Giovagnoli, Davide
(2023)
Alt-Caffarelli-Friedman Monotonicity formulas.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Matematica [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore.
(
Contatta l'autore)
Abstract
In this thesis, the main topic is the study of the Alt-Caffarelli-Friedman monotonicity formula, its generalizations and its relation with a free boundary problem. The principal interest of the work is to provide a detailed proof of the first elliptic ACF formula. Then, it is studied the parabolic counterpart and some extensions for variable coefficients operators.
The last part of thesis focuses on the existence of the ACF formula in Carnot groups. After recalling the results of Ferrari and Forcillo on the Heisenberg group, it is obtained a necessary condition on the existence of an ACF formula on Carnot groups exploiting the lack of orthogonality of intrinsic harmonic homogeneous polynomials. The necessary condition is applied to case of the 3-step Engel group and is given an explicit counterexample.
Abstract
In this thesis, the main topic is the study of the Alt-Caffarelli-Friedman monotonicity formula, its generalizations and its relation with a free boundary problem. The principal interest of the work is to provide a detailed proof of the first elliptic ACF formula. Then, it is studied the parabolic counterpart and some extensions for variable coefficients operators.
The last part of thesis focuses on the existence of the ACF formula in Carnot groups. After recalling the results of Ferrari and Forcillo on the Heisenberg group, it is obtained a necessary condition on the existence of an ACF formula on Carnot groups exploiting the lack of orthogonality of intrinsic harmonic homogeneous polynomials. The necessary condition is applied to case of the 3-step Engel group and is given an explicit counterexample.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Giovagnoli, Davide
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum Generale
Ordinamento Cds
DM270
Parole chiave
Free boundary problem,Alt-Caffarelli-Friedman monotonicity formula,ACF formula,Carnot groups
Data di discussione della Tesi
29 Settembre 2023
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Giovagnoli, Davide
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum Generale
Ordinamento Cds
DM270
Parole chiave
Free boundary problem,Alt-Caffarelli-Friedman monotonicity formula,ACF formula,Carnot groups
Data di discussione della Tesi
29 Settembre 2023
URI
Gestione del documento: