both the washout parameter K1

and the decay parameter Kϕ. In particular we plot couplings versus masses for different
fixed values of these two parameters, to understand which are the different choices in the
parameter space which can lead to the same value for the washout or decay parameter.

Figure 4.1: The panel shows the behaviour of the Yukawa coupling, in
particular |YD|, as a function of the mass scale M1 (GeV) for a fixed value
of the parameter K1. The different lines represent different values for K1:
growing values of the washout from down to top, and with the red line
(K1 = 1) standing for the boundary between strong and weak washout

regimes.

The results for the washout parameter K1 are shown in Fig. (4.1). Recalling the
definition given in Eqs. (3.55) and (3.31),

K1 =
m̃1

m∗ =
(Y†Y)11v

2

m∗M1

, (4.54)

we can see that to plot the results in a two-dimensional plane we need to work with some
approximation, since (Y†Y)11 =

∑
α Y

†
α1Yα1 involves more than one Yukawa parameter

due to the presence of the three flavours α. One can choose the approximation where the
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three different Yukawa couplings are of the same order, i.e Yαi ≃ Yβi for α, β = e, µ, τ ,
ore one can consider the case when one of them is bigger than the other two, allowing
us to neglect them. Lowering the value of the washout means, for fixed values of M1,
lowering the Yukawa couplings, e.g for M1 = 1014 having a washout factor of K1 = 0.001

or of K1 = 0.01 means Yukawa couplings of order YD ∼ 10−3, 10−2.

Figure 4.2: The panel shows the behaviour of the N1-ϕ coupling Y1
R, as

a function of the mass scale of the scalar mϕ (GeV) and for a fixed value
of the decay parameter Kϕ. The different lines represents, from down to
top, increasing values for the decay parameter, with the red line (K1 = 1)

standing for the boundary between strong and weak decay regimes.

For what concern the decay parameter Kϕ, the results are shown in Fig. (4.2). From
the definition in Eq. (4.52)

Kϕ =

(
1

32π

)
(Y 1

R)
2 mϕMPL

1.66
√
g⋆M2

1

(
1− 4M2

1

m2
ϕ

) 3
2

, (4.55)

we can see that the relation between Y1
R and mϕ for fixed Kϕ is non-linear.

We have seen before that in the regime of ϕ masses between mϕ = 4M1 and mϕ =

10M1, 100M1 the region of more interest are the ones for Kϕ ≫ 1. From Fig. (4.2) we
can translate this into the correspondent region of parameter space for the right handed
neutrino-scalar coupling, obtaining Y1

R ≥ 0.1.
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4.10 Numerical Analysis of the Boltzmann Equations

Using numerical simulations, we want to compare what is different in the evolution of
the N1 density and of the BAU ηB in the case where the seesaw mechanism is put in by
hand so that there are no new degrees of freedom in the theory besides the RHNs, i.e.
the standard case, and in the case of interest for this thesis, where the seesaw mechanism
is generated dinamically and the presence of a high energy U(1)B−L implies the existence
of new degrees of freedom (ϕ and θ) coupled to the RHNs.
We consider the parameter space where mϕ > 2M1 so that the scalar ϕ can decay into
2N1 and the scenario where ϕ is in thermal equilibrium with the thermal bath, so that the
new contribution to the Boltzmann equation is precisely the one computed in Sec. (4.8).
We work with the Casas-Ibarra parameterization for the type I seesaw. So, what we need
to specify besides the parameters of the PMNS matrix and the lightest neutrino mass
m1/3 are the six degrees of freedom of the orthogonal matrix R defined in Eq. (2.25) and
the RHNs masses, or in alternative the washout parameter K1 and the RHNs masses.
Moreover, the lightest RHN N1 mass is choosen to be M1 = 1014 and we work in the
approximation of hierarchical RHN masses, i.e M1 ≪ M2 ≪ M3 (all the parameters
used are shown in Append. (F.2)); this choice is justified by the fact that this parameter
space for Mi’s is closely related to the GUT scale. We then analyze some cases in the
scenario of zero N1 initial abundance, i.e YN1(0) = 0 and also some case of thermal initial
abundance, i.e YN1(0) = Y eq

N1
.

What we aim to obtain is to open up the parameter space of standard LG so that
thermal LG becomes more viable, thanks to the presence of these new decay channel
ϕ → N1N1. We are going to consider some cases in the strong washout scenario, where
we fix K1 = 10 and some cases in the weak and very weak scenario, respectively with
K1 = 0.1 and K1 = 0.01, each for different values of the decay parameter Kϕ.

4.11 The Strong Washout Case, K1 = 10

Here we consider the strong washout scenario with three different cases for the decay
parameter Kϕ: Kϕ ≫ K1, Kϕ ∼ K1 and Kϕ ≪ K1.

4.11.1 The Case with Kϕ ≫ K1

Fig. (4.3) shows the N1 number density (left panel) and the absolute value of the baryon
asymmetry (right panel) as a function of z = M1/T and both in the standard case (green)
and in the modified one (blue).
Here the decay parameter Kϕ is bigger than the washout one, K1, and, as a result, the
main role of the scalar ϕ is to help N1 to thermalize with the bath faster, as indicated
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Figure 4.3: The left panel shows the lightest Right Handed Neutrino
N1 number density both in the standard case (green line) and in the case
with the scalar ϕ decay added (blue line) and in the case of vanishing
initial abundance for the RHN density. The right panel shows instead the
absolute value of the BAU, |ηB|, in the standard case (green) and in the
modified one (blue). Both are represented as a function of z = M1/T . We
considered M1 = 1014 GeV, K1 = 10 (strong washout) and Kϕ ≃ 150.
The dashed red lines represents the N1 equilibrium number density (left)

and the measured BAU today (right).

by the difference in the behaviour of the blue line with respect to the green one in the
left panel, confirming what expected for such a large value of the decay parameter Kϕ.
For what concern the BAU ηB, we see from the right panel of Fig. (4.3) that there are
no significant differences between the standard case and the modified one, especially for
the prediction of the baryon asymmetry ηB today, which is given by the constant value
of the asymmetry at late time, i.e for z ≫ 1.
This is because in the strong washout regime any lepton asymmetry which is created
before the out of equilibrium N1 decay is washed out and since the differences in the N1

densities in the two cases are relevant for z < 1, this results in a similar behaviour for
ηB in the two situations.
We note also the presence of the characteristic dip in the behaviour of the BAU ηB; what
we can see here is that, in the modified case, the dip happens earlier. This is due to the
fact that the N1 number density reach faster its equilibrium distribution.

4.11.2 The Case with Kϕ ∼ K1

The obtained results for the case where the decay parameter Kϕ ∼ K1 are shown in the
upper figures in Fig. (4.4).
What we see here is a situation similar to the one in Fig. (4.3): for what concern the N1

number densities we see that, as in the previous case, the scalar is helping the N1’s to
reach their equilibrium distribution, but since in this case the decay parameter is smaller
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Figure 4.4: The figure represents what happens for K1 = 10 and M1 =
1014 GeV in the case of vanishing initial abundance for the RHN density.
For the upper Kϕ ≃ 10, for the lower ones Kϕ ≃ 0.02. The behaviour of the
lightest RHN number density is shown both in the standard case (green)
and in the modified one (blue) is showed in the left panels. The BAU is
showed in the right panels both for the standard (green) and the modified
(blue) cases. All the figures are represented as a function of z = M1/T .
The dashed red lines represents the N1 equilibrium number density (left)

and the BAU today (right).

of an order of magnitude with respect to the one considered in Subsec. (4.11.1), then also
its effect on the N1 density are smaller. Also the difference in the baryon asymmetry of
the Universe become smaller between the two cases, as we can see from the figure on the
right in Fig. (4.4).

4.11.3 The Case with Kϕ ≪ K1

The obtained results for the case where the decay parameter Kϕ ≪ K1 are shown in the
lower figures of Fig. (4.4). In this case, the presence of the scalar is not even influencing
the N1 number density and the baryon asymmetry of the Universe ηB. This is due
to having a small decay parameter Kϕ, given by a Yukawa coupling YR

1 ≃ 0.008 for
mϕ = 4M1. In this regime, the strength of the scalar decay is too small to give a
measurable modification to the standard case situation.
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For what concerns the strong washout scenario, we have seen that, for different values
of the decay parameter there can be significant modifications to the N1 number density.
However, since also in the standard case the N1’s are able to reach their equilibrium
distribution before z = 1 and in the strong washout scenario every lepton asymmetry
which is created before the N1 decoupling from the thermal bath is erased, the difference
in the prediction for the BAU today between the two models is small. It is also worth
pointing out that with the parameters and the mass scales chosen in these example,
the asymmetry ηB predicted is slightly less than the measured one, represented by the
dashed line in the figures on the left. Nevertheless, it should be possible to vary the
other parameters, e.g. the mass M1, and obtain then the present observed value for the
BAU.

4.12 The Weak Washout Regime, K1 = 0.1 and K1 =

0.01

What we want to study now is what changes between the standard case and the one
with the ϕ decay included when the washout is weak. We are going to look first at
K1 = 0.1 and then at K1 = 0.01. In the weak washout regime what happens in the
standard case is that the Yukawa interactions between the Higgs, N1’s and the leptons
are so weak that the N1 number density does not reach its equilibrium number density
during the evolution of the Universe; at the same time, and for the same reason, every
lepton asymmetry which is created also before the out-of-equilibrium decay of N1’s is not
erased by the inverse decay, differently from what happens in the strong washout regime.
In fact, what we observe in Fig. (4.5) is that the RHN interaction are not strong enough
to take its density to the equilibrium one (dashed red line), a part from the case where
ϕ is strongly coupled to N1, i.e. Kϕ ≃ 150 (low panels in Fig. (4.5)). We notice also here
the presence of the dip in the right panels, typical of the vanishing initial abundance
situations.
Since we have seen in Sec. (4.11) that the presence of the scalar in our model is useful
to increase the number density of N1, what we expect in this case is to be able to find
new regions of viable thermal Leptogenesis in the weak washout regime. As done in
Sec. (4.11), we study what happens for different values of the decay parameter Kϕ.

4.12.1 The Case with K1 = 0.1 and Kϕ ≃ 20

In this case, Kϕ ≫ K1; this value of the decay parameter has been obtained fixing
mϕ = 10M1 and Y1

R ≃ 0.2. The results are shown in the two upper figures of Fig. (4.5).
As we can see comparing blue (modified case) and green (standard case) lines in the left
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Figure 4.5: The four panels represent what happens for K1 = 0.1 and
M1 = 1014 GeV in the case of vanishing initial abundance for the RHN
density. For the upper ones Kϕ ≃ 20, for the lower ones Kϕ ≃ 150.
The behaviour of the lightest RHN number density is shown both in the
standard case (green) and in the modified one (blue) is showed in the left
panels. The BAU is showed in the right panels both for the standard
(green) and the modified (blue) cases. All the figures are represented as a
function of z = M1/T . The dashed red lines represents the N1 equilibrium

number density (left) and the BAU today (right).

figure, thanks to the ϕ decay the N1 number density is increased at smaller z pointing
towards the equilibrium distribution (red dashed line on the left). Notice that in both
cases the RHN density is not able to reach the equilibrium distribution.

If we look to the figure on the right, the one which represents ηB, we can see that,
differently from what happens in the strong washout regime, now the presence of the
scalar field also modifies the prediction for the baryon asymmetry of the Universe. More
precisely, we can see that, with this particular choice of the parameters, the prediction of
our model is very close to the measured value of ηB today Eq. (3.1), given by the dashed
red line. A part from that, we have been able to increase the prediction for the baryon
asymmetry of almost two order of magnitude. What happens if we further increase the
decay strength?
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4.12.2 The Case with K1 = 0.1 and Kϕ ≃ 150

Now we look at what happens if we increase more the decay parameter Kϕ. We fix it
to Kϕ ≃ 150 considering mϕ = 7M1 and Y1

R = 0.6. The results are shown in the lower
figures of Fig. (4.5).

What differs from the case studied in Subsec. (4.12.1) is that now the strength of the
scalar decay is enough to take the N1 right handed neutrinos at equilibrium with the
thermal bath before z = 1. This leads to a strong increase in the N1 number density
with important consequences for the resulting baryon asymmetry of the Universe. In
fact, looking to the picture on the right, one sees that now there is an overproduction
of baryon asymmetry ηB. This means that the parameter space has been opened up:
the right amount of baryon asymmetry can be reached lowering other parameters in the
model responsible for CP violation, e.g lowering the scale of the right handed neutrino
masses, or the CP violating phases.

When instead one looks at the opposite direction, trying to decrease the decay pa-
rameter Kϕ considering it ∼ K1 or smaller, what happens is that we go back to the
standard case in some sort of "continuous limit"; there is no significant change in the N1

number density and in the prediction for the baryon asymmetry of the Universe ηB.

4.12.3 The Case with K1 = 0.01 and Kϕ ≫ 1

We want see here what happens when we lower the value of the washout parameter to
K1 = 0.01.

The results are shown in Fig. (4.6). What one sees is that the standard case prediction
changes with respect to the case Subsec. (4.12.1). In particular, the one for the baryon
asymmetry of the Universe is in this case lower of almost two orders of magnitude.
Nevertheless, when considering the presence of the scalar ϕ and its decay, it turns out that
we obtain a strong enhancement in the production of baryon asymmetry ηB, in particular
reaching the measured amount of it for our specific choice of the decay parameter Kϕ ≃ 20

(upper figures in Fig. (4.6)). Increasing the value of the decay parameter to Kϕ ≃ 200

leads to a consistent thermalization of N1’s in the Early Universe when z < 1 and to an
overproduction of baryon asymmetry in the Universe, as shown in the lower two figures
in Fig. (4.6). This again means that we are widening the space of the parameters where
the type-I seesaw thermal LG is viable.

4.13 A Case with a Very Weak Washout

As last case for what concern the regime of vanishing initial abundance of the N1 number
density, we give also a look to a situation with a washout factor of K1 = 10−3, to see if
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Figure 4.6: The four panels represent what happens for K1 = 0.01 and
M1 = 1014 GeV in the case of vanishing initial abundance for the RHN
density. For the upper ones Kϕ ≃ 20, for the lower ones Kϕ ≃ 200.
The behaviour of the lightest RHN number density is shown both in the
standard case (green) and in the modified one (blue) is showed in the left
panels. The BAU is showed in the right panels both for the standard
(green) and the modified (blue) cases. All the figures are represented as a
function of z = M1/T . The dashed red lines represents the N1 equilibrium

number density (left) and the BAU today (right).

Leptogenesis can be also viable here and under which conditions. The results are shown
in Fig. (4.7).
As we can see, the presence of ϕ again increases the N1’s number density in the Early
Universe but not enough to take them to the equilibrium density. But the most important
consequence comes from the prediction for the baryon asymmetry of the Universe: while
in the standard case lowering the washout parameter leads to lower and lower values for
the predicted ηB, when we add the contribution of the ϕ-decay we are able to match the
measurements. And again, there is some part of the parameter space, mostly obtained
by increasing Kϕ, where we can get an overproduction of baryon asymmetry.

In the weak washout scenario, our model modified with the addition of a massive
scalar ϕ coupled to the right handed neutrinos is able to open the parameter space
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Figure 4.7: The figure shows the results for the case where K1 = 0.001,
M1 = 1014 and Kϕ ≃ 20 in the case of vanishing initial abundance for
the RHN density. The left panel shows the lightest RHN number density
both in the standard case (green) and in modified one (blue). The right
panel shows the absolute value of the BAU, |ηB|, again in the two cases,
the standard (green) and the modified one (blue). Both the quantities are
represented as a function of z = M1/T . The dashed red lines represent
the N1 equilibrium number density (left) and the measured BAU today

(right).

where thermal LG is viable, and also it makes the process almost independent from the
precise value of the washout parameter K1 as long as it remains < 1.

4.14 The Case with Thermal Initial Abundance

So far we mainly focused on the case of thermal LG with zero initial abundance, i.e
with YN1(0) = 0. There is also an other situation which is usually considered in thermal
LG, and it’s the one where one uses as initial condition for the N1 number density their
equilibrium one, i.e YN1(zi) = Y eq

N1
= 3/4.

We want to give a look to some cases also within this scenario to understand if something
interesting and different from the standard case happens. Since it has turned out that
differences from the standard case arises when the decay parameter Kϕ ≫ 1, we focus
here on that regime. The results are shown in Fig. (4.8), while other choice of the
parameter space are presented in Append. (E.2). It turns out that in this situation, we
are not even able to distinguish the standard case (green line) and the modified case (blue
line) in the figures. This is because the main role of the scalar decay, i.e. bringing the
N1’s at their thermal equilibrium distribution, has become here useless since the right
handed neutrino density is the equilibrium one from the beginning. As a consequence,
nothing changes with respect to the standard picture also for the prediction of the baryon
asymmetry of the Universe. For what concern the behaviour of the baryon asymmetry, in
this case we do not see the dip any more; this time neutrinos are already at equilibrium
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Figure 4.8: The four panels represent what happens for M1 = 1014 GeV
in the case of thermal initial abundance for the RHN density. For the
upper ones K1 = 10 and Kϕ ≃ 2 · 102, for the lower ones K1 = 0.1 and
again Kϕ ≃ 2 · 102. The behaviour of the lightest RHN number density
is shown both in the standard case (green) and in the modified one (blue)
is showed in the left panels. The BAU is showed in the right panels both
for the standard (green) and the modified (blue) cases. All the figures are
represented as a function of z = M1/T . The dashed red lines represents

the N1 equilibrium number density (left) and the BAU today (right).

and so change of sign happens between the period of their production in the thermal
bath and the one of their out-of-equilibrium decays.
We also point out that, for the particular choice of the parameters in Fig. (4.8), the strong
washout scenario leads to a baryon asymmetry which is smaller then the measured one,
while the weak washout one leads to an overproduction of it. Nevertheless, also in this
case it is possible to obtained the measured value for the BAU varying the parameters
of the model.

4.15 Summary of the Results

We showed that the presence of the scalar decay ϕ→ N1N1 can have very interesting and
important consequences on thermal LG and on the production of a baryon asymmetry
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in the Universe. In the strong washout scenario, due to the fact that every baryon
asymmetry created for z ≪ 1 is erased, the prediction of our model are not different
from the standard scenario. Anyway, we showed that a modification in the N1 number
density occurs if the scalar is strongly coupled to it, i.e. when Kϕ ≫ 1. Different is the
case of the weak washout scenario. We showed that in situations where the standard
picture is predicting a smaller value for the BAU, our addition of the scalar degrees of
freedom is enough to solve the situation and obtain the right amount of asymmetry, or
even an overproduction. More precisely if the standard picture predicts lower values of
the asymmetry for lower values of the washout, then our modified model accounts for an
enhancement in the BAU, depending on the value of Kϕ and regardless of the value of the
washout parameter K1: as shown, with Kϕ ≃ 20, we obtain the right amount of BAU,
ηB, while with Kϕ ≃ 200, we obtain an overproduction of it. The consequence of having
an overproduction of BAU is that the right amount of it can be obtained by lowering
other parameters in the theory, e.g. the RHNs mass scale. This happens because the
scalar decay increases a lot the N1 number density during the evolution of the Universe,
this resulting in more out-of-equilibrium decays and, in a strong enhancement of the
BAU, since, being in the weak washout regime, every asymmetry which is created is not
erased by the inverse process. We showed also that, with the thermal initial abundance
condition for N1, almost nothing changes with respect to the standard picture, both in
the strong and in the weak washout. This happens the scalar is not modifying at all the
N1 number density, which is the equilibrium one from the beginning.
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Chapter 5

Conclusions and Outlooks

In this thesis we have studied the consequences on thermal LG of a model where, besides
the SM particle content and symmetries, an arbitrary number of right handed neutrinos
νR’s, a complex scalar singlet S and a global U(1)B−L are added.
What we first wanted to do was to be able to generate right handed neutrinos masses
dinamically thanks to the spontaneous breaking of the U(1)B−L symmetry. In this way
one is able to account and predict the existence of active neutrino masses. The model
has been mainly analyzed in Chapter 4 and what we found out is that, at energies
above the EWSSB and below the U(1) breaking, it predicts the existence of two new
scalar degrees of freedom which interact with the right handed neutrinos Ni and the SM
Higgs. As expected, we have also been able to predict light neutrino masses through the
standard seesaw relation, which now can be written as a function of the two different
scales of symmetry breaking v and vs, and the Yukawa couplings YD and YR, as shown
in Eq. (4.31).

The new interactions have consequences on the LG process, which have been studied
looking both at the CP asymmetry factor and at the Boltzmann equations. From the
point of view of the CP asymmetry factor, even if there are new 1-loop diagrams which
interfer with the tree level one giving new sources of CP violation, we showed that in
our specific case the new contributions vanish, due to the lack of possibility of having
mixing, mediated by the scalar, between RHNs, as shown in Sec. (4.7).
Something more interesting happens when we look at the consequences of the new in-
teractions in the Boltzmann equations. We considered here the case where mϕ > 2Mi,
so that it is possible for the scalar to decay into a couple of the lightest right handed
neutrinos during the evolution of the Universe. Also, we considered the scalar ϕ at equi-
librium with the thermal bath in the early Universe. We looked then at some cases of the
strong washout regime and of the weak one, mainly focusing on the scenario of vanishing
initial abundance for the N1’s. We found that no significant modifications to the BAU
predictions are present in the strong washout regime, and this has to do with the main
role of the scalar in the early Universe, which is to increase and/or thermalize the N1
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number density for z ≪ 1; in the strong washout scenario anything that happens to the
asymmetry before z = 1 is erased by the strong washout. Similar conclusions hold for
the cases with thermal initial abundance assumed for the RHNs. Significant differences
came out when looking at the weak washout regime when Kϕ ≫ 1: in the standard
case and for fixed M1, the predicted value of BAU decreases with the washout factor,
leading to obtain less asymmetry than observed. Instead, when we couple the scalar ϕ,
thanks to its decay, the population of N1’s at early times increases and, even if it does
not reach the equilibrium one, it gives origin to the right amount of baryon asymmetry,
or even an overproduction of it. This happens beacause in the weak washout regime,
also the asymmetry created for z ≪ 1 gives its contribution to the relic abundance of
ηB. Moreover, having been able to obtain an asymmetry overproduction means that we
have been able to open up the parameter space: now one could obtain the right amount
of baryon asymmetry changing other parameters in the theory and being less restrictive
on CPV requirements.

Studying the parameter space for the Yukawa coupling between N1 and ϕ, Y 1
R, what one

sees is that, to obtain the results described above, Y 1
R ≥ 0.1 is needed, considering a

mass for the scalar of 4M1 ≤ mϕ ≤ 10M1.

So, we can conclude that the addition of a complex scalar particle S to the standard type
I seesaw picture can, under the right condition, give us the correct amount of BAU or
even an overproduction of it, opening the possibility of viable LG also by changing some
of the other parameters in the theory.

At this point, it would be interesting to:

i. Try to include in the analysis of the Boltzmann Equations next to leading order
contributions involving the scalars, for example 2←→ 2 scatterings both with the
heavy scalar ϕ and with the Majoron θ, similarly to what has been done in [18].

ii. See what happens in terms of Leptogenesis when the number of RHNs is fixed to
n = 3 and the B − L is considered local, i.e. a U(1)B−L gauge symmetry, since
U(1)B−L is not an anomalous symmetry. Gauging B − L means to predict a new
massive gauge boson, for example, which can interact with the particles of the
theory. Also, U(1)B−L SSB in the early Universe can be a first-order phase transi-
tion, with the consequent production of a stochastic gravitational wave radiation
[101][102] which could be detected also by the next generation of interferometer,
e.g. LISA [103]. And then one could also see under which conditions this model
can be embedded into Unified models like Left-Right symmetric theories [46] [11]
[12] or Grand Unified Theories.
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iii. It could also be interesting to study what changes quantitatively in the CP asym-
metry factor when one considers the presence of more than one scalar singlet in the
theory, avoiding the possibility of diagonalizing at the same time the RHNs mass
matrix and the Yukawa couplings between the scalars and the sterile neutrinos.
This can be the case of Unified Theories, whose scalar sectors contains more than
one scalar which is a singlet under the SM interactions [104].

iv. It can also be interesting to see what are the consequences of a model like this
in the framework of LG via oscillations (ARS leptogenesis) [51], where the right
handed neutrinos scale is much lower than the one considered here and the CP
violation comes from a possible RHNs oscillating behaviour.

We leave this further improvements to future work.
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Appendix A

Identities

A.1 Robertson-Walker Metric and Christoffel Symbols

Christoffel symbols are quantities (not tensorial) which describes a metric connection.
Their definition can be given in different ways, one way can be to define a coordinate
system xµ with correspondent tangent vectors ∂

∂xµ and a metric tensor gµν ≡ ∂
∂xµ

∂
∂xν ,

then the Christoffel symbols can be written as

gµσΓ
µ
νρ ≡ Γσνρ =

1

2
(∂ρgσν + ∂νgσρ − ∂σgνρ). (A.1)

The Friedmann-Lemaitre-Robertson-Walker metric is instead defined as, in a space time
with zero curvature,

ds2 = dt2 − a(t)2(dx2 + dy2 + dz2) (A.2)

where we considered a metric with a signature (+,−,−,−), the speed of light c = 1 and
(t, x, y, z) are the time and spatial coordinates. a(t) is instead the scale factor which
describes the expansion of the UNiverse and which is related to the Hubble factor by
H ≡ ȧ/a.
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A.2 Identities for the Majorana Fermions

N =
∑
s

∫
d3p

(2π)3
1√
2ωp

aspu
s
pe

−ipx + as†p v
s
pe

ipx (A.3)

N̄ =
∑
s

∫
d3p

(2π)3
1√
2ωp

as†p ū
s
pe

ipx + aspv̄
s
pe

−ipx (A.4)

A.3 γµ’s traces identities

The following identities for the traces involving γµ matrices hold:

i. Tr[γµγνγργσ] = 4(gµνgρσ + gµσgνρ − gµρgνσ)

ii. Tr[γ5γµγνγργσ] = −4iϵµνρσ

iii. Tr[γµγνγρ] = Tr[γµ] = 0

iv. Tr[γ5γµγνγρ] = Tr[γ5γµ] = 0

v. Tr[γµγν ] = 4gµν

vi. Tr[γ5γµγν ] = 0
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Appendix B

Standard Leptogenesis Computations

B.1 The Denominator of the CP Asymmetry Factor

The piece we need to compute is

2
∑
α

∫
dΠlαϕ(2π)

4δ4(Pi − Pf )|M(i→ f)|2 (B.1)

Working in the CM frame, where Pi = (Ei, p⃗i) = (Mi, 0⃗) in the center of mass (CM)
frame.

From (3.3.2), we can write,

⟨f |T |i⟩ = ⟨LαH| − iy∗αiD

∫
d4xL̄αPRH̃Ni |Ni⟩ ≃ −iy∗αiD ūαPRui (B.2)

where we gave as understood (2π)4δ4 factors.
We can then identifyM(i→ f) = −iy∗αiD ūαPRui andM†(i→ f) = iyαiD ūiPLuα. Then,

1

2

∑
spins

|M(i→ f)|2 = 1

2
|yαiD |2Tr

{
PL/pαPR(/pi +Mi)

}
=

=
1

2
|yαiD |2

1

2
Tr
{
/pα/pi

}
=

= |yαiD |2(pα · pi) = |yαiD |2
M2

i

2
,

(B.3)

since from the kinematics we have that pµα =
(
Mi

2
, Mi

2
cosα, Mi

2
sinα

)
.

The integral then becomes

∑
α

|Yαi
D |2M2

i

1

(2π)2

∫
d3pα
2Eα

d3pH
2EH

δ3(p⃗i − p⃗α − p⃗H)δ(Mi − Eα − EH) =

∑
α

|Yαi
D |2M2

i

1

(2π)2

∫
d3pα
4E2

α

δ(Mi − 2Eα) =
1

8π

∑
α

|Yαi
D |2M2

i

(B.4)

and its represent the value of the denominator.
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B.1.1 The Self-energy (or Wave Diagram) Contribution 1

We want to compute the contributions to the CP-asymmetry given by the interference
between the tree level Ni decay and the following one-loop diagram,

Ni

Lα

H

pi

pβ

L̄β

pH

H†

pj

Nj

pH

pα

From (3.23) we need for the CP asymmetry the following amplitudes. ⟨k|T |f⟩∗ becomes〈
H ′L̄β

∣∣T |HLα⟩∗ and reads [cit. Peskin and Schroeder]

〈
H ′L̄β

∣∣ ∫ d4xd4y T

{[
−iyβjN̄jPLH̃

†Lβ

]
y

[
−iyαjN̄jPLH̃

†Lα

]
x

}
|HLα⟩∗ (B.5)

The symbol T into the integral represents the Time Ordering operator which, using
Wick Theorem [20], can be transformed into a set of Normal Ordered products of op-
erators plus their contractions; since Normal Ordered operator annihilates the vacuum,
then only the contractions give a non-zero contribution to the amplitude of the process.
Moreover, the contractions of the scalars H, H ′ give only phase factors which enters
in the conservation of 4-momentum after the spatial integrations. Noticing also that[
N̄jPLLβ

]
x
= [N̄jPLLβ]

T
x = LT

β,xP
T
L N̄

T
j,x and writing N̄T

j = C−1Nj where C is the Charge
conjugation operator and the relation holds for Majorana fermions, then we can see
the propagator for the Right Handed Neutrinos appearing in its operatorial definition:
Nj,xN̄j,y ≡ S(q) = i

/q−Mj
=

i(/q+Mj)

q2−M2
j

.[20]
So, 1

〈
H ′L̄β

∣∣T |HLα⟩∗ ≃ −y∗βjy∗αj
〈
L̄β

∣∣LT
xP

T
LC

−1
i(/q +Mj)

q2 −M2
j

PLLy |Lα⟩∗ =

= i
y∗βjy

∗
αj

q2 −M2
j

〈
L̄β

∣∣LT
xP

T
LC

−1(/q +Mj)PLLy |Lα⟩∗ =

= i
y∗βjy

∗
αj

q2 −M2
j

(
vTβ P

T
LC

−1(/q +Mj)PLuα

)∗
=

= i
y∗βjy

∗
αj

q2 −M2
j

(
ūβC

TP T
LC

−1(/q +Mj)PLuα

)∗
=

= −i
y∗βjy

∗
αj

q2 −M2
j

(
ūβPL(/q +Mj)PLuα

)∗

(B.6)

1We are neglecting here the space integration, the integration over the q momenta in the definition
of the propagator and in the result we give as understood (2π) factors and δ(

∑
p) reflecting the 4-

momentum conservation in the process.
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where we used the fact that v = CūT which means that vT = ūCT and the relations
between C and γ5: Cγ5C−1 = (γ5)T , i.e C−1(γ5)TC = γ5, and CT = C−1 = −C. Also,
the /q piece do not contribute since PL/q = /qPR and PRPL = 0, so

〈
H ′L̄β

∣∣T |HLα⟩∗ ≃ −i
y∗βjy

∗
αj

q2 −M2
j

(ūβPLMjPLuα)
∗ =

= −i
y∗βjy

∗
αj

q2 −M2
j

(ūβMjPLuα)
† =

= −i
y∗βjy

∗
αj

q2 −M2
j

u†
αP

†
LMj(γ

0)†uβ =

= −i
y∗βjy

∗
αj

q2 −M2
j

u†
αMjPLγ

0uβ =

= −i
y∗βjy

∗
αj

q2 −M2
j

ūαMjPRuβ

(B.7)

The other two amplitudes we need to compute are Tif ≡ ⟨i|T |f⟩ and Tki ≡ ⟨k|T |i⟩:

Tki =
〈
H ′L̄β

∣∣T |Ni⟩ =
〈
H ′L̄β

∣∣ ∫ d4xT
{[
−iYβiN̄iPLH

†Lβ

]
x

}
|Ni⟩ ≃

≃
〈
L̄β

∣∣− iyβiN̄iPLLβ |Ni⟩ = −iyβi
〈
L̄β

∣∣LT
βP

T
LC

−1Ni |Ni⟩ =

= −iyβivTβ P T
LC

−1ui = −iyβiūβC
TP T

LC
−1ui = iyβiūβPLui

(B.8)

and

Tif = ⟨Ni|T |LαH⟩ = ⟨Ni|
∫

d4xT
{[
−iyαiN̄iPLH

†Lα

]
x

}
|LαH⟩ ≃

≃ −iyαiūiPLuα

(B.9)

Now we need to multiply the three different pieces and to consider the sum over the
final spin states and the average over the initial spin states, that is

1

2

∑
spins

(−iyαiūiPLuα)

(
−iy∗βjy∗αjūαPR

Mj

q2 −M2
j

uβ

)
(iyβiūβPLui) =

=
1

2

∑
spins

yαiy
∗
βjy

∗
αjyβi

q2 −M2
j

Mj(−i)(ūiPLuαūαPRuβūβPLui) =

=
1

2

yαiy
∗
βjy

∗
αjyβi

q2 −M2
j

Mj(−i) Tr
{
ūiPL/pαPR/pβPLui

}
=

=
1

2

yαiy
∗
βjy

∗
αjyβi

q2 −M2
j

Mj(−i) Tr
{
PL/pα/pβ(/pi +Mi)

}
(B.10)

where we used that
∑

spins u(p)ū(p) = /p+m and the ciclicity of the trace operator. Now,
writing explicitly PL = 1

2
(1− γ5) and considering trace identities involving γµ matrices,
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it all becomes (
−i
4

)
yαiy

∗
βjy

∗
αjyβi

q2 −M2
j

Mj Tr
{
(1− γ5)/pα/pβ(/pi +Mi)

}
=

=

(
−i
4

)
yαiy

∗
βjy

∗
αjyβi

q2 −M2
j

MjMi4(pα · pβ) =

= (−i)
yαiy

∗
βjy

∗
αjyβi

q2 −M2
j

MjMi(pα · pβ),

(B.11)

since all the traces with odd γµ matrices, odd γµ’s and a γ5 and 2 γµ’s and a γ5 vanishes.
Now we need to evaluate the results in (B.11) using kinematics.

The Phase Space of the Process

We use 4-momentum conservation to find the relation for the 4-momentum of the par-
ticles in a specific reference frame, i.e the center of mass frame (CM frame), and then
we use them to evaluate the Lorentz invariant quantity computed in (B.25). Since the
loop particles must be on-shell, we can evaluate the kinematics for all the three different
processes. We start from,

Ni

L̄β

H ′

pi
pH′

pβ

In the CM frame we have
pµi = (Mi, 0⃗);

this means that Eβ + EH′ = Ei = Mi and p⃗β + p⃗H′ = p⃗i = 0⃗. We can then use
the relativistic energy-momentum relation, which holds for on-shell particles, and write
Eβ =

√
|p⃗β|2 +m2

β = |p⃗β| and EH′ =
√
|p⃗H′|2 +m2

H′ = |p⃗H′ | = |p⃗β| since we are in the
unbroken phase for the Higgs potential and both the masses of the lepton and the Higgs
are zero. At this point we turn out with

pµβ =

(
Mi

2
, p⃗β

)

pµH′ =

(
Mi

2
,−p⃗β

)
The same holds for the diagram LαH → Ni,
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Lα

H

Nipα

pH
pi

where Eα = |p⃗β| and EH = |p⃗H | = |p⃗α| so we can write

pµα =

(
Mi

2
, p⃗α

)

pµH =

(
Mi

2
,−p⃗α

)
.

Now, the only thing that remain to explicit is the 4-momentum of the particle ex-
changed in the s-channel of the third diagram, i.e. LαH → L̄βH

′,

Lα

H H ′

Lβ

pα

pH
q

Nj
pH′

pβ

for which it holds that qµ = pµα + pµH = pµβ + pµH′ =
(
Mi, 0⃗

)
.

Substituting these relations in (B.11) it becomes,

(−i)
yαiy

∗
βjy

∗
αjyβi

M2
i −M2

j

MiMj

(
M2

i

4
− p⃗α · p⃗β

)
=

= (−i)
yαiy

∗
βjy

∗
αjyβi

M2
i −M2

j

M3
i Mj

4
(1− cos θαβ),

(B.12)

considering that q2 = M2
i and p⃗β · p⃗α =

M2
i

4
cos θαβ, where θαβ is the spatial angle 2

between Lα and Lβ. What we are missing now to find our result is the integration over
the phase space of the process.

The Phase Space Integration

As we can see from (3.27), to obtain the value of the CP asymmetry factor we need to
perform first the phase space integration over the intermediate states, i.e over dΠLβ ,H′ ,

2We have spherical symmetry and so the process can be described spatially only in terms of this
angle.
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and then over the one of the final states, i.e over dΠLα,H . First, let’s look at∫
dΠLβ ,H′(−i)

yαiy
∗
βjy

∗
αjyβi

M2
i −M2

j

M3
i Mj

4
(1− cos θαβ) =

=

∫
d3pβ

(2π)32Eβ

d3pH′

(2π)32EH′
(2π)4δ4(pµi − pµβ − pµH′)·

· (−i)
yαiy

∗
βjy

∗
αjyβi

M2
i −M2

j

M3
i Mj

4
(1− cos θαβ) =

=

∫
d3pβ

(2π)32Eβ

d3pH′

(2π)32EH′
(2π)4δ3(p⃗β + p⃗H′)δ(Ei − EH′ − Eβ)·

· (−i)
yαiy

∗
βjy

∗
αjyβi

M2
i −M2

j

M3
i Mj

4
(1− cos θαβ)

(B.13)

where we used the definition of dΠi and of the 4D δ4. We can first perform the integration
of the δ3(p⃗β + p⃗H′) which fixes p⃗H′ = −p⃗β and as a consequence EH′ = Eβ. We obtain,

−i
(2π)2

yαiy
∗
βjy

∗
αjyβi

M2
i −M2

j

M3
i Mj

4

∫
d3pβ
4E2

β

δ0(Ei − 2Eβ)(1− cos θαβ) (B.14)

We can perform a rotation of the reference frame to have one of the axis aligned with the
emission direction of the Lα state; in this way cos θαβ → cos θβ and the integral contains
variables related to Lβ only. We also pass to spherical coordinates |pβ| ≡ pβ, θβ and ϕβ,
or equivalently using the solid angle Ωβ, with dΩ = dϕβd cos θβ

−i
(2π)2

yαiy
∗
βjy

∗
αjyβi

M2
i −M2

j

M3
i Mj

4

∫
dΩβp

2
βdpβ

4E2
β

δ0(Ei − 2Eβ)(1− cos θβ)

−i
(2π)2

yαiy
∗
βjy

∗
αjyβi

M2
i −M2

j

M3
i Mj

4

∫
dϕβd cos θβp

2
βdpβ

4E2
β

δ0(Ei − 2Eβ)(1− cos θβ)

(B.15)

With a change of variable in the integral, using the fact that Eβ = pβ and so dEβ = dpβ,
we obtain

−i
(2π)2

yαiy
∗
βjy

∗
αjyβi

M2
i −M2

j

M3
i Mj

4
(2π)

∫ ∞

0

∫ +1

−1

d cos θβdEβ
1

4
δ0(Ei − 2Eβ)(1− cos θβ) =

=
−i
2π

yαiy
∗
βjy

∗
αjyβi

M2
i −M2

j

M3
i Mj

16

(∫ ∞

0

∫ +1

−1

d cos θβdEβδ
0(Ei − 2Eβ)+

−
∫ ∞

0

∫ +1

−1

d cos θβdEβδ
0(Ei − 2Eβ) cos θβ

)
=
−i
32π

yαiy
∗
βjy

∗
αjyβi

M2
i −M2

j

M3
i Mj

(B.16)

since the second integral vanishes and the first gives a factor of 1/2.
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Now what is missing is the integration over dΠLα,H , which, after taking care of a
minus sign and a factor of 2, becomes∫

dΠLα,H
1

16π

Im
{
yαiy

∗
βjy

∗
αjyβi

}
M2

i −M2
j

M3
i Mj =

∫
d3pα

(2π)32Eα

d3pH
(2π)32EH

·

· (2π)4δ4(pµi − pµα − pµH)
1

16π

Im
{
yαiy

∗
βjy

∗
αjyβi

}
M2

i −M2
j

M3
i Mj.

(B.17)

Taking out from the integral everything that does not depend on pα and pH and inte-
grating the δ’s, we obtain

1

(2π)2
1

16π

Im
{
yαiy

∗
βjy

∗
αjyβi

}
M2

i −M2
j

M3
i Mj

∫
d3pα
4E2

α

δ0(Ei − 2Eα) =

=

(
1

8π

)
1

16π
Im
{
yαiy

∗
βjy

∗
αjyβi

}
M2

i

Mj

Mi

1

1−M2
j /M

2
i

(B.18)

where passing from the first line to the second one again we passed to spherical coordi-
nates and performed a change of variables using Eα = |pα| ≡ pα. Considering now the
denominator from (B.4) and defining z ≡M2

j /M
2
i , we finally obtain

ϵwave−1
iα =

1

16π

Im
{
yαiy

∗
βjy

∗
αjyβi

}∑
α |yαi|2

√
z

1− z
(B.19)

This result is in agreement with the one obtained in [88] if one takes into account the
two different degrees of freedom of the lepton doublet, i.e if one multiplies the result for
a factor of 2. one considers the factor of 2 and also the sum over the flavours β for the
lepton running in the loop and the one over the flavours j for the right handed neutrino
Nj in the propagator, considering j ̸= i, the result becomes

ϵwave−1
iα =

1

8π

1

(Y†Y)ii

∑
j ̸=i

Im
{(

Y†Y
)
ji
YαiY

∗
αj

} √z
1− z

(B.20)

B.1.2 The Self-Energy (or Wave Diagram) Contribution 2

Now, the loop diagram we need to consider is

Ni

Lα

H

pi

pβ

Lβ

pH

H

q

Nj

pH

pα
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and we need to compute Tif , Tki and T ∗
kf again, which in this case are ⟨Ni|T |LαH⟩,

⟨LβH
′|T |Ni⟩ and ⟨LβH

′|T |LαH⟩∗. ⟨Ni|T |LαH⟩ has already been computed in (B.1.1),
while the other two pieces need a more detailed analysis.

Let’s start from computing ⟨LβH
′|T |Ni⟩:

⟨LβH
′|T |Ni⟩ = ⟨LβH

′|
∫

d4xT
{
[−iy∗βiL̄βPRH̃Ni]x

}
|Ni⟩ ≃

≃ ⟨Lβ| − iy∗βiL̄βPRNi |Ni⟩ = −iy∗βiūβPRui

(B.21)

and then ⟨LβH
′|T |LαH⟩∗:

⟨LβH
′|T |LαH⟩∗ = ⟨LβH

′|∫
d4xd4yT

{
[−iy∗βjL̄βPRH̃Nj]y[−iyαjN̄jPLH̃Lα]x

}
|LαH⟩∗ ≃

⟨LβH
′| [−iy∗βjL̄βPRH̃Nj]y[−iyαjN̄jPLH̃Lα]x |LαH⟩∗ =

= ⟨Lβ| (−i)2y∗βjyαjL̄βPRNj,yN̄j,xPLLα |Lα⟩∗ =

= −yβjy∗αj ⟨Lβ| L̄βPR

i(/q +Mj)

q2 −M2
j

PLLα |Lα⟩∗ =

= −
yβjy

∗
αj

q2 −M2
j

⟨Lβ| L̄βPRi(/q +Mj)PLLα |Lα⟩∗

(B.22)

considering that PR/q = /qPL and PRPL = 0,

⟨LβH
′|T |LαH⟩∗ =

(+i)yβjy
∗
αj

q2 −M2
j

⟨Lβ| L̄β/qPLLα |Lα⟩∗ =

=
(+i)yβjy

∗
αj

q2 −M2
j

(
ūβ/qPLuα

)∗
=

(i)yβjy
∗
αj

q2 −M2
j

(
ūβ/qPLuα

)†
=

=
(i)yβjy

∗
αj

q2 −M2
j

(
u†
αP

†
L/q

†(γ0)†uβ

)
=

(i)yβjy
∗
αj

q2 −M2
j

(
u†
αPLγ

0
/quβ

)
=

=
(i)yβjy

∗
αj

q2 −M2
j

ūαPR/quβ

(B.23)

since /q†(γ0)† = /q†γ0 = γ0/q. Again, multiplying the three different pieces and considering
the sum over the final spin states and the average over the initial spin states, that is

1

2

∑
spins

(−iyαiūiPLuα)

(
(i)yβjy

∗
αj

q2 −M2
j

ūαPR/quβ

)(
−iy∗βiūβPRui

)
=

=

(
−i
2

)
yαiyβjy

∗
αjy

∗
βi

q2 −M2
j

Tr
{
ūiPL/pαPR/q/pβPRui

}
=

=

(
−i
2

)
yαiyβjy

∗
αjy

∗
βi

q2 −M2
j

Tr
{
PL/pα/q/pβ(/pi +Mi)

}
(B.24)
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where we used that
∑

spins u(p)ū(p) = /p+m and the ciclicity of the trace operator. Now,
writing explicitly PL = 1

2
(1− γ5) and considering trace identities involving γµ matrices,

it all becomes(
−i
2

)
yαiyβjy

∗
αjy

∗
βi

q2 −M2
j

1

2
Tr
{
(1− γ5)/pα/q/pβ/pi + (1− γ5)/pα/q/pβMi

}
=

=

(
−i
4

)
yαiyβjy

∗
αjy

∗
βi

q2 −M2
j

pα,µqνpβ,ρpi,σ(4g
µνgρσ + 4gµσgρν − 4gµρgνσ) =

= (−i)
yαiyβjy

∗
αjy

∗
βi

q2 −M2
j

((pα · q)(pβ · pi) + (pα · pi)(pβ · q)− (pα · pβ)(pi · q)),

(B.25)

since all the traces with an odd number of γ matrices vanishes and so the traces with
an odd number of γ’s plus a γ5 matrix. The piece related to Tr{γ5γµγνγργσ} gives
a contribution ∝ ϵµνρσ3 and it also vanishes for symmetry reasons. Now we need to
evaluate the results in (B.25) using kinematics.

The Kinematics of the Process

As before, we use 4-momentum conservation to find the relation for the 4-momentum of
the particles in the (CM frame), and then we use them to evaluate the Lorentz invariant
quantity computed in (B.25). The phase space analysis for this second wave diagram
contribution to the CP asymmetry is analogous to the one carried out in (B.1.1), so we
can skip it and go directly to the results.

It holds that,
pµi = (Mi, 0⃗);

pµβ =

(
Mi

2
, p⃗β

)
;

pµH′ =

(
Mi

2
,−p⃗β

)
;

pµα =

(
Mi

2
, p⃗α

)
pµH =

(
Mi

2
,−p⃗α

)
.

and again for the s-channel diagram qµ = pµα+pµH = pµβ+pµH′ =
(
Mi, 0⃗

)
and so q2 = M2

i .

3ϵµνρσ is the completely antisymmetric tensor.
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Substituting these relations in (B.25) it becomes,

(−i)
yαiyβjy

∗
αjy

∗
βi

M2
i −M2

j

(
M4

i

4
+

M4
i

4
−M2

i

(
M2

i

4
− p⃗β · p⃗α

))
=

= (−i)
yαiyβjy

∗
αjy

∗
βi

M2
i −M2

j

M4
i

4
(1 + cos θαβ),

(B.26)

where again p⃗β · p⃗α =
M2

i

4
cos θαβ and θαβ is the angle between the two leptons Lα and

Lβ. Now we need to perform the phase space integration as done in (B.1.1).

The Phase Space Integration

Again, we need to perform the two phase space integration, the one over the phase
space of the intermediate states Lβ and H ′ and the one over the phase space of the final
states Lα and H. The computation are very close to the one carried on in (B.1.1). The
integration over the intermediate states gives us∫

dΠLβ ,H′(−i)
yαiyβjy

∗
αjy

∗
βi

M2
i −M2

j

M4
i

4
(1 + cos θαβ) =

=

∫
d3pβ

(2π)32Eβ

d3pH′

(2π)32EH′
(2π)4δ4(pµi − pµβ − pµH′)(−i)

yαiyβjy
∗
αjy

∗
βi

M2
i −M2

j

M4
i

4
(1 + cos θαβ)

(B.27)

taking out from the integral everything that does not depend on the integration variables
and since the cos θαβ gives again zero contribution,

1

(2π)2
(−i)

yαiyβjy
∗
αjy
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M2
i −M2

j

M4
i

4

∫
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2Eβ
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2EH′
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=
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yαiyβjy
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αjy

∗
βi

M2
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j

M4
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4
·
(π
2

)
=
−i
32π

M4
i

yαiyβjy
∗
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∗
βi

M2
i −M2

j

(B.28)

And then the integration over the final states Lα and H:∫
dΠLα,H

1

16π

Im
{
yαiyβjy

∗
αjy

∗
βi

}
M2

i −M2
j

M4
i =

1

(2π)2
1

16π

Im
{
yαiyβjy
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∗
βi
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i −M2
j

M4
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·
∫

d3pα
2Eα

d3pH
2EH

δ4(pµi − pµα − pµH) =
1

(2π)2
1

16π

Im
{
yαiyβjy

∗
αjy

∗
βi

}
M2

i −M2
j

M4
i ·
(π
2

)
=

=

(
1

8π

)
1

16π

Im
{
yαiyβjy

∗
αjy

∗
βi

}
M2

i −M2
j

M4
i

(B.29)
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Considering then the denominator from (B.4) we find the final result

ϵwave−2
iα =

1

16π

Im
{
yαiyβjy

∗
αjy

∗
βi

}∑
α |yαi|2

1

1− z
, (B.30)

where again z ≡ M2
j /M

2
i . Again, if one considers the factor of 2 and also the sum over

the flavours β for the lepton running in the loop and the one over the flavours j for the
right handed neutrino Nj in the propagator, considering j ̸= i, the result becomes

ϵwave−2
iα =

1

8π

1

(Y†Y)ii

∑
j ̸=i

Im
{(

Y†Y
)
ij
YαiY

∗
αj

} 1

1− z
(B.31)

B.1.3 The Vertex Diagram Contribution

The vertex contribution to the CP asymmetry is given by the interference between the
tree-level Ni decay to Lα and H and the following triangular diagram.

Ni

Lα

H

pi

pH′

pα

pβ

pH

qNj

The various amplitudes read:

〈
H ′L̄β

∣∣T |HLα⟩∗ =

〈
H ′L̄β

∣∣ ∫ d4xd4yT
{[
−iyβjN̄PLH

†L
]
y

[
−iyαjN̄PLH

†L
]
x

}
|HLα⟩∗ ,

using Wick Theorem we remain only with the Normal Ordered products of operators
and their contractions. Since Normal Ordered operator annihilates the vacuum, then
we can consider only the contractions. The contraction of the scalars H, H ′ give only
phase factors which enters in the conservation of 4-momentum after the performing
the spatial integrations. Noticing that

[
N̄jPLL

]
x
= [N̄jPLL]

T
x = LT

xP
T
L N̄

T
j,x and writing

N̄T
j = C−1Nj where C is the Charge conjugation operator, then we can see the propagator

for the Right Handed Neutrinos appear as an operator Nj,xN̄j,y ≡ S(q) = i
/q−Mj

=
i(/q+Mj)

q2−M2
j

.
So, 4

4We are neglecting here the space integration, the integration over the q momenta in the definition
of the propagator and in the result we give as understood (2π) factors and δ(

∑
p) reflecting the 4-

momentum conservation in the process.
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〈
H ′L̄β

∣∣T |HLα⟩∗ ≃

≃ y∗βjy
∗
αj

〈
L̄β

∣∣LT
xP

T
L

i(/q +Mj)

q2 −M2
j

PLLy |Lα⟩∗ =

= −i
y∗βjy

∗
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q2 −M2
j

〈
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∣∣LT
xP

T
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−1(/q +Mj)PLLy |Lα⟩∗ =

= −i
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∗
αj

q2 −M2
j

(
vTβ P

T
LC

−1(/q +Mj)PLuα

)∗
=

= −i
y∗βjy

∗
αj

q2 −M2
j

(
ūβC

TP T
LC

−1(/q +Mj)PLuα

)∗
=

= i
y∗βjy

∗
αj

q2 −M2
j

(
ūβPL(/q +Mj)PLuα

)∗
,

where we used the fact that v = CūT which means that vT = ūCT and the relations
between C and γ5: Cγ5C−1 = (γ5)T , i.e C−1(γ5)TC = γ5, and CT = C−1 = −C. Also,
the /q piece do not contribute since PRPL = 0, so

〈
H ′L̄β

∣∣T |HLα⟩∗ ≃ i
y∗βjy

∗
αj

q2 −M2
j

(ūβPLMjPLuα)
∗ =

= i
y∗βjy

∗
αj

q2 −M2
j

(ūβPLMjuα)
† = −i

y∗βjy
∗
αj

q2 −M2
j

u†
αMjP

†
L(γ

0)†uβ =

= −i
y∗βjy

∗
αj

q2 −M2
j

u†
αMjPLγ

0uβ = −i
y∗βjy

∗
αj

q2 −M2
j

ūαMjPRuβ

Then we need

〈
H ′L̄β

∣∣T |Ni⟩ =
〈
H ′L̄β

∣∣ ∫ d4xT
{[
−iyβiN̄iPLH

†Lβ

]
x

}
|Ni⟩ ≃

≃
〈
L̄β

∣∣− iyβiN̄iPLLβ |Ni⟩ = −iyβi
〈
L̄β

∣∣LT
βP

T
LC

−1Ni |Ni⟩ = −iyβivTβ P T
LC

−1ui =

= −iyβiūβC
TP T

LC
−1ui = iyβiūβPLui

and with the same procedure we can write

⟨Ni|T |LαH⟩ = ⟨Ni|
∫

d4xT
{[
−iyαiN̄iPLH

†Lα

]
x

}
|LαH⟩ ≃

≃ −iyαiūiPLuα
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as obtained in (B.1.1). Summing and averaging over spin states,

1

2

∑
spins

(−i)
y∗βjy

∗
αjyβiyαi

q2 −M2
j

Mj ūαPRuβūβPLuiūiPLuα =

=
−i
2

y∗βjy
∗
αjyβiyαi

q2 −M2
j

Mj Tr
{
PR/pβPL(/pi +Mi)PL/pα

}
=

=
−i
2

y∗βjy
∗
αjyβiyαi

q2 −M2
j

MjMi Tr
{
/pβ/pαPR

}
=

= (−i)
y∗βjy

∗
αjyβiyαi

q2 −M2
j

MjMi(pβ · pα)

Now we need to study the kinematics of the process and to perform the integration over
the phase space.

The Kinematics of the Process

Ni
yiβ

L̄β

H ′

From 4-momentum conservation we have that pµi = pµβ + pµH′ . Working in the Centre
of Mass Frame we can write pµi = (Mi, 0⃗); this means that Eβ + EH′ = Ei = Mi and
p⃗β+ p⃗H′ = p⃗i = 0⃗. So, since the particles in the loop must be produced on-shell to have a
non-vanishing CP asymmetry, we can also use the relativistic energy momentum relation
and write Eβ =

√
|p⃗β|2 +m2

β = |p⃗β| and EH′ =
√
|p⃗H′ |2 +m2

H′ = |p⃗H′ | = |p⃗β| (we are in
the unbroken phase for the Higgs potential and both the masses of the lepton and the
Higgs are zero), in this way obtaining

pµβ =

(
Mi

2
, p⃗β

)

pµH′ =

(
Mi

2
,−p⃗β

)
.

The same holds for the diagram LαH → Ni,
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Lβ

H

Ni

where we can write
pµα =

(
Mi

2
, p⃗α

)
pµH =

(
Mi

2
,−p⃗α

)
since Eα = |p⃗β| and EH = |p⃗H | = |p⃗α|.
Now, the only thing that remain to explicit is the 4-momentum of the particle exchanged
in the t-channel of the third diagram, i.e. LαH → L̄βH

′,

Lα
H ′

H L̄β

pα
pH′

q Nj

pH pβ

for which it holds that qµ = pµα − pµH′ = (0, pxα − pxH′ , pyα − pyH′)

The Phase Space Integration

For computing the complete contribution we need to evaluate∫
d3pβ

(2π)32Eβ

d3pH′

(2π)32EH′
(2π)4δ4(pi − pβ − pH′)(−i)y∗βjy∗αjyβiyαiMjMi

(pβ · pα)
q2 −M2

j

where we can write

pβ · pα = EβEα − p⃗β · p⃗α = EβEα − |p⃗β||p⃗α| cos θβ =
M2

i

4
(1− cos θβ)

where β is the angle at which the anti-lepton L̄β is emitted in the Ni-decay since we
have the freedom to perform a rotation of the reference frame and choose the reference
frame where the lepton Lα is emitted in the Ni-decay at an angle α = 0.
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We also need to compute q2, where

qµq
µ = −(pxα − pxH′)2 − (pyα − pyH′)

2 = −
(
(pxα)

2 + (pxH′)2 − 2(pxα)(p
x
H′) + (pyα)

2+

+(pyH′)
2 − 2(pyα)(p

y
H′)

)
= −

(
M2

i

4
+

M2
i

4
− 2

M2
i

4
cos (π + θβ)

)
= −M2

i

2
(1 + cos θβ)

In this way the amplitude becomes

(−i)y∗βjy∗αjyβiyαiMjMi

M2
i

4
(1− cos θβ)

−M2
i

2
(1 + cos θβ)−M2

j

=

=
(+i)

2
y∗βjy

∗
αjyβiyαiMiMj

(1− cos θβ)

1 + cos θβ +
2M2

j

M2
i

And now we have to perform the integral considering the constraints given by the con-
servation laws.

(+i)

2
y∗βjy

∗
αjyβiyαiMiMj

∫
d3pβ

(2π)32Eβ

d3pH′

(2π)32EH′
(2π)4δ3(p⃗i − p⃗β − p⃗H′)×

×δ0(Mi − Eβ − EH′)
(1− cos θβ)

1 + cos θβ +
2M2

j

M2
i

=
(+i)

2

y∗βjy
∗
αjyβiyαiMjMi

(2π)2
×

×
∫

d3pβd
3pH′

2Eβ2EH′
δ3(p⃗i − p⃗β − p⃗H′)δ0(Mi − Eβ − EH′)

(1− cos θβ)

1 + cos θβ +
2M2

j

M2
i

Integrating out the δ3(p⃗i − p⃗β − p⃗H′) which fixes p⃗β = −p⃗H′ and Eβ = EH′ ,

(+i)

2

y∗βjy
∗
αjyβiyαiMjMi

(2π)2

∫
d3pβ
4E2

β

δ0(Mi − 2Eβ)
(1− cos θβ)

1 + cos θβ +
2M2

j

M2
i

Passing to spherical coordinates, i.e. writing d3pβ = dΩβ|p⃗β|2d|p⃗β| = dϕβd cos θβE
2
βdEβ,

the integral becomes

(+i)

8

y∗βjy
∗
αjyβiyαiMjMi

(2π)2

∫
dϕβd cos θβdEβδ

0(Mi − 2Eβ)
(1− cos θβ)

1 + cos θβ +
2M2

j

M2
i

The integral over dϕβ gives a factor of 2π and the one over dEβ gives a 1
2

factor thanks
to the δ0(Mi − 2Eβ),

(+i)y∗βjy
∗
αjyβiyαiMjMi

32π

∫
d cos θβ

(1− cos θβ)

1 + cos θβ +
2M2

j

M2
i
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The last is an integral which can be computed analytically; defining x ≡ cos θβ and
z ≡M2

j /M
2
i ,∫

dx
(1− x)

1 + x+ 2z
= −2−2(1+z) ln z+2(1+z) ln(1 + z) = −2

[
1 + (1 + z) ln

(
z

1 + z

)]
=

= −2
[
1− (1 + z) ln

(
1 + z

z

)]
= −2

[
1− (1 + z) ln

(
1 +

1

z

)]
The final result can be written as

(−i)
y∗αj
[
Y †Y

]
ji
yαiMjMi

16π

[
1− (1 + z) ln

(
1 +

1

z

)]
(B.32)

To obtain the CP asymmetry as defined above we need now to perform the inte-
gration over the final state phase space, i.e. d3pα

2Eα

d3pH
2EH

, and to consider the denominator
contribution. The phase space integral will be,

Im
{
yαj⋆[Y †Y ]jiy

αi
}MiMj

8π

[
1− (1 + z) ln

(
1 +

1

z

)]
·

·
∫

d3pα
(2π)32Eα

d3pH
(2π)32EH

(2π)4δ3(p⃗i − p⃗α − p⃗H)δ
0(Mi − Eα − EH)

and since nothing in the amplitude depends on p⃗α and p⃗H the integral will contribute up
to a numerical factor.∫

d3pα
(2π)32Eα

d3pH
(2π)32EH

(2π)4δ3(p⃗i − p⃗α − p⃗H)δ
0(Mi − Eα − EH) =

=
1

(2π)2

∫
d3pα
4E2

α

δ0(Mi − 2Eα) =
1

(2π)2

∫
dΩα|p⃗α|2d|p⃗α|

4E2
α

δ0(Mi − 2Eα)

Now, since |p⃗α| = Eα and
∫
dΩα = 4π, the integral becomes

1

(2π)2
(4π)

∫
E2

αdEα

4E2
α

δ0(Mi − 2Eα) =
1

4π

∫
dEαδ

0(Mi − 2Eα) =
1

8π
(B.33)

The final form of the CP asymmetry contribution given by B.1.3 can be written
putting together and B.4:

ϵvertexiα =
Im
{
yαj⋆[Y †Y ]jiy

αi
}MiMj

16π

[
1− (1 + z) ln

(
1 + 1

z

)]
·
(

1
8π

)
1
8π

∑
α |yαi|2M2

i

=
1

8π

Im
{
yαj⋆[Y †Y ]jiy

αi
}∑

α |yαi|2
√
z

[
1− (1 + z) ln

(
1 +

1

z

)] (B.34)



Appendix B. Standard Leptogenesis Computations 95

where z has been defined as z ≡ M2
j

M2
i
.

