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Abstract

This thesis aims to produce two generalized motion applications for the in-
tegration of XTS systems into automatic machines. Given the lack of some
software tools from the manufacturer, in the industrial setting of IMA Au-
tomation, the need for specific functionalities has arisen. In particular, differ-
ent solutions to the rephasing problem are presented (restoring movers after
being set in a torque-off state) and a generalized structure for the worksta-
tions on the track is proposed.

In this work, the applications are implemented in Function Blocks coded
in ST according to IEC 61131-3. The proposed solutions are tested using the
XTS Simulator included in the Beckhoff IDE TwinCAT 3. The rephasing tool
is tested using virtual commissioning 3D models and is successful in every
configuration analysed, while the generalized workstation is proven effective
by rapidly building a simulation for an automatic machine layout in its very
early development stages.

Keywords: motion application, linear transport system, XTS, automatic
machine, rephasing, workstation

5



6



Contents

1 Development setup 13

1.1 TwinCAT 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 IEC 61131-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 XTS simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 System Overview . . . . . . . . . . . . . . . . . . . . . 14

1.3.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 OMAC PackML 17

2.1 Machine state types . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 State descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Machine control modes . . . . . . . . . . . . . . . . . . . . . . 19

3 XTS rephasing tool 21

3.1 Native control functions for XTS and collision avoidance im-
plementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Necessity for a rephasing tool: the deadlock condition . . . . . 22

3.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Proposed solutions without collision avoidance . . . . . . . . . 24

3.4.1 Global restore rephasing mode . . . . . . . . . . . . . . 25

3.4.2 Priority restore rephasing mode . . . . . . . . . . . . . 26

3.4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Proposed solutions with collision avoidance . . . . . . . . . . . 31

3.5.1 Global restore CA rephasing mode . . . . . . . . . . . 32

3.5.2 Priority restore CA rephasing mode . . . . . . . . . . . 34

3.5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6.1 TwinCAT setup . . . . . . . . . . . . . . . . . . . . . . 38

3.6.2 Virtual Commissioning setup . . . . . . . . . . . . . . 39

3.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7



4 XTS workstation 41
4.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Proposed solution . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Movers Adoption . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Movers Requests Handling . . . . . . . . . . . . . . . . 47
4.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.1 TwinCAT setup . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Conclusions 57
5.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Future developments . . . . . . . . . . . . . . . . . . . . . . . 57

8



List of Figures

1 IMA Automation logo . . . . . . . . . . . . . . . . . . . . . . 11
2 Beckhoff XTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 TwinCAT XTS simulator tool . . . . . . . . . . . . . . . . . . 15
1.2 Beckhoff IPC . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 PackML production mode FSM . . . . . . . . . . . . . . . . . 20

3.1 Deadlock example . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Deadlock example . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Flowchart of Global Restore rephasing mode . . . . . . . . . . 26
3.4 Priority mode example . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Flowchart of Priority Restore rephasing mode . . . . . . . . . 29
3.6 Function block I/O interface. . . . . . . . . . . . . . . . . . . 30
3.7 Method example . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.8 Deadlock example . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.9 Deadlock Avoidance example . . . . . . . . . . . . . . . . . . 34
3.10 Flowchart of Global Restore CA rephasing mode . . . . . . . . 35
3.11 Flowchart of Priority Restore CA rephasing mode . . . . . . . 36
3.12 Function block I/O interface. . . . . . . . . . . . . . . . . . . 37
3.13 XTS Viewer in the TwinCAT 3 XTS extension: test setup . . 38
3.14 Virtual Commissioning 3D model . . . . . . . . . . . . . . . . 39
3.15 Average rephasing times results . . . . . . . . . . . . . . . . . 40

4.1 XTS workstation structure . . . . . . . . . . . . . . . . . . . . 42
4.2 Flowchart of Movers Adoption routine . . . . . . . . . . . . . 44
4.3 Mover adoption example . . . . . . . . . . . . . . . . . . . . . 45
4.4 Skipping station example . . . . . . . . . . . . . . . . . . . . . 46
4.5 Flowchart of Movers Requests Handling algorithm . . . . . . . 48
4.6 Function block I/O interface. . . . . . . . . . . . . . . . . . . 49
4.7 XTS Viewer in the TwinCAT 3 XTS extension: test setup . . 52
4.8 Cycle Time Trace . . . . . . . . . . . . . . . . . . . . . . . . . 53

9



4.9 Trace of the numbers of movers in queue . . . . . . . . . . . . 55

10



Introduction

In recent years, automatic machines have seen the rise of new solutions re-
garding conveyance technologies: in many applications, the rigidity of con-
veyor belts and purely mechanical transfers has been replaced with the flex-
ibility of linear transport systems based on individually actuated movers.
In this kind of solutions, a modular closed (or open) track actuates a set
of passive sliders along its path: they are completely independent one from
the other. Unlike traditional permanent magnet linear synchronous motors
(PMLSM), which consist of a passive linear guide and an active slider, these
electric drives use passive permanent magnet movers and a segmented track
composed of active modules to generate the required electromagnetic fields:
this configuration frees the moving parts from any wired connection allowing
periodic motion along the path and flexibility in the operation. The replace-
ment of traditional conveyance systems brings many advantages and enables
innovative design in the whole machine, such as software-based format change
and dynamic grouping of product units. To this day, many commercial so-
lutions exist that implement such technology in industrial settings.

This thesis has been carried out at IMA Automation, a segment of the
IMA S.p.A. group, a world leader in the design and manufacturing of auto-
matic machines, and the focus has been on XTS: a solution from Beckhoff,
which also provided courses on their automation software TwinCAT 3 and
relative XTS extension. The goal of the project has been to develop mo-
tion applications for XTS systems integrated into automatic machines while
maintaining the most generalized approach possible.

A simulator for the XTS system is available on TwinCAT 3 XAE, the
integrated development environment. It can be set up with an arbitrary con-

Figure 1: IMA Automation logo.
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Figure 2: Beckhoff XTS. Picture reprinted from [2].

figuration of motor modules and movers: it has been used throughout the
internship to test the developed code. A summary of the development setup
will be presented In the first chapter, the OMAC PackML software design
framework will be shown in the second one, while my suggested implemen-
tations for two generalized motion applications will be displayed in the third
and fourth chapters. In the fifth and final chapter, brief conclusions will be
drawn, alongside a discussion on possible future developments.
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Chapter 1

Development setup

To understand the source code of an automatic machine, adequate training
has been necessary on the development tools for the specific platform at hand:
in particular, during the internship, the Beckhoff Automation systems have
been studied. In the next few paragraphs, a brief overview of the IDE and
the programming standards used by the manufacturer is presented, alongside
the hardware used for testing.

1.1 TwinCAT 3

TwinCAT is a PC-based control system for industrial automation: it includes
eXtended Automation Engineering (XAE), the development environment,
and eXtended Automation Runtime (XAR), the Real-Time extension for
Windows. XAE is integrated into the Visual Studio IDE and includes editors
and compilers for the IEC 61131-3 standard languages. XAR, on the other
hand, is a Real-Time extension for Windows OS which allows for preemptive
scheduling, priority control and deterministic execution of tasks, as seen in
[1]. The version of TwinCAT 3 used for this project has been 4024.40.

1.2 IEC 61131-3

The IEC 61131-3 is an open standard for Programmable Logic Controllers
(PLCs) and defines, among other things, 5 different programming languages,
both graphical and textual, as shown in [8]. In this project, the whole source
code has been developed in Structured Text (ST).

13



1.3 XTS simulation

1.3.1 System Overview

As discussed in the introduction, the XTS system is a linear actuator com-
posed of a segmented active stator (composable track) and several individ-
ually actuated passive movers along the same path. As seen in [2], from
the programmer’s point of view every mover is controlled as a “standard”
independent servo axis thanks to the specific XTS TwinCAT extension. For
every axis, the SoftDrive object, which represents its I/O (contains velocity
and position control loops), is connected to the NC axis (controlled by PLC
as usual). The connection to the movers’ hardware, for each one of them,
is managed by the XTS Processing Unit (XPU), responsible for real-time
communication. The XTS Driver is, for every control cycle and every mover,
in charge of:

• collection of all position sensor signals,

• calculating the absolute position,

• calculating the velocity,

• position control,

• velocity control,

• phase transformation,

• setting phase current values to motor modules (while handling bound-
aries smoothly).

For performance reasons the whole control cycle needs to be completed in
250µs, therefore the XTS task on the PLC needs to run with a cycle time
of 250µs. This is, for real systems with a lot of movers, quite a challenging
deadline to meet: especially the calculation of phase currents of all involved
motor modules and the compensation of boundary effects (for mover transi-
tions from one motor to the next). Since on TwinCAT 3, there is support
for multi-core CPUs, in [2] is recommended to run the XTS task alone on an
isolated core (unavailable to Windows OS or any other PLC task).

1.3.2 Simulation

Given the system architecture description, it’s clear that the simulator is
implemented in the XPU of the XTS Drive: instead of communicating with

14



Figure 1.1: TwinCAT XTS simulator tool screenshot. This simple loop is 2
meters long with two 500mm straight segments and two 500m 180° curves.
On the outside of the track is indicated the reference system: the top left
mover is in position 0 (straight-curve junction) and the positive direction is
clockwise. In this example, 4 movers are simulated.

some Hardware, the XPU simulates the feedback and doesn’t need to write
current phase outputs. This mode is much less computationally demanding
than controlling a real XTS system so it has been possible to run it on a
basic compact IPC. In figure 1.1 is shown an example with 4 movers built in
the simulator tool.

1.4 Hardware

A compact Industrial PC (IPC) from Beckhoff has been used to test the
developed applications and simulate the XTS system: it can be seen in fig-
ure 1.2. The PC is equipped with a quad-core Intel CPU @3.4GHz, 8GB of
memory and Windows 10 64bit. This machine is not a very powerful config-
uration and wouldn’t be recommended to control an XTS system but, since
in this case only the simulator is being used, its performance is more than
enough.

15



Figure 1.2: Beckhoff IPC model C6030-0060.
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Chapter 2

OMAC PackML

To test the proposed solutions on a real application, it has been necessary
to implement the software into the source code of an existing automatic
machine developed at IMA Automation. They have adopted, as a company,
the OMAC Packaging Machine Language (PackML) as a standard to develop
software for automated machines and, to modify their existing project, it’s
been necessary to understand the design framework of the overall source
code.

In documents such as [7] is delineated how PackML is made to provide,
among other things:

• a definition of machine state types,

• state descriptions,

• state transitions,

• a definition of machine control modes.

The overall behaviour of automatic machines following this standard is de-
lineated to fit into the framework determined by some predetermined Finite
State Machines (FSMs) where states, transitions and operating modes are
systematized.

2.1 Machine state types

The machine states are meant to completely define the current condition of
the machine and in [7] are established two types:

Acting state A state which represents some processing activity. It implies
the single or repeated execution of processing steps in a logical order,

17



for a finite time or until a specific condition has been reached. In [6]
these are referred to as transient states, those states ending in “ING”.

Wait state A state used to identify that a machine has achieved a defined
set of conditions. In such a state, the machine is maintaining a status
until transitioning to an acting state. In [6] this was referred to as a
“final” or “quiescent” state.

2.2 State descriptions

There are a fixed number of states defined in the base state model and in [7]
is shown a sample enumerated set of possible machine states, which includes:

EXECUTE (Type: Acting) Once the machine is processing materials it
is in the EXECUTE state. Different machine modes will result in
specific types of EXECUTE activities. For example, if the machine is
in the “Production” mode, the EXECUTE will result in products being
produced, while in the “Clean Out” mode the EXECUTE state refers
to the action of cleaning the machine.

ABORTING (Type: Acting) The ABORTING state can be entered at
any time in response to the ABORT command or on the occurrence of
a machine fault. The aborting logic will bring the machine to a rapid
safe stop.

