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Abstract

Lattice gauge theories are powerful tools to describe nature and its interactions, finding ap-
plications from the theory of Standard Model to condensed matter physics, but there are still
many unresolved issues. The recent development of quantum technologies opens the door to
new techniques, such as quantum simulation and quantum computation, which can overcome
these difficulties and expand our knowledge of these models. There have already been many
studies on Abelian lattice gauge theories, but in this thesis we develop an algorithm to inves-
tigate non-Abelian lattice gauge theories with dihedral D4 and D3 gauge groups. We describe
the gates and the full circuit to prepare the ground state of one and two plaquette systems,
given the Hamiltonian and exploiting adiabatic evolution. Then we calculate some relevant
observables, such as energy and Wilson loops. All quantum simulations are performed using
the open-source Qiskit toolkit. The obtained results are checked against exact diagonalization
numerical solutions, with respect to which we find a very good agreement.
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INTRODUCTION

Motivation

Why a gauge theory? Why a lattice gauge theory? And why on a quantum computer?

We refer to as gauge theory any physical theory that has redundant degrees of freedom and
for this reason it is invariant under a class of transformations, that form the gauge symmetry
group. Gauge theories, are powerful tools to describe a broad range of natural phenomena
and they find applications from the theory of Standard Model to condensed matter physics.
For example gauge theories explain successfully the dynamics of elementary particles: quan-
tum electrodynamics is an Abelian gauge theory with the symmetry group U(1) and has
one gauge field, the electromagnetic four-potential, with the photon being the gauge boson.
Quantum chromodynamics is a non-Abelian gauge theory with the symmetry group SU(3)
and has eight gauge fields (since they have colour charges), with the gluons being the gauge
bosons. The whole Standard Model is a non-Abelian gauge theory with the symmetry group
U(1) x SU(2) x SU(3) and has a total of twelve gauge bosons: the photon, three weak bosons
and eight gluons [43]. Gauge theories find applications also in condensed matter physics, for
example in spin glasses [42], Chern-Simons theory [[11] and superconductivity [S3].

The standard approach to study a gauge theory and all its relevant observables is perturbation
theory [43]]. In this approach we consider an Hamiltonian A that is the sum of two components,
an unperturbed Hamiltonian H and an interacting (perturbing) Hamiltonian H;, representing
a weak disturbance to the unperturbed system, such that H = Hy + gH;,, where g is the cou-
pling constant. The idea is to start by studying the unperturbed Hamiltonian H, for which a
mathematical solution is known, and then add corrections as a power series in the parameter g,
and if the coupling constant is small enough we can truncate the series at the first order. This
approach is usually possible only if the running coupling is small enough, however, in most
gauge theories, like in quantum chromodynamics, there are many interesting questions which
are non-perturbative, in particular the explicit forces acting between quarks and antiquarks in
a meson. Among non-perturbative approaches to gauge theories, one of the most well estab-
lished is lattice gauge theory [55)]. This approach uses a discrete set of spacetime points in
such a way that path integrals, and so all required quantities, can be evaluated by stochastic
simulation techniques such as the Monte Carlo method. In this approach the gauge theory
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INTRODUCTION

is formulated in the Euclidean path-integral formalism, in order to make the integral strictly
positive, so that it can be simulated in a computer via Monte Carlo algorithms. Despite being
very difficult and demanding, often requiring the use of supercomputers, numerical computa-
tions have led to very relevant results. However there are still many unresolved issues, indeed
the numerical sign problem prevents the use of Monte Carlo method to study lattice gauge
theories, e.g. in presence of fermions at finite chemical potential, at high density and low
temperature [41}, 54]. Since the theory is Euclidean we also encounter problems when trying
to reproduce the real-time dynamics of the model, some quantities, such as conductivity and
viscosity, cannot be computed from the Euclidean path-integral. Moreover, the details of the
various stages of out-of-equilibrium real-time evolution phenomena, such as heavy-ion colli-
sions, are also out of reach [13, 40].

The recent development of quantum technologies opens the door to new techniques, such as
quantum simulation and quantum computation, which can overcome these difficulties, provide
us with new tools of research and expand our knowledge of lattice gauge models. As first
proposed by Feynman in 1982 [20], only a quantum device is able to reproduce accurately
a quantum system, in particular all its quantum properties that have no classical counterparts
and cannot be efficiently simulated on classical simulators or computers. In particular digital
quantum computers can be used as universal quantum simulators, i.e. programmable quantum
computers are potentially able to calculate the time evolution of many physical models [52].
These suggestions have been made possible by the recent development of quantum control
technologies. It must be said, however, that severe limitations persist in the number of qubits
and the reliability of gates of currently available quantum computers.

Besides the technical and experimental challenges, in order to realize a quantum simulation of
a lattice gauge theory we should be able to overcome some theoretical difficulties. In particular
the theory must be formulated in the Hamiltonian approach, keeping time real and continuous
while only space is discretized. This is different with respect to what we have in the path-
integral approach of usual lattice gauge theory, where we pass to an Euclidean time through a
Wick rotation and then we discretize the full Minkowski spacetime. We should also make sure
that the theory has a finite-dimensional Hilbert space. In this direction there have already been
studies on the quantum simulation of lattice gauge theories [[17, 24, 37, 139, 58], especially in
the case of an Abelian gauge group. These studies have shown that quantum simulations are
intrinsically free of the sign problem and, since they are formulated in the Hamiltonian formal-
ism, it is possible to study the real-time dynamics of the system. The goal of this master thesis
is to use the formulation of the Hamiltonian lattice gauge theory with any finite gauge group
given in [36], and to implement the quantum gates proposed in [30]] in order to realize and an-
alyze a quantum simulation with some finite non-Abelian gauge groups. The aim of this work
is not to observe new physics but rather to formulate and verify a simulation of non-Abelian
lattice gauge theories. Once this non-perturbative technique is validated, we may have access
to regimes not otherwise accessible and new physical phenomena may be observed.



INTRODUCTION

Overview

In chapter |1 we introduce the theoretical framework of lattice gauge theories in the Hamil-
tonian formalism, starting with the definition of a pure Yang-Mills model in the continuum
spacetime, discussing the discretization of the space with a lattice and exploring the quantiza-
tion of the theory with its Hamiltonian and Hilbert space.

In chapter [2] we introduce the general setting for simulations of a lattice gauge theory on a
digital quantum computer, in particular we discuss how to encode the physical degrees of free-
dom of the model in the simulator, how to reproduce its Hamiltonian dynamics in an evolution
gate and how to extract information on physical observables by measurements on the quantum
circuit.

In chapter [3] we analyze two specific gauge groups: the dihedral groups D, and Dj, in the
cases of one and two plaquette lattices. These two groups are interesting because they are the
simplest non-Abelian subgroups that can be used to approximate SO(3), and hence SU(2).
Through exact and numeric computations we formulate theoretical predictions for the be-
haviour of some relevant observables like the energy and Wilson loops.

In chapter ] we implement the quantum circuits required to simulate a lattice gauge theory
with D4 and D3 gauge groups in the cases of a one and two plaquette lattices, using the Qiskit
toolkit. Then the results of the quantum simulation are compared with those obtained in the
previous chapter, finding a very good agreement.



Chapter 1

LATTICE GAUGE THEORY

In this chapter we introduce the pure Yang-Mills theory on a lattice. We start by reviewing the
usual Yang-Mills theory on a continuum Minkowski spacetime with a generic gauge group G,
first in its Lagrangian formulation and then in the Hamiltonian formalism. We give also some
hints on how to quantize this model promoting the fields to operator and imposing the canonical
commutation rules. In order to regularize the theory we discretize the spatial dimensions and
keep time continuous, obtaining in this way a lattice gauge theory where the gauge fields
live on the edges of the lattice. We study the structure of the Hilbert space attached to each
edge analyzing two possible bases: the group element basis and the representation basis, and
in doing so we review the relevant notions on the left and right regular representations and
Peter-Weyl theorem. We see how a gauge transformation acts on the total Hilbert space and
hence which are the states that are gauge invariant and therefore physical. Then we introduce
the Kogut-Susskind Hamiltonian that governs the dynamics of this lattice gauge model, we
introduce first its magnetic part and then the electric part. In the electric Hamiltonian we
pay particular attention when defining the Laplacian for both compact Lie groups and finite
groups. The resulting Hamiltonian is gauge invariant and provides the correct continuum limit.
Finally we discuss two useful operators for the study of this model: the vertex operator and the
plaquette operator, also mentioning the quantum double model.

1.1 Continuum Yang-Mills theory

In this section we briefly review the Hamiltonian formulation of a Yang-Mills theory in the
temporal gauge and defined on a continuum Minkowski spacetime. We start by summarizing
some basic concepts of Lie group and Lie algebra theory, introducing in this way the gauge
field. We present the Yang-Mills Lagrangian, that describes the dynamics of a model that is
symmetric under certain local gauge transformations. Then imposing the temporal gauge to
fix a non-physical degree of freedom and performing a Legendre transform we formulate the
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CHAPTER 1. LATTICE GAUGE THEORY

Yang-Mills Hamiltonian for a continuum theory. Finally we see how to quantize this theory
promoting fields to operators and imposing the canonical commutation rules.

1.1.1 Gauge group

Let’s start by reviewing some basic concepts of Lie group theory applied to the context of
gauge symmetries. At these first stages we will be interested in compact and simple Lie groups,
one example could be SU(N), which has many applications. A Lie group is a group which
is also a differentiable manifold, such that the group multiplication and inversion maps are
smooth [25]. A Lie group G has an underlying Lie algebra g. Formally the Lie algebra g of
a Lie group G is the tangent space of the identity element of (G, hence a vector space of the
same dimension of the group GG. Each element of the group g € G can be written using the
exponential map through some real parameters X“ and the generators 7, of the Lie algebra g:

g =X (1.1.1)

where the sum over the repeated color index a = 1,2, ..., dg is taken for granted, and d; is the
dimension of the group G, or of the corresponding Lie algebra g, which is then the same. The
generators 7}, of the Lie algebra g satisfy the following commutation rules

[Ta, Ty] = i fane T, (1.1.2)

where f,;. are fully anti-symmetric structure constants and are footprints of the Lie group. In
the simple cause of an Abelian group, all these constants are equal to zero, while in a more
complex group like SU(N) they are generally different from zero. In order to normalize the
generators we require them to satisfy the Killing metric

ﬂ@ﬂ@:%%. (1.1.3)

Gauge field

At this point we are ready to introduce the main ingredient for a gauge theory, the gauge field.
We define a gauge field, or connection, A, as an element of the Lie algebra A, € g, with
w1 =0,1,2,3 that is a tensor index for the spacetime components. Being A,, an element of the
Lie algebra it can be written as a linear combination of the generators:

A, = AT, (1.1.4)

We remark that A, is a field and as such it is a function of the spacetime coordinates: A,(x),
where © = (t, ) is a point of Minkowski spacetime M. We will use the Minkowski metric
with signature (—, 4+, +, +,+), and Einstein summation convention, meaning that the sum
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1.1. CONTINUUM YANG-MILLS THEORY

over repeated indices is implied.
From the gauge potential A, we can construct the field strength, or curvature, F},, such that

Fo = 0,4, — 0,A, —i[A,, A). (1.1.5)

Also the field strength, being an element of the Lie algebra g, can be expanded in terms of the
Lie algebra generators F,, = F,T,.

The gauge field A, and the field strength £, under a local gauge transformation g(z) € G
transform as follows

{Au<x> = A (2) = g(2) A, (2)g(2) " + ig(x)dg(x) "

Fu(z) = F,(2) = g(z) Fu(z)g(z) ! (1.1.6)

Notice how the gauge transformation of the field strength F},, is fully determined by the trans-
formation law of the gauge field A, simply using its definition (I.T.5). Non-Abelian gauge
fields A, transform like the adjoint representation [38]].

Matter field

The second ingredient for a gauge theory is a matter field ¥ (x), usually a fermionic one. Matter
fields live in the complex vector space V' of some representation p : G — End (V') of the gauge
group G. This means that matter fields sit in some vector space of dimension d,,, the dimension
of the representation. The action of the local gauge transformation g(z) € G on the matter
field U(xz) € V is simply given by ¥'(x) = p(g(z))¥(z). In the following we will consider
a pure gauge theory, this means that we will neglect the matter field W, considering just the
dynamics of the gauge field A,. The reader interested in the simulation of gauge theories with
scalar or spinor matter fields may refer to [30].

1.1.2 Yang-Mills Lagrangian

Consider a classical field model where only the gauge field A, (x) € g is present and where the
system is invariant under local gauge transformations ¢g(z) € G, whose action on the gauge
field is given by (I.1.6). The Lagrangian that describes the dynamics of such a theory is the
pure Yang-Mills Lagrangian:

1 v
.,E/ﬂYM = _2_g2 TI'(FM,/FM ) (117)

where g is the coupling constant for the gauge field interaction and the sum over the repeated
spacetime indices ;4 and v is implied. It is easy to verify that under the gauge transformation
(I.1.6) the Yang-Mills Lagrangian (I.1.7) in invariant because of the cyclic property of the
trace 'Ir.
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CHAPTER 1. LATTICE GAUGE THEORY

We can also split the field strength F),, appearing in the Lagrangian (1.1.7) in the chromoelec-
tric field F; and in the chromomagnetic field B;, with ¢« = 1,2, 3 (space components) such
that

E; = Fy;,
) 1 .. (1.1.8)
B' = —§E”ijk,

where €% is the Levi-Civita symbol. In terms of the fields (1.1.8) the Lagrangian (1.1.7)
becomes

1

1.1.3 Yang-Mills Hamiltonian
Temporal gauge

Now we try to pass to the Hamiltonian formulation of a pure Yang-Mills theory for a generic
gauge group G, starting from the Yang-Mills Lagrangian 2y (I.1.7). The main issue we have
to deal with is gauge invariance, since the Lagrangian is written with some redundant
non-physical degrees of freedom. This is reflected into the fact that if we expand Tr(F,, F'*")
in terms of the gauge field A, it does not contain the term AO (time derivative of the time-
component of the gauge field), and so the corresponding conjugate momentum 7, is identically

Zero: 0.2
YM
Ty = — = 0. (1.1.10)
" Ao
This means that the field Ay is not dynamical and its equation of motion is a time-independent
algebraic equation, which shows that A, takes a time-independent constant value. We can
isolate A, in the Lagrangian (I.1.9)), adding a divergence and neglecting second order functions

in Ay, that do no not contribute to the equations of motions, in this way we find [31]]:

1 1
Low = — Te(EE; — BiBi)|  + = Tr(AG), (1.1.11)
9 Ag=0 9

with G = G*T, € g defined in terms of its component by
G*(x) = ;B (x) + [*° A (2) Ef (x) = D, E} (), (1.1.12)

where D, is the covariant derivative. Given a field F' in the representation p of the gauge group
G, then the covariant derivative of F'is

Dy F; = 0,F; —iAS(T)i F?, i, =1,2,...d,, (1.1.13)

where 17} are the generators of the Lie algebra g corresponding to the representation p, and d,,
is the dimension of p.
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1.1. CONTINUUM YANG-MILLS THEORY

From the expression we can see that Ay is a Lagrange multiplier and its equation of
motion corresponds to a set of phase space constraints G*(z) = D;E?(z) = 0, one for each
color index a = 1,2, ..., dg. These are the non-Abelian analogue of Gauss’ law constraint in
the Abelian electromagnetic theory. These constraints represent the conditions for a specific
configuration to be gauge invariant, and they have to be satisfied by all physical phase space
states.

As a gauge fixing condition we can use the temporal gauge in which we fix Ay = 0, then the

Lagrangian (I.1.11]) becomes
1 o
v =—(E'E. — B! B! 1.1.14
Y™ 2g2( oEo — BoB,), ( )

where apart from putting A, to zero, we have also removed the trace on the color indices
using the fact that E* = E'T®, B* = BT and the Killing metric (1.1.3). In the last ex-
pression, as per our notation, we take for granted the sum over the repeated space index ¢ and
the repeated color index a. Notice that the temporal gauge Ay, = 0 does not fix completely
the gauge freedom, in particular we have a residual gauge invariance under time-independent
gauge transformations ¢g(Z) € G, using the general expression (1.1.6) we can write:

Au(z) = Al (2) = g(7) Au(2)g(F) " +1ig()0,9(2) " (1.1.15)

Under this gauge transformation we have that Ag(z) — Aj(x) = g(Z) Ao(z)g(Z)~', and if we
were in temporal gauge Ay = 0, we will remain in the same gauge A} = 0.

Legendre transform

In the temporal gauge Ay = 0 one has that £ = A?, then the momenta 7; conjugate to A; are

. Ei
m = 0% _ Ea (1.1.16)
0As g

The Hamiltonian density .74y can be derived using the usual Legendre transform:

2

- . 1 .
Sy = A — Loy =Lrinl 4 —_ BB (1.1.17)
2 292

The continuum Yang-Mills Hamiltonian Hy) in the temporal gauge is given by
92 . . 1 . .
Hyy = / . (EW;(W;(:E) + —B;(x)B;(x)) . (1.1.18)
g
As you can see from (I.1.T8)) the Hamiltonian is made of two pieces, and we will refer to them
as electric Hamiltonian Hp and magnetic Hamiltonian Hp respectively, such that Hyy =

Hg + Hp.
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CHAPTER 1. LATTICE GAUGE THEORY

Quantization of gauge fields

To quantize the classical field theory described by the Yang-Mills Hamiltonian we can
promote the gauge fields A¢ and the conjugate momenta 7 to the Hermitian operators A;‘ and
¢ respectively, acting on an Hilbert space. These operators obey the canonical equal-time
commutation rules [21]]:

Ar@). Ay =0,
(75 (@), 7 W)],,_,, = 0. (1.1.19)
) A)| = idals @ )

This is a situation similar to what we have in a quantum system with the commutation rule
[Z;, p;] = i0,;; between the position Z; and the momentum p,; operators. In that case considering
the position representation (x|i)) = (), we satisfy the commutation rule by imposing that &
acts multiplicatively and p generates the translations. Similarly in the field representation, the
Hilbert space is the vector space of wave functionals 1/)[ } of the configurations of the field A
at fixed time. In this notation we have (A(z )|¢) ¥[A]. In order to satisfy the commutation
rules (1 , we impose that A%(z) acts on ([ A] multiplicatively while #%(z) is the generator
of translatlons (it is a functional differential operator):

A - —

B 5 B (1.1.20)

/—\
\_/
<
Oq
:E
/\
\_/
<

Let us notice that the space of wave functionals 1/)[5] is too large, in the sense that it contains
non-physical states. As we saw before, the temporal gauge A, = 0 has a residual gauge sym-
metry under local gauge transformations . It can be shown [21]] that G(Z) = D, E;()
is the quantum generator of local infinitesimal time-independent gauge transformations and it
commutes locally with the Hamiltonian [G (%), Hyw] = 0. This operator can be used to iden-
tify the physical gauge invariant Hilbert space. The physical requirement that states that differ
by time-independent gauge transformations, like (I.1.15)), be equivalent to each other leads to
the demand that we should restrict the Hilbert space to the space of gauge-invariant states, and
these states satisfy G (%) [¢)) = D;E;(Z) [¢) = 0. The constraint means that only the states
which obey the Gauss’ law are in the physical Hilbert space:

Hoys = {00 : 6@ |0) = 0} (11.21)

In this way in this section we obtained a quantum Yang-Mills gauge theory defined on a contin-
uum Minkowski spacetime; in the following sections we will see how to pass to a Yang-Mills
gauge theory defined on a discretized space (lattice) and with a continuous time.