Summing over the flavours β and j with j ̸= i, we obtain

ϵvertexiα =
1

8π

1

(Y†Y)ii
Im
{(

Y †Y
)
ji
Y⋆

αjYαi

}√
z

[
1− (1 + z) ln

(
1 +

1

z

)]
(B.35)
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Appendix C

Spontaneous Symmetry Breaking in
The Model

C.1 The U(1)B−L Symmetry Breaking

We want to find the minima of the potential

Vscalars(H, S) =m2(H†H) + λ(H†H)2 + Λ(H†H)(S†S)− µ2(S†S) + λs(S
†S)2

=m2|H|2 + λ|H|4 + Λ|H|2|S|2 − µ2|S|2 + λs|S|4.
(C.1)

Taking first derivatives in the fields we obtain,

∂V

∂|H|
= 2m2|H|+ 4λ|H|3 + 2Λ|H||S|2 = 0 (C.2)

∂V

∂|S|
= −2µ2|S|+ 4λs|S|3 + 2Λ|H|2|S| = 0 (C.3)

There is only a minus sign of difference which makes a great difference in the outcome.
The condition for the stationary points now read

|H| = 0 |H|2 = −m2 + Λ|S|2

2λ
(C.4)

|S| = 0 |S|2 = µ2 − Λ|H|2

2λs

(C.5)

and since for H the only viable solution is |H| = 0 we obtain now two stationary points
in

|H| = 0 |S| = 0 (C.6)

|H| = 0 |S|2 = µ2

2λs

≡ v2s
2

(C.7)
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To find if these two stationary points represents maxima or minima of the potential we
can look at second derivatives,

∂2V

∂|H|2
= 2m2 + 12λ|H|2 + 2Λ|S|2 (C.8)

∂2V

∂|S|2
= −2µ2 + 12λs|S|2 + 2Λ|H|2 (C.9)

∂2V

∂|S|∂|H|
=

∂2V

∂|H|∂|S|
= 4Λ|H||S| (C.10)

When we evaluate them for the point |H| = 0, |S| = 0 we obtain

∂2V

∂|H|2
= 2m2 ∂2V

∂|S|2
= −2µ2 (C.11)

∂2V

∂|S|∂|H|
=

∂2V

∂|H|∂|S|
= 0 (C.12)

The Hessian matrix is indefinite for |H| = 0 and |S| = 0, i.e. it has one positive and
one negative value; this means that this above configuration is no more a minimum, as
it was before SSB, now it’s a saddle point and it can not represent the vacuum of our
system. Anyway, for the stationary point |H| = 0, |S|2 = µ2

2λs
≡ v2s

2
we have

∂2V

∂|H|2
= 2m2 ∂2V

∂|S|2
= 4µ2 = 4λsv

2
s (C.13)

∂2V

∂|S|∂|H|
=

∂2V

∂|H|∂|S|
= 0 (C.14)

We can see that the Hessian matrix in this point is positive definite, identifying it as a
minimum for the potential and so also as a good configuration for the vacuum of our
system.

We want now to minimize the potential written in terms of the ϕ and θ fields, where
S = ϕ+iθ√

2
, and

Vscalars(H,ϕ, θ) = m2|H|2 + λ|H|4 + Λ

2
|H|2(ϕ2 + θ2)

−µ2

2
(ϕ2 + θ2) +

λs

4
(ϕ2 + θ2)2.

(C.15)

The stationary conditions here read

∂V

∂|H|
= 2|H|

(
m2 + 2λ|H|2 + Λ

2
(ϕ2 + θ2)

)
= 0 (C.16)
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∂V

∂ϕ
= ϕ

(
−µ2 + λs(ϕ

2 + θ2) + Λ|H|2
)
= 0 (C.17)

∂V

∂θ
= θ
(
−µ2 + λs(ϕ

2 + θ2) + Λ|H|2
)
= 0 (C.18)

Electroweak symmetry is not broken at this stage so we have |H| = 0 at the minimum.
Putting these together with the stationary conditions for ϕ(x) and θ(x), we obtain

ϕ = 0 ϕ2 + θ2 =
µ2

2λs

≡ v2s (C.19)

θ = 0 ϕ2 + θ2 =
µ2

2λs

≡ v2s (C.20)

which reflects the ones obtained for |S| in (4.2.2).
To understand the nature of this stationary points we need to evaluate the Hessian

matrix for the various cases,

{|H| = 0; θ = 0; ϕ = 0} (C.21)

{
|H| = 0; θ = 0; ϕ2 = v2s

}
(C.22){

|H| = 0; θ2 = v2s ; ϕ = 0
}

(C.23){
|H| = 0; ϕ, θ s.t. ϕ2 + θ2 = 0

}
(C.24)

For the second derivatives we have

∂2V

∂|H|2
= 2m2 + 12λ|H|2 + Λ(ϕ2 + θ2) (C.25)

∂2V

∂ϕ2
= −µ2 + 3λsϕ

2 + λsθ
2 + Λ|H|2 (C.26)

∂2V

∂θ2
= −µ2 + λsϕ

2 + 3λsθ
2 + Λ|H|2 (C.27)

∂2V

∂|H|∂θ
=

∂2V

∂θ∂|H|
= 2Λ|H|θ (C.28)

∂2V

∂|H|∂ϕ
=

∂2V

∂ϕ∂|H|
= 2Λ|H|ϕ (C.29)

∂2V

∂ϕ∂θ
=

∂2V

∂θ∂ϕ
= 2λsϕθ (C.30)
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From the previous analysis we expect that (C.21) does not represent the minimum for the
system; in fact evaluating the second derivatives for {|H| = 0; θ = 0; ϕ = 0} we obtain

∂2V

∂|H|2
= 2m2 ∂2V

∂ϕ2
= −µ2 ∂2V

∂θ2
= −µ2 (C.31)

∂2V

∂|H|∂θ
=

∂2V

∂θ∂|H|
= 0

∂2V

∂|H|∂ϕ
=

∂2V

∂ϕ∂|H|
= 0

∂2V

∂ϕ∂θ
=

∂2V

∂θ∂ϕ
= 0 (C.32)

This represent a saddle point as expected. Now, let’s see what happens to the other
three conditions which should corresponds to the minimum of the system.
For {|H| = 0; θ = 0; ϕ2 = v2s} we have,

∂2V

∂|H|2
= 2m2 + Λv2s

∂2V

∂ϕ2
= −µ2 + 3λsv

2
s = 2µ2 (C.33)

∂2V

∂θ2
= −µ2 + λsv

2
s = 0

∂2V

∂|H|∂θ
=

∂2V

∂θ∂|H|
= 0 (C.34)

∂2V

∂|H|∂ϕ
=

∂2V

∂ϕ∂|H|
= 0

∂2V

∂ϕ∂θ
=

∂2V

∂θ∂ϕ
= 0 (C.35)

We obtain an Hessian semi-definite positive which corresponds to a minimum of the
potential with a massless mode represented by the oscillations of the θ field. We have
found the Goldstone mode.
For {|H| = 0; θ2 = v2s ; ϕ = 0} we have,

∂2V

∂|H|2
= 2m2 + Λv2s

∂2V

∂ϕ2
= 0

∂2V

∂θ2
= 2µ2 (C.36)

∂2V

∂|H|∂θ
=

∂2V

∂θ∂|H|
= 0

∂2V

∂|H|∂ϕ
=

∂2V

∂ϕ∂|H|
= 0

∂2V

∂ϕ∂θ
=

∂2V

∂θ∂ϕ
= 0 (C.37)

We obtain an Hessian semi-definite positive which corresponds to a minimum of the
potential with a massless mode which now is represented by the oscillations of the ϕ

field. We always have a Goldstone boson.

The third case, i.e. the one with {|H| = 0; ϕ, θ s.t. ϕ2 + θ2 = v2s}, corresponds to
consider the minimum of the potential in a configuration where both to ϕ and θ are ̸= 0,
i.e to give a vacuum expectation value both to ϕ and θ. We will have

ϕ = vs cosα θ = vs sinα (C.38)

and this reduces to a mixing between the two scalars degrees of freedom which can be
eliminated through a rotation of the frame in the ϕ,θ space. This case is studied in detail
in the next section.
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C.2 Diagonalizing the Potential

To be as general as possible we are going to show also what happens if we choose the
vacuum in such a way that both θ and ϕ have a different from zero vacuum expectation
value. In this case we can write

S =
1√
2
(vse

iαs + ϕ+ iθ) =
1√
2
(vs cosαs + ivs sinαs + ϕ+ iθ) =

=
1√
2
((vs cosαs + ϕ) + i(vs sinαs + θ))

(C.39)

which corresponds to (C.38). Inserting it in the potential we obtain

Vscalars(H,ϕ, θ) = m2(H†H) + λ(H†H)2+

+
Λ

2
(H†H)(v2s + ϕ2 + θ2 + vse

−iαsϕ+ ivse
−iαsθ + vse

iαsϕ− ivse
iαsθ)+

+λs(
1

2
(v2s + ϕ2 + θ2 + vse

−iαsϕ+ ivse
−iαsθ + vse

iαsϕ− ivse
iαsθ)− v2s

2
)2

Vscalars(H,ϕ, θ) = m2(H†H) + λ(H†H)2+

+
Λ

2
(H†H)(v2s + ϕ2 + θ2 + vs(e

iαs + e−iαs)ϕ− ivs(e
iαs − e−iαs)θ)+

+
λs

4
(ϕ2 + θ2 + vs(vse

iαs + e−iαs)ϕ− ivs(e
iαs − e−iαs)θ)2

Vscalars(H, S) =m2(H†H) + λ(H†H)2 +
Λ

2
(H†H)v2s +

Λ

2
(H†H)ϕ2 +

Λ

2
(H†H)θ2

+Λvs cosαs(H
†H)ϕ+ Λvs sinαs(H

†H)θ +
λs

4
ϕ4 + λsv

2
s cos

2 αsϕ
2+

+
λs

4
θ4 + λsv

2
s sin

2 αsθ
2 + λsvs cosαsϕ

3 +
λs

2
ϕ2θ2 + λsvs cosαsϕθ

2+

+ λsvs sinαsθ
3 + λsvs sinαsθϕ

2 + 2λsv
2
s sinαs cosαsϕθ

(C.40)

In this potential we can recognize the following "quadratic" part in the real and
complex degrees of freedom of S:

V (H,ϕ, θ) ⊃ λsv
2
s cos

2 αsϕ
2 + λsv

2
s sin

2 αsθ
2 + 2λsv

2
s sinαs cosαsϕθ

which we have to diagonalize to find the mass eigenstates. To do so we rewrite this
part of the potential through a mass matrix MS,

V (H, S) ⊃ 1

2
[ϕ, θ]MS

[
ϕ

θ

]
(C.41)
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where

MS =

[
2λsv

2
s cos

2 αs 2λsv
2
s sinαs cosαs

2λsv
2
s sinαs cosαs 2λsv

2
s sin

2 αs

]
(C.42)

Being MS symmetric, we can diagonalize it through an orthogonal matrix O such that
ODSO

T = MS. Solving the equation det (MS − λ12×2), we find the eigenvalues of our
mass matrix MS to be λ1 = 2λsv

2
s and λ2 = 0, corresponding to the physical massive

scalar and to the Nambu-Goldstone boson generated by the U(1)B−L breaking. Now,
since we want to find the mass eigenstates, we need to consider the explicit form of the
diagonalizing matrix which is,

O =

[
cosαs − sinαs

sinαs cosαs

]
(C.43)

We can use the matrix O to write,

V (H,ϕ, θ) ⊃ 1

2
[ϕ, θ]ODSO

T

[
ϕ

θ

]
(C.44)

where DS is explicitly given by,

DS =

[
2λsv

2
s 0

0 0

]
(C.45)

and the mass eigenstates can be defined as[
Φ

Θ

]
= OT

[
ϕ

θ

]
=

[
cosαs sinαs

− sinαs cosαs

][
ϕ

θ

]
=

[
cosαsϕ+ sinαsθ

− sinαsϕ+ cosαsθ

]
(C.46)

The inverse relations are given by[
ϕ

θ

]
=

[
cosαsΦ− sinαsΘ

sinαsΦ + cosαsΘ

]
(C.47)

and we can use this last ones to rewrite the potential in C.40 in terms of the mass
eigenstates.

V (H,Φ,Θ) =

(
m2 +

Λ

2
v2s

)
(H†H) + λ(H†H)2 +

Λ

2
(H†H)Φ2+

+
Λ

2
(H†H)Θ2 + Λvs(H

†H)Φ + λsv
2
sΦ

2 +
λs

2
Φ2Θ2 + λsvsΦ

3+

+λsvsΦΘ
3 +

λs

4
Φ4 +

λs

4
Θ4

(C.48)
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As it should be due to the U(1)B−L symmetry of our system, the potential above,
written in terms of Φ and Θ is completely equivalent to the one in (4.3). So, in the
following treatment we will assume that only ϕ has a ̸= 0 vacuum expectation value, i.e.
ϕ0 = vs and θ0 = 0, since this is the most general case.

C.3 Electroweak Symmetry Breaking in the U(1) Model

It turns out that an easier way to study the minimum configuration of the potential after
EWSB is to start directly from (4.18) and to consider that for having EWSB there must
be also m2 < 0. Then we send m2 → −m2 and, considering the parameterization for the
Higgs field in (4.34), we rewrite the potential as,

V (h, ϕ, θ) = −m2

2
h2 +

λ

4
h4 +

Λ

4
h2(ϕ2 + θ2)− µ2

2
(ϕ2 + θ2) +

λs

4
(ϕ2 + θ2)2. (C.49)

and looking for the minima starting from here. The system of first derivatives is,

∂hV = −m2h+ λh3 +
Λ

2
h(ϕ2 + θ2) = h

(
−m2 + λh2 +

Λ

2
(ϕ2 + θ2)

)
= 0, (C.50)

∂ϕV = −µ2ϕ+ λsϕ(ϕ
2 + θ2) +

Λ

2
h2ϕ = ϕ

(
−µ2 + λs(ϕ

2 + θ2) +
Λ

2
h2

)
= 0, (C.51)

∂θV = −µ2θ + λsθ(ϕ
2 + θ2) +

Λ

2
h2θ = θ

(
−µ2 + λs(ϕ

2 + θ2) +
Λ

2
h2

)
= 0, (C.52)

We have that: (C.50) is satisfied for h0 = 0 and

h2
0 =

m2 − Λ
2
(ϕ2 + θ2)

λ
, (C.53)

(C.51) is satisfied for ϕ0 = 0 and

ϕ2
0 + θ20 =

µ2 − Λ
2
h2

λs

(C.54)

and (C.52) is satisfied for θ0 = 0 and

ϕ2
0 + θ20 =

µ2 − Λ
2
h2

λs

. (C.55)

Again (C.54) and (C.55) reflects the U(1) invariance of the theory.
To understand if these points represents (local) minima, (local) maxima o saddle

points, we need to perform the second derivatives and study the form of the Hessian.
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The system of second derivatives is,

∂2
hhV = −m2 + 3λh2 +

Λ

2
(ϕ2 + θ2), (C.56)

∂2
ϕϕV = −µ2 + 3λsϕ

2 + λsθ
2 +

Λ

2
h2, (C.57)

∂2
θθV = −µ2 + λsϕ

2 + 3λsθ
2 +

Λ

2
h2, (C.58)

∂2
hϕV = ∂2

ϕhV = Λhϕ, (C.59)

∂2
hθV = ∂2

θhV = Λhθ, (C.60)

∂2
ϕθV = ∂2

θϕV = 2λsϕθ. (C.61)

At this point we need to substitute the values of the stationary points found above and
to see if the Hessian matrix in those points is positive (semi-)definite, negative (semi-
)definite or indefinite. We expect the minimum to be in the configuration where (C.54)
(or (C.55)) and (C.53). At this point we obtain, after having chosen the condition of
θ0 = 0,

H(h0, ϕ0, θ0) =


2λλsm2−Λλµ2

λλs−Λ2

4

Λ

√
λλsm2µ2−Λ

2
(λsm4+λµ4)+Λ2

4
m2µ2

λλs−Λ2

4

0

Λ

√
λλsm2µ2−Λ

2
(λsm4+λµ4)+Λ2

4
m2µ2

λλs−Λ2

4

2λλsµ2−Λλsm2

λλs−Λ2

4

0

0 0 0


(C.62)

This is the result we were looking for: there is a region in the parameter space for
which this Hessian matrix is semipositive definite and represents a minimum for the
system. We can say more, there is a 0 eigenvalue corresponding to ∂θθ and this is related
to the existence of the Goldstone boson θ, i.e the massless mode, which remain so even
after Elwctroweak symmetry breaking. And we also see that there is a mixing between
the other two scalars degrees of freedom h and ϕ, i.e the two massive scalars mixes.
The usual SM Higgs is no more a mass eigenstate of our model, we should diagonalize
the Hessian matrix to find the two mass eigenstates; however, the mixing is small if
mϕ >> mh and can be neglected.
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Appendix D

CP Asymmetry Contribution from the
U(1) Scalars

D.0.1 Wave Function Corrections by ϕ

We want to compute the injection in CP asymmetry given by the interference between
the tree-level Ni decay and the following 1-loop diagram,

Ni

Lα

H

pi

pj

Nj

pϕ

ϕ

pk

Nk

pH

pα

It’s important to notice that since we need to produce on-shell loop particles to have a
non-zero CP asymmetry injection, the condition Mi > Mj+mϕ must hold. For example,
we won’t have CP injection in the decay of the lightest RHN, since it’s not able to
produce a more massive Nj.

The Phase Space of the Process

We need to find a relation for the 4-momentum of all the different particles involved into
the process, i.e. Ni, Nj, Nk, ϕ, H, Lα. We can go through it considering the fact that the
4-momentum is conserved in each vertex and also considering that we need the particles
running in the loop to be on-shell in order to obtain a non-vanishing CP asymmetry, as
in the case of the standard contributions computed in (3.3.3). So, the following relations
hold,

pµi = pµj + pµϕ (D.1)

pµj + pµϕ = pµk (D.2)

pµk = pµα + pµH (D.3)
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Working in the center of mass frame of the decaying particle Ni, we can write

pµi = (Mi, 0⃗)

and then, considering D.1 we can write Mi = Ej + Eϕ and p⃗j + p⃗ϕ = 0⃗ where also
Ej =

√
|p⃗j|2 +M2

j and Eϕ =
√
|p⃗ϕ|2 +m2

ϕ =
√
|p⃗j|2 +m2

ϕ. From D.1 and D.2 we have
that pµi = pµk and putting together D.1, D.2 and D.3 we find the conditions Mi = Eα+EH

and p⃗α + p⃗H = 0⃗. Since Electroweak Symmetry Breaking has not yet happened, both
mα = 0 and mH = 0 and so the energy-momentum relations stand for Eα = |p⃗α| and
EH = |p⃗H | implying Eα = EH = Mi

2
.

So,
pµj = (Ej, p⃗j) (D.4)

pµϕ = (Eϕ,−p⃗j) (D.5)

pµk = (Mi, 0⃗) (D.6)

pµα =

(
Mi

2
,
Mi

2
p̂α

)
(D.7)

pµH =

(
Mi

2
,−Mi

2
p̂α

)
(D.8)

We can use the energy-momentum relation to obtain an explicit form for Ej, Eϕ and
|p⃗j|. From

Mi = Ej + Eϕ =
√
|p⃗j|2 +M2

j +
√
|p⃗j|2 +m2

ϕ

we can obtain

|p⃗j| =

√
(M2

i +M2
j −m2

ϕ)
2

4M2
i

−M2
j =

√
M4

i +M4
j +m4

ϕ − 2M2
i M

2
j − 2M2

i m
2
ϕ − 2M2

j m
2
ϕ

4M2
i

(D.9)
And then,

Ej =
M2

i +M2
j −m2

ϕ

2Mi

(D.10)

Eϕ =

√
M4

i +M4
j +m4

ϕ − 2M2
i M

2
j − 2M2

i m
2
ϕ − 2M2

j m
2
ϕ

4M2
i

+m2
ϕ =

=

√
M4

i +M4
j +m4

ϕ − 2M2
i M

2
j + 2M2

i m
2
ϕ − 2M2

j m
2
ϕ

4M2
i

=
M2

i −M2
j +m2

ϕ

2Mi

.

(D.11)

Now that we have the kinematics relations we have to compute the different amplitudes
needed for computing the CP asymmetry factor ϵiα.

We start from computing T ∗
kf , which in this case is given by ⟨Njϕ|T |LαH⟩⋆. The

related Feynmann Diagram is,
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Lα

H

Nj

ϕ

pα

pH
pk

Nk

pj

pϕ

We need to evaluate, from the Lagrangian (4.33),

⟨Njϕ|
∫

d4xd4y

[
− i

2
√
2
Y jk
R N̄jNkϕ

]
y

[
−iY kα

D N̄kPLH
†Lα

]
x
|LαH⟩ ≃

≃ −Y jk
R Y kα

D

2
√
2

∫
d4xd4y ⟨Nj| N̄j,yNk,yN̄k,xPLLα,x |Lα⟩ ≃

≃ −Y jk
R Y kα

D

2
√
2

i

p2k −M2
k

(ūj(/pk +Mk)PLuα)

(D.12)

where we neglected the (2π) factors and the δ4(Pf − Pk) coming from the
∫
d4xd4y

integration reflecting the 4-momentum conservation. Since we need ⟨Njϕ|T |LαH⟩⋆, we
have to take the complex conjugate of (D.12) which is

⟨Njϕ|T |LαH⟩⋆ ≃
i

2
√
2

Y jk⋆
R Y kα⋆

D

p2k −M2
k

(ūj(/pk +Mk)PLuα)
⋆ =

=
i

2
√
2

Y jk⋆
R Y kα⋆

D

p2k −M2
k

(ūj(/pk +Mk)PLuα)
† =

i

2
√
2

Y jk⋆
R Y kα⋆

D

p2k −M2
k

ūαPR(/pk +MK)uj.

(D.13)

And now it’s the turn of Tki = ⟨Njϕ|T |Ni⟩ and Tif = ⟨Ni|T |LαH⟩. The related
Feynmann diagrams are respectively,

Ni

Nj

ϕ

pi
pj

pϕ

and

Lα

H

Ni

pα

pH
pi
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Again, starting from 4.33,

⟨Njϕ|T |Ni⟩ = ⟨Njϕ|
∫

d4x

[
− i

2
√
2
Y ji
R N̄jNiϕ

]
x

|Ni⟩ ≃

≃ − i

2
√
2
Y ji
R

∫
d4x ⟨Nj| N̄j,xNi,x |Ni⟩ ≃

≃ − i

2
√
2
Y ji
R ūjui,

(D.14)

and we can then recall from (B.9) that

⟨Ni|T |LαH⟩ ≃ −iY αi
D ūiPLuα. (D.15)

The contribution to the CP asymmetry is given by 3.27 and so we need to multiply
together D.13, D.14, D.15, consider the sum/average over the internal degrees of freedom
and to integrate over the loop particles Nj, ϕ phase spaces. So, since the initial state is
a spin-1

2
particle, we have,

1

2

∑
spins

(−i)
8

Y jk⋆
R Y kα⋆

D Y ji
R yiαD

p2k −M2
k

ūαPR(/pk +Mk)ujūjuiūiPLuα =

=
(−i)
16

Y jk⋆
R Y kα⋆

D Y ji
R Y iα

D

p2k −M2
k

Tr
{
ūαPR(/pk +Mk)ujūjuiūiPLuα

}
=

(−i)
16

Y jk⋆
R Y kα⋆

D Y ji
R Y iα

D

p2k −M2
k

·

·Tr
{
PR(/pk +MK)(/pj +Mj)(/pi +Mi)PL/pα

}
(D.16)

Let’s focus on the trace part:

Tr
{
PR(/pk +MK)(/pj +Mj)(/pi +Mi)/pα

}
=

=
1

2
Tr

[
(1 + γ5)(/pk/pj + /pkMj +Mk/pj +MkMj)(/pi/pα +Mi/pα)

]
=

=
1

2
Tr

[
(1 + γ5)(/pk/pj/pi/pα +Mi/pk/pj/pα +Mj/pk/pi/pα +MjMi/pk/pα

+Mk/pj/pi/pα +MkMi/pj/pα +MkMj/pi/pα +MkMjMi/pα)

]
We recognize the presence of some different types of traces involving the γµ matrices

and the γ5 one and we can use the identities from (A.3) which holds in a 4-dimensional



Appendix D. CP Asymmetry Contribution from the U(1) Scalars 108

spacetime. Some pieces vanish and others give scalar products,

1

2

(
Tr
[
/pk/pj/pi/pα

]
+ Tr

[
γ5
/pk/pj/pi/pα

]
+MiMj Tr

[
/pk/pα

]
+

+MkMi Tr
[
/pj/pα

]
+MkMj Tr

[
/pi/pα

])
=

= 2[(pk · pj)(pi · pα) + (pk · pα)(pi · pj)− (pk · pi)(pj · pα)+

+MiMj(pk · pα) +MiMk(pj · pα) +MkMj(pi · pα)]

(D.17)

The Tr
[
γ5/pk/pj/pi/pα

]
vanishes because it’s proportional to ϵkjiαpkpjpipα and goes to zero

for symmetry reasons.
Using the results found in D.0.1 we can write

(pk · pj) = MiEj (pi · pα) =
M2

i

2
(pk · pα) =

M2
i

2
(D.18)

(pi · pj) = MiEj (pk · pi) = M2
i (pj · pα) =

EjMi

2
− p⃗j p⃗α (D.19)

and then D.17 becomes

2

(
M3

i Ej

2
+

M3
i Ej

2
−
(
M2

i −MiMk

)(
MiEj

2
− p⃗j p⃗α

)
+

M3
i Mj

2
+

M2
i MjMk

2

)
(D.20)

Considering D.10, D.7 and D.9 we have,

p⃗j p⃗α =
Mi

2

√
M4

i +M4
j +M4

k − 2M2
i M

2
j − 2M2

i m
2
ϕ − 2M2

j m
2
ϕ

4M2
i

cos γ =

=
1

4

√
M4

i +M4
j +M4

k − 2M2
i M

2
j − 2M2

i m
2
ϕ − 2M2

j m
2
ϕ cos γ

(D.21)

where γ is the angle between Nj and Lα. Then we can rearrange D.20,

M3
i

(
Mj +

M2
i +M2

j −m2
ϕ

2Mi

)
+M2

i Mk

(
Mj −

M2
i +M2

j −m2
ϕ

2Mi

)
+

+
1

2
Mi(Mi +Mk)

√
M4

i +M4
j +M4

k − 2M2
i M

2
j − 2M2

i m
2
ϕ − 2M2

j m
2
ϕ cos γ

(D.22)

The CP asymmetry will be then proportional to(
1

8

)
Im
{
Yjk⋆

R Ykα⋆
D Yji

RY
iα
D

} 1

M2
i −M2

k

[
M3

i

(
Mj +

M2
i +M2

j −m2
ϕ

2Mi

)
+

+M2
i Mk

(
Mj −

M2
i +M2

j −m2
ϕ

2Mi

)
+

+
1

2
Mi(Mi +Mk)

√
M4

i +M4
j +M4

k − 2M2
i M

2
j − 2M2

i m
2
ϕ − 2M2

j m
2
ϕ cos γ

] (D.23)



Appendix D. CP Asymmetry Contribution from the U(1) Scalars 109

Now, we need to perform the integral first in the phase space of the intermediate
states Nj,ϕ and then on that of the final ones H,Lα.(

1

8

)
Im
{
Yjk⋆

R Ykα⋆
D Yji

RY
iα
D

} 1

M2
i −M2

k

·

·
[(

M3
i

(
Mj +

M2
i +M2

j −m2
ϕ

2Mi

)
+M2

i Mk

(
Mj −

M2
i +M2

j −m2
ϕ

2Mi

))
·

·
∫

d3pjd
3pϕ

2Ej(2π)32Eϕ(2π)3
(2π)4δ0(Mi − Ej − Eϕ)δ

3(p⃗i − p⃗j − p⃗ϕ)+

+
1

2
Mi(Mi +Mk)

√
M4

i +M4
j +m4

ϕ − 2M2
i M

2
j − 2M2

i m
2
ϕ − 2M2

j m
2
ϕ·

·
∫

d3pjd
3pϕ

2Ej(2π)32Eϕ(2π)3
(2π)4δ0(Mi − Ej − Eϕ)δ

3(p⃗i − p⃗j − p⃗ϕ) cos γj

]
(D.24)

where γj is the angle at which the Right Handed Neutrino Nj comes out. Thanks to the
symmetries of the problem, we are free to perform a rotation of the reference frame and
select the frame where the exit angle of Lα is equal to 0, i.e. γ → γj

The Phase Space Integral

This time the phase space integral is more difficult than the one we faced in B.1.1
because of the presence of non-zero mass particles. Again, we need to perform two
different integration, one without and the other with the angular dependance on cos γj.
The first step is to integrate out the δ3(p⃗i− p⃗j− p⃗ϕ), which sets p⃗j = p⃗ϕ but not Ej = Eϕ

because they have different masses;∫
d3pjd

3pϕ
2Ej2Eϕ

1

(2π)2
δ0(Mi − Ej − Eϕ)δ

3(p⃗i − p⃗j − p⃗ϕ) =

=

∫
d3pj

4EjEϕ

1

(2π)2
δ0(Mi − Ej − Eϕ)

(D.25)

which, after passing to spherical coordinates and redefining |p⃗j| ≡ x,
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∫
dΩjx

2dx

4Ej(x)Eϕ(x)

1

(2π)2
δ0(Mi − Ej(x)− Eϕ(x)) =

=
1

4π

∫ ∞

0

x2dx

Ej(x)Eϕ(x)
δ0(Mi − Ej(x)− Eϕ(x)) =

=
1

8π

(∫ ∞

0

x2dx

Ej(x)Eϕ(x)
δ0(Mi − Ej(x)− Eϕ(x))+

+

∫ ∞

0

x2dz

Ej(x)Eϕ(x)
δ0(Mi − Ej(x)− Eϕ(x))

)
=

=
1

8π

∫ ∞

−∞

x2dx

Ej(x)Eϕ(x)
δ0(Mi − Ej(x)− Eϕ(x)) =

=
1

8π

∫ ∞

−∞

x2dx√
x2 +M2

j

√
x2 +m2

ϕ

δ0(Mi −
√

x2 +M2
j −

√
x2 +m2

ϕ)

(D.26)

And then if we define

g(x) = Mi −
√
x2 +M2

j −
√
x2 +m2

ϕ (D.27)

with

|g′(x)| = x


√

x2 +M2
j +

√
x2 +m2

ϕ√
(x2 +M2

j )(x
2 +m2

ϕ)

 (D.28)

Multiplying and dividing D.28 into the integral we obtain

1

8π

∫ ∞

−∞

xdx√
x2 +M2

j +
√

x2 +m2
ϕ

·

·δ0(Mi −
√

x2 +M2
j−
√

x2 +m2
ϕ)

x

√
x2 +M2

j +
√

x2 +m2
ϕ√

(x2 +M2
j )(x

2 +m2
ϕ)

 =

=
1

8π

∫ ∞

−∞

xdx√
x2 +M2

j +
√

x2 +m2
ϕ

δ0(g(x))|g′(x)|

(D.29)

To solve this integral we can now use the following relation for the Dirac δ function∫
R

δ(g(x))f(g(x))|g′(x)|dx =

∫
g(R)

δ(u)f(u)du = f(0) (D.30)

and D.29 becomes
1

8π

x√
x2 +M2

j +
√
x2 +m2

ϕ

∣∣∣∣
g(x)=0

(D.31)
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The condition g(x) = 0 comes directly from the kinematic of the process, and it fixes
the variable x, which has been defined to be x ≡ |p⃗j|. So, from (D.9), x must be

x = |p⃗j| =

√
(M2

i +M2
j −m2

ϕ)
2

4M2
i

−M2
j (D.32)

and D.31 becomes

1

8π

√
M4

i +M4
j +m4

ϕ−2M2
i M

2
j −2M2

i m
2
ϕ−2M2

j mϕ2

4M2
i√

m2
ϕ +

(M2
i +M2

j −m2
ϕ)

2

4M2
i

−M2
j +

√
m2

j +
(M2

i +M2
j −m2

ϕ)
2

4M2
i

−M2
j

(D.33)

Trying to simplify this expression we obtain

(
1

8π

) √
M4

i +M4
j +m4

ϕ − 2M2
i M

2
j − 2M2

i m
2
ϕ − 2M2

j m
2
ϕ√

M4
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j +m4
ϕ − 2M2

i M
2
j + 2M2

i m
2
ϕ − 2M2

j m
2
ϕ +M2

i +M2
j −m2

ϕ

=

=

(
1

8π

)√M4
i +M4

j +m4
ϕ − 2M2

i M
2
j − 2M2

i m
2
ϕ − 2M2

j m
2
ϕ

M2
i −M2

j +m2
ϕ +M2

i +M2
j −m2

ϕ

=

=

(
1

8π

)√M4
i +M4

j +m4
ϕ − 2M2

i M
2
j − 2M2

i m
2
ϕ − 2M2

j m
2
ϕ

2M2
i

The other integration from D.24 is∫
d3pjd

3pϕ
2Ej2Eϕ

1

(2π)2
δ0(Mi − Ej − Eϕ)δ

3(p⃗i − p⃗j − p⃗ϕ) cos γj =

=

∫
d3pj

4EjEϕ

1

(2π)2
δ0(Mi − Ej − Eϕ) cos γj =

=

∫
dΩγjx

2dx

4Ej(x)Eϕ(x)

1

(2π)2
δ0(g(x)) cos γj

(D.34)

where x and g(x) are defined as in (D.26) and (D.27). We can identify two terms, one
analogous to the one in (D.25) multiplied by the integration over the solid angle∫

dϕjd cos γj cos γj = (2π)

∫
d cos γj cos γj = 0. (D.35)
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So this second piece vanishes and (D.24) can be rewritten as(
1

8

)
Im
{
Yjk⋆

R Ykα⋆
D Yji

RY
iα
D

} 1

M2
i −M2

k

·

·
[
M3

i

(
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M2
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ϕ

2Mi

)
+M2

i Mk

(
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M2
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ϕ

2Mi
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·

·
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1

8π

)√M4
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2
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i m
2
ϕ − 2M2

j m
2
ϕ
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=

=

(
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D Yji

RY
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D
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·

·
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(
M2
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ϕ
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·

·
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2
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2
ϕ
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=

=

(
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64π
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) ·

·M2
i

√
1 +
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+
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ϕ
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ϕ
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·
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+
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+
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1 +
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)(
1− Mk
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(D.36)

Some Mi factors simplify and defining

σi =
m2

ϕ

M2
i

, rji =
M2

j

M2
i

, (D.37)

ρij = (1− rji − σi)
2 − 4rjiσi. (D.38)

we can rewrite the amplitude (D.36) in terms of this new functions,(
1

128π

)
Im
{
Yjk⋆

R Ykα⋆
D Yji

RY
iα
D

} M2
i

1− rki

[
√
rji(1 +

√
rki)+

+
1

2
(1 + rji − σi)(1−

√
rki)

]√
1 + r2ji + σ2

i − 2rji − 2σi − 2σirji =

=

(
1

128π

)
Im
{
Yjk⋆

R Ykα⋆
D Yji

RY
iα
D

} M2
i

1− rki

[
√
rji(1 +

√
rki)+

+
1

2
(1 + rji − σi)(1−

√
rki)

]
√
ρij = −2Im

{[
T †T

]
fi
Tif

}
.

(D.39)

Now what is missing is the integration over dΠLα,H ; since nothing in (D.39) depends on
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p⃗α or p⃗H , then it will all result in a multiplicative factor of
(

1
8π

)
as showed in (B.33).

When we also take into account the contribution from the denominator (B.4) and the
sum over the RHN flavours in the loop and in the propagator, we obtain

ϵwave,ϕ
iα =

(
1

128π

)
1∑

α |Yαi
D |2

∑
j,k ̸=i

Im
{
Yjk⋆

R Ykα⋆
D Yji

RY
iα
D

} 1

1− rki
·

·
[
√
rji(1 +

√
rki) +

1

2
(1 + rji − σi)(1−

√
rki)

]
√
ρij.

(D.40)

D.0.2 Wave Function Corrections by θ

Let’s see if something different happens when we consider the CP-odd degrees of freedom
of the U(1)B−L scalar, i.e the Majoron θ. This particle is massless and so in principle
the kinematical condition for the on-shell loop is satisfied. In principle we don’t expect a
ϵwave,ϕ
iα ̸= 0 because the lack of mixing in the RHNs-θ interaction leads to a combination

of Yukawa couplings which is real. The 1-loop diagram we are considering in this case
is,

Ni

Lα

H

pi

pj

Nj

pθ

θ

pk

Nk

pH

pα

The kinematical condition in this case becomes Mi > Mj + mθ, but with mθ =

0. Again, the contribution to ϵwave,θ
iα will be related to T ∗

kf = ⟨Njθ|T |LαH⟩∗, Tif =

⟨Ni|T |LαH⟩, already computed in (B.9) and Tki = ⟨Njθ|T |Ni⟩. Reading out the terms
from the Lagrangian in (4.33) we have that1

Tki = ⟨k|T |i⟩ = ⟨Njθ|
∫

d4x
Yij

R

2
√
2
N̄γ5Nθ |Ni⟩ ≃

≃ Yij
R

2
√
2
⟨Nj| N̄γ5N |Ni⟩ =

Yij
R

2
√
2
ūjγ

5ui,

(D.41)

1The i factor in the amplitude disappear when multipied with the (−i) present in the Lagrangian.
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and

T ∗
kf = ⟨k|T |f⟩∗ =

= ⟨Njθ|
∫

d4xd4y

[
Ykj

R

2
√
2
N̄γ5Nθ

]
y

[
−iN̄Ykα

D PLH̃
†L
]
x
|LαH⟩∗ ≃

≃ i
Ykj,∗

R Ykα,∗
D

2
√
2
⟨Nj| N̄γ5NyN̄xPLL |Lα⟩∗ =

= i
Ykj,∗

R Ykα,∗
D

2
√
2
⟨Nj| N̄γ5 i

/pk −Mk

PLL |Lα⟩∗ =

=
Ykj,∗

R Ykα,∗
D

2
√
2

1

p2k −M2
k

⟨Nj| N̄γ5(/pk +Mk)PLL |Lα⟩∗ =

=
Ykj,∗

R Ykα,∗
D

2
√
2

1

p2k −M2
k

(
ūjγ

5(/pk +Mk)PLuα

)∗
=

=
Ykj,∗

R Ykα,∗
D

2
√
2

1

p2k −M2
k

(
ūjγ

5(/pk +Mk)PLuα

)†
=

=
Ykj,∗

R Ykα,∗
D

2
√
2

1

p2k −M2
k

u†
αPL

(
pk,µ(γ

µ)† +Mk

)
γ5γ0uj,

(D.42)

Considering the commutation relation between γµ and γ5 and the definition of (γµ)†, we
can write all as

− Ykj,∗
R Ykα,∗

D

2
√
2

1

p2k −M2
k

u†
αPL

(
pk,µ(γ

µ)† +Mk

)
γ0γ5uj

= −Ykj,∗
R Ykα,∗

D

2
√
2

1

p2k −M2
k

ūαPR

(
−/pk +Mk

)
uj

(D.43)

And now, multiplying the three pieces together and considering the sum/average over
the internal degrees of freedom, we obtain

1

2

∑
spins

(
−iYαi

D ūiPLuα

)(
−Ykj,∗

R Ykα,∗
D

2
√
2

1

p2k −M2
k

ūαPR

(
−/pk +Mk

)
uj

)(
Yij

R

2
√
2
ūjγ

5ui

)
=

=
−i
16

Yαi
DYkj,∗

R Ykα,∗
D Yij

R

p2k −M2
k

Tr
{
ūiPLuαūαPR

(
/pk −Mk

)
ujūjγ

5ui

}
=

=
−i
16

Yαi
DYkj,∗

R Ykα,∗
D Yij

R

p2k −M2
k

Tr
{
PL/pα

(
/pk −Mk

)(
/pj +Mj

)
γ5
(
/pi +Mi

)}
=

=
−i
16

Yαi
DYkj,∗

R Ykα,∗
D Yij

R

p2k −M2
k

Tr
{
γ5PL/pα

(
/pk −Mk

)(
/pj +Mj

)(
−/pi +Mi

)}
=

=
−i
16

Yαi
DYkj,∗

R Ykα,∗
D Yij

R

p2k −M2
k

Tr
{
−PL/pα

(
/pk −Mk

)(
/pj +Mj

)(
−/pi +Mi

)}
(D.44)
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For the complete contribution we should study the kinematics of the process and to
compute the phase space integrals, a very similar procedure to the one carried on in
(D.0.1). Anyway, we can already see what happens when we consider diagonal RHNs
Yukawa couplings, i.e if Yij

R = δijY
ij
R ≡ Yi

R; when we start with an |Ni⟩ initial state, then
(D.44) takes the form

−i
16

(
Yiα,∗

D Yiα
D

)(
Yi,∗

R Yi
R

)
p2i −M2

i

Tr
{
−PL/pα

(
/pi −Mi

)(
/pi +Mi

)(
−/pi +Mi

)}
=

=
−i
16

|Yiα
D |

2|Yi
R|

2

p2i −M2
i

Tr
{
−PL/pα

(
/pi −Mi

)(
/pi +Mi

)(
−/pi +Mi

)}
=

=
−i
16

|Yiα
D |

2|Yi
R|

2

p2i −M2
i

Tr
{
−PL/pα

(
p2i −M2

i

)(
−/pi +Mi

)}
=

=
−i
16

∣∣Yiα
D

∣∣2∣∣Yi
R

∣∣2Tr{−PL/pα

(
−/pi +Mi

)}
.

(D.45)

We can see that (D.45) is identically 0 because Im
{
|Yiα

D |
2|Yi

R|
2
}

is and so also this
contribution vanishes.
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Appendix E

Boltzmann Equations: ϕ→ 2N1

Here we find the expression for the Boltzmann Equation (??). The thermal cross section
γab...
ij... is defined by:

γab...
ij... = γ(a+ b+ ...→ i+ j + ...) ≡

≡
∫

dΠaf
eq
a dΠbf

eq
b ...|M(a+ b+ ...→ i+ j + ...)|2(2π)4δ4dΠidΠj...

(E.1)

The equation we need to solve is, from (??)

(
ẎN1

)
ϕ−decay

= [ϕ←→ N1N1] ≃ (1− y2N1
)γN1N1

ϕ (E.2)

So, we need to compute the thermal cross section γN1N1
ϕ and for that we need first to

compute the amplitude squared |M(ϕ→ N1N1)|2. The relevant piece in the Lagrangian
(4.33) is

Lint = −
YR

2
√
2
N̄Nϕ (E.3)

and so
M(ϕ→ N1N1) = ⟨N1N1|

[
− YR

2
√
2
N̄Nϕ

]
|ϕ⟩ = − Y 1

R

2
√
2
ū1v1 (E.4)

and
M†(ϕ→ N1N1) = −

Y 1
R

2
√
2
v̄1u1. (E.5)

Summing and averaging over internal states we obtain

∑
spins

M†M =
(Y 1

R)
2

8
Tr{v̄1u1ū1v1} =

(Y 1
R)

2

8
Tr
{
(/p1 +M1)(/p2 −M1)

}
=

=
(Y 1

R)
2

8
Tr
{
/p1/p2 +M1/p2 + /p1M2 −M2

1

}
=

(Y 1
R)

2

2
(p1 · p2 −M2

1 )

(E.6)

after having used the ciclicity of the trace and the spinor identities. Working in the
CM frame and considering 4-momentum conservation, we can write the relations for the
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kinematical quantities of the process, i.e

pµϕ =
(
mϕ, 0⃗

)
pµ1 = (E1, p⃗1)

pµ2 = (E2,−p⃗1)

with E1 =
√
|p⃗1|2 +M2

1 and E2 =
√
|p⃗2|2 +M2

1 =
√
|p⃗1|2 +M2

1 = E1, and since E1 +

E2 = 2E1 = mϕ we can write
E1 = E2 =

mϕ

2
(E.7)

and

|p⃗1|2 = |p⃗2|2 ≡ |p⃗|2 =
m2

ϕ

4
−M2

1 . (E.8)

Considering that

p1 · p2 = E1E2 + |p⃗|2 = E2
1 + |p⃗|2 =

m2
ϕ

2
−M2

1 , (E.9)

the amplitude can be written as

∑
spins

M†M =
(Y 1

R)
2

2

(
m2

ϕ

2
− 2M2

1

)
=

(Y 1
R)

2

4
m2

ϕ

(
1− 4

M2
1

m2
ϕ

)
. (E.10)

We want now to compute the decay width of the scalar ϕ, because we are going to use it
to define an adimensional parameter KS ≡

Γϕ
D

H1=H(T=M1)
which represents a measurement

of the strength of the sclar decay relative to the Hubble parameter at the time when the
temperature of the thermal bath is T = M1. The decay width is defined by

Γϕ
D ≡

∫
dΠNN

1

2Ep

∑
spins

M†M =

∫
d3p1

(2π)32E1

d3p2
(2π)32E2

1

2mϕ

(2π)4·

· δ4(pµϕ − pµ1 − pµ2)
(Y 1

R)
2

4
m2

ϕ

(
1− 4

M2
1

m2
ϕ

) (E.11)

where Ep is the energy of the process. After the integration of the δ3(p⃗ϕ − p⃗1 − p⃗2) we
remain with

1

(2π)2
(Y 1

R)
2

32
mϕ

(
1− 4

M2
1

m2
ϕ

)∫
d3p1
E2

1

δ0(mϕ − 2E1). (E.12)

Using spherical coordinates and defining |p⃗1| = p and E ≡ E1 we obtain

1

(2π)2
(Y 1

R)
2

32
mϕ

(
1− 4

M2
1

m2
ϕ

)∫
dΩp2dp

E2
δ0(mϕ − 2E). (E.13)
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One can then use the relation p2 = E2 −M2
1 to perform a change of variables in the

integral: EdE = pdp and

dp =
EdE

p
=

EdE√
E2 −M2

1

(E.14)

so that the integral becomes

1

(2π)2
(Y 1

R)
2

32
mϕ

(
1− 4M2

1

m2
ϕ

)
(4π)

∫
E2 −M2

1

E2

EdE√
E2 −M2

1

δ0(mϕ − 2E) =

=
(Y 1

R)
2

32π
mϕ

(
1− 4M2

1

m2
ϕ

)√
E2 −M2

1

E

∣∣∣∣
E=

mϕ
2

=
(Y 1

R)
2

32π
mϕ

(
1− 4M2

1

m2
ϕ

)√m2
ϕ

4
−M2

1
mϕ

2

=

=
(Y 1

R)
2

32π
mϕ

(
1− 4M2

1

m2
ϕ

) 3
2

= Γϕ
D

(E.15)

At this point we can define the scalar decay parameter Kϕ as:

Kϕ =
Γϕ
D

H1

=

(
1

32π

)
(Y 1

R)
2 mϕMPL

1.66
√
g⋆M2

1

(
1− 4M2

1

m2
ϕ

) 3
2

, (E.16)

What we need to do now is to compute the thermal cross section γN1N1
ϕ to conclude

our analysis on the Boltzmann Equation. In this specific case γ is given by,

γN1N1
ϕ =

∫
d3p1

(2π)32E1

d3p2
(2π)32E2

d3pϕ
(2π)32Eϕ

(2π)4δ3(p⃗ϕ − p⃗1 − p⃗2)·

· δ0(Eϕ − E1 − E2)e
−

Eϕ
T |M(ϕ→ N1N1)|2 =

=

∫
d3p1

(2π)32E1

d3p2
(2π)32E2

d3pϕ
(2π)32Eϕ

(2π)4δ3(p⃗1 + p⃗2)·

· δ0(Eϕ − E1 − E2)e
−

Eϕ
T
(Y 1

R)
2

4
m2

ϕ

(
1− 4

M2
1

m2
ϕ

)
,

(E.17)
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the d3p2 integration fixes p⃗2 = −p⃗1 and E1 = E2,∫
d3p1

(2π)32E1

d3p2
(2π)32E2

d3pϕ
(2π)32Eϕ

(2π)4·

· δ3(p⃗1 + p⃗2)δ
0(Eϕ − E1 − E2)e

−
Eϕ
T
(Y 1

R)
2

4
m2

ϕ

(
1− 4

M2
1

m2
ϕ

)
=

=
(Y 1

R)
2

4
m2

ϕ

(
1− 4

M2
1

m2
ϕ

)∫
d3p1

(2π)34E2
1

d3pϕ
(2π)32Eϕ

e−
Eϕ
T δ0(Eϕ − 2E1) =

=
(Y 1

R)
2

4
m2

ϕ

(
1− 4M2

1

m2
ϕ

)∫
dΩ|p⃗1|2d|p⃗1|
(2π)34E2

1

d3pϕ
(2π)32Eϕ

e−
Eϕ
T δ0(Eϕ − 2E1)

(E.18)

and again, considering the change of variable (E.14) and that
∫
dΩ = 4π we obtain

(
1

32π

)
1

(2π)3
(Y 1

R)
2m2

ϕ

(
1− 4M2

1

m2
ϕ

)∫ √
E2

1 −M2
1dE1

E1

d3pϕ
Eϕ

e−
Eϕ
T δ0(Eϕ − 2E1). (E.19)

We can now integrate over E1 eliminating the last δ, to get

(
1

32π

)
1

(2π)3
(Y 1

R)
2m2

ϕ

(
1− 4M2

1

m2
ϕ

)(
1

2

)∫
d3pϕ
Eϕ

e−
Eϕ
T

√
E2

ϕ

4
−M2

1

Eϕ

2

=

=

(
1

32π

)
1

(2π)3
(Y 1

R)
2m2

ϕ

(
1− 4M2

1

m2
ϕ

)(
1

2

)∫
d3pϕe

−
Eϕ
T

√
E2

ϕ − 4M2
1

E2
ϕ

(E.20)

and since p2ϕ = E2
ϕ −m2

ϕ and as in (E.14) dpϕ =
EϕdEϕ√
E2

ϕ−m2
ϕ

1 and d3pϕ = dΩp2ϕdpϕ,

(
1

32π

)
1

(2π)3
(Y 1

R)
2m2

ϕ

(
1− 4M2

1

m2
ϕ

)(
1

2

)
·

·
∫

dΩ

∫ ∞

mϕ

(
E2

ϕ −m2
ϕ

)
EϕdEϕ√

E2
ϕ −m2

ϕ

e−
Eϕ
T

√
E2

ϕ − 4M2
1

E2
ϕ

=

=

(
1

16

)
1

(2π)3
(Y 1

R)
2m2

ϕ

(
1− 4M2

1

m2
ϕ

)
·

·
∫ ∞

mϕ

e−
Eϕ
T Eϕ

√
1−

m2
ϕ

E2
ϕ

√
1− 4M2

1

E2
ϕ

dEϕ.

(E.21)

At this point it’s worth noticing that the variable Eϕ runs from mϕ to +∞, and we need
also to satisfy the condition mϕ ≥ 2M1 in order to have the right kinematics for the scalar

1Again we can define |p⃗ϕ| = pϕ
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decay we are studying. So, if we work in the regime where mϕ >> M1, we can work with

the approximation
√
1− 4M2

1

E2
ϕ
≃ 1 valid for all the values of the Eϕ range in the integral.

If we want to have a numerical estimation, already considering mϕ = 3M1, we obtain

that 0.75 ≤
√

1− 4M2
1

E2
ϕ
≤ 1 and for mϕ = 4M1, we obtain that 0.86 ≤

√
1− 4M2

1

E2
ϕ
≤ 1.

In this limit we can write the integral in (E.21) as

≃
(

1

16

)
1

(2π)3
(Y 1

R)
2m2

ϕ

(
1− 4M2

1

m2
ϕ

)∫ ∞

mϕ

e−
Eϕ
T Eϕ

√
1−

m2
ϕ

E2
ϕ

dEϕ (E.22)

Now we define the variable x ≡ Eϕ/T , so that Eϕ = Tx and dEϕ = Tdx and we rewrite
(E.22) as

(
1

16

)
1

(2π)3
(Y 1

R)
2m2

ϕ

(
1− 4M2

1

m2
ϕ

)∫ ∞

mϕ/T

e−x(xT )

√
1−

m2
ϕ

T 2x2
Tdx =

=

(
1

16

)
1

(2π)3
(Y 1

R)
2m2

ϕ

(
1− 4M2

1

m2
ϕ

)
T 2

∫ ∞

mϕ/T

e−x

√
x2 −

m2
ϕ

T 2
dx

(E.23)

To solve the integral we then write mϕ

T
≡ α so that

∫ ∞

mϕ/T

e−x

√
x2 −

m2
ϕ

T 2
dx =

∫ ∞

α

e−x
√
x2 − α2dx (E.24)

which solution can be written in terms of the modified Bessel functions of the second
kind K1, i.e ∫ ∞

α

e−x
√
x2 − α2dx = αK1(α). (E.25)

If we recall the definition of the variable z ≡ M1

T
given in (3.3.6), then α =

mϕ

M1
z and

γN1N1
ϕ can be finally written as

(
1

16

)
1

(2π)3
(Y 1

R)
2m2

ϕ

(
1− 4M2

1

m2
ϕ

)
M2

1

z2
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M1
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(
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z

)
=

=

(
1

16

)
1

(2π)3
(Y 1

R)
2m3

ϕM1
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1− 4M2

1

m2
ϕ

)K1

(
mϕ

M1
z
)

z
= γN1N1

ϕ

(E.26)
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The time variation of the lightest RHN yield Y1 due to the ϕ-decay will be given by
(4.45),

(
ẎN1

)
ϕ−decay

=
sH1

z

(
dYN1

dz

)
ϕ−decay

=

=

(
1−

Y 2
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z
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z
=
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Y 2
eq,N1

(
Y 2
eq,N1

− Y 2
N1

)(Y 1
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2m3
ϕM1

16(2π)3
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)K1

(
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M1
z
)

z
,

(E.27)

while the variation in terms of z turns out to be

(
dYN1

dz

)
ϕ−decay

=
1

Y 2
eq,N1

(
Y 2
eq,N1

− Y 2
N1

)(Y 1
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16(2π)3
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m2
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)K1

(
mϕ

M1
z
)

sH1

(E.28)

What we want to do now is first to rewrite this result in terms of the number of N1

particles, which is the product of the N1 density and the comoving volume a3 and which
we are going to call for simplicity N1 ≡ n1a

3. The entropy density and the comoving
volume are related by

s =
2π2

45

1

a3
, (E.29)

and so
YN1 ≡

n1

s
=

45

2π2
n1a

3 =
45

2π2
N1. (E.30)

In this way (E.28) can be rewritten as
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1
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=
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=

=
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(E.31)

and we can see that the 2π2/45 factors go away. The final result reads

(
dN1
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ϕ−decay

=
1

Neq,1neq,1

(
N2

eq,1 −N2
1
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(
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M1
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)
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(E.32)
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where neq,1 is computed using the Maxwell-Boltzmann statistics, i.e fMB
eq (p) = e−E/T ,

since it makes a small difference with respect to using the more complicated Fermi
statistics 2, and it’s defined by [22]

neq,1 ≡
g(= 2)

(2π)3

∫
d3pfMB

eq (p) =
T 3

π2
z2K2(z) =

M3
1

π2

K2(z)

z
. (E.33)

What we need to do now is to rewrite this result in terms of the Kϕ parameter defined
in (E.16). Substituting for neq,1 we obtain

(
dN1
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)
ϕ−decay

=
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2m3

ϕ

(128π)M2
1H1

(
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1

m2
ϕ

)
z
K1(z

mϕ

M1
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eq,1 −N2
1

)
Neq,1

=

=
1√

1− 4M2
1

m2
ϕ

(
mϕ

2M1

)2

KSz
K1(z

mϕ

M1
)

K2(z)

(
N2

eq,1 −N2
1

)
Neq,1

.
(E.34)

E.1 The Case with K1 = 0.1 and Kϕ ≃ K1

Figure E.1: The figure on the left shows the behaviour of the light-
est Right Handed Neutrino N1 number density (on the left) both in the
standard case (green line) and in the case with the scalar ϕ decay added
(blue line). The figure on the right shows instead the absolute value of the
baryon asymmetry of the Universe |ηB| (on the right), where again the two
cases, the standard one (green) and the modified one (blue) are plotted.
Both the N1 number density and the |ηB| are represented as a function
of z = M1/T . We considered M1 = 1014, the washout factor K1 = 0.1
(weak washout regime) and the decay parameter Kϕ ≃ 0.1. The dashed
red lines represents the N1 equilibrium number density (on the left) and

the measured baryon asymmetry of the Universe today (on the right).

2The difference in neq is of order of 10% at T = m
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E.2 The Thermal Initial Abundance Case

We show here the results for the case with thermal initial abundance for the N1 number
density in the case where the scalar decay parameter is Kϕ << 1, in particular in the
upper figures we have K1 = 10 and Kϕ ≃ 0.1 while in the lower ones K1 = 0.1 and
Kϕ ≃ 0.01.

We can notice that when the decay parameter is Kϕ << 1, the presence of the scalar
does not affect the standard picture as expected, in fact the green and blue lines cannot
even be distinguished.
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Appendix F

ULYSSES

F.1 ULYSSES: Universal LeptogeneSiS Equation Solver

ULYSSES [105] is a python package that calculates the baryon asymmetry from leptoge-
nesis in the context of a type-I seesaw mechanism. The code solves semi-classical Boltz-
mann equations for points in the parameter space chosen by the user. The ULYSSES
code solves Boltzmann equations in terms of number density of particles, using the con-
version from the B − L number density to the baryon-to-photon ratio:

ηB ≡
NB

N rec
γ

= asph
NB−L

N rec
γ

=
28

79

1

27
NB−L = 0.013NB−L, (F.1)

where NB−L is the final B-L asymmetry, asph = 28/79 is the SM sphaleron factor and
the 1/27 factor derives from diluition in our normalization conventions. New physics can
change the sphaleron factor, for instance in the MSSM we have asph = 8/23. ULYSSES
can solve LG equations in different context and scenarios: it can consider density matrix
equations with 1,2 or 3 RHNs, taking into account transitions between different flavours
and it can work with different combinations of flavours and RHNs considered. In this
thesis project we considered the so-called 1BE1F model, the one which works the one-
flavour regime and consider the decay of only 1, i.e. the lightest, RHN.

The built in code has been modified to account for the contributions to the RHN
number density due to the scalar decay.

F.2 Tables Of the Parameters Used for the Numerical

Analysis

We put here the parameters used for our numerical simulations. What changes between
one case and the other ones is the value of the washout factor K1 and of the ϕ mas, mϕ

and coupling Y 1
R. We work with M1 = 1014 GeV.
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Parameter Unit Code input Value
δ [°] delta 217
α21 [°] a21 0
α31 [°] a31 0
θ23 [°] t23 49.2
θ12 [°] t12 33.44
θ13 [°] t13 8.57
x1 [°] x1 180
y1 [°] y1 1.4
x2 [°] x2 180
y2 [°] y2 11.2
x3 [°] x3 180
y3 [°] y3 11
log10(m1/3) [eV] m -100
log10(M1) [GeV] M1 14
log10(M2) [GeV] M2 15
log10(M3) [GeV] M3 16

The Case with K1 = 10, Kϕ ≃ 150

In this case, K1 = 10, mϕ = 1015 GeV and Y 1
R = 0.5.

The Case with K1 = 10, Kϕ ≃ 10

In this case, K1 = 10, mϕ = 1015 GeV and Y 1
R = 0.13.

The Case with K1 = 10, Kϕ ≃ 0.02

In this case, K1 = 10, mϕ = 4 · 1014 GeV and Y 1
R = 0.008.

The Case with K1 = 0.1, Kϕ ≃ 20

In this case, K1 = 0.1, mϕ = 1015 GeV and Y 1
R = 0.17.

The Case with K1 = 0.1, Kϕ ≃ 150

In this case, K1 = 0.1, mϕ = 7 · 1014 GeV and Y 1
R = 0.6.

The Case with K1 = 0.01, Kϕ ≃ 20

In this case, K1 = 0.01, mϕ = 1015 GeV and Y 1
R = 0.18.
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The Case with K1 = 0.01, Kϕ ≃ 200

In this case, K1 = 0.01, mϕ = 1015 GeV and Y 1
R = 0.6.

The Case with K1 = 0.001, Kϕ ≃ 20

In this case, K1 = 0.001, mϕ = 1015 GeV and Y 1
R = 0.18.

The Case with Thermal Initial Ab.

In these two cases we considered mϕ = 1015 GeV and Y 1
R = 0.6, and then, respectively,

K1 = 10 and K1 = 0.1.

Notice that the parameters in the table are the same for the strong washout and the
weak one cases; this is because fixing by hand the washout parameter lead to a
modification in the six unknown parameters of the orthogonal matrix R of the

Casas-Ibarra parameterization.
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