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A Geometrical View on Space-Time Singularities

An Analysis on the Singularity Theorems

Simone Coli

Abstract

At the beginning of the development of General Relativity, from specific solutions of the
Einstein field equations arose the existence of singular points inside the defined space-
time, then called singularities. The existence of these objects seemed to be due to the
presence of particular symmetries inside a solution. It can be shown that it is possible to
prove that singularities are not the result of some peculiar solution. Such a proof is not
trivial and requires the use of geometrical considerations. In this thesis, I shall introduce
a series of results and definitions, allowing us to state and prove a series of theorems that
predict the existence of singularities by showing that a particular space-time possesses
some kind of incompleteness. These theorems are called the singularity theorems. In
addition to that, I shall also include a series of considerations about the conditions that
such theorems require, as well as a brief discussion about their consequences in physics.

2



2



Contents

Preface 5

1 Introduction to General Relativity 7
1.1 A mathematical model for space-time . . . . . . . . . . . . . . . . . . . . 7
1.2 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Einstein field equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 The Newtonian Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Physical meaning of curvature 15
2.1 Energy Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Conjugate points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Variation of arc-length . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Causality 31
3.1 Orientability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Causal curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Achronal boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Causality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Cauchy developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Global hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7 The existence of geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.8 The causal boundary of space-time . . . . . . . . . . . . . . . . . . . . . 43
3.9 Asymptotically simple spaces . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Space-time Singularities 49
4.1 The definition of singularities . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Singularity theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Conclusions 61
5.1 Conclusions of the singularity theorems . . . . . . . . . . . . . . . . . . . 62

3



Contents 4



Preface

This thesis has the goal of introducing the concept of space-time singularity from a
strictly geometrical point of view, starting from the definition of the necessary mathe-
matical tools. The majority of such tools, together with the notions and concepts used in
the development of the theory had been inspired by the rather complete and exhaustive
text ”The large scale structure of space-time” by S.W. Hawking and G.F.R. Ellis, which
had been recommended to me by Professor Alexandr Kamenchtchik, whom I would like
to thank for putting up with me during the drafting of this document. In addition to
such a book, I used some other minor references, which will be all listed at the end of the
document. I would also like to thank Professor Roberto Casadio for the wonderful course
Basics of General Relativity which had been very helpful to me in better understanding
the basics of differential geometry as well as a few concepts of General Relativity.

After a brief introduction to the basic principles of the theory of General Relativity
in Chapter 1, that is the theory of gravity from which we will derive a variety of useful
results, we shall give a series of definitions and results necessary to the introduction and
discuss the singularity theorems. In Chapter 2 I will introduce the weak and strong
energy conditions as well as some consideration on the shape of the energy-momentum
tensor. In the same chapter, I shall also introduce the concept of conjugate point, as
well as the concept of arc length, both of which will turn out to be useful in Chapter 4.
Chapter 3 will contain some considerations about causality, starting from the concept
of orientability for space-time and then moving to some properties of the curves in an
orientable space-time. I will then present the concept of achronal boundaries, Cauchy
development, and global hyperbolicity, stating the causality conditions, defining the
causal boundary of space-time, and concluding with the existence of geodesics and the
definition of asymptotically simple spaces. The last chapter will finally talk about singu-
larities, stating their definition and introducing the four singularity theorems provided
with proofs and explanations about their conditions.

The reason I decided to choose this subject for my thesis has to be attributed to my
interest in black holes from the beginning of my bachelor’s degree. With the work I have
done writing this document, I believe to have made one step forward toward a better
understanding of the concepts behind this mysterious, but yet fascinating objects.
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Chapter 1

Introduction to General Relativity

1.1 A mathematical model for space-time

The essence of a physical theory expressed in mathematical form is to identify, through
mathematical concepts, physically measureable quantities.

Let us, therefore, begin considering for our model of space-time a pair (M,g) where
M is a four-dimensional C∞ Housdorf manifold and g is a metric with sg(+2) onM. In
general, two models (M,g) and (M′,g′) will be taken as equivalent if they are isometric,
that is if there exists a diffeomorphism θ :M→M′ which carries the metric g into g′,
i.e. θ∗g = g′. This means that {(M,g)} is an equivalence class of pairs. For the sake of
simplicity however, we shall consider only (M,g) as the representative member of such
a class.

Choosing a manifold to represent space-time seems to be a natural option since
it already contains the concept of continuity. Such an idea has been proven to work
experimentally for distances down to 10−15 cm, using the scattering of Pions. Further
confirmations at lower scales may be difficult, as it would require a particle of such energy
that several other particles might be created during the measuring process, influencing
the outcome of the observation. Therefore, a manifold could become an inappropriate
model for space-time within lengths smaller than 10−35 cm, requiring the use of a theory
which represents space-time using an alternative structure. However, such a breakdown
would not be expected to affect General Relativity until the gravitational scale would
become of that order. This would require extreme conditions, such as densities up to
1056 g cm−3, which are completely beyond our present knowledge.

Nevertheless, by adopting a manifold model for space-time, and making some rea-
sonable assumptions, it will be shown in Chapter 4 that some breakdowns of General
Relativity must occur.

The previously defined metric, g, allows non-zero vectors X ∈ Tp in p ∈ M to be
categorized depending on the result of their scalar product as: space-like, time-like or

7



Chapter 1. Introduction to General Relativity 8

null according to whether g(X,X) is positive, negative or zero, respectively. The order
of differentiability of g, r, is such that allows the definition of the field equation.

Inside our manifold,M, it is possible to define a number of fields, such as the electro-
magnetic, the neutrino’s, etc.., which describes the matter content of space-time. These
fields will obey relations and expression of tensorial nature onM in which spacial deriva-
tives are defined to be covariant derivatives with respect to the symmetric connection
given by the metric. This is because every connection on M different from the one
defined by the metric, might be related to the latter through a tensor, which could be
itself regarded as another field on M. The theory one obtains depends on what fields
one incorporates.

From now on, we shall denote the matter fields included in the theory with Ψa...b
(i) c...d

where (i) is the index of the field. [Hawking and Ellis, 1973, pp. 56-59]

1.2 Principles

Now that the mathematical structures are defined, we shall deduct and discuss a series
of principles which will lay down the basis for all further considerations.

(i) Space-time (which is the set of all events) is a four-dimensional mani-
fold with a metric.

(ii) The metric is measurable defining a coordinate system, such that the
spacial distance between two nearby points is |g(dx, dx)|1/2, and the time
distance between two events closely separated is | − g(dx, dx)|1/2.

Nevertheless, the definition of the four-vector dot product g(dx, dx)
.
= −(dx0)2 +

(dx1) + (dx2)2 + (dx3)2, from Special Relativity, is not true everywhere in a general coor-
dinate system. Still, it can be argued that such a frame exists locally. This assumption
seems to suggest a curved manifold as a model of space-time, in which it is possible to
find some particular coordinates, whose dot product has a similar form to the Minkowski
dot product. Therefore:

(iii) The metric of space-time can be put in the canonical form ηµν (Lorenz
form) in any particular point by an appropriate choice of coordinates.
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Considering, now, the Newtonian approximation, which allows the existence of a
locally inertial frame where particles will behave as in free fall, we obtain that, in a
gravitational field, the acceleration of a particle is independent from its mass. The
paths that these particles follow in this frame will take the shape of straight lines. This
trajectory is, by definition, a geodesic in a curved manifold, therefore, a particle in free
fall must move on a time-like geodesic through space-time. A more general way to express
this statement would be the strong equivalence principle:

(iv) Any physical law which can be defined in tensorial notation in Special
Relativity has the same form in a locally inertial frame of reference on a
curve space-time.

Given for example the conservation laws in Special Relativity:

(ρUα),α = 0 , (1.1)

where ρ is the density of particles and Uα is four-velocity, the strong equivalence prin-
ciple implies that it can be regarded as a conservation law in a locally inertial frame of
reference. In any coordinate system Eq. (1.1) becomes:

(ρUα);α = 0 ,

in which the partial derivative had been substituted with the covariant derivative. Schutz
[1985]

Let us now define the energy-momentum tensor T µν as a (2, 0) type tensor describing
the distribution and dynamics of matter in space-time, whose (µ, ν) component given
by the flux of µth of the four-momentum vector across a surface of constant coordinates
xν . This serves in general relativity a similar role to the mass distribution in Newtonian
physics. In particular, T 00 is the flow of relativistic mass through time, defined as
the spatial mass density ; T µ0 is the flow of the µth component of spatial momentum
through time, defined as the spacial µ–momentum density ; T 0ν is the flow of relativistic
mass through a surface of constant coordinate xν , defined as ν-flux of mass ; the rest
of the components are the mechanical stresses. Tolish [2010] Since the components of
momentum must be conserved, the conservation law takes the form:

(T µν);µ = 0 . (1.2)

Another way to define such a tensor is using the concept of action function. Given
the Lagrangian of the matter field, in fact, we shall define the energy-momentum tensor
as the action of the latter, that is:

Tµν = −∆g

g
Lm − 2∆Lm,

in which, as we shall see in the following section, ∆
.
= δ/δgµν
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1.3 Einstein field equations

The principles deduced in the previous section give us a hint on the nature of the matter
field as well as on the equation that this field has to obey. In particular, the two main
conditions on the behavior of the latter, are the strong equivalence principle, generalized
also to light signals, thus to non-spacelike curves, and the local conservation of the
energy-momentum tensor.

It is possible to show that the shape of the equation that all such fields have to follow
takes the form of Einstein’s field equation:

(Rµν −
1

2
Rgµν) + Λgµν = 8πTµν , (1.3)

that is a system of non-linear partial differential equation which expressed in the tensorial
formalism takes a more compact form.

An alternative form uses the energy-momentum scalar instead of the Ricci scalar
8πT = R (such relation between the two scalars has been obtained diagonalizing the
previous equation).

Rµν = 8π(T µν − 1

2
Tgµν) + Λgµν . (1.4)

Proof. Let I = Ic+Im be the Einstein-Hilbert action function, in which Im depends only
on the matter component of the field, while Ic only on the curvature one. Let us define
Ic such that:

Ic =

∫
V

Lcdν =

∫
V

Lc
√
−gd4x , (1.5)

such that dν = 4!−1η in which η is a 4-form. Being a scalar, we can take a guess at the
Lagrangian in the simplest form possible, choosing to define it using the Ricci scalar R.
With the purpose of taking also into account the expansion of the universe, we shall also
include a scalar known as the cosmological constant Λ:

Lc = α(R− 2Λ) , (1.6)

which gives to the action the following form:

I =

∫
V

(α(R− 2Λ) + Lm)dν , (1.7)

where Lm is the Lagrangian of the matter field. Let us now apply the principle of least
action on it. Using the notation ∆ to indicate δ/δgµν we specify that the variation is not
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applied on the parameters of the field, but rather on the components of the metric gµν .

δI =

∫
V

δ((α(R− 2Λ) + Lm)dν) . (1.8)

The variation of the curvature Lagrangian is such that:

δ((R− 2Λ)dν) = ((R− 2Λ)
1

2
gµνδg

µν+

+Rµνδg
µν + δRµνg

µν)dν ,

in which the Ricci scalar is defined as the contraction of the Ricci tensor, through the
metric (R = gµνRµν), and 1

2
gµνδg

µν is the variation of dν. That is:

δ(dν) = δ(
1

4!
ηνµλσ),

where ηνµλσ = (−g)
1
2 4!δ1

[µδ
2
νδ

3
λδ

4
σ].

δ(
1

4!
ηνµλσ) = − δg

2
√
−g

δ1
[µδ

2
νδ

3
λδ

4
σ] =

g

2
√
−g

gµνδ
1
[µδ

2
νδ

3
λδ

4
σ]

from which we obtain δ(dν) = 1
2
gµνδgµνdν.

Now by the definition of the Ricci tensor, let us express it as the contraction of the
Riemann tensor

Rµν
.
= Rα

µαν =

= ∂αΓααµ − ∂νΓααν + ΓααβΓβµν − ΓανβΓβαµ ,

therefore the variation of Rµν gives

δRµν = ∂α(δΓααµ)− ∂ν(δΓααν) + δΓααβΓβµν − δΓανβΓβαµ+

+ ΓααβδΓ
β
µν − ΓανβδΓ

β
αµ .

From the definition of covariant derivative of a (1,3) tensor, ∇α(δΓαµν) = ∂α(δΓαµν) +

ΓββαδΓ
α
µν − ΓαµβδΓ

β
να − ΓβναδΓ

α
µβ it follows that the previous expression can be simplified

as:

δRµν = (δΓαµν);α
− (δΓαµν);ν

,

and the variation of the Rocci scalar becomes:

δR = Rµνδg
µν + δRµνg

µν =

= Rµνδg
µν + δΓαµν;αg

µν − δΓαµν;νg
µν .
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Renaming the index ν with α and vice versa in the last term of the previous equation,
allows to have a homogeneous covariant derivative with respect to α:

δR = Rµνδg
µν + (δΓαµνg

µν − δΓνµνgµα)
;α
.

Now, by defining the tensorial object in the round parenthesis as V α gives, we find the
final form for the variation of Ricci’s scalar:

δR = Rµνδg
µν + V α

;α . (1.9)

Because the integral of the action is over the whole space-time, the quantities δΓαµν vanish.
The reason behind this fact is the annulment assumption of the variation of gravitational
field at the boundaries of our space-time, implying δR = Rµνδg

µν .

Furthermore, from linear algebra, we know that det(eA) = etr(A), which means that
ln (det(A)) = tr(ln(A)), where A is an arbitrary matrix. By taking the variation of both
sides we produce the following relationships:

δ ln (detA) = δtr(ln(A)) ,

1

det(A)
δ detA = tr(A−1δA) ,

δ detA = tr(A−1δA) detA .

Let now A = gµν and A−1 = gµν , then

δg = tr(gµνδgαβ) g = gµνδgµνg . (1.10)

Merging Eq. (1.9) with Eq. (1.10)

δ((R− 2Λ)dν) = ((
1

2
R− Λ)gµν +Rµν)δgµνdv . (1.11)

Considering now the variation of the matter Lagrangian we get:

δ(Lmdv) = (∆Lm +
1

2
gµνδg

µνLm)dv .

Since the energy-momentum tensor had been defined as the action function of the matter
Lagrangian, it follows that Tµν = −∆g

g
Lm − 2∆Lm. Therefore, giving that ∆g = −ggµν

the previous expression becomes:

δ(Lmdv) = −Tµνδgµνdv . (1.12)

From the principle of least action the integrand of Eq. (1.8) vanishes for all values of
δgµν , since the volume cannot vanish,

α(
1

2
R− Λ)gµν + αRµν =

1

2
T µν ,
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Rµν +
1

2
Rgµν − Λgµν =

1

2α
T µν .

Since we want to obtain the Newtonian laws of gravity in the approximation of a weak
gravitational field the constant 1

2α
must be equal to 8πG

c4
, as shown in the next section.

Rµν +
1

2
Rgµν − Λgµν =

8πG

c4
T µν , (1.13)

which is the Einstein field equations. Assuming now G = 1 as well as c = 1 gives the
form previously mentioned.

1.4 The Newtonian Limit

The constant 8π in Eq. (1.3) and Eq. (1.4) can be found by imposing that they must
reduce to Newton’s gravitational field in the case of a weak gravitational field. To make
the derivation more general we shall use λ as our constant in front of the field equation.

Let us consider a simple case in which the matter flow does not carry any force flow.
That is a situation in which energy-momentum tensor’s only non-zero component is T 00,
which is the 0th component of momentum in time. Such a flow through time is just the
mass-energy density ρ, giving to the energy-momentum tensor the following form:

T =


ρ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Because of that, if we define the metric to be

gµν = ηµν + hµν |hµν | � 1 ,

so that we are in a weak gravitational field, the trace of Tµν will be

T = T µµ = ηµµTµµ = η00T00 = −ρ .

Substituting this result in Eq. (1.4) as well as using T00 and g00 we get:

R00 =
1

2
λρ .

From the definition of Ricci tensor we can also write R00 as:

R00 = Rµ
0µ0 = ∂µΓµ00 − ∂0Γµµ0 + ΓµµξΓ

ξ
00 − Γµ0ξΓ

ξ
µ0 .

Since ∂0Γµµ0 is just the dime derivative, and we assumed a static field, it must vanish.
Moreover, because Γabc is already of the first order in gµν , then ΓabcΓ

d
ef has to be of
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the second order. We can then neglect them in a linear approximation of the metric,
obtaining:

R00 = ∂µΓµ00 =
1

2
λρ .

From the definition of Christoffel’s symbol, Γµ00 = −1
2
ηµν∂νh00 it follows that

ηµν∂µ∂νh00 = −λρ .

Given the form of ηµν and the staticity of the field:

∂1∂1h00 + ∂2∂2h00 + ∂3∂3h00 = −λρ ,

which is the definition of a Euclidean Laplacian

∇2h00 = −λρ . (1.14)

Defining h00 = −2Φ, we get that Eq. (1.14) is very similar to the Poisson equation for
Newton’s gravitational field

∇2Φ = 4πGρ .

To obtain the equivalence between the two expressions, λ must be equal to 8πG, showing
that, in the weak gravity approximation, Einstein’s theory of gravity indeed transforms
into Newton’s. Tolish [2010]



Chapter 2

Physical meaning of curvature

In this chapter, we shall discuss some mathematical results and structures necessary to
introduce the concept of singularities.

2.1 Energy Conditions

Since the actual universe is made up of many fields, the form of the energy-momentum
tensor is quite complex to compute. One has very little idea of the behavior of the
matter field in the case of extreme density and pressure. Because of that, it might seem
very hard to predict the existence of singularities from the right hand of the Einstein
field equations 1.3. Nevertheless, if we are interested in studying the general features
of space-time without considering the shape of the energy-momentum tensor itself, we
shall strictly use geometric equations such as Raychaudhuri’s:

dθ

ds
= −RαβV

αV β + 2ω2 − 2σ2 − 1

3
θ2 + V̇ α

;α, (2.1)

dθ̂

ds
= −RαβV

αV β + 2ω2 − 2σ2 − 1

3
θ2, (2.2)

where ω is the vorticity (which induce an expansion of the fluid), σ the shear (which
induce a contraction of the fluid), θ the volumetric expansion, and V α the time-like
unit vector tangent to the flow, to obtain some interesting predictions. The first of the
equations shown above is relative to a congruence of time-like curves, while the second
to a congruence of null curves. By considering either a null-like vector field or one
that is time-like (Tp), both tangent to the geodesics belonging to the congruence with
vanishing vorticity, and by assuming θ̇ negative, from the fact that gravity is always
attractive, we derive a series of inequalities that will allow us to predict the existence of
singularities without the knowledge of the exact form of the energy-momentum tensor.
Mart́ın-Moruno and Visser [2017]

15
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The first of such inequalities will be the weak energy condition. It says that at each
point p ∈M the energy-momentum tensor for a time-like vector, and by continuity also
for a null-like vector, W ∈ Tp obeys TαβW

αW β ≥ 0. Because of that, an observer whose
world-line at p has a tangent vector V sees a positive local energy density TαβV

αV β.
This assumption might be regarded as asking that, for any observer, the local energy
distribution must be non-negative.

By expressing the energy-momentum tensor in p with respect to the orthonormal basis
E1,E2,E3,E4 we hope to diagonalize it with the help of local Lorentz transformations.
Such an undertaking is unfortunately not trivial. Thus, we need to find a different
approach to solve this problem. One such method consists of finding four different
partially diagonalized forms of such a tensor (assuming E4 time-like) and classifying
them in terms of the space-like/light-like/time-like nature of their eigenvectors.

Type 1:

Tαβ =


p1 0 0 0
0 p2 0 0
0 0 p3 0
0 0 0 µ

 .

This is a type 1 energy-momentum tensor, which is the general case when E4 is an
eigenvector belonging to the eigenvalue µ, unique for µ 6= pa (with a = 1, 2, 3). This
represents the energy-density measured by an observer whose world-line has E4 as unit
tangent vector at p. The other three eigenvalues pa are the principal pressures in the
three space-like directions Eα. This form of the energy-momentum tensor is valid for all
the observed fields with non-zero rest mass and also for all the zero mass fields that are
not contained in the case of type 2 tensors.

Type 2:

Tαβ =


p1 0 0 0
0 p2 0 0
0 0 ν − κ ν
0 0 ν ν + κ

 .

This is a more special case of the energy-momentum tensor, that is a type 2 tensor, with
a double null-like eigenvector (E3 + E4 = kα = (0; 0; 1; 1)), where ν = ±1. The only
observed occurrence of such a form is in the case of a zero rest mass field, representing
the radiation traveling in the direction of E3 + E4. For the radiation field we will have
p1, p2, and κ all vanishing identically.
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Type 3:

Tαβ =


p 0 0 0
0 −ν 1 1
0 1 −ν 0
0 1 0 ν

 .

In this special case the energy-momentum tensor has a triple null-like eigenvector (E3 +
E4 = kα = (0; 0; 1; 1))

Type 3:

Tαβ =


p1 0 0 0
0 p2 0 0
0 0 −κ ν
0 0 ν 0

 .

This is the general case in which the energy-momentum tensor has no time-like or null-
like eigenvector, with the condition κ2 < 4ν2.

The weak energy condition for a type I will hold if

µ ≥ 0, µ+ pa ≥ 0,

with (a = 1, 2, 3), while for a type II tensor if

p1 ≥ 0, p2 ≥ 0, κ ≥ 0, ν = +1.

For the last two types of energy-momentum tensor there are no observable fields which
exhibit such a behavior.

The second inequality we shall consider is the dominant energy condition which states
that for every time-like vector Wα, with TαβW

αW β ≥ 0, the vector TαβW
α must be non-

spacelike. Physically, this may be interpreted as saying that, for a local observer, the
energy density must be non-negative and the local energy-flow vector is non-spacelike.
Equivalently, that means having the energy component dominant with respect to the
others in an orthonormal basis,

T 00 ≥ |Tαβ|.
Such a condition will hold for a type I tensor if

µ ≥ 0, −µ ≤ pa ≤ µ,

with (a = 1, 2, 3), and for a type II if

ν = +1, κ ≥ 0, 0 ≤ pi ≤ κ,

with (i = 1, 2). This means that the dominant energy condition is just the weak energy
condition, but with the additional requirement that the pressure must not exceed the
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U

(∂U )2

(∂U )1

(∂U )3

t=t'

t = const.

t

U (t')

H (t')

Figure 2.1: U is a compact region of space-time with past and future non-spacelike bound-
aries (∂ U)1, (∂ U)2 and a time-like boundary (∂ U)3

energy density. Since the speed of sound is dpa/dµ, and it must be less than the speed of
light (from the relativity postulates), using c = 1, the derivation of the above condition
is trivial.

Let us now consider a C2 function t whose gradient is time-like everywhere (such as
in figure 2.1) and a region U in our space-time whose boundary ∂ U consists of (∂ U)1,
whose normal form n is space-time and with nαt;αg

αβ positive, (∂ U)2, whose normal
form n is space-time and with nαt;αg

αβ negative, and (∂ U)3. The sign of n is given by
the requirement that the scalar product 〈n,X〉 must be positive for all vector X pointing
out of U . The symbol U(t′) denotes the region of U for which t < t′, bounded at the top
by H(t′) that is the surface at t = t′.

It is now useful to introduce the following lemma for later use.

Lemma 2.1.1. There is some positive constant value P such that for any tensor Sαβ

satisfying the dominant energy condition and vanishing on (∂ U)3, the following inequality
holds:∫

H(t)∩U
Sαβt;αdσβ ≤−

∫
(∂ U)1

Sαβt;αdσβ

+ P

∫ t(∫
H(t′)∩U

Sαβt;αdσβ

)
dt′ +

∫ t(∫
H(t′)∩U

Sαβ;α dσβ

)
dt′.

As a direct consequence of this result we get the Conservation theorem:
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Theorem 2.1.2 (Conservation theorem). If the energy-momentum tensor obeys the dom-
inant energy condition, and is zero both on (∂ U)3 and on (∂ U)1 then it is zero every-
where.

From this theorem we deduce that if the energy-momentum tensor vanishes on a set
S then it also vanishes on the future Cauchy development D+(S), defined as the set of
all points through which every past-directed, non-spacelike curve intersects S.

By conjoining the weak and dominant energy condition it follows that the square
mass distribution of the fluid must be non-negative, which means that it is not made of
tachyons (special particles that are supposed to travel faster than light), and therefore
the matter fluid can not travel faster than light.

For our purposes, the weak energy condition is important because it implies that
matter always has a converging effect on congruences of null geodesics. Without vorticity,
equation (2.2) becomes:

dθ̂

ds
= −RαβV

αV β − 2σ2 − 1

3
θ2,

meaning that θ̂ will monotonically decrease along a null geodesic when RαβV
αV β ≥ 0.

We shall call this the null convergence condition, and imply the weak energy condition
in Einstein’s field equation (1.3), independently of Λ.

On the other hand, for eq. (2.1) the expansion of θ for a time-like congruence with
zero vorticity will monotonically decrease along a geodesic if RαβV

αV β ≥ 0. This takes
the name of time-like convergence condition. By the Einstein equation (1.4) the condition
is valid if the energy-momentum tensor obeys the following inequality:

TαβV
αV β ≥ V αV βgαβ

(
1

2
T − 1

8π
Λ

)
,

which for a type I tensor holds if

µ+ pa ≥ 0, µ+
∑
α

pα −
1

4π
Λ ≥ 0,

and for a type II if

ν = +1, κ ≥ 0, p1 ≥ 0, p2 ≥ 0, p1 + p2 +
1

4π
Λ ≥ 0.

The energy-momentum tensor will be said to satisfy the strong energy condition if
it obeys the above inequalities when Λ = 0, that is a stricter, physically reasonable,
requirement. For the general case, type I, such a requirement will be violated only by a
negative energy density or a large negative pressure.
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2.2 Conjugate points

The components of the vector Z, that represents the separation between a curve γ(s)
and neighboring curves in a congruence of time-like geodesics, satisfy what is called the
Jacobi equation:

d2Za

ds2
= −Ra4b4Z

b, (2.3)

this is a differential equation whose solutions are called Jacobi fields along γ(s). A
Jacobi field might be regarded as representing the separation between a neighborhood of
geodesics passing through a point q. Because of the second order nature of the equation,
in every point of γ(s) there are six independent Jacobi fields along such a curve. At a
point q in which γ(s) vanishes, the number of independent Jacobi fields reduce to three,
expressed as:

Za(s) = Aab(s)
d

ds
Zb|q.

In which A is a 3 by 3 matrix such that:

Aab(s)|q = 0,

d2

ds2
Aab(s) = −Ra4b4Acd(s). (2.4)

In such a context we can define the vorticity, shear and volumetric expansion as:

ωab = A−1
c[b

d

ds
Aa]c, (2.5)

σab = A−1
c(b

d

ds
Aa)c −

1

3
δabθ, (2.6)

θ = det (A)−1 d

ds
det (A). (2.7)

Such that

AcaωcdAdb =
1

2

(
Aca

d

ds
Acb − Acb

d

ds
Aca

)
,

will be constant along γ(s), and will vanish at q where Aab is zero. Thus, ωab will vanish
wherever Aab is non-singular.

We shall now define a conjugate point p of q along γ(s) as a point of γ(s) for which
there exists a Jacobi fields along such a curve, not identically zero, vanishing both on
q and p. p may be regarded as a point in which the infinitesimal neighboring geodesics
through q intersect. The Jacobi fields along γ(s) which vanishes at q is described by Aab.
Thus, a point p is conjugate to q if, and only if, Aab is singular at p. Since θ is expressed
by eq. (2.7) and Aab obeys eq. (2.4) in which −Ra4b4 is finite, then d(detA)/ds will be
finite. Therefore, a point p will be conjugate to q along γ(s) if θ there becomes infinite.
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Proposition 2.2.1. If at some point γ(s1) (s1 > 0), the expansion θ has a negative
value θ1 < 0 and if RαβV

αV β ≥ 0 everywhere, then there will be a point conjugate to q
along γ(s) between γ(s1) and γ(s1 + (3/− θ1)) showing that γ(s) can be extended to this
parameter value (which might be impossible if the space-time is geodetically incomplete).

This means that if the time-like convergence condition holds and if the neighboring
geodesics from q start converging on γ(s), then some infinitesimal neighboring geodesic
will intersect the curve, proving that it is extendible to that value of s.

Proposition 2.2.2. If RαβV
αV β ≥ 0 and if at some point p = γ(s1) the tidal force

RαβγµV
γV µ is non-zero, then there will be two values s0, s2 such that γ(s0) = q and

γ(s2) = r will be conjugate of p along γ(s), showing that such a curve can be extended to
these values of s.

Physically one would expect that, for real solutions, time-like geodesics will encounter
some matter or some gravitational radiation along their path and therefore contain some
points for which RαβγµV

γV µ is non-zero. It would be reasonable to assume, then, that
such a solution contains a pair of conjugate points, allowing to extend the solution in
both directions.