ABORTED (Type: Wait) The machine maintains status information rel-
evant to the ABORT condition. The machine can only exit the ABORT-
ED state after an explicit CLEAR command, subsequently to manual
intervention to correct and reset the detected machine faults.

CLEARING (Type: Acting) Initiated by a state command to clear faults
that may have occurred when ABORTING, and are present in the
ABORTED state before proceeding to a STOPPED state.

STOPPING (Type: Acting) This state is entered in response to a STOP
command. While in this state the machine executes the logic which
brings it to a controlled stop as reflected by the STOPPED state. Nor-
mal STARTING of the machine cannot be initiated unless RESET-
TING had taken place.

STOPPED (Type: Wait) The machine is powered and stationary after
completing the STOPPING state. All communications with other sys-

18



tems are functioning (if applicable). A RESET command will cause an
exit from STOPPED to the RESETTING state.

RESETTING (Type: Acting) This state is the result of a RESET com-
mand from the STOPPED or COMPLETE state. Faults and stop
causes are reset. RESETTING will typically cause safety devices to be
energized and place the machine in the IDLE state where it will wait
for a START command. No hazardous motion should happen in this
state.

IDLE (Type: Wait) This is the state which indicates that RESETTING
is complete. The machine will maintain the conditions which were
achieved during the RESETTING state, and perform operations re-
quired when the machine is in IDLE.

STARTING (Type: Acting) The machine completes the steps needed to
start. This state is entered as a result of a STARTING command
(local or remote). Following this command, the machine will begin to
“execute”.

2.3 Machine control modes

As presented in [7], a machine control mode determines the subset of states,
state commands, and state transitions that determine the strategy for carry-
ing out a machine’s process. Typical machine control modes are production,
maintenance, manual etc. The distinguishing elements between these unit
control modes are the selected subset of states, state commands, and state
transitions. For example, the production mode can be realized by implement-
ing all defined states, commands and transition into a Base state model : state
models completely define the behaviour of a machine in one control mode.
Its FSM is represented in figure 2.1.

19



Figure 2.1: PackML production mode FSM example reprinted from [7].
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Chapter 3

XTS rephasing tool

In this chapter, the design of generalized Function Blocks able to handle the
rephasing process of all XTS movers after being set in a torque-off state will
be presented.

3.1 Native control functions for XTS and col-

lision avoidance implementation

Beckhoff Automation provides, alongside the XTS system, a set of software
tools designed to handle typical XTS requirements. These functionalities are
contained in the following TwinCAT libraries (as shown in [2] and [5]):

Tc3 McCoordinatedMotion Includes control function blocks for Axis
Group handling [4]. The Axis Group object contains all movers within
one loop and is required for the next library.

Tc3 McCollisionAvoidance Comprises control function blocks for Colli-
sion Avoidance (CA hereafter) [3].

Every XTS mover (as stated previously) is linked to an NC axis and, conse-
quently, can be controlled independently using the standard PLCopen Func-
tion Blocks such as MC MoveRelative, MC MoveAbsolute etc. Nevertheless,
it is possible to set up an Axes group containing all movers in the loop and
a Collision avoidance group object: by controlling the movers motion with
Function Blocks from the specific collision avoidance library, it’s possible to
ensure that the difference between their position setpoints will never drop
below a predetermined Gap, regardless of the requested motion. For exam-
ple, if a set of movers within the collision avoidance group is sent to a specific
position along the track, only one of them will reach the target position while
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all the others will stop one “gap length” from one another. All the Function
Block instances utilized (of those unable to reach the target) will remain
Busy as long as the target position isn’t reached: in the previous case, only
the one mover able to get to its goal will output Done. Once the shared
target position is freed from the mover occupying it, the closest one will take
its place and all the others will move accordingly, maintaining the minimum
gap. Besides avoiding unwanted collisions, this mechanism is very convenient
to handle movers queues within the loop, since they need only one position
to be specified and the collision avoidance group takes care of the movers
advancement while the queues are depleted.

3.2 Necessity for a rephasing tool: the dead-

lock condition

The functionalities just presented, as useful as they are, fall short of assisting
in the rephasing process : the problem consists in restoring the position of all
movers in a loop to the last configuration they had before being set in a
torque-off state. Once no forces are acting on the movers they may move, for
example, due to gravity or due to an operator’s intervention: it’s not granted
that the position found once the axes are re-enabled is the same as it was
before. What’s given is the set of positions to restore and the current one,
while needs to be elaborated the sequence of movement commands required
to obtain the latter from the former.

If, for example, collision avoidance is used, simply sending all movers
to their target position isn’t a solution because they can cause a deadlock.
Analogously to the deadlock phenomenon studied in computer science, here
a deadlock is defined as the condition in which a mover needs to reach a point
beyond another one but isn’t able to proceed: collision avoidance will stop it
before it crashes but will not be useful in making it reach its goal. This can
happen, for example, for a single mover trying to move past another (as in
figure 3.1) or could happen between two movers going in opposite directions
one towards the other.

3.3 Assumptions

In this work is considered only the case of a single static XTS loop without
any track segments moved during operation: even if manufacturers of these
kinds of transport systems (Beckhoff included) allow for track changes, the
simplest case of one uninterrupted loop remains a very relevant simplifica-
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(a) Mover 1 is trying to reach the target position indicated by the yellow rectangle,
moving in positive direction (clockwise, indicated by the arrow).

(b) Unable to move past 2, Collision Avoidance is stopping 1 just before it. The
system is standstill due to a deadlock.

Figure 3.1: Deadlock example in the XTS simulator tool.

tion. In all projects developed at IMA Automation, they have deployed this
fixed structure. This layout has allowed some definitions to be stated and
assumptions to be made (independent of the shape and length of the system
at hand):

1. A set of movers positions will be called configuration.

2. Since the track is a closed loop that doesn’t allow movers to go past
each other, every mover will always be followed by the same other one
(clearly, this also means that every mover will always follow the same
other one). Consequently, regardless if they are numbered in ascending
or descending order, they will always appear sorted by ID number.

23



3. Two mover configurations in which is possible to obtain one from the
other with a finite sequence of physically possible movements (see point
2, e.g. movers can’t go past each other) will be called homologous
configurations.

4. As a consequence, all configurations found in an XTS loop during op-
eration are homologous configurations. Hence, it is always possible to
solve the rephasing problem. This can also be proven by considering
that every movement in the torque-off state can be reversed with a
motion command, ideally, and if the reverse sequence is performed, the
original state can be restored.

3.4 Proposed solutions without collision avoid-

ance

In this thesis have been produced a few different solutions for the rephasing
process: algorithms have been developed able to generate a finite sequence
of movement commands to bring any configuration of movers into any other
homologous. They have been implemented in Function Blocks for PLCs.
The scope has been to generate the most general solutions possible, given
the assumptions made in section 3.3. As previously stated: the number of
movers, length of the loop and track layout are irrelevant.

In the following sections, four different algorithms and implementations
will be presented: the first two have been designed to handle the rephasing
process without making use of the collision avoidance tools, therefore only
one mover is being moved at any time to avoid crashes, while the last two
exploit CA functions. Even if the first ones may seem inefficient in the
approach (and for a large number of movers, they are) the focus has been,
in these first attempts, to develop a rock-solid process on which to build up
in the future. Using the collision avoidance tools allows for many movers
to advance at the same time, but also makes the rephasing procedure much
more delicate to handle: it’s not trivial to avoid deadlocks by moving many
axes all at the same time in different directions.

From now on, for every mover, the position that needs to be restored will
be referred to as target position, while the current or actual position will refer
to the starting point of the rephasing process.
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Figure 3.2: Deadlock example. If the movers need to reach the respective
target positions (indicated with numbered yellow boxes) it’s clear that no one
of them has a free path to the destination. However, it’s possible to avoid the
deadlock and reach the target configuration by advancing all of them little
by little: this will require more than 4 direct movements but it’s doable.

3.4.1 Global restore rephasing mode

The first attempt at developing a rephasing procedure has been carried out
by considering how to move from an arbitrary configuration to a homologous
one: it has been called global restore mode because, in a real application, the
goal would be to restore the position of every single mover to where it was
before being put in the torque-off state. Since usually a homing procedure
isn’t available, because half-processed products in a production line need to
return to the correct positions, a first, intuitive, approach could be to look for
movers that can reach their target without any obstacles: by moving them
one at a time and updating the free paths every time, this logic can solve
many configurations. However, the movers can be in a situation in which
there is no one able to reach its target right away: for example consider
the case in figure 3.2. To avoid the deadlock, an alternative procedure is
implemented if there is no mover with a free path to its target: a single
direction is decided for the rephasing procedure by looking for the least overall
distance needed to be travelled by all movers, and then the mover able to
travel the furthest in that direction is sent as far as it can go. This simple
algorithm can reach any configuration homologous to the starting condition
and in figure 3.3 it’s illustrated its flowchart.

Even if, in practical cases, this mode’s performance could be satisfying
due to the limited number of movers to rephase, the number of individual
commands needed to “untangle” some configurations grows very fast with
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Figure 3.3: Flowchart illustrating the algorithm for Global Restore rephasing
mode.

respect to the number of movers. Effectively, if a lot of operations are needed
to obtain a free path for any mover, it takes a long time to complete the
rephasing process.

3.4.2 Priority restore rephasing mode

To optimize the rephasing process, an observation on practical cases has
been made: usually, the XTS loop (or analogous system) is used as a trans-
fer between workstations in a production line and during operations not all
movers are populated with product units. The rephasing logic could take
into account that only semi-finished products need to return to their origi-
nal position to proceed into the next steps of the production line: all empty
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movers don’t need to go back to specific positions since they will be sent
again to queue position.

The priority restore rephasing mode works by defining some movers to
be prioritary (for example with products on board, but any logic can be
applied) and restoring only their positions. In case any prioritary mover is
blocked on its path by other ones (prioritary or not), the movers in the way
need to be sent beyond the priority target position to make space and allow
the priority rephasing. Of course, it could be the case that all the priority
movers have a free path to their restoring position, but in general this isn’t
true and the obstructions need to be managed properly: anytime there is no
priority mover able to directly reach its target, the algorithm picks the one
closest to its goal. A rephasing direction is determined for the procedure: it’s
based on the shortest path of the first mover at hand. Contrary to the global
restore, it has been observed in simulation that the optimal direction for
starting rephasing often isn’t the shortest overall since, in this case, deadlock
avoidance could require inverting the direction at any point of the procedure.
For this reason, the first mover determines the direction to begin with. Once
the priority mover is picked and the direction is set, which movers need to get
out of its way must be evaluated: this doesn’t include only the ones standing
between it and its target, but also every other one past the target that needs
to make room for them. An example of this case is shown in figure 3.4. The
generation of target positions, to make space for the priority one, must be
made in such a way that the movers are placed as close as possible: this
is necessary to ensure that any configuration can be reached by all priority
movers. If, by any chance, between the ones to get out of the way, there is
a priority mover which is already in its target position, the direction must
be inverted: otherwise, this will generate an endless sequence of movement
commands. Once the priority has been free to reach its target, another one
is handled until there are no more. This algorithm produces, on average,
many fewer movement commands than the global restore and in figure 3.5 is
illustrated its flowchart.

3.4.3 Implementation

The previous solutions have been implemented in a Function Block coded in
ST according to IEC 61131-3 standard: its I/O interface is shown in figure
3.6. The instance of the FB needs to communicate with the main program
(PRG): after the initial call, in which all input parameters are loaded, with
a rising edge of the I_Enable input the FB activates. When the Q_Ready

output is TRUE, the block has calculated a mover index to be moved and how
much it should travel in which direction. Once the mover has completed its
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(a) Mover 1 is the only prioritary in this example: it needs to reach its target (red
rectangle). Considering the shortest path, it’s obstructed by mover 2. Therefore,
a position target is generated (yellow) for mover 2 to get out of the way of 1.

(b) Since now also mover 2 is obstructed on its way by mover 3, a position target
for 3 must be generated.

(c) In the end, for mover 1 to reach the target position, both movers 2 and 3
needed to make room for it.

Figure 3.4: Priority mode example in the XTS simulator tool.
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Figure 3.5: Flowchart illustrating the algorithm for Priority Restore rephas-
ing mode.
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Figure 3.6: Function block I/O interface.

task, a rising edge of I_NextMover will iterate the block again and produce
the next movement command at the output. This process needs to be re-
peated until the Q_Done flag comes TRUE. Here follows a detailed description
of the I/O interface: variables with the prefix I_ are inputs, while Q_ is for
outputs.

I Enable (BOOL) A rising edge of this input will activate the function
block and output the first movement command.

I NumberOfMovers (INT) The number of movers in the loop is a pa-
rameter essential to know how many axes to look for.

I TrackLength (LREAL) Parameter needed to compute the modulo po-
sition at every step in which a calculation is involved. Since the system
at hand produces periodic motion of the axis, the period is essential
information to evaluate distances.

I MoverPosition (ARRAY OF LREAL) This array contains the posi-
tion of all the movers before the rephasing process. It’s the starting
configuration.

I MoverTarget (ARRAY OF LREAL) This array contains all the po-
sitions of the movers that need to be restored. It’s the objective to
achieve.

I ST MoverWithPriority (ARRAY OF ST MoverWithPriority)
If the Priority mode is used, here are indicated which movers are
prioritary.

I MoverLength (LREAL) Mover size is necessary to avoid crashes.
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I NextMover (BOOL) A rising edge of this input, after an output is pro-
duced, will generate the next movement command.

I OperatingMode (et RestoreOperatingMode) This input allows to
select the desired operating mode.

I RestoreGap (LREAL) Tolerance to consider movers to be rephased. If
the mover target is inside ± I_RestoreGap from the position, then
doesn’t need to be rephased.

I EncoderGap (LREAL) Tolerance needed to correctly detect movers
and avoid crashes when very close. I_RestoreGap ≥ I_EncoderGap

must hold.

Q MoverSetpointRelative (LREAL) When Q_Ready is TRUE, this is the
signed distance that the specified mover needs to travel.

Q MoverNumber (INT) When Q_Ready is TRUE, this is the mover to ac-
tuate.

Q Ready (BOOL) Output ready if TRUE.

Q Done (BOOL) Rephasing completed if TRUE.

Q Error (BOOL) Debugging flag used to check for errors. If TRUE an input
parameter is incorrect.

Q ErrorID (STRING) If Q_Error is TRUE, this is the error description.

The internal structure of the Function Block is based on the two algorithms
previously illustrated (figures 3.3 and 3.5) and the main logic is governed by
a Finite State Machine (FSM). Several methods have been added to handle
common tasks, such as checking the free space ahead and behind a selected
mover: the interface of this specific one is represented in figure 3.7 as an
example. The two modes (global and priority) are implemented in different
states of the FSM but share the initialization, the output writing and a lot
of methods.

3.5 Proposed solutions with collision avoid-

ance

Starting with what has been built so far, another two modes have been
designed: Global restore Collision Avoidance and Priority restore Collision
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Figure 3.7: Method created to evaluate the distance between two movers (in
both directions) that can be travelled before collision. Positive and negative
directions are defined on the reference system centred in ActualPosition.

avoidance. The main goal has been to optimize the rephasing times obtain-
able with the non-CA versions by moving many (all) movers at the same time.
As previously explained, giving the embedded CA functions the task of pre-
venting crashes doesn’t free the programmer from the necessity of checking
the path of every mover: deadlocks are a constant threat during operations.

The main structural difference from this implementation to the previous
one will be that, instead of generating single movement commands to be
executed in sequence, the output of these algorithms will be a set of target
positions and a set of rephasing directions to be executed all at the same
time. In practice, every mover will get a target to reach and a direction to
follow.

3.5.1 Global restore CA rephasing mode

Like for the homonymous non-CA modality, the goal is to restore the position
of every mover to the configuration previous to the torque-off state: the
algorithm is simpler overall (with respect to the first solution, shown in 3.4.1),
but includes a necessary deadlock avoidance routine to function properly.
After checking which movers need to be displaced, the rephasing direction is
evaluated by looking for the shortest path overall. However, simply moving
every axis in the same direction isn’t enough to avoid deadlocks, as can be
seen in the example in figure 3.8.

The deadlock avoidance works by checking three conditions for every
mover and, if they are all satisfied, it means that a deadlock is found and the
rephasing direction must be reversed for that case. Given a mover, its target
position and rephasing direction, its path is defined as the track portion it’s
supposed to cross to reach the goal. The algorithm checks if:

1. there is any other mover along its path (will be referred to as interfering
mover)

2. the target of an interfering mover is on the same path
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(a) If every mover needs to reach the corresponding target (yellow rectangle), the
shortest path overall, in this example, is along the positive direction (clockwise).

(b) However, since no one can move past mover 4, which has reached its position,
the system is standstill due to a deadlock.

Figure 3.8: Deadlock example in the XTS simulator tool.

3. the path of the interfering mover does not contain the given mover

If all these conditions are verified, the direction of the movement must be
reversed to avoid a deadlock. An example of an application can be seen in
figure 3.9.

Once the set of directions is determined, all the movers can be safely
sent to their target by using the CA functions. This solution is much faster
than the ones without collision avoidance because all the movers can advance
towards their goal simultaneously: the flowchart in figure 3.10 represents the
overall behaviour.
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Figure 3.9: Deadlock avoidance example. If we consider the situation illus-
trated in figure 3.8a and apply the algorithm to mover 1, we can see that
mover 4 and its target are on its path, while mover 1 is not on the path of
mover 4. A deadlock is detected, as was the case in figure 3.8b, and mover 1
direction must be reversed. The same result is obtained on mover 2 and 3.

3.5.2 Priority restore CA rephasing mode

Analogously to the Global restore mode, also for the Priority mode has been
coded a CA version. However, this time, the optimization with respect to
Global restore CA mode hasn’t been so drastic as the non-CA case, since
moving every axis at the same time doesn’t allow for much improvement.
Nevertheless, in many cases could be beneficial to reduce the number of
movers to rephase to the minimum necessary, as explained in section 3.4.2.

The overall goal of this modality is the same as the non-CA version but,
as in the case of Global CA mode, the result will be a set of target positions
and directions used to move all the necessary axes at the same time.

The algorithm begins as the one in 3.5.1 but it’s only applied to the
priority movers. Once that phase is completed, the logic generates targets
for movers to get out of the way as was the case in 3.4.2. This time, however,
there is no need to check for deadlocks since it has already been determined
at the beginning of the process. The flowchart in figure 3.11 explains the
proposed algorithm.

3.5.3 Implementation

These last two designs have been implemented in a Function Block built as
the one shown in 3.4.3 but, as already stated, its output and communication
with the main program are modified: the new I/O interface is shown in
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Figure 3.10: Flowchart illustrating the algorithm for Global Restore CA
rephasing mode.
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Figure 3.11: Flowchart illustrating the algorithm for Priority Restore CA
rephasing mode.
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Figure 3.12: Function block I/O interface.

figure 3.12. As before, in the main program (PRG), after the initial call in
which all input parameters are loaded, with a rising edge of I_Enable the FB
activates. After a few cycles, the block will output Q_Done and the output
positions and directions will be available, respectively, at Q_MoverTarget

and Q_MoverDirection: all necessary movers can now be moved together
using CA functions. The I/O interface differs only for a few variables, which
are:

I CollisionAvoidanceGap (LREAL) Used to generate appropriate posi-
tions for movers to get out of the way in the priority mode. In the
non-CA version, the mover length was used instead.

I MoveSortOrder (BOOL) TRUE for ascending order. Again needed in
priority mode for target generation, is needed to know the previous or
next mover index given a direction. In the previous implementation, it
was found by looking at distances.

Q MoverTarget (ARRAY OF LREAL) It’s an array of absolute mod-
ulo positions.

Q MoverDirection (ARRAY OF MC DIRECTION) Array of direc-
tions for every mover index.

I_NextMover, I_EncoderGap and Q_Ready are not needed in this implemen-
tation.

Also this time, the internal structure of the Function Block is based on
a Finite State Machine (FSM) comprised of two different parts based on the
logic shown in figures 3.10 and 3.11. Several methods have been re-used or
slightly adapted from the previous case, such as the one shown as an example
in figure 3.7.
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Figure 3.13: XTS Viewer from the XTS extension in TwinCAT 3. The loop
used for testing in simulation is 10 meters long and contains 50 movers.

3.6 Testing

The proposed designs have been tested to check their effectiveness: first, they
have been examined in a simple TwinCAT project using the XTS simulator
tool, then they have been implemented on a real automatic machine project
designed by IMA Automation and evaluated on its 3D model built for virtual
commissioning.

3.6.1 TwinCAT setup

As explained in 1.3.2, the XTS extension for TwinCAT 3 includes a simulator
that can be set up with an arbitrary configuration of motors and movers. It
has been fundamental in the development of this work to test the progress
step by step. In figure 3.13 is shown a screenshot of the tool and the used
layout.

The testing methodology consisted of defining some arbitrary homologous
configurations of movers and evaluating the ability of the rephasing tool in
moving from one to another. Worst-case scenarios have been simulated in
order to stress test the algorithms and their deadlock avoidance strategies.
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Figure 3.14: 3D model built in iPhysics of the automatic machine used for
Virtual Commissioning. The XTS loop in this application is 9.5 meters long
and contains 30 movers: in this case, it’s used to transfer trays of products
from one pick and place robot (on the right) to another (on the left, 3D
model not present in the image). The production line continues after and
before this machine.

3.6.2 Virtual Commissioning setup

To test the developed code on an existing project it has been implemented in
its Starting program: as explained in section 2.2, the PackML Starting state
is the necessary step to resume operations after the machine is stopped and
correctly reset. The program is governed by a FSM in which has been added
an instance of the Function Block to test, according to its I/O structure. To
test the rephasing procedure, and simulate an operator’s intervention, the
movers positions have been modified by actuating the axes once the machine
was stopped.

The Beckhoff IPC (see figure 1.2) has been responsible for running the
XTS simulation and its PLC project while communicating with a Schneider
PLC over Profinet, which was running the project of the rest of the automatic
machine. A high-end desktop workstation running iPhysics was connected
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Figure 3.15: Average times (in seconds) required, by the different modes, to
reach 10 arbitrary configurations in the setup shown in figure 3.13.

to the Schneider PLC: this has been used internally in IMA for the Virtual
Commissioning of the represented automatic machine. The 3D model is
shown in figure 3.14.

3.6.3 Results

All the proposed solutions have been able to solve the rephasing problems
tested in the arbitrary loop and the real application’s digital twin.

Even if the goal in designing this tool hasn’t been the optimization of the
rephasing time, some considerations on the different approaches efficiencies
can be made. As previously explained, the performance of the CA modalities
has been far superior to their counterparts: to complete the rephasing pro-
cedure of tens of movers, the average time has gone from a few minutes to a
few seconds. Of course, the tested rephasing procedures have been complex
beyond any probable real-life configurations: if only a few movers need to be
displaced, every modality is able to succeed in a reasonable timeframe. In
both approaches (CA and non-CA), the priority mode is marginally faster
than the global mode, while there are orders of magnitude between the times
if CA is being used or not.

In figure 3.15 is shown an example of the average rephasing times of the
different modes.
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Chapter 4

XTS workstation

In this chapter, the design for a generalized Function Block able to handle
the queuing and positioning of XTS movers in every workstation on a track
will be presented.

4.1 Preface

During the development of an XTS PLC project, a lot of time is dedicated to
coding the movers’ logic to transit from one workstation to the next: many
times queues and buffers are present between stations and the number of
movers needed differs at every step of the process. This flexibility is one of
the strengths of these kinds of systems, but it requires significant effort to
be correctly controlled.