13



1.2. LATTICE REGULARIZATION

1.2 Lattice regularization

In this section we discuss why we should be interested in the discretization of a continuum
gauge theory, as the one presented in the previous section, especially if it cannot be treated
with perturbation theory. We define the d-dimensional square lattice used to perform this
discretization, and we also describe how to assign to each edge of the model a gauge field (or
equivalently a group element).

1.2.1 Introduction to lattice gauge theory

The standard approach to study a gauge theory as the one described in the previous section is
perturbation theory, in which the dynamics of the model is studied with perturbative expan-
sions on the coupling constant. These expansions are only meaningful as long as the coupling
constant is small, and this is for example the case for Quantum Electrodynamics (QED), the
quantum field theory describing the electromagnetic interaction. QED is a gauge theory where
the gauge group is G = U(1) and the coupling constant, the electric charge, is weak and many
aspects of the dynamics of the model can be treated with perturbation theory. Because of the
phenomenon of the screening of the electric charge, increasing the energy, the coupling con-
stant grows and eventually diverges. Fortunately the energy scale at which QED perturbation
theory breaks down is huge, far larger than Planck’s mass, therefore this divergence is not a
real problem [43]]. The situation is much different for Quantum Chromodynamics (QCD), the
quantum field theory describing the strong interaction between the quarks inside nuclei. QCD
is a gauge theory with gauge group G = SU(3) and here the coupling constants diverge in
such a way that perturbation theory cannot be applied.

Lattice regularization is the most famous non-perturbative approach to QCD and it was intro-
duced by Wilson [55]]. Working on a hypercubic spacetime lattice we are able to remove the
ultraviolet divergences, and regularize the theory. Quark fields (matter fields) live on the lattice
vertices and gluons (gauge fields) reside on the links between the nearest neighbour vertices.
Given this lattice gauge theory, if we work on a Wick-rotated euclidean spacetime, QCD be-
comes a statistical mechanics model. In the Hamiltonian formulation of this model the time
can be kept continuous and real, while we discretize just the space dimensions.

1.2.2 Definition of the lattice

Let us consider a Yang-Mills theory in the temporal gauge on a lattice with a gauge group GG
and in the Hamiltonian setting. With respect to the continuum gauge theory on the Minkowski
(d + 1)-dimensional spacetime M, in this lattice gauge theory the time variable ¢ is kept
continuous, while the space coordinates x; are discretized, with ¢+ = 1,...,d, where d is the
dimension of the lattice (in the simulation we will work with d = 2). We can in particular

14
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Figure 1.1: The square oriented lattice A (1.2.1) for a d = 2 dimensional
space. The lattice spacing is a, while i and j are two unit vectors that
indicate the orientations of the edges. The black dots are the vertices 7,
the grey lines are the oriented edges [. For the lattice in the figure we have
Li=1L;=4.

consider a hypercubic oriented lattice A, like the one in Fig. [I.1] defined as

d
A= {feRd:f:Zam%, ni:0,1,...,Li}, (1.2.1)
=1

where the vertices ¥ are points in an Euclidean space R, i is a unit vector in the i-th direction,
such that ; = (01,...,0;-1, 14,0441, ..., 04), n; are integer numbers, L; is the extension of the
lattice along the ¢-th direction and a > 0 is the lattice spacing.

We identify the vertices with their space coordinates , the set of all vertices is called V. We
denote the oriented link (or edge) [ by specifying the initial vertex and the unit vector parallel
to the link, so for example | = (7, 2) is the link that goes from ¥ to & + ai. We denote by [_ the
source lattice site at the origin of the segment and by [ the target lattice site, as in Fig. [I.2]
For example, given the link [ = (&, ), we have that [_ = # and [, = & + ai. Notice that the
orientation of the links is important. The set of all edges is called £.

In a classical configuration of a lattice gauge theory we assign to the vertices the matter fields
while to the edges the gauge fields. In particular, on each vertex & of the lattice one should put a
matter field (¢, Z), but we will consider a pure gauge theory, so in our case there are no matter
fields. On the edge (7, 1) we put the gauge field A;(t, ). As we saw in the previous section,
gauge fields A; are elements of the Lie algebra g, and for this reason using the exponential
map (I.1.1) is like we are attaching to each edge a group element ¢ € G. In particular it is
possible to prove [53]] that at the group element g associated to the link (Z, 5) is

g(Z,1) = eladitd), (1.2.2)
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L
e - > ~
X (1) X+ai
Figure 1.2: Oriented edge | = (&, 7). The edge is oriented in 7 direction, it
has as origin the vertex [_ = & and as target the vertex [, = & -+ ai, where
a 1is the lattice spacing.

where ¢(, 1) is the group element associated to the link (#,7) and A;(t, %) is the spatial com-
ponent of the gauge field in the direction of i, evaluated in the point Z at the time ¢. The
relation (1.2.2)) can be derived formally by studying the parallel transport in a vector bundle
and defining the comparator for the links of the square lattice, for more details see [53] and
[32]. We can notice that the relation (1.2.2) is an exponential map linking a Lie algebra object
A;(t, 7) € g to a group object ¢(7, 1) € G.

As we said before links are oriented, and if a link / associated to the group element g; is tra-
versed in the opposite orientation, then g; is replaced with its inverse g, L

In the next section we will see how to describe the vector space of each edge as a Hilbert space.

1.3 Hilbert space of a lattice gauge theory

In a quantum lattice gauge theory the space of configuration of each link is a Hilbert space
and in this section we discuss the structure of this space and also of the total Hilbert space
describing the whole lattice. We analyze two possible bases for the single-link Hilbert space:
the group element basis and the representation basis. In order to introduce the second basis
we discuss some important results on Peter-Weyl theorem and left and right regular represen-
tations. Finally we describe how a gauge transformation acts on the states of the total Hilbert
space and therefore how to characterized the physical (gauge invariant) states.

1.3.1 Hilbert space of a single link

In the previous section we saw how a classical configuration for a lattice gauge model is given
by a choice of group element g € GG on each lattice link. In the quantum theory the states in
the Hilbert space of each link are given by a superposition of the classical configurations. Let’s
analyze this Hilbert space by distinguishing the case where the gauge group G is a compact
Lie group from the case where it is a finite group.

16



CHAPTER 1. LATTICE GAUGE THEORY

Compact Lie group

Given a compact Lie group G, we attach to each directed link [ an Hilbert space H") = L?(G),
that is the space of square integrable functions ¢ : G — C with respect to left and right
invariant Haar measure dg. Given a locally compact group G, a left and right invariant Haar
measure on (G is a measure dg satisfying the following conditions:

/G dgf(gh) = /G dgf(g) = /G dg (k). (13.0)

with g,h € Gand f : G — C [27].
Analogously to what happens with L?(R?), where we have the position basis {|Z)}, with
T € R?, we can construct a similar basis for the single link Hilbert space L?(G):

{lg) : 9 € G}, (1.3.2)

and we call it group element or position basis. Since we are considering a Lie group, there
are infinite elements inside the group G, and so also the position basis (1.3.2)) contains infinite
many states. Just as for the usual position basis we have an orthonormality relation also for

{l9)}:
(glh) = (g, h), (1.3.3)

where 0(g, h) is a Dirac delta, a distribution, on elements of the group g and h. A generic vector
of the Hilbert space () can be written as a linear superposition (integral) of the position basis
states:

) = /G dgv(g)1g) (1.3.4)

where ¢(g) € L*(G) is a square integrable function. Whereas in the classical theory we
associate a well-defined group element to each link, in the quantum theory is also possible to

assign to each link a superposition of group elements, and the weight function |1/ (g)|* gives us
the probability of getting a specific group element g.
The total Hilbert space Hr for the entire lattice is

Hr = Q) L*(G). (1.3.5)

ek

A possible basis for the total Hilbert space is {), |g;) }, where |g;) is a group element basis
element for the Hilbert space ") of the single link /.

We emphasise from the outset that the physical (gauge invariant) Hilbert space Hpys is just a
subspace of the total Hilbert space H (1.3.5)).

Finite group

If instead of a compact Lie group we are interested in a finite group G, we attach to each
directed link [ an Hilbert space #() = C[G], that is the group algebra of G (see appendix
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, so the complex vector space spanned by the group element basis {|g)}, that is defined
just as in the Lie group case (I.3.2). Since we are considering a finite group, there is a finite
number of elements inside the group G, and so also the position basis (I.3.2) contains a finite
number of states. The basis states still satisfy the orthonormality relation (1.3.3), but this time
the §(g, h) is not a Dirac delta, but simply a Kronecker delta function that returns 1 if g = h
and 0 otherwise.

A generic vector of the Hilbert space () can be written as a linear superposition of the posi-
tion basis states:

) => 4(9)lg) (1.3.6)

geG

where ¥(g) € C[G] and with respect to (1.3.4) we substitute the integral over the Haar measure
with the sum over all group elements.
The total Hilbert space H for the entire lattice is

Hr = Q) C[G]. (1.3.7)

lek

Also for a finite group G, the physical Hilbert space Hnys is just a subspace of the total Hilbert
space Hp (1.3.7), but before talking about gauge transformations we shall introduce some
useful operators.

1.3.2 Left and right translation operators
Left and right operators

Consider the Hilbert space of a single link "), given the group element g € G we can define
the left translation operator L,, whose action on the group element basis state |h) is

Lg|h) = |gh). (1.3.8)

One can also define the right translation operator I2,, whose action on the group element basis
state |h) is

R, |h) = |hg™'). (1.3.9)

The action of these operators is similar to the one of the translation operator exp(ixp) in
quantum mechanics, that translates a state by z in the position space. The generator of this
translation is the momentum operator p. We are now interested in finding the analog of the
momentum operator (generator of translations) in this group algebra context, because it will
be a crucial element for the construction of the electric Hamiltonian.
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Generators of left translation

Let us now focus on the case of a compact Lie group . The left and right translation operators
Ly and R, introduced in (T.3.8) and (1.3.9) can be seen as infinite-dimensional unitary repre-
sentations of the group G onto the space of L?(G), known as the left and right regular represen-
tations [58]]. Acting on the group element basis it is easy to verify that L : G — End(L*(Q)),
R : G — End(L?*(G)) and they satisfy

LyLy = Lgn, RyRp= Ry, Vg,hed. (1.3.10)
These representations are unitary, indeed:

(Ly) ' =Ly =LI, (R)™ =Ry =Rl VgegG. (1.3.11)

g

Recall that each element g of a Lie group G can be written as the exponential of an element X
of the corresponding Lie algebra g (I.1.1):

g=e~ G, (1.3.12)

and the Lie algebra element X € g can be written as a linear combination of the generators 7,
for some real coefficients X, with a = 1,2, ..., dg and d the dimension of the Lie algebra:

X=XT, eg. (1.3.13)

We are now interested in finding the regular Lie algebra representation £ : g — End(L*(G)) of
the Lie algebra g that corresponds to L. Using the exponential map (|1.3.12])), the compatibility
of L and £ implies:

Lyx = %), (1.3.14)

You can visualize better this relation in Fig. [I.3] Expanding on the Lie algebra generators 7,

(1.3.13)) we can see that
LeiXaTa = eiX“£a7 (1.3.15)

where we defined £, = £(7},), the regular Lie algebra representation of the generator 7, of g.
Using the commutation relation (I.1.2) between the generators 7, of the Lie algebra, and the
fact that £ is a Lie representation, we can see that:

(L0, &) = i faneLe. (1.3.16)

The operators £, will play a fundamental role in the definition of the group Laplacian and the
electric Hamiltonian, since they are the analog of momentum operators p; in the group algebra.
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End(L¥G)) End(L¥G))

L

£X) / RGN \ L

Figure 1.3: Pictorial description of the relation that ensures the
compatibility of L and £. Given a Lie algebra element X € g via the
exponential map we can associate it a group element g = X €
G, then the left regular Lie group representation L : G — End(L?*(G))
associate to g the operator L,. The same operator can be obtained starting
from X € g, taking the left regular Lie algebra representation £ : g —
End(L?(G)) of it, and then applying the exponential map.

1.3.3 Peter-Weyl theorem and representation basis

The representation theory of the left L and right R regular representations leads to the Peter-
Weyl theorem, which is a very important theorem for the characterization of the Hilbert space
of a single link %, and allows us to introduce a new useful basis for this space. We will give
the statement of the theorem for both compact Lie groups and finite groups.

Compact Lie group

Let GG be a compact Lie group and G the countable set of inequivalent irreducible representa-
tions of GG labeled by the index j. Then [27,35]]

1. The space L?(G) of square-integrable functions on GG can be decomposed as a sum
of representation spaces. More precisely, if V; is the vector space for the irreducible
representation p;, then

LG =V eV, (1.3.17)
jeG
where V" is the dual of V; and the direct sum (P ; 1s extended to all inequivalent irre-
ducible representations of G.

2. The matrix elements (p; )., of all inequivalent irreducible representations of G form an
orthogonal basis for L*(G).
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3. If {|g)} is the orthonormal group element basis for L?(G), then the representation basis
{|jmn)} satisfies the duality relation:

d;
Vol(G)

<g|jmn> - pj(g)mny (1.3.18)

where d; is the dimension of the representation p;, hence also of the vector space V/,
while Vol(G) = [, dg is the volume of the group G in the Haar measure.

Finite group

Let G be a finite group and G the countable set of inequivalent irreducible representations of
G labeled by the index j. Then [35] 49]]

1. The group algebra C[G] can be decomposed as a sum of representation spaces. More
precisely, if V; is the vector space for the irreducible representation p;, then

cle =PV eV, (1.3.19)
je@
where V;* is the dual of V; and the direct sum (P ; 1s extended to all inequivalent irre-
ducible representations of G.

2. The matrix elements (p; ), of all inequivalent irreducible representations of G form an
orthogonal basis for C[G].

3. If {|g)} is the orthonormal group element basis for C[G], then the representation basis

{|jmn)} satisfies the duality relation:

. d;

where d; is the dimension of the representation p;, hence also of the vector space V/,
while |G| is the size of the group G, so the number of elements in it.

Some observations

From the point [I] of Peter-Weyl theorem we can see how to decompose the space of square
integrable functions L?(G), that is also the Hilbert space 7(") attached to a single link [. Two
equivalent ways to write the decomposition V;* ® V; are

V¥ ©V; = End(V;) = V. (1.3.21)
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Recall that the space L?(G) is made of functions on the the group ¢ : G — C. The elements of
the position basis {|g) } are associated with the Dirac delta distributions like e,(h) = d(g, h),
which form a basis of the space L?*(G). The point [2| of Peter-Weyl theorem says us that there
exists another possible basis for the space L?((), and this basis is made of the matrix elements
of all inequivalent irreducible representations of G, hence (p;)m, : G — End(V;), where
J € G labels the irreducible representation and m, n label the matrix elements, so they are
constrained by 1 < m,n < d;, with d; the dimension of the representation p;. The function
(pj)mn 1s associated with the Hilbert space state |j,,,). The same discussion can be done for
the finite group case.

From the point 3| of the Peter-Weyl theorem we see the explicit relation between the group
element (or position) basis {|g)} and the representation basis {|j,.,)}. Notice how the group
element basis {|g)} contains |G| elements (in the finite group case), while the representation
basis {|jn) } contains 3. d7 elements. There is a theorem in representation theory that guar-
antees that these two numbers are the same (A.3.T)), as one may expect by two bases of the
same Hilbert space.

Both these two bases will play an important role in the following discussion, indeed the group
element basis diagonalizes the magnetic part of the Hamiltonian, while the representation basis
diagonalizes the electric part of the Hamiltonian.

Decomposition of regular representation
The Peter-Weyl decomposition (1.3.17) allows us to write the left regular representation L, as
[27,135]]

Ly=EPril9) @1, (13.22)

jeG
where [ is the d; x d; identity matrix. An equivalent expression is
Ly =P ri(g)®, (1.3.23)
jeG

where the sum is extended to all irreducible representations j of GG, with multiplicity equal to
d;. The same decomposition can be done also for the right regular representation R:

Ry =T @ p;(9) (1.3.24)
je@
or also
Ry =D ri(9)®*. (1.3.25)
je@
Combining the decomposition (1.3.22)) and (1.3.24) we obtain:
LyRy = P pi(9)" @ ps(h (1.3.26)
]EG’
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&) &

- +

Figure 1.4: In a local gauge transformation we assign to each vertex « of
the lattice a group element ¢(Z). The state |g;) of the link /, in between the
sites [_ and [, is transformed as |g;) — \glfglglf), as in (|1.3.28)).

1.3.4 Gauge transformation
Gauge transformation operator

Consider now the whole lattice, a local gauge transformation is given by the choice of a group
element g(Z) € G at every site Z of the lattice. This transformation acts on the overall Hilbert
space H via the operator G({¢(Z)}) defined as

® Ly Ry yaiy = Q) Lo, Ra, » (1.3.27)

(Z0)EE leE

where, as per our notation, /_ and [, represent respectively the source and the end of the edge
[. The decomposition of the operator in the representation spaces can be found using
the expression (1.3.26). The action of the local gauge transformation operator G({g(%)}) on a
single link [ state is simply the following (Fig. [1.4):

GH{g@) ) = la-g9;,") (1.3.28)
or in the other notation [ = (7,1), [ = Zand [, = & + ai:
G({g(@D l9(7,1)) = lg(@)g(¥, 1)g(7 + a1) ") . (1.3.29)

The reason why a local gauge transformation is represented by the operator (1 is that it
provides the correct continuum limit, and now we will show why.

Consider a Lie group G and the expression for the the group element g, = ¢(Z, %)
associated to the link | = (&,7) in terms of the gauge field A;(¥) and neglecting the time
dependence of the gauge field. Expanding the exponential in (1.2.2)) for small lattice spacing a
we have: g(%,) = 1+ iaA;(Z) + o(a®). Using this expansion and the fact that g(Z + a1)~' =
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g(Z)™' — ad;g(Z)~' + o(a®) we can see that the transformation (1.3.29) implies:

9(%,1) — ¢ (&,1) = g(&)g(Z,1)g(Z + ai)~"

= g(D)9(T + ai) " +iag(F)Ay(T)g(T + ai) " + o(a®)
~ L i [o@A(g() " +io@Dg() ] +ole®) (1330
=1+ iaAl(T) + o(a?), (1.3.31)

where in (1.3.30) we recognize the transformation law of the gauge field A} under a
local time-independent gauge transformation. From the expression (1.3.3T)) we verify that in
the continuum limit, a — 0, we have ¢/(Z,7) = exp[iaA}(Z)], and so that the operator (1
reproduces the correct transformation law of the gauge field A;.

Gauge invariant Hilbert space

In order to be gauge invariant, and so physical, a state of the total Hilbert space |¢)) € Hr has
to satisfy the so-called Gauss’ law constraint:

GHg@D 1) = [v)  v{g(@)}. (1.3.32)

Clearly not all the states of # satisfy the constraint (I.3.32). The physical gauge invariant
Hilbert space then is

Honys = {10) : GHo(@H) [¢) = ) Y{g(D)}}. (1.3.33)

1.4 Lattice gauge theory Hamiltonian

In this section we construct the Kogut-Susskind Hamiltonian, the Hamiltonian for a quantum
lattice gauge theory. We examine the two parts of which it is composed: the magnetic Hamil-
tonian and the electric Hamiltonian. For both we study the continuum limit to be sure that
they reproduce the continuum Hamiltonian found in a previous section and also the gauge in-
variance. Then we pay special attention to the definition of a group Laplacian in the electric
Hamiltonian, that in the case of a Lie group is quiet straightforward, while for a finite group
there are some ambiguity.

1.4.1 Wilson loop operator
Group element operator

Consider the group element basis {|g) } for the single link Hilbert space. One can define the
group element (or position) operator §,,, such that it is diagonal in this basis:

Gmn 19) = |9) P(9)mn, (1.4.1)
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where p(g)my is the matrix element in a faithful representation p of the group element g. The
group element operator §,,, is not Hermitian, indeed the elements p(g),,, are not necessarily
real, nor unitary, indeed if one considers the adjoint of the relation (T.4.1):

(gl (Gmn)" = P(9)7n (91 (1.4.2)
and looking at the following inner product, combining (1.4.1)) and (1.4.2)), we can verify that
(91 Gnn) G 19) = £(9) 5P 9)n (919} # (9lg) . (14.3)

while for a unitary operator U one should have UTU = I.
To solve this problem we can define the matrix operator ¢, whose matrix elements are (§),,, =
Jmn» Such that

(@Dmn |9) = 19) P(@)mn- (1.4.4)

Being § a matrix, when we take its Hermitian conjugate g one must both transpose its matrix
elements (reverse m and n indices) and take the adjoint of them:

Yo = (Grm) - (1.4.5)

This time if the chosen representation p is unitary, so is the operator g. Indeed we can verify
that §*g = I looking at

(9"

1> (@) mplpnla) =D p(@)ip(9)en (9l9) = (glg) . (1.4.6)

where the superscript 7" indicate the matrix transposition.

Wilson loop operator

Consider the elementary path e passing through an oriented link [ of the lattice. There are only
two possibilities: either e cross the link in the direction in which the link is oriented, e || I, or
in the opposite direction, e || —I. We can associate to the elementary path e the group element
operator g[e] defined in this way:

. g if e[l
el = , 1.4.7
9[ ] {ng if e H _ ( )

where g, is the group element operator for the Hilbert space of the link [, as defined in (1.4.4)).
Given a global path ~y that is the union of many elementary paths e;, with ¢ = 1,2, ..., n, such
that v = ejes...e,, we can define the group element operator associated to this path as

gl = gled]glea].--glen]- (1.4.8)
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?c+aj g(X+aj,1)’ ?c+a?+aj\

gxj) ( p )| &(X+aiy)

=@ _)A).9 N
X g(xl) X+dl

Figure 1.5: Wilson loop operator Tr Wp (1.4.10).

If the path v = eje,...e, 1s closed we can define the Wilson loop operator as

Tr Wy] = Tr(gler]gleal.-glen]). (1.4.9)

For example, if v corresponds to the boundaries of a plaquette p in a d = 2 dimensional lattice
as in Fig. the corresponding Wilson loop operator is

A A

T W, = Tr(g(a;, Doz + a3, 5)a(z + aj, %)Tg(x,j)f>, (1.4.10)

where %,j’ are the two orthogonal unit vector-directions of the square lattice, a is the lattice
spacing and by §(Z, i) we mean the group element operator associated to the link that starts in
Z and it is parallel to i, as per the notation previously introduced.

The Wilson loop operator plays a central role in the construction of the magnetic part of the
Hamiltonian for a Yang-Mills theory on a lattice. Wilson loops are also interesting observables
to study and measure with a quantum simulation since they are sensitive to topological phase

transitions and are order parameters per the confined-deconfined transition [33].

1.4.2 Magnetic Hamiltonian

We define the magnetic Hamiltonian Hp as the sum over all Wilson loop operators of all

plaquettes p of the lattice:
2

Mo =~

> ReTr W, (1.4.11)
p

It is possible to prove that the magnetic Hamiltonian (T.4.T1)) is indeed the spatial discretized
version of the magnetic part of the Yang-Mills continuum Hamiltonian Hyy (I.1.I8) up to
o(a?). To verify this assertion consider a d = 2 dimensional square lattice, where the links are
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oriented parallel to the unit vectors 7 and j, consider then a plaquette p with origin in the point
Z. The expression of the Wilson loop operator Tr Wp for the plaquette p is given in the equation
(1.4.10). Recall the action of the group element operator §; on the group element basis
{|g1)} of the corresponding link, then the action of the Wilson loop operator Tr ¥/, on
the group element basis is

Te W, = Tr [g(:z, Ng(@ + a3, )g(T + aj, %)*H;(f,j)*l} , (1.4.12)

where not to be pedantic we have left out the representation p through which we should eval-
uate the trace of the group elements. Now we reintroduce the gauge field A, by using the
relation (1.2.2)) and the fact that A;(Z + ai) ~ A;(Z) + ad;A;(T), we can rewrite (1.4.12) as

T Wp — Tr[ elaAi(T) gia(A; (f)JraaiAj(f))efia(Ai(fHaain(f))e*iaAj(f)}_ (1.4.13)

Applying twice the Baker—Campbell-Hausdorff formula e“e? = eA + B + 5[A, B] + ... [51]]
and neglecting all the terms of order o(a®), that is reasonable in the limit of a small lattice

spacing a, the equation (1.4.13]) becomes
Tr Wp — Tr [eia(Ai(f)JrAj(:E)+a8iAj(:?:‘)+%[Ai(f),Aj (f)})e—ia<Ai(f)+Aj (@)+0a0; Ay (F)— 2 [Ai(),4, ()]

= Tr |:€ia2(ai‘4j(f)‘i‘aajAi(f)'f'i[Ai(f)aAj(f)])] . (1.4.14)

We can now introduce in (1.4.14) the field strength Fj; (1.1.5) (in its spatial components) ,
getting to:

Tr Wp =Tr [eiQQFij(i)}
o at
= Tr|I +ia*F;;(7) — EFU(QB)E](Z') , (1.4.15)

where we expanded the exponential for small values of the exponent. The trace is linear, so
proceeding terms by terms in the expression (I.4.13): the trace of the identity matrix I is
always a constant and it can be neglected in a Hamiltonian, while for a simple Lie algebra the
field strength Fj; is traceless in any representation, since Tr(F;;) = Fj Tr(7,) = 0. These
considerations leads to rewrite as
A a4
Tr W, = 5 Tr[F;;(Z) Fi(2)]. (1.4.16)

We can then use the relation Fj;Fj; = 2B, By, and the Killing metric (I.1.3)) to remove the
trace, and what we get at the end is

Tt W, = —— B.(Z) B} (&) + o(a®). (1.4.17)
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If one substitutes the final expression (1.4.17) inside the relation (3.3.18) for the lattice mag-
netic Hamiltonian Hp we get exactly the same expression that we had for the continuous
magnetic Hamiltonian in (I.1.18§), as long as we change the discrete sum over the plaquettes
Zp into an integral [ d?z. Lastly notice that the real part Re in 1i is needed because the
subleading terms in may not be real.

1.4.3 Electric Hamiltonian

Consider now the electric term in the continuum Yang-Mills Hamiltonian Hyy (L.1.18). Upon
the quantization the electric term consists of the momentum fields operator #’, that as we saw
in (1.1.20), generates the translations on the space of wavefunctionals 1/1[ff] On a lattice we
don’t have this space, but a tensor product of all group algebra attached to each link. For this
reason we may imagine that in a lattice gauge theory the electric Hamiltonian involves the
generators of translations on the group algebra. We have already seen that for a single link
Hilbert space the left translations on a group G are implemented by the operators L, (1.3.8).
If the group G is a Lie group, we have also seen which are the generators £, of the
translations on the Lie algebra g. So the operators £, play the role of the momenta 7', in the
lattice Hamiltonian. Notice that while the momenta field operators 7 () have two indices: the
color index a and the spatial component index 7, the operators £, () have only a color index a,
that because the spatial orientation is implicit in the link [ = (Z, i) to which they belong to. In
the light of these considerations, for a Lie gauge group in a lattice the electric term is

2 dg
g
Hp = 220 > L) (1.4.18)

leE a=1

This Hamiltonian provides the correct continuum limit, indeed one can verify that [35]:

L£4(2,7) = —a 17 ()1 + o(a)] (1.4.19)

a

Lie group Laplacian

For a Lie group GG one can define the Laplacian A; at link [ as

da
A=) g0, (1.4.20)
a=1

where the name “Laplacian” is chosen in analogy with ordinary quantum mechanics, where
the square of the momentum operator p (or the generator of translation) is indeed the ordinary
Laplacian operator. The operator (1.4.20) is also called Laplacace-Beltrami operator on the
group manifold G [30]. In terms of the group Laplacian the electric Hamiltonian (1.4.18)
becomes:

2
g
Hp =505 N (1.4.21)
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Notice that the definition of the group Laplacian (I.4.20) is possible only if the gauge sym-
metry has a Lie algebra g, where the generators £, live. For this reason for a finite group
the definition of the Laplacian, and thus the electric term, is more complicated and it will be
discussed in the next section.

Group Laplacian in representation basis

Consider a compact Lie group G and its Lie algebra g. Let p; be a Lie group representa-
tion of G, then there exists a corresponding Lie algebra representation p; of g. These two
representations are related by the following relation [27]]:

VX € g. (1.4.22)

e=0

Recall that in the Peter-Weyl decomposition the left translation operator L, can be written as

(1.3.22)), and that £, is the regular Lie algebra representation of the generator 7, (1.3.15),
using these results and the equation (1.4.22) we can see that

d
£a = — _Leie a
1 de T,

e=0

. d i€ *
= _263 pRZIC el

jeG

e=0

= @ﬁj(Ta)* ® L
je@

=P -4(T)" 21, (1.4.23)
jead

where in the last line we used the fact that the dual Lie algebra representation is p* = —p?,

that comes directly from p(g)* = p(¢g~*)T and (1.4.22).
Consider now the Laplacian (I.4.20) for the Hilbert space of a single link, and insert the equa-

tion ((1.4.23)):

da dg
A=) 8 =) D) 5T
a=1

a=1 jeq

dg
=D D_ dsi; (T)5] (T) ® 1. (1.4.24)

jeé a,b:l

Recall the definition of the Casimir element as () = anbB(Ta,Tb)TaTb, where B is the
Killing form [27]. For a compact group the Killing form is proportional to d,, SO we recognize
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that the right-hand side of the equation (I.4.24) is proportional to the Casimir operator on each
representation subspace C(j) = p;(Q2)”. We can then write

A=) CiH)P;, (1.4.25)

je@

where P; is the projector on the j-th representation subspace V;:

d;

m,n=1

Looking at the explicit expression of the projectors is trivial to say that the group Laplacian
(1.4.25) is diagonal in the representation basis {|j..) }, and therefore the electric Hamiltonian
Hpg (T.4.18). One can also verify that the projectors IP; are gauge invariant, and therefore the
Laplacian is too. A proof of this result is presented in section [I.4.5| for a finite gauge group,
but it is completely equivalent also for a Lie group.

1.4.4 Finite group Laplacian

The expression (I.4.25]) for the group Laplacian was found under the assumption that the gauge
group GG was a compact Lie group, nevertheless we can try to generalize this expression also
to the case of finite groups, indeed it is possible to define the representation basis {|j,.,)} and
the projectors IP; also in the latter case. We define the finite group Laplacian as

A=Y f)Py, (1.4.27)

jed

where f(7) is an arbitrary function of the representation j only and plays the role of the Casimir
operator C'(7), which in the finite group case is not present. It easy to verify, like for the Lie
group Laplacian, that also the finite group Laplacian (1.4.27) is gauge invariant.

Even if the choice of the function f () appearing in the finite group Laplacian (1.4.27) remains
undetermined we can constraint it with some properties that it should satisfy. The function
f(4), representing an energy density, should be positive semi-definite, and it should be zero
only for the trivial representation ; = (. If the finite group under study can be seen as the
discretization of a Lie group, one can also impose that the function f(j) of the finite group
approximates the Casimir operator C'(j) of the corresponding Lie group.

A method to construct a finite group Laplacian satisfying these requirements has been proposed
in [36] and we are going to illustrate it. This method is based on the choice of a generating
subset I' for the group G under study, the construction of the corresponding Cayley graph
(G,T') and then the definition of the Laplacian A of this graph. Let’s examine this procedure
in details.
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Generating subset

Given a finite group G, let choose a generating subset [' C G that satisfies the following
properties:

1. T is a set of generators of the group G. That means that every element of the group G
can be written as the product of one or more elements of the generating subset I'.

2. T is invariant under inversion of group element (symmetric), I' = I'"!, that means that
Vkel, k' el.

3. T'is invariant under conjugation, I' = gI'g~!, that means thatVk € ', g € G gkg~' € T.
In other words I" is the union of conjugacy classes of .

4. T does not contain the identity element e ¢ I'.

The reasons why we require these properties will be clear proceeding in the discussion. Notice
that the previous constraints are not sufficient to make the choice of such a subset I' unique,
each possibility produces a different theory. This means that the group GG of gauge symmetry
does not fix completely the theory, several models with different energetic eigenvalues (espe-
cially in the electric Hamiltonian) are possible and can be considered through the choice of
different generating subset I'.

Cayley graph

Consider a finite group G and a subset I' C G. We can define the Cayley graph (G,T") as the
graph where the vertices are the elements of the group G, while two vertices (group elements)
are linked by an edge if from one we can reach the other by a right multiplication of an element
of the generating set I'. In other words, given the vertices g, h € G we connect them with an
edge if and only if there exists & € I' such that h = gk, or equivalently if g~'h € T'. In the
figures Fig. [I.6a]and Fig. [I.6b|you can see two examples of directed Cayley graphs. The four
conditions that we imposed on the generating subset ' guarantee some interesting properties
for the corresponding Cayley graph (G, T'). First, the fact that I" contains the generators of the
group ensures that there are no isolated sub-graphs in the graph. The fact that I' is symmetric
means that if there is a directed edge connecting the vertex g to h, there is also a directed edge
connecting h to g. In the following we will consider these two directed edges as a unique
undirected edge. Finally the fact that e ¢ T' exclude the presence of self-loops around each
vertex. These properties cause the Cayley graph (G, T") to be simple, without multiple edges
and loops.

Adjacency matrix

Given a graph with n vertices we define the n xn adjacency matrix A as the matrix that indicate
whether pairs of vertices are adjacent or not in the graph. In particular we have that the matrix
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rs s s @

(a) Directed Cayley graph of (Dg4,{r,s}). For  (b) Directed Cayley graph of (Ds,{r,s}). For
more information about this group see the section ~ more information about this group see the section

B-1 B2

Figure 1.6: Two examples of directed Cayley graph. Each vertex represents
an element of the group, D, or Ds. A directed blue link connecting the ver-
tex g to the vertex h means that gr = h, while a directed red link connecting
the vertex g to the vertex h means that gs = h.

element A;; is 1 if the vertices ¢ and j are connected by an edge, while it is 0 otherwise. For
the Cayley graph (G, I") the matrix elements of the adjacency matrix A are

1if gothel
A = =Y 0(g7th k). 1.4.28
gh {0 otherwise kezr (g ) ( )

We can see the adjacency matrix A as an operator on the group algebra C[G]. Given a function
f : G — C, that assigns a complex number to each group element, one can define the action
of the adjacency matrix on this function as

Af(g) = Agf(h). (1.4.29)

heG

A convenient way to see the action of the adjacency matrix A on the group algebra function
f is the following: consider a graph with |G| vertices, the adjacency matrix A is a |G| x |G|
matrix, while f is a column vector of |G| elements, where the g-entry is given by f, = f(g).
The product of the two is Af, while Af(g) is g-th entry of the product vector Af.
Given the adjacency matrix for the graph (G, T') we can see that

Af(g) = flgk). (1.4.30)

kel
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Consider now the right regular representation 12, and its action on a generic function ¢ : G —
C of the group algebra, it is possible to prove that

Ryyp(h) = (hg). (1.4.31)

This can be easily shown considering the action of R, on a group element basis state |h)

(1.3.9), and then a generic state [¢)) for 1) € C[G] such that
Ry [y = w(h)Ry|h) =Y (k) [hg™") =D t(hg) |k, (1.4.32)

heG heG heG

and from that we verify the expression (I.4.31). Using the results (1.4.31)) and (I.4.30), we
can write

A= Z Ry. (1.4.33)

One can verify that for any g € G the adjacency matrix A and the right translation operator R,
commute, indeed

ARy =Y RiRy =Y Ry

kel kel
- Z Righg—1)g = Z Rgi = R A, (1.4.34)
kel kel

where we used the fact that I is closed under conjugation and so the element gkg~! is inside
I" as well as k. Recall that from the Peter-Weyl decomposition we can write the right regular
representation as in (|1.3.25), therefore on a specific representation space V;, the right regular

representation is an irreducible representation R|y, = p;ij and from (/1.4.34)) it commutes with
the adjacency matrix A. Given these two hypothesis we can then apply the Schur’s lemma and
say that the adjacency matrix is proportional to the identity on each representation subspace V;
(spanned by {[jmn) : 1 < m,n < d;}), such that

A=Y "a(j)P;, (1.4.35)

where a(j) is a function of the representation j only and IP; is the projector on the V; subspace
defined in (I.4.26). Using the decomposition (1.3.25) we can also write A as

A= "R =P pi(k)®s (1.4.36)

kel je@ ker

Taking the trace of the expressions (1.4.35) we see that Tr A = > a(j)dj, while from the
trace of the expression (1.4.36) we have Tr A = 3. d; >, x;(k), where x;(k) = Trp; (k) is
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the character function of the j-th representation. Comparing these two traces we derive the
explicit expression of the eigenvalues a(7) of the adjacency matrix, that are

. 1
a(j) = szj(k). (1.4.37)
7 ker
The adjacency matrix (1.4.35)) with eigenvalues (1.4.37) is a key ingredient for the Laplacian
of the graph (G, T).

Laplacian of a graph

There are various way in which one can introduce a discrete Laplacian A for a graph, differing
by sign and scale factor, we present the traditional definition [[13]]. Given the graph (G, T") and
a function ¢ : G — C, we define the Laplacian A as

Ap(g) = [w(g) — v(gk)], (1.4.38)

kel

where to compute the Laplacian of the function 7 in the vertex g we are taking the difference
between v evaluated in g and 1) evaluated in a nearest-neighbor vertex gk with k € I', then we
sum over all nearest neighbours.
It is not difficult to see that the graph Laplacian for a simple graph as (G, T") has the
matrix form:

A=D—A, (1.4.39)

where D is the degree matrix and A is the adjacency matrix ((1.4.28]) of the graph. The degree
matrix D is a |G| x |G| diagonal matrix, with |G| representing the number of vertices in the
graph. The matrix element D, is the degree of the vertex g, i.e. the number of edges that it is
connected to. In our case we have that D,, = |I'|. Therefore, putting together the expressions

(T.4.39) and (1.4.35)), we can write the graph Laplacian as

A= fU)P; (1.4.40)
jeG
where f(j) is defined by
1
FG) =101 = = > (k). (1.4.41)
7 ker

This is the expression of the finite group Laplacian on the Hilbert space C[G] of a single link
that we will use inside the electric Hamiltonian (1.4.21]) obtaining:

2
Hp = 25d_2 NS OB (1.4.42)
I€E jei
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1.4.5 Kogut-Susskind Hamiltonian

The Hamiltonian of a pure Yang-Mills theory on a lattice is called Kogut-Susskind Hamiltonian
[28]], putting together the electric (1.4.42) and magnetic (I.4.T1)) terms we see that it is given
by

2
Hys = # SN FG)B (1) — ; a4 — ZRe Tr W, (1.4.43)

I€E jeér
where the function f(j) is the the Casimir operator C'(j) for a compact Lie group, while it is
the function for a finite group. The electric term H g is diagonal in the representation
(momentum) basis {|j,)} while the magnetic term Hp is diagonal in the group element
(position) basis {|g) }.

Different parametrization

For what concerns the coupling constants, in the expression ([.4.43)) of the Kogut-Susskind
Hamiltonian there is the coupling g that we had in the continuum limit (I.1.18) together with
dimensional corrections with the lattice spacing a. In the following chapters we often use
different parametrizations for the coupling.

One possibility is to define two independent coupling constants: Ax = g*/2a%~? for the electric
Hamiltonian and A\p = 1/¢?a*~? for the magnetic Hamiltonian. Using these two couplings the

expression (.4.43) becomes:

Hys =g » Y fU)P;j(1) =225 Y ReTrW,. (1.4.44)
p

I€E je

In order to visualize better both the electric (Ap = 0) and the magnetic limit (Ag = 0) one can
use the following parametrization of the coupling constants

Hys =AY Y f()Pi(1) —2(1—A)> ReTrW, (1.4.45)

IEE jeé; p

where A € [0,1] and A = Ag/(Ag + Ap). In this way, a part from a multiplicative factor
J, we are able to reproduce any combinations of the two coupling constants, Ay = J\ and
Ap=J(1—\).

Gauge invariance

We can prove that the Kogut-Susskind Hamiltonian is gauge invariant, indeed both
the electric and the magnetic Hamiltonians are gauge invariant. Let us prove this.

Let’s start by considering the magnetlc Hamiltonian H z (I.4.11)). This Hamiltonian is the sum
of Wilson plaquette operators Tr W , S0 in order to prove gauge invariance it is suffi-
cient to prove that for any plaquette p the gauge transformation operator G, = ®;cpLg, Rgl+
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for that specific plaquette commutes with the corresponding Wilson loop operator
Tr W,,. The action of gauge transformation G, is shown in Fig. The commutation relation
can be easily checked on the group element basis |g1, g2, g3, g4) of the plaquette p. Indeed, one
has:

Tr ngp |917 g2, g3, g4> =Tr Wp |gv1 glgy_zla 91;29291,_31, gv4g3gv_317 91:19491,_41>
= Tv (90, 910295 01 9oy 19019100, 90292003 0ua 9390+ Gun 9490,1)

=Tr (919295 95 '] 19019192 99290, 9019390, Gor 9290, )
(1.4.46)

where we omitted the representation p through which we should evaluate the trace of the group
elements, and in (1.4.46) we used the cyclic property of the trace. Similarly we have:

Go Tt W, |91, 92, 93, 9a) = Tt [919295 95 '] Gp 191, 92, 93, G4)

=Tr [019295 95 '] |90, 9190, + 9029292, + Go1939us + Gor 929y, ) -
(1.4.47)

Comparing the expressions (|1.4.46) and (1.4.47) we see that the operators G,, and Tr Wp com-
mute. This means that the Wilson plaquette operator Tr IV, is gauge invariant and the magnetic
Hamiltonian as well.

Let us now verify if the projector operators I; (1.4.26), and hence the Laplacian A
and also the electric Hamiltonian Hp are gauge invariant or not.

Let consider the Hilbert space (") of a single link, a state |j,,,,) of the representation basis and
the action of the gauge transformation L, R, as in (1.3.27):

. d;
keG

d; .
= |—é| > 097 k) |F)

keG

B % Z Z pj(g_l)mppj(k)pqu(h>qn k)

kedG p,g=1

d;
= 2 g Do (R)an Lina) (1.4.49)

p,g=1
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V4 83 V3 V4 gv4g3 gv/ V3
G , ,
g4 p 22 —p} gvlg"gv4 p gvzgzgvj

Vi g1 V2 Vi g g g-/ V2
Vi V,

Figure 1.7: Action of the gauge transformation G, (1.3.27)) on a single pla-
quette p.

where in (T.4.48) and (1.4.49) we used the duality relation (I.3.20)). The gauge transformation
Ly Ry, transforms the projector P; (1.4.26) as:

d;
(LyRn)Ps(LyRi)' = > (LoRn) Ljmn) (Gmn| (LgRr)!

m,n=1

di dj dy
=3 3> 0 s Wi (97 Vs (B L) (i

m,n=1p,q=1r,s=1

- Zj Zj ZJ pj(g>7“mpj(gil)mppj(h)qnpj(hil)ns |qu> <jrs|

m,n=1p,q=1r,s=1

dj  dj
= Z Z Or.pOq.s |Jpq) (Jrs|
p,q=175=1
dj
= Z |Jpa) (el = P, (1.4.50)
p,g=1

that proves that the projector IP; is gauge invariant, hence the Laplacian A (I.4.23)) and the
electric Hamiltonian Hy (T1.4.21) as well.

1.5 Plaquette and vertex operators

In this sections we introduce two useful objects that we will use in the following: the vertex
operator and the plaquette operator, looking also at their commutation relations. The vertex
operator can be used to define a gauge transformation, while the plaquette operator is particu-
larly useful to introduce plaquette states, as we will see in section [3.3.1] These two operators
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A
L |/
g
R L
g V g
e S
R |/
g+

Figure 1.8: Graphical representation of the vertex operator AY .
Given a group element g € GG and a vertex v of the lattice, the vertex op-
erator A9 acts on the Hilbert spaces of the links connected to v, with the
operator L, if v is the source of the corresponding link (v = [_), and with
R, if v is the target of the corresponding link (v = ).

can be used also to discuss the quantum double model, a model related to the lattice gauge
theory we are interested in.

1.5.1 Vertex operator

Consider a vertex v of the lattice A (1.2.1)) and a group element g € G, we define the vertex
operator AY as

A9 =) Ly(1) X) Ry(0). (1.5.1)

v=l_ v=l4

In other words the vertex operator AY acts on the Hilbert spaces of the oriented edges [
connected to the vertex v, with the left translation operator L, @) if the vertex is the source
of the link v = [_, with the right translation operator 1z, if the vertex is the target of the
link v = [,. A pictorial representation of the operator is shown in Fig.

Gauge transformation

We can use the vertex operators to write the gauge transformation operator G({g,}) (1.3.27)
as

G({g.}) = R AY, (15.2)

veV

where we assign a group element g, to each site v of the lattice, and the tensor product is
extended to all vertices V.
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1.5.2 Plaquette operator

Consider an oriented plaquette p of a square lattice and a group element g € (G, we define the
plaquette operator BY as

Bg - Z 5(97 919293_194_1)P91 (ZI)PED (ZQ)PEB (l3>P94(l4)7 (1.5.3)

91,92,93,94€G

where P, (() is the projector |g) (g| in the Hilbert space of the link [, while [y, l5, (3, 4 are the
four edges of the plaquette p, as shown in Fig. [[.9] It easy to see that the plaquette operator is
a projector with eigenvalues 0 and 1, indeed (Bg)2 = Bj. The action of the plaquette operator
Bj consists in selecting those states that have a group element g assigned to the plaquette p.
In other words a state |g1, g2, g3, g4), in order not to be annihilated by this projector, must have
the product of the group elements g; associated to each edge [ equal to g, s0 g = 19295 "5 .
Notice that links crossed in the opposite direction with respect to their orientation appear with
the inverse of their group element. Using the plaquette operator we can write the Wilson
loop Tr Wp (3.3.30) for a single plaquette as

TrW, = Y Bixr(g). (1.5.4)

geG

where x r is the character of the faithful representation F'.
The plaquette operator can be generalized to a generic closed path 7 that surround more than
one plaquette. In this case we have:

BI= > 6 (%HM) Q) P, (1), (1.5.5)

91,925---,9m ley ley

where the path v contains m edges, g1, 92, ---, gm are the group elements associated to the links
of the path , while g[l] is equal to g; if the path  is parallel to the link /, while it is equal to
g, if ~ is anti-parallel to [.

1.5.3 Commutation relations

Let us now consider the commutation rules between the operators that we have just introduced.
Given two group elements g, h € G and two vertices v, u € V, the vertex operators A9 and A"
commute whenever they are applied on different vertices, v # u. In order to prove that notice
that A9 and AZ, besides the trivial case, have at most one edge in common, in that case they
act one with the left L, and one with the right I?;, regular representation, and these operators
commute, as you can easily see from their expressions (1.3.22)) and (1.3.24). So we have that

[A9, A" =0 if v #£u. (1.5.6)
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Figure 1.9: An oriented plaquette p with its 4 oriented links l1, l2, [3, [4.

The situation is different if the vertex operators A9 and AZ act on the same vertex, v = u, in
this case we have

AIAh = Adh (1.5.7)

that can be easily proven using the definition of A9 (I.5.1) and the property (1.3.10) of the
operators L, and R,.

For what concerns two plaquette operators BJ and Bé‘ defined on two different plaquettes
p # q, with g, h € G, if they do not share any edge it is obvious that they commute, but also
with one link in common, we can easily prove that they commute:

(B, Bl =0 if p#q. (1.5.8)
Two plaquette operators defined on the same plaquette p satisfies the relation:
h
BIB, = 6(g,h)BS, (1.5.9)

because the plaquette operator is a projector. A vertex operator A9 on the vertex v, which is
not the origin of a plaquette p, commutes with the plaquette operator BI’;. If instead the vertex
v is the origin of the plaquette p we have:

AIBM = BIh A9, (1.5.10)
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3

Figure 1.10: Graphical representation of the action of the vertex operator A9
and plaquette operator B}’;, with the vertex v at the origin of the plaquette p

519

This result can be proved considering a system like the one in Fig. [I.I0] and the definitions

(1.5.1) and (1.5.3) of the operators A9 and B} respectively:

AIBY =Lg(11) Ly(l1) Ry(I5) Ry(ls) Z 6(h, g19295 95 ")

91,92,93,94€G

’ Pfh (ZI)PQ2 (l2)Pg3 (l3>]P)g4(l4) (1.5.11)
= Y 5(h 91920595 ") 1991) (911 Py, (I2) Py, (Is)-

91,92,93,94€G

~1994) (9a] Ry (l5) Ry (ls) (1.5.12)
= > 6(hg 019205 95 9) |91) (97" 91| Py, (I2)-

91,92,93,94€G

<Py, (Is) [9a) (97" 94| Ry(l5) Ry(ls) (1.5.13)
= Y ghg " 019205 91 )Py (1) Py, (12)Py, (I5)Py, (La)-

91,92,93,94€G
- Ly(1) Ly(14) Ry (15) Ry (I6) (1.5.14)
=B A9, (1.5.15)

where in the expression (1.5.11) we used the fact that L,P, = L, |g) (o] = |gg1) (], in
(T.5.13) we change variable in the sum g; — g¢g; and g4 — gg4, while in (1.5.14) we used

Py, Ly = |g1) {91l Ly = |g1) (9~ aul-

1.5.4 Quantum double model

Using the vertex A9 (I.5.1) and plaquette B (I.5.3) operators introduced before we can con-
struct a new model, called quantum double model, that has some interesting relations with the
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lattice gauge theory we are interested in [26]. Consider an ordered lattice with V' vertices, £
links and P plaquettes, a finite group G and a total Hilbert space Hr = ®;cgC[G], as for our
lattice gauge theory. Consider then the following Hamiltonian:

Hopm =—» A,— Y B, (1.5.16)

veV peP

where B, = B,, with e the identity element of the group G, and A, that is the total vertex
operator defined as

A, = ’—éIZAg. (1.5.17)

geG

The Hamiltonian Hgpy (I.5.16) is the Hamiltonian of the quantum double model. Notice how
all addends in it commute, then the two pieces, vertex and plaquette part, can be diagonalized
with the same basis.

We just mention that a particular kind of quantum double model, the one based on the 2-cyclic
group G = Zo, is called toric code and has many applications in physics and in particular in
fault-tolerant quantum computations [26].

Vertex Hamiltonian and gauge invariance

Let’s consider the vertex part H, = — > A,. The total vertex operator A, is a projector,
indeed A2 = A,, hence it has eigenvalues 0 and 1. All states |¢)¢) that are in the ground
eigenspace of the vertex part H, have eigenvalue 1, then they satisfy

Ay [¥5) = [¥g) (1.5.18)

for all v € V. Notice that this relation is equivalent to the gauge invariance condition (1.3.32)
for a lattice gauge theory, recalling also (I.1.6). This means that the vector space of physical
states in our lattice gauge theory corresponds to the eigenspace of ground states of the vertex
part of the quantum double model.

Plaquette Hamiltonian and magnetic ground state

Consider now the plaquette part H, = — ) » Bp- The plaquette operator B, is a projector, then
it has eigenvalues 0 and 1. A ground state |¢{)) of the plaquette part H, has eigenvalue 1, and
satisfies

B, [v5) = 146) (1.5.19)

for all p € P. There is a relation between the plaquette part /, of the quantum double model
and the magnetic part Hg = —2\p Zp ReTr W, (1.4.11) of the lattice gauge theory, indeed
the state that minimizes [, minimizes also Hp. In order to verify that, consider a single
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plaquette p and the group element basis state |g1, g2, g3, g1), Where each g; refers to the i-th
link of the plaquette p. The action of the plaquette operator 5, (1.5.3)) on this state is

B, |91, 92, 93, 91) = 6(e, 919295 ' 91 ") |91, 92, 93, 94 (1.5.20)

so we have eigenvalue 1 if e = g1g295 " g; " and 0 otherwise. Thus the ground state of the
plaquette Hamiltonian is a superposition of the states |g1, go, g3, 94) With g1g295 ' g, * = e. The
magnetic Hamiltonian H g is the sum of Wilson plaquette operators, and the action of a Wilson

plaquette operator Tr Wp (3.3.30) on the state | g1, g2, g3, g4) iS

Tr W, 91, 92, 93, 94) = X# (919205 *91 ") |91+ G2, 93, 9a) - (1.5.21)

where [ is a faithful representation of the gauge group. In order to find the magnetic ground
state we have to maximize the character function x#(g). x  is the sum of dr complex roots of
unity [49], with d the dimension of the representation £, so the maximum of y r(g) is real-
ized when all dr addends are equal to 1, hence xr(g) = dp. The group element g that satisfies
the previous expression for any representation [ is the identity element e. So the magnetic
ground state of the single plaquette is a state |g1, g2, g3, ga) Where 19295 'g;1 = e, just as in
the quantum double model.

Summarizing what we have found: the ground state |¢) of the full quantum double model
Hamiltonian Hgpy corresponds to a state in the lattice gauge theory that is the ground state
|E3:0) of the magnetic Hamiltonian /z (in order to minimize the vertex part /{,) and it is
gauge invariant (in order to minimize the vertex part H,).

Topological sectors

If the lattice that we are considering has periodic boundary conditions we can see that the
ground state [1)y) of the quantum double model (so also of the magnetic Hamiltonian of the
lattice gauge theory) is degenerate. Indeed let’s consider the two non-contractible loops 7, and

7, in Fig. [1.11] and the operator x;(y) defined as [34]:

() => xi(9)B, (1.5.22)

geG

where 7 is a generic closed path and BY is the corresponding plaquette operator @ When
considering the non-local operators x;(,) and x;(7,) we can verify that they commute with
the Hamiltonian Hgpwm , since [AY, Bffzy] = 0. This means that these operators don’t
change the value of the energy and therefore all states |o(¢,7)) = Xi(72)X;(Vy) [to) are
ground states as well as |1o). The eigenspace with minimum energy is \é|2 dimensional, since
there are \G‘ | possible values for i and j. To each ground state corresponds a topological sector,
i.e. the set of states of the Hilbert space that can be obtained by the corresponding ground state
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Figure 1.11: A 2-dimensional lattice with periodic boundary conditions and
the two non-contractible loops 7, and 7,

by local transformations. One can also construct some operators, called t’Hooft operators, that
can be used to identify the topological sector of any state of the Hilbert space, but the design
of these operators for an arbitrary non-Abelian gauge group G is not easy. Topological sectors
are a very interesting property of quantum double model and they are being extensively studied
[16, 26].
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Chapter 2

SIMULATION OF A LATTICE GAUGE
THEORY

In this chapter we present the general tools to simulate a generic pure lattice gauge theory on
a digital quantum computer. The first step is encoding, i.e. mapping the degrees of freedom
of the physical model in the degrees of freedom of the quantum simulator in such a way that
the map can be inverted and the results of the quantum circuits can be uniquely decoded. The
second step is the reproduction of the dynamics of the physical model using a quantum circuit,
i.e. we want to create a quantum gate that realizes on the simulator the time evolution oper-
ator. This is made possible using Trotter approximation and a set of high level gates whose
explicit form depends on the gauge group under study. We discuss also the adiabatic approx-
imation that is very useful to prepare a desired state. Finally we can perform measurements
on the quantum simulator to get information about the physical model. A graphical scheme to
visualize all quantum simulation procedure is in Fig. 2.5]

2.1 Introduction to quantum simulation

The idea of a quantum simulator was first proposed by R. Feynman in 1982 [20], he suggested
that a quantum device would be able to reproduce accurately a quantum system of interest,
in particular all its quantum properties that have no classical counterparts and cannot be effi-
ciently simulated on classical simulators or computers. For many years this remained only an
idea, since we lacked the technical capabilities to create such devices. Today, thanks to the
advance of quantum control systems, we have reached the technology sufficient to realize such
quantum simulators, as well as many other quantum technologies, like digital quantum com-
puters. Many platforms have been proposed to implement quantum simulators and quantum
computers, such as ultra-cold matter on optical lattices [48], Rydberg atoms [56], supercon-
ducting qubits [18], nuclear spins [46]] or trapped ions [[7]. These devices have been applied
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to simulate a broad range of physical phenomena in the quantum world, such as superconduc-
tivity [23]], Ising model [9], particle physics [4] and Hawking radiation [50], showing what
the great potential of this technology can be. Digital quantum computers, which are currently
rapidly developed and improved with very promising prospective, can be seen as a particular
class of quantum simulators. Quantum computers are supposed to be universal, meaning that
they should be able to reproduce the dynamics of any quantum system. Whereas a quantum
simulator is able to mimic the dynamics of the specific quantum system for which it was de-
signed, in principle a programmable quantum computer can be used to reproduce and study
any quantum system using the same hardware [52]]. In this thesis we will try to use a digital
quantum computer to simulate a non-Abelian lattice gauge theory as the one described in the
first chapter.

2.2 Encoding

In this section we see how to encode the degrees of freedom of the physical lattice gauge model
in the degrees of freedom of a digital quantum simulator for both states of the Hilbert space
and observables. We pay particular attention to those cases in which the physical Hilbert space
is infinite dimensional, i.e. the gauge group contains infinite elements, and in order to encode
this space in the finite resources of a quantum simulator you need to approximate the gauge
group with a finite subgroup.

2.2.1 Encoding of the states

Consider a physical system with total Hilbert space # (I.3.5), this means that every possible
configuration of the system is described by a state vector inside this space.

The degrees of freedom of the quantum simulator are described by the Hilbert space H,. If
we use a quantum computer of n qubits as a quantum simulator, the Hilbert space is given by
H, = HS", where H, is the Hilbert space of a two level system, a qubit, the basic element
of information in quantum computation. If we want to correctly encode the properties of
the physical system in the quantum simulator we need to construct the map Hr — H, in
such a way that it is isomorphic, or at least 1-1, in order to ensure that every physical state
has a corresponding in the quantum simulator and the map can be inverted, allowing us to
decode the results of the quantum simulation. While the dimensionality of the Hilbert space
of the physical system 7 is not constrained and can be also infinite, the dimension of the
Hilbert space of the quantum simulator # is always finite. For example the Hilbert space of
a quantum computer with n qubits has a dimension dim H, = 2". This means that only finite
dimensional Hilbert spaces can be exactly simulated on a quantum computer. For example, in
a lattice gauge theory with an infinite size gauge group, we have that the Hilbert space of each
link it is infinite dimensional dim L?*(G) = oo, and so it is impossible to simulate it exactly
on a quantum computer. This is the case for many group of interest, like SU(NV). There are
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many possible strategies to deal with an infinite dimensional system: quantum link model [10],
the Fock space truncation [8]], dual variables [5] and the finite group approximation [15} 22];
we will deepen in the latter. Once one has encoded the physical degrees of freedom in the
degrees of freedom of the simulator we are ready to initialize and prepare an initial state on the
simulator.

Notice that we are not restricting to the gauge invariant Hilbert space H s (1.3.33), but we are
considering the whole H