We shall now consider not only a curve passing through a single point, but a whole
congruence of time-like geodesics normal to a space-like three-surface H , that is an
imbedded three-dimensional submanifold defined by f = 0 where f is a function C2, and
such that gαβf;αf;β < 0 for that value of f . Let N be the unit normal vector to H such

that Nα = (−gβγf;βf;γ)
−1/2

gαµf;µ and χ be the second fundamental tensor of H , defined
as χαβ = hγαh

µ
βNγµ symmetric by definition. Here hαβ is the first fundamental tensor for

H , or induced metric, and is defined as hαβ = gαβ +NαNβ. The congruence of time-like
geodesics orthogonal to H consists of time-like geodesics whose unit tangent vector V
is equal to N at H , that is:

Vα;β = χαβ.

The separation between an infinitesimal neighboring geodesics normal to the surface and
the normal geodesic γ(s) is defined using the vector Z, and will obey Eq. (2.3) as well
as the initial condition at q ∈H :

d

ds
Za = χabZ

b.

Similarly, it is possible to express the Jacobi fields along γ(s) satisfying the above con-
dition as:

Za(s) = Aab(s)Z
b|q,

in which Aab obeys (2.4) at q, and it is a unit matrix such that:

d

ds
Aab = χacAcb
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A point p is said to be conjugate to H along γ(s) if there is a non-zero Jacobi field
along such a curve which satisfies the previous initial conditions at q and vanishes at p.
Therefore, according to the case of a single point, p is conjugate to H if and only if Aab
is singular at p or equivalently θ goes to infinity, with initial value χabg

ab, since ωab is
zero at q.

Proposition 2.2.3. If RℵβV
αV β ≥ 0and χαβg

αβ < 0, there will be a point conjugate
to H along γ(s) within a distance 3/(−χαβgαβ) from H , showing that such a curve is
extendible.

Considering the solution of the differential equation:

d2

dv2
zm = −Rm4n4Z

n (m,n = 1, 2),

along a null geodesic γ(v), we shall call it the Jacobi fields along such a curve. In the
same way Zm might be regarded as the components of Z in Sq (with q ∈H ), expressed
with respect to the basis E1 and E2, representing the vector connecting neighboring null
geodesics passing through q. We shall say that p is a conjugate point to q, along a null
geodesic, if there is a non-zero Jacobi filed along it which vanishes at q and p. The
interpretation we derive from this point is the same we get for time-like geodesics.

Using the Âmn 2 × 2 matrix we find similar relations to the ones found in the case
of time-like geodesics, as well as a similar proposition to proposition 2.2.1 and proposi-
tion 2.2.2:

Proposition 2.2.4. If RαβV
αV β ≥ 0 everywhere and if at some point γ(v1) the expan-

sion θ̂ has a negative value θ̂1 < 0, then there will be a point conjugate to q along γ(v)
between γ(v1) and γ(v1 + (2/ − θ̂1)) showing that it is possible to extend the curve that
far.

Proposition 2.2.5. If RαβV
αV β ≥ 0 everywhere and if at p = γ(v1), KγKµK[αRβ]γµ[νKρ]

is non-zero, then there will be two values v0 and v2 such that q = γ(v0) and r = γ(v2) will
be conjugate along γ(v) showing that it can be extented to those values of the parameter.

This condition will be satisfied for null geodesics passing through matter showing
that matter is not pure radiation, moving in the direction of the geodesic tangent vector
K. In the empty space it will be satisfied if the geodesic contains some point where the
Weyl tensor is non-zero and K does not lie in one of the directions at that point for which
KγKµK[αRβ]γµ[νKρ] = 0. It seems physically reasonable to assume that both time-like
and null geodesics will contain a point at which KγKµK[αRβ]γµ[νKρ] is not zero. This
condition is called the generic condition.

To expand this concept to null geodesics orthogonal to a space-like two-surface S ,
that is an imbedded two-dimensional submanifold defined locally by f1 = 0, f2 = 0,
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where f1 and f2 are C2 functions such that at that values f1;α and f2;α do not vanish,
are not parallel, and satisfy

(f1;α + µf2;α)(fa1;β + µf2;β)gαβ = 0,

for two distinct values of µ. Then any vector lying in the two-surface is necessarily space-
like. The two null vectors normal to S , Nα

1 and Nα
2 , are proportional to (f1;β+µ1f2;β)gαβ

and (fa1;β + µ2f2;β)gαβ respectively, and such that:

Nα
1 N

β
2 gαβ = −1.

To complete the pseudo orthonormal basis we shall introduce two space-like unit vectors
Y α

1 and Y α
2 so that they are orthonormal to each other and to Nα

1 , Nα
2 . The two

fundamental tensors on S can be now defined as:

nχαβ = −Nnγ;µ(Y γ
1 Y1α + Y γ

2 Y2α)(Y µ
1 Y1µ + Y µ

2 Y2β)

where n = 1, 2 and the two tensors 1χαβ and 2χαβ are symmetric.
There will be two distinct families of null geodesics normal to S corresponding to

the two null normal vectors Nα
1 and Nα

2 . From this consideration, we shall fix our basis
defining E1 = Y1, E2 = Y2, E3 = N1,E4 = N2. This projection into Sq of Z will satisfy
the initial condition

d

dv
Zm = χ2mnZ

n

at q on γ(v), and the differential equation

D2

dv2
Zα = −Rα

βγµZ
γKβKµ (2.8)

where D/dv represents the covariant derivative. Analogously to the case with time-
like geodesics, having zero vorticity gives us an initial value for θ equal to χ2ℵβg

αβ.
Proposition 2.2.3 becomes:

Proposition 2.2.6. If RαβK
αKβ ≥ 0 everywhere and χ2αβg

αβ is negative, then there
will be a point conjugate to S along γ(v) within an affine distance of 2/(−χ2ℵβg

αβ) from
the surface itself.

To tie everything together, the definition of conjugate point implies the existence of
self-intersections in families of geodesics.

2.3 Variation of arc-length

In this section, we shall consider time-like and non-spacelike curves which will be piece-
wise C3, but may have points in which their tangent vector is not continuous. In such
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cases we require that the two tangent vectors at that point

∂

∂t

∣∣∣∣
−
,
∂

∂t

∣∣∣∣
+

,

will satisfy

g

(
∂

∂t

∣∣∣∣
−
,
∂

∂t

∣∣∣∣
+

)
= −1,

that is, they point within the same half of the null cone (defined by the metric at that
point).

Proposition 2.3.1. Let U be a convex normal coordinate neighborhood about q. Thus,
the point which can be reached from q by time-like (non-spacelike) curves in U are those
of the form expq(X), with X ∈ Tq and such that g(X,X) < 0 (g(X,X) ≤ 0) (where we
assume that the exponential map to be restricted to the neighborhood diffeomorphic to U
by expq and centered in Tq)

Hence the null geodesics from q form a submanifold that works as a boundary for
U reachable from q by a time-like or a non-spacelike curve. This proposition is rather
important for the concept of causality, but we will not go into the detail of the proof.
[Hawking and Ellis, 1973, p. 103]

Corollary 2.3.0.1. If p ∈ U can be reached from q by a non-spacelike curve, but not
from a time-like curve, than p lies on a null geodesic from q.

Physically it means that it can only be reached by an object going at the speed of
light.

The length of a non-spacelike curve from q to p is

L(γ, q, p) =

∫ p

q

[
−g
(
∂

∂t

∣∣∣∣
−
,
∂

∂t

∣∣∣∣
+

)]1/2

,

over the differentiable section of the curve γ(t).
In general, given a positive define metric, it is possible to find the shortest path

between two points. Such a curve does not exist in the case of a Lorenz metric in which
any curve can be deformed into a null curve having a length of zero. However, in certain
cases there will be a non-spacelike curve that is the longest path between two points or
between a point and a space-like three-surface. We shall consider first the case of two
points, leaving the discussion on the sufficient condition to a further section.

Proposition 2.3.2. Let q and p lie on a convex normal neighborhood U . If q and p
can be joined by a non-spacelike curve in U , then the longest such curve is the unique
non-spacelike geodesic in U from the first point to the second. Additionally, defining
ρ(q, p) as a length of the path, if it exists, and zero if it does not, ρ(q, p) is a continuous
function on U ×U .
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Let us now consider the case in which q and p are not necessarily contained in
a convex normal neighborhood U . By taking a small variation, that is a C1− map
α : (−ε, ε)× [0, tp]→M , we shall derive the necessary conditions for a γ(t) curve to be
the longest path between q and p. A variation α of γ(t) is such that:

(1) α(0, t) = γ(t);

(2) there is a subdivision 0 = t1 < t2 < · · · < tn = tp of [0, tp] such that α is C3 on
each set (−ε, ε)× [ti, ti + 1];

(3) α(u, 0) = q, α(u, tp) = p;

(4) for each constant u, α(u, t) is a time-like curve.

We can call the vector Z = (∂/∂u)α|u=0 variation vector. Vice versa, given a continuous
piecewise C2 vector field Z along γ(t) vanishing at q and p, we may define a variation α
for which Z will be the variation vector:

α(u, t) = expr(uZ|r),

where u ∈ (−ε, ε) for some ε > 0 and r = γ(t).

Lemma 2.3.1. The variation of the length from q to p under α is given by

∂L

∂u

∣∣∣∣
u=0

=
n−1∑
i=1

∫ ti+1

ti

g

(
∂

∂u
,

{
f−1D

∂t

∂

∂t
− f−2

(
∂f

∂t

)
∂

∂t

})
dt

+
n−1∑
i=2

g

(
∂

∂u
,

[
f−1 ∂

∂t

])
,

where f 2 = g(∂/∂t, ∂/∂t) is the magnitude of the tangent vector and [f−1∂/∂t] is the
discontinuity at one of the singular points of the curve.

By choosing s as the parameter t of the arc-length, one can simplify the integral
obtaining g(∂/∂t, ∂/∂t) = −1. Now denoting V the unit tangent vector ∂/∂s the integral
becomes:

∂L

∂u

∣∣∣∣
u=0

=
n−1∑
i=1

∫ ti+1

ti

g(Z, V̇)ds+
n−1∑
i=2

g(Z, [V])

where V̇ = DV/∂s is the acceleration. From these considerations, it is possible to see
that for γ(t) to be the longest path between two given points, it is a necessary condition
that it should be an unbroken geodesic, otherwise one could choose a variation yielding
a longer curve.

Considering now the case of a point joined with a time-like curve γ(t) from a space-like
three-surface H a variation α of γ(t) is defined as being done before with the exception
that condition (3) is replaced by:
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(3) α(u, 0) lies on H and α(u, tp) = p

Thus the variation vector Z = ∂/∂u at H lies on H .

Lemma 2.3.2. In such a case the variation of the length of the path will be:

∂L

∂u

∣∣∣∣
u=0

=
n−1∑
i=1

∫ ti+1

ti

g(V̇,Z)ds+
n−1∑
i=2

g(Z, [V]) + g(Z, [V])|s=0

The necessary condition for γ(t) to be the longest path from H to the point p is that
the curve must be an unbroken geodesic orthogonal to the surface itself.

Knowing that under a variation the first derivative of the length of a time-like
geodesics is zero, we proceed to calculate the second derivative. That is to obtain a
further understanding of the behavior of such a curve. Let us define a two-parameter
variation as a C1 map α : (−ε1, ε) × (−ε2, ε2) × [0, tp] → M of a geodesic from q to p
such that:

(1) α(0, 0, t) = γ(t);

(2) there is a subdivision 0 = t1 < t2 < · · · < tn = tp of [0, tp] such that α is C3 on
each set (−ε1, ε1)× (−ε2, ε2)× [ti, ti + 1];

(3) α(u1, u2, 0) = q, α(u1, u2, tp) = p;

(4) for each constant u1, u2, α(u1, u2, t) is a time-like curve.

Let us now define the two variation vectors as Z1 = (∂/∂u1)|u1,2=0 and Z2 =
(∂/∂u2)|u1,2=0 and vice-versa, similar to the case of one variation, given two piecewise C2

vector fields Z1 and Z2 along γ(t) it is possible to define a variation such that the two
vector fields would be the variation vectors:

α(u1, u2, t) = expr(u1Z1 + u2Z2)

where r = γ(t).

Lemma 2.3.3. Under a two-parameter variation the shape of the second derivative of
the geodesic curve length will be:

∂2L

∂u2∂u1

∣∣∣∣
u1,2=0

=
n−1∑
i=1

∫ ti+1

ti

g

(
Z1,

{
D2

∂s2
(Z2 + g(V,Z2)V)−R(V,Z2)V

})
ds

+
n−1∑
i=2

g

(
Z1,

[
D

∂s
(Z2 + g(V,Z2)V)

])
.
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Even if it is not obvious at first glance, from the definition of this expression we know
it is symmetric in the two variation vector fields Z1 and Z2. It solely depends on the
projection of Z1 and Z2 into the space orthogonal to V. Thus, in our consideration we
shall use only variations α whose variation vectors are orthogonal to V. By defining a
vectorial space of infinite dimension Tγ corresponding of all continuous, piecewise C2

vector fields along γ(t) orthogonal to V vanishing at q and p, we get that ∂2L/∂u2∂u1

is a symmetric map of Tγ ×Tγ to R. It can be regarded as a symmetric tensor over Tγ,
written as:

L(Z1,Z2) =
∂2L

∂u2∂u1

∣∣∣∣
u1,2=0

It is also possible to calculate the second derivative with respect to the variation of
the length of a geodesic curve γ(t) from H to p, normal to the surface itself.

Lemma 2.3.4. The second derivative of the length of γ(t) from H to p is:

∂2L

∂u2∂u1

∣∣∣∣
u1,2=0

=
n−1∑
i=1

∫ ti+1

ti

g

(
Z1,

{
D2

∂s2
(Z2 −R(V,Z2)V

})
ds

+
n−1∑
i=2

g

(
Z1,

[
D

∂s
Z2

])
+ g

(
Z1,

D

∂s
Z2

)∣∣∣∣
H

− χ(Z1,Z2)|H ,

where Z1 and Z2 are orthogonal to V and χ(Z1,Z2) is the second fundamental tensor of
H .

In both cases we shall say that a time-like geodesic γ(t) from a point q to another p
or from a surface H to a point p is maximal if L(Z1,Z2) is negative semi-definite. That
is, if such a curve is not maximal there exists a small variation α which yields a longer
curve.

Proposition 2.3.3. A time-like geodesic γ(t) from a point q to a point p is maximal if,
and only if, there is no point conjugate to q along the curve in the interval (q, p).

A similar result occurs when considering, instead of two points, a point and a surface.
That is:

Proposition 2.3.4. A time-like geodesic γ(t) from H to a point p is maximal if and
only if there is no point in the interval (q, p), conjugate to H along the curve.

By considering the variations of non-spacelike curves γ(t) from q to p, we should be
interested in finding the circumstances under which it is possible to find a variation α of
γ(t) which makes the scalar product g(∂/∂t, ∂/∂t) negative everywhere, in other words,
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the variation yields a time-like curve from q to p. Thus, the variation α should be of the
form:

∂

∂u

(
g

(
∂

∂t
,
∂

∂t

))
=2g

(
D

∂u

∂

∂t
,
∂

∂t

)
= 2g

(
D

∂t

∂

∂u
,
∂

∂t

)
= 2

∂

∂t

(
g

(
∂

∂u
,
∂

∂t

))
− 2g

(
∂

∂u
,
D

∂t

∂

∂t

)
,

which, in order to be a time-like curve, it has to be less than or equal to zero on the
curve.

Proposition 2.3.5. If p and q are joined by a non-spacelike curve γ(t) which is not a
null geodesic, then they can also be joined by a time-like curve.

To summarize, if γ(t) is a geodesic curve, then the parameter t may be taken as the
affine parameter, on the other hand, if γ(t) is not a geodesic curve, then it can be varied
to give a time-like geodesic. It is therefore necessary, but not sufficient, that the variation
vector ∂/∂u of a variation α yielding a time-like curve to be everywhere orthogonal to
the tangent vector ∂/∂t of the curve, otherwise (∂/∂t)g(∂/∂u, ∂/∂t) would be positive
somewhere on γ(t). The first derivative of the metric with respect to such a variation
will be zero, it is then necessary to examine the second derivative.

In the case of null geodesics, the two-parameter variation α will be defined similarly
as before except for the restriction to the variation vectors, that are requested to be
orthogonal to the tangent vector of the ∂/∂t geodesic.

Under such a variation the study of the behavior of L is not convenient since, for
g(∂/∂t, ∂/∂t) = 0, (−g(∂/∂t, ∂/∂t))1/2 is not differentiable. Instead, we consider

Λ
.
= −

n−1∑
i=1

∫ ti+1

ti

g

(
∂

∂t
,
∂

∂t

)
dt.

A necessary, but not sufficient, condition for a variation α yielding a time-like curve γ(t)
is that Λ should become positive between q and p. By considering the second term of
the Taylor expansion of the metric around a point, one has:

1

2

∂2

∂u2∂u1

(
g

(
∂

∂t
,
∂

∂t

))
=

∂2

∂u2∂t

(
g

(
∂

∂u1

,
∂

∂t

))
− ∂

∂u2

(
g

(
∂

∂u2

,
D

∂t

∂

∂t

))
=

=
∂2

∂u2∂t

(
g

(
∂

∂u1

,
∂

∂t

))
−

− g
(

∂

∂u1

,

{
D2

∂t2
∂

∂u2

−R

(
∂

∂t
,
∂

∂u2

)
∂

∂t

})
,
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which means that

1

2

∂2

∂u2∂u1

∣∣∣∣
u1,2=0

=
∑∫

g

(
∂

∂u1

,

{
D2

∂t2
∂

∂u2

−R

(
∂

∂t
,
∂

∂u2

)
∂

∂t

})
dt
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It follows that the variation of Λ vanishes for a variation vector proportional to the
tangent vector ∂/∂t since, because of the anti-symmetry of the Riemann tensor, we
have that R(∂/∂t, ∂/∂t)(∂/∂t) = 0. From the previous relation for the variation of the
length of a time-like curve, one can reduce it to a time-like geodesic by considering only
the projection of the variation vector into the space Sq at each q. Thus, introducing a
pseudo-orthonormal basis E1,E2,E3,E4 with E4 = ∂/∂t, along γ(t) the variation will
depend only on the components Zm of the variation vector.

Proposition 2.3.6. If there is no conjugate point to q in the interval (q, p), then the
value of d2Λ/du2|u=0 will be negative for all variations α of γ(t) whose variation is
orthogonal to the tangent vector to the curve, and not zero everywhere, nor proportional
to the tangent vector. That is, there is no small variation of γ(t) which gives a time-like
curve between q and p.

On the other hand:

Proposition 2.3.7. If there is a point conjugate to q, r, in the set (q, p) then there will
be a variation α which yields a time-like curve from q to p.

In the case of a path from a space-like two-surface to a point, the previous proposition
translate to the following two.

Proposition 2.3.8. If γ(t) is a null geodesic orthogonal to a space-like two surface S ,
from the surface to a point p, and if there is no point in the set [S , p] conjugate to S ,
then no small variation of γ can give a time-like curve from S to p.

Proposition 2.3.9. If there is a point conjugate to S , r, in (S , p) then there will be a
variation α which yields a time-like curve from S to p.
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Chapter 3

Causality

3.1 Orientability

We shall now introduce a new concept that is not the consequence of any direct geometric
considerations. In our region of space-time, there is a well-defined arrow of time that arise
directly from the second law of thermodynamics in a quasi-isolated system. Physically,
it would appear reasonable to assume the existence of a local thermodynamic arrow of
time defined continuously on all the points of the manifold. The only requirement is
that it should be possible to define a continuous division of non-spacelike vectors in two
classes, which we will arbitrarily label as past- and future-directed. In this case, we will
say that the space-time is time-oriented. It is important to point out that not all the
solutions to the Einstein field equations give a space-time with such a feature (such as
in the case of the de Sitter universe). However, it is possible to remove this problem
by simply not defining the point at which this condition does not hold. That is if a
space-time (M,g) is not time-orientable, then it has a double covering space (M̃,g)

which is orientable. We shall define M̃ as the set of all pairs (p, α), where p ∈M and α
is one of the two possible orientation of time at p. Such a structure with the addition of
the projection map π : (p, α) → p we get that in fact M̃ is a double covering of M. In

general, we will have that either M̃ consists of two distinct components, and therefore
(M,g) is time-orientable, or M̃ is connected and therefore (M,g) is not orientable, but

(M̃,g) is. From now on we shall consider either (M,g) time-orientable or its covering
space. Proving the existence of singularities in this space implies their existence also in
(M,g).

3.2 Causal curves

Assuming space-time to be time-orientable we shall consider two sets S and U , defining
the concept of chronological future I+(S ,U ) of S related to U as the set of all points

31
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in U which can be reached from S by future directed time-like curves in U . In the
whole manifold the set I+(S ,M) will be denoted simply as I+(S ) since given p ∈ M
if it can be reached by a future-directed time-like curve from S then there is a small
neighborhood of p which can be reached by such curves.

By replacing ’future’ with ’past’ and + by - in the previous definition, from the
duality nature of the orientability, one obtains the definition of the I−(S ,M) set.

The causal future of S related to U is denoted by J+(S ,U ), and it will be the union
of S ∩U and the set of all the points in U reachable from S by a future-directed non-
spacelike curve in U . From section 2.3 we know that a non-spacelike curve, which is not
a null geodesic can be deformed into a time-like curve between two points. Thus, if U
is an open set and p, q, r ∈ U then either:

q ∈ J+(p,U ), r ∈ I+(q,U ),

or
q ∈ I+(p,U ), r ∈ J+(q,U ),

which implies that r ∈ I+(p,U ). That is I+(p,U ) = J+(p,U ) and İ+(p,U ) =
J̇+(p,U ), where for a general set H , H denotes the closure of the original set and, ˙H
denotes the boundary, such that:

˙H = H ∩ (M−H ).

As in the previous case, J+(S ,M) will be written as J+(S ), and it represents the
region of space-time that can be causally affected by events in S . Such a set may not
be closed even if S is made of a single point.

In general, it is possible to construct a space-time, given a series of causal proper-
ties using the following method: one starts by considering some space-times, then cuts
out any closed set and, if desired, pastes it together appropriately. The result of this
procedure is still a manifold with a Lorentz metric, thus still a space-time, even though
it might seem rather incomplete since some points had been cut out. Such an incom-
pleteness can be resolved as said before, by applying an appropriate transformation that
moves the cut-out points to infinity.

We shall define the future horizons of S relative to U as E+(S ,U ) that is J+(S ,U )−
I+(S ,U ), and similarly as before E+(S ,M) can be written as E+(S ). In particular,
if U is an open set then, by proposition 2.3.5, all the points in E+(S ,U ) must lie on a
future-directed null-geodesic from S , at the same time if U is a convex normal neigh-
borhood around p, then, from proposition 2.3.1, E+(p,U ) consists of the future-directed
null-geodesics in U from p and forms the boundary of both I+(p,U ) and J+(p,U ).

For the sake of simplicity, from now on we shall extend the definition of time-like and
non-spacelike curves from differentiable piecewise to continuous differentiable. Although
we will still say that it is non-spacelike if locally every two points of the curve can
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be joined by a piecewise differentiable non-spacelike curve. Given a continuous curve
γ : F → M, where F is a continuous interval of R, it will be future-directed and
non-spacelike if, for every element of F , there exists a neighborhood G ⊂ F of t ∈ F
and a convex normal neighborhood U of γ in M such that for any t1 ∈ G, γ(t1) ∈
J−(γ(t),U )− γ(t) if t1 < t and t1 ∈ G, γ(t1) ∈ J+(γ(t),U )− γ(t) if t < t1.

On the other hand, we shall say that γ is future-directed and time-like if the same
condition holds for I.

From now on, with time-like or non-spacelike curve, we will refer to a continuous
curve. Two curves are considered to be equivalent if it is possible to find one from the
reparametrization of the other.

That said, before giving an important result coming from these considerations, let
us define as future endpoint p of a future-directed non-spacelike curve γ : F → M a
point such that for every neighborhood V of p there is a t ∈ F such that γ(t1) ∈ V for
every t1 ∈ F with t1 ≥ t. Let now a non-spacelike curve be future-inextendible (future-
inextendible in S ) if it has no future endpoint (no endpoint in S ). A point p will be
a limit point of an infinite sequence of non-spacelike curve λn if every neighborhood of
p intersects an infinite number of the λn, while a non-spacelike curve λ will be said to
be a limit curve of the sequence λn if there is a sub-sequence λ′n such that, for every
p ∈ λn, λ′n, converges to p.

Lemma 3.2.1. Let S be an open set and λn an infinite sequence of non-spacelike curves
in S which are future-inextendible in S . If p ∈ S is a limit point of λn, then through
that point there is a non-spacelike curve λ which is future-inextendible in S and which
is a limit curve for λn.

3.3 Achronal boundaries

By proposition 2.3.1 we know that, in a convex normal neighborhood U , the boundary of
I+(p,U ) or J+(p,U ) derives from the future-directed null geodesics arising from p. Let
now a set S be achronal if I+(S ) ∩S is empty, that is if there are no two points of S
with a time-like separation. Meanwhile, a set S is said to be a future set if S ⊃ I+(S ).
A set such as M−S can be defined as a past set.

Proposition 3.3.1. If S is a future set, then Ṡ (the boundary of thi set) is a closed,
imbedded, achronal three-dimensional C1− submanifold.

The boundary of a set that has the properties defined in the previous proposition is
said to be an achronal boundary. These sets can be divided into four distinct subsets
ṠN , Ṡ+, Ṡ−, Ṡ0, such that for a point q ∈ Ṡ there may exist two points p, r ∈ Ṡ
with p ∈ E−(q) − q, r ∈ E+(q) − q. The different subsets can be defined depending on
the existence of the two points, according to the following scheme:
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∃p @p

@r

∃rṠN Ṡ−

Ṡ+ Ṡ0

Given a point q we shall say that if q ∈ ṠN , than r ∈ E+(p) since r ∈ J+(p) and
r /∈ I+(p), meaning that there is a null segment in Ṡ through q. If q ∈ Ṡ+ (or Ṡ−) then
q is the future (or past) endpoint of the null geodesics in Ṡ . Finally, Ṡ0 is space-like
(more strictly, acausal).

A useful condition on such sets arises from the following lemma, introduced by Pen-
rose:

Lemma 3.3.1. Let W be a neighborhood of q ∈ Ṡ , and the boundary of a future set,
then:

(i) I+(q) ⊂ I+(S −W ) implies q ∈ ṠN ∪ Ṡ+;

(ii) I−(q) ⊂ I+(M−S −W ) implies q ∈ ṠN ∪ Ṡ−;

As an example of application of this result we shall consider J̇+(H ) = İ+(H ), that
is the boundary of the closed set H . We know, by a previous result, it is an achronal
manifold, using the above lemma we now know that every point of J̇(H )−H belongs
to [J̇+(H )]N or [J̇+(H )]+. This allows us to assume that J̇(H ) −H is generated
by null geodesic segments which may have future endpoints in J̇+(H )−H . However,
if they do have past endpoints, the only possibility is to find them on H itself. This
example is related to what Penrose called the plane wave solution.

Let us now define a causally simple set as an open set U which for every compact
set H ⊂ U ,

J̇+(H ) ∩U = E+(H ) ∩U ,

and
J̇−(H ) ∩U = E−(H ) ∩U .

That is equivalent to say that J̇+(H ) and J̇−(H ) are closed in U .

3.4 Causality conditions

In Chapter 1 principia (i) required that the causality should have held only locally,
leaving the discussion on the global equations open. Thus, it may seem possible to
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Figure 3.1: The figure shows how an achronal boundary Ṡ can be divided into the four
sets just defined. Where ṠN is null-like, Ṡ0 time-like, and Ṡ+, Ṡ− are the two future
and past endpoints, respectively, of a null geodesic in the set.

construct closed time-like curves. However, the existence of such curves would lead to
some logical paradoxes. For example, one could imagine that with a rocketship one could
travel around such a curve, arriving before he had set off, and preventing himself from
even starting the trip. To avoid the necessity of changing our philosophical definition
of free will we shall introduce what is called the chronology condition which states that
there are no closed time-like curves. However, there might be some points of space-time
at which this condition do not hold, the set of such points will be the chronology violating
of M with the following features:

Proposition 3.4.1 (Carter). The chronology violating set of M is a disjoint union of
sets of the form I+(q) ∩ I−(q) ∈M.

Proposition 3.4.2. If M is compact, the chronology violating set of M is non-empty.

From this result, it would seem reasonable to assume that space-time is non-compact,
in addition to the fact that any compact four-dimensional manifold, on which is defined
a Lorentz metric, cannot be simply connected.

The causality condition holds, therefore, if there are no closed non-spacelike curves,
which is similar to what we said in proposition 3.4.2.

Proposition 3.4.3. The set of points at which the causality does not hold is the disjoint
union of sets of the form J−(q) ∩ J+(q), q ∈M.

If the causality condition is violated at q ∈ M, but the chronology condition holds,
then there must be a closed null geodesic curve γ through q. Let v be an affine parameter
for the curve, and . . . , v−1, v0, v1, . . . be successive values of v at q, then it is possible
to compare the tangent vector ∂/∂v|v=v0 with ∂/∂v|v=v1 , parallel transporting ∂/∂v|v=v0

round γ. Since they point in the same direction, then they must be proportional to each
other: ∂/∂v|v=v1 = a(∂/∂v)|v=v0 where the factor a is defined by saying that, given the
affine distance covered over the nth circuit of γ, (vn+1 − vn), it is equal to a−n(v1 − v0).
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Thus, if a > 1, v never attains the value (v1 − v0)(1− a−1)−1 and therefore the curve is
geodetically incomplete in the future direction, even though it is possible to go around
it an infinite number of times. On the other hand, if a < 1, γ is incomplete in the past
direction, while for a = 1 it is incomplete in both directions.

Moreover, from the following proposition we can obtain another meaning of the a
factor.

Proposition 3.4.4. If γ is a closed null geodesic curve, incomplete in the future direc-
tion, then there is a variation of γ which moves each point of γ toward the future and
which yields a closed time-like curve.

Proposition 3.4.5. If:

(a) RαβK
αKβ ≥ 0 for every null vector K;

(b) the generic condition holds (meaning that every null geodesic contain a point at
which K[αRβ]µν[ρKδ]K

µKν 6= 0);

(c) the chronology condition holds on M,

then the causality condition holds on M.

Showing that for physically realistic solutions, the causality and chronology condition
are equivalent.

In addition to ruling out closed non-spacelike curves, it would seem reasonable to
exclude situations with non-spacelike curves which return arbitrarily close to the origin
point, or to curves which return arbitrarily close to the origin point of the first. There
seems to be more than a countably infinite hierarchy of such higher degree causality
conditions depending on the number and order of the limiting processes involved. Our
interest will remain on the first three of these conditions, giving the ultimate causality
condition at the end.

The future (past) distinguishing condition holds at a point p ∈ M if every neigh-
borhood of such point contains a neighborhood of p which no future (past) directed
non-spacelike curves from p intersects more than once. That is, if I+(q) = I+(p)
(I−(q) = I−(p)) implies that q = p.

The strong causality condition is said to hold at p if every neighborhood of p contains
a neighborhood of p in which no non-spacelike curve intersects more than once.

Proposition 3.4.6. If the conditions (a) to (c), in proposition 3.4.5 hold and if we add
a fourth condition (d) which states that M is null and geodesically complete, then the
strong causality condition holds on M.

Corollary 3.4.0.1. The past and future distinguishing condition would also hold on M
since they are implied by the strong causality.
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A connected concept to the three higher degree causality condition is the phenomenon
of imprisonment. A non-spacelike curve γ, that is future inextendible can behave in one
of three ways:

(i) enter and remain within a compact set S ,

(ii) not remain within any compact set, but continually re-enter a compact set S ,

(iii) not remain within any compact set S and not re-enter any such set more than a
finite amount of times.

In (iii) γ can be regarded as going off to the edge of space-time, that is either infinite
or a singularity, while in the first and second case, we shall say that γ is totally or
partially future imprisoned in S , respectively.

Proposition 3.4.7. If the strong causality condition holds on the compact set S , then
there can be no future-inextendible, non-spacelike curve totally or partially future impris-
oned in S .

Proposition 3.4.8. If the future or past distinguishing condition holds on a compact set
S , then there can be no future-inextendible, non-spacelike curve totally future imprisoned
in S .

The causality relations on (M,g) may be used to generate a topology onM defined
as Alexandrov Topology and such that a set is defined to be open if, and only if, it
happens to be the union of one or more sets of the form I+(p) ∩ I−(q), with p, q ∈ M.
Since I+(p) ∩ I−(q) is an open set in the manifold topology, then any open set in the
Alexandrov topology will be open in the manifold topology, but the opposite is not
necessarily true.

However, if the strong causality condition holds onM, then around any point r ∈M
one can find a local causality neighborhood U . In these terms the Alexandrov topology of
(U ,g|U ) may be regarded as space-time on its own, and clearly the same as the manifold
topology of U , thus the Alexandrov topology ofM is the same as the manifold topology
sinceM can be covered by a local causality neighborhood. This means that, if the strong
causality condition holds, one can determine the topological structure of space-time by
the observation of causal relationships.

Even by imposing the strong causality condition, it is still possible to have a space-
time that is on the verge of violating the chronology condition in which the slightest
variation of the metric can lead to closed time-like curves. Because General Relativity
is presumably the classical limit of some, yet to-discover, quantum theory of space-time,
in such a theory the Uncertainty principle would prevent the metric from having an
exact value at every point. Thus, we need that any property of our space-time, in order
to be physically significant, and must have some sort of stability, meaning it should
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be a property of the nearby space-time. To give a more precise meaning to nearby we
need to define a topology on the set of all space-times, that is, all the non-compact
four-dimensional manifolds and all the Lorenz metrics on them.

We shall leave the problem of uniting in one connected topology space manifold of
different topologies, and focus only on putting a topology on the set of all Cr Lorenz
metrics (r ≥ 1). This can be done in many ways, depending on whether one requires a
nearby metric to be nearby just its value (C0 topology) or also to its kth derivative (Ck

topology) and to whether one requires it to be nearby everywhere (open topology) or
only on compact sets (compact open topology).

For our purposes, we will be interested in a C0 open topology, which may be defined
as the symmetric tensor spaces T 0

S2(p) (type (0,2) tensor) at every point p ∈ M form a
manifold T 0

S2(M), that is the bundle of symmetric tensors type (0,2) overM. A Lorentz
metric g onM is the value of a map ĝ :M→ T 0

S2 assigning to each point of the manifold
an element of T 0

S2. Applying the projection π to such a map, we get π ◦ ĝ = 1, where
π : T 0

S2 →M, which sends x ∈ T 0
S2(p) to p. Letting now U be an open set in T 0

S2(M)
and O(U ) the set of all C0 Lorentz metrics g such that ĝ(M) is contained in U , then
the open sets in the C0 open topology of the Cr Lorentz metrics onM are defined to be
the union of one or more sets of the form O(U ).

If the space-time metric g has an open neighborhood in the C0 open topology such
that there are no closed time-like curves in any metric belonging to the neighborhood,
then we shall say that the stable causality condition holds onM. (This condition can be
generalized to Cr topology, but not to compact ones, since in them each neighborhood
of any metric contains closed time-like curves.) In other words, one can slightly expand
the light cones at every point without introducing closed time-like curves.

Proposition 3.4.9. The stable causality condition holds everywhere on M if, and only
if, there is a function f on M whose gradient is everywhere time-like.

The function f may be regarded as a sort of cosmic time, in the sense that it in-
creases along every future-directed non-spacelike curve. This means that the space-like
surfaces {f = constant} may be thought of as non-unique simultaneity surfaces, whose
compactness induces a diffeomorphism between them. This condition is not necessarily
true if some of them are not compact.

3.5 Cauchy developments

In Newton’s theory, there is an instantaneous action at a distance, and in order to predict
future events one has to know the state of the entire universe at the present time, as
well as assume some boundary conditions at infinity, such as a potential which goes to
zero. On the other hand, in a relativistic theory, from postulate (i) in Chapter 1, we
know that events at different points of space-time are causality connected only if there
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is a non-spacelike curve that goes from a point to the other. Thus, a knowledge of
the appropriate data on a closed set S would determine events in a region D+(S ) to
the future of S called the future Cauchy development or domain of dependence of S ,
and it is defined as the set of all points p ∈ M such that every past-inextendible non-
spacelike curve through p intersects S . The definition given by Penrose of the Cauchy
development of S , however, is slightly different from the previous and states that it is
the set of all points p ∈ M such that every past-inextendible time-like curve through p
intersects S . We shall denote such a set as D̃+(S ).

Proposition 3.5.1. D̃+(S ) = D+(S ).

The future boundary of D+(S ), D+(S )−I−(D+(S )), marks the limit of the region
predictable from the knowledge of data on S . This set will be the future Cauchy horizon
of S and will be denoted as H+(S ). In addition to that, it will intersect S if it is null
or if it has an edge, that is the set of all points p ∈ S for an achronal set, such that
in every neighborhood U of q there are points p ∈ I−(q,U ), and r ∈ I+(q,U ) which
can be joined by a time-like curve in U not intersecting S . By a similar argument to
proposition 3.3.1, it follows that if edge(S ) is empty for a non-empty achronal set S ,
then it is a three-dimensional imbedded C1− submanifold.

Proposition 3.5.2. For a closed achronal set S ,

edge(H+(S )) = edge(S ).

Proposition 3.5.3. Let S be a closed achronal set, then H+(S ) is generated by null
geodesic segments, which either have no past endopoints or have past endopoints at
edge(S ).

Corollary 3.5.0.1. If edge(S ) vanishes, then H+(S ), if non-empty, is an achronal
three-dimensional imbedded C1− manifold which is generated by null geodesic segments
which have no past endopoints.

We shall call an acasual set S with no edge, a partial Cauchy surface that is a space-
like hypersurface intersected by a non-spacelike curve not more than once. Supposing
there is a connected space-like hypersurface S (with no edges) which some non-spacelike
curve γ intersects at point p1 and p2, then one could join p1 and p2 by a curve µ in S
such that µ ∪ λ would be a closed curve crossing S only once. This curve could not
be continuously deformed to zero since such a deformation could add an even number
of points to the number of times it crosses S . Thus, M may not be simply connected,
meaning that we could unwrap M by going to the simply connected universal covering
manifold M̃, in which every connected component of the image of S is a space-like
hypersurface and therefore a partial Cauchy surface in M̃. However, it is possible that
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using the universal covering manifold may unwrap M more than required, resulting in
a non-compact partial Cauchy surface, even though S was compact.

For the purposes of our analysis, we want a covering manifold which unwraps M
sufficiently so that each connected component of the image of S was a partial Cauchy
surface, but so that every component remains homeomorphic to S . This can be obtained
by recalling that the universal covering manifold may be defined as the set of all pairs of
the form (p, [λ]) with p ∈M, and [λ] is an equivalent class of curves in M, from q to p,
and homotopic modulo q to p. In addition to that, we shall define the covering manifold
MH as the set of all pairs (p, [λ]) where now [λ] is an equivalent class of curves from S
to p, and it is the largest covering manifold such that each component of the image of S
is homeomorphic to S . On the other hand, we can define a different covering manifold
MG defined as the set of all pairs (p, [λ]) where [γ] is an equivalent class of curves from
q to p passing through S the same number of times, in which crossing in the future
direction is considered positive while crossing in the past direction is considered to be
negative. In these regards, we can defineMG as the smallest covering manifold in which
each connected component of the image of S divides the manifold into two parts. In
each case, the topology and differential structures of the covering manifold are fixed by
the requirement that the projection mapping (p, [λ]) into p is locally a diffeomorphism.

Now, defining D(S ) = D+(S )∪D−(S ), we shall call a local Cauchy surface global
Cauchy surface (simply Cauchy surface) if D(S ) is equal to M. That is a space-
like hypersurface that every non-spacelike curve intersects exactly once. An example
of Cauchy surfaces is {x4 = constant} in the Minkowski space, defined as hyperboloids
which are only partial Cauchy surfaces since the past and future null cones of the origin
are Cauchy horizon for these surfaces.

If there is a Cauchy surface for M, then one may predict the state of the universe
at any time by knowing the relevant data on the surface. However, one could not know
the data unless one was at the future of every point on the surface, which would be
impossible in most cases. Thus, in General Relativity one’s ability to predict the future
is limited both by the difficulty of knowing data on the whole of a space-like surface and
by the possibility that, even if one did, it would still be insufficient.

3.6 Global hyperbolicity

A concept very close to the Cauchy development is the global hyperbolicity, which is a
property of a set N which arises if the strong causality condition holds on it and if, for
any two points p, q ∈ N , the set J+(p) ∩ J−(q) is compact and contains N itself. This
can be thought of as saying that J+(p)∩ J−(q) does not contain any points on the edge
of space-time. The name of such a property comes from the fact that the wave equation
for a δ−function source at some point p ∈ M has a unique solution vanishing outside
N − J+(p,N ).
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We call causally simple a set N if, for every compact set H contained in N ,
J+(p) ∩N and J−(q) ∩N are closed in N .

Proposition 3.6.1. An open globally hyperbolic set N is causally simple.

Corollary 3.6.0.1. If H1 and H2 are compact sets in N , then J+(H1) ∩ J−(H2) is
compact.

A different way to define the global hyperbolicity starts by considering the following
statements: for two points p, q ∈ M such that the strong causality condition holds
on J+(p) ∩ J−(q), we define C(p, q) to be the space of all (continuous) non-spacelike
curves from p to q. Given two curves γ(t) and λ(u) they will represent the same point of
C(p, q) if one is the reparametrization of the other, i.e. if there is a continuous monotonic
function f(u) such that γ(f(u)) = λ(u). The topology of such a space (C(p, q)) is defined
by saying that a neighborhood of γ in C(p, q) consists of all the curves in C(p, q) whose
points in M lie in a neighborhood W of the points of γ in M. In these terms, the
other definition of global hyperbolicity states that an open set N is globally hyperbolic
if C(p, q) is compact for all p, q ∈ N .

Even though they are different from each other, these definitions are equivalent, as
it is shown by the following results.

Proposition 3.6.2. Let N be an open set on which holds the strong causality condition,
and such that

N = J−(N ) ∩ J+(N ),

then N is globally hyperbolic if, and only if, C(p, q) is compact for all p, q ∈ N .

The relationship between the global hyperbolicity and Cuchy development is given
by the following results:

Proposition 3.6.3. If S is a closed achronal set, then int(D(S ))
.
= D(S ) − Ḋ(S ),

if not empty, is globally hyperbolic.

Even if we will not go over the details of the proof, we still introduce a series of
important lemmas:

Lemma 3.6.1. If p ∈ D+(D)−H+(S ), then every past-inextendible non-spacelike curve
through p intersects I−(S ).

Corollary 3.6.1.1. If p ∈ int(D(S )) then every inextendible non-spacelike curve through
p intersects I−(S ) and I+(S ).

Lemma 3.6.2. The strong causality condition holds on int(D(S )).

Proposition 3.6.4. If q ∈ int(D(S )), then J+(S ∩ J−) is compact or empty.
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To show that the global hyperbolicity holds on D(S ) and not only on its interior,
we need to introduce some extra conditions.

Proposition 3.6.5. If S is a closed achronal set such that J+(S ) ∩ J−(S ) is both
strongly causal and either

(1) acausal, meaning that only S is casual, or

(2) compact,

then D(S ) is globally hyperbolic.

By proposition 3.6.3 we know that if for an open set N there existes a Cauchy
surface, then it implies the global hyperbolicity of N . And the following proposition
shows that the opposite is also true.

Proposition 3.6.6. If an open set N is globally hyperbolic, then, regarding it as a
manifold, N is homeomorphic to R×S where S is a three-dimensional manifold, and
for each a ∈ R, {a} ×S is a Cauchy surface for N .