Working with IMA Automation in the development of a new production
line, in which several XTS loops are used as transfers between workstations, it
has been clear that a generalized structure to handle the movers’ logic (to be
parameterized for every station) could save a lot of time. Being able to build
simulations really fast in the XTS tool, even before virtual commissioning,
could be beneficial, for example, in testing cycle times and productivity of
the automatic machine, to correctly refine the mechanical design in the very
early stages of the project.

The most common deployment of XTS in this industrial setting (almost
always) has been to use it as a transfer between workstations where is needed
grouping of product units. For example, in an automatic machine, there
could be several workstations able to process the products transported on
only one mover while many others, to optimize cycle time, perform parallel
processing on multiple movers. In all these cases, the task that XTS needs to
perform is usually pretty simple: move the required movers from one worksta-
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Figure 4.1: XTS workstation structure. In this picture is represented the
logic architecture of the proposed solution. The bottom layer, indicated
as “main XTS logic”, handles axis (movers) movement and the overall ma-
chine operation: it communicates with n instances of the proposed “XTS
workstation” structure and every one of them controls movers supply while
synchronizing with its relative machinery’s specific needs.

tion to the next and exchange data with the machinery actually performing
the work at every station, while handling queues and accumulations. Almost
every time, the workstation requires one (or a set of) mover(s) to reach some
target positions on the track, wait standstill during the product processing,
free the position once finished and repeat.

4.2 Proposed solution

Given the simple logic needed by most workstations along a track, the pro-
posed solution consists of an architecture in which every workstation (ma-
chinery actually performing tasks on the product) communicates with its
corresponding XTS workstation (handling movers coordination), while each
of those communicates with the main XTS logic to handle movers motion.
The structure is represented in figure 4.1.

The logic of XTS workstation comprises two distinct algorithms running
simultaneously: the Movers Adoption and the Movers Requests Handling.
Every XTS workstation is responsible for all movers in the queue before its
station and for the ones sent to working positions: every mover along the
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track can be assigned to at most one station at any given time. Therefore,
the Movers Adoption routine will be responsible for periodically collecting
movers who completed their task on the previous station and sending them
to the current one’s queue: it will be running all the time since it must free
the previous station’s work positions as soon as they are done. Conversely,
the Movers Requests Handling must communicate with the main XTS logic
and synchronize with the machinery’s requests: it runs independently from
Movers Adoption and is tasked to send movers to working positions and free
them (for the next station to adopt) once processing is complete.

As represented in 4.1, the various instances of XTS workstation don’t
communicate directly with one another, but they share global variables as
registers on the main XTS program.

4.2.1 Movers Adoption

As just explained, the main tasks of this asynchronous logic are two:

1. Look for movers from the previous station that have completed their
tasks and need to proceed in the production line: adopt them.

2. Send those newly assigned movers to the current station’s queue posi-
tion, in order to free the previous platform as soon as possible.

These points can be achieved by constantly scanning the shared registers for
movers that need to reach the specific station of an instance and are done
in the previous one. Since more than one may be collected at once, they
need to be sorted by distance before being sent to the queue position: always
knowing the first of the line is essential to send the correct ones to work.

It may be the case, for some stations, that the product units need to stop
there only if some specific conditions arise: for example, after quality control,
all the good products must proceed while some of them need to be rejected.
Hence, the reject station is not always needed. To handle this eventuality, the
Movers Adoption must also check that the first mover in the queue (which
means every mover for stations requiring only one at a time) actually needs
to be worked in the station. If that’s not the case, it is immediately freed
and the next station will adopt it and move it to its queue. Checking only
the first in line is essential for a station requiring multiple movers, because
otherwise it would be unable to proceed and the whole loop would stop at a
deadlock, as shown in the example of figure 4.4.

The flowchart of this algorithm is presented in figure 4.2 and an example
of its operation in figure 4.3.
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Figure 4.2: Flowchart illustrating the algorithm for the Movers Adoption
routine.
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Figure 4.3: Mover adoption example. Let’s consider a simple loop with 3
workstations: they can process only one mover at any given time. The work
positions are indicated in red while the yellow positions indicate the first
mover in the queue for that station. In this case, movers are advancing
clockwise. Station 1 is working on one mover while other 3 are in queue
behind it. If we consider the Mover Adoption routine of station number 2,
once the mover in position 1 is done with its processing it will be adopted
and sent to the queue position before station 2 (yellow rectangle). In case the
specific mover doesn’t need to be worked on station 2, it will be immediately
freed upon adoption because of being the first in line. Then, the instance of
station 3 will adopt him and send it to its queue position right away.

45



(a) Let’s start from a condition similar to figure 4.3 but, this time, only two stations
are present and the first one requires 3 movers to process products in parallel. At
this stage, 3 movers are available in its queue (ID 1, 2 and 3). If all three of them
need to be worked in station 1, they can just reach the required positions. If mover
1 needs to skip station 1, it can just move to station 2’s queue while mover 2 goes
to the first position of station 1 and mover 3 to the second: they will wait for
mover 4 to come (once finished in station 2).

(b) If however, for example, mover 2 needs to skip the station, it cannot reach
station 2 because mover 1 is already in place: the system reaches a deadlock.
Many solutions have been evaluated to solve this issue, but the best one for the
application at hand has been found to be to process mover 2 anyway in station
1, even if it needed to skip it. Of course, this behaviour could be customized for
different solutions.

Figure 4.4: Example of handling station skipping in the XTS simulator tool.
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4.2.2 Movers Requests Handling

The proposed design for this part of the software consists of the following
steps: considering a specific station on the track, when from the machinery
comes a request for movers, the ones found at the beginning of the queue
(adopted by the previous logic) are sent to the specified work positions. Once
all the required movers have reached their target location, the processing can
be performed while they wait standstill. Then, another request could arise for
the same movers to move in other positions or they could be freed for the next
station to collect them. Not all of the movers present in the workstation could
be allowed to move to the next one: the number of them that can proceed in
the loop can be specified every time. Once they are freed, for each individual
mover, the next station for them to be worked on is specified: while the next
on the track is fixed, they could need to skip it, as in the examples of figure
4.3 and figure 4.4.

