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Abstract

Lattice gauge theories are powerful tools to describe nature and its interactions, finding ap-
plications from the theory of Standard Model to condensed matter physics, but there are still
many unresolved issues. The recent development of quantum technologies opens the door to
new techniques, such as quantum simulation and quantum computation, which can overcome
these difficulties and expand our knowledge of these models. There have already been many
studies on Abelian lattice gauge theories, but in this thesis we develop an algorithm to inves-
tigate non-Abelian lattice gauge theories with dihedral D4 and D3 gauge groups. We describe
the gates and the full circuit to prepare the ground state of one and two plaquette systems,
given the Hamiltonian and exploiting adiabatic evolution. Then we calculate some relevant
observables, such as energy and Wilson loops. All quantum simulations are performed using
the open-source Qiskit toolkit. The obtained results are checked against exact diagonalization
numerical solutions, with respect to which we find a very good agreement.
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INTRODUCTION

Motivation
Why a gauge theory? Why a lattice gauge theory? And why on a quantum computer?
We refer to as gauge theory any physical theory that has redundant degrees of freedom and
for this reason it is invariant under a class of transformations, that form the gauge symmetry
group. Gauge theories, are powerful tools to describe a broad range of natural phenomena
and they find applications from the theory of Standard Model to condensed matter physics.
For example gauge theories explain successfully the dynamics of elementary particles: quan-
tum electrodynamics is an Abelian gauge theory with the symmetry group U(1) and has
one gauge field, the electromagnetic four-potential, with the photon being the gauge boson.
Quantum chromodynamics is a non-Abelian gauge theory with the symmetry group SU(3)
and has eight gauge fields (since they have colour charges), with the gluons being the gauge
bosons. The whole Standard Model is a non-Abelian gauge theory with the symmetry group
U(1)×SU(2)×SU(3) and has a total of twelve gauge bosons: the photon, three weak bosons
and eight gluons [43]. Gauge theories find applications also in condensed matter physics, for
example in spin glasses [42], Chern-Simons theory [11] and superconductivity [53].
The standard approach to study a gauge theory and all its relevant observables is perturbation
theory [43]. In this approach we consider an HamiltonianH that is the sum of two components,
an unperturbed Hamiltonian H0 and an interacting (perturbing) Hamiltonian Hint representing
a weak disturbance to the unperturbed system, such that H = H0 + gHint, where g is the cou-
pling constant. The idea is to start by studying the unperturbed Hamiltonian H0 for which a
mathematical solution is known, and then add corrections as a power series in the parameter g,
and if the coupling constant is small enough we can truncate the series at the first order. This
approach is usually possible only if the running coupling is small enough, however, in most
gauge theories, like in quantum chromodynamics, there are many interesting questions which
are non-perturbative, in particular the explicit forces acting between quarks and antiquarks in
a meson. Among non-perturbative approaches to gauge theories, one of the most well estab-
lished is lattice gauge theory [55]. This approach uses a discrete set of spacetime points in
such a way that path integrals, and so all required quantities, can be evaluated by stochastic
simulation techniques such as the Monte Carlo method. In this approach the gauge theory
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INTRODUCTION

is formulated in the Euclidean path-integral formalism, in order to make the integral strictly
positive, so that it can be simulated in a computer via Monte Carlo algorithms. Despite being
very difficult and demanding, often requiring the use of supercomputers, numerical computa-
tions have led to very relevant results. However there are still many unresolved issues, indeed
the numerical sign problem prevents the use of Monte Carlo method to study lattice gauge
theories, e.g. in presence of fermions at finite chemical potential, at high density and low
temperature [41, 54]. Since the theory is Euclidean we also encounter problems when trying
to reproduce the real-time dynamics of the model, some quantities, such as conductivity and
viscosity, cannot be computed from the Euclidean path-integral. Moreover, the details of the
various stages of out-of-equilibrium real-time evolution phenomena, such as heavy-ion colli-
sions, are also out of reach [3, 40].
The recent development of quantum technologies opens the door to new techniques, such as
quantum simulation and quantum computation, which can overcome these difficulties, provide
us with new tools of research and expand our knowledge of lattice gauge models. As first
proposed by Feynman in 1982 [20], only a quantum device is able to reproduce accurately
a quantum system, in particular all its quantum properties that have no classical counterparts
and cannot be efficiently simulated on classical simulators or computers. In particular digital
quantum computers can be used as universal quantum simulators, i.e. programmable quantum
computers are potentially able to calculate the time evolution of many physical models [52].
These suggestions have been made possible by the recent development of quantum control
technologies. It must be said, however, that severe limitations persist in the number of qubits
and the reliability of gates of currently available quantum computers.
Besides the technical and experimental challenges, in order to realize a quantum simulation of
a lattice gauge theory we should be able to overcome some theoretical difficulties. In particular
the theory must be formulated in the Hamiltonian approach, keeping time real and continuous
while only space is discretized. This is different with respect to what we have in the path-
integral approach of usual lattice gauge theory, where we pass to an Euclidean time through a
Wick rotation and then we discretize the full Minkowski spacetime. We should also make sure
that the theory has a finite-dimensional Hilbert space. In this direction there have already been
studies on the quantum simulation of lattice gauge theories [17, 24, 37, 39, 58], especially in
the case of an Abelian gauge group. These studies have shown that quantum simulations are
intrinsically free of the sign problem and, since they are formulated in the Hamiltonian formal-
ism, it is possible to study the real-time dynamics of the system. The goal of this master thesis
is to use the formulation of the Hamiltonian lattice gauge theory with any finite gauge group
given in [36], and to implement the quantum gates proposed in [30] in order to realize and an-
alyze a quantum simulation with some finite non-Abelian gauge groups. The aim of this work
is not to observe new physics but rather to formulate and verify a simulation of non-Abelian
lattice gauge theories. Once this non-perturbative technique is validated, we may have access
to regimes not otherwise accessible and new physical phenomena may be observed.
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INTRODUCTION

Overview
In chapter 1 we introduce the theoretical framework of lattice gauge theories in the Hamil-
tonian formalism, starting with the definition of a pure Yang-Mills model in the continuum
spacetime, discussing the discretization of the space with a lattice and exploring the quantiza-
tion of the theory with its Hamiltonian and Hilbert space.
In chapter 2 we introduce the general setting for simulations of a lattice gauge theory on a
digital quantum computer, in particular we discuss how to encode the physical degrees of free-
dom of the model in the simulator, how to reproduce its Hamiltonian dynamics in an evolution
gate and how to extract information on physical observables by measurements on the quantum
circuit.
In chapter 3 we analyze two specific gauge groups: the dihedral groups D4 and D3, in the
cases of one and two plaquette lattices. These two groups are interesting because they are the
simplest non-Abelian subgroups that can be used to approximate SO(3), and hence SU(2).
Through exact and numeric computations we formulate theoretical predictions for the be-
haviour of some relevant observables like the energy and Wilson loops.
In chapter 4 we implement the quantum circuits required to simulate a lattice gauge theory
with D4 and D3 gauge groups in the cases of a one and two plaquette lattices, using the Qiskit
toolkit. Then the results of the quantum simulation are compared with those obtained in the
previous chapter, finding a very good agreement.
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Chapter 1

LATTICE GAUGE THEORY

In this chapter we introduce the pure Yang-Mills theory on a lattice. We start by reviewing the
usual Yang-Mills theory on a continuum Minkowski spacetime with a generic gauge group G,
first in its Lagrangian formulation and then in the Hamiltonian formalism. We give also some
hints on how to quantize this model promoting the fields to operator and imposing the canonical
commutation rules. In order to regularize the theory we discretize the spatial dimensions and
keep time continuous, obtaining in this way a lattice gauge theory where the gauge fields
live on the edges of the lattice. We study the structure of the Hilbert space attached to each
edge analyzing two possible bases: the group element basis and the representation basis, and
in doing so we review the relevant notions on the left and right regular representations and
Peter-Weyl theorem. We see how a gauge transformation acts on the total Hilbert space and
hence which are the states that are gauge invariant and therefore physical. Then we introduce
the Kogut-Susskind Hamiltonian that governs the dynamics of this lattice gauge model, we
introduce first its magnetic part and then the electric part. In the electric Hamiltonian we
pay particular attention when defining the Laplacian for both compact Lie groups and finite
groups. The resulting Hamiltonian is gauge invariant and provides the correct continuum limit.
Finally we discuss two useful operators for the study of this model: the vertex operator and the
plaquette operator, also mentioning the quantum double model.

1.1 Continuum Yang-Mills theory
In this section we briefly review the Hamiltonian formulation of a Yang-Mills theory in the
temporal gauge and defined on a continuum Minkowski spacetime. We start by summarizing
some basic concepts of Lie group and Lie algebra theory, introducing in this way the gauge
field. We present the Yang-Mills Lagrangian, that describes the dynamics of a model that is
symmetric under certain local gauge transformations. Then imposing the temporal gauge to
fix a non-physical degree of freedom and performing a Legendre transform we formulate the
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CHAPTER 1. LATTICE GAUGE THEORY

Yang-Mills Hamiltonian for a continuum theory. Finally we see how to quantize this theory
promoting fields to operators and imposing the canonical commutation rules.

1.1.1 Gauge group
Let’s start by reviewing some basic concepts of Lie group theory applied to the context of
gauge symmetries. At these first stages we will be interested in compact and simple Lie groups,
one example could be SU(N), which has many applications. A Lie group is a group which
is also a differentiable manifold, such that the group multiplication and inversion maps are
smooth [25]. A Lie group G has an underlying Lie algebra g. Formally the Lie algebra g of
a Lie group G is the tangent space of the identity element of G, hence a vector space of the
same dimension of the group G. Each element of the group g ∈ G can be written using the
exponential map through some real parameters Xa and the generators Ta of the Lie algebra g:

g = eiX
aTa , (1.1.1)

where the sum over the repeated color index a = 1, 2, ..., dG is taken for granted, and dG is the
dimension of the group G, or of the corresponding Lie algebra g, which is then the same. The
generators Ta of the Lie algebra g satisfy the following commutation rules

[Ta, Tb] = ifabcTc, (1.1.2)

where fabc are fully anti-symmetric structure constants and are footprints of the Lie group. In
the simple cause of an Abelian group, all these constants are equal to zero, while in a more
complex group like SU(N) they are generally different from zero. In order to normalize the
generators we require them to satisfy the Killing metric

Tr(TaTb) =
1

2
δab. (1.1.3)

Gauge field

At this point we are ready to introduce the main ingredient for a gauge theory, the gauge field.
We define a gauge field, or connection, Aµ as an element of the Lie algebra Aµ ∈ g, with
µ = 0, 1, 2, 3 that is a tensor index for the spacetime components. Being Aµ an element of the
Lie algebra it can be written as a linear combination of the generators:

Aµ = AaµTa. (1.1.4)

We remark that Aµ is a field and as such it is a function of the spacetime coordinates: Aµ(x),
where x = (t, x⃗) is a point of Minkowski spacetime M. We will use the Minkowski metric
with signature (−,+,+,+,+), and Einstein summation convention, meaning that the sum
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1.1. CONTINUUM YANG-MILLS THEORY

over repeated indices is implied.
From the gauge potential Aµ we can construct the field strength, or curvature, Fµν such that

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]. (1.1.5)

Also the field strength, being an element of the Lie algebra g, can be expanded in terms of the
Lie algebra generators Fµν = F a

µνTa.
The gauge field Aµ and the field strength Fµν under a local gauge transformation g(x) ∈ G
transform as follows{

Aµ(x) → A′
µ(x) = g(x)Aµ(x)g(x)

−1 + ig(x)∂µg(x)
−1

Fµν(x) → F ′
µν(x) = g(x)Fµν(x)g(x)

−1
. (1.1.6)

Notice how the gauge transformation of the field strength Fµν is fully determined by the trans-
formation law of the gauge field Aµ, simply using its definition (1.1.5). Non-Abelian gauge
fields Aµ transform like the adjoint representation [38].

Matter field

The second ingredient for a gauge theory is a matter field Ψ(x), usually a fermionic one. Matter
fields live in the complex vector space V of some representation ρ : G→ End(V ) of the gauge
groupG. This means that matter fields sit in some vector space of dimension dρ, the dimension
of the representation. The action of the local gauge transformation g(x) ∈ G on the matter
field Ψ(x) ∈ V is simply given by Ψ′(x) = ρ(g(x))Ψ(x). In the following we will consider
a pure gauge theory, this means that we will neglect the matter field Ψ, considering just the
dynamics of the gauge field Aµ. The reader interested in the simulation of gauge theories with
scalar or spinor matter fields may refer to [30].

1.1.2 Yang-Mills Lagrangian
Consider a classical field model where only the gauge fieldAµ(x) ∈ g is present and where the
system is invariant under local gauge transformations g(x) ∈ G, whose action on the gauge
field is given by (1.1.6). The Lagrangian that describes the dynamics of such a theory is the
pure Yang-Mills Lagrangian:

LYM = − 1

2g2
Tr(FµνF

µν). (1.1.7)

where g is the coupling constant for the gauge field interaction and the sum over the repeated
spacetime indices µ and ν is implied. It is easy to verify that under the gauge transformation
(1.1.6) the Yang-Mills Lagrangian (1.1.7) in invariant because of the cyclic property of the
trace Tr.
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We can also split the field strength Fµν appearing in the Lagrangian (1.1.7) in the chromoelec-
tric field Ei and in the chromomagnetic field Bi, with i = 1, 2, 3 (space components) such
that

Ei = F0i,

Bi = −1

2
ϵijkFjk,

(1.1.8)

where ϵijk is the Levi-Civita symbol. In terms of the fields (1.1.8) the Lagrangian (1.1.7)
becomes

LYM =
1

g2
Tr(EiEi −BiBi). (1.1.9)

1.1.3 Yang-Mills Hamiltonian
Temporal gauge

Now we try to pass to the Hamiltonian formulation of a pure Yang-Mills theory for a generic
gauge groupG, starting from the Yang-Mills Lagrangian LYM (1.1.7). The main issue we have
to deal with is gauge invariance, since the Lagrangian (1.1.7) is written with some redundant
non-physical degrees of freedom. This is reflected into the fact that if we expand Tr(FµνF

µν)
in terms of the gauge field Aµ it does not contain the term Ȧ0 (time derivative of the time-
component of the gauge field), and so the corresponding conjugate momentum π0 is identically
zero:

π0 =
∂LYM

∂Ȧ0
= 0. (1.1.10)

This means that the field A0 is not dynamical and its equation of motion is a time-independent
algebraic equation, which shows that A0 takes a time-independent constant value. We can
isolateA0 in the Lagrangian (1.1.9), adding a divergence and neglecting second order functions
in A0, that do no not contribute to the equations of motions, in this way we find [31]:

LYM =
1

g2
Tr(EiEi −BiBi)

∣∣∣∣
A0=0

+
1

g3
Tr(A0G), (1.1.11)

with G = GaTa ∈ g defined in terms of its component by

Ga(x) = ∂iE
a
i (x) + fabcAbi(x)E

c
i (x) = DiE

a
i (x), (1.1.12)

whereDµ is the covariant derivative. Given a field F in the representation ρ of the gauge group
G, then the covariant derivative of F is

DµFi = ∂µFi − iAaµ(T
a
ρ )ijF

j, i, j = 1, 2, ..., dρ, (1.1.13)

where T aρ are the generators of the Lie algebra g corresponding to the representation ρ, and dρ
is the dimension of ρ.
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1.1. CONTINUUM YANG-MILLS THEORY

From the expression (1.1.11) we can see that A0 is a Lagrange multiplier and its equation of
motion corresponds to a set of phase space constraints Ga(x) = DiE

a
i (x) = 0, one for each

color index a = 1, 2, ..., dG. These are the non-Abelian analogue of Gauss’ law constraint in
the Abelian electromagnetic theory. These constraints represent the conditions for a specific
configuration to be gauge invariant, and they have to be satisfied by all physical phase space
states.
As a gauge fixing condition we can use the temporal gauge in which we fix A0 = 0, then the
Lagrangian (1.1.11) becomes

LYM =
1

2g2
(Ei

aE
i
a −Bi

aB
i
a), (1.1.14)

where apart from putting A0 to zero, we have also removed the trace on the color indices
using the fact that Ei = Ei

aT
a, Bi = Bi

aT
a and the Killing metric (1.1.3). In the last ex-

pression, as per our notation, we take for granted the sum over the repeated space index i and
the repeated color index a. Notice that the temporal gauge A0 = 0 does not fix completely
the gauge freedom, in particular we have a residual gauge invariance under time-independent
gauge transformations g(x⃗) ∈ G, using the general expression (1.1.6) we can write:

Aµ(x) → A′
µ(x) = g(x⃗)Aµ(x)g(x⃗)

−1 + ig(x⃗)∂µg(x⃗)
−1. (1.1.15)

Under this gauge transformation we have that A0(x) → A′
0(x) = g(x⃗)A0(x)g(x⃗)

−1, and if we
were in temporal gauge A0 = 0, we will remain in the same gauge A′

0 = 0.

Legendre transform

In the temporal gauge A0 = 0 one has that Ea
i = Ȧai , then the momenta πi conjugate to Ai are

πia =
∂LYM

∂Ȧai
=
Ei
a

g2
. (1.1.16)

The Hamiltonian density HYM can be derived using the usual Legendre transform:

HYM = πiaȦ
a
i − LYM =

g2

2
πiaπ

i
a +

1

2g2
Bi
aB

i
a. (1.1.17)

The continuum Yang-Mills Hamiltonian HYM in the temporal gauge is given by

HYM =

∫
d4x

(
g2

2
πia(x)π

i
a(x) +

1

2g2
Bi
a(x)B

i
a(x)

)
. (1.1.18)

As you can see from (1.1.18) the Hamiltonian is made of two pieces, and we will refer to them
as electric Hamiltonian HE and magnetic Hamiltonian HB respectively, such that HYM =
HE +HB.
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Quantization of gauge fields

To quantize the classical field theory described by the Yang-Mills Hamiltonian (1.1.18) we can
promote the gauge fields Aai and the conjugate momenta πai to the Hermitian operators Âai and
π̂ai respectively, acting on an Hilbert space. These operators obey the canonical equal-time
commutation rules [21]: [

Âai (x), Â
b
j(y)

]
x0=y0

= 0,[
π̂ai (x), π̂

b
j(y)

]
x0=y0

= 0,[
Âai (x), π̂

j
b(y)

]
x0=y0

= iδab δ
j
i δ

3(x⃗− y⃗).

(1.1.19)

This is a situation similar to what we have in a quantum system with the commutation rule
[x̂i, p̂j] = iδij between the position x̂i and the momentum p̂j operators. In that case considering
the position representation ⟨x|ψ⟩ = ψ(x), we satisfy the commutation rule by imposing that x̂
acts multiplicatively and p̂ generates the translations. Similarly in the field representation, the
Hilbert space is the vector space of wave functionals ψ[A⃗] of the configurations of the field A⃗
at fixed time. In this notation we have ⟨A⃗(x)|ψ⟩ = ψ[A⃗]. In order to satisfy the commutation
rules (1.1.19), we impose that Âai (x) acts on ψ[A⃗] multiplicatively while π̂ai (x) is the generator
of translations (it is a functional differential operator):

Âai (x)ψ[A⃗] = Aai (x)ψ[A⃗],

π̂ai (x)ψ[A⃗] = −i δ

δAia(x)
ψ[A⃗].

(1.1.20)

Let us notice that the space of wave functionals ψ[A⃗] is too large, in the sense that it contains
non-physical states. As we saw before, the temporal gauge A0 = 0 has a residual gauge sym-
metry under local gauge transformations (1.1.15). It can be shown [21] that Ĝ(x⃗) = DiÊi(x⃗)
is the quantum generator of local infinitesimal time-independent gauge transformations and it
commutes locally with the Hamiltonian [Ĝ(x⃗), ĤYM] = 0. This operator can be used to iden-
tify the physical gauge invariant Hilbert space. The physical requirement that states that differ
by time-independent gauge transformations, like (1.1.15), be equivalent to each other leads to
the demand that we should restrict the Hilbert space to the space of gauge-invariant states, and
these states satisfy Ĝ(x⃗) |ψ⟩ = DiÊi(x⃗) |ψ⟩ = 0. The constraint means that only the states
which obey the Gauss’ law are in the physical Hilbert space:

Hphys =
{
|ψ⟩ : Ĝ(x⃗) |ψ⟩ = 0

}
. (1.1.21)

In this way in this section we obtained a quantum Yang-Mills gauge theory defined on a contin-
uum Minkowski spacetime; in the following sections we will see how to pass to a Yang-Mills
gauge theory defined on a discretized space (lattice) and with a continuous time.
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1.2. LATTICE REGULARIZATION

1.2 Lattice regularization

In this section we discuss why we should be interested in the discretization of a continuum
gauge theory, as the one presented in the previous section, especially if it cannot be treated
with perturbation theory. We define the d-dimensional square lattice used to perform this
discretization, and we also describe how to assign to each edge of the model a gauge field (or
equivalently a group element).

1.2.1 Introduction to lattice gauge theory

The standard approach to study a gauge theory as the one described in the previous section is
perturbation theory, in which the dynamics of the model is studied with perturbative expan-
sions on the coupling constant. These expansions are only meaningful as long as the coupling
constant is small, and this is for example the case for Quantum Electrodynamics (QED), the
quantum field theory describing the electromagnetic interaction. QED is a gauge theory where
the gauge group is G = U(1) and the coupling constant, the electric charge, is weak and many
aspects of the dynamics of the model can be treated with perturbation theory. Because of the
phenomenon of the screening of the electric charge, increasing the energy, the coupling con-
stant grows and eventually diverges. Fortunately the energy scale at which QED perturbation
theory breaks down is huge, far larger than Planck’s mass, therefore this divergence is not a
real problem [43]. The situation is much different for Quantum Chromodynamics (QCD), the
quantum field theory describing the strong interaction between the quarks inside nuclei. QCD
is a gauge theory with gauge group G = SU(3) and here the coupling constants diverge in
such a way that perturbation theory cannot be applied.
Lattice regularization is the most famous non-perturbative approach to QCD and it was intro-
duced by Wilson [55]. Working on a hypercubic spacetime lattice we are able to remove the
ultraviolet divergences, and regularize the theory. Quark fields (matter fields) live on the lattice
vertices and gluons (gauge fields) reside on the links between the nearest neighbour vertices.
Given this lattice gauge theory, if we work on a Wick-rotated euclidean spacetime, QCD be-
comes a statistical mechanics model. In the Hamiltonian formulation of this model the time
can be kept continuous and real, while we discretize just the space dimensions.

1.2.2 Definition of the lattice

Let us consider a Yang-Mills theory in the temporal gauge on a lattice with a gauge group G
and in the Hamiltonian setting. With respect to the continuum gauge theory on the Minkowski
(d + 1)-dimensional spacetime M, in this lattice gauge theory the time variable t is kept
continuous, while the space coordinates xi are discretized, with i = 1, ..., d, where d is the
dimension of the lattice (in the simulation we will work with d = 2). We can in particular
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CHAPTER 1. LATTICE GAUGE THEORY

Figure 1.1: The square oriented lattice Λ (1.2.1) for a d = 2 dimensional
space. The lattice spacing is a, while î and ĵ are two unit vectors that
indicate the orientations of the edges. The black dots are the vertices x⃗,
the grey lines are the oriented edges l. For the lattice in the figure we have
Li = Lj = 4.

consider a hypercubic oriented lattice Λ, like the one in Fig. 1.1, defined as

Λ =

{
x⃗ ∈ Rd : x⃗ =

d∑
i=1

aniî, ni = 0, 1, ..., Li

}
, (1.2.1)

where the vertices x⃗ are points in an Euclidean space Rd, î is a unit vector in the i-th direction,
such that î = (01, ..., 0i−1, 1i, 0i+1, ..., 0d), ni are integer numbers, Li is the extension of the
lattice along the i-th direction and a > 0 is the lattice spacing.
We identify the vertices with their space coordinates x⃗, the set of all vertices is called V . We
denote the oriented link (or edge) l by specifying the initial vertex and the unit vector parallel
to the link, so for example l = (x⃗, î) is the link that goes from x⃗ to x⃗+ âi. We denote by l− the
source lattice site at the origin of the segment and by l+ the target lattice site, as in Fig. 1.2.
For example, given the link l = (x⃗, î), we have that l− = x⃗ and l+ = x⃗ + âi. Notice that the
orientation of the links is important. The set of all edges is called E.
In a classical configuration of a lattice gauge theory we assign to the vertices the matter fields
while to the edges the gauge fields. In particular, on each vertex x⃗ of the lattice one should put a
matter field Ψ(t, x⃗), but we will consider a pure gauge theory, so in our case there are no matter
fields. On the edge (x⃗, î) we put the gauge field Ai(t, x⃗). As we saw in the previous section,
gauge fields Ai are elements of the Lie algebra g, and for this reason using the exponential
map (1.1.1) is like we are attaching to each edge a group element g ∈ G. In particular it is
possible to prove [53] that at the group element g associated to the link (x⃗, î) is

g(x⃗, î) = eiaAi(t,x⃗), (1.2.2)
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Figure 1.2: Oriented edge l = (x⃗, î). The edge is oriented in î direction, it
has as origin the vertex l− = x⃗ and as target the vertex l+ = x⃗ + âi, where
a is the lattice spacing.

where g(x⃗, î) is the group element associated to the link (x⃗, î) and Ai(t, x⃗) is the spatial com-
ponent of the gauge field in the direction of î, evaluated in the point x⃗ at the time t. The
relation (1.2.2) can be derived formally by studying the parallel transport in a vector bundle
and defining the comparator for the links of the square lattice, for more details see [53] and
[32]. We can notice that the relation (1.2.2) is an exponential map linking a Lie algebra object
Ai(t, x⃗) ∈ g to a group object g(x⃗, î) ∈ G.
As we said before links are oriented, and if a link l associated to the group element gl is tra-
versed in the opposite orientation, then gl is replaced with its inverse g−1

l .
In the next section we will see how to describe the vector space of each edge as a Hilbert space.

1.3 Hilbert space of a lattice gauge theory

In a quantum lattice gauge theory the space of configuration of each link is a Hilbert space
and in this section we discuss the structure of this space and also of the total Hilbert space
describing the whole lattice. We analyze two possible bases for the single-link Hilbert space:
the group element basis and the representation basis. In order to introduce the second basis
we discuss some important results on Peter-Weyl theorem and left and right regular represen-
tations. Finally we describe how a gauge transformation acts on the states of the total Hilbert
space and therefore how to characterized the physical (gauge invariant) states.

1.3.1 Hilbert space of a single link

In the previous section we saw how a classical configuration for a lattice gauge model is given
by a choice of group element g ∈ G on each lattice link. In the quantum theory the states in
the Hilbert space of each link are given by a superposition of the classical configurations. Let’s
analyze this Hilbert space by distinguishing the case where the gauge group G is a compact
Lie group from the case where it is a finite group.
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Compact Lie group

Given a compact Lie groupG, we attach to each directed link l an Hilbert space H(l) = L2(G),
that is the space of square integrable functions ψ : G → C with respect to left and right
invariant Haar measure dg. Given a locally compact group G, a left and right invariant Haar
measure on G is a measure dg satisfying the following conditions:∫

G

dgf(gh) =

∫
G

dgf(g) =

∫
G

dgf(hg), (1.3.1)

with g, h ∈ G and f : G→ C [27].
Analogously to what happens with L2(Rd), where we have the position basis {|x⃗⟩}, with
x⃗ ∈ Rd, we can construct a similar basis for the single link Hilbert space L2(G):

{|g⟩ : g ∈ G}, (1.3.2)

and we call it group element or position basis. Since we are considering a Lie group, there
are infinite elements inside the group G, and so also the position basis (1.3.2) contains infinite
many states. Just as for the usual position basis we have an orthonormality relation also for
{|g⟩}:

⟨g|h⟩ = δ(g, h), (1.3.3)

where δ(g, h) is a Dirac delta, a distribution, on elements of the group g and h. A generic vector
of the Hilbert space H(l) can be written as a linear superposition (integral) of the position basis
states:

|ψ⟩ =
∫
G

dgψ(g) |g⟩ , (1.3.4)

where ψ(g) ∈ L2(G) is a square integrable function. Whereas in the classical theory we
associate a well-defined group element to each link, in the quantum theory is also possible to
assign to each link a superposition of group elements, and the weight function |ψ(g)|2 gives us
the probability of getting a specific group element g.
The total Hilbert space HT for the entire lattice is

HT =
⊗
l∈E

L2(G). (1.3.5)

A possible basis for the total Hilbert space is {
⊗

l |gl⟩}, where |gl⟩ is a group element basis
element for the Hilbert space H(l) of the single link l.
We emphasise from the outset that the physical (gauge invariant) Hilbert space Hphys is just a
subspace of the total Hilbert space HT (1.3.5).

Finite group

If instead of a compact Lie group we are interested in a finite group G, we attach to each
directed link l an Hilbert space H(l) = C[G], that is the group algebra of G (see appendix
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A.2), so the complex vector space spanned by the group element basis {|g⟩}, that is defined
just as in the Lie group case (1.3.2). Since we are considering a finite group, there is a finite
number of elements inside the group G, and so also the position basis (1.3.2) contains a finite
number of states. The basis states still satisfy the orthonormality relation (1.3.3), but this time
the δ(g, h) is not a Dirac delta, but simply a Kronecker delta function that returns 1 if g = h
and 0 otherwise.
A generic vector of the Hilbert space H(l) can be written as a linear superposition of the posi-
tion basis states:

|ψ⟩ =
∑
g∈G

ψ(g) |g⟩ , (1.3.6)

where ψ(g) ∈ C[G] and with respect to (1.3.4) we substitute the integral over the Haar measure
with the sum over all group elements.
The total Hilbert space HT for the entire lattice is

HT =
⊗
l∈E

C[G]. (1.3.7)

Also for a finite group G, the physical Hilbert space Hphys is just a subspace of the total Hilbert
space HT (1.3.7), but before talking about gauge transformations we shall introduce some
useful operators.

1.3.2 Left and right translation operators

Left and right operators

Consider the Hilbert space of a single link H(l), given the group element g ∈ G we can define
the left translation operator Lg, whose action on the group element basis state |h⟩ is

Lg |h⟩ = |gh⟩ . (1.3.8)

One can also define the right translation operator Rg, whose action on the group element basis
state |h⟩ is

Rg |h⟩ = |hg−1⟩ . (1.3.9)

The action of these operators is similar to the one of the translation operator exp(ixp̂) in
quantum mechanics, that translates a state by x in the position space. The generator of this
translation is the momentum operator p̂. We are now interested in finding the analog of the
momentum operator (generator of translations) in this group algebra context, because it will
be a crucial element for the construction of the electric Hamiltonian.
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Generators of left translation

Let us now focus on the case of a compact Lie groupG. The left and right translation operators
Lg and Rg introduced in (1.3.8) and (1.3.9) can be seen as infinite-dimensional unitary repre-
sentations of the groupG onto the space ofL2(G), known as the left and right regular represen-
tations [58]. Acting on the group element basis it is easy to verify that L : G→ End(L2(G)),
R : G→ End(L2(G)) and they satisfy

LgLh = Lgh, RgRh = Rgh, ∀g, h ∈ G. (1.3.10)

These representations are unitary, indeed:

(Lg)
−1 = Lg−1 = L†

g, (Rg)
−1 = Rg−1 = R†

g, ∀g ∈ G. (1.3.11)

Recall that each element g of a Lie group G can be written as the exponential of an element X
of the corresponding Lie algebra g (1.1.1):

g = eiX ∈ G, (1.3.12)

and the Lie algebra element X ∈ g can be written as a linear combination of the generators Ta
for some real coefficients Xa, with a = 1, 2, ..., dG and dG the dimension of the Lie algebra:

X = XaTa ∈ g. (1.3.13)

We are now interested in finding the regular Lie algebra representation L : g → End(L2(G)) of
the Lie algebra g that corresponds to L. Using the exponential map (1.3.12), the compatibility
of L and L implies:

LeiX = eiL(X). (1.3.14)

You can visualize better this relation in Fig. 1.3. Expanding on the Lie algebra generators Ta
(1.3.13) we can see that

LeiXaTa = eiX
aLa , (1.3.15)

where we defined La = L(Ta), the regular Lie algebra representation of the generator Ta of g.
Using the commutation relation (1.1.2) between the generators Ta of the Lie algebra, and the
fact that L is a Lie representation, we can see that:

[La,Lb] = ifabcLc. (1.3.16)

The operators La will play a fundamental role in the definition of the group Laplacian and the
electric Hamiltonian, since they are the analog of momentum operators p̂i in the group algebra.

19



1.3. HILBERT SPACE OF A LATTICE GAUGE THEORY

Figure 1.3: Pictorial description of the relation (1.3.14) that ensures the
compatibility of L and L. Given a Lie algebra element X ∈ g via the
exponential map (1.3.12) we can associate it a group element g = eiX ∈
G, then the left regular Lie group representation L : G → End(L2(G))
associate to g the operator Lg. The same operator can be obtained starting
from X ∈ g, taking the left regular Lie algebra representation L : g →
End(L2(G)) of it, and then applying the exponential map.

1.3.3 Peter-Weyl theorem and representation basis
The representation theory of the left L and right R regular representations leads to the Peter-
Weyl theorem, which is a very important theorem for the characterization of the Hilbert space
of a single link H(l), and allows us to introduce a new useful basis for this space. We will give
the statement of the theorem for both compact Lie groups and finite groups.

Compact Lie group

Let G be a compact Lie group and Ĝ the countable set of inequivalent irreducible representa-
tions of G labeled by the index j. Then [27, 35]

1. The space L2(G) of square-integrable functions on G can be decomposed as a sum
of representation spaces. More precisely, if Vj is the vector space for the irreducible
representation ρj , then

L2(G) =
⊕
j∈Ĝ

V ∗
j ⊗ Vj, (1.3.17)

where V ∗
j is the dual of Vj and the direct sum

⊕
j is extended to all inequivalent irre-

ducible representations of G.

2. The matrix elements (ρj)mn of all inequivalent irreducible representations of G form an
orthogonal basis for L2(G).
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3. If {|g⟩} is the orthonormal group element basis for L2(G), then the representation basis
{|jmn⟩} satisfies the duality relation:

⟨g|jmn⟩ =

√
dj

Vol(G)
ρj(g)mn, (1.3.18)

where dj is the dimension of the representation ρj , hence also of the vector space Vj ,
while Vol(G) =

∫
G
dg is the volume of the group G in the Haar measure.

Finite group

Let G be a finite group and Ĝ the countable set of inequivalent irreducible representations of
G labeled by the index j. Then [35, 49]

1. The group algebra C[G] can be decomposed as a sum of representation spaces. More
precisely, if Vj is the vector space for the irreducible representation ρj , then

C[G] =
⊕
j∈Ĝ

V ∗
j ⊗ Vj, (1.3.19)

where V ∗
j is the dual of Vj and the direct sum

⊕
j is extended to all inequivalent irre-

ducible representations of G.

2. The matrix elements (ρj)mn of all inequivalent irreducible representations of G form an
orthogonal basis for C[G].

3. If {|g⟩} is the orthonormal group element basis for C[G], then the representation basis
{|jmn⟩} satisfies the duality relation:

⟨g|jmn⟩ =

√
dj
|G|

ρj(g)mn, (1.3.20)

where dj is the dimension of the representation ρj , hence also of the vector space Vj ,
while |G| is the size of the group G, so the number of elements in it.

Some observations

From the point 1 of Peter-Weyl theorem we can see how to decompose the space of square
integrable functions L2(G), that is also the Hilbert space H(l) attached to a single link l. Two
equivalent ways to write the decomposition V ∗

j ⊗ Vj are

V ∗
j ⊗ Vj ∼= End(Vj) ∼= V

⊕dj
j . (1.3.21)
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Recall that the space L2(G) is made of functions on the the group ψ : G→ C. The elements of
the position basis {|g⟩} are associated with the Dirac delta distributions like eg(h) = δ(g, h),
which form a basis of the space L2(G). The point 2 of Peter-Weyl theorem says us that there
exists another possible basis for the space L2(G), and this basis is made of the matrix elements
of all inequivalent irreducible representations of G, hence (ρj)mn : G → End(Vj), where
j ∈ Ĝ labels the irreducible representation and m,n label the matrix elements, so they are
constrained by 1 ≤ m,n ≤ dj , with dj the dimension of the representation ρj . The function
(ρj)mn is associated with the Hilbert space state |jmn⟩. The same discussion can be done for
the finite group case.
From the point 3 of the Peter-Weyl theorem we see the explicit relation between the group
element (or position) basis {|g⟩} and the representation basis {|jmn⟩}. Notice how the group
element basis {|g⟩} contains |G| elements (in the finite group case), while the representation
basis {|jmn⟩} contains

∑
j d

2
j elements. There is a theorem in representation theory that guar-

antees that these two numbers are the same (A.3.1), as one may expect by two bases of the
same Hilbert space.
Both these two bases will play an important role in the following discussion, indeed the group
element basis diagonalizes the magnetic part of the Hamiltonian, while the representation basis
diagonalizes the electric part of the Hamiltonian.

Decomposition of regular representation

The Peter-Weyl decomposition (1.3.17) allows us to write the left regular representation Lg as
[27, 35]

Lg =
⊕
j∈Ĝ

ρj(g)
∗ ⊗ Ij, (1.3.22)

where Ij is the dj × dj identity matrix. An equivalent expression is

Lg =
⊕
j∈Ĝ

ρj(g)
⊕dj , (1.3.23)

where the sum is extended to all irreducible representations j of G, with multiplicity equal to
dj . The same decomposition can be done also for the right regular representation Rg:

Rg =
⊕
j∈Ĝ

Ij ⊗ ρj(g) (1.3.24)

or also
Rg =

⊕
j∈Ĝ

ρj(g)
⊕dj . (1.3.25)

Combining the decomposition (1.3.22) and (1.3.24) we obtain:

LgRh =
⊕
j∈Ĝ

ρj(g)
∗ ⊗ ρj(h). (1.3.26)

22



CHAPTER 1. LATTICE GAUGE THEORY

Figure 1.4: In a local gauge transformation we assign to each vertex x⃗ of
the lattice a group element g(x⃗). The state |gl⟩ of the link l, in between the
sites l− and l+, is transformed as |gl⟩ → |gl−glg−1

l+
⟩, as in (1.3.28).

1.3.4 Gauge transformation

Gauge transformation operator

Consider now the whole lattice, a local gauge transformation is given by the choice of a group
element g(x⃗) ∈ G at every site x⃗ of the lattice. This transformation acts on the overall Hilbert
space HT via the operator G({g(x⃗)}) defined as

G({g(x⃗)}) =
⊗

(x⃗,̂i)∈E

Lg(x⃗)Rg(x⃗+âi) =
⊗
l∈E

Lgl−Rgl+
, (1.3.27)

where, as per our notation, l− and l+ represent respectively the source and the end of the edge
l. The decomposition of the operator (1.3.27) in the representation spaces can be found using
the expression (1.3.26). The action of the local gauge transformation operator G({g(x⃗)}) on a
single link l state is simply the following (Fig. 1.4):

G({g(x⃗)}) |gl⟩ = |gl−glg−1
l+
⟩ , (1.3.28)

or in the other notation l = (x⃗, î), l− = x⃗ and l+ = x⃗+ âi:

G({g(x⃗)}) |g(x⃗, î)⟩ = |g(x⃗)g(x⃗, î)g(x⃗+ âi)−1⟩ . (1.3.29)

The reason why a local gauge transformation is represented by the operator (1.3.27) is that it
provides the correct continuum limit, and now we will show why.
Consider a Lie group G and the expression (1.2.2) for the the group element gl = g(x⃗, î)
associated to the link l = (x⃗, î) in terms of the gauge field Ai(x⃗) and neglecting the time
dependence of the gauge field. Expanding the exponential in (1.2.2) for small lattice spacing a
we have: g(x⃗, î) = 1 + iaAi(x⃗) + o(a2). Using this expansion and the fact that g(x⃗+ âi)−1 =
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g(x⃗)−1 − a∂ig(x⃗)
−1 + o(a2) we can see that the transformation (1.3.29) implies:

g(x⃗, î) → g′(x⃗, î) = g(x⃗)g(x⃗, î)g(x⃗+ âi)−1

= g(x⃗)g(x⃗+ âi)−1 + iag(x⃗)Ai(x⃗)g(x⃗+ âi)−1 + o(a2)

= 1 + ia
[
g(x⃗)Ai(x⃗)g(x⃗)

−1 + ig(x⃗)∂ig(x⃗)
−1
]
+ o(a2) (1.3.30)

= 1 + iaA′
i(x⃗) + o(a2), (1.3.31)

where in (1.3.30) we recognize the transformation law (1.1.15) of the gauge field A′
i under a

local time-independent gauge transformation. From the expression (1.3.31) we verify that in
the continuum limit, a→ 0, we have g′(x⃗, î) = exp[iaA′

i(x⃗)], and so that the operator (1.3.29)
reproduces the correct transformation law (1.1.15) of the gauge field Ai.

Gauge invariant Hilbert space

In order to be gauge invariant, and so physical, a state of the total Hilbert space |ψ⟩ ∈ HT has
to satisfy the so-called Gauss’ law constraint:

G({g(x⃗)}) |ψ⟩ = |ψ⟩ ∀{g(x⃗)}. (1.3.32)

Clearly not all the states of HT satisfy the constraint (1.3.32). The physical gauge invariant
Hilbert space then is

Hphys = {|ψ⟩ : G({g(x⃗}) |ψ⟩ = |ψ⟩ ∀{g(x⃗)}} . (1.3.33)

1.4 Lattice gauge theory Hamiltonian
In this section we construct the Kogut-Susskind Hamiltonian, the Hamiltonian for a quantum
lattice gauge theory. We examine the two parts of which it is composed: the magnetic Hamil-
tonian and the electric Hamiltonian. For both we study the continuum limit to be sure that
they reproduce the continuum Hamiltonian found in a previous section and also the gauge in-
variance. Then we pay special attention to the definition of a group Laplacian in the electric
Hamiltonian, that in the case of a Lie group is quiet straightforward, while for a finite group
there are some ambiguity.

1.4.1 Wilson loop operator
Group element operator

Consider the group element basis {|g⟩} for the single link Hilbert space. One can define the
group element (or position) operator ĝmn such that it is diagonal in this basis:

ĝmn |g⟩ = |g⟩ ρ(g)mn, (1.4.1)
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where ρ(g)mn is the matrix element in a faithful representation ρ of the group element g. The
group element operator ĝmn is not Hermitian, indeed the elements ρ(g)mn are not necessarily
real, nor unitary, indeed if one considers the adjoint of the relation (1.4.1):

⟨g| (ĝmn)† = ρ(g)∗mn ⟨g| , (1.4.2)

and looking at the following inner product, combining (1.4.1) and (1.4.2), we can verify that

⟨g| (ĝmn)†ĝmn |g⟩ = ρ(g)∗mnρ(g)mn ⟨g|g⟩ ≠ ⟨g|g⟩ , (1.4.3)

while for a unitary operator U one should have U †U = I.
To solve this problem we can define the matrix operator ĝ, whose matrix elements are (ĝ)mn =
ĝmn, such that

(ĝ)mn |g⟩ = |g⟩ ρ(g)mn. (1.4.4)

Being ĝ a matrix, when we take its Hermitian conjugate ĝ† one must both transpose its matrix
elements (reverse m and n indices) and take the adjoint of them:

(ĝ†)mn = (ĝnm)
†. (1.4.5)

This time if the chosen representation ρ is unitary, so is the operator ĝ. Indeed we can verify
that ĝ†ĝ = I looking at

⟨g|
dρ∑
p=1

(ĝ†)mpĝpn|g⟩ =
dρ∑
p=1

ρ(g)∗Tmpρ(g)pn ⟨g|g⟩ = ⟨g|g⟩ , (1.4.6)

where the superscript T indicate the matrix transposition.

Wilson loop operator

Consider the elementary path e passing through an oriented link l of the lattice. There are only
two possibilities: either e cross the link in the direction in which the link is oriented, e ∥ l, or
in the opposite direction, e ∥ −l. We can associate to the elementary path e the group element
operator ĝ[e] defined in this way:

ĝ[e] =

{
ĝl if e ∥ l
ĝ†l if e ∥ −l

, (1.4.7)

where ĝl is the group element operator for the Hilbert space of the link l, as defined in (1.4.4).
Given a global path γ that is the union of many elementary paths ei, with i = 1, 2, ..., n, such
that γ = e1e2...en, we can define the group element operator associated to this path as

ĝ[γ] = ĝ[e1]ĝ[e2]...ĝ[en]. (1.4.8)
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Figure 1.5: Wilson loop operator Tr Ŵp (1.4.10).

If the path γ = e1e2...en is closed we can define the Wilson loop operator as

Tr Ŵ [γ] = Tr(ĝ[e1]ĝ[e2]...ĝ[en]). (1.4.9)

For example, if γ corresponds to the boundaries of a plaquette p in a d = 2 dimensional lattice
as in Fig. 1.5 the corresponding Wilson loop operator is

Tr Ŵp = Tr
(
ĝ(x, î)ĝ(x+ âi, ĵ)ĝ(x+ aĵ, î)†ĝ(x, ĵ)†

)
, (1.4.10)

where î, ĵ are the two orthogonal unit vector-directions of the square lattice, a is the lattice
spacing and by ĝ(x⃗, î) we mean the group element operator associated to the link that starts in
x⃗ and it is parallel to î, as per the notation previously introduced.
The Wilson loop operator plays a central role in the construction of the magnetic part of the
Hamiltonian for a Yang-Mills theory on a lattice. Wilson loops are also interesting observables
to study and measure with a quantum simulation since they are sensitive to topological phase
transitions and are order parameters per the confined-deconfined transition [33].

1.4.2 Magnetic Hamiltonian
We define the magnetic Hamiltonian HB as the sum over all Wilson loop operators of all
plaquettes p of the lattice:

HB = − 2

g2a4−d

∑
p

ReTr Ŵp. (1.4.11)

It is possible to prove that the magnetic Hamiltonian (1.4.11) is indeed the spatial discretized
version of the magnetic part of the Yang-Mills continuum Hamiltonian HYM (1.1.18) up to
o(a2). To verify this assertion consider a d = 2 dimensional square lattice, where the links are
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oriented parallel to the unit vectors î and ĵ, consider then a plaquette p with origin in the point
x⃗. The expression of the Wilson loop operator Tr Ŵp for the plaquette p is given in the equation
(1.4.10). Recall the action (1.4.4) of the group element operator ĝl on the group element basis
{|gl⟩} of the corresponding link, then the action of the Wilson loop operator Tr Ŵp (1.4.10) on
the group element basis is

Tr Ŵp = Tr
[
g(x⃗, î)g(x⃗+ âi, ĵ)g(x⃗+ aĵ, î)−1g(x⃗, ĵ)−1

]
, (1.4.12)

where not to be pedantic we have left out the representation ρ through which we should eval-
uate the trace of the group elements. Now we reintroduce the gauge field Aµ by using the
relation (1.2.2) and the fact that Aj(x⃗+ âi) ≃ Aj(x⃗) + a∂iAj(x⃗), we can rewrite (1.4.12) as

Tr Ŵp = Tr
[
eiaAi(x⃗)eia(Aj(x⃗)+a∂iAj(x⃗))e−ia(Ai(x⃗)+a∂jAi(x⃗))e−iaAj(x⃗)

]
. (1.4.13)

Applying twice the Baker–Campbell–Hausdorff formula eAeB = eA+B + 1
2
[A,B] + ... [51]

and neglecting all the terms of order o(a3), that is reasonable in the limit of a small lattice
spacing a, the equation (1.4.13) becomes

Tr Ŵp = Tr
[
eia(Ai(x⃗)+Aj(x⃗)+a∂iAj(x⃗)+

ia
2
[Ai(x⃗),Aj(x⃗)])e−ia(Ai(x⃗)+Aj(x⃗)+a∂jAi(x⃗)− ia

2
[Ai(x⃗),Aj(x⃗)])

]
= Tr

[
eia

2(∂iAj(x⃗)+a∂jAi(x⃗)+i[Ai(x⃗),Aj(x⃗)])
]
. (1.4.14)

We can now introduce in (1.4.14) the field strength Fij (1.1.5) (in its spatial components) ,
getting to:

Tr Ŵp = Tr
[
eia

2Fij(x⃗)
]

= Tr

[
I+ ia2Fij(x⃗)−

a4

2
Fij(x⃗)Fij(x⃗)

]
, (1.4.15)

where we expanded the exponential for small values of the exponent. The trace is linear, so
proceeding terms by terms in the expression (1.4.15): the trace of the identity matrix I is
always a constant and it can be neglected in a Hamiltonian, while for a simple Lie algebra the
field strength Fij is traceless in any representation, since Tr(Fij) = F a

ij Tr(Ta) = 0. These
considerations leads to rewrite (1.4.15) as

Tr Ŵp = −a
4

2
Tr[Fij(x⃗)Fij(x⃗)]. (1.4.16)

We can then use the relation FijFij = 2BkBk and the Killing metric (1.1.3) to remove the
trace, and what we get at the end is

Tr Ŵp = −a
4

2
Bi
a(x⃗)B

i
a(x⃗) + o(a6). (1.4.17)
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If one substitutes the final expression (1.4.17) inside the relation (3.3.18) for the lattice mag-
netic Hamiltonian HB we get exactly the same expression that we had for the continuous
magnetic Hamiltonian in (1.1.18), as long as we change the discrete sum over the plaquettes∑

p into an integral
∫
ddx. Lastly notice that the real part Re in (3.3.18) is needed because the

subleading terms in (1.4.17) may not be real.

1.4.3 Electric Hamiltonian
Consider now the electric term in the continuum Yang-Mills Hamiltonian HYM (1.1.18). Upon
the quantization the electric term consists of the momentum fields operator π̂ia, that as we saw
in (1.1.20), generates the translations on the space of wavefunctionals ψ[A⃗]. On a lattice we
don’t have this space, but a tensor product of all group algebra attached to each link. For this
reason we may imagine that in a lattice gauge theory the electric Hamiltonian involves the
generators of translations on the group algebra. We have already seen that for a single link
Hilbert space the left translations on a group G are implemented by the operators Lg (1.3.8).
If the group G is a Lie group, we have also seen which are the generators La (1.3.15) of the
translations on the Lie algebra g. So the operators La play the role of the momenta π̂ia in the
lattice Hamiltonian. Notice that while the momenta field operators π̂ia(x) have two indices: the
color index a and the spatial component index i, the operators La(l) have only a color index a,
that because the spatial orientation is implicit in the link l = (x⃗, î) to which they belong to. In
the light of these considerations, for a Lie gauge group in a lattice the electric term is

HE =
g2

2ad−2

∑
l∈E

dG∑
a=1

La(l)
2 (1.4.18)

This Hamiltonian provides the correct continuum limit, indeed one can verify that [35]:

La(x⃗, î) = −ad−1π̂ia(x⃗)[1 + o(a)] (1.4.19)

Lie group Laplacian

For a Lie group G one can define the Laplacian ∆l at link l as

∆l =

dG∑
a=1

La(l)
2, (1.4.20)

where the name “Laplacian” is chosen in analogy with ordinary quantum mechanics, where
the square of the momentum operator p̂ (or the generator of translation) is indeed the ordinary
Laplacian operator. The operator (1.4.20) is also called Laplacace-Beltrami operator on the
group manifold G [30]. In terms of the group Laplacian the electric Hamiltonian (1.4.18)
becomes:

HE =
g2

2ad−2

∑
l∈E

∆l (1.4.21)
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Notice that the definition of the group Laplacian (1.4.20) is possible only if the gauge sym-
metry has a Lie algebra g, where the generators La live. For this reason for a finite group
the definition of the Laplacian, and thus the electric term, is more complicated and it will be
discussed in the next section.

Group Laplacian in representation basis

Consider a compact Lie group G and its Lie algebra g. Let ρj be a Lie group representa-
tion of G, then there exists a corresponding Lie algebra representation ρ̃j of g. These two
representations are related by the following relation [27]:

ρ̃j(X) = −i d
dϵ
ρj(e

iϵX)

∣∣∣∣
ϵ=0

∀X ∈ g. (1.4.22)

Recall that in the Peter-Weyl decomposition the left translation operator Lg can be written as
(1.3.22), and that La is the regular Lie algebra representation of the generator Ta (1.3.15),
using these results and the equation (1.4.22) we can see that

La = −i d
dϵ
LeiϵTa

∣∣∣∣
ϵ=0

= −i
⊕
j∈Ĝ

d

dϵ
ρj(e

iϵTa)∗ ⊗ Ij
∣∣∣∣
ϵ=0

=
⊕
j∈Ĝ

ρ̃j(Ta)
∗ ⊗ Ij

=
⊕
j∈Ĝ

−ρ̃j(Ta)T ⊗ Ij (1.4.23)

where in the last line we used the fact that the dual Lie algebra representation is ρ̃∗ = −ρ̃T ,
that comes directly from ρ(g)∗ = ρ(g−1)T and (1.4.22).
Consider now the Laplacian (1.4.20) for the Hilbert space of a single link, and insert the equa-
tion (1.4.23):

∆ =

dG∑
a=1

L2
a =

dG∑
a=1

⊕
j∈Ĝ

ρ̃j(Ta)
T ρ̃j(Ta)

T ⊗ Ij

=
⊕
j∈Ĝ

dG∑
a,b=1

δa,bρ̃
T
j (Ta)ρ̃

T
j (Ta)⊗ Ij. (1.4.24)

Recall the definition of the Casimir element as Ω =
∑

a,bB(Ta, Tb)TaTb, where B is the
Killing form [27]. For a compact group the Killing form is proportional to δa,b, so we recognize
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that the right-hand side of the equation (1.4.24) is proportional to the Casimir operator on each
representation subspace C(j) = ρ̃j(Ω)

T . We can then write

∆ =
∑
j∈Ĝ

C(j)Pj, (1.4.25)

where Pj is the projector on the j-th representation subspace Vj:

Pj =
dj∑

m,n=1

|jmn⟩ ⟨jmn| (1.4.26)

Looking at the explicit expression of the projectors is trivial to say that the group Laplacian
(1.4.25) is diagonal in the representation basis {|jmn⟩}, and therefore the electric Hamiltonian
HE (1.4.18). One can also verify that the projectors Pj are gauge invariant, and therefore the
Laplacian is too. A proof of this result is presented in section 1.4.5 for a finite gauge group,
but it is completely equivalent also for a Lie group.

1.4.4 Finite group Laplacian
The expression (1.4.25) for the group Laplacian was found under the assumption that the gauge
group G was a compact Lie group, nevertheless we can try to generalize this expression also
to the case of finite groups, indeed it is possible to define the representation basis {|jmn⟩} and
the projectors Pj also in the latter case. We define the finite group Laplacian as

∆ =
∑
j∈Ĝ

f(j)Pj, (1.4.27)

where f(j) is an arbitrary function of the representation j only and plays the role of the Casimir
operator C(j), which in the finite group case is not present. It easy to verify, like for the Lie
group Laplacian, that also the finite group Laplacian (1.4.27) is gauge invariant.
Even if the choice of the function f(j) appearing in the finite group Laplacian (1.4.27) remains
undetermined we can constraint it with some properties that it should satisfy. The function
f(j), representing an energy density, should be positive semi-definite, and it should be zero
only for the trivial representation j = 0. If the finite group under study can be seen as the
discretization of a Lie group, one can also impose that the function f(j) of the finite group
approximates the Casimir operator C(j) of the corresponding Lie group.
A method to construct a finite group Laplacian satisfying these requirements has been proposed
in [36] and we are going to illustrate it. This method is based on the choice of a generating
subset Γ for the group G under study, the construction of the corresponding Cayley graph
(G,Γ) and then the definition of the Laplacian ∆ of this graph. Let’s examine this procedure
in details.
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Generating subset

Given a finite group G, let choose a generating subset Γ ⊂ G that satisfies the following
properties:

1. Γ is a set of generators of the group G. That means that every element of the group G
can be written as the product of one or more elements of the generating subset Γ.

2. Γ is invariant under inversion of group element (symmetric), Γ = Γ−1, that means that
∀k ∈ Γ, k−1 ∈ Γ.

3. Γ is invariant under conjugation, Γ = gΓg−1, that means that ∀k ∈ Γ, g ∈ G gkg−1 ∈ Γ.
In other words Γ is the union of conjugacy classes of G.

4. Γ does not contain the identity element e /∈ Γ.

The reasons why we require these properties will be clear proceeding in the discussion. Notice
that the previous constraints are not sufficient to make the choice of such a subset Γ unique,
each possibility produces a different theory. This means that the group G of gauge symmetry
does not fix completely the theory, several models with different energetic eigenvalues (espe-
cially in the electric Hamiltonian) are possible and can be considered through the choice of
different generating subset Γ.

Cayley graph

Consider a finite group G and a subset Γ ⊂ G. We can define the Cayley graph (G,Γ) as the
graph where the vertices are the elements of the group G, while two vertices (group elements)
are linked by an edge if from one we can reach the other by a right multiplication of an element
of the generating set Γ. In other words, given the vertices g, h ∈ G we connect them with an
edge if and only if there exists k ∈ Γ such that h = gk, or equivalently if g−1h ∈ Γ. In the
figures Fig. 1.6a and Fig. 1.6b you can see two examples of directed Cayley graphs. The four
conditions that we imposed on the generating subset Γ guarantee some interesting properties
for the corresponding Cayley graph (G,Γ). First, the fact that Γ contains the generators of the
group ensures that there are no isolated sub-graphs in the graph. The fact that Γ is symmetric
means that if there is a directed edge connecting the vertex g to h, there is also a directed edge
connecting h to g. In the following we will consider these two directed edges as a unique
undirected edge. Finally the fact that e /∈ Γ exclude the presence of self-loops around each
vertex. These properties cause the Cayley graph (G,Γ) to be simple, without multiple edges
and loops.

Adjacency matrix

Given a graph with n vertices we define the n×n adjacency matrixA as the matrix that indicate
whether pairs of vertices are adjacent or not in the graph. In particular we have that the matrix
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(a) Directed Cayley graph of (D4, {r, s}). For
more information about this group see the section
3.1.

(b) Directed Cayley graph of (D3, {r, s}). For
more information about this group see the section
3.2.

Figure 1.6: Two examples of directed Cayley graph. Each vertex represents
an element of the group, D4 or D3. A directed blue link connecting the ver-
tex g to the vertex hmeans that gr = h, while a directed red link connecting
the vertex g to the vertex h means that gs = h.

element Aij is 1 if the vertices i and j are connected by an edge, while it is 0 otherwise. For
the Cayley graph (G,Γ) the matrix elements of the adjacency matrix A are

Agh =

{
1 if g−1h ∈ Γ

0 otherwise
=
∑
k∈Γ

δ(g−1h, k). (1.4.28)

We can see the adjacency matrix A as an operator on the group algebra C[G]. Given a function
f : G → C, that assigns a complex number to each group element, one can define the action
of the adjacency matrix on this function as

Af(g) =
∑
h∈G

Aghf(h). (1.4.29)

A convenient way to see the action of the adjacency matrix A on the group algebra function
f is the following: consider a graph with |G| vertices, the adjacency matrix A is a |G| × |G|
matrix, while f is a column vector of |G| elements, where the g-entry is given by fg = f(g).
The product of the two is Af , while Af(g) (1.4.29) is g-th entry of the product vector Af .
Given the adjacency matrix (1.4.28) for the graph (G,Γ) we can see that

Af(g) =
∑
k∈Γ

f(gk). (1.4.30)
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Consider now the right regular representation Rg and its action on a generic function ψ : G→
C of the group algebra, it is possible to prove that

Rgψ(h) = ψ(hg). (1.4.31)

This can be easily shown considering the action of Rg on a group element basis state |h⟩
(1.3.9), and then a generic state |ψ⟩ (1.3.6) for ψ ∈ C[G] such that

Rg |ψ⟩ =
∑
h∈G

ψ(h)Rg |h⟩ =
∑
h∈G

ψ(h) |hg−1⟩ =
∑
h∈G

ψ(hg) |h⟩ , (1.4.32)

and from that we verify the expression (1.4.31). Using the results (1.4.31) and (1.4.30), we
can write

A =
∑
k∈Γ

Rk. (1.4.33)

One can verify that for any g ∈ G the adjacency matrix A and the right translation operator Rg

commute, indeed

ARg =
∑
k∈Γ

RkRg =
∑
k∈Γ

Rkg

=
∑
k∈Γ

R(gkg−1)g =
∑
k∈Γ

Rgk = RgA, (1.4.34)

where we used the fact that Γ is closed under conjugation and so the element gkg−1 is inside
Γ as well as k. Recall that from the Peter-Weyl decomposition we can write the right regular
representation as in (1.3.25), therefore on a specific representation space Vj , the right regular
representation is an irreducible representationR|Vj = ρ

⊕dj
j and from (1.4.34) it commutes with

the adjacency matrix A. Given these two hypothesis we can then apply the Schur’s lemma and
say that the adjacency matrix is proportional to the identity on each representation subspace Vj
(spanned by {|jmn⟩ : 1 ≤ m,n ≤ dj}), such that

A =
∑
j∈Ĝ

a(j)Pj, (1.4.35)

where a(j) is a function of the representation j only and Pj is the projector on the Vj subspace
defined in (1.4.26). Using the decomposition (1.3.25) we can also write A as

A =
∑
k∈Γ

Rk =
⊕
j∈Ĝ

∑
k∈Γ

ρj(k)
⊕dj (1.4.36)

Taking the trace of the expressions (1.4.35) we see that TrA =
∑

j a(j)d
2
j , while from the

trace of the expression (1.4.36) we have TrA =
∑

j dj
∑

k χj(k), where χj(k) = Tr ρj(k) is
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the character function of the j-th representation. Comparing these two traces we derive the
explicit expression of the eigenvalues a(j) of the adjacency matrix, that are

a(j) =
1

dj

∑
k∈Γ

χj(k). (1.4.37)

The adjacency matrix (1.4.35) with eigenvalues (1.4.37) is a key ingredient for the Laplacian
of the graph (G,Γ).

Laplacian of a graph

There are various way in which one can introduce a discrete Laplacian ∆ for a graph, differing
by sign and scale factor, we present the traditional definition [13]. Given the graph (G,Γ) and
a function ψ : G→ C, we define the Laplacian ∆ as

∆ψ(g) =
∑
k∈Γ

[ψ(g)− ψ(gk)], (1.4.38)

where to compute the Laplacian of the function ψ in the vertex g we are taking the difference
between ψ evaluated in g and ψ evaluated in a nearest-neighbor vertex gk with k ∈ Γ, then we
sum over all nearest neighbours.
It is not difficult to see that the graph Laplacian (1.4.38) for a simple graph as (G,Γ) has the
matrix form:

∆ = D − A, (1.4.39)

where D is the degree matrix and A is the adjacency matrix (1.4.28) of the graph. The degree
matrix D is a |G| × |G| diagonal matrix, with |G| representing the number of vertices in the
graph. The matrix element Dgg is the degree of the vertex g, i.e. the number of edges that it is
connected to. In our case we have that Dgg = |Γ|. Therefore, putting together the expressions
(1.4.39) and (1.4.35), we can write the graph Laplacian as

∆ =
∑
j∈Ĝ

f(j)Pj, (1.4.40)

where f(j) is defined by

f(j) = |Γ| − 1

dj

∑
k∈Γ

χj(k). (1.4.41)

This is the expression of the finite group Laplacian on the Hilbert space C[G] of a single link
that we will use inside the electric Hamiltonian (1.4.21) obtaining:

HE =
g2

2ad−2

∑
l∈E

∑
j∈Ĝ

f(j)Pj(l). (1.4.42)
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1.4.5 Kogut-Susskind Hamiltonian
The Hamiltonian of a pure Yang-Mills theory on a lattice is called Kogut-Susskind Hamiltonian
[28], putting together the electric (1.4.42) and magnetic (1.4.11) terms we see that it is given
by

HKS =
g2

2ad−2

∑
l∈E

∑
j∈Ĝ

f(j)Pj(l)−
2

g2a4−d

∑
p

ReTr Ŵp, (1.4.43)

where the function f(j) is the the Casimir operator C(j) for a compact Lie group, while it is
the function (1.4.41) for a finite group. The electric term HE is diagonal in the representation
(momentum) basis {|jmn⟩} while the magnetic term HB is diagonal in the group element
(position) basis {|g⟩}.

Different parametrization

For what concerns the coupling constants, in the expression (1.4.43) of the Kogut-Susskind
Hamiltonian there is the coupling g that we had in the continuum limit (1.1.18) together with
dimensional corrections with the lattice spacing a. In the following chapters we often use
different parametrizations for the coupling.
One possibility is to define two independent coupling constants: λE = g2/2ad−2 for the electric
Hamiltonian and λB = 1/g2a4−d for the magnetic Hamiltonian. Using these two couplings the
expression (1.4.43) becomes:

HKS = λE
∑
l∈E

∑
j∈Ĝ

f(j)Pj(l)− 2λB
∑
p

ReTr Ŵp. (1.4.44)

In order to visualize better both the electric (λB = 0) and the magnetic limit (λE = 0) one can
use the following parametrization of the coupling constants

HKS = λ
∑
l∈E

∑
j∈Ĝ

f(j)Pj(l)− 2(1− λ)
∑
p

ReTr Ŵp (1.4.45)

where λ ∈ [0, 1] and λ = λE/(λE + λB). In this way, a part from a multiplicative factor
J , we are able to reproduce any combinations of the two coupling constants, λE = Jλ and
λB = J(1− λ).

Gauge invariance

We can prove that the Kogut-Susskind Hamiltonian (1.4.43) is gauge invariant, indeed both
the electric and the magnetic Hamiltonians are gauge invariant. Let us prove this.
Let’s start by considering the magnetic Hamiltonian HB (1.4.11). This Hamiltonian is the sum
of Wilson plaquette operators Tr Ŵp (1.4.10), so in order to prove gauge invariance it is suffi-
cient to prove that for any plaquette p the gauge transformation operator Gp = ⊗l∈pLgl−Rgl+

35



1.4. LATTICE GAUGE THEORY HAMILTONIAN

(1.3.27) for that specific plaquette commutes with the corresponding Wilson loop operator
Tr Ŵp. The action of gauge transformation Gp is shown in Fig. 1.7. The commutation relation
can be easily checked on the group element basis |g1, g2, g3, g4⟩ of the plaquette p. Indeed, one
has:

Tr ŴpGp |g1, g2, g3, g4⟩ = Tr Ŵp |gv1g1g−1
v2
, gv2g2g

−1
v3
, gv4g3g

−1
v3
, gv1g4g

−1
v4
⟩

= Tr
[
gv1g1g2g

−1
3 g−1

4 g−1
v1

]
|gv1g1g−1

v2
, gv2g2g

−1
v3
, gv4g3g

−1
v3
, gv1g4g

−1
v4
⟩

= Tr
[
g1g2g

−1
3 g−1

4

]
|gv1g1g−1

v2
, gv2g2g

−1
v3
, gv4g3g

−1
v3
, gv1g4g

−1
v4
⟩ ,

(1.4.46)

where we omitted the representation ρ through which we should evaluate the trace of the group
elements, and in (1.4.46) we used the cyclic property of the trace. Similarly we have:

GpTr Ŵp |g1, g2, g3, g4⟩ = Tr
[
g1g2g

−1
3 g−1

4

]
Gp |g1, g2, g3, g4⟩

= Tr
[
g1g2g

−1
3 g−1

4

]
|gv1g1g−1

v2
, gv2g2g

−1
v3
, gv4g3g

−1
v3
, gv1g4g

−1
v4
⟩ .

(1.4.47)

Comparing the expressions (1.4.46) and (1.4.47) we see that the operators Gp and Tr Ŵp com-
mute. This means that the Wilson plaquette operator Tr Ŵp is gauge invariant and the magnetic
Hamiltonian as well.
Let us now verify if the projector operators Pj (1.4.26), and hence the Laplacian ∆ (1.4.27)
and also the electric Hamiltonian HE (1.4.21) are gauge invariant or not.
Let consider the Hilbert space H(l) of a single link, a state |jmn⟩ of the representation basis and
the action of the gauge transformation LgRh, as in (1.3.27):

LgRh |jmn⟩ =

√
dj
|G|

∑
k∈G

ρj(k)mnLgRh |k⟩ (1.4.48)

=

√
dj
|G|

∑
k∈G

ρj(g
−1kh)mn |k⟩

=

√
dj
|G|

∑
k∈G

dj∑
p,q=1

ρj(g
−1)mpρj(k)pqρj(h)qn |k⟩

=

dj∑
p,q=1

ρj(g
−1)mpρj(h)qn |jpq⟩ , (1.4.49)
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Figure 1.7: Action of the gauge transformation Gp (1.3.27) on a single pla-
quette p.

where in (1.4.48) and (1.4.49) we used the duality relation (1.3.20). The gauge transformation
LgRh transforms the projector Pj (1.4.26) as:

(LgRh)Pj(LgRh)
† =

dj∑
m,n=1

(LgRh) |jmn⟩ ⟨jmn| (LgRh)
†

=

dj∑
m,n=1

dj∑
p,q=1

dj∑
r,s=1

ρj(g
−1)mpρj(h)qnρj(g

−1)∗mrρj(h)
∗
sn |jpq⟩ ⟨jrs|

=

dj∑
m,n=1

dj∑
p,q=1

dj∑
r,s=1

ρj(g)rmρj(g
−1)mpρj(h)qnρj(h

−1)ns |jpq⟩ ⟨jrs|

=

dj∑
p,q=1

dj∑
r,s=1

δr,pδq,s |jpq⟩ ⟨jrs|

=

dj∑
p,q=1

|jpq⟩ ⟨jpq| = Pj, (1.4.50)

that proves that the projector Pj is gauge invariant, hence the Laplacian ∆ (1.4.25) and the
electric Hamiltonian HE (1.4.21) as well.

1.5 Plaquette and vertex operators
In this sections we introduce two useful objects that we will use in the following: the vertex
operator and the plaquette operator, looking also at their commutation relations. The vertex
operator can be used to define a gauge transformation, while the plaquette operator is particu-
larly useful to introduce plaquette states, as we will see in section 3.3.1. These two operators
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Figure 1.8: Graphical representation of the vertex operator Agv (1.5.1).
Given a group element g ∈ G and a vertex v of the lattice, the vertex op-
erator Agv acts on the Hilbert spaces of the links connected to v, with the
operator Lg if v is the source of the corresponding link (v = l−), and with
Rg if v is the target of the corresponding link (v = l+).

can be used also to discuss the quantum double model, a model related to the lattice gauge
theory we are interested in.

1.5.1 Vertex operator

Consider a vertex v of the lattice Λ (1.2.1) and a group element g ∈ G, we define the vertex
operator Agv as

Agv =
⊗
v=l−

Lg(l)
⊗
v=l+

Rg(l). (1.5.1)

In other words the vertex operator Agv (1.5.1) acts on the Hilbert spaces of the oriented edges l
connected to the vertex v, with the left translation operator Lg (1.3.8) if the vertex is the source
of the link v = l−, with the right translation operator Rg (1.3.9) if the vertex is the target of the
link v = l+. A pictorial representation of the operator is shown in Fig. 1.8.

Gauge transformation

We can use the vertex operators to write the gauge transformation operator G({gv}) (1.3.27)
as

G({gv}) =
⊗
v∈V

Agvv , (1.5.2)

where we assign a group element gv to each site v of the lattice, and the tensor product is
extended to all vertices V .
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1.5.2 Plaquette operator
Consider an oriented plaquette p of a square lattice and a group element g ∈ G, we define the
plaquette operator Bg

p as

Bg
p =

∑
g1,g2,g3,g4∈G

δ(g, g1g2g
−1
3 g−1

4 )Pg1(l1)Pg2(l2)Pg3(l3)Pg4(l4), (1.5.3)

where Pg(l) is the projector |g⟩ ⟨g| in the Hilbert space of the link l, while l1, l2, l3, l4 are the
four edges of the plaquette p, as shown in Fig. 1.9. It easy to see that the plaquette operator is
a projector with eigenvalues 0 and 1, indeed (Bg

p)
2 = Bg

p . The action of the plaquette operator
Bg
p consists in selecting those states that have a group element g assigned to the plaquette p.

In other words a state |g1, g2, g3, g4⟩, in order not to be annihilated by this projector, must have
the product of the group elements gl associated to each edge l equal to g, so g = g1g2g

−1
3 g−1

4 .
Notice that links crossed in the opposite direction with respect to their orientation appear with
the inverse of their group element. Using the plaquette operator (1.5.3) we can write the Wilson
loop Tr Ŵp (3.3.30) for a single plaquette as

Tr Ŵp =
∑
g∈G

Bg
pχF (g), (1.5.4)

where χF is the character of the faithful representation F .
The plaquette operator can be generalized to a generic closed path γ that surround more than
one plaquette. In this case we have:

Bg
γ =

∑
g1,g2,...,gm

δ

(
g,
∏
l∈γ

g[l]

)⊗
l∈γ

Pgl(l), (1.5.5)

where the path γ contains m edges, g1, g2, ..., gm are the group elements associated to the links
of the path γ, while g[l] is equal to gl if the path γ is parallel to the link l, while it is equal to
g−1
l if γ is anti-parallel to l.

1.5.3 Commutation relations
Let us now consider the commutation rules between the operators that we have just introduced.
Given two group elements g, h ∈ G and two vertices v, u ∈ V , the vertex operators Agv and Ahu
commute whenever they are applied on different vertices, v ̸= u. In order to prove that notice
that Agv and Ahu, besides the trivial case, have at most one edge in common, in that case they
act one with the left Lg and one with the right Rh regular representation, and these operators
commute, as you can easily see from their expressions (1.3.22) and (1.3.24). So we have that

[Agv, A
h
u] = 0 if v ̸= u. (1.5.6)
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Figure 1.9: An oriented plaquette p with its 4 oriented links l1, l2, l3, l4.

The situation is different if the vertex operators Agv and Ahu act on the same vertex, v = u, in
this case we have

AgvA
h
v = Aghv , (1.5.7)

that can be easily proven using the definition of Agv (1.5.1) and the property (1.3.10) of the
operators Lg and Rg.
For what concerns two plaquette operators Bg

p and Bh
q defined on two different plaquettes

p ̸= q, with g, h ∈ G, if they do not share any edge it is obvious that they commute, but also
with one link in common, we can easily prove that they commute:

[Bg
p , B

h
q ] = 0 if p ̸= q. (1.5.8)

Two plaquette operators defined on the same plaquette p satisfies the relation:

Bg
pB

h
p = δ(g, h)Bg

p , (1.5.9)

because the plaquette operator is a projector. A vertex operator Agv on the vertex v, which is
not the origin of a plaquette p, commutes with the plaquette operator Bh

p . If instead the vertex
v is the origin of the plaquette p we have:

AgvB
h
p = Bghg−1

p Agv. (1.5.10)

40



CHAPTER 1. LATTICE GAUGE THEORY

Figure 1.10: Graphical representation of the action of the vertex operatorAgv
and plaquette operator Bh

p , with the vertex v at the origin of the plaquette p
(1.5.10).

This result can be proved considering a system like the one in Fig. 1.10, and the definitions
(1.5.1) and (1.5.3) of the operators Agv and Bh

p respectively:

AgvB
h
p =Lg(l1)Lg(l4)Rg(l5)Rg(l6)

∑
g1,g2,g3,g4∈G

δ(h, g1g2g
−1
3 g−1

4 )·

· Pg1(l1)Pg2(l2)Pg3(l3)Pg4(l4) (1.5.11)

=
∑

g1,g2,g3,g4∈G

δ(h, g1g2g
−1
3 g−1

4 ) |gg1⟩ ⟨g1|Pg2(l2)Pg3(l3)·

· |gg4⟩ ⟨g4|Rg(l5)Rg(l6) (1.5.12)

=
∑

g1,g2,g3,g4∈G

δ(h, g−1g1g2g
−1
3 g−1

4 g) |g1⟩ ⟨g−1g1|Pg2(l2)·

· Pg3(l3) |g4⟩ ⟨g−1g4|Rg(l5)Rg(l6) (1.5.13)

=
∑

g1,g2,g3,g4∈G

δ(ghg−1, g1g2g
−1
3 g−1

4 )Pg1(l1)Pg2(l2)Pg3(l3)Pg4(l4)·

· Lg(l1)Lg(l4)Rg(l5)Rg(l6) (1.5.14)

=Bghg−1

p Agv, (1.5.15)

where in the expression (1.5.11) we used the fact that LgPgl = Lg |gl⟩ ⟨gl| = |ggl⟩ ⟨gl|, in
(1.5.13) we change variable in the sum g1 → gg1 and g4 → gg4, while in (1.5.14) we used
PglLg = |gl⟩ ⟨gl|Lg = |gl⟩ ⟨g−1gl|.

1.5.4 Quantum double model
Using the vertex Agv (1.5.1) and plaquette Bg

p (1.5.3) operators introduced before we can con-
struct a new model, called quantum double model, that has some interesting relations with the
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lattice gauge theory we are interested in [26]. Consider an ordered lattice with V vertices, E
links and P plaquettes, a finite group G and a total Hilbert space HT = ⊗l∈EC[G], as for our
lattice gauge theory. Consider then the following Hamiltonian:

HQDM = −
∑
v∈V

Av −
∑
p∈P

Bp, (1.5.16)

where Bp ≡ Be
p, with e the identity element of the group G, and Av that is the total vertex

operator defined as

Av =
1

|G|
∑
g∈G

Agv. (1.5.17)

The Hamiltonian HQDM (1.5.16) is the Hamiltonian of the quantum double model. Notice how
all addends in it commute, then the two pieces, vertex and plaquette part, can be diagonalized
with the same basis.
We just mention that a particular kind of quantum double model, the one based on the 2-cyclic
group G = Z2, is called toric code and has many applications in physics and in particular in
fault-tolerant quantum computations [26].

Vertex Hamiltonian and gauge invariance

Let’s consider the vertex part Hv = −
∑

v Av. The total vertex operator Av is a projector,
indeed A2

v = Av, hence it has eigenvalues 0 and 1. All states |ψv0⟩ that are in the ground
eigenspace of the vertex part Hv have eigenvalue 1, then they satisfy

Av |ψv0⟩ = |ψv0⟩ , (1.5.18)

for all v ∈ V . Notice that this relation is equivalent to the gauge invariance condition (1.3.32)
for a lattice gauge theory, recalling also (1.1.6). This means that the vector space of physical
states in our lattice gauge theory corresponds to the eigenspace of ground states of the vertex
part of the quantum double model.

Plaquette Hamiltonian and magnetic ground state

Consider now the plaquette partHp = −
∑

pBp. The plaquette operatorBp is a projector, then
it has eigenvalues 0 and 1. A ground state |ψp0⟩ of the plaquette part Hp has eigenvalue 1, and
satisfies

Bp |ψp0⟩ = |ψp0⟩ , (1.5.19)

for all p ∈ P . There is a relation between the plaquette part Hp of the quantum double model
and the magnetic part HB = −2λB

∑
pReTr Ŵp (1.4.11) of the lattice gauge theory, indeed

the state that minimizes Hp minimizes also HB. In order to verify that, consider a single
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plaquette p and the group element basis state |g1, g2, g3, g4⟩, where each gi refers to the i-th
link of the plaquette p. The action of the plaquette operator Bp (1.5.3) on this state is

Bp |g1, g2, g3, g4⟩ = δ(e, g1g2g
−1
3 g−1

4 ) |g1, g2, g3, g4⟩ , (1.5.20)

so we have eigenvalue 1 if e = g1g2g
−1
3 g−1

4 and 0 otherwise. Thus the ground state of the
plaquette Hamiltonian is a superposition of the states |g1, g2, g3, g4⟩ with g1g2g−1

3 g−1
4 = e. The

magnetic HamiltonianHB is the sum of Wilson plaquette operators, and the action of a Wilson
plaquette operator Tr Ŵp (3.3.30) on the state |g1, g2, g3, g4⟩ is

Tr Ŵp |g1, g2, g3, g4⟩ = χF (g1g2g
−1
3 g−1

4 ) |g1, g2, g3, g4⟩ . (1.5.21)

where F is a faithful representation of the gauge group. In order to find the magnetic ground
state we have to maximize the character function χF (g). χF is the sum of dF complex roots of
unity [49], with dF the dimension of the representation F , so the maximum of χF (g) is real-
ized when all dF addends are equal to 1, hence χF (g) = dF . The group element g that satisfies
the previous expression for any representation F is the identity element e. So the magnetic
ground state of the single plaquette is a state |g1, g2, g3, g4⟩ where g1g2g−1

3 g−1
4 = e, just as in

the quantum double model.
Summarizing what we have found: the ground state |ψ0⟩ of the full quantum double model
Hamiltonian HQDM corresponds to a state in the lattice gauge theory that is the ground state
|Eλ=0

0 ⟩ of the magnetic Hamiltonian HB (in order to minimize the vertex part Hp) and it is
gauge invariant (in order to minimize the vertex part Hv).

Topological sectors

If the lattice that we are considering has periodic boundary conditions we can see that the
ground state |ψ0⟩ of the quantum double model (so also of the magnetic Hamiltonian of the
lattice gauge theory) is degenerate. Indeed let’s consider the two non-contractible loops γx and
γy in Fig. 1.11, and the operator χ̂j(γ) defined as [34]:

χ̂j(γ) =
∑
g∈G

χj(g)B
g
γ , (1.5.22)

where γ is a generic closed path and Bg
γ is the corresponding plaquette operator (1.5.5). When

considering the non-local operators χ̂i(γx) and χ̂j(γy) we can verify that they commute with
the Hamiltonian HQDM (1.5.16), since [Agv, B

h
γx,y ] = 0. This means that these operators don’t

change the value of the energy and therefore all states |ψ0(i, j)⟩ = χ̂i(γx)χ̂j(γy) |ψ0⟩ are
ground states as well as |ψ0⟩. The eigenspace with minimum energy is |Ĝ|2 dimensional, since
there are |Ĝ| possible values for i and j. To each ground state corresponds a topological sector,
i.e. the set of states of the Hilbert space that can be obtained by the corresponding ground state
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Figure 1.11: A 2-dimensional lattice with periodic boundary conditions and
the two non-contractible loops γx and γy.

by local transformations. One can also construct some operators, called t’Hooft operators, that
can be used to identify the topological sector of any state of the Hilbert space, but the design
of these operators for an arbitrary non-Abelian gauge group G is not easy. Topological sectors
are a very interesting property of quantum double model and they are being extensively studied
[16, 26].
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Chapter 2

SIMULATION OF A LATTICE GAUGE
THEORY

In this chapter we present the general tools to simulate a generic pure lattice gauge theory on
a digital quantum computer. The first step is encoding, i.e. mapping the degrees of freedom
of the physical model in the degrees of freedom of the quantum simulator in such a way that
the map can be inverted and the results of the quantum circuits can be uniquely decoded. The
second step is the reproduction of the dynamics of the physical model using a quantum circuit,
i.e. we want to create a quantum gate that realizes on the simulator the time evolution oper-
ator. This is made possible using Trotter approximation and a set of high level gates whose
explicit form depends on the gauge group under study. We discuss also the adiabatic approx-
imation that is very useful to prepare a desired state. Finally we can perform measurements
on the quantum simulator to get information about the physical model. A graphical scheme to
visualize all quantum simulation procedure is in Fig. 2.5.

2.1 Introduction to quantum simulation
The idea of a quantum simulator was first proposed by R. Feynman in 1982 [20], he suggested
that a quantum device would be able to reproduce accurately a quantum system of interest,
in particular all its quantum properties that have no classical counterparts and cannot be effi-
ciently simulated on classical simulators or computers. For many years this remained only an
idea, since we lacked the technical capabilities to create such devices. Today, thanks to the
advance of quantum control systems, we have reached the technology sufficient to realize such
quantum simulators, as well as many other quantum technologies, like digital quantum com-
puters. Many platforms have been proposed to implement quantum simulators and quantum
computers, such as ultra-cold matter on optical lattices [48], Rydberg atoms [56], supercon-
ducting qubits [18], nuclear spins [46] or trapped ions [7]. These devices have been applied
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to simulate a broad range of physical phenomena in the quantum world, such as superconduc-
tivity [23], Ising model [9], particle physics [4] and Hawking radiation [50], showing what
the great potential of this technology can be. Digital quantum computers, which are currently
rapidly developed and improved with very promising prospective, can be seen as a particular
class of quantum simulators. Quantum computers are supposed to be universal, meaning that
they should be able to reproduce the dynamics of any quantum system. Whereas a quantum
simulator is able to mimic the dynamics of the specific quantum system for which it was de-
signed, in principle a programmable quantum computer can be used to reproduce and study
any quantum system using the same hardware [52]. In this thesis we will try to use a digital
quantum computer to simulate a non-Abelian lattice gauge theory as the one described in the
first chapter.

2.2 Encoding
In this section we see how to encode the degrees of freedom of the physical lattice gauge model
in the degrees of freedom of a digital quantum simulator for both states of the Hilbert space
and observables. We pay particular attention to those cases in which the physical Hilbert space
is infinite dimensional, i.e. the gauge group contains infinite elements, and in order to encode
this space in the finite resources of a quantum simulator you need to approximate the gauge
group with a finite subgroup.

2.2.1 Encoding of the states
Consider a physical system with total Hilbert space HT (1.3.5), this means that every possible
configuration of the system is described by a state vector inside this space.
The degrees of freedom of the quantum simulator are described by the Hilbert space Hs. If
we use a quantum computer of n qubits as a quantum simulator, the Hilbert space is given by
Hs = H⊗n

2 , where H2 is the Hilbert space of a two level system, a qubit, the basic element
of information in quantum computation. If we want to correctly encode the properties of
the physical system in the quantum simulator we need to construct the map HT → Hs in
such a way that it is isomorphic, or at least 1-1, in order to ensure that every physical state
has a corresponding in the quantum simulator and the map can be inverted, allowing us to
decode the results of the quantum simulation. While the dimensionality of the Hilbert space
of the physical system HT is not constrained and can be also infinite, the dimension of the
Hilbert space of the quantum simulator Hs is always finite. For example the Hilbert space of
a quantum computer with n qubits has a dimension dimHs = 2n. This means that only finite
dimensional Hilbert spaces can be exactly simulated on a quantum computer. For example, in
a lattice gauge theory with an infinite size gauge group, we have that the Hilbert space of each
link it is infinite dimensional dimL2(G) = ∞, and so it is impossible to simulate it exactly
on a quantum computer. This is the case for many group of interest, like SU(N). There are
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many possible strategies to deal with an infinite dimensional system: quantum link model [10],
the Fock space truncation [8], dual variables [5] and the finite group approximation [15, 22];
we will deepen in the latter. Once one has encoded the physical degrees of freedom in the
degrees of freedom of the simulator we are ready to initialize and prepare an initial state on the
simulator.
Notice that we are not restricting to the gauge invariant Hilbert space Hphys (1.3.33), but we are
considering the whole Hilbert space HT , even if in principle one can also try to do the same for
the subspace of gauge invariant states. The total Hilbert space HT is much larger that its subset
of gauge invariant states Hphys, therefore a common suggestion to limit the qubit-register size
is to work with just physical states by gauge fixing, at the cost of increased circuit depth in the
time-evolution. Anyway for this approach a practical method for non-Abelian theories remains
unknown.

Finite group approximation

Consider a continuous gauge groupG that has infinite elements and so it cannot be represented
exactly in the finite degrees of freedom of a quantum simulator. The idea is to approximate
the group G with one of its finite subgroups. The subgroup has to be chosen properly to
best reproduce the geometry and all the relevant properties of the original gauge group. For
example to approximate the unitary group U(1) you can use the cyclic group Zn, indeed in the
limit n → ∞ one recovers exactly the original group. The situation is more complicated for
non-Abelian groups like the special unitary group SU(N). Let’s take as an example SU(2),
that is locally isomorphic to the special orthogonal group SO(3), the group of rotations in a
three dimensional space, i.e. the group of symmetries of a sphere. To be more precised we
should say that SU(2) double covers SO(3). Finite subgroups of SO(3) are the cyclic group
Zn, the dihedral groupDn, the tetrahedral group T , the octahedral groupO and the icosahedral
group I . The cyclic group Zn is probably not a good choice to approximate SO(3), since it
is very simple and it is also Abelian, while SO(3) is not. The groups of symmetry of three
dimensional polyhedra, like T , O and I are probably the subgroups that reproduce better the
geometry of SO(3), but their algebra is not simple and so they are probably not the best choice
to start with. A good idea could be the dihedral group Dn, the group of symmetry of 2-
dimensional polygons with n sizes. Even if we lose the three-dimensionality of the geometry
of SO(3), choosing as subgroup the dihedral group Dn we preserve the non-Abelian character
(for n > 2) of SO(3) and we work with a sufficiently simple group to begin with.

2.2.2 Encoding of the observables

In addition to states we shall encode in the quantum simulator also the observables of the
physical model. Consider an observableO of the system, it can be represented by an Hermitian
operator that acts on the Hilbert space HT . In the simulator a generic observable O(1)

s for a
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single qubit can be written in terms of the Pauli basis as:

O(1)
s =

3∑
µ=0

oµσµ, (2.2.1)

for some coefficients oµ and where σµ = (I, σx, σy, σz) is the vector of Pauli matrices satisfy-
ing su(2) algebra. Consider now a generic observable Os on a n-qubit system. The algebra
su(2)⊗n is generated by the operators σjµ, where we act with the Pauli matrix σµ on the j-th
qubit. A generic n-qubit observable in the simulator can be written in terms of these operators
Os({σjµ}). In this case to have a faithful representation of the physical system we have to map
each observable O of the physical model in an observable Os of the qubit-register in such a
way that the action of O on the physical Hilbert space HT is equivalent to the action of Os on
the n-qubit Hilbert space Hs. Formally we have to build a *-algebra isomorphism O → Os

between the two operator algebras.

2.3 Time evolution

Once one has mapped the physical model Hilbert space HT in the n-qubit Hilbert space Hs,
we are able to prepare and initialize in the quantum register an initial state |ψ0⟩. Notice that
we have to make sure that the initial state |ψ0⟩ is indeed gauge invariant. The preparation of a
generic physical state is not trivial and it will discuss later, first in this section we see how to
implement time evolution.
In order to make a prepared state evolve in time under some specified external conditions we
need first to reproduce the dynamics of the model implementing a time evolution operator.
Consider the Hamiltonian that governs the physical model, in the case of a lattice gauge the-
ory this is the Kogut-Susskind Hamiltonian HKS (1.4.43). Using the procedure described in
the previous section we can also construct the operator H that acts on the quantum simula-
tor Hilbert space Hs and governs the dynamics of it, mimicking the dynamics of the physical
model. The Kogut-Susskind Hamiltonian is time independent, this means that the correspond-
ing evolution operator U(t) is formally given by:

U(t) = e−iHt. (2.3.1)

The Hamiltonian H is gauge invariant, indeed it commutes with the generator of gauge trans-
formations G, as we have shown in section 1.4.5. This means that also the evolution operator
U(t) commutes with the generator of gauge transformations G, hence if the initial state |ψ0⟩ is
gauge invariant, the evolved state |ψ(t)⟩ = U(t) |ψ0⟩ is still gauge invariant. In order to realize
the evolution operator on the simulator we have now to understand how to decompose it in the
gates of a quantum circuit.
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2.3.1 Trotter formula
We want to decompose the evolution operator U(t) (2.3.1) in the gates of a quantum cir-
cuit, but the decomposition reproducing the full evolution operator can be inefficient as the
number of elementary operations may be too large, and moreover the decomposition in terms
of elementary gates may be difficult to find. To simplify the task let us first notice that the
Kogut-Susskind Hamiltonian for a lattice gauge theory (1.4.43) is made of two non-commuting
pieces, the electric Hamiltonian HE and the magnetic Hamiltonian HB:

H = HE +HB. (2.3.2)

For this kind of Hamiltonian there is a useful relation, called Trotter formula. Given an Hamil-
tonian H that is the sum of two different pieces, like in (2.3.2), Trotter approximation allow us
to factor the evolution operator related toH into evolution operators of the single Hamiltonians
HE and HB up to the order o(t2) [12]:

U(t) = e−iHt = e−iHBte−iHEt + o(t2). (2.3.3)

The previous equation is exact in the case in which the Hamiltonians HE and HB commute
with each other, so there are no correction of order o(t2). If instead the Hamiltonians do not
commute we can estimate the error δ introduced by Trotter approximation as [12]:

δ =
∥∥e−iHBte−iHEt − e−iHt

∥∥ ≤ t2

2
∥[HB, HE]∥, (2.3.4)

where ∥A∥ is the operator (or spectral) norm, the largest singular value of the operator A.
Provided a sufficiently small time interval t, Trotter formula (2.3.3) provides us a good ap-
proximation for the evolution operator U(t), since we can neglect the corrections of higher
order in t. If instead the time interval t is not small we can divide it in Ns small steps, such that
each one lasts a time interval ∆t = t/Ns that is small. Therefore the total evolution operator
is U(t) = U(∆t)Ns . For each operator U(∆t), now that ∆t is small, we can apply the Trotter
formula (2.3.3), and in the limit in which Ns → ∞, so ∆t→ 0, we can write exactly:

e−iHt = lim
Ns→∞

(
e−iHB∆te−iHE∆t

)Ns
. (2.3.5)

If Ns is finite, as in all real applications, at each of the Ns Trotter steps we get an error δ
(2.3.3), these errors accumulate and we should sum over all of them to correctly determine the
precision of the approximation, getting to a total error:

δT =
Ns∑
j=1

δ ≤ Ns
∆t2

2
∥[HB, HE]∥ =

t2

2Ns

∥[HB, HE]∥. (2.3.6)

Trotter approximation (2.3.3) can be applied to our Kogut-Susskind Hamiltonian (1.4.43). In
principle the fact that the Trotter formula is just an approximation may lead to a loss of gauge
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invariance of the evolved state, but this is not the case since both HE and HB are gauge in-
variant, as we saw in section 1.4.5. If we prepare a gauge invariant state in the quantum
register, and act on it with gauge invariant operators like UE(∆t) = exp(−iHE∆t) and
UB(∆t) = exp(−iHB∆t), we will remain in the gauge invariant subspace.
Using Trotter formula we can decompose the evolution operator U(t) in the product of electric
UE(∆t) and magnetic UB(∆t) evolution operators, now we will see ho to implement them on
a quantum circuit.

2.3.2 Evolution operator
High level gates

We have seen that using Trotter formula (2.3.3) we can decompose the evolution operator
U(t) into a product of evolution operators of the electric Hamiltonian UE(∆t) and magnetic
Hamiltonian UB(∆t). Then it is possible to define a set of high level gates into which these
evolution operators can be decomposed [30]. These unitary operators are:

1. The inversion gate U−1, that acts on the group elements basis state |g⟩ applying the group
inversion operation:

U−1 |g⟩ = |g−1⟩ ∀g ∈ G. (2.3.7)

2. The multiplication gate U×, that acts on two group element basis states using the first
state as a control while on the second it performs the left group multiplication:

U× |g⟩ |h⟩ = |g⟩ |gh⟩ ∀g, h ∈ G. (2.3.8)

3. The trace gate Utr(θ), a parametric gate that acts on the group elements basis state |g⟩
diagonally and introduces a phase that depends on the trace of g in some representation
ρ:

Utr(θ) |g⟩ = eiθReTr ρ(g) |g⟩ ∀g ∈ G. (2.3.9)

4. The Fourier transform gate UF , a gate that allows us to pass from the group element
(position) basis {|g⟩} to the representation (momentum) basis {|jmn⟩}. From the duality
relation (1.3.20) we can see that:

UF =
∑
g∈G

∑
j∈Ĝ

dj∑
m,n=1

√
dj
|G|

ρj(g)mn |jmn⟩ ⟨g| . (2.3.10)

We used the duality relation for finite groups, since these are the groups that can be
simulated on a quantum computer. The Fourier transform operator can be seen as a
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|G| × |G| matrix where the columns are labeled by group elements g and the rows by
the representations j and their components mn; the matrix elements are given by:

⟨jmn|UF |g⟩ =

√
dj
|G|

ρj(g)mn. (2.3.11)

The Hermitian conjugate of the Fourier transform gate U †
F allows us to pass from the

representation (momentum) basis {|jmn⟩} to the group element (position) basis {|g⟩},
and it is easy to see that

U †
F =

∑
g∈G

∑
j∈Ĝ

dj∑
m,n=1

√
dj
|G|

ρj(g)
∗
mn |g⟩ ⟨jmn| . (2.3.12)

The matrix elements of this operator are:

⟨g|U †
F |jmn⟩ =

√
dj
|G|

ρj(g)
∗
mn. (2.3.13)

5. The phase gate Uph(∆t), that is defined as the electric evolution operator for a single
link in the representation basis {|jmn⟩}, hence it is diagonal:

Uph(∆t) = UF e
−iH(l)

E ∆tU †
F , (2.3.14)

where H(l)
E is the electric Hamiltonian for the single link l, and it is equal to H(l)

E =
λE
∑

j f(j)Pj(l) (1.4.42). It is trivial to notice that the projectors Pj(l) (1.4.26) are
diagonal in the representation basis and so is the phase gate:

Uph(∆t) =
∑
j∈Ĝ

dj∑
m,n=1

e−iλEf(j)∆t |jmn⟩ ⟨jmn| . (2.3.15)

6. The Abelian character gates Uχj
that acts on the group elements basis state |g⟩ diago-

nally taking out the Abelian character of g:

Uχj
|g⟩ = χj(g) |g⟩ ∀g ∈ G, (2.3.16)

where j labels an Abelian irreducible representation of the group G. These gates are
useful to initialize the excited electric eigenstates.
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|g1⟩

|g2⟩

|g3⟩

|g4⟩

U−1 U−1

U−1 U−1

U−1 U−1

U−1 U× U× U× Utr(θ) U× U× U× U−1

Figure 2.1: Quantum circuit to implement the magnetic evolution operator
U

(p)
B (∆t) for a single plaquette p like the one in Fig. 1.9. The parameter θ

appearing in the trace gate Utr has to be fixed to θ = 2(1−λ)∆t. Each dou-
ble wire represents the quantum register needed to encode a group element.

Evolution gates

Given the high level operators just described, whose explicit form depends on the gauge group
G that we are interested in, we can construct the evolution gates for the electric UE(∆t) and
magnetic UB(∆t) Hamiltonian [30]. Let us start from the magnetic one.
The magnetic evolution operator UB(∆t) can be factored in exponential of single plaquettes
since the Wilson loops of different plaquettes appearing in HB (1.4.11) commute, as seen in
(1.5.8). Therefore

UB(∆t) = e−iHB∆t =
∏
p

U
(p)
B (∆t), (2.3.17)

where U (p)
B (∆t) is the magnetic evolution operator for the single plaquette p:

U
(p)
B (∆t) = e2i(1−λ)ReTr Ŵp∆t, (2.3.18)

where we used the notation λB = 1−λ, introduced in (1.4.45). The single plaquette magnetic
evolution operator U (p)

B acts on the four-edges Hilbert space of the plaquette p, like the one
in Fig. 1.9, that is Hp = C[G]⊗4 . The action of U (p)

B (∆t) on a group elements basis state
|g1, g2, g3, g4⟩ ∈ Hp is simply given by

U
(p)
B (∆t) |g1, g2, g3, g4⟩ = e2i(1−λ)ReTr ρ(g1g2g

−1
3 g−1

4 )∆t |g1, g2, g3, g4⟩ , (2.3.19)

where ρ is the chosen representation for G. The single plaquette magnetic evolution operator
U

(p)
B (∆t) can be implemented by the circuit in Fig. 2.1.

A similar discussion can be done for the electric evolution operator UE(∆t). The Laplacians
∆l (1.4.40), that appear in the electric Hamiltonian HE (1.4.21), since they act on different
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|g⟩ UF Uph(∆t) U †
F

Figure 2.2: Quantum circuit to implement the electric evolution operator
U

(l)
E (∆t) for a single link l.

links then they commute with each other, hence in the electric evolution operator we can
factorize the exponentials of single link:

UE(∆t) = e−iHE∆t =
∏
l∈E

U
(l)
E (∆t), (2.3.20)

where U (l)
E (∆t) is the electric evolution operator for the single link l:

U
(l)
E (∆t) = e−iλ∆l∆t, (2.3.21)

where we used the notation λE = λ (1.4.45). This operator acts on the Hilbert space of
a single link l, that is H(l) = C[G]. Recalling the expression of the Laplacian ∆l (1.4.40)
and the definition of the projectors Pj(l), we can see that the operator U (l)

E (∆t) is diagonal
in the representation basis {|jmn⟩}, not in the group element basis. One of the high level
gates, the phase gate Uph (2.3.14), represents the single link electric evolution operator in the
representation basis, therefore in order to have the expression of the evolution operator in the
group element basis we have simply to change basis using the Fourier transform gates:

U
(l)
E (∆t) = U †

FUph(∆t)UF . (2.3.22)

The circuit that implements the single link electric evolution operator U (l)
E (∆t) is shown in

Fig. 2.2.
The total evolution operatorU(t) is obtained combining the magnetic evolution operatorUB(∆t)
and the electric evolution operator UE(∆t), and using Trotter algorithm, as we saw in (2.3.5):

U(t) ≈ (UB(∆t)UE(∆t))
Ns , ∆t =

t

Ns

≪ 1. (2.3.23)

The quantum circuit that implements the evolution operator U(t) for a single plaquette lattice
is shown in Fig. 2.3.

2.3.3 State preparation
We have seen how to evolve a state, but first one has to prepare it. We will see that the ini-
tialization of some specific ground states on the quantum simulator can be realized without
particular problems, for example this is the case for the electric ground state |Eλ=1

0 ⟩, i.e. the
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|g1⟩ . . .

|g2⟩ . . .

|g3⟩ . . .

|g4⟩ . . .

U
(p)
B (∆t)

U
(l)
E (∆t)

U
(p)
B (∆t)

U
(l)
E (∆t)

U
(l)
E (∆t) U

(l)
E (∆t)

U
(l)
E (∆t) U

(l)
E (∆t)

U
(l)
E (∆t) U

(l)
E (∆t)

Figure 2.3: Quantum circuit to implement the total evolution operator U(t)
(2.3.23) for a single plaquette lattice like the one in Fig. 1.9. U (p)

B (∆t) is
the single plaquette magnetic evolution gate in Fig. 2.1, and U (l)

E (∆t) is the
single plaquette magnetic evolution gate in Fig. 2.2. If ∆t = t/Ns, you
need Ns layers of U (p)

B (∆t) and U (l)
E (∆t) gates to implement U(t).

ground state of the Kogut-Susskind Hamiltonian HKS (1.4.43) in the limit in which λB = 0
and λE = 1, or also the magnetic ground state |Eλ=0

0 ⟩, i.e. the ground state of HKS in the
limit in which λE = 0 and λB = 1. Apart from these two simple cases, preparing exactly the
ground state |Eλ

0 ⟩ for an Hamiltonian with arbitrary coupling constant λ ∈ [0, 1] it is anything
but simple. The preparation of a desired state can be achieved using the quantum adiabatic
algorithm [19].
The adiabatic theorem states that, given a slowly changing Hamiltonian H(t) and an instanta-
neous eigenstate of the Hamiltonian at time t = 0: |En(t = 0)⟩, if time evolution is sufficiently
slow the time evolved state will remain very close to the instantaneous eigenstate at time t:
|En(t)⟩. Basically, if the system begins its time evolution in an eigenstate of H(0) it remains
in the corresponding eigenstate of H(t) also at time t. This result is not exact, and in order to
be accurate the rate at which the matrix elements of the Hamiltonian H vary has to be small
compared to the time scale set by the inverse of the energy gap ∆E−1. If we are evolving the
ground state |E0(t = 0)⟩ from t = 0 up to t = T , with |E1(t)⟩ that is the first excited state and
∆E(t) = E1(t)− E0(t) that is the energy gap, we shall impose [47]

max
t∈[0,T ]

|⟨E1(t)|∂H/∂t|E0(t)⟩|
|∆E(t)|2

≪ 1. (2.3.24)

The adiabatic evolution can be realized on the quantum circuit integrating it in the Trotter
algorithm described before [44]. Consider the Kogut-Susskind Hamiltonian (1.4.45) but this
time the coupling constant λ is not constant, but slightly time-dependent: λ(t) and t ∈ [0, T ].
The Trotter algorithms modifies such that at the j-th Trotter step the coupling constant has
constant values λj = λ(j∆t), with ∆t = T/Ns the time duration of each Trotter step. In

54



CHAPTER 2. SIMULATION OF A LATTICE GAUGE THEORY

other words at each Trotter step the coupling constant is increased or decreased by a quantity
∆λ = λj+1 − λj = [λ(T )− λ(0)]/Ns.
The total error δT emerging from the Trotter approximation can be computed using an equation
similar to (2.3.6), but this time you have to take in account that the commutator [HE, HB]
changes at each Trotter step, since the coupling λ is changing. Using the notation HE = λH ′

E

and HB = (1− λ)H ′
B, with λ ∈ [0, 1], and the fact that λj = j∆λ = j/Ns we can verify

δT =
Ns∑
j=1

δj ≤
Ns∑
j=1

∆t2

2
λj(1− λj)∥[H ′

B, H
′
E]∥

=
∆t2

12Ns

(
N2
s − 1

)
∥[H ′

B, H
′
E]∥ (2.3.25)

Ns≫1
≈ ∆t2

12
Ns∥[H ′

B, H
′
E]∥ (2.3.26)

In general fixed a time step ∆t the Trotter error δT is minimized minimizing the number of
Trotter steps Ns, but this is not the end of the story. Therefore one should take into account
also the error emerging from the adiabatic approximation, in other words one should provide
the condition (2.3.24) to be fulfilled. The time dependence of the Hamiltonian H is restricted
to the coupling constant λ, so we can give an estimate of the rate at which the matrix elements
of the Hamiltonian H vary using the parameter r = ∆λ/∆t. The condition (2.3.24) becomes

r =
∆λ

∆t
≪ ∆E2, (2.3.27)

where ∆E is the energy gap. If one fixes the time step ∆t, the adiabatic parameter r is min-
imized with a large number Ns of Trotter steps (because we minimize ∆λ). Therefore the
choice of the number Ns of Trotter step is delicate, it is a trade-off between minimising the
Trotter error δT (Ns = 1) and minimising the adiabatic evolution error (Ns ≫ 1).
The preparation of a desired ground state can be achieved using the quantum adiabatic al-
gorithm just described, but not only that, other examples include using quantum variational
methods [29] and quantum phase estimation [1].

2.4 Measurement

In this section we see how to extract information from the quantum simulator once we have
prepared and evolved a given state. First we see how to measure a dynamical correlation
function and then we apply this procedure to the special case of the expectation value of an
Hermitian operator.
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|+⟩a X X

|ψout⟩
|ψ⟩R W U(t) V

Figure 2.4: Quantum circuit to measure the dynamical correlation function
CVW (t) (2.4.1).

2.4.1 Measurement of a dynamical correlation function
Consider the following dynamical correlation function

CVW (t) = ⟨ψ|U(t)†V †U(t)W |ψ⟩ , (2.4.1)

where U(t) = exp(−iHt) is the evolution operator, V,W are two unitaries operators and |ψ⟩
is the prepared state that we are interested in. We can measure this quantity using an ancillary
qubit a and the quantum circuit shown in Fig. 2.4 [52]. Initializing the ancillary qubit in the
state |+⟩a and preparing in the quantum register the state |ψ⟩R, at the end of the circuit one
gets the state:

|ψout⟩ =
1√
2
(|0⟩a V U(t) |ψ⟩R + |1⟩a U(t)W |ψ⟩R) . (2.4.2)

If one measures the expectation value of Pauli operator σ(a)
x on the ancillary qubit a:

⟨σ(a)
x ⟩ = Tr

[
|ψout⟩ ⟨ψout| (σ(a)

x ⊗ I)
]
= Re[CVW (t)]. (2.4.3)

In order to measure the expectation value ⟨σ(a)
x ⟩ on a digital quantum computer one has to

apply an Hadamard gate H(a) to the ancillary qubit a and then measure this qubit in the usual
computational basis σ(a)

z .
Otherwise, if one measures the expectation value of Pauli operator σ(a)

y on the ancillary qubit
a:

⟨σ(a)
y ⟩ = Tr

[
|ψout⟩ ⟨ψout| (σ(a)

y ⊗ I)
]
= Im[CVW (t)]. (2.4.4)

In order to measure the expectation value ⟨σ(a)
y ⟩ on a digital quantum computer one has to

apply a rotation Rx(π/2)
(a) to the ancillary qubit a and then measure this qubit in the usual

computational basis σ(a)
z .

Since the eigenevalues of Pauli operators σx, σy and σz are just ±1, we can write the expecta-
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tion values as:

Re[CVW (t)] = ⟨σ(a)
x ⟩ = p|ψout⟩(σ

(a)
x = +1)− p|ψout⟩(σ

(a)
x = −1)

= pH(a)|ψout⟩(σ
(a)
z = +1)− pH(a)|ψout⟩(σ

(a)
z = −1), (2.4.5)

and

Im[CVW (t)] = ⟨σ(a)
y ⟩ = p|ψout⟩(σ

(a)
y = +1)− p|ψout⟩(σ

(a)
y = −1)

= pRx(π/2)(a)|ψout⟩(σ
(a)
z = +1)− pRx(π/2)(a)|ψout⟩(σ

(a)
z = −1), (2.4.6)

where p|ψ⟩(σ
(a)
α = ±1) is the probability of getting the eigenvalue ±1 measuring the observable

σ
(a)
α on the state |ψ⟩. Recall that the state that has eigenvalue σz = +1 is |0⟩, and the state that

has eigenvalue σz = −1 is |1⟩.
From the expressions (2.4.5) and (2.4.6) one can see that to measure the real (or imaginary)
part of the dynamical correlation function CVW (t) (2.4.1) for a given state |ψ⟩ is sufficient to
apply the quantum circuit in Fig. 2.4, apply the operator H(a) (or Rx(π/2)

(a)) on the ancillary
qubit a, measure many times the ancillary qubit and finally take the subtraction between the
occurrences of 0 and the occurrences of 1, divided by the total number of measurements.

2.4.2 Measurement of an observable expectation value

If one is interested in measuring the expectation value of an Hermitian operator Q, that cor-
responds to some relevant observable, we can fall back to the previous procedure. Indeed
consider V = I and W = UQ(θ) = e−iQθ, then using the circuit described before and repre-
sented in Fig. 2.4, you can measure the quantity [52]:

CQ(θ) = ⟨ψ|UQ(θ)|ψ⟩ . (2.4.7)

Then we can approximate the expectation value of the observable Q over the state |ψ⟩ as

⟨Q⟩ = ⟨ψ|Q|ψ⟩

= i
d

dθ
⟨ψ|e−iQθ|ψ⟩

∣∣∣∣
θ=0

≈ i
CQ(ϵ)− CQ(0)

ϵ
, (2.4.8)
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where ϵ is a small quantity. Using the spectral decomposition of the operator Q and its eigen-
states |q⟩ with relative eigenvalues q, we can write:

CQ(ϵ) =
∑
q

e−iqϵ ⟨ψ|q⟩ ⟨q|ψ⟩ (2.4.9)

=
∑
q

e−iqϵp|ψ⟩(q) (2.4.10)

=
∑
q

[
cos(qϵ)p|ψ⟩(q)− i sin(qϵ)p|ψ⟩(q)

]
(2.4.11)

=
∑
q

p|ψ⟩(q)− i
∑
q

qϵp|ψ⟩(q) + o(ϵ2) (2.4.12)

= 1− i
∑
q

qϵp|ψ⟩(q) + o(ϵ2), (2.4.13)

where in (2.4.10) we introduce the probability p|ψ⟩(q) = | ⟨ψ|q⟩ |2 of getting the eigenstate q
given the state |ψ⟩, in (2.4.12) we expand in powers of ϵ: cos(qϵ) = 1 + o(ϵ2) and sin(qϵ) =
qϵ + o(ϵ2), while in (2.4.13) we use the completeness relation

∑
q p|ψ⟩(q) = 1. From the last

expression (2.4.13) we see that CQ(0) = 1, and also that Im[CQ(ϵ)] = −
∑

q qϵp|ψ⟩(q); then
the result (2.4.8) becomes

⟨Q⟩ ≈ i
−i
∑

q qϵp|ψ⟩(q)

ϵ
(2.4.14)

= −Im[CQ(ϵ)]

ϵ
. (2.4.15)

Recall that we have already seen how to measure Im[CQ(ϵ)], using the quantum circuit in Fig.
2.4. We will use the procedure described in this section to measure two kind of observables:
the energy, so Q = H and UQ(t) = U(t), and Wilson loops Q = Tr Ŵ [γ].
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Figure 2.5: Quantum simulation scheme. Consider as physical model the
pure Yang-Mills theory in the continuum, the degrees of freedom are in the
gauge field Aµ, an element of the group algebra g, and the dynamics is gov-
erned by the Yang-Mills Hamiltonian HYM. Performing the lattice regular-
ization we formulate a lattice gauge theory. Now the degrees of freedom are
group elements gi ∈ G attached to each edge, the dynamics is governed by
the Kogut-Susskind Hamiltonian HKS. Provided a finite group G, through
the encoding procedure we can map the degrees of freedom of each edge in
n qubits (in the figure n = 3), with Hilbert space H2, the dynamics of this
qubit system is governed by an Hamiltonian written in terms of Pauli oper-
ators {σµ}. We can now decompose the evolution operator U(t) = e−iHt

in a set of gates (like the electric UE and magnetic UB evolution gates) and
realize the quantum circuit, where the degrees of freedom are the group
element states |g⟩, encoded in n qubits. Finally it is possible to extract in-
formation about observables of the physical model measuring some qubits
of the quantum circuit.
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Chapter 3

THEORETICAL RESULTS for
DIHEDRAL THEORIES

In this chapter we present some theoretical results for specific lattice gauge theories. We con-
sider two gauge groups, the dihedral groupD4 andD3, i.e. the group of symmetries of a square
and of an equilateral triangle respectively, which are the simplest non-Abelian subgroups of
SO(3). We present the relevant properties of these groups and then we apply them to the
general context of a lattice gauge theory, as introduced in the first chapter of this thesis. For
both D3 and D4 we consider two possible systems, a one-plaquette lattice and a two-plaquette
lattice. For each one we describe its physical Hilbert space, we compute the matrix elements
of the Hamiltonian and derive the full energy spectrum, diagonalizing these matrices. We also
look at the Wilson loop observables. The results obtained in this section are those that we want
to reproduce using a quantum simulation.

3.1 Dihedral group D4

In this section we present the dihedral group D4, the group of symmetries of a square. We give
the definition of the group, the list of all its elements and a complete description of its algebra.
We study its representation theory, presenting all the 5 inequivalent irreducible representations
and finally we show two possible choices for the generating subset Γ.
The relevance of this group lies in the fact that it is the simplest non-Abelian finite subgroup
of SO(3), and it can be used to approximate this continuous Lie group. The binary dihedral
group 2D4 can instead be used to approximate the group SU(2).
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Figure 3.1: Graphical representation of the elements of the group D4, i.e.
the symmetries of a square. Besides the identity element e, we have three
rotations r, r2 and r3 of an angle π/2, π and 3π/2 respectively, and four
reflections s, rs, r2s, r3s.

3.1.1 Definition of the group
The dihedral group D4 is the group of the symmetries of a square. The group generators are
the rotation of an angle of π/2, that we identify as the element r, and the reflection s across
one of its axis of symmetry, as you can see in Fig. 3.1. Denoting the neutral element as e, the
algebra of the group is fully specified by the following relations: r4 = s2 = e and srs = r3.
So the presentation of D4 can be written as

D4 = ⟨r, s : r4 = s2 = e, srs = r3⟩. (3.1.1)

The notation used in (3.1.1) is called presentation of a group and it is one method of specifying
a group through its generators. A presentation ⟨S : R⟩ of a group G comprises a set S of
generators, in our case {r, s}, so that every element of the group can be written as a product of
powers of these generators, and a set R of relations among those generators.
The explicit list of all elements of the group is

D4 = {e, r, r2, r3, s, rs, r2s, r3s}. (3.1.2)

It’s immediate to see that the size of the group, i.e. the number of its elements, is |D4| = 8. A
graphical representation of the action of each group element is shown in Fig. 3.1.
A generic element g of the group can be written as g = rasb, where a = 0, 1, 2, 3 while
b = 0, 1. This notation will be particularly useful in the encoding part.
The Cayley table of the group, in which we can see all possible products between group ele-
ments, is reported in Table 3.1. The inverse element table, in which we can see the inverse of
all group elements, is reported in Table 3.2.
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e r r2 r3 s rs r2s r3s
e e r r2 r3 s rs r2s r3s
r r r2 r3 e rs r2s r3s s
r2 r2 r3 e r r2s r3s s rs
r3 r3 e r r2 r3s s rs r2s
s s r3s r2s rs e r3 r2 r
rs rs s r3s r2s r e r3 r2

r2s r2s rs s r3s r2 r e r3

r3s r3s r2s rs s r3 r2 r e

Table 3.1: Cayley table of the group D4. The element in the g-row and
h-column represents the product gh.

g e r r2 r3 s rs r2s r3s
g−1 e r3 r2 r s rs r2s r3s

Table 3.2: Inversion table of the group D4.

3.1.2 Representation theory
The group has 5 conjugacy classes, which are

C0 = {e}, C1 = {r, r3}, C2 = {r2}, C3 = {s, r2s}, C4 = {rs, r3s}. (3.1.3)

This means that there are 5 inequivalent irreducible representations ρ and we will label them
with j = 0, 1, 2, 3, 4. In particular, the first four representations j = 0, 1, 2, 3 are Abelian and
one-dimensional, while the latter j = 4 is non-Abelian and two-dimensional. More explicitly
we have that for j = 0, the trivial representation ρ0 is

ρ0(g) = +1 ∀g ∈ D4, (3.1.4)

for j = 1 the representation ρ1 is

ρ1(g) =

{
+1 g ∈ ⟨r2, s⟩
−1 otherwise

, (3.1.5)

for j = 2 the sign representation ρ2 is

ρ2(g) =

{
+1 g ∈ ⟨r⟩
−1 otherwise

, (3.1.6)

for j = 3 the representation ρ3 is

ρ3(g) =

{
+1 g ∈ ⟨r2, rs⟩
−1 otherwise

. (3.1.7)
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χj e r, r3 r2 s, r2s rs, r3s
χ0 +1 +1 +1 +1 +1
χ1 +1 −1 +1 +1 −1
χ2 +1 +1 +1 −1 −1
χ3 +1 −1 +1 −1 +1
χ4 +2 0 −2 0 0

Table 3.3: Character table of the group D4.

The action of the non-Abelian representation, j = 4, on the group elements is described by

ρ4(r
a) =

(
e2πia/4 0

0 e−2πia/4

)
, ρ4(r

as) =

(
0 e2πia/4

e−2πia/4 0

)
, a = 0, 1, 2, 3. (3.1.8)

One can also explicitly compute the character for each group element. Recall that given the
representation j and a group element g, the character of g in the j-th representation is χj(g) =
Tr ρj(g). In Table 3.3 you can see the character of each representation j for each conjugacy
class C.

3.1.3 Generating subset

In section 1.4.4 we saw that for the definition of a finite group Laplacian ∆, and thus also the
electric Hamiltonian HE , we first have to select a generating subset Γ ⊂ D4 which is symmet-
ric Γ = Γ−1, it is invariant under conjugation Γ = gΓg−1 and it does not contain the identity
element e /∈ Γ. Such a generating subset should be the union of some conjugacy classes C
introduced before. There is more than one possible choice for Γ and each possibility gives rise
to a different theory, but in this thesis we will consider just the two following possibilities [36]:

Γ1 = C1 ∪ C3 = {r, r3, s, r2s}, (3.1.9)

Γ2 = C1 ∪ C3 ∪ C4 = {r, r3, s, rs, r2s, r3s}. (3.1.10)

The subset Γ1 is very simple, probably it is the most obvious choice for a subset that has
to satisfy the conditions listed above. The choice of Γ2 is especially interesting, because it
gives rise to a manifestly Lorentz-invariant theory [36]. Given these two generating subsets
we can compute the corresponding eigenvalues f(j) of the electric Hamiltonian, as they were
defined in the equation (1.4.41). All possible values of f(j) for any irreducible representation
j of D4 for both Γ1 and Γ2 are listed in Table 3.4. The Cayley graphs (D4,Γ1) and (D4,Γ2),
constructed using these two generating subset and that are used to define the graph Laplacian,
are shown in Fig. 3.2a and Fig. 3.2b respectively.
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Γ j = 0 j = 1 j = 2 j = 3 j = 4
Γ1 0 4 4 8 4
Γ2 0 8 8 8 6

Table 3.4: Table of the values of f(j) (1.4.41) for the gauge group D4 and
for different choices of the generating subset Γ.

(a) Undirected Cayley graph of (D4,Γ1). A link
connecting the vertex g1 to the vertex g2 means
that g1h = g2 for some h ∈ Γ1 (3.1.9). If h =
r, r3 the edge is blue, if h = s the edge is red and
if h = r2s the edge is green.

(b) Undirected Cayley graph of (D4,Γ2). A link
connecting the vertex g1 to the vertex g2 means
that g1h = g2 for some h ∈ Γ2 (3.1.10). If h =
r, r3 the edge is blue, if h = s the edge is red, if
h = rs the link is orange, if h = r2s the edge is
green and if h = r3s the link is purple.

Figure 3.2: Undirected Cayley graphs of the dihedral groupD4. Each vertex
represents an element of the group D4.
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Figure 3.3: Graphical representation of the elements of the group D3, i.e.
the symmetries of an equilateral triangle. Besides the identity element e,
we have two rotations r and r2 of an angle 2π/3 and 4π/3 respectively, and
three reflections s, rs, r2s.

3.2 Dihedral group D3

In this section we present the dihedral groupD3, the group of symmetries of a equilateral trian-
gle. We give the definition of the group, the list of all its elements and a complete description
of its algebra. We study its representation theory, presenting all 3 irreducible representations
and finally we show the two possible generating subsets Γ.
The relevance of this group lies in the fact that it is a simple non-Abelian finite subgroup of
SO(3), and it can be used to approximate this continuous Lie group. The binary dihedral group
2D3 can instead be used to approximate the group SU(2). Another interesting property of D3

is that it is isomorphic to the symmetric group S3.

3.2.1 Definition of the group
The dihedral group D3 is the group of symmetries of an equilateral triangle. The group gener-
ators are the rotation of an angle of 2π/3, that we identify as the element r, and the reflection
s across one of its axis of symmetry, as you can see in Fig. 3.3. This is the smallest possi-
ble non-Abelian group. Denoting the neutral element as e, the algebra of the group is fully
specified by the following relations: r3 = s2 = e and srs = r2. So we can write the group
presentation as

D3 = ⟨r, s : r3 = s2 = e, srs = r2⟩. (3.2.1)

The explicit list of all elements of the group is

D3 = {e, r, r2, s, rs, r2s}. (3.2.2)

The size of the group, i.e. the number of its elements, is |D3| = 6. A graphical representation
of the action of each group elements is shown in Fig. 3.3.
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e r r2 s rs r2s
e e r r2 s rs r2s
r r r2 e rs r2s s
r2 r2 e r r2s s rs
s s r2s rs e r2 r
rs rs s r2s r e r2

r2s r2s rs s r2 r e

Table 3.5: Cayley table of the group D3. The element in the g-row and
h-column represents the product gh.

g e r r2 s rs r2s
g−1 e r2 r s rs r2s

Table 3.6: Inversion table of the group D3.

A generic element g of the group can be written as g = rasb, where a = 0, 1, 2 while b = 0, 1.
This notation will be particularly useful in the encoding part.
The Cayley table of the group, in which we can see all possible products between group ele-
ment, is reported in Table 3.5. The inverse element table, in which we can see the inverse of
all group elements, is reported in Table 3.6.

3.2.2 Representation theory
The group has 3 conjugacy classes, which are

C0 = {e}, C1 = {r, r2}, C2 = {s, rs, r2s}. (3.2.3)

This means that there are 3 irreducible representations ρ and we will label them with j =
0, 1, 2. In particular, the first two representations j = 0, 1 are Abelian and one-dimensional,
while the latter j = 2 is non-Abelian and two-dimensional. More explicitly we have that for
j = 0, the trivial representation ρ0 is

ρ0(g) = +1 ∀g ∈ D3, (3.2.4)

for j = 1 the sign-representation ρ1 is

ρ1(g) =

{
+1 g ∈ ⟨r⟩
−1 otherwise

. (3.2.5)

The action of the non-Abelian representation, j = 2, on the group elements is described by

ρ2(r
a) =

(
e2πia/3 0

0 e−2πia/3

)
, ρ2(r

as) =

(
0 e2πia/3

e−2πia/3 0

)
, a = 0, 1, 2. (3.2.6)
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χj e r, r2 s, rs, r2s
χ0 +1 +1 +1
χ1 +1 +1 −1
χ2 +2 −1 0

Table 3.7: Character table of the group D3.

Γ j = 0 j = 1 j = 2
Γ1 0 6 3
Γ2 0 6 6

Table 3.8: Table of the values of f(j) (1.4.41) for the gauge group D3 and
for different choices of the generating subset Γ.

One can also explicitly compute the character for each group element. In Table 3.7 you can
see the character of each representation j for each conjugacy class C.

3.2.3 Generating subset
In section 1.4.4 we saw that for the definition of a finite group Laplacian ∆, and thus also
the electric Hamiltonian HE , we first have to select a generating subset Γ ⊂ D3 which is
symmetric Γ = Γ−1, it is invariant under conjugation Γ = gΓg−1 and it does not contain
the identity element e /∈ Γ. Such a generating subset should be the union of some of the
conjugacy classes C introduced before. For the group D3 there are two possible choices for
such a generating subset Γ:

Γ1 = C2 = {s, rs, r2s}, (3.2.7)

Γ2 = C1 ∪ C2 = {r, r2, s, rs, r2s}, (3.2.8)

Given these generating subsets we can compute the corresponding eigenvalues f(j) of the
electric Hamiltonian, defined in (1.4.41). All possible values of f(j) for any irreducible rep-
resentation j of D3 are listed in Table 3.8. The Cayley graphs (D3,Γ1) and (D3,Γ2) obtained
using the generating subsets Γ1,Γ2 and used to define the graph Laplacian, are shown in Fig.
3.4a and Fig. 3.4b respectively.

3.2.4 Isomorphism with S3

An interesting aspect of the group D3 is that it is isomorphic to the symmetric group S3, i.e.
the set of all permutations that can be performed on 3 symbols: A, B and C. The generators
of this group are the adjacent transposition σ1 = (AB) and σ2 = (BC), whose actions are
ABC → BAC and ABC → ACB respectively. The presentation of the group is:

S3 = ⟨σ1, σ2 : σ2
1 = σ2

2 = σ0, (σ1σ2)
3 = σ0⟩, (3.2.9)
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(a) Undirected Cayley graph of (D3,Γ1). A link
connecting the vertex g1 to the vertex g2 means
that g1h = g2 for some h ∈ Γ1 (3.2.7). If h = s
the edge is red, if h = rs the link is orange and if
h = r2s the edge is green.

(b) Undirected Cayley graph of (D3,Γ2). A link
connecting the vertex g1 to the vertex g2 means
that g1h = g2 for some h ∈ Γ2 (3.2.8). If h =
r, r2 the edge is blue, if h = s the edge is red, if
h = rs the link is orange and if h = r2s the edge
is green.

Figure 3.4: Undirected Cayley graphs of the dihedral groupD3. Each vertex
represents an element of the group D3.

where σ0 = () denotes the identity, whose action is trivial: ABC → ABC. The S3 group
contains 3! = 6 elements, which are:

S3 = {σ0, σ1, σ2, σ3, σ4, σ5}, (3.2.10)

where, a part from the identity σ0, the adjacent transpositions σ1 and σ2, we have also the order
inversion σ3 = σ1σ2σ1 = (AC) that acts like ABC → CBA, and the cyclic permutations
σ4 = σ2σ1 = (ACB) whose action is ABC → BCA, and σ5 = σ1σ2 = (ABC) whose action
instead is ABC → CAB.
The non-Abelian groups D3 and S3 are isomorphic, indeed consider the function f : D3 → S3

such that f(e) = σ0, f(r) = σ5, f(r2) = σ4, f(s) = σ1, f(rs) = σ3 and f(r2s) = σ2. In other
words the function f is mapping the rotations of D3 into the 3-cycles of S3 and the reflections
of D3 into the 2-cycles of S3. The map f preserves the group product, i.e. the Cayley table in
Table 3.5, it is 1-1 and onto, therefore f : D3 → S3 is an isomorphism and the dihedral group
D3 is isomorphic to the 3-symmetric group S3.
The importance of the symmetric groups Sn lies in the fact that these are examples of solvable
groups with interesting results for the quantum double model. It has been shown that in this
model, for any solvable group G, the preparation of the ground state, the creation of anyon
pairs separated by an arbitrary distance, and non-destructive topological charge measurement
can be realized by constant-depth adaptive circuits with geometrically local unitary gates and
mid-circuit measurements [6].
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3.3 One-plaquette system

In this section we derive some theoretical results for a one-plaquette lattice gauge theory with
open boundary conditions and using as gauge group the dihedral groupsD4 andD3 introduced
before. We present the total Hilbert space and the gauge invariant Hilbert space for a one-
plaquette lattice, for each one we see a possible basis. We use the gauge invariant basis to
compute the matrix elements of the Hamiltonian. We numerically diagonalize the Hamiltonian
obtaining the energy spectrum and we discuss its eigenstates in the electric and magnetic limit.
Finally we consider also the Wilson loop observable.

3.3.1 Hilbert space of a one-plaquette system

Total Hilbert space

We start by considering a generic finite gauge group G, then we will specialize to the D4 and
D3 cases. Consider a single plaquette system with open boundary conditions, as shown in
Fig. 1.9. We associate at each link l of the system a finite-dimensional Hilbert space H(l) of
dimension |G|, in this way the total Hilbert space HT for a plaquette with four links will be
the tensor product of the four single link Hilbert spaces, namely HT =

⊗4
l=1H(l), and it has

dimension |G|4. For a single link Hilbert space H(l) we already know that a possible basis is
the set of group element states {|gl⟩}, with gl ∈ G. For the total Hilbert space HT we can
take as a basis the set of states {|g1, g2, g3, g4⟩ =

⊗4
l=1 |gl⟩}, with g1, g2, g3, g4 ∈ G. A generic

element |ψ⟩ of the total Hilbert space HT can be written as a superposition of these states

|ψ⟩ =
∑

g1,g2,g3,g4∈G

ψ(g1, g2, g3, g4) |g1, g2, g3, g4⟩ , (3.3.1)

for some coefficients ψ(g1, g2, g3, g4). Notice that not all states inside HT are gauge invariant,
and now we will study the constraints to be imposed on ψ(g1, g2, g3, g4) in order for it to be
gauge invariant.

Gauge invariant Hilbert space

Recall that a gauge transformation on a single plaquette is realized by the operator Gp =⊗4
v=1A

gv
v (1.5.2) where the product is extended to all four vertices v of the lattice, and Agvv is

the vertex operator (1.5.1) for the group element gv and the vertex v. Let’s associate a group
element to each site of the lattice gv1 , gv2 , gv3 , gv4 ∈ G as in Fig. 1.7, and then look at how the
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total wave function |ψ⟩ (3.3.1) changes under the corresponding gauge transformation:

Gp |ψ⟩ = A
gv1
v1 A

gv2
v2 A

gv3
v3 A

gv4
v4 |ψ⟩

=
∑

g1,g2,g3,g4∈G

ψ(g1, g2, g3, g4) |gv1g1g−1
v2
, gv2g2g

−1
v3
, gv4g3g

−1
v3
, gv1g4g

−1
v4
⟩

=
∑

g1,g2,g3,g4∈G

ψ(g−1
v1
g1gv2 , g

−1
v2
g2gv3 , g

−1
v4
g3gv3 , g

−1
v1
g4gv4) |g1, g2, g3, g4⟩ . (3.3.2)

In this way we have found that in order for the state |ψ⟩ (3.3.1) to be invariant under a gauge
transformation Gp we should have,

ψ(g1, g2, g3, g4) = ψ(g−1
v1
g1gv2 , g

−1
v2
g2gv3 , g

−1
v4
g3gv3 , g

−1
v1
g4gv4), (3.3.3)

for all g1, g2, g3, g4, gv1 , gv2 , gv3 , gv4 ∈ G. The only way to realize this condition on a sin-
gle plaquette is by imposing ψ(g1, g2, g3, g4) = ψ(g1g2g

−1
3 g−1

4 ). For such a single-argument
function the gauge condition (3.3.3) reads out as

ψ(g) = ψ(hgh−1) ∀g, h ∈ G. (3.3.4)

A function ψ satisfying the condition (3.3.4) is called a class function, which means that is
invariant under the conjugation operation g → hgh−1 with g, h ∈ G, and so it is constant
on conjugacy classes. We will see which class functions ψ(g) give us a basis of the gauge
invariant Hilbert space Hphys.

One-plaquette gauge invariant basis

Let us first introduce the electric vacuum state |0E⟩, defined as an equal superposition of all
the possible grop element states:

|0E⟩ =
1√
|G|4

∑
g1,g2,g3,g4∈G

|g1, g2, g3, g4⟩ . (3.3.5)

Notice how this state is trivially gauge invariant, since the constant function ψ(g) = 1/
√

|G|4
is a class function. One can also directly verify that Agv |0E⟩ = |0E⟩ ∀g ∈ G, v ∈ V . We will
see that this state is the ground state of the electric partHE of the Kogut-Susskind Hamiltonian
(1.4.42).
We can now introduce the plaquette state |g̃⟩ through the plaquette operator Bg

p (1.5.3), indeed

|g̃⟩ =
√
|G|Bg

p |0E⟩ . (3.3.6)

Using the explicit expression (1.5.3) for the plaquette operator Bg
p we can see that

|g̃⟩ = 1√
|G|3

∑
g1,g2,g3,g4∈G

δ(g, g1g2g
−1
3 g−1

4 ) |g1, g2, g3, g4⟩ , (3.3.7)
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where g1, g2, g3, g4 ∈ G are the group elements associated to the links of the plaquette p.
There is a plaquette state |g̃⟩ for each group element g, so there are |G| of them. Basically
the plaquette state |g̃⟩ is the superposition of all |G|3 states that have g as the result of the
multiplication of the group elements associated to the oriented links. It easy to verify that
these states are orthonormal: ⟨g̃|h̃⟩ = δ(g, h). The one-plaquette states {|g̃⟩} are not gauge
invariant. Using the commutation rules (1.5.10) between the vertex operator Ahv (the operator
that implements the gauge transformation on the vertex v) and the plaquette operator Bg

p (the
operator that initializes the plaquette state |g̃⟩ on the plaquette p) we can see that

Ahv |g̃⟩ =
√

|G|AhvBg
p |0E⟩ =

√
|G|Bhgh−1

p Ahv |0E⟩ = | ˜(hgh−1)⟩ , (3.3.8)

where we used also the fact that the electric vacuum |0E⟩ is invariant under the action of Ahv .
The gauge transformation acts like a conjugation of the group element g associated to the
whole plaquette and the non-Abelian nature of the group G makes |g̃⟩ ̸= | ˜(hgh−1)⟩. This can
also be seen from the fact that the function δ(g, g1g2g−1

3 g−1
4 ), appearing as coefficient in the

definition of the plaquette state |g̃⟩ (3.3.7), is not a class function and so it does not satisfy the
gauge condition (3.3.4). Even if we said that the one-plaquette states in general are not gauge
invariant, we can notice that the state |ẽ⟩, where e is the neutral element in the group G, is
instead gauge invariant (the conjugation of e gives as a result always e itself). This result is
important because we will see that the state |ẽ⟩ is the ground state of the magnetic Hamiltonian
HB (1.4.11).
Even if the plaquette states |g̃⟩ are not gauge invariant, a linear combination of them can be.
Indeed if we take a linear combination of all plaquette states |g̃⟩ choosing as coefficient a class
function, for example the character function χj , then we get a gauge invariant state. The states
constructed in this way are called character states |χj⟩, and are

|χj⟩ =
1√
|G|

∑
g∈G

χj(g) |g̃⟩ . (3.3.9)

There is a character state |χj⟩ for each irreducible representation j ∈ Ĝ. If one insert the
expression (3.3.7) for |g̃⟩ inside the equation (3.3.9), we obtain an equivalent expression of the
character states in terms of the group element basis {|gl⟩} of each link l:

|χj⟩ =
1√
|G|4

∑
g1,g2,g3,g4∈G

χj(g1g2g
−1
3 g−1

4 ) |g1, g2, g3, g4⟩ . (3.3.10)

The character function χj appearing in (3.3.10) is a class function, it satisfies the gauge condi-
tion (3.3.4) and so the character state |χj⟩ is gauge invariant. But that is not all, indeed one can
check [49] that the character functions χj(g) form a basis for all class functions ψ(g) which
satisfy the condition (3.3.4). This means that the set of character states {|χj⟩}, is not only
gauge invariant, but also complete: every state of the gauge invariant Hilbert space Hphys can
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be written as a superposition of these states, therefore it is a basis. Using the orthogonality
theorem for characters (A.3.2) one can also verify that this set is orthonormal:

⟨χi|χj⟩ =
1

|G|
∑
g∈G

χ∗
i (g)χj(g) = δi,j. (3.3.11)

The character state |χj⟩ can be written also in terms of the representation basis |jmn⟩ at each
link. Starting from the expression (3.3.10) for the character state |χj⟩ and using the duality
relation (1.3.20) we can find out that

|χj⟩ =
1√
|G|4

∑
g1,g2,g3,g4∈G

χj(g1g2g
−1
3 g−1

4 ) |g1, g2, g3, g4⟩

=
1√
|G|4

∑
g1,...,g4∈G

dj∑
m1,...,m4=1

ρj(g1)m1m2ρj(g2)m2m3ρ
∗
j(g3)m4m3ρ

∗
j(g4)m1m4 |g1, ..., g4⟩

=
1√
d4j

dj∑
m1,m2,m3,m4=1

|jm1m2, jm2m3 , j
∗
m4m3

, j∗m1m4
⟩ , (3.3.12)

where we use also some basic results from character theory, like the definition of the character
function as χj(g) = Tr ρj(g), the linearity of the representation ρj(gh) = ρ(g)ρ(h) and the
notion of conjugate representation ρ∗j(g) = ρj(g

−1)T . From the expression (3.3.12) we can see
that in the one-dimensional case, dj = 1, the character state |χj⟩ is simply realized assigning
the same representation state |j11⟩ to each link. If the representation j has dimension greater
than one, dj > 1, for each link we should take a superposition of all states |jmn⟩ with the same
representation representation j. In this sense the character basis {|χj⟩} for the one-plaquette
system is analog to the representation basis {|jmn⟩} for the single link, in particular we will
see that they both diagonalize the electric Hamiltonian HE .
It is interesting to notice that one can construct a basis for the one-plaquette system which is
the analog of the group element (or position) basis {|g⟩} for the single link and that diagonalize
the magnetic Hamiltonian HB. Given a conjugation class C of size |C|, we can define the state

|C⟩ = 1√
|C|

∑
g∈C

|g̃⟩ . (3.3.13)

It is easy to see that this state is gauge invariant (a gauge transformation simply reshuffles the
elements inside a conjugacy class), and one can also prove [34] that the set of all these states
is an orthonormal basis for the gauge invariant Hilbert space Hphys. It exists a duality relation
linking this new basis {|C⟩} and the character basis {|χj⟩}, which is

⟨C|χj⟩ =

√
|C|
|G|

χj(C), (3.3.14)
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where χj(C) denotes the character of any element inside the conjugacy class C. Appreciate
the complete analogy of the relation (3.3.14) with the one (1.3.20) between the position state
|g⟩ and the representation state |jmn⟩.
Summarizing what we have seen in this section: the set of the character states {|χj⟩} is an
orthonormal basis for the one-plaquette gauge invariant Hilbert space Hphys. The same holds
for the set {|C⟩}. This result allows us also to establish the dimensionality of the gauge
invariant Hilbert space, looking at the number of element in its basis, which is exactly the
number of irreducible representations of the group G (or the number of conjugacy classes of
the group, that is the same). For the group D4 there are 5 irreducible representations (or 5
conjugacy classes), so the dimension of the gauge invariant Hilbert space Hphys is 5, while the
total Hilbert space HT has dimension 4096 = 84. For the group D3 there are 3 irreducible
representations, so the dimension of the gauge invariant Hilbert space Hphys is 3, while the
total Hilbert space HT has dimension 1296 = 64. Now that we have this basis we can use it to
compute the matrix elements of the Kogut-Susskind Hamiltonian for a one-plaquette system.

3.3.2 Hamiltonian matrix elements
Now we will proceed in the computation of the matrix elements of the Kogut-Susskind Hamil-
tonian HKS (1.4.44) using the character basis {|χj⟩}. Recall that this Hamiltonian is made of
two non commuting parts, the electric Hamiltonian HE (1.4.42) and the magnetic Hamiltonian
HB (1.4.11), such that H = HE +HB.

Matrix elements of the electric Hamiltonian

Let’s start from the electric part, that is the easiest one since it is diagonal in the character basis
{|χj⟩}. For the one-plaquette system the electric Hamiltonian HE (1.4.42) reads out as

HE = λE

4∑
l=1

∑
j∈Ĝ

f(j)Pj(l), (3.3.15)

where we recall that we are summing over all 4 links l and irreducible representations j, then
Pj(l) is the projector (1.4.26) onto the subspace of the the representation j of the link l, the
function f(j) is defined in the equation (1.4.41) and it depends on the choice of a generating
subset Γ. In each link the projectors Pj are diagonal on the representation basis {|jmn⟩}, so
using the expression (3.3.12) of the character state |χj⟩ in terms of the representation basis we
can easily find that

⟨χi|HE |χj⟩ = λEδi,j[2f(i) + 2f(i∗)]. (3.3.16)

For a symmetric generating subset Γ we have that f(i) = f(i∗) and so

⟨χi|HE |χj⟩ = 4λEf(i)δi,j. (3.3.17)
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Matrix elements of the magnetic Hamiltonian

For the one-plaquette system the magnetic Hamiltonian HB (1.4.11) reads out as

HB = −2λB ReTr Ŵ , (3.3.18)

where Tr Ŵ is the Wilson loop operator for the unique plaquette present in the system, we
defined it in (1.4.10). Let us first notice that the plaquette state |g̃⟩ is an eigenstate of the
Wilson loop operator, in particular we can see that

⟨g̃|HB |h̃⟩ = −2λBδ(g, h) ReχF (g), (3.3.19)

where F is a faithful irreducible representation chosen for the magnetic piece. Recalling the
expression (3.3.9) of the character state |χj⟩ in terms of the plaquette state |g̃⟩, we can compute

⟨χi|HB |χj⟩ = −2λB
|G|

∑
g∈G

χj(g)χ
∗
i (g) ReχF (g). (3.3.20)

Matrix elements of the entire Hamiltonian

We can compute the matrix elements of the entire HamiltonianH = HE+HB putting together
the two previous results (3.3.17) and (3.3.20), getting

⟨χi|H |χj⟩ = 4λEf(i)δi,j −
2λB
|G|

∑
g∈G

χj(g)χ
∗
i (g) ReχF (g). (3.3.21)

In order to compute them we have to specify the gauge group G, a generating subset Γ and a
representation F for the magnetic part.

3.3.3 Energy spectrum of D4

Hamiltonian matrix for a D4 theory

We choose to work with the non-Abelian dihedral groupG = D4. All useful information about
this group can be found in section 3.1. We use the generating subset Γ1 (3.1.9) and Γ2 (3.1.10),
and as representation F the unique non-Abelian representation of the group j = 4 (3.1.8), that
in order to give a more faithful representation of the non-Abelian nature of the group.
For a D4 theory the matrix elements of the entire Hamiltonian H in the character basis {|χj⟩},
using the general relation (3.3.21) are

⟨χi|H |χj⟩ = 4λEδi,jf(i)−
λB
4

∑
g∈D4

χj(g)χ
∗
i (g) Reχ4(g). (3.3.22)
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Explicitly the matrix of the Hamiltonian H in the character basis {|χj⟩} using the generating
set Γ1 is

H1 =


0 0 0 0 −2λB
0 32λE 0 0 −2λB
0 0 32λE 0 −2λB
0 0 0 32λE −2λB

−2λB −2λB −2λB −2λB 24λE

 , (3.3.23)

while using Γ2 we get

H2 =


0 0 0 0 −2λB
0 16λE 0 0 −2λB
0 0 16λE 0 −2λB
0 0 0 24λE −2λB

−2λB −2λB −2λB −2λB 16λE

 . (3.3.24)

The diagonal elements in the matrices H1 (3.3.23) and H2 (3.3.24) come from the electric
Hamiltonian HE , while the elements on the last row and column come from the magnetic
Hamiltonian HB, and the latter are the same in both the matrices since they do not depend on
the choice of the generating subset Γ. The diagonalization of these two matrices for arbitrary
coupling constants λE and λB will give us the energy spectrum of the one-plaquette system at
that specific coupling regime.

Numerical diagonalization of a D4 theory

The Hamiltonians H1 (3.3.23) and H2 (3.3.24) can be diagonalized numerically. In order to
visualize better in a unique graph both the electric (λB = 0) and the magnetic limit (λE = 0)
we will use the parametrization of the coupling constants introduced in (1.4.45): λE = λ and
λB = 1− λ, with λ ∈ [0, 1].
The numerical diagonalization was performed using the eig function of the submodule linalg
of numpy library. The results are plotted in Fig. 3.5a and Fig. 3.5b. As you can see there
are 5 states (since the physical Hilbert space in this case is 5-dimensional), but with some
degeneracy.

Electrical eigenvalues and eigenstates of a D4 theory

Let us now focus on the energy eigenvalues and eigenstates of the electric Hamiltonian HE

(3.3.15), so looking at the limit ofH (1.4.45) in which λ = 1. We already know that the electric
Hamiltonian is diagonal in the character basis {|χj⟩}, so we already know its eigenstates,
while the corresponding eigenvalues are simply given by 4f(j) (3.3.17). In the Table 3.9 all
data about the electric energy spectrum are listed. Notice how the electrical ground state is
the character state of the trivial representation j = 0. From the expression (3.3.10) for |χj⟩,
recalling that χ0(g) = 1 for all g ∈ D4 (3.1.4), and comparing it with the definition (3.3.5)
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(a) Energy eigenvalues using the generating subset
Γ1 (3.1.9).

(b) Energy eigenvalues using the generating subset
Γ2 (3.1.10).

Figure 3.5: Energy eigenvalues of the Kogut-Susskind Hamiltonian (1.4.45)
as a function of the coupling λ ∈ [0, 1] for a D4 gauge theory on a one-
plaquette system.

|χj⟩ Γ1 Γ2

|χ0⟩ 0 0
|χ1⟩ 16 32
|χ2⟩ 16 32
|χ3⟩ 32 32
|χ4⟩ 16 24

Table 3.9: Electric eigenstates and corresponding eigenvalues (for both Γ1

and Γ2 theory) of the electric HamiltonianHE (3.3.15) with the gauge group
D4 in a one-plaquette lattice.

of the electrical vacuum |0E⟩, one can see that |χ0⟩ = |0E⟩, justifying in this way the name
"electrical vacuum" that we assigned to this state before. Notice also that the electric vacuum
can be written also as |0E⟩ = |011⟩⊗4, where we assigned the representation basis state |011⟩ to
each edge.

Magnetic eigenvalues and eigenstates of a D4 theory

Let us now instead focus on the energy spectrum and the eigenstates of the magnetic Hamilto-
nian HB (3.3.18), so looking at the limit of H (1.4.45) in which λ = 0. Through an analytic
calculation one can verify that the magnetic ground state is the plaquette state associated with
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eigenstate eigenvalue
|ẽ⟩ −4

(|χ0⟩ − |χ3⟩) /
√
2 0

(|χ1⟩ − |χ3⟩)/
√
2 0

(|χ2⟩ − |χ3⟩)/
√
2 0

|r̃2⟩ +4

Table 3.10: Magnetic eigenstates and corresponding eigenvalues of the
magnetic Hamiltonian HB (3.3.18) with the gauge group D4 in a one-
plaquette lattice.

the identity element e of the group:

|ẽ⟩ = 1√
8
(|χ0⟩+ |χ1⟩+ |χ2⟩+ |χ3⟩+ 2 |χ4⟩), (3.3.25)

with eigenvalue −4. This result is in line with what expected, since in order to minimize the
energy of the magnetic Hamiltonian (3.3.18), you need to maximize the function χ4(g), and
from character Table 3.3 is easy to see that e is the group element to do so. The full magnetic
spectrum is reported in Table 3.10.

3.3.4 Energy spectrum of D3

Hamiltonian matrix for a D3 theory

Let’s repeat the same procedure for the non-Abelian dihedral group G = D3. All useful
information about this group can be found in section 3.2. We use the generating subsets Γ1

(3.2.7) and Γ2 (3.2.8) and as faithful representation F the unique non-Abelian representation
of the group j = 2 (3.2.6).
For D3 the matrix elements of the entire Hamiltonian H in the character basis {|χj⟩}, using
the general relation (3.3.21) are

⟨χi|H |χj⟩ = 4λEδi,jf(i)−
λB
3

∑
g∈D3

χj(g)χ
∗
i (g) Reχ2(g). (3.3.26)

Explicitly the matrix of the Hamiltonian H in the character basis {|χj⟩} using the generating
subset Γ1 is

H1 =

 0 0 −2λB
0 24λE −2λB

−2λB −2λB 12λE − 2λB

 , (3.3.27)
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(a) Energy eigenvalues using the generating subset
Γ1 (3.2.7).

(b) Energy eigenvalues using the generating subset
Γ2 (3.2.8).

Figure 3.6: Energy eigenvalues of the Kogut-Susskind Hamiltonian (1.4.45)
as a function of the coupling λ ∈ [0, 1] for a D3 gauge theory on a one-
plaquette system.

while using Γ2 we get

H2 =

 0 0 −2λB
0 24λE −2λB

−2λB −2λB 24λE − 2λB

 . (3.3.28)

The diagonal elements in the matrices H1 (3.3.27) and H2 (3.3.28) come from the electric
Hamiltonian HE , while the elements on the last row and column come from the magnetic
Hamiltonian HB. The diagonalization of these matrices for arbitrary coupling constants λE
and λB will give us the energy spectrum of the one-plaquette system at that specific coupling
regime.

Numerical diagonalization of a D3 theory

The Hamiltonians H1 (3.3.27) and H2 (3.3.28) can be diagonalize numerically. In order to
visualize better in a unique graph both the electric (λB = 0) and the magnetic limit (λE = 0)
we will use the parametrization of the coupling constants that we have already adopted for D4:
λE = λ, λB = 1 − λ and λ ∈ [0, 1]. The results of the numerical diagonalization using this
parametrization are plotted in Fig. 3.6a and Fig. 3.6b.

Electrical eigenvalues and eigenstates of a D3 theory

Let us now focus on the energy eigenvalues and eigenstates of the electric Hamiltonian HE

(3.3.15), so looking at the limit ofH (1.4.45) in which λ = 1. We already know that the electric
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|χj⟩ Γ1 Γ2

|χ0⟩ 0 0
|χ1⟩ 24 24
|χ2⟩ 12 24

Table 3.11: Electric eigenstates and corresponding eigenvalues for the gen-
erating subsets Γ1 (3.2.7) and Γ2 (3.2.8) of the electric Hamiltonian HE

(3.3.15) with the gauge group D3 in a one-plaquette lattice.

eigenstate eigenvalue
|ẽ⟩ −4

(|χ0⟩ − |χ1⟩) /
√
2 0

(|χ0⟩+ |χ1⟩)/
√
2 +2

Table 3.12: Magnetic eigenstates and corresponding eigenvalues of the
magnetic Hamiltonian HB (3.3.18) with the gauge group D3 in a one-
plaquette lattice.

Hamiltonian is diagonal in the character basis {|χj⟩}, so we already know its eigenstates, while
the corresponding eigenvalues are simply given by 4f(j) (3.3.17), and recall that f(j) depends
on the choice of the generating subset Γ. In the Table 3.11 all data about the electric energy
spectrum are listed for both Γ1 and Γ2. Notice how the electrical ground state is the character
state of the representation j = 0. Also forD3 one can prove in the same way we did forD4 that
|χ0⟩ = |0E⟩. The electric vacuum can be written also as |0E⟩ = |011⟩⊗4, where we assigned
the representation basis state |011⟩ to each edge.

Magnetic eigenvalues and eigenstates of a D3 theory

Let us now instead focus on the energy eigenvalues and eigenstates of the magnetic Hamilto-
nian HB (3.3.18), so looking at the limit of H (1.4.45) in which λ = 0. Through an analytic
calculation one can verify that the magnetic ground state is the plaquette state associated with
the identity element e of the group:

|ẽ⟩ = 1√
6
(|χ0⟩+ |χ1⟩+ 2 |χ2⟩), (3.3.29)

with eigenvalue −4. This result is in line with what expected, since in order to minimize the
energy of the magnetic Hamiltonian (3.3.18), you need to maximize the function χ2(g), and
from character Table 3.7 is easy to see that e is the group element to do so. The full magnetic
spectrum is reported in Table 3.12.
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3.3.5 Wilson loop observable
Now we repeat what we have seen for the energy, but this time focusing on the Wilson loop
observable Tr Ŵ , just for a D4 gauge theory. Wilson loops are important observables since
they are order parameters for topological phase transitions.

Wilson loop matrix elements

Give a lattice gauge theory with gauge group G in a one-plaquette system it is possible to
define just a single Wilson loop operator (1.4.10) on the only plaquette present: Tr Ŵ =

Tr
(
ĝ1ĝ2ĝ

†
3ĝ

†
4

)
. Notice how the plaqutte state |g̃⟩ is an eigenstate of the Wilson loop operator,

so we can easily compute the matrix elements of this operator in the character basis {|χj⟩}
using the expression (3.3.9) for |χj⟩, and we get

⟨χi|Tr Ŵ |χj⟩ =
1

|G|
∑
g∈G

χ∗
i (g)χj(g)χF (g). (3.3.30)

In order to compute them we have to specify the gauge group G and a representation F for the
magnetic part. Notice that the expression (3.3.30) is proportional to the one of the magnetic
Hamiltonian HB (3.3.20).

Wilson loop for D4 theory

Consider the group G = D4, let us use as a faithful representation the non-Abelian j = 4
representation, such that (3.3.30) becomes

⟨χi|Tr Ŵ |χj⟩ =
1

8

∑
g∈D4

χ∗
i (g)χj(g)χ4(g). (3.3.31)

For each λ ∈ [0, 1] we compute the expectation value of Wilson loop operator over the ground
state of the corresponding Hamiltonian at that specific λ. The results are plotted in Fig. 3.7. In
the electric limit λ = 0, the ground state is the electric vacuum |0E⟩ (3.3.5), and the expectation
value of the Wilson loop operator is zero. In the magnetic limit λ = 1, the ground state is |ẽ⟩,
and the expectation value of Wilson loop operator is ⟨ẽ|Tr Ŵ |ẽ⟩ = χ4(e) = 2, as you can see
from character Table 3.3.

3.4 Two-plaquette system
In this section we derive some theoretical results for a two-plaquette lattice gauge theory with
open boundary conditions and using as gauge group the dihedral groupsD4 andD3 introduced
before. We present the total Hilbert space and the gauge invariant Hilbert space for a two-
plaquette lattice, for each one we see a possible basis. We use the gauge invariant basis to
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Figure 3.7: Expectation value of the Wilson loop observable Tr Ŵ with the
gauge group D4, computed on the ground state of the Hamiltonian (1.4.45)
for different couplings λ.

compute the matrix elements of the Hamiltonian. We numerically diagonalize the Hamiltonian
obtaining the energy spectrum and we discuss its eigenstates in the electric and magnetic limit.
Finally we consider also Wilson loop observables.

3.4.1 Hilbert space of a multiple-plaquette system
In this section we are interested in the case of a two-plaquette system with open boundary
conditions, but for generality sake we start by considering a lattice with an arbitrary number L
of links and V of vertices, with open boundary conditions. The results that we will obtain for
this generic model can be easily specialized to the case of a two-plaquette system by imposing
L = 7 and V = 6. We consider also a generic finite gauge group G, then we will specialize in
the D4 and D3 cases.

Total Hilbert space

We associate at each link l of the system a finite-dimensional Hilbert space H(l) of dimension
|G|, in this way the total Hilbert space HT for our system of L links will be the tensor product
HT =

⊗L
l=1H(l), and it has dimension |G|L. For a single link Hilbert space H(l) we already

know that a possible basis is the set of group element states {|gl⟩}, for all gl ∈ G. In the
total Hilbert space HT we can take as a basis the set of states {|g1, ..., gL⟩ =

⊗L
l=1 |gl⟩},

with g1, ..., gL ∈ G. A generic element |ψ⟩ of the total Hilbert space HT can be written as a
superposition of these states

|ψ⟩ =
∑

g1,...,gL∈G

ψ(g1, ..., gL) |g1, ..., gL⟩ , (3.4.1)

for some coefficients ψ(g1, ..., gL). Notice that not all states inside HT are gauge invariant. In
general the identification of the physical gauge invariant Hilbert space Hphys is not easy, but it
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exists a simple equation that predicts its dimensionality.

Dimension of the gauge invariant Hilbert space

Working with the formalism of the spin network states one can show that it exists a general
equation that predicts the dimensionality of the gauge invariant Hilbert space Hphys [36]. Given
a lattice gauge theory with gauge group G, defined on a lattice with L links and V vertices, the
dimension of the corresponding physical Hilbert space is

dimHphys =
∑
C

(
|G|
|C|

)L−V
, (3.4.2)

where the sum is performed over all conjugacy classes C of the group G, and as usual |G|
and |C| denote the size of the group G and of the conjugacy class C respectively. The orbit-
stabilizer theorem guarantees that the ratio |G|/|C| appearing in (3.4.2) is an integer number
[49], and therefore the dimension dimHphys is integer as well. An interesting fact is that among
all groups of the same size, the Abelian groups have the gauge invariant Hilbert space of largest
possible dimension, dimHphys = |G|L−V+1, since their conjugacy classes are singlets. Notice
also that the result (3.4.2) predicts the correct dimension for the physical Hilbert space of a
one-plaquette lattice L = V = 4, that is dimHphys = |Ĝ|, the number of conjugacy classes
(or irreducible representations) of G. Indeed in the last section we saw that the character states
{|χj⟩}, with j ∈ Ĝ, are a basis for the physical Hilbert space of a one-plaquette system.
Using the equation (3.4.2) we are able to predict the dimensionality of the physical Hilbert
space Hphys of a lattice gauge theory for a generic gauge group G, then in order to construct a
basis for such a vector space it will be sufficient to find a number of orthogonal vectors equals
to the dimension of the space.

Multiple-plaquette character states

In the previous section we saw that for the one-plaquette system the set of character states
{|χj⟩} forms a basis for the physical Hilbert space. We will now extend these states to a
multiple-plaquette system and then verify if they form a basis or not.
First of all consider the electric vacuum state |0E⟩:

|0E⟩ =
1√
|G|L

∑
g1,...,gL∈G

|g1, ..., gL⟩ , (3.4.3)

a simple equal-weight linear superposition of all the possible group element states. This state
is gauge invariant, indeed it is possible to directly check that G |0E⟩ = |0E⟩, where G =⊗V

v=1A
gv
v is the gauge transformation operator for our system. One can introduce the multiple-

plaquette states {|g̃γ1 , ..., g̃γM ⟩} on a open boundary lattice as:

|g̃γ1 , ..., g̃γM ⟩ =
√

|G|MBgγ1
γ1 ...B

gγM
γM |0E⟩ , (3.4.4)
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where we considered M closed paths γm that surround one or more plaquettes, and Bgγm
γm are

the corresponding multiple-plaquette operators (1.5.5), with m = 1, 2, ...,M . For the purpose
of constructing gauge invariant states we will be particularly interested in multiple-plaquette
states where all links are included in at least one path γm.
The state |g̃γ1 , ..., g̃γM ⟩ (3.4.4) can be written in terms of the group element basis {|g1, ..., gL⟩},
substituting the equation for Bgγ

γ (1.5.5) in (3.4.4), we have

|g̃γ1 , ..., g̃γM ⟩ = 1√
|G|L−M

∑
g1,...,gL∈G

δ

(
gγ1 ,

∏
l∈γ1

g[l]

)
. . . δ

(
gγM ,

∏
l∈γM

g[l]

)
|g1, ..., gL⟩ ,

(3.4.5)
where we recall that we are consideringM closed path γm, the products

∏
l∈γm inside the delta

are extended to all links l of a precised path γm, and by g[l] we mean gl or g−1
l depending on

the orientation of the link with respect to the direction of the path.
As we already saw for the one-plaquette system, the multiple-plaquette states {|g̃γ1 , ..., g̃γM ⟩}
in general are not gauge invariant: the action of a gauge transformations is like a conjuga-
tion of the group elements appearing inside the ket. Even if the multiple-plaquette states
{|g̃γ1 , ..., g̃γM ⟩} are not gauge invariant we can use a linear combination of them to construct
states which are gauge invariant, as we did for the one-plaquette system. We can introduce the
multiple-plaquette character states as

|χi1(γ1)...χiM (γM)⟩ = 1√
|G|M

∑
gγ1 ,...,gγM∈G

χi1(gγ1)...χiM (gγM ) |g̃γ1 , ..., g̃γM ⟩ , (3.4.6)

where we have M close paths γm and at each one we associate a character χim , with m =
1, 2, ...,M . As long as all L links are included in at least one path, these states are manifestly
gauge invariant, since character function χi(g) is invariant under conjugation (it is a class
function) and all group elements (which are conjugated by the gauge transformation) appear
inside a character function.

Two-plaquette character states

Let us now focus on a two-plaquette system like the one in Fig. 3.8. There are only three
possible choices for a closed path γ: the first plaquette p1 that contains in order the links 1, 2,
3 and 4, the second plaquette p2 that contains in order the edges 5, 6, 7 and 2, and a multiple-
plaquette loop p3 that contains in order the links 1, 5, 6, 7, 3 and 4.
Consider the case of multiple-plaquette states where there are M = 2 paths and each of them
surrounds a single plaquette γ1 = p1 and γ2 = p2. From the equation (3.4.5) one has that their
explicit expression is

|g̃p1 , g̃p2⟩ =
1√
|G|5

∑
g1,...,g7∈G

δ(gp1 , g1g2g
−1
3 g−1

4 )δ(gp2 , g5g6g
−1
7 g−1

2 ) |g1, ..., g7⟩ . (3.4.7)
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Figure 3.8: Two plaquette system. The lattice contains V = 6 vertices
and E = 7 oriented edges. One can identify three inequivalent loops: first
plaquette p1, second plaquette p2 and external boundaries p3.

Basically these states are a linear superposition of all states in which the product of the group
elements associated to the edges of the plaquette p1 give rise to the group element gp1 , and
similarly for the plaquette p2. Another possible multiple-plaquette state involves the single
plaquette p1 and the two-plaquette loop p3, in this case we can see that:

|g̃p1 , g̃p3⟩ =
1√
|G|5

∑
g1,...,g7∈G

δ(gp1 , g1g2g
−1
3 g−1

4 )δ(gp3 , g1g5g6g
−1
7 g−1

3 g−1
4 ) |g1, ..., g7⟩ . (3.4.8)

The multiple-plaquette character state associated to a state with two single-plaquette loops, p1
and p2, can be found inserting the expression (3.4.7) inside (3.4.6), obtaining:

|χi(p1)χj(p2)⟩ =
1√
|G|2

∑
gp1 ,gp2∈G

χi(gp1)χj(gp2) |g̃p1 , g̃p2⟩

=
1√
|G|7

∑
g1,...,g7∈G

χi(g1g2g
−1
3 g−1

4 )χj(g5g6g
−1
7 g−1

2 ) |g1, ..., g7⟩ . (3.4.9)

To be more concise we will use the following notation |χi(p1)χj(p2)⟩ ≡ |i, j⟩, where the fact
that the first index i is the representation of the plaquette p1 is taken as granted, as well as the
fact that the second index j is the representation of the plaquette p2. The multiple-plaquette
character state associated to a state with a single-plaquette loop p1 and a two-plaquette loop
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p3, can be found inserting the expression (3.4.8) inside (3.4.6), obtaining:

|χi(p1)χj(p3)⟩ =
1√
|G|2

∑
gp1 ,gp3∈G

χi(gp1)χj(gp3) |g̃p1 , g̃p3⟩ (3.4.10)

=
1√
|G|7

∑
g1,...,g7∈G

χi(g1g2g
−1
3 g−1

4 )χj(g1g5g6g
−1
7 g−1

3 g−1
4 ) |g1, ..., g7⟩ .

We will use a more compact notation |χi(p1)χj(p3)⟩ ≡ |i, j̄⟩, where the fact that the first index
i is the representation of the plaquette p1 is taken as granted, as well as the fact that the second
barred index j̄ is the representation of the two-plaquette loop p3. In principle one can construct
others multiple-plaquette character states, like |χi(p2)χj(p3)⟩ or |χi(p1)χj(p2)χk(p3)⟩, but we
don’t need them to build a basis for the gauge invariant Hilbert space.
In the one-plaquette system we saw that the character states are orthonormal, a similar result
holds also for multiple-plaquette character states, but with some exceptions. Let’s consider the
scalar product between two character states |i, j⟩ (3.4.6), using the orthogonality theorem for
characters (A.3.2) we have

⟨i1, i2|j1, j2⟩ =
1

|G|2
∑

gp1 ,gp2∈G

χ∗
i1
(gp1)χ

∗
i2
(gp2)χj2(gp1)χj2(gp2)

= δi1,j1δi2,j2 . (3.4.11)

The scalar product (3.4.11) shows that states like |i, j⟩ are orthogonal and so linearly indepen-
dent. The same can be shown for character states like |i1, ī2⟩ which involves a two-plaquette
loop:

⟨i1, ī2|j1, j̄2⟩ = δi1,j1δi2,j2 . (3.4.12)

The mixed scalar product between a state |i1, i2⟩ and a state |j1, j̄2⟩ give as a result

⟨i1, i2|j1, j̄2⟩ =
1

|G|7
∑

g1,...,g7∈G

χ∗
i1
(g1g2g

−1
3 g−1

4 )χ∗
i2
(g5g6g

−1
7 g−1

2 )·

· χj1(g1g2g−1
3 g−1

4 )χj2(g1g5g6g
−1
7 g−1

3 g−1
4 )

=
1

|G|3
∑

g1,gp1 ,gp2∈G

χ∗
i1
(gp1)χ

∗
i2
(gp2)χj1(gp1)χj2(g1gp2g

−1
1 gp1). (3.4.13)

In general the scalar product (3.4.13) is different from zero, and so in general multiple-plaquette
character states defined on different paths are not orthogonal.
A multiple character state like |i, j⟩ (3.4.9) can be written also in terms of the representation
basis {|jmn⟩} of each link using the duality relation (1.3.20) as we did in the one-plaquette
system (3.3.12). In a two-plaquette system there are some problems in the assignment of a
specific representation to the shared link l = 2, because it belongs to the plaquette p1 in the

85



3.4. TWO-PLAQUETTE SYSTEM

representation i, but it is also part of the plaquette p2 in the representation j. More explicitly
we can see that:

|i, j⟩ = 1√
|G|7

∑
g1,...,g7∈G

χi(g1g2g
−1
3 g−1

4 )χj(g5g6g
−1
7 g−1

2 ) |g1, ..., g7⟩

=
1√
|G|7

∑
g1,...,g7∈G

di∑
m1,...,m4=1

dj∑
n1,...,n4=1

ρi(g1)m1m2ρi(g2)m2m3ρ
∗
i (g3)m4m3ρ

∗
i (g4)m1m4·

· ρj(g5)n1n2ρj(g6)n2n3ρ
∗
i (g7)n4n3ρ

∗
j(g2)n1n4 |g1, ..., g7⟩

=
1√

|G|d3i d3j

∑
g2∈G

di∑
m1,...,m4=1

dj∑
n1,...,n4=1

ρi(g2)m2m3ρ
∗
j(g2)n1n4·

· |im1m2 , g2, i
∗
m4m3

, i∗m1m4
, jn1n2 , jn2n3 , j

∗
n4n3

⟩ . (3.4.14)

The same problem arises with states like |i, j̄⟩, where the shared edges that cannot have a
precise representation, not i not j, are l = 1, 3, 4.
In the following we will try to use the gauge invariant states {|i, j⟩ , |i, j̄⟩} to construct a basis
for the gauge invariant Hilbert space Hphys, but in order to do so we have to choose a particular
group G.

Two-plaquette gauge invariant basis for D4

Consider as gauge group the dihedral group D4. The dimensionality of its physical Hilbert
space Hphys is given by the equation (3.4.2) that we discussed before. The group D4 has three
conjugacy classes of size 2 and two conjugacy classes of size 1, then in the case of a two-
plaquette system, where there are L = 7 links and V = 6 vertices, we can easily check that
the dimension of the gauge invariant Hilbert space is dimHphys = 28. In order to find a basis
of this space it will be sufficient to find 28 orthogonal vectors inside this vector space.
The set of multiple-plaquette character states {|i, j⟩ , |i, j̄⟩} forms a set of gauge invariant
states, so we might use them to create the basis for the physical Hilbert space Hphys. First
we count how many such states we have in a D4 gauge theory. The indices i and j, that la-
bel the representation, can take 5 different values each and so there are 25 = 52 states like
|i, j⟩, and others 25 states like |i, j̄⟩: in total 50 gauge invariant states. In principle one could
also consider states like |χi(p2)χj(p3)⟩ or |χi(p1)χj(p2)χk(p3)⟩, but as we will see they are
not necessary, the previous 50 are more than enough to construct a basis. As the dimension
of the physical Hilbert space Hphys for a D4 gauge theory is 28, we can infer that in the set
{|i, j⟩ , |i, j̄⟩} there are at least 22 not linearly independent states that can be removed in order
to form an orthonormal basis.
To understand better which of these gauge invariant states are linearly independent, we can
look at their scalar products. The scalar product (3.4.11) shows that the set of states {|i, j⟩} is
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product i1 i2 j1 j̄2 product i1 i2 j1 j̄2
1 0 0 0 0 1 3 2 1 2
1 0 1 1 1 1 3 3 0 3
1 0 2 2 2 1 4 0 4 0
1 0 3 3 3 1 4 1 4 1
1 1 0 1 0 1 4 2 4 2
1 1 1 0 1 1 4 3 4 3
1 1 2 3 2 0.5 0 4 4 4
1 1 3 2 3 0.5 1 4 4 4
1 2 0 2 0 0.5 2 4 4 4
1 2 1 3 1 0.5 3 4 4 4
1 2 2 0 2 0.5 4 4 0 4
1 2 3 1 3 0.5 4 4 1 4
1 3 0 3 0 0.5 4 4 3 4
1 3 1 2 1 0.5 4 4 3 4

Table 3.13: The non vanishing scalar products of the type ⟨i1, i2|j1, j̄2⟩
(3.4.13) for the gauge group D4.

orthonormal, therefore its states are linearly independent. The same can be shown for the char-
acter states {|i1, ī2⟩} which involves a two-plaquette loop (3.4.12). The mixed scalar product
between a state |i1, i2⟩ and a state |j1, j̄2⟩, that we computed in (3.4.13), in general is different
from zero, in particular the values different from zero for G = D4 are reported in Table 3.13.
From this table we can notice that the states {|i, 4̄⟩}, with i = 0, 1, 2, 3 (non-Abelian represen-
tation index) are orthogonal to all states {|j1, j2⟩} except when j1 = j2 = 4. Therefore a set of
orthogonal states is given by

{|j1, j2⟩ , |i, 4̄⟩ : i ∈ [0, 3], j1, j2 ∈ [0, 4] but not j1 = j2 = 4}. (3.4.15)

The set (3.4.15) contains all states made of two one-plaquette character states |j1, j2⟩ =
|χj1(p1)χj2(p2)⟩, except the one in which both the plaquettes are in the non-Abelian repre-
sentation j1 = j2 = 4, so there are 24 states of this kind. The set (3.4.15) contains also some
multiple-character states |i, 4̄⟩ = |χi(p1)χ4(p3)⟩ in which the plaquette p1 is in an Abelian
representation i = 0, 1, 2, 3 while the multiple-plaquette loop p3 is in the non-Abelian repre-
sentation, so there are 4 states of this kind. The set (3.4.15) contains 28 states that are gauge
invariant and orthogonal states, we already know that the dimension of the gauge invariant
Hilbert space is 28, then the set (3.4.15) is a basis of the D4 lattice gauge theory on a two-
plaquette system. It’s noteworthy that for a multiple-plaquette system in order to construct a
basis we need to take in account states that involves multiple-plaquette loops, like |i, 4̄⟩.
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Two-plaquette gauge invariant basis for D3

Consider now as gauge group the dihedral groupD3. The dimensionality of its physical Hilbert
space Hphys is given by the equation (3.4.2) that we discussed before. The group D3 has one
conjugacy class of size 1, one conjugacy class of size 2 and one conjugacy class of size 3, then
in the case of a two-plaquette system, where there are L = 7 links and V = 6 vertices, we
can easily check that the dimension of the gauge invariant Hilbert space is dimHphys = 11. In
order to find a basis of this space it will be sufficient to find 11 orthogonal vectors inside this
vector space.
Let’s use the set of multiple-plaquette character states {|i, j⟩ , |i, j̄⟩} to construct the basis for
the physical Hilbert space, but first count how many states we have inside this set for D3. The
indices i and j, which label the representations, can take 3 different values each and so there
are 9 = 32 states like |i, j⟩, and others 9 states like |i, j̄⟩, in total 18 gauge invariant states,
that are more than enough to construct a basis. We already know that the dimension of the
physical Hilbert space for a D3 gauge theory is 11, this means that the set {|i, j⟩ , |i, j̄⟩} is
over-complete and we have to remove some states in order to have a basis. To understand
better which of these gauge invariant states are also linearly independent, we can look at their
scalar products. Using the orthogonality theorem for characters we have already seen that the
scalar product between two different character states like |i, j⟩ is zero (3.4.11), hence these
states are orthogonal and so linearly independent. The same can be shown for the character
states |i1, ī2⟩ which involves a two-plaquette loop (3.4.12). The expression of the mixed scalar
product between a state |i1, i2⟩ and a state |j1, j̄2⟩ is (3.4.13), that in general is different from
zero. In particular these scalar products forG = D3 are reported in Table 3.14. From this table
we can construct a set of orthogonal states:

{|j1, j2⟩ , |i, 2̄⟩ , |2̃, 2⟩ : i ∈ [0, 2], j1, j2 ∈ [0, 3] but not j1 = j2 = 2}, (3.4.16)

where the state |2̃, 2⟩ is obtained from |2, 2⟩ removing the components along the directions of
|0, 2̄⟩ and |1, 2̄⟩, to make it orthogonal to all other states in the basis. Therefore the state |2̃, 2⟩
is defined as

|2̃, 2⟩ =
√
2

(
|2, 2⟩ − 1

2
|0, 2̄⟩ − 1

2
|1, 2̄⟩

)
. (3.4.17)

The set (3.4.16) contains 8 states like |j1, j2⟩, 2 states like |i, 2̄⟩ and finally the state |2̃, 2⟩, thus
the set (3.4.16) contains in total 11 states that are gauge invariant and orthogonal states, we
already know that the dimension of the gauge invariant Hilbert space is 11, then the set (3.4.16)
is a basis of the D3 lattice gauge theory on a two-plaquette system.

3.4.2 Hamiltonian matrix elements
Now we see which are the matrix elements of the Kogut-Susskind Hamiltonian H (1.4.44)
for a two-plaquette system using the basis made of character states like {|i1, i2⟩} (3.4.9) and
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product i1 i2 j1 j2
1 0 0 0 0
1 0 1 1 1

0.5 0 2 2 2
1 1 0 1 0
1 1 1 0 1

0.5 1 2 2 2
1 2 0 2 0
1 2 1 2 1

0.5 2 2 0 2
0.5 2 2 1 2
0.5 2 2 2 2

Table 3.14: The non vanishing scalar products of the type ⟨i1, i2|j1, j̄2⟩
(3.4.13) for the gauge group G = D3.

{|j1, j̄2⟩} (3.4.10). The full calculations are reported in appendix B for a generic gauge group
G, in this subsection we only show the results. Recall that the Kogut-Susskind Hamiltonian is
made of two non commuting parts, the electric HamiltonianHE and the magnetic Hamiltonian
HB, such that H = HE +HB.

Matrix elements of the electric Hamiltonian

Let’s start from the electric Hamiltonian HE (1.4.42) for a two-plaquette system, which is
diagonal in the multiple-character states. The computations that lead to the results shown here
can be found in the appendix B.1. The matrix elements of the character states like {|i1, i2⟩}
(3.4.9) are

⟨i1, i2|HE |j1, j2⟩ = λE
[
3f(i1) + 3f(i2) + f̄(i1, i2)

]
δi1,j1δi2,j2 , (3.4.18)

where the two-argument function f̄(i, j) is defined as

f̄(i, j) = |Γ| − 1

didj

∑
g∈Γ

χ∗
i (g)χj(g). (3.4.19)

The matrix elements of the character states like {|j1, j̄2⟩} (3.4.10) are

⟨i1, ī2|HE |j1, j̄2⟩ =
[
f(i1) + 3f(i2) + 3f̄(i1, i2)

]
δi1,j1δi2,j2 . (3.4.20)

The mixed matrix elements ⟨i1, ī2|HE |j1, j2⟩, or their Hermitian conjugate, are trivially zero.
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Matrix elements of the magnetic Hamiltonian

Consider now the magnetic Hamiltonian HB (1.4.11) for a two-plaquette system. The com-
putations that lead to the results shown here can be found in the appendix B.2. The matrix
elements of the character states like {|i1, i2⟩} (3.4.9) are

⟨i1, i2|HB|j1, j2⟩ =− 2λB
|G|2

∑
gp1 ,gp2∈G

χ∗
i1
(gp1)χ

∗
i2
(gp2)χj1(gp1)χj2(gp2)·

· [ReχF (gp1) + ReχF (gp2)] . (3.4.21)

The matrix elements of the character states like {|j1, j̄2⟩} (3.4.10) are

⟨i1, ī2|HB|j1, j̄2⟩ =− 2λB
|G|3

∑
g1,gp1 ,gp2∈G

χ∗
i1
(gp1)χ

∗
i2
(g1gp2g

−1
1 gp1)χj1(gp1)χj2(g1gp2g

−1
1 gp1)·

· [ReχF (gp1) + ReχF (gp2)] . (3.4.22)

The mixed matrix elements are

⟨i1, ī2|HB|j1, j2⟩ =− 2λB
|G|3

∑
g1,gp1 ,gp2∈G

χ∗
i1
(gp1)χ

∗
i2
(g1gp2g

−1
1 gp1)χj1(gp1)χj2(gp2)·

· [ReχF (gp1) + ReχF (gp2)] . (3.4.23)

The matrix elements like ⟨i1, i2|HB|j1, j̄2⟩ are simply the complex conjugate of the expression
(3.4.23).
In order to have a more explicit expression of the electric and magnetic Hamiltonian matrix
elements we have first to choose a gauge group G, a generating subset Γ and a faithful repre-
sentation F .

3.4.3 Energy spectrum of D4

Hamiltonian matrix for a D4 theory

In the previous discussion we derive the matrix elements of the Kogut-Susskind Hamiltonian
H (1.4.44) in a two-plaquette system for generic gauge group G. Now we select the dihe-
dral group D4, we use the generating subset Γ1 (3.1.9) and Γ2 (3.1.10), and as fundamental
representation F the unique non-Abelian representation of the group j = 4. The matrices
will be written in terms of the basis {|i1, i2⟩ , |j, 4̄⟩} (3.4.15), with i1, i2 = 0, 1, 2, 3, 4 but not
i1 = i2 = 4 and j = 0, 1, 2, 3. In particular the order with which these states appear in the
rows and the columns of the matrices is:

|0, 0⟩ , |0, 1⟩ , ..., |0, 4⟩ , |1, 0⟩ , |1, 1⟩ , ..., |4, 3⟩ , |0, 4̄⟩ , ..., |3, 4̄⟩ .
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The matrix elements of the electric Hamiltonian HE (B.1.1) are presented in the equations
(3.4.18) and (3.4.20), and they depend on the choice of the generating subset Γ, through the
functions f(i) and f̄(i, j). Choosing the generating subset Γ1 (3.1.9) we get

H1E = λE



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32



,

while choosing Γ2 (3.1.10) we get

H2E = λE



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44



.
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The matrix elements of the magnetic Hamiltonian HB are presented in the equations (3.4.21),
(3.4.22) and (3.4.23), the corresponding matrix is

HB = −λB



0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 0 0 0 1 1 1 1
2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 1 1 1 1
0 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0 0 1 1 1 1
0 0 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0 1 1 1 1
0 0 0 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 1 1 1 1
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0



.

Numerical diagonalization of a D4 theory

In order to visualize better in a unique graph both the electric (λB = 0) and the magnetic
limit (λE = 0) for the complete Hamiltonian H we use the parametrization of the coupling
constants introduced in (1.4.45): λE = λ and λB = 1− λ, with λ ∈ [0, 1].
The numerical diagonalization was performed using the eig function of the submodule linalg
of numpy library. The results of the numerical diagonalization using this parametrization are
plotted in Fig. 3.9a and Fig. 3.9b. Notice the high degeneracy of the excited states, instead the
ground state is non-degenerate.

Electrical eigenvalues and eigenstates of a D4 theory

Let us now focus on the eigenvalues and eigenstates of the electric Hamiltonian HE (B.1.1),
so looking at the limit of H in which λ = 1 (λB = 0). We already know that that the electric
Hamiltonian is diagonal in the character basis {|i1, i2⟩ , |j, 4̄⟩} (3.4.15), therefore we already
know its eigenstates, while the corresponding eigenvalues are simply given by f̄(i1, i2) +
3f(i1) + 3f(i2) (3.4.18) and f(j) + 3f(4) + 3f̄(j, 4) (3.4.20). The smallest eigenvalue is 0
in correspondence to the eigenstate |0, 0⟩. Comparing the expression (3.4.9) for the state |0, 0⟩
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(a) Energy eigenvalues using the generating sub-
set Γ1 (3.1.9).

(b) Energy eigenvalues using the generating sub-
set Γ2 (3.1.10).

Figure 3.9: Energy eigenvalues of the Kogut-Susskind Hamiltonian H
(1.4.45) as a function of the coupling λ ∈ [0, 1] for a D4 gauge theory
on a two-plaquette system. All the 28 energy eigenvalues are plotted, in red
the ground state (gs), in blue the excitations (exc).

and the definition (3.4.3) of the electrical vacuum |0E⟩, recalling also that χ0(g) = 1 for all
g ∈ D4, then it is easy to convince yourself that the electrical vacuum is nothing more than the
electrical ground state, |0, 0⟩ = |0E⟩. Notice also that the electrical vacuum can be written as
|0E⟩ = |011⟩⊗7, where we assigned the trivial representation j = 0 state at each link.

Magnetic eigenvalues and eigenstates of a D4 theory

Let us now instead focus on the eigenvalues and eigenstates of the magnetic Hamiltonian HB

(B.2.1), so looking at the limit ofH in which λ = 0 (λE = 0). The magnetic Hamiltonian is not
diagonal in the character basis (3.4.15) that we use to compute the matrix elements, so finding
the ground state and the other eigenstates is slightly more complicated than in the previous
case. We already know from (B.2.2) that the magnetic Hamiltonian HB is diagonal in the
multiple-plaquette states |g̃p1 , g̃p2⟩, so it is reasonable to look for the ground state between these
states or a linear combination of them. When HB acts on the multiple-plaquette state |g̃p1 , g̃p2⟩
it produces an eigenvalue −2λB[ReχF (gp1) + ReχF (gp2)] (B.2.2). If we are interested in the
ground state we should try to maximize the value of the character function χF (g) for both the
two terms, p1 and p2. Given a generic representation j of dimension dj , the character function
χj is the sum of dj complex roots of unity [49], so the maximum of ReχF (g) is realized when
all addends are equal to 1 and therefore at maximum ReχF (g) = dF . Notice that whatever
fundamental representation F is chosen, the previous condition will be always satisfied by
g = e, the neutral element of the group, indeed ReχF (e) = dF . This means that the magnetic
ground state for the two-plaquette system is |ẽp1 , ẽp2⟩ and the corresponding eigenvalue is

93



3.4. TWO-PLAQUETTE SYSTEM

−4dF . In our case the fundamental representation F is j = 4 and d4 = 2, then the magnetic
lowest eigenvalue is −8, as confirmed by the numerical analysis in Fig. 3.9a and in Fig. 3.9b.
Notice also how the state |ẽp1 , ẽp2⟩ is gauge invariant, the conjugation introduced by a gauge
transformation does not affect the neutral element e, indeed geg−1 = e for all g ∈ G.
The magnetic ground state |ẽp1 , ẽp2⟩ of this lattice gauge theory is also the ground state of
a related model, the quantum double model and it is sometimes called "loop gas", as it is a
superposition of all possible combinations of loops [34].
For what concerns the second lowest energy level it has energy −4 and correspond to the
situation in which ReχF (gp1) = 2 (and so gp1 = e) and ReχF (gp2) = 0 (and so gp2 =
r, r3, s, rs, r2s, r3s) or vice versa. Imposing the gauge invariance condition one can construct
the following six degenerate magnetic eigenstates:

|ẽp1 , r̃p2⟩+ |ẽp1 , r̃3p2⟩√
2

,
|ẽp1 , r̃sp2⟩+ |ẽp1 , r̃3sp2⟩√

2
,
|ẽp1 , s̃p2⟩+ |ẽp1 , r̃2sp2⟩√

2
,

|r̃p1 , ẽp2⟩+ |r̃3p1 , ẽp2⟩√
2

,
|r̃sp1 , ẽp2⟩+ |r̃3sp1 , ẽp2⟩√

2
,
|s̃p1 , ẽp2⟩+ |r̃2sp1 , ẽp2⟩√

2
. (3.4.24)

In an analogous way we can construct 14 degenerate magnetic eigenstates with energy 0, 6
degenerate states with energy +4 and one state, |r̃2p1 , r̃2p2⟩, with energy +8. All these states
are gauge invariant.

3.4.4 Energy spectrum of D3

Hamiltonian matrix for a D3 theory

Let’s repeat the same analysis also for the dihedral groupD3. We use the generating subsets Γ1

(3.2.7) and Γ2 (3.2.8), and as fundamental representation F the unique non-Abelian representa-
tion of the group j = 2. The matrices will be written in terms of the basis {|i1, i2⟩ , |j, 2̄⟩ , |2̃, 2⟩}
(3.4.15), with i1, i2 = 0, 1, 2 but not i1 = i2 = 2 and j = 0, 1. In particular the order with
which these states appear in the rows and the columns of the matrices is:

|0, 0⟩ , |0, 1⟩ , |0, 2⟩ , |1, 0⟩ , |1, 1⟩ , |1, 2⟩ , |2, 0⟩ , |2, 1⟩ , |0, 2̄⟩ , |1, 2̄⟩ , |2̃, 2⟩ .

The matrix elements of the electric Hamiltonian HE (B.1.1) are presented in the equations
(3.4.18) and (3.4.20), and they depend on the choice of the generating subset Γ, through the
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functions f(i) and f̄(i, j). Choosing the generating subset Γ1 (3.2.7) we get

H1E = λE



0 0 0 0 0 0 0 0 0 0 0
0 24 0 0 0 0 0 0 0 0 0
0 0 12 0 0 0 0 0 0 0 0
0 0 0 24 0 0 0 0 0 0 0
0 0 0 0 36 0 0 0 0 0 0
0 0 0 0 0 30 0 0 0 0 0
0 0 0 0 0 0 12 0 0 0 0
0 0 0 0 0 0 0 30 0 0 0

0 0 0 0 0 0 0 0 18 0 3
√
2/2

0 0 0 0 0 0 0 0 0 24 −3
√
2/2

0 0 0 0 0 0 0 0 3
√
2/2 −3

√
2/2 21


,

while choosing Γ2 (3.1.10) we get

H2E = λE



0 0 0 0 0 0 0 0 0 0 0
0 24 0 0 0 0 0 0 0 0 0
0 0 24 0 0 0 0 0 0 0 0
0 0 0 24 0 0 0 0 0 0 0
0 0 0 0 36 0 0 0 0 0 0
0 0 0 0 0 42 0 0 0 0 0
0 0 0 0 0 0 24 0 0 0 0
0 0 0 0 0 0 0 42 0 0 0

0 0 0 0 0 0 0 0 36 0 9
√
2/4

0 0 0 0 0 0 0 0 0 42 −3
√
2/4

0 0 0 0 0 0 0 0 9
√
2/4 −3

√
2/4 81/2


.

The matrix elements of the magnetic Hamiltonian HB are presented in the equations (3.4.21),
(3.4.22) and (3.4.23), the corresponding matrix is

HB = −λB



0 0 2 0 0 0 2 0 0 0 0
0 0 2 0 0 0 0 2 0 0 0

2 2 2 0 0 0 0 0 1 1
√
2

0 0 0 0 0 2 2 0 0 0 0
0 0 0 0 0 2 0 2 0 0 0

0 0 0 2 2 2 0 0 1 1
√
2

2 0 0 2 0 0 2 0 1 1
√
2

0 2 0 0 0 0 0 2 1 1
√
2

0 0 1 0 0 1 1 1 0 0 2
√
2

0 0 1 0 0 1 1 1 0 0 2
√
2

0 0
√
2 0 0

√
2

√
2

√
2 2

√
2 2

√
2 0



.

Numerical diagonalization of a D3 theory

In order to visualize better in a unique graph both the electric (λB = 0) and the magnetic
limit (λE = 0) for the complete Hamiltonian H we use the parametrization of the coupling
constants introduced in (1.4.45): λE = λ and λB = 1− λ, with λ ∈ [0, 1].
The results of the numerical diagonalization using this parametrization are plotted in Fig. 3.10a
and Fig. 3.10b. Notice the high degeneracy of the excited states, instead the ground state is
non-degenerate.
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(a) Energy eigenvalues using the generating sub-
set Γ1 (3.2.7)..

(b) Energy eigenvalues using the generating sub-
set Γ2 (3.2.8).

Figure 3.10: Energy eigenvalues of the Kogut-Susskind Hamiltonian H
(1.4.45) as a function of the coupling λ ∈ [0, 1] for a D3 gauge theory
on a two-plaquette system. All the 11 energy eigenvalues are plotted, in red
the ground state (gs), in blue the excitations (exc)

Electrical eigenvalues and eigenstates of a D3 theory

Let us now focus on the eigenvalues and eigenstates of the electric Hamiltonian HE (B.1.1),
so looking at the limit of H in which λ = 1 (λB = 0). We already know that that the
electric Hamiltonian is diagonal in the multiple-character states {|i1, i2⟩} (i1, i2 = 0, 1, 2

but not i1 = i2 = 2), but not in the states {|j, 2̄⟩ , |2̃, 2⟩} (j = 0, 1) of the basis (3.4.16).
That because the matrix elements ⟨j, 2̄|HE|2̃, 2⟩ are different from zero. Eight eigenstates are
the multiple-character states {|i1, i2⟩} and the corresponding eigenvalues are simply given by
f̄(i1, i2) + 3f(i1) + 3f(i2) (3.4.18). The remaining three eigenstates are a linear combination
of the states {|j, 2̄⟩ , |2̃, 2⟩} with non trivial eigenvalues.
The smallest eigenvalue is 0 in correspondence to the eigenstate |0, 0⟩. Comparing the expres-
sion (3.4.9) for the state |0, 0⟩ and the definition (3.4.3) of the electrical vacuum |0E⟩, recalling
also that χ0(g) = 1 for all g ∈ D3, then it is easy to see that the electrical vacuum is nothing
more than the electrical ground state, |0, 0⟩ = |0E⟩.

Magnetic eigenvalues and eigenstates of a D3 theory

Let us now instead focus on the eigenvalues and eigenstates of the magnetic Hamiltonian HB

(B.2.1), so looking at the limit of H in which λ = 0 (λE = 0). The magnetic Hamiltonian
is not diagonal in the character basis (3.4.16) that we use to compute the matrix elements,
but following the same procedure used for the gauge group D4 we can see that the magnetic
ground state for the two-plaquette system is |ẽp1 , ẽp2⟩ and the corresponding eigenvalue is −8,
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since we have to maximize the function χ2(g), and that is realized by g = e and χ2(e) = 2.
This result is confirmed by the numerical analysis in Fig. 3.10a and in Fig. 3.10b.
For what concerns the second lowest energy level it has energy −4 and the two corresponding
degenerate magnetic eigenstates are

|ẽp1 , s̃p2⟩+ |ẽp1 , r̃sp2⟩+ |ẽp1 , r̃2sp2⟩√
3

,
|s̃p1 , ẽp2⟩+ |r̃sp1 , ẽp2⟩+ |r̃2sp1 , ẽp2⟩√

3
, (3.4.25)

In an analogous way we can construct two degenerate magnetic eigenstates with energy −2,
two degenerate states with energy 0, two degenerate magnetic eigenstates with energy +2 and
two degenerate magnetic eigenstates with energy +2 with energy +4. All these states are
gauge invariant.

3.4.5 Wilson loop observables
Now we repeat what we have seen for the energy, but this time focusing on the Wilson loop
observables Tr Ŵp1 and Tr Ŵp3 , just for a D4 gauge theory.

Wilson loop matrix elements

Give a lattice gauge theory with gauge group G in a two-plaquette system, as the one in
Fig. 3.8, it is possible to define three single Wilson loop operators (1.4.10): Tr Ŵp1 =

Tr
(
ĝ1ĝ2ĝ

−1
3 ĝ−1

4

)
, Tr Ŵp2 = Tr

(
ĝ5ĝ6ĝ

−1
7 ĝ−1

2

)
and Tr Ŵp3 = Tr

(
ĝ1ĝ5ĝ6ĝ

−1
7 ĝ−1

3 ĝ−1
4

)
. The oper-

ators Tr Ŵp1 and Tr Ŵp2 are completely equivalent for symmetric reasons, since they are both
single plaquette loops. The matrix elements of Wilson loop operators of the states |i, j⟩ can be
computed using (3.4.9):

⟨i1, i2|Tr Ŵp1|j1, j2⟩ =
1

|G|2
∑

gp1 ,gp2∈G

χ∗
i1
(gp1)χ

∗
i2
(gp2)χj1(gp1)χj2(gp2)χF (gp1), (3.4.26)

⟨i1, i2|Tr Ŵp3|j1, j2⟩ =
1

|G|3
∑

g1,gp1 ,gp2∈G

χ∗
i1
(gp1)χ

∗
i2
(gp2)χj1(gp1)χj2(gp2)·

· χF (g1gp2g−1
1 gp1), (3.4.27)

The same can be done for the state |i, j̄⟩, using the expression (3.4.10):

⟨i1, ī2|Tr Ŵp1 |j1, j̄2⟩ =
1

|G|2
∑

gp1 ,gp3∈G

χ∗
i1
(gp1)χ

∗
i2
(gp3)χj1(gp1)χj2(gp3)χF (gp1), (3.4.28)

⟨i1, ī2|Tr Ŵp3 |j1, j̄2⟩ =
1

|G|2
∑

gp1 ,gp3∈G

χ∗
i1
(gp1)χ

∗
i2
(gp3)χj1(gp1)χj2(gp3)χF (gp3), (3.4.29)
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(a) Wilson loop observables Tr Ŵp1 and Tr Ŵp3

with generating subset Γ1.
(b) Wilson loop observables Tr Ŵp1 and Tr Ŵp3

with generating subset Γ2.

Figure 3.11: Expectation value of the Wilson loop observables Tr Ŵp1 and
Tr Ŵp3 with the gauge group D4 and a two plaquette system, computed on
the ground state of the Hamiltonian (1.4.45) for different couplings λ ∈
[0, 1].

and

⟨i1, ī2|Tr Ŵp1|j1, j2⟩ =
1

|G|3
∑

g1,gp1 ,gp2∈G

χ∗
i1
(gp1)χ

∗
i2
(g1gp2g

−1
1 gp1)χj1(gp1)·

· χj2(gp2)χF (gp1), (3.4.30)

⟨i1, ī2|Tr Ŵp3|j1, j2⟩ =
1

|G|3
∑

g1,gp1 ,gp2∈G

χ∗
i1
(gp1)χ

∗
i2
(g1gp2g

−1
1 gp1)χj1(gp1)·

· χj2(gp2)χF (g1gp2g−1
1 gp1). (3.4.31)

In order to compute them we have to specify the gauge group G and a representation F for the
magnetic part.

Wilson loop observable for D4 theory

Consider the group G = D4, let us use as a faithful representation the non-Abelian j = 4
representation. For each λ ∈ [0, 1] we compute the expectation value of Wilson loop operators
over the ground state of the Hamiltonian at that specific λ. The results are plotted in Fig. 3.11.
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Chapter 4

QUANTUM SIMULATION RESULTS
for DIHEDRAL THEORIES

In this chapter we discuss how to simulate on a digital quantum computer a D4 and D3 lattice
gauge theory on a one-plaquette and two-plaquette system. We try to apply the generic proce-
dure of quantum simulation discussed in chapter 2 to the specific cases of our gauge theories,
describing the encoding and how to implement the high level quantum gates required to real-
ize the evolution operator. Once the quantum algorithm is prepared we simulate it using the
software Qiskit, trying to reproduce all interesting results that we reviewed in chapter 3 on
a D4 and D3 lattice gauge theory on a one-plaquette and two-plaquette system.

4.1 Quantum algorithm for D4

In this section we discuss how to encode the 8 degrees of freedom of each edge of a D4

lattice gauge theory in the degrees of freedom of the quantum simulator. We also see how to
implement the set of gates requested to reproduce the time evolution and how to prepare any
particular eigenstate of the Hamiltonian.

4.1.1 Encoding

There are 8 possible group elements g ∈ D4, so in order to represents all of them we need 3
qubits (23 = 8). We encode the group elements in the quantum register as shown in Table 4.1.
Let us stress some properties of this encoding choice. Given a generic group element of the
group g = rasb ∈ D4, where a = 0, 1, 2, 3 and b = 0, 1, we can encode it in the state |ba1a2⟩,
where b is exactly the exponent of s, while a1, a2 = 0, 1 are the two binary numbers needed to
write a in binary code: a = a12

1 + a22
0.

99



4.1. QUANTUM ALGORITHM FOR D4

g e r r2 r3 s rs r2s r3s
state |000⟩ |001⟩ |010⟩ |011⟩ |100⟩ |101⟩ |110⟩ |111⟩

Table 4.1: Encoding table of the group D4. A generic group element g =
rasb, where a = 0, 1, 2, 3 and b = 0, 1, can be encoded in the state |ba1a2⟩,
where b is exactly the exponent of s, while a1, a2 = 0, 1 are the two binary
numbers needed to write a in binary code.

|b⟩

|a1⟩

|a2⟩

|g⟩

X X

|g−1⟩

Figure 4.1: Quantum circuit that implements the inversion gate U−1 |g⟩ =
|g−1⟩ (2.3.7) for the group D4.

A group element g ∈ D4, encoded in 3 qubits, is associated at each eadge, then given a lattice
with E edges, we need 3E qubits in order to represent the entire lattice in a quantum circuit.

4.1.2 Evolution operator

In this section we show how we constructed the high level quantum gates needed to simulate
a D4 lattice gauge theory. The gates implemented in this section were introduced in section
2.3.2. Once these high level gates are implemented we can realized the magnetic evolution
operator for a single plaquette U (p)

B (∆t) using the quantum circuit in Fig. 2.1, while the electric
evolution operator for a single link U (l)

E (∆t) is realized by the quantum circuit in Fig. 2.2. The
total evolution gate U(t) for a single plaquette is shown in Fig. 2.3. A discussion on gates
for a generic D2n gauge theory can be found in [2]. All circuits were implemented using the
software Qiskit [45].

Inversion gate

The inversion gate U−1 is defined in the relation (2.3.7). Looking at the inversion Table 3.2 we
can see that the inversion operation simply exchanges the states |r⟩ = |001⟩ and |r3⟩ = |011⟩.
We can realize this operation using a Toffoli gate. The gate is represented in Fig. 4.1.
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|d⟩

|c1⟩

|c2⟩

|b⟩

|a1⟩

|a2⟩

|g⟩ |g⟩

|h⟩ |gh⟩

Figure 4.2: Quantum circuit that implements the multiplication gate
U× |g⟩ |h⟩ = |g⟩ |gh⟩ (2.3.8) for the group D4. Given two input states
|g = rcsd⟩ and |h = rasb⟩, the first CNOT gate implements b⊕2 d, the first
Toffoli gate implements (−1)da, while the last three gates perform the sum
c⊕4 (−1)da.

Multiplication gate

The multiplication gate U× is defined in the relation (2.3.8). For the realization of the circuit
we use the following property: given two elements of the group g = rcsd and h = rasb, with
a, c = 0, 1, 2, 3 and b, d = 0, 1, their product is given by

g · h = rcsd · rasb = rc
⊕

4(−1)dasb
⊕

2 d, (4.1.1)

where
⊕

4 and
⊕

2 are a sum modulo 4 and modulo 2 respectively. The property (4.1.1) can
be directly verifies on the Cayley Table 3.1. The gate is represented in Fig. 4.2. The first
CNOT gate implements the operation b ⊕2 d, the first Toffoli gate implements (−1)da, so it
transforms the sum modulo 4 in a difference modulo 4 if and only if d = 1. Then the last three
gates perform the sum c⊕4 (−1)da.

Trace gate

The trace gate Utr(θ) is a parametric gate defined in the relation (2.3.9). Considering the
non-Abelian representation ρ4, one can see that

Tr(g) = Tr
(
rasb

)
= 2δb,0 cos

(πa
2

)
. (4.1.2)

The trace gate Utr(θ) can be implemented by the quantum circuit in Fig. 4.3.
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|b⟩

|a1⟩

|a2⟩

|g⟩

X X

|g⟩ e2iθδb,0 cos(πa/2)P (−2θ) P̄ (2θ)

X X

Figure 4.3: Quantum circuit that implements the trace gate Utr(θ) |g⟩ =
|g⟩ eiθReTr[ρ4(g)] (2.3.9) for the group D4. The gate P (θ) is the phase gate,
described by the operator P (θ) = diag(1, eiθ), while the gate P̄ (θ) =
XP (θ)X is described by the operator P̄ (θ) = diag(eiθ, 1).

Fourier transform gate

The Fourier transform gate UF allows us to move from the group element basis {|g⟩} to the
representation basis {|jmn⟩} and it is defined in (2.3.10). This gate is defined as

UF =
∑
g∈D4

4∑
j=0

dj∑
m,n=1

√
dj
8
ρj(g)mn |jmn⟩ ⟨g| , (4.1.3)

where (ρj)mn is the mn component of the j-th representation, and |ρj,mn⟩ is the correspond-
ing element in the representation basis. The matrix elements of UF are given by

⟨jmn|UF |g⟩ =
√
dj
8
ρj(g)mn. (4.1.4)

Given the expression (4.1.4) for the matrix elements of UF we can easily construct the corre-
sponding 8× 8 matrix:

UF =
1√
8



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1√
2 i

√
2 −

√
2 −i

√
2 0 0 0 0

0 0 0 0
√
2 i

√
2 −

√
2 −i

√
2

0 0 0 0
√
2 −i

√
2 −

√
2 i

√
2√

2 −i
√
2 −

√
2 i

√
2 0 0 0 0


, (4.1.5)

and using the Qiskit class Operator we can transform this matrix in the corresponding
3-qubits quantum circuit. The same it can be done for the Hermitian conjugate of the Fourier
transform gate U †

F (2.3.12).
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|b⟩

|a1⟩

|a2⟩

|g⟩ |g⟩χ1(g)

Z

(a) The character gate Uχ1 .

|b⟩

|a1⟩

|a2⟩

|g⟩

Z

|g⟩χ2(g)

(b) The character gate Uχ2 .

|b⟩

|a1⟩

|a2⟩

|g⟩ |g⟩χ3(g)

Z

(c) The character gate Uχ3 .

Figure 4.4: Abelian character gates Uχj
for the representations j = 1, 2, 3

in the D4 gauge theory.

Phase gate

The phase gate Uph(∆t) is defined as the diagonal form of the electric evolution operator U (l)
E

for the single link l as shown in the expression (2.3.14). The 8 × 8 matrix associated to this
3-qubit operator is

Uph(∆t) =



1 0 0 0 0 0 0 0
0 e−iλEf(1)∆t 0 0 0 0 0 0
0 0 e−iλEf(2)∆t 0 0 0 0 0
0 0 0 e−iλEf(3)∆t 0 0 0 0
0 0 0 0 e−iλEf(4)∆t 0 0 0
0 0 0 0 0 e−iλEf(4)∆t 0 0
0 0 0 0 0 0 e−iλEf(4)∆t 0
0 0 0 0 0 0 0 e−iλEf(4)∆t


. (4.1.6)

The 3-qubit quantum circuit that implement this matrix can be obtained using the Qiskit
class Operator. Since the phase gate Uph depends on the electric Hamiltonian, it depends
also on the choice of the generating subset Γ, through the function f(j) (1.4.41).

Abelian character gates

The Abelian character gates Uχj
, with j = 0, 1, 2, 3, are defined in the relation (2.3.16). Look-

ing at the character Table 3.3 we see that Uχ0 is trivially the identity, Uχ1 is realized by the
quantum circuit in Fig. 4.4a, Uχ2 by the one in Fig. 4.4b and Uχ3 by the one in Fig. 4.4c.

4.1.3 State preparation
Now let’s see how to prepare two particular states, the electric ground state |Eλ=1

0 ⟩ and the
magnetic ground state |Eλ=0

0 ⟩, that are the ground states of the Kogut-Susskind Hamiltonian
(1.4.45) in the limit where λ = 1 (λB = 0) and λ = 0 (λE = 0) respectively. Using the same
approach one can construct also the excited eigenstates both in the electric and magnetic limit.
If instead one is interested in an energy eigenstate at a generic λ ̸= 0, 1, one has first to prepare
the corresponding electric or the magnetic eigenstate, and then apply the adiabatic evolution
described in section 2.3.3, slightly changing λ at each Trotter step up to the desired value.
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|e⟩

|e⟩

|e⟩

|e⟩

H⊗3

|0E⟩
H⊗3

H⊗3

H⊗3

Figure 4.5: Quantum circuit to prepare the electric ground state |Eλ=1
0 ⟩ =

|0E⟩ (3.3.5) for the D4 group and in the case of a one-plaquette system.
Each double line represents the three qubits needed to encode an edge.

Electric ground state preparation

The electric ground state |Eλ=1
0 ⟩ is the electric vacuum |0E⟩ that we defined in (3.3.5) and

in (3.4.3) for the one-plaquette and two-plaquette system respectively. In both cases |0E⟩
is an equal weight linear superposition of all possible group element states and so it ca be
prepared applying an Hadamard gate H at each qubit in the |0⟩ state. Recalling that each link
is represented by three qubits, the quantum circuit to prepare the electric ground state |Eλ=1

0 ⟩
in a one-plaquette system is shown in Fig. 4.5. The extension of this circuit to a multiple-
plaquette system is trivial.

Other electric eigenstates

As we saw in sections (3.3.3) and (3.4.3) electric eigenstates for the one and two plaquette
system are the character states {|χi⟩} (3.3.9) and {|i1, i2⟩ , |j, 4̄⟩} (3.4.9, 3.4.10) respectively.
Let us focus on the single plaquette case, the generalization to a multiple plaquette system is
straightforward. Using the expression (3.3.10) for |χj⟩, with j = 0, 1, 2, 3 an Abelian one-
dimensional representation, since χj(g) = ρj(g) and χj(g−1) = χj(g) we can write:

|χj⟩ =
1√
84

∑
g1,g2,g3,g4∈D4

χj(g1)χj(g2)χj(g3)χj(g4) |g1, g2, g3, g4⟩ . (4.1.7)

Then the state |χj⟩ can be obtained starting with the electric vacuum |0E⟩ and applying the
Abelian character gate Uχj

(2.3.16) in Fig. 4.4 to each link of the lattice.
If j = 4, the non-Abelian representation, the procedure is more delicate. From the expressions
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|e⟩

|e⟩

|e⟩

1√
2
(|e⟩ − |r2⟩)

H⊗3 U−1 U−1

|χ4⟩
H⊗3 U−1 U−1

H⊗3

U× U× U× U−1

Figure 4.6: Quantum circuit to prepare the electric eigenstate |χ4⟩ = (|ẽ⟩−
|r̃2⟩)/

√
2 (4.1.9) for theD4 group and in the case of a one-plaquette system.

Each double line represents the three qubits needed to encode an edge.

|0⟩

|0⟩

|0⟩

1√
2
(|e⟩ − |r2⟩)X H

Figure 4.7: Quantum circuit to prepare the electric eigenstate |χ4⟩ = (|ẽ⟩−
|r̃2⟩)/

√
2 (4.1.9) for theD4 group and in the case of a one-plaquette system.

Each double line represents the three qubits needed to encode an edge.

(3.3.9) and (3.3.7) we have that

|χ4⟩ =
1√
8

∑
g∈D4

χj(g) |g̃⟩

=
1√
2
(|ẽ⟩ − |r̃2⟩)

=
1√
83

∑
g1,g2,g3∈D4

1√
2
(|g1, g2, g3, g1g2g−1

3 ⟩ − |g1, g2, g3, r2g1g2g−1
3 ⟩). (4.1.8)

This state can be realized using the quantum circuit in Fig. 4.6, where the state (|e⟩−|r2⟩)/
√
2

in last three qubits is realized by the circuit in Fig. 4.7.

Magnetic ground state preparation

The magnetic ground state |Eλ=0
0 ⟩ is the plaquette state |ẽ⟩ and multiple-plaquette state |ẽp1 , ẽp2⟩

for the one-plaquette and two-plaquette system respectively. We focus just on the preparation
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|e⟩

|e⟩

|e⟩

|e⟩

H⊗3

|ẽ⟩
H⊗3

H⊗3 U−1 U−1

U× U× U×

Figure 4.8: Quantum circuit to prepare the magnetic ground state |Eλ=0
0 ⟩ =

|ẽ⟩ (4.1.9) for the D4 group and in the case of a one-plaquette system. Each
double line represents the three qubits needed to encode an edge.

of the state |ẽ⟩, then the generalization to a multiple plaquette system is straightforward. From
the expression (3.3.7) we have that

|ẽ⟩ = 1√
83

∑
g1,g2,g3∈D4

|g1, g2, g3, g1g2g−1
3 ⟩ , (4.1.9)

where we performed the sum over g4 removing the delta δ(e, g1g2g−1
3 g−1

4 ). From the previ-
ous expression you can see that to prepare the magnetic ground state |ẽ⟩ we can create an
equal weight linear superposition off all group element states for the first three edges g1, g2, g3,
while on the fourth we can act with the multiplication gate U× and the inversion gate U−1 to
reconstruct the state |g1g2g−1

3 ⟩. The circuit that realizes that is represented in Fig. 4.8.

Other magnetic eigenstates

As we saw in sections (3.3.3) and (3.4.3) magnetic eigenstates for the one and two plaquette
system are linear combinations plaquette states {|g̃⟩} (3.3.7) and {|g̃p1 , g̃p2⟩} (3.4.5) respec-
tively. Let us focus on the single plaquette case, the generalization to a multiple plaquette
system is straightforward. The idea is to use the quantum circuit in Fig. 4.6, where in the last
three qubits, that refer to the fourth link of the plaquette, we initialize a superposition of group
element states

∑
g |g⟩, then at the end of the circuit we get the superposition of plaquette states∑

g |g̃⟩. The explicit form of the quantum gates needed to prepare the fourth link for each
magnetic eigenstate is not difficult to to be found.

4.2 Quantum algorithm for D3

In this section we discuss how to encode the 8 degrees of freedom of each edge of a D3

lattice gauge theory in the degrees of freedom of the quantum simulator. We also see how to
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g e r r2 s rs r2s
state |000⟩ |001⟩ |010⟩ |100⟩ |101⟩ |110⟩

Table 4.2: Encoding table of the group D3. A generic group element g =
rasb, where a = 0, 1, 2 and b = 0, 1, can be encoded in the state |ba1a2⟩,
where b is exactly the exponent of s, while a1, a2 = 0, 1 are the two binary
numbers needed to write a in binary code. Since a < 3 we cannot have
a1 = a2 = 1.

implement the set of gates requested to reproduce the time evolution and how to prepare any
particular eigenstate of the Hamiltonian.

4.2.1 Encoding

There are 6 possible group elements g ∈ D3, so in order to represents all of them we need 3
qubits (23 = 8). Notice that in the quantum simulator we have an Hilbert space that is bigger
than the Hilbert space of the physical model and we will have to deal with this redundancy.
We encode the group elements in the quantum register as shown in Table 4.2.
Let us stress some properties of this encoding choice. Given a generic group element of the
group g = rasb ∈ D3, where a = 0, 1, 2 and b = 0, 1, we can encode it in the state |ba1a2⟩,
where b is exactly the exponent of s, while a1, a2 = 0, 1 are the two binary numbers needed
to write a in binary code. Since a is limited to assume the values 0, 1, 2, we have that the
states |011⟩ and |111⟩ (so when a = 3 and a1 = a2 = 1) of the quantum simulator have
no counterparts in the physical model. During the simulation we will try never to initialize
the states |011⟩ and |111⟩ and during the time evolution not to obtain these states, designing
quantum gates that act diagonally on them. With respect to D4 this is a complication.
A group element g ∈ D3, encoded in 3 qubits, is associated at each link, then given a lattice
with E edges, we need 3E qubits to represents it on a quantum circuit.

4.2.2 Evolution operator

In this section we show how we constructed the high level quantum gates needed to simulate
a D3 lattice gauge theory. The gates implemented in this section were introduced in section
2.3.2. Once these high level gates are implemented we can realized the magnetic evolution
operator for a single plaquette U (p)

B (∆t) using the quantum circuit in Fig. 2.1, while the electric
evolution operator for a single link U (l)

E (∆t) is realized by the quantum circuit in Fig. 2.2.
The total evolution gate U(t) for a single plaquette is shown in Fig. 2.3. All circuits were
implemented using the software Qiskit [45].
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|b⟩

|a1⟩

|a2⟩

|g⟩

X X

|g−1⟩

Figure 4.9: Quantum circuit that implements the inversion gate U−1 |g⟩ =
|g−1⟩ (2.3.7) for the group D3.

|d⟩

|c1⟩

|c2⟩

|b⟩

|a1⟩

|a2⟩

|g⟩ |g⟩

|h⟩ |gh⟩

Figure 4.10: Quantum circuit that implements the multiplication gate
U× |g⟩ |h⟩ = |g⟩ |gh⟩ (2.3.8) for the group D3. Given two input states
|g = rcsd⟩ and |h = rasb⟩, the first CNOT gate implements b ⊕2 d, then
there are three Toffoli gates that implement ⊕3a → ⊕3(−1)da, there are 4
gates that implement ⊕3 → ⊕4, while the last three gates perform the sum
c⊕4 (−1)da.

Inversion gate

The inversion gate U−1 is defined in the relation (2.3.7). Looking at the inversion Table 3.6 we
can see that the inversion operation simply exchanges the states |r⟩ = |001⟩ and |r2⟩ = |010⟩.
We can realize this operation using three Toffoli gates. The quantum circuit is represented in
Fig. 4.9.

Multiplication gate

The multiplication gate U× is defined in the relation (2.3.8). For the realization of the circuit
we use the following property, given two elements of the group g = rcsd and h = rasb, with
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|b⟩

|a1⟩

|a2⟩

|g⟩

X P (2θ) X

|g⟩ e2iθδb,0 cos(2πa/3)P (−3θ)

P (−3θ)

Figure 4.11: Quantum circuit that implements the trace gate Utr(θ) |g⟩ =
|g⟩ eiθReTr[ρ2(g)] (2.3.9) for the group D3. The gate P (θ) is the phase gate,
described by the operator P (θ) = diag(1, eiθ).

a, c = 0, 1, 2 and b, d = 0, 1, their product is given by

gh = rcsd · rasb = rc
⊕

3(−1)dasb
⊕

2 d, (4.2.1)

where
⊕

3 and
⊕

2 are a sum modulo 3 and modulo 2 respectively. The property (4.1.1) can
be directly verifies on the Cayley Table 3.5. Implementing the sum modulo 3 using binary
numbers is not trivial, but it can be done using some more gates with respect to the D4 case
[14]. The gate is represented in Fig. 4.10. The first CNOT gate implements the operation
b⊕2 d, then there are three Toffoli gates that implement ⊕3a→ ⊕3(−1)da, so they transforms
the sum modulo 3 in a difference modulo 3 if and only if d = 1. Then there are four gates that
transform the sum modulo 4 in a sum modulo 3, and finally the last three gates perform the
sum c⊕4 (−1)da.

Trace gate

The trace gate Utr(θ) is a parametric gate defined in the relation (2.3.9). Considering the
non-Abelian representation ρ2, one can see that

Tr(g) = Tr
(
rasb

)
= 2δb,0 cos

(
2πa

3

)
. (4.2.2)

The figure of the gate is Fig. 4.11.

Fourier transform gate

The Fourier transform gate UF allows us to move from the group element basis {|g⟩} to the
representation basis {|jmn⟩} and it is defined in (2.3.10). This gate is defined as

UF =
∑
g∈D3

2∑
j=0

dj∑
m,n=1

√
dj
6
ρj(g)mn |jmn⟩ ⟨g| , (4.2.3)
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where (ρj)mn is the mn component of the j-th representation, and |ρj,mn⟩ is the correspond-
ing element in the representation basis. The matrix elements of UF are given by

⟨jmn|UF |g⟩ =
√
dj
6
ρj(g)mn. (4.2.4)

Given the expression (4.2.4) for the matrix elements of UF we can easily construct the corre-
sponding 8× 8 matrix:

UF =
1√
6



1 1 1 0 1 1 1 0
1 1 1 0 −1 −1 −1 0√
2 −

√
2
2
+ i

√
6
2

−
√
2
2
− i

√
6
2

0 0 0 0 0
0 0 0 1 0 0 0 0

0 0 0 0
√
2 −

√
2
2
+ i

√
6
2

−
√
2
2
− i

√
6
2

0

0 0 0 0
√
2 −

√
2
2
− i

√
6
2

−
√
2
2
+ i

√
6
2

0√
2 −

√
2
2
− i

√
6
2

−
√
2
2
+ i

√
6
2

0 0 0 0 0
0 0 0 0 0 0 0 1


, (4.2.5)

and using the Qiskit class Operator we can transform this matrix in the corresponding
3-qubits quantum circuit. Recall that the states |011⟩ and |111⟩ have no physical counterparts,
and the matrix UF is designed in such a way that it acts diagonally on these states.
The same procedure can be applied to construct the Hermitian conjugate of the Fourier trans-
form gate U †

F (2.3.12).

Phase gate

The phase gate Uph(∆t) is defined as the diagonal form of the electric evolution operator U (l)
E

for the single link l as shown in the expression (2.3.14). The 8 × 8 matrix associated to this
3-qubit operator is

Uph(∆t) =



1 0 0 0 0 0 0 0
0 e−iλEf(1)∆t 0 0 0 0 0 0
0 0 e−iλEf(2)∆t 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 e−iλEf(2)∆t 0 0 0
0 0 0 0 0 e−iλEf(2)∆t 0 0
0 0 0 0 0 0 e−iλEf(2)∆t 0
0 0 0 0 0 0 0 1


. (4.2.6)

The 3-qubit quantum circuit that implement this matrix can be obtained using the Qiskit
class Operator. Since the phase gate Uph depends on the electric Hamiltonian, it depends
also on the choice of the generating subset Γ, through the function f(j) (1.4.41). Notice that
Uph acts diagonally on the states |011⟩ and |111⟩.
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|0⟩

|0⟩

|0⟩

H

|011⟩R X X

H

Figure 4.12: Quantum circuit H that prepares the electric ground state
|0E⟩ = |011⟩ for the D3 group on a single link. The gate R is the rota-
tion (4.2.7).

4.2.3 State preparation

Now let’s see how to prepare two particular states, the electric ground state |Eλ=1
0 ⟩ and the

magnetic ground state |Eλ=0
0 ⟩, which are the ground state of the Kogut-Susskind Hamiltonian

(1.4.45) in the limit where λ = 1 (λB = 0) and λ = 0 (λE = 0) respectively. Using the same
approach one can construct also the excited eigenstates both in the electric and magnetic limit.
If instead one is interested in an energy eigenstate at a generic λ ̸= 0, 1, one has first to prepare
the corresponding electric or the magnetic eigenstate, and then apply the adiabatic evolution
described in section 2.3.3, slightly changing λ at each Trotter step up to the desired value.

Electric ground state preparation

The electric ground state |Eλ=1
0 ⟩ is the electric vacuum |0E⟩ that we defined in (3.3.5) and in

(3.4.3) for the one-plaquette and two-plaquette system respectively. In both cases |0E⟩ is a
equal weight linear superposition of all possible group element states. While in the D4 theory
the electric vacuum can be prepared applying an Hadamard gate H at each qubit in the |0⟩
state, this is no more true for a D3 theory, since the states |011⟩ and |111⟩ have no physical
counterparts and we don’t want them to appear in the quantum register.
Consider the three-qubit quantum register that represents a single link, the quantum circuit
represented in Fig. 4.12, let’s call it H, prepares the electric ground state of a single link in a
D3 theory. In the circuit appears the single qubit gate R, that is the rotation described by the
matrix

R =

(√
2√
3

− 1√
3

1√
3

√
2√
3

)
. (4.2.7)

Recalling that each link is represented by three qubits, the quantum circuit to prepare the
electric ground state |Eλ=1

0 ⟩ in a one-plaquette system is shown in Fig. 4.5, where you have to
replace the Hadamard gates H⊗3 with the gates H. The extension of this circuit to a multiple
plaquette system is trivial.
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Other electric eigenstates

As we saw in sections (3.3.4) and (3.4.4) electric eigenstates for the one and two plaquette
system are the character states {|χi⟩} (3.3.9) and {|i1, i2⟩ , |j, 2̄⟩} (3.4.9, 3.4.10) respectively.
The preparation of these states is completely analog to what we have seen for D4 in section
4.1.3.

Magnetic ground state preparation

The magnetic ground state |Eλ=0
0 ⟩ is the plaquette state |ẽ⟩ and multiple-plaquette state |ẽp1 , ẽp2⟩

for the one-plaquette and two-plaquette system respectively. We focus just on the preparation
of the state |ẽ⟩, then the generalization to a multiple plaquette system is straightforward. The
circuit that realizes that is the same of D4, the one represented in Fig. 4.8, you have only to
replace the Hadamard gates H⊗3 with the gates H.

Other magnetic eigenstates

As we saw in sections (3.3.4) and (3.4.4) electric eigenstates for the one and two plaquette sys-
tem are linear combinations plaquette states {|g̃⟩} (3.3.7) and {|g̃p1 , g̃p2⟩} (3.4.5) respectively.
The preparation of these states is completely analog to what we have seen for D4 in section
4.1.3.

4.3 Results of the quantum simulation
In this section we illustrate the results of quantum simulations, in order to verify if they are
able to reproduce the theoretical results discussed in chapter 3. In particular we consider a one-
plaquette system and we look at its full energy spectrum for both D4 and D3 gauge theories
and the Wilson loop observable over the ground state for the group D4. Then we consider
a two-plaquette system and we look at the ground state energy for both D4 and D3 gauge
theories and Wilson loop observables over the ground state for the group D4.

4.3.1 One-plaquette system
D4 lattice gauge theory

In order to simulate a one-plaquette D4 lattice gauge theory we need 13 qubits: 12 qubits are
required to encode the physical degrees of freedom of the 4 edges, while an ancillary qubit is
needed to perform the measurements, as we saw in section 2.4.
The circuit that we use to measure the energy eigenvalues is shown in Fig. 4.13. The structure
of the circuit is the same that we see in Fig. 2.4, where we have an ancillary qubit a, and a
quantum register of 12 qubits (each double line represents the three qubits associated to a link
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|+⟩a

|e⟩

|e⟩

|e⟩

|e⟩

Rx(π/2)

SP Uad(Ns∆t) U(ϵ)

Figure 4.13: Quantum circuit to measure the expectation value of the energy
in the one-plaquette system. Each double line represents the 3 qubits of an
edge. The structure of the circuit is the same that we see in Fig. 2.4, with
V = I and W = U(ϵ), the evolution operator shown in Fig. 2.3. The gate
SP prepares the electric (or magnetic) ground state, hence it corresponds
to the gate shown in Fig. 4.5 (or Fig. 4.8). The gate Uad(Ns∆t) performs
an adiabatic evolution in Ns Trotter steps with a time step of ∆t, slightly
modifying the coupling constant λ.

of the lattice). We are interested in measuring the expectation value of the energy ⟨Eλ
0 |H|Eλ

0 ⟩
over the ground state of the HamiltonianH for some fixed coupling λ. Referring to the gates in
Fig. 2.4 we put V = I and W = UQ(ϵ) = U(ϵ), the evolution operator of the Hamiltonian for
a time interval ϵ that is shown in Fig. 2.3. Then we measure the ancillary qubit in the y-basis
applying the Rx(π/2) gate (2.4.14). The ground state |Eλ

0 ⟩ whose energy we are interested
in is prepared in the quantum register using the quantum gates SP and Uad(Ns∆t). The gate
SP prepares the electric (or magnetic) ground state using the quantum circuit in Fig. 4.5 (or
in Fig. 4.8), hence it prepares the state |Eλ=1

0 ⟩ (or |Eλ=0
0 ⟩). The gate Uad(Ns∆t) performs

the adiabatic evolution described in section 2.3.3 in Ns Trotter steps, slightly changing the
coupling constant λ from 1 (or 0) up to the desired final value, getting the state |Eλ

0 ⟩. This is
the ground state of which we measure the energy.
The same procedure can be applied also to measure the energy of other eigenstates |Eλ

n⟩, not
only the ground state n ̸= 0. You can still use the circuit in Fig. 4.13, with the only difference
that this time the gate SP prepares an electric (or magnetic) eigenstate |Eλ=1

n ⟩ (or |Eλ=0
n ⟩)

using the quantum circuits described in section 3.3.3 (or 3.3.3).
The parameters that have to be fixed are the time interval ϵ, the time step ∆t and the number
of Trotter steps Ns. We fix the time step ∆t = 0.01 ≪ 1, a sufficient small quantity to make
precise the Trotter approximation. The time interval ϵ should be as small as possible, as we
see in (2.4.8), then we fix ϵ = ∆t. The choice of the number of Trotter steps Ns is critical
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and delicate. From the expression (2.3.25) we can see that the Trotter error is minimized by
choosing Ns = 1, but in this way we are not taking in account the adiabatic approximation
(2.3.27), and this is a problem since this is the main source of errors. Suppose we want to
evolve the magnetic ground state |Eλ=0

0 ⟩, where the coupling constant is λ(0) = 0, up to the
ground state |Eλ̄

0 ⟩ of the Hamiltonian where λ̄ = λ(Ns∆t). At each Trotter step of the adiabatic
evolution we increase the coupling of ∆λ = λ̄/Ns. In order for the adiabatic approximation to
be precise we have to satisfy the relation (2.3.27), so one should have

Ns ≫
λ̄

∆t∆E2
, (4.3.1)

where ∆E2 is the minimum energy gap between the ground state and the first excitation. In
a D4 lattice gauge theory with a single plaquette, from the numerical analysis in Fig. 3.5, we
can see that ∆E = 2.38 using the generating subset Γ1, and ∆E = 2.65 using the generating
subset Γ2. Therefore a good choice for the number of steps could be Ns = 2000λ̄, that means
a coupling step ∆λ = 0.0005, hence 2000 steps to move from λ = 0 to λ = 1. From some
empirical tests we verify that we get good results starting from a much small number of steps,
like Ns ≈ 500λ̄, hence ∆λ ≈ 0.002, provided a final coupling constant not too large λ̄ ≲ 0.5
(for larger λ one could start from the electric ground state, where λ = 1, and decrease the cou-
pling constant instead of starting from the magnetic ground state, where λ = 0). In practical
applications one wants to minimize the depth of the circuit, so the number of Trotter steps Ns,
this can be achieved also increasing the time step ∆t at the price of less precision in the Trotter
approximation.
The results of the quantum circuits are plotted in Fig. 4.14. In these plots you can see contin-
uous lines, which represent the exact results that we obtained by a numerical diagonialization
of the Hamiltonian, while dots represent the results of the quantum circuit simulation, differ-
ent colors identify different eigenstates and the error bars are the Trotter errors (2.3.25). The
results of the quantum circuit reproduce quite well the the expected behaviour of the spectrum,
except when two states are degenerate both in the magnetic and in the electric limit. If two
states are degenerate, then the energy gap is zero ∆E = 0 and the adiabatic approximation no
longer applies. Almost all these eigenstates are prepared starting by the corresponding electri-
cal eigenstate |χj⟩ (λ = 1) and then evolving it adiabatically, and this can be seen from the fact
that the Trotter error bars increase decreasing λ. The only exception is the blue state with Γ2,
where we start with the magnetic eigenstate |r̃2⟩ and then we increase λ adiabatically, indeed
the error bars for this state increase with λ. The reason behind this difference is to avoid the
degeneracy of this state in the electric limit.
In Fig. 4.15 you can see results of the quantum circuit simulation regarding the expectation
value of the Wilson loop operator over the ground state. Even in this case there is a good
agreement between the simulation and the theoretical predictions.
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(a) Energy eigenvalues using the generating subset
Γ1.

(b) Energy eigenvalues using the generating subset
Γ2.

Figure 4.14: Energy eigenvalues as a function of the coupling constant λ
for a D4 gauge theory on a single-plaquette system. Continuous lines are
the results from the exact diagonalization of the Hamiltonian, dots refer to
the results obtained by the quantum circuit (qc) and the relative error bars
come from the Trotter error. The red elements refer to the ground state (gs),
the others to the excited states (exc). For these simulations we use a number
of steps equal to Ns = 1000λ and a time step ∆t = 0.01.
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Figure 4.15: Wilson loop observable Tr Ŵ as a function of the coupling
constant λ for a D4 gauge theory on a single-plaquette system. Continuous
lines are the results from the numerical evaluation of the expected value of
Tr Ŵ on the ground state of the Hamiltonian, dots refer to the results ob-
tained by the quantum circuit (qc). Red elements refer to Γ1, blue elements
to Γ2.

D3 lattice gauge theory

In order to simulate a one-plaquette D3 lattice gauge theory we need 13 qubits: 12 qubits are
required to encode the physical degrees of freedom of the 4 edges, while an ancillary qubit is
needed to perform the measurements, as we saw in section 2.4.
The circuit that we used to measure the energy eigenvalues is the same of D4 and it is shown
in Fig. 4.13. The only differences, with respect to the D4 case, are first in the form of high
level gates used to construct the evolution operator U(t) in Fig. 2.3, and also the structure of
the state preparation gate SP . If one wants to prepare the electric (or magnetic) ground state
should use the quantum circuit in Fig. 4.5 (or in Fig. 4.8) replacing the Hadamard gates H⊗3

with the gate H in Fig. 4.12.
As for D4 we fix the time step to ∆t = 0.01, the time interval ϵ = ∆t. In order for the
adiabatic approximation to be precise we have to satisfy the relation (4.3.1). In a D3 lattice
gauge theory with a single plaquette, from the numerical analysis in Fig. 3.6, we can see that
∆E = 3.01 using the generating subset Γ1, and ∆E = 2.92 using the generating subset Γ2.
Therefore a good choice for the number of steps could be Ns = 1000λ̄, that means a coupling
step ∆λ = 0.001, hence 1000 steps to move from λ = 0 to λ = 1. From some empirical tests
we verify that for D3 we get good results starting from a much small number of steps, like
Ns ≈ 200λ̄.
The results of the quantum circuits are plotted in Fig. 4.16. In these plots you can see continu-
ous lines, which represent the exact results that we obtained by a numerical diagonialization of
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(a) Energy eigenvalues using the generating subset
Γ1.

(b) Energy eigenvalues using the generating subset
Γ2.

Figure 4.16: Energy eigenvalues as a function of the coupling constant λ
for a D3 gauge theory on a single-plaquette system. Continuous lines are
the results from the exact diagonalization of the Hamiltonian, dots refer to
the results obtained by the quantum circuit (qc) and the relative error bars
come from the Trotter error. The red elements refer to the ground state, the
others to excited states (exc). For these simulations we use a number of
steps equal to Ns ≈ 800λ.

the Hamiltonian, while dots represent the results of the quantum circuit simulation, and error
bars are Trotter errors (2.3.25). The results of the quantum circuit reproduce quite well the
expected behaviour of the spectrum. Different colors identify different eigenstates. In the Γ2,
Fig. 4.16a case we begin the adiabatic evolution of all states from the magnetic limit (λ = 0),
since all magnetic eigenstates are non-degenerate, while in the Γ2, Fig. 4.16b case we begin
the adiabatic evolution of all states from the magnetic limit (λ = 0), for the same reason.

4.3.2 Two-plaqutte system

D4 lattice gauge theory

In order to simulate a two-plaquette D4 lattice gauge theory we need 22 qubits: 21 qubits are
required to encode the physical degrees of freedom of the 7 edges, while an ancillary qubit is
needed to perform the measurements, as we saw in section 2.4.
The circuit that we use to measure the energy eigenvalues is completely analog to the one
shown in Fig. 4.13, the only difference is that now, with two plaquettes, the qubit register
contains 7 double lines (21 qubits). The ground state |Eλ

0 ⟩ whose energy we are interested in
is prepared in the quantum register using the quantum gates SP and Uad(Nsδt). The gate SP
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prepares an electric (or magnetic) ground state using the two-plaquette analog of the quan-
tum circuit in Fig. 4.5 (or in Fig. 4.8), hence it prepares the state |Eλ=1

0 ⟩ (or |Eλ=0
0 ⟩). The

gate Uad(Ns∆t) performs the adiabatic evolution described in section 2.3.3 inNs Trotter steps,
slightly changing the coupling constant λ from 1 (or 0) up to the desired final value, getting
the state |Eλ

0 ⟩. This is the ground state of which we measure the energy.
The parameters that have to be fixed are the time interval ϵ, the time step ∆t and the number
of Trotter steps Ns. We fix the time step ∆t = 0.01 ≪ 1 a sufficient small quantity to make
precise the Trotter approximation. Then we fix the time interval ϵ to ϵ = ∆t. In a D4 lattice
gauge theory with two plaquette, from the numerical analysis in Fig. 3.9, we can see that
∆E = 2.13 using the generating subset Γ1, and ∆E = 2.38 using the generating subset Γ2.
Therefore a good choice for the number of steps could beNs = 25000λ̄, that means a coupling
step ∆λ = 0.0004, hence 2500 steps to move from λ = 0 to λ = 1. The simulation of 22 is
very demanding, in terms of computational resources, so we use much less Trotter steps, still
obtaining good results.
The results of the quantum circuits are plotted in Fig. 4.17. In these plots you can see contin-
uous lines, which represent the exact results that we obtained by a numerical diagonialization
of the Hamiltonian, while dots represent the results of the quantum circuit simulation, and the
error bars are the Trotter errors (2.3.25). The results of the quantum circuit reproduce quite
well the expected behaviour of the spectrum. In both plots the ground state for an arbitrary λ is
realized starting by the corresponding electrical ground state |0, 0⟩ (λ = 1) and then evolving
it adiabatically.
In Fig. 4.18 you can see results of the quantum circuit simulation regarding the expectation
value of the Wilson loop operator over the ground state. Even in these cases there is a good
agreement between the simulation and the theoretical predictions.

D3 lattice gauge theory

In order to simulate a two-plaquette D3 lattice gauge theory we need 22 qubits: 21 qubits are
required to encode the physical degrees of freedom of the 7 edges, while an ancillary qubit is
needed to perform the measurements, as we saw in section 2.4.
The circuit that we used to measure the energy eigenvalues is completely analog to the one
used to simulate a two-plaquette D4 theory. The only differences with respect to the D4 cases
are first in the form of the high level gates use to construct the evolution operator U(t) in Fig.
2.3, and also the structure of the state preparation gate SP . If one wants to prepare the electric
(or magnetic) ground state should use the two-plaquette version quantum circuit in Fig. 4.5 (or
in Fig. 4.8) replacing the Hadamard gates H with the gates H in Fig. 4.12.
As for D4 we the time step ∆t = 0.01 and the time interval ϵ = ∆t. In a D3 lattice gauge the-
ory with two plaquette, from the numerical analysis in Fig. 3.10, we can see that ∆E = 2.77
using the generating subset Γ1, and ∆E = 2.66 using the generating subset Γ2. Therefore
a good choice for the number of steps could be Ns = 20000λ̄, that means a coupling step
∆λ = 0.0005, hence 2000 steps to move from λ = 0 to λ = 1. The simulation of 22 is very

118



CHAPTER 4. QUANTUM SIMULATION RESULTS FOR DIHEDRAL THEORIES

(a) Energy of the ground state using the generating
subset Γ1.

(b) Energy of the ground state using the generating
subset Γ2.

Figure 4.17: Energy of the ground state (gs) as a function of the coupling
constant λ for a D4 gauge theory on a two-plaquette system. Continuous
lines are the results from the exact diagonalization of the Hamiltonian, dots
refer to the results obtained by the quantum circuit (qc) and the relative error
bars come from the Trotter error. For these simulations we use a number of
steps equal to Ns ≈ 1000λ and a time step ∆t = 0.01.

(a) Wilson loops over the ground state using Γ1. (b) Wilson loops over the ground states using Γ2.

Figure 4.18: Wilson loops over the ground state (gs) as a function of the
coupling constant λ for a D4 gauge theory on a two-plaquette system. Con-
tinuos line are the exact results, the dots refer to the results obtained by the
quantum circuit (qc). For these simulations we used a number of steps equal
to Ns ≈ 1000λ and a time step ∆t = 0.01.
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(a) Energy of the ground state using the generating
subset Γ1.

(b) Energy of the ground state using the generating
subset Γ2.

Figure 4.19: Energy of the ground state (gs) as a function of the coupling
constant λ for a D3 gauge theory on a two-plaquette system. Continuous
lines are the results from the exact diagonalization of the Hamiltonian, dots
refer to the results obtained by the quantum circuit (qc) and the relative error
bars come from the Trotter error. For these simulations we use a number of
steps equal to Ns ≈ 1000λ and a time step ∆t = 0.01.

demanding, in terms of computational resources, so we used much less Trotter steps, obtaining
good results.
The results of the quantum circuits are plotted in Fig. 4.19. In these plots you can see the
continuous lines, that represent the exact results that we obtained by a numerical diagonializa-
tion of the Hamiltonian, while the dots represents the results of the quantum circuit simulation,
and the error bars are the Trotter errors (2.3.25). The results of the quantum circuit reproduce
quite well the the expected behaviour of the spectrum. In both plots the ground state for an
arbitrary λ is realized starting by the corresponding electrical ground state |0, 0⟩ (λ = 1) and
then evolving it adiabatically.

4.3.3 Resources required
The algorithm that we propose in this section can be easily extended to arbitrary large lattice,
the only thing that prevented us from simulating a larger number of plaquettes are the compu-
tational limitation for a classical computer to simulate a quantum circuit with a large number
of qubits. Let us now examine how many quantum resources are required to simulate a lattice
gauge theory on a quantum computer, and how they scale with the size of the lattice.
Consider an N × N two-dimensional lattice, the number of links (and so of qubits) scales as
2N(N − 1) ≈ 2N2, and the number of plaquette scales as (N − 1)2 ≈ N2. If we want to
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implement a single step of the Trotter algorithm we need an electric evolution operator UE
for each link and a magnetic evolution operator UB for each plaquette, hence the number of
operators UE scales as 2N2 and the number of operators UB scales as N2. In principle the
depth of the circuit does not scale at all with the size of the lattice, since at each Trotter step on
each link acts just a single electric operator UE and a maximum of two magnetic operator UB
(a link can be shared by just two plaquettes), and this is regardless of the size N of the circuit.
In practice we expect that the gap ∆E decreases increasing the lattice size N , therefore from
(4.3.1) you see that to keep the same precision in the adiabatic evolution you should increase
the number of Trotter step Ns, hence the number of UB and UE that acts on each qubit, hence
the depth of the circuit.
The quantum gate implemented in Qiskit can be optimised using the transpiler in order to
optimize the circuit for execution on present day noisy quantum systems. This means trying
to reduce the number of circuit operations (expecially the non-local gates) and the depth of
the circuit. For D4, upon optimization, the gate UB has a depth of 480 (368) and contains 856
(627) gates (the second option has more non-local gates), the gate UE has a depth of 116 and
contains 119 gates. For a very basic simulation you need Ns = 100 Trotter steps, so the depth
of the whole circuit will be of the order of 2×105, not affordable for nowadays noisy quantum
computers.
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In this thesis we study the Hamiltonian formulation of a non-Abelian lattice gauge theory using
the dihedral gauge groups D4 and D3. We construct all quantum gates needed to simulate
this theory and we use these gates to realize the quantum circuit that implements the time
evolution operator, using the standard Trotter procedure. Using this circuit, once an initial
state is initialized, it is possible to make it evolve in time, allowing us to measure at any time
the observables we are interested in, like energy or Wilson loops. Using the quantum adiabatic
algorithm it is possible to prepare the ground state of the Hamiltonian for any coupling, starting
from the ground state in the electric (or magnetic) limit, that can be easily initialized in the
quantum register. All simulations of this work are realized using the Qiskit toolkit. Using
these techniques we are able to successfully initialize many relevant states of the one and two
plaquette system (like the electric and magnetic ground state, but also some excited states). We
are also able to reconstruct the full energy spectrum and the values of Wilson loop operators
for one and two plaquette systems in any coupling constant regime. The results obtained
from the quantum circuit are validated by comparing them with the spectra that we get from
a numerical exact diagonalization of the gauge-invariant Hamiltonian, the agreement between
these two techniques is very good. From this result we can deduce that the quantum circuit
is able to successfully describe systems with a higher number of plaquettes, when the exact
diagonalization of the gauge invariant Hamiltonian becomes much more complicated, while
the extension of the quantum algorithm is straightforward. We also discuss the feasibility of
carrying out this simulation on a near-term noisy quantum computer, and conclude that it is
beyond the capability of nowadays quantum computers, but it can be achieved in the future
thanks to the current development of quantum technologies.

Outlooks
Many of the most studied group of symmetries in physics, like SU(3) or SU(2) are non-
Abelian and they contain an infinite number of elements, but it is reasonable to think that
these groups can be well approximated by some of their finite non-Abelian subgroups, like
the dihedral groups Dn, as we did in this thesis, but following the same logic and procedure
it is also possible to do the same for more complicated finite gauge groups that approximate
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better and better the continuous group that we are interested in. A possible choice is the
binary tetrahedral group 2T . Moreover it could be interesting to specify the simulations for
some applications of gauge theories (from condensed matter to Standard Model) or apply the
same technique used in this work to related physical systems, like the quantum double model,
thus paving the way for a wide range of applications. With the development of quantum
technologies this approach for the study of physical systems will become even more efficient
and feasible, providing new tools for studying and understanding physical phenomena.
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Appendix A

Finite group theory

In this appendix we collect some results on finite groups, their representation theory, their
algebra and their character theory. We use as main references [49] and [57], here one can find
the proofs of the theorems of this section. We consider a finite group G, denoting with |G| its
size, i.e. the number of elements that it contains.

A.1 Representation theory
Definition 1. A representation of a group G is a pair (V, ρ) where V is a complex vector space
and ρ : G→ End(V ) is a group homomorphism.

In this thesis we often refer to ρ as the representation itself, but no confusion should arise.

Definition 2. Two representations (V1, ρ1) and (V2, ρ2) are equivalent if there is a one-to-one
and onto linear map T : V1 → V2 such that ρ2(g)T = Tρ1(g) for all g ∈ G.

A representation is called unitary if ρ(g)−1 = ρ(g−1) = ρ(g)† for all g ∈ G.

Definition 3. If (V, ρ) is a representation of G, U is a subspace of V , and ρ(g)u ∈ U for all
g ∈ G and u ∈ U we see that (U, ρ|U) is also a representation of G. In this case we call
(U, ρ|U) a subrepresentation of (V, ρ) and U a invariant subspace of V .

Definition 4. If a representation (V, ρ) contains a proper nonzero subrepresentation, we say
that it is reducible. Otherwise, we say that it is irreducible.

In other words a representation is called irreducible if it does not contain any non-trivial in-
variant subspaces.

Theorem 1. Let G be a finite group and Ĝ the set of equivalence classes of irreducible rep-
resentations of G. Then Ĝ is finite, and the representative of each class can be chosen to be
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unitary.

We label the irreducible representation of a group with the index j, and denote with |Ĝ| the
number of inequivalent irreducible representations inside Ĝ.

A.2 Group algebra
Definition 5. The group algebra C[G] is the set of all functions f : G→ C.

In this group we can define three important binary operations, given f1, f2 ∈ C[G] we have:

1. The Hermitian product
⟨f1, f2⟩ =

∑
g∈G

f ∗
1 (g)f2(g). (A.2.1)

2. The function product
(f1f2)(g) = f1(g)f2(g). (A.2.2)

3. The convolution
f1 ⋆ f2(g) =

1

|G|
∑
h∈G

f1(gh
−1)f2(h). (A.2.3)

An orthonormal basis of the group algebra C[G] is given by the set eh, with h ∈ G, defined
such that eh(g) = δ(h, g) is a Kronecker delta. Any other function f ∈ C[G] can be written as

f =
∑
g∈G

f(g)eg. (A.2.4)

Interpreting the group algebra as a Hilbert space and introducing the Dirac formalism we can
associate eg to the group element state |g⟩.

Definition 6. A class function on a group G is a function which is constant on conjugate
classes, i.e. f(g) = f(hgh−1) for all g, h ∈ G.

A.3 Character theory
Definition 7. We define the character of a representation (V, ρ) to be the map χρ : G → C,
where χρ(g) = Tr ρ(g) for any g ∈ G.

Proposition 1. If χρ is a character of a representation of a finite group G of finite dimension
dρ, then for any g, h ∈ G:

1. χρ(1) = dρ,
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2. χρ(g−1) = χ∗(g),

3. χ(gh) = χ(hg).

Theorem 2. (Burnside’s theorem) Let G be a finite group. Then:

1. If dj is the dimension of the j-th inequivalent irreducible representation of G, and there
are |Ĝ| such, then ∑

j∈Ĝ

d2j = |G|. (A.3.1)

2. The number |Ĝ| of inequivalent irreducible representations of G is equal to the number
of conjugacy classes of G.

If we collect the values for all irreducible characters on all conjugacy classes of G we obtain
the character table, which is a square table useful to collect information about the representa-
tions. Some examples are the Table 3.3 for D4 and Table 3.7 for D3.
There are as many irreducible characters χj as there are inequivalent irreducible representa-
tions ρj . An important result for the characters of irreducible representations is

Theorem 3. The characters of irreducible representations {χj} of a group G form a basis for
the space of class functions on G.

Theorem 4. (Orthogonality theorem for characters) The irreducible characters {χj}, with
j ∈ Ĝ, of a finite group G are orthonormal, in the sense that

1

|G|
∑
g∈G

χ∗
i (g)χj(g) = δi,j. (A.3.2)

The characters also satisfy a different kind of orthogonality relation, where one sums over
characters rather than over group elements:

Theorem 5. The irreducible characters {χi} of a finite group G satisfy

∑
i∈Ĝ

χ∗
i (g)χi(h) =


|G|
|C|

if g, h ∈ C

0 otherwise
, (A.3.3)

where i labels the irreducible characters and |C| is the size of the conjugacy class C

Proposition 2. The convolution of two characters is again a character:

χi ⋆ χj =
|G|
dj
δi,jχj. (A.3.4)
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Hamiltonian matrix elements for
two-plaquette

In this appendix we show the computation of the matrix elements of the Kogut-Susskind
Hamiltonian H (1.4.44) for a two-plaquette system using the basis made of character states
like {|i1, i2⟩} (3.4.9) and {|j1, j̄2⟩} (3.4.10). We perform the calculations for a generic gauge
group G, with generating subset Γ and a faithful representation F . Recall that the Kogut-
Susskind Hamiltonian is made of two non commuting parts, the electric Hamiltonian HE and
the magnetic Hamiltonian HB, such that H = HE +HB.

B.1 Matrix elements of the electric Hamiltonian
Let’s start from the electric part, which is diagonal in the multiple-character states (and we will
see why). For the two-plaquette system the electric Hamiltonian HE (1.4.42) reads out as

HE =
7∑
l=1

H
(l)
E = λE

7∑
l=1

∑
j∈Ĝ

f(j)Pj(l), (B.1.1)

where
H

(l)
E = λE

∑
j∈Ĝ

f(j)Pj(l) (B.1.2)

is the electric Hamiltonian for a single link l, then we have to sum over all 7 links. We recall
that Pj(l) is the projector (1.4.26) onto the subspace of the the representation j of the link l
and the function f(j) is defined in the equation (1.4.41) and it depends on a generating subset
Γ.
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Given the basis states |i1, i2⟩ (3.4.9) consider the matrix element

⟨i1, i2|H(l)
E |j1, j2⟩ = λE

∑
j∈Ĝ

f(j) ⟨i1, i2|Pj(l) |j1, j2⟩ . (B.1.3)

Recall that we can write the state |i1, i2⟩ in terms of the representation basis |jmn⟩ on each link
except for the shared link l = 2, as in the expression (3.4.14). The projector operator Pj(l)
(1.4.26) is diagonal in the representation basis |jmn⟩ and thus from these simple observations
we can see that for l ̸= 2 (all not-shared links):

⟨i1, i2|H(l ̸=2)
E |j1, j2⟩ = λEf(il)δi1,j1δi2,j2 , (B.1.4)

where

il =

{
i1 if l ∈ p1

i2 if l ∈ p2
. (B.1.5)

Instead the computation for the matrix element ⟨i1, i2|H(2)
E |j1, j2⟩ is a bit more complicated.

Let’s start by using the expression (3.4.6) for the multiple-plaquette character states |i1, i2⟩:

⟨i1, i2|H(2)
E |j1, j2⟩ =

1

|G|2
∑

gp1 ,gp2 ,hp1 ,hp2∈G

χ∗
i1
(hp1)χ

∗
i2
(hp2)χj1(gp1)χj2(gp2)·

· ⟨h̃p1 , h̃p2|H
(2)
E |g̃p1 , g̃p2⟩ . (B.1.6)

Consider the expectation value of H(2)
E on two multiple-plaquette states, applying the relation

(3.4.7) we get

⟨h̃p1 , h̃p2|H
(2)
E |g̃p1 , g̃p2⟩ =

1

|G|5
∑

g1,...,g7∈G

∑
h1,...,h7∈G

δ(hp1 , h1h2h
−1
3 h−1

4 )·

· δ(hp2 , h5h6h−1
7 h−1

2 )δ(gp1 , g1g2g
−1
3 g−1

4 )δ(gp2 , g5g6g
−1
7 g−1

2 )·
· ⟨h1, ..., h7|H(2)

E |g1, ..., g7⟩ . (B.1.7)

In the expectation value ⟨h1, ..., h7|H(2)
E |g1, ..., g7⟩, for each link l ̸= 2 we have the appearance

of a delta ⟨hl|gl⟩ = δ(gl, hl), while on the link l = 2 there is the action of H(2)
E that must be
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taken into account:

⟨h2|H(2)
E |g2⟩ =λE

∑
j∈Ĝ

f(j) ⟨h2|Pj(2) |g2⟩

=λE
∑
j∈Ĝ

dj∑
m,n=1

f(j) ⟨h2|jmn⟩ ⟨jmn|g2⟩

=
λE
|G|

∑
j∈Ĝ

dj∑
m,n=1

djf(j)ρj(h2)mnρ
∗
j(g2)mn

=
λE
|G|

∑
j∈Ĝ

dj∑
m,n=1

djf(j)ρj(h2)mnρj(g
−1
2 )nm

=
λE
|G|

∑
j∈Ĝ

djf(j)χj(h2g
−1
2 ), (B.1.8)

where we used in order the equation (B.1.2) for H(2)
E , the definition (1.4.26) of the projector

Pj(2), the duality relation (1.3.20), the definition of the conjugate representation ρ∗j(g) =
ρj(g

−1)T and finally the character χj(g) = Tr ρj(g). If we insert the expression (B.1.8) that
we have just obtained inside the relation (B.1.7), considering also the deltas coming from
⟨hl|gl⟩ = δ(gl, hl) for l ̸= 2, we get:

⟨h̃p1 , h̃p2|H
(2)
E |g̃p1 , g̃p2⟩ =

λE
|G|6

∑
j∈Ĝ

∑
g1,...,g7∈G

∑
h2∈G

δ(hp1 , g1h2g
−1
3 g−1

4 )·

· δ(hp2 , g5g6g−1
7 h−1

2 )δ(gp1 , g1g2g
−1
3 g−1

4 )δ(gp2 , g5g6g
−1
7 g−1

2 )·
· djf(j)χj(h2g−1

2 ) (B.1.9)

=
λE
|G|6

∑
j∈Ĝ

∑
g1,g3,...,g7∈G

δ(hp2 , g5g6g
−1
7 g−1

3 g−1
4 h−1

p1
g1)·

· δ(gp2 , g5g6g−1
7 g−1

3 g−1
4 g−1

p1
g1)djf(j)χj(hp1g

−1
p1
) (B.1.10)

=
λE
|G|6

∑
j∈Ĝ

∑
g1

djf(j)χj(hp1g
−1
p1
)δ(h−1

p2
gp2 , g

−1
1 hp1g

−1
p1
g1)·

·
∑

g3,...,g7∈G

δ(hp2 , g5g6g
−1
7 g−1

3 g−1
4 h−1

p1
g1) (B.1.11)

=
λE
|G|2

∑
j∈Ĝ

∑
g1

djf(j)χj(hp1g
−1
p1
)δ(h−1

p2
gp2 , g

−1
1 hp1g

−1
p1
g1), (B.1.12)

where we used the first delta in (B.1.9) to remove the sum over h2 by imposing that h2 =
g−1
1 hp1g4g3, while using the third delta in (B.1.9) we remove the sum over g2, leaving as
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unique support g2 = g−1
1 gp1g4g3. From the first delta in (B.1.10) we see that g5g6g−1

7 g−1
3 g−1

4 =
hp2g

−1
1 hp1 , while from the second delta in (B.1.10) we have gp2 = (g5g6g

−1
7 g−1

3 g−1
4 )g−1

p1
g1, and

combining this result with the previous one we get h−1
p2
gp2 = g−1

1 hp1g
−1
p1
g1, leading to the first

delta appearing in (B.1.11). Finally in (B.1.11) we notice that the sum over g3, ..., g7 ∈ G gives
as result |G|4 (we are summing over 5 variables but with a constraint from the delta). Now
let’s use the following relation:

∑
k∈G

δ(g, k−1hk) =


|G|
|C|

if g, h ∈ C

0 otherwise
. (B.1.13)

The relation (B.1.13) can be proved formally, but we will just give an intuitive justification for
it. Clearly if g, h ∈ G do not belong to the same conjugacy class C, the conjugation of h will
never be equal to g and then the delta δ(g, k−1hk) has never support and it is zero for every
k ∈ G. If instead g, h belong to the same conjugacy class C, there exist some k ∈ G that give
support to the deltas δ(g, k−1hk). The fact that the result is exactly |G|/|C| comes from the
orbit-stabilizer theorem [49]. Using the orthogonality relation for characters A.3.3, from the
relation (B.1.13) we can also notice that∑

k∈G

δ(g, k−1hk) =
∑
i∈Ĝ

χ∗
i (g)χi(h). (B.1.14)

If we insert the relation (B.1.14) inside the expression (B.1.12) we get

⟨h̃p1 , h̃p2|H
(2)
E |g̃p1 , g̃p2⟩ =

λE
|G|2

∑
i,j∈Ĝ

djf(j)χj(hp1g
−1
p1
)χ∗

i (h
−1
p2
gp2)χi(hp1g

−1
p1
). (B.1.15)

Insert the expression (B.1.15) inside (B.1.6) and you will find:

⟨i1, i2|H(2)
E |j1, j2⟩ =

λE
|G|4

∑
i,j∈Ĝ

djf(j)
∑

gp1 ,gp2 ,hp1 ,hp2∈G

χ∗
i1
(hp1)χ

∗
i2
(hp2)χj1(gp1)·

· χj2(gp2)χj(hp1g−1
p1
)χ∗

i (h
−1
p2
gp2)χi(hp1g

−1
p1
). (B.1.16)

One can now perform the change of variable gp1 → k = hp1g
−1
p1

:

⟨i1, i2|H(2)
E |j1, j2⟩ =

λE
|G|4

∑
i,j∈Ĝ

djf(j)
∑

k,gp2 ,hp1 ,hp2∈G

χ∗
i1
(hp1)χ

∗
i2
(hp2)χj1(k

−1hp1)·

· χj2(gp2)χj(k)χ∗
i (h

−1
p2
gp2)χi(k). (B.1.17)

In (B.1.17), in the sums over hp1 and hp2 we can recognize the convolution relation A.3.4,
while in the sum over gp2 we can recognize an orthogonality relation for characters A.3.2. In
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this way the expression (B.1.17) becomes

⟨i1, i2|H(2)
E |j1, j2⟩ =δi1,j1δi2,j2

λE
di1di2|G|

∑
j∈Ĝ

∑
k∈G

djf(j)χ
∗
i1
(k)χj(k)χi2(k) (B.1.18)

=δi1,j1δi2,j2
λE

di1di2|G|

[
|Γ|
∑
j∈Ĝ

∑
k∈G

djχ
∗
i1
(k)χj(k)χi2(k)−

−
∑
j∈Ĝ

∑
k∈G

∑
g∈Γ

χj(g)χ
∗
i1
(k)χj(k)χi2(k)

]
(B.1.19)

=δi1,j1δi2,j2
λE

di1di2|G|

[
|Γ|
∑
k∈G

∑
j∈Ĝ

χ∗
j(e)χj(k)

χ∗
i1
(k)χi2(k)−

−
∑
k∈G

∑
g∈Γ

∑
j∈Ĝ

χj(g)χ
∗
j(k

−1)

χ∗
i1
(k)χi2(k)

]
(B.1.20)

=δi1,j1δi2,j2
λE
di1di2

[
|Γ|di1di2 −

∑
g∈Γ

χ∗
i1
(g)χi2(g)

]
(B.1.21)

=λE f̄(i1, i2)δi1,j1δi2,j2 , (B.1.22)

where in the expression (B.1.19) we inserted the definition (1.4.41) of f(j), in the equation
(B.1.20) we use χ∗

j(e) = dj , in the expression (B.1.21) using A.3.3 we performed the sum
over j in the first parentheses getting δ(e, k)|G|, and the sum over j in the second parentheses
getting |G|/|C| if g and k−1 are in the same conjugacy class C, otherwise 0, then we also
perform the sum over k that is non zero only if k−1 ∈ C, thus in |C| cases. Finally in (B.1.22)
we defined the function f̄(i, j) as

f̄(i, j) = |Γ| − 1

didj

∑
g∈Γ

χ∗
i (g)χj(g). (B.1.23)

In order to find out the matrix element of the total Hamiltonian HE =
∑7

l=1H
(l)
E , we have to

sum over the contributions coming from all 7 links, 6 of them (l ̸= 2) have matrix elements
(B.1.4) (3 in the first plaquette p1, 3 in the second one p2) while one of them, l = 2, has matrix
element (B.1.22). Putting all together one finds

⟨i1, i2|HE |j1, j2⟩ = λE
[
3f(i1) + 3f(i2) + f̄(i1, i2)

]
δi1,j1δi2,j2 . (B.1.24)

Now we should also compute the matrix elements of the basis state |i, j̄⟩ (3.4.10) of the kind
⟨i1, ī2|H(l)

E |j1, j̄2⟩. In this case the character state |i, j̄⟩ is defined on the single-plaquette loop
p1 and the multiple-plaquette loop p3; in particular we have that the link l = 2 only belongs
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to the path p1 and so it has a well defined representation i, the links l = 5, 6, 7 belong only to
the path p3 and so they have a well defined representation j, instead all other links l = 1, 3, 4
belong to both the paths. In this case we will have for the link l = 2

⟨i1, ī2|H(2)
E |j1, j̄2⟩ = λEf(i1)δi1,j1δi2,j2 , (B.1.25)

for the links l = 5, 6, 7:

⟨i1, ī2|H(l=5,6,7)
E |j1, j̄2⟩ = λEf(i2)δi1,j1δi2,j2 , (B.1.26)

while for the other links l = 1, 3, 4 we use the expression (B.1.22) computed before for a
shared link:

⟨i1, ī2|H(l=1,3,4)
E |j1, j̄2⟩ = λE f̄(i1, i2)δi1,j1δi2,j2 . (B.1.27)

Putting the results (B.1.25), (B.1.26) and (B.1.27) together we finally find

⟨i1, ī2|HE |j1, j̄2⟩ =
[
f(i1) + 3f(i2) + 3f̄(i1, i2)

]
δi1,j1δi2,j2 . (B.1.28)

The mixed matrix elements ⟨i1, ī2|HE |j1, j2⟩, or their Hermitian conjugate, are trivially zero.
This concludes the computation of the matrix elements of the electric Hamiltonian HE (B.1.1)
for a two-plaquette system.

B.2 Matrix elements of the magnetic Hamiltonian
For the two-plaquette system the magnetic Hamiltonian HB (1.4.11) reads out as

HB = −2λB

(
ReTr Ŵp1 +ReTr Ŵp2

)
, (B.2.1)

where Ŵp is the Wilson loop operator (1.4.10) for the plaquette p, written in terms of the
position operators ĝl of the link l. Explicitly they are for the first plaquette: Tr Ŵp1 =

Tr
(
ĝ1ĝ2ĝ

†
3ĝ

†
4

)
and for the second plaquette: Tr Ŵp2 =

(
ĝ5ĝ6ĝ

†
7ĝ

†
2

)
. Let us first notice that

the multiple-plaquette state |g̃p1 , g̃p2⟩ is an eigenstate of the Wilson loop operator, in particular
we can see that

⟨g̃p1 , g̃p2 |HB|h̃p1 , h̃p2⟩ = −2λB [ReχF (gp1) + ReχF (gp2)] δ(gp1 , hp1)δ(gp2 , hp2), (B.2.2)

where F is the faithful representation chosen for the magnetic piece. Now we will compute
the matrix elements of HB (B.2.1) using a basis of multiple-plaquette character states, like
|i, j⟩ and |i, j̄⟩. Consider the expression (3.4.9) of the multiple-plaquette character state |i, j⟩
in terms of the multi-plaquette state |g̃p1 , g̃p2⟩, then we can compute

⟨i1, i2|HB|j1, j2⟩ =− 2λB
|G|2

∑
gp1 ,gp2∈G

χ∗
i1
(gp1)χ

∗
i2
(gp2)χj1(gp1)χj2(gp2)·

· [ReχF (gp1) + ReχF (gp2)] . (B.2.3)
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The same can be done for the state |i, j̄⟩, using the expression (3.4.10):

⟨i1, ī2|HB|j1, j̄2⟩ =− 2λB
|G|7

∑
g1,...,g7∈G

χ∗
i1
(g1g2g

−1
3 g−1

4 )χ∗
i2
(g1g5g6g

−1
7 g−1

3 g−1
4 )χj1(g1g2g

−1
3 g−1

4 )·

· χj2(g1g5g6g−1
7 g−1

3 g−1
4 )
[
ReχF (g1g2g

−1
3 g−1

4 ) + ReχF (g5g6g
−1
7 g−1

2 )
]

=− 2λB
|G|3

∑
g1,gp1 ,gp2∈G

χ∗
i1
(gp1)χ

∗
i2
(g1gp2g

−1
1 gp1)χj1(gp1)χj2(g1gp2g

−1
1 gp1)·

· [ReχF (gp1) + ReχF (gp2)] , (B.2.4)

where in the equation (B.2.4) we used the fact that given gp1 = g1g2g
−1
3 g−1

4 and gp2 =
g5g6g

−1
7 g−1

2 , we can write the group element of the two-plaquette path p3 as g1g5g6g−1
7 g−1

3 g−1
4 =

g1gp2g
−1
1 gp2 , we performed a change of variables and then we summed over the 4 variables that

do not appear inside the character functions, getting a |G|4 factor. Using the same trick we can
compute the following mixed matrix elements:

⟨i1, ī2|HB|j1, j2⟩ =− 2λB
|G|7

∑
g1,...,g7∈G

χ∗
i1
(g1g2g

−1
3 g−1

4 )χ∗
i2
(g1g5g6g

−1
7 g−1

3 g−1
4 )χj1(g1g2g

−1
3 g−1

4 )·

· χj2(g5g6g−1
7 g−1

2 )
[
ReχF (g1g2g

−1
3 g−1

4 ) + ReχF (g5g6g
−1
7 g−1

2 )
]

=− 2λB
|G|3

∑
g1,gp1 ,gp2∈G

χ∗
i1
(gp1)χ

∗
i2
(g1gp2g

−1
1 gp1)χj1(gp1)χj2(gp2)·

· [ReχF (gp1) + ReχF (gp2)] . (B.2.5)

The matrix elements like ⟨i1, i2|HB|j1, j̄2⟩ are simply the complex conjugate of the expression
(B.2.5). This completes the computation of all matrix elements of the magnetic Hamiltonian
HB (B.2.1).
In order to have a more explicit expression of the electric and magnetic Hamiltonian matrix
elements we first have to choose a gauge group G, a generating subset Γ and a faithful repre-
sentation F . This is done in section 3.4.3 for the group D4 and in section 3.4.3 for the group
D3.
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