3.7 The existence of geodesics

The crucial importance of global hyperbolicity in Chapter 4 lies in the following result:

Proposition 3.7.1. Let p and q lie in a globally hyperbolic set N with q ∈ J+(p), then
there is a non-spacelike geodesics from p to q whose length is greater or equal to that of
any other non-spacelike curve from p to q.

Proof. We shall consider a general proof, introduced by Avez and Seifert, using the
compactness of C(p, q).

Let us consider C(p, q) and a dense subset C ′(p, q) containing all the time-like C1

curves from p to q. The length of one of these curves λ is defined as

L[λ] =

∫ q

p

(−g(∂/∂t, ∂/∂t))1/2dt,

where t is a C1 parameter on λ. The function L is not continuous on C ′(p, q) since
any neighborhood of λ contains a zigzag piecewise almost null curve of arbitrarily small
length. The reason behind this lack of continuity is that we used a C0 topology in which
two curves are close to each other if their points inM, but not necessarily their vectors,
are close too. We could use a C1 topology on C ′(p, q) to make L continuous, but this
would generate problems of its own because in these cases C ′(p, q) will not be compact, in
fact one has a compact space only when includes all the continuous non-spacelike curves.
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To solve the problem of continuity we shall, instead, use a C0 topology, and extend the
definition of L to C(p, q).

The signature of the metric, making a time-like curve wiggle, actually reduces its
length, thus L is not lower semi-continuous, however:

Lemma 3.7.1. L is upper semi-continuous in the C0 on C ′(p, q).

By considering a neighborhood U of a continuous non-spacelike curve λ in M and
letting l(U ) be the least upper bound of the length of time-like curves in U , we shall
define L[γ] as the greatest lower bound of l(U ) for all neighborhood U of λ inM. That
is the definition of the length of the curve λ, which works for all curves λ between p and
q having a C1 time-like curve in every neighborhood. That is for all the points in C(p, q)
lying in the closure of C ′(p, q). From what we have found in Chapter 2, a non-spacelike
curve from p to q, which is not an unbroken null geodesic curve, can be variated to give
a piecewise C1 time-like curve from p to q, and by rounding off the corners of such curve,
we get a C1 time-like curve from p to q. Thus, points in C(p, q)− C ′(p, q) are unbroken
null geodesics, and we define their length to be zero.

This definition of L makes it an upper semi-continuous function on the compact space
C ′(p, q) (more precisely it makes it a continuous non-spacelike curve which satisfies a local
Lipschitz condition, and it is differentiable almost everywhere). If such a space is empty,
but C(p, q) is not, p and q are joined by an unbroken null geodesic and there are no
non-spacelike curves from p to q that are not unbroken null geodesics. On the other
hand, if C ′(p, q) is not empty, then it will contain some point at which L attains its
maximum value, meaning that there is a curve γ from p to q whose length is greater
or equal to the one of any other curve of this kind. By proposition 2.3.2, γ must be a
geodesic curve, as otherwise, one could find points x, y ∈ γ which lay in a convex normal
coordinate neighborhood and could be joined by a geodesic segment of greater length
than the partition of such a curve between x and y.

Corollary 3.7.1.1. If S is a C2 partial Cauchy surface, then to each point q ∈ D+(S )
there is a future-directed time-like geodesic curve orthogonal to S of length d(S , q) which
does not contain any point conjugate to S between S and q.

3.8 The causal boundary of space-time

In this section, we shall discuss a method (created by Geroch, Kronheimer, and Penrose)
for attaching a boundary to space-time, whose construction depends only on the causal
structure of (M,g). This means that it does not distinguish between boundary points
at a finite distance (singular point) and boundary points at infinity.

We shall assume that (M,g) satisfies the strong causality condition, then any point
p in (M,g) is uniquely determined by its chronological past I−(p) or future I+(p). By
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defining the chronological past as W
.
= I−(p) we shall assume it to have the following

properties:

(1) W is open;

(2) W is a past set I−(W ) ⊂ W ;

(3) W cannot be expressed as the union of two proper subsets which have properties
(1) and (2).

A set with these properties will be called indecomposable past set, IP in short. The
indecomposable future set, IF in short, is defined by simply changing past with future in
the previous three properties.

It is possible to divide IPs into two different classes: the proper IPs (PIPs) which are
the past of points inM, and the terminal IPs (TIPs) which are not the past of any point
in M. Now we can consider these TIPs as representing points of the causal boundary
(c-boundary) of (M,g). Another way of seeing it is by considering the TIPs as the past
of future-inextendible time-like curves, thus, one can regard the past I−(γ) of a future-
directed curve γ as representing the future endpoint of γ on the c-boundary. Moreover,
we shall say that another curve γ′ has the same endpoint if, and only if, I−(γ) = I−(γ′).

Proposition 3.8.1. A set W is a TIP if, and only if, there is a future-inextendible
time-like curve γ such that I−(γ) = W .

Let us denote with M̂ the set of all IPs of the space (M,g), then it represents the
points of M plus a future c-boundary; similarly, let M̌ be the set of all IFs of (M,g),
representingM plus a past c-boundary. These sets can be considered as an extension of
I, J , and E in the sense that, for each U V ⊂ M̂ we have

U ∈ J−(V ,M̂) if U ⊂ V ;

U ∈ I−(V ,M̂) if U I−(q) for some point q ∈ V ;

U ∈ E−(V ,M̂) if U ∈ J−(V ,M) but notU ∈ I−(V ,M̂).

Because of this structure, the IP-space M̂ is a causal space, and there exists a natural
injective map I− : M → M̂ which sends a point p ∈ M into I−(p) ∈ M̂. Such a
map is an isomorphism of the causal relation J− as p ∈ J−(q) if, and only if, I−(q ∈
J−(I−(q),M̂)). In addition to that the causality relation is preserved by I−, but not in
the opposite direction. Proceeding similarly it is possible to define the causal relations
on M̌.

What we want to do is use the two spaces M̂ and M̌ to define a third space M∗

which has the formM∪∆, where ∆ is the c-boundary of (M,g). To do so, let us start
by defining a space M# .

= M̂ ∪ M̌, with each PIF identified with the corresponding
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PIP. In other words, M# corresponds to the points of M together with the TIPs and
TIFs.

A basis for the topology of the topological space M is provided by sets of the form
I+(p)∩ I−(q). Unfortunately, one cannot use a similar approach to define a basis for the
topology of M# as there may be some points that are not in the chronological past of
any point of this set. However, it is possible to obtain a topology ofM from a sub-basis
consisting of sets of the form I+(p), I−(p), M− I+(p), and M− I−(p). Using this
analogy Penrose has shown how one can define a topology onM#. For any IF A ∈ M̌,
one can define

A int .
= {V : V ∈ M̂ and V ∩A 6= ∅},

and
A ext .

= {V : V ∈ M̂ and V = I−(W )⇒ I−(W ) 6⊂ A }.

For an IF B ∈ M̂ the two sets Bint and Bext are defined similarly, thus the open

sets of M# are defined to be the union and finite intersection of sets of the form A int,

A ext, Bint, and Bext. In these manners, the sets A int and A ext are the analog of

I+(q) and I−(q) in M#. In particular if A = I+(p) and V = I−(q) then V ∈ A int if,
and only if, q ∈ I+(p). However, by the definition, it is also possible to incorporate TIPs

into A int. In the same way, the sets A ext and Bext are the analogues of M− I+(p)
and M− I−(q).

Finally, one can obtain M∗ identifying the smallest number of points in the space
M# necessary to make it a Hausdorff space. More precisely M∗ is the quotient space
M#/Rh, where Rh is the intersection of all equivalence relation R ⊂ M# ×M# for
which M#/R is Hausdorff. The space M∗ has a topology induced form M# which
agrees with the topology of M on the subset M of M∗.

3.9 Asymptotically simple spaces

In order to study bounded physical systems such as stars, we need to investigate spaces
which are defined to asymptotically flat, i.e. the metric approaches Minkowski’s at large
distances from the system.

Let us consider the validity of the strong causality condition, even if in the original
Penrose definition it was not required. However, it will not generate a loss in generality
in the situation we will consider, allowing to a simplification of the matter.

Let us say that a time- and space-orientable space (M,g) is said to be asymptotically

simple if there exists a strong causal space (M̃, g̃) and an imbedding θ :M→ M̃ which

imbeds M as manifold with smooth boundary ∂M in M̃ such that:

(1) there is a smooth (say C8 at least) function Ω on M̃ such that on θ(M), Ω is
positive and Ω2g = θ∗(g̃), meaning g̃ is conformal to g on θ(M);
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(2) on ∂M, Ω = 0 and dΩ 6= 0;

(3) every null geodesic in M has two endpoints on ∂M.

We shall define M .
=M∪ ∂M, which is a rather more general definition than what

we wanted, since it includes cosmological models. In order to restrict it to spaces which
are asymptotically flat spaces we will say that a space (M,g) is asymptotically empty
and simple if satisfies conditions (1), (2), (3), and:

(4) Rαβ = 0 on an open neighborhood of ∂M in M.

We can consider the boundary ∂M as being at infinity, in the sense that any affine
parameter in the metric g on a null geodesic inM, may attain unboundedly large values
near ∂M. That is because an affine parameter v of a metric g is related to the parameter
ṽ of the metric g̃ by the transofrmation dv/dṽ = Ω−2. Since Ω = 0 at ∂M then

∫
dv

diverges.
Moreover, from condition (2) and (4) it follows that the boundary ∂M is a null

hypersurface.
In the Minkowski space, ∂M contains the two null surfaces S + and S −, each with a

topology of the form R×S2. To show that a similar structure exists in any asymptotically
simple and empty space, let us start from the following considerations. Because ∂M is
a null surface, we have that M lies locally on to its past or future, showing that ∂M
must contain two diconnected components. The first is S + on which null geodesics in
M have their future endpoints, and the second is S − on which they have their past
endpoints.

Having said that, we shall now establish some important properties.

Lemma 3.9.1. An asymptotically simple and empty space (M,g) is causally simple.

Proposition 3.9.1. An asymptotically simple and empty space (M,g) is globally hyper-
bolic.

Lemma 3.9.2. Let W be a compact set of an asymptotically empty and simple space
(M,g), then every null geodesic generator of S + intersects J̇+(W ,M) once, where the
dot indicates the boundary in M.

Corollary 3.9.2.1. S + is topologically R× (J̇(W ,M) ∩ ∂M).

Now it is possible to show that S + (and S −) and M are topologically identical to
the case of the Minkowski space.

Proposition 3.9.2. In an asymptotically simple and empty space (M,g), S + amd S −

are topologically equal to R× R2, and M is R4.
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Penrose has shown that this implies a vanishing Weyl tensor of the metric g on S +

and S −, which can be interpreted as saying that the components of the Weyl tensor
go as different powers of the affine parameter on a null geodesic near S + and S −. In
addition to that he also introduced conservation laws for the energy-momentum tensor
as measured from S +, in terms of integrals on S +.

We have that the null surfaces S + and S − form nearly all the c-boundary ∆ of
(M,g). This is because any point p ∈ S + defines a TIP I−(p,M) ∩M. Considering
now λ as an inextendible curve in M, if it has a future endpoint at p ∈ S + then TIP
I−(λ) is the same as defined by p. If it does not have a future endpoint on S + then
M− I−(λ) must be empty. TIPs, therefore, consist of one for each point of S +, and
one extra TIP being M itself. Similar considerations are true for TIFs.

Now, it is clear that two TIPs and TIFs, corresponding to S + and S − are not
non-Hausdorff separated. Thus, the c-boundary of any asymptotically simple and empty
space (M,g) is the same as the one of the Minkowski space-time.

Asymptotically simple and empty spaces include Minkowski space and the asymp-
totically flat spaces containing bounded objects such as stars, which do not undergo
gravitational collapse. However, there are some solutions that are not asymptotically
simple and empty, since there are null geodesics which do not have endpoints. Never-
theless, these spaces do have asymptotically flat regions, similar to the asymptotically
simple and empty ones. It is therefore possible to define a weakly asymptotically simple
and empty space (M,g) as a space in which there is an asymptotically simple and empty
space (M′,g′) and a neighborhood U ′ of ∂M′ inM′ such that U ′ ∩M′ is isometric to
an open set U of M.
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Chapter 4

Space-time Singularities

In this chapter, we shall use the results from Chapter 2 and 3 to establish some basic
results about space-time singularities.

4.1 The definition of singularities

The definition of a space-time singularity is rather different from the one we are used to,
for example, in electrodynamics. That is because, if one decides to define singularities as
the points in which the metric tensor is either not defined or not differentiably suitable,
then it would be possible to just remove these points and define the space-time with
the remaining manifold, which would be singularity free according to this definition. In
the context of the normal equations of physics, this definition would be reasonable, since
these laws would not hold at such a point, making any measurement impossible. Because
of that, in Chapter 1, we defined our space-time to be a pair (M,g) where g is a suitable
differentiable Lorenzian metric, while we ensured that no regular points were omitted
from M along with singular points.

The problem of defining whether space-time has singularities or not can be translated
to study whether any singular point had been cut out. To show this we hope to find an
incomplete space-time of some sort.

For a manifoldM on which there is a positive defined metric g it is possible to define
a function ρ(x, y) which is the greatest lower bound of the length of curves from x to
y. Such a function is a distance function, and can also be regarded as a metric in the
topological sense. We shall say that (M,g) is metrically complete (m-complete) if every
Cauchy sequence concerning ρ converges to a point in M. Equivalently, (M,g) will
be m-complete if every C1 curve of finite length has an endpoint. It, therefore, follows
that m-completeness implies geodesic completeness (g-completeness), meaning that every
geodesic can be extended to arbitrary values of its affine parameter. It is possible to show
that g-completeness and m-completeness are equivalent for a positively defined metric.

49
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On the other hand, in a Lorentz metric, it is not possible to define a topological
metric, leaving us only with the g-completeness from which it is possible to distinguish
three different types, depending on the nature of the geodesic (time-like, space-like, or
null-like). By removing a regular point from the space-time it becomes incomplete in all
three ways. This, however, does not imply that a g-complete manifold in one way is also
complete in the other two.

The incompleteness of a time-like geodesic has the immediate physical meaning of
saying that a freely moving observer, or particle, would have no history after (or before)
a finite interval of time. Even if the meaning is quite simple, what it implies is quite
objectionable from a physical point of view, therefore we shall regard it as a consequence
of a singular space-time. Even though the affine parameter of a null geodesic does
not have the same physical meaning of the proper time in a time-like geodesic, we
still consider a space-time that has an incomplete null-like geodesic to be singular. It
is possible to regard this kind of curve as the history of a massless particle. On the
other hand, since nothing moves on a space-like curve, it is quite hard to associate the
incompleteness of a space-like geodesic with any physical significance. Thus, we shall
assume that time-like and null-like geodesic completeness is the minimum requirement
to have a non-singular space-time. Meaning that the incompleteness of such geodesics
implies a singular space-time.

What is useful about taking time-like and null-like incompleteness as indicators of
the presence of singularities is that on this basis one can establish a series of theorems
about their occurrence. However, the class of incomplete geodesics in our space-time
does not include all those we want to consider as singular in some other sense. For
example, we have considered as singular a space-time in which a free-falling observer
comes to an untimely end, moreover, it is also possible to regard as singular a space-
time in which the geodesics are complete, but there is an inextendible time-like curve
of bounded acceleration and finite length. This is an observer on a suitable rocketship
and a finite amount of fuel which, after a finite interval of time, would no longer be
represented as a point of space-time.

Our goal is to find some sort of generalization of the concept of the affine parameter
to all C1 curves which are geodesics or not. A possible solution to this problem is
defining a different notion of completeness by requiring that every C1 curve of finite
length, measured by this parameter, has an endpoint.

The idea we are going to develop was first suggested by Ehrsman, that is: let λ(t) be
a C1 curve through p ∈M, and let {Eν} be a basis for Tp, then we shall propagate {Eν}
along λ to obtain a basis for Tλ(t) for each value of the parameter t. Then the tangent
vector V = (∂/∂t)λ(t) can be expressed as V = V ν(t)Eν , and by defining a generalized
affine parameter u on λ as

u =

∫
p

(∑
ν

V νV ν

)1/2

dt.
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Therefore, u depends only on the choice of p and of the basis {Eν} at that point. Given a
different choice of the basis at p, {Eν′} it is always possible to find a non-singular matrix
Aµν such that:

Eν =
∑
µ′

Aµ
′

ν Eµ′

As {Eν′} and {Eν} are parallelly transported along λ such a relation is maintained with
constant Aµ

′
ν . Since this matrix is non-singular, there is a constant C > 0 such that

C
∑
ν

V νV ν ≤
∑
ν′

V ν′V ν′ ≤ C−1
∑
ν

V νV ν .

Thus, the length of a curve λ is finite in the parameter u if, and only if, it is finite in the
parameter u′. If λ is a geodesic, then u is an affine parameter, but such a parameter can
be defined in any C1 curve. A pair (M,g) is said to be bundle complete (b-complete) if
there is an endpoint for every C1 curve of finite length, as measured by the generalized
affine parameter. If the length, in one of these parameters, is finite, then it will be
finite in all of them, so that we will not lose anything by restricting the basis to be
orthonormal. If the metric g is positively defined then the generalized affine parameter
is an arc-length and therefore the b-completeness coincides with the m-completeness.
Even if the metric is not positively defined it is still possible to define b-completeness. In
addition to that, b-completeness does imply g-completeness, however, it is not possible
to say the opposite.

We shall therefore say that space-time is singularity-free if it is b-complete.
From intuition one imagines a singularity to involve an unboundedly large growth of

the curvature near a singular point. However, since we excluded the singular points from
our definition of space-time, the concept of near and unboundedly large are not defined
on them. What one can do is to say that, on a b-incomplete curve, points that are near
the singularity correspond to a value of the generalized affine parameter that is near the
upper bound. The definition of unboundedly large is quite harder to give since the size
of the components of the curvature tensor depends on the basis on which it is measured.
A possibility to overcome this difficulty is by considering some scalar polynomials in gαβ,
ηαβµν , and Rαβµν . A b-incomplete curve will correspond to a scalar polynomial curvature
singularity (s.p. curvature singularity) if any of these scalar polynomials is unbounded on
the incomplete curvature. However, in a Lorentz metric, these polynomials do not fully
characterize the Riemann tensor since in plane-wave solutions the scalar polynomials are
all zero, but the Riemann tensor does not vanish. Because of that, even though these
polynomials remain small, the curvature might become very large in some sense.

Alternatively one might measure the components of the curvature tensor in a paral-
lelly propagated basis along a curve. A b-incomplete curve will correspond to a curvature
singularity with respect to a parallel translated basis (p.p. curvature singularity) if any of
these components is unbounded on a curve. In particular, we have that an s.p. curvature
singularity implies a p.p. curvature singularity.
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4.2 Singularity theorems

In many solutions of the Einstein field equations, it is possible to find singularities that
arise from the symmetry of the solution itself. Because of that, such results do not
necessarily have any physical meaning. From this consideration, there were speculations
that singularities were simply the result of some symmetries and did not appear in general
solutions, since there were some solutions with space-like singularities which did not have
the full number of functions expected in a general solution. This, however, is not the
case, since, thanks to Belinskii, Kahaltnikov, and Lifshitz, it has been found that there
are other classes of solutions that seem to have the full number of arbitrary functions
and contain singularities. Their methods to predict the existence of singularities draw
light on their structure. However, it is not clear whether the power series they used
converges, neither one obtains a general condition on the inevitability of singularities.
Nevertheless, we still shall use their results as a support to our view of singularities, that
is the implication of infinite curvature in the general case.

To predict the occurrence of singularities by studying the incompleteness of space-
time, we shall introduce a series of theorems, called singularity theorems, the first (mod-
ern version) of which was introduced by Penrose, to prove the occurrence of a singularity
in the gravitational collapse of a dying star beyond the Schwarzschild radius. In this case,
if the collapse is spherically symmetric we have a solution that can always be integrated
explicitly, always obtaining a singularity. However, this is not trivial if we consider some
irregularities or a small amount of angular momentum. Penrose showed that (differently
from the Newtonian case) once the star had passed inside the Schwarzschild surface it
would be impossible to get out. Moreover, from more general criteria, he proved that
this is the case not only for a spherically symmetric collapse, but also for solutions that
do not have any exact symmetry. Thus, there exists a close trapped surface T , that is a
C2 closed space-like two-surface, such that the two families of null geodesics orthogonal
to T converge at T . This means that such a surface finds itself in a very strong gravi-
tational field such that even the outgoing light beams are dragged back (this is what the
convergence implies). Since nothing can travel faster than light the matter within T is
trapped inside a succession of two-surfaces of smaller and smaller areas.

Theorem 4.2.1. Space-time (M,g) cannot be null geodesically complete if:

1. RαβK
αKβ ≥ 0 for all null vectors Kα;

2. there is a non-compact Cauchy surface H in M;

3. there is a closed trapped surface T in M.

To prove this result we shall show that the boundary of the future of T would be
compact if M were null geodesically complete, which allows us to show that it will be
incomplete when H is not compact.
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Proof. From proposition 3.6.3 we know that the existence of a Cauchy surface implies
thatM is globally hyperbolic, and therefore Cauchy is simple by proposition 3.6.1. This
means that the boundary of J+(T ) will be E+(T ) and will be generated by null geodesic
segments which have past endpoints on T and are orthogonal to T . By assuming M
to be geodesically complete, then by condition (1) and (3), and proposition 2.2.6, there
would be a point conjugate to T along every future-directed null geodesic orthogonal
to T within an affine distance of 2c−1, where c is the value of nχ̂αβg

αβ at the point of
intersection between the null geodesic and T . By proposition 2.3.9, all the points on
such a null geodesic beyond the point conjugate to T would lie in I+(T ). Thus, each
segment of J̇(T ) would have a future endpoint at or before the point conjugate to T .
At T one could assign continuously an affine parameter on each null geodesic orthogonal
to the surface.

By considering the continuous map β : T × [0, b] × Q → M, where Q is a discrete
set containing 1 and 2, which takes a point p ∈ T , with an affine distance v, on one of
the two future-directed null geodesics through p orthogonal to T , since T is compact,
then there will be some minimum value c0 of −1χ̂αβg

αβ and −2χ̂αβg
αβ. Therefore, if

b0 = 2c−1
0 , then β(T × [0, b0] × Q) would contain J̇+(T ). Because of that, J̇+(T ) is

compact since it is the closed subset of a compact set. This is possible if the Cauchy
surface H was compact, this way J̇(T ) could meet up around the back and create a
compact Cauchy surface homeomorphic to H . However, if H is not compact, then
there would be some problems. That is because M admits a past-directed C1 time-like
vector field and each integral curve of such a field would intersect H and J̇+(T ) at the
most once. Now it is possible to define a continuous map α : J̇+(T )→H , such that if
J̇+(T ) is compact then also its image α(J̇+(T )) would be compact and homeomorphic
to J̇+(T ). However, since H is not compact, α(J̇+(T )) cannot contain the whole
set H , since, by proposition 3.3.1 J̇+(T ) and α(J̇+(T )) would be a three-dimensional
no-bounded manifold, showing that the assumption of null geodesic completeness is not
valid.

The first condition of the theorem (Rαβ ≥ 0) had been discussed in Chapter 2, and
it holds no matter what is the value of the cosmological constant Λ, meaning that the
energy density must be non-negative for every observer. The second condition, on the
other hand, is always satisfied in at least some part of the space-time. Finally, the third
condition had been introduced only to show that α(J̇(T )) could not be the whole of
H , which can be achieved by requiring that there exists a future-directed inextendible
curve from H not intersecting J̇(T ), meaning that the theorem would still hold even if
H was compact.

The weakness of this theorem is the requirement of having H as a Cauchy surface,
which was used firstly to show thatM was causally simple, implying that the generator
of J̇+(T ) had past endpoints on T , and secondly to ensure that under a map α every
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point of J̇+(T ) was mapped into a point of H . That is because there are some solutions
of the Einstein field equations, such as the Reissner-Nordström solution, which do not
have Cauchy surfaces.

The only thing that such a theorem tells us is that at the end of the collapse of a star,
there will be either a singularity or a Cauchy horizon. Such a result is very important
since in both cases our ability to predict the future breaks down, however, it does not
answer the question about the occurrence of singularities in physically realistic solutions.
Therefore, we need a theorem that will help solve this problem, without the assumption
of the existence of Cauchy surfaces in the hypothesis. In addition to that, it must have
the condition RαβK

αKβ ≥ 0 for all time-like and null-like vectors, so that we make it
reasonable in all the possible solutions. We also require the validity of the chronology
condition, that is all the time-like geodesics are non closed. The condition of existence of
a closed trapped surface is now just one of three possible conditions, therefore this new
theorem is already applicable in a wide variety of situations. In particular one of the
alternative conditions is that there should be a compact partial Cauchy surface, while
the third asks for a point whose past (or future) light cone starts converging again.

Theorem 4.2.2 (Hawking and Penrose). Given a generic space-time (M,g), it will not
be time-like and null-like geodesically complete if:

(1) RαβK
αKβ ≥ 0 for every non-spacelike vector Kα;

(2) The generic condition, introduced in Chapter 2, is satisfied, i.e. every non-spacelike
geodesic contains a point at which K[αRβ]µν[ρ]Kγ]K

µKν 6= 0 where K is the tangent
vector to the geodesic;

(3) The chronology condition holds on M, i.e. there are no closed time-like curves;

(4) At least one of the following structure will exist:

(i) a compact achronal set without edge,

(ii) a closed trapped surface,

(iii) a point p such that on every past (or future) null geodesic from p the divergence
θ̂ of the null geodesics from the previous point becomes negative, meaning that
the null geodesics are focused by the matter curvature and start to reconverge.

Equivalently:

Theorem 4.2.3. The following three conditions cannot hold all at once:

(a) every inextendible non-spacelike geodesic, contains a pair of conjugate points;

(b) the chronology condition holds on M;
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(c) there is an achronal set S such that E+(S ) or E−(S ) is compact (we shall say
that such a set is respectively, future trapped or past trapped).

If we prove the last version of the theorem true, the first will then follow, since ifM
is time-like and null-like geodesically complete, then condition (1) and (2) would imply
(a) by propositions 2.2.2 and 2.2.5, while (3) is equivalent to (b), and condition (1), (4)
would imply (c), since in case (i), S would be an achronal compact set without edge
and such that

E+(S ) = E−(S ) = S .

In the two cases (ii) and (iii), S would be the closed trapped surface and p the point at
which the divergence becomes negative, respectively. By proposition 2.2.4, 2.2.6, 2.3.7,
2.3.9, E+(S ) and E−(S ) would be the component being the intersections of the closed
sets J̇+(S ) and J̇−(S ) with compact sets consisting of all the null geodesics of some
finite length from S .

Lemma 4.2.4. If S is a closed set and if the strong causality condition holds on J+(S )
then H+(E+(S )) is non-compact or empty.

Corollary 4.2.4.1. If S is a future trapped set, there is a future-inextendible time-like
curve γ contained in D+(E+(S )).

Proof. Let us consider the compact set F defined to be E+(S )∩J−(γ). Now, since γ is
contained into int(I+(E+(S ))), then E−(S ) would consist of F and a portion of J̇−(γ),
and, because γ is future-inextendible, the null geodesic segments generating J̇−(γ) could
have no future endpoints. However, from statement (a) every inextendible non-spacelike
geodesic contains a pair of conjugate points, which, by proposition 2.3.7, implies that the
past-inextendible extension ν ′ of each generating segment ν of J̇−(γ) would enter I−(γ).
Thus, there will be a past endpoint for ν at or before the first point p of ν ′ ∩ I−(γ), and
since I+(γ) is an open set, then a neighborhood of p would contain some points in I+(γ)
of some neighboring null-like geodesics. The affine distance of p from F will, therefore,
be upper semi-continuous, and the past horizon E−(F ) would be a compact set since
it is the intersection of a closed set J̇(γ) and a compact set generated by null geodesic
segments of a bounded affine length from F . It would therefore follow from the previous
lemma that there exists a past-inextendible time-like curve λ, in D−(E−(F )), such that
there would be an infinite sequence of its points an which satisfy the following criteria:

(I) an+1 ∈ I−(an),

(II) no compact segment of λ contains more than a finite number of an.

Let bn be a similar sequence on γ but with I+ instead of I− in (I) with b1 ∈ I+(a1).
As γ and λ are contained in the globally hyperbolic set D(E−(F )), there would be

a non-spacelike geodesic µn of maximum length between each an and the corresponding
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bn. Each of them would intersect E+(S ), thus there will be a q ∈ E+(S ) that is a
limit point of the µn ∩ E+(S ) and a non-spacelike direction at q being a limit of the
directions of the µn. Let µ′n be a subsequence of µn such that µ′n∩E+(S ) converges to q
and that the directions of µ′n at E+(S ) converges to the limit direction. Let, now, µ be
the inextendible geodesic in the direction of the limit through q. By (a) we know there
will be some conjugate points x and y on µ such that y ∈ I+(x), with respectively future
and paste counterparts on µ, x′ and y′. From proposition 2.3.3, there is some value ε > 0
and a time-like curve α from x′ to y′ whose length is ε plus the length of µ from x′ to y′.

Let U and V be two convex normal coordinate neighborhoods of, respectively, x′

and y′ both of which do not contain any curve of length 1
4
ε, and let xn, yn be U̇ ∩α and

˙V ∩ α, respectively. If xn and yn are, respectively, points on µ′n converging to x′ and
y′, then, for a sufficiently large n, the length µ′n from x′n to y′n will be less than 1

4
ε plus

the length of µ from x′ to y′, and we will have x′n and y′n belonging in I−(x′′,U ) and
I−(y′′,V ). Going along α from x′n, through x′′, to y′′, and from y′′ to y′n we would have a
longer non-spacelike curve than µ′n from x′n to y′n. From property (II), however, a′n must
lie to the past of x′n on µ′n, while b′n would lie to the future of y′n on µ′n, therefore µ′n
has to be the longest non-spacelike curve from x′n to y′n. Which establishes the desired
condition.

With this theorem, we have proved the existence of singularities under very general
conditions. However, it does not give us any hint on whether a singularity would occur
in the past or in the future. In case (ii) of the 4th condition, which asks for the existence
of a compact space-like surface, one has no reason to believe it should be in the future
rather than in the past. Nevertheless, in case (i) one would expect the singularity to be
in the future, because of the existence of a closed trapped surface, while in case (iii),
because this condition wants the past null-like cone to start reconverging, one would
expect to find a singularity in the past.

By strengthening condition (iii), that is assuming all past-directed time-like, as well
as null-like, geodesics from p to start reconverging toward a compact region in J−(p), it
is possible to say that one would still expect a singularity to exist in the past.

Theorem 4.2.5 (Hawking). If:

(1) RαβK
αKβ ≥ 0 for every non-spacelike vector Kα;

(2) the strong causality condition holds on (M,g);

(3) there is some past-directed unit time-like vector W, at point p, and a positive
constant b such that if V is the unit tangent vector to the past-directed time-like
geodesic, through p, then on each such geodesic the expansion θ

.
= V α

;α of these
geodesics would become less than −3c/b within a distance of b/c from p, where
c
.
= −WαVα. This implies that there is a past incomplete non-spacelike geodesic

through p.
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Proof. Let us begin by considering Kα to be the parallelly transported tangent vector
to the past-directed non-spacelike geodesics through p, with normalization KαWα = −1.
Then, for the time-like geodesic through p, we will have Kα = c−1V α, meaning that
Kα

;α = c−1V α
;α. Since Kα

;α is continuous on the non-spacelike geodesic, it will become less
than −3/b on the null geodesic through p within an affine distance of b.

If we now consider a pseudo-orthonormal tetrad Y(1), Y(2), Y(3), and Y(4) on a null
geodesic, with Y(1) and Y(2) two space-like unit vectors and Y(3), Y(4) two null-like

vectors such that Y α
(3)Y(4)α = −1 and Y(4) = K, then we will have the expansion θ̂ of the

null geodesics through p defined as:

θ̂ = Kα;β(Y α
(1)Y

β
(1) + Y α

(2)Y
β

(2))

= Kα
;α +Kα;β(Y α

(3)Y
β

(4) + Y α
(4)Y

β
(3)).

The second term will vanish since Kα is parallelly transported, while the third can be
expressed as 1

2
(KαK

α);βY
β

(3) which is negative since KαK
α is zero on null geodesics and

negative for time-like geodesics. Thus showing that θ̂ will get under −3/b within an
affine distance of b along a null geodesic through p. This means that if all the past-
directed null geodesics are complete, then the horizon E−(p) will be compact, and any
point q ∈ J−(E−(p))− E−(p) would be in I−(p), and not in J+(E−(p)), since E−(p) is
achronal. Therefore:

J+(E−(p)) ∩ J−(E−(p)) = E−(p),

will be compact, and, by proposition 3.6.5, D−(E−(p)), globally hyperbolic.
Considering now proposition 3.7.1, each point r ∈ D−(E−(p)) would be joined to p by

a non-spacelike geodesic such that it will not contain any point conjugate to p between
r and p. Thus, from proposition 2.2.1, D−(E−(p)) would be contained in expp(F ) where
F is the compact region of Tp which consists of all past-directed non-spacelike vectors
Kα such that KαWα ≤ −2b.

If all past-directed non-spacelike geodesics are complete, then we will have a compact
expp(F ), since expp(K

α) would be defined for all Kα ∈ F , and expp(F ) is the image
of a compact set under a continuous map. However, from the corollary of lemma 4.2.4
we understand that D−(E−(p)) contains a past-inextendible time-like curve, which by
proposition 3.4.7 implies that it could not be totally imprisoned in the compact set
expp(F ). Therefore, the assumption that all past-directed non-spacelike geodesics are
complete has to be false.

The last two theorems are the most useful when it comes to studying singularities
since it has been shown that their condition would apply in a variety of physical situ-
ations. However, what may happen is that what we found were not singularities, but
closed time-like curves violating the causality condition. Such a case is much harder to
deal with, and therefore we should just consider what happens to our space-time in the
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case of this violation. In particular, we want to know if the violation of the causality
condition would prevent the occurrence of singularities. The following theorem will show
that in certain situations this is not the case, meaning that a causality breakdown is not
a way out.

Theorem 4.2.6 (Hawking). Space-time is not geodetically complete if:

(1) RαβK
αKβ ≥ 0 for every non-spacelike vector Kα;

(2) there exists a compact space-like three-surface S (without edge);

(3) the unit vectors normal to S are either everywhere converging or diverging on S .

Condition (2) may be regarded as asking for a spatially closed universe, while con-
dition (3) is asking for either a contracting or expanding universe. As done before, to
prove this theorem we shall work in M̂ which is a covering manifold containing each
connected component of the image of S , one of which will be denoted as Ŝ .

Proof. By condition (2) and (3) the contraction χαα of the second fundamental form of Ŝ
has a negative upper bound on S , thus ifM, and therefore M̂, is time-like geodesically
complete, then there would be a point conjugate to Ŝ on every future-directed geodesic
orthogonal to the surface Ŝ within a finite distance upper bound b from Ŝ , as stated
in proposition 2.2.3. By the corollary to proposition 3.7.1, to every point q ∈ D+(Ŝ ),

there is a future-directed geodesic orthogonal to Ŝ which does not contain any point
conjugate to Ŝ between Ŝ and q.

Let now β : Ŝ × [0, b] → M̂ to be a differentiable map which takes a point p ∈ Ŝ
up a future-directed geodesic through p by a distance s ∈ [0, b]. Then we will have a

compact set β(Ŝ × [0, b]) which contains D+(Ŝ ), implying D+(Ŝ ) and H+(Ŝ ) to be
compact. By assuming the validity of the strong causality condition, the contraction in
(3) will follow from lemma 4.2.4. However, it is possible to show that one can still obtain
a contraction even without the validity of such a condition.

Let us consider a point q ∈ H+(Ŝ ), because every past-directed non-spacelike curve

from q to Ŝ would consist of a null geodesic segment in H+(Ŝ ) and a non-spacelike

curve in D+(Ŝ ), it follows that d(Ŝ , q) would be less or equal to b. Thus, since d is lower

semi-continuous, one could find an infinite sequence of points rn ∈ D+(Ŝ ) converging

to q such that d(Ŝ , rn) converges to d(Ŝ , q). To each rn there will be associated at

least one element of β−1rn of Ŝ × [0, b], and, because such a set is compact, then there
would be an element (p, s) which is a limit point for β−1(rn). By continuity, we will have

s = d(Ŝ , q) and β(p, s) = q, thus to every point q ∈ H+(Ŝ ) there will be a time-like

geodesic of length d(Ŝ , q) from Ŝ . Let us now consider a point q1 ∈ H+(Ŝ ) lying to

the past of q on the same null geodesic λ which generates H+(Ŝ ). Joining the geodesic

of length d(Ŝ , q1) from Ŝ to q1, to the segment of λ between q1 and q we shall obtain
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a non-spacelike curve of length d(Ŝ , q1) from Ŝ to q, which could be varied to give a

longer curve between these two endpoints. Therefore, d(Ŝ , q) will strictly decrease along

every past-directed generator of H+(Ŝ ) (with q ∈ Ŝ ). From proposition 3.5.2 such a

generator cannot have past endpoints leading to a contraction, since, as d(Ŝ , q) is lower

semicontinuous in q, it would have a minimum on the compact set H+(Ŝ ).

The necessity of condition (2) arises from an example given by Penrose himself, in
which he shows how in the Minkowski space (M, η) the non-compact surface S : (x1)2 +
(x2)2 +(x3)2 +(x4)2 = −1 with x4 < 0, is a Cauchy surface with χαα = −3 at all points. If
one considers a surface similar to the previous, but such that (x1)2+(x2)2+(x3)2+(x4)2 <
0 with x4 < 0, it is possible to define a group of discrete isometries G such that S /G is
compact. Moreover, from what is required by theorem 4.2.6, the space (M/G, η) would
be time-like geodesically incomplete since one could not extract the identification under
G to the whole space M. In this case, the incompleteness singularity arises from bad
global properties and is not accompanied by a curvature singularity.

Interestingly it is possible to change the condition of theorem 4.2.6 and maintain its
validity. For example by replacing conditions (2) and (3) with:

(2’) Ŝ is a Cauchy surface for the covering manifold M̂;

(3’) χαα is bounded away from zero on S .

Because in this case it is not possible to have a Cauchy horizon, all future-directed
time-like geodesics from Ŝ must have a length less than some finite upper bound.

In addition to that, Geroch had shown that keeping condition (2) while replacing
conditions (1) and (3) by:

(1”) RαβK
αKβ ≥ 0 for every non-spacelike vector, even if Rαβ = 0;

(3”) there is a point p ∈ Ŝ such that any inextendible non-spacelike curve intersection

Ŝ also intersects both J+(p) and (J−(p));

one gets that either the Cauchy development of Ŝ is flat, or M̂ is time-like geodetically
incomplete. Condition three can be regarded as saying that an observer at p can see
every particle intersecting Ŝ and vice-versa. Moreover, by considering a topological
space S(p), out of each of these surfaces, then, by conditions (2) and (3”), it must be
compact.
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Chapter 5

Conclusions

The structure of all the theorems introduced in the previous chapter, seem to follow a
general pattern:

Theorem 5.0.1 (General Pattern). If:

1. an energy condition,

2. a causality condition, and

3. a boundary or initial condition

holds, then our space-time will contain at least one incomplete causal geodesic.

However, this basic structure works only when adequate energy, causality, and bound-
ary conditions are specified.

By looking at the proofs of these theorems, we observe that, from a geometric point
of view, they are based either on the construction of at least one maximal geodesic, that
is a geodesic with no conjugate or focal points, showing that such a geodesic cannot be
complete due to the chosen energy condition, or on the assumption of g-incompleteness,
leading to the existence of compact achronal boundaries, which, however, do not exist
if space-time is spatially open. From a physical point of view, on the other hand, the
concept behind each proof is different depending on the theorem. For theorem 4.2.1
and theorem 4.2.5, in particular, the idea behind them is the assumption of having a
set bound to be trapped. There is, therefore, a certain region of space-time (let it be
a surface, a slice, or a point) that has its future or its past initially contained within a
compact and contracting spatial region. Meaning that all matter contained in such a
region cannot escape from a spatially finite contracting zone. That is, of course, as long
as gravity remains attractive and there is no way out back in time through the violation
of causality. The particles in such a region would get closer together until either they
collapse into a region too small for such amount of matter or radiation, thus creating
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a singularity, or they reach an untrapped region, allowing them to escape. In the last
case, the future of such a particle will be all contained in J(S ,U ) that is within the
achronal boundary H , which is compact if it does not reach any singularity. Such a
prospect is possible in a variety of physical solutions. However, if we consider the ideal
case, in which all the particles are required to cross the Cauchy horizon H+(S ) of the
proper archonal boundary H , then they will be freed from the catastrophic influence
that gravity exerts on them. This eventuality cannot occur, since the Cauchy horizon
H+(S ) must be either non-compact or empty. Thus, some particles are able to travel
indefinitely without having to leave D+(H ), so that they either approach a singularity,
or go out to infinity. In the last case, we have to take into account the event horizon of the
curve which goes to infinity. Such a set is an acrhonal boundary as well, which, combined
with an adequate subset of the H , gives yet another proper achronal boundary, which,
by the energy condition, is either compact, or reaches a singularity. If we extend this
reasoning also to past-directed particles, meaning that there will be another particle that
can reach infinity, then its combination with the previous case would give us access to
every point in time, from the past to the future, remaining within a finite spatial region,
avoiding the focusing effect. This is, however, not possible, since the arrow of time is
thermodynamically inevitable, and gravity always remains attractive.

From this consideration, we concluded that for an adequate energy condition, General
Relativity favors the existence of incomplete curves. This can also be seen by considering
theorem 4.2.3, in which we stated that conditions (i) and (iii) cannot hold at the same
time. Why it happens can be made more clear by studying some particular situations,
however, a general proof is still unknown.

Even if in this chapter we used words such as particles or matter to discuss singu-
larities, all our previous considerations had been made independently of these concepts.
In particular, we have seen that at the early stages of our understanding of singulari-
ties, there was the idea that they were simply a property of some particular solutions,
arising from particular symmetries. However, we showed that geodesic incompleteness
can also occur in an empty space-time. Thus, the intuitive idea that singularities may
have something to do with the existence of matter, or with its bad definition, is wrong.
An example of that, which we will not fully cover, are space-times with simple pure
gravitational waves and no matter whatsoever. The case of colliding plane waves allows
no alternative but the destruction of such space-times by the existence of singularities.
[Senovilla, 1998, pp. 796–798]

5.1 Conclusions of the singularity theorems

In conclusion, what arises from these theorems is the existence of at least one incomplete
causal geodesic. However, they do not give us any other information, leaving the problem
of the existence of extensions and singularities open.
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In the case of g-incompleteness, we have seen that it is possible to remove singularities
and make regular extensions possible, the problem now becomes which one to choose
among the huge amount of possibilities. Moreover, there is no reason to assume that
the conditions, or other equivalent ones, which hold on the unextended space-time, will
remain valid also on its extension. Meaning that the energy, causality, or boundary
conditions that led us to the existence of incomplete geodesic may not be satisfied in the
extended space-time.

On the other hand, when g-incompleteness indicates an essential singularity, the
problem of its character, severity, and location remains. For example, one may think
that singularities would be found in the past and that they would all be of big-bang type
(that is a singularity on a singular extension in which every past-directed causal curve,
with no endpoints, approaches a singular set S at a finite affine parameter), but they
are nothing of that sort. It has been shown that, in general, this is not the case, both
for homogeneous and inhomogeneous space-times, meaning that there is no reason to
presume that cosmological singularities have any definite property. [Senovilla, 1998, pp.
806–807]
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