In figure 4.5 is shown the flowchart of the proposed algorithm: this and
the previous one (section 4.2.1) are running concurrently.

4.2.3 Implementation

Similarly to what has been seen in sections 3.4.3 and 3.5.3, the previous so-
lutions have been implemented in a Function Block coded in ST according to
IEC 61131-3 standard: its I/O interface is shown in figure 4.6. The instance
of the FB needs to communicate with a program (PRG) to handle the com-
munication with its specific station machinery (actually performing processes
on the transported products): with a rising edge of the I_Enable input all
parameters are loaded and, if the FB station is correctly parameterized, it
activates (Q_Active is TRUE).

In the program, when the machinery asks for movers to work on, the
I_MoverRequest input of the FB is set to TRUE. The workstation sends the
required movers in the specific positions and, when all are in place, rises
the Q_PositioningDone flag while waiting for further commands. In the
program, this gets redirected to the corresponding machinery. At this stage,
two inputs are contemplated: another I_MoverRequest, with another set of
positions for the same mover, or the input I_JobDone. If the latter becomes
TRUE, the FB frees the specified amounts of movers and gets ready to receive
another I_MoverRequest.

Here follows a detailed description of the I/O interface: variables with
the prefix I_ are inputs, while Q_ is for outputs.

I Enable (BOOL) A rising edge of this input will activate the function
block.
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Figure 4.5: Flowchart illustrating the algorithm for the Movers Requests
Handling.
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Figure 4.6: Function block I/O interface.

I MoverRequest (BOOL) Trigger to send a specified number of movers
into a predetermined set of positions.

I FillingMode (BOOL) Special input used only in the program of the first
station: is needed to enable the whole loop. If this is TRUE, everything
works as expected, while if this input falls the first station of the loop
goes in emptying mode: the FB will not process any other mover and
the subsequent stations will work on the remaining ones until the whole
production line is unloaded.

I JobDone (BOOL) Trigger to free the current movers and get ready for
another mover request.

I JobDoneNumberOfMovers (INT) The number of movers that need
to be freed when I_JobDone. By default, it’s all of the ones in working
positions, but can be fewer.

I NextWorkingStationNumber (ARRAY OF INT) For each mover
in I_JobDoneNumberOfMovers when I_JobDone rises, set their next
station to be worked on. By default is the upcoming in the loop.
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I NextStationNumber (INT) Fixed parameter for each instance that de-
pends on the physical layout of the machine. It’s used in the Movers
Adoption routine.

I WorkingPositionSet (INT) Indicates a row of I_WorkingPositions

Matrix: the elements are the positions for the movers requested by
the machinery with I_MoverRequest.

I Velocity (MC REAL) Motion parameter for the axes. It’s used both to
reach the queue and to send movers to their work positions.

I Acceleration (MC REAL) Motion parameter for the axes. It’s used
both to reach the queue and to send movers to their work positions.

I Deceleration (MC REAL) Motion parameter for the axes. It’s used
both to reach the queue and to send movers to their work positions.

I Jerk (MC REAL) Motion parameter for the axes. It’s used both to
reach the queue and to send movers to their work positions.

I StationNumber (INT) Number of the station represented by the in-
stance.

I NumberOfMoversInTheLoop (INT) Fixed parameter for each in-
stance.

I NumberOfMoversInStation (INT) Fixed parameter used to specify
the number of movers required by each instance to process them.

I NumberOfWorkPositions (INT) Fixed parameter for each instance
that defines the number of different position sets that could be re-
quested.

I WorkingPositionsMatrix (ARRAY OF LREAL) Fixed matrix of
parameters for each instance. The matrix is I_NumberOfWork

Positions rows by I_NumberOfMoversInStation columns. Each
time there is a I_MoverRequest, a row of positions is selected via
I_WorkingPositionSet.

I QueuePosition (LREAL) Fixed parameter for each instance. It’s the
position at which are sent all the movers in the queue. Collision avoid-
ance handles the queue implicitly.
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I TrackLength (LREAL) Parameter needed to compute the modulo po-
sition at every step in which a calculation is involved. Since the system
at hand produces periodic motion of the axis, the period is essential
information to evaluate distances.

I LoopDirection (MC DIRECTION) Motion parameter for the axes.
This is the default direction to advance movers.

I LimitQueueCapacity (BOOL) Optional input that can be used to
limit the number of movers that a station can have in queue. If
TRUE, the station will not adopt movers beyond the limit imposed by
I_QueueCapacity.

I QueueCapacity (INT) Optional input, used only if the queue is limited
by I_LimitQueueCapacity. This is the maximum number of movers
allowed to be in the queue.

Q MoverRequestAck (BOOL) Used to acknowledge an I_Mover

Request input.

Q JobDoneAck (BOOL) Used to acknowledge an I_JobDone input.

Q PositioningDone (BOOL) Output communicating that all the re-
quested movers are in position and standstill.

Q Active (BOOL) If TRUE, parameters have been correctly loaded and the
FB is working.

Q AssignedMovers (ARRAY OF INT) Array of indices of the movers
that have been adopted. Here are all the movers being handled by the
instance (in the queue or sent to work) sorted according to their order.
The first element is the leading one in the track.

Q NumberOfAssignedMovers (INT) Number of elements of the array
Q_AssignedMovers populated. Used for debugging.

Q NumberOfAssignedWorkingMovers (INT) Number of elements of
the array Q_AssignedMovers which need to work in this instance sta-
tion. Used for debugging.

Q NumberOfMoversInQueue (INT) Number of elements of the array
Q_AssignedMovers which are in queue. Used for debugging.

Q NumberOfMoversSentToWork (INT) Number of elements of the ar-
ray Q_AssignedMovers which are sent to work. Used for debugging.
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Figure 4.7: XTS Viewer from the XTS extension in TwinCAT 3. The loop
used for testing in this simulation is 15 meters long and contains 60 movers.

Q QueueFilledSlots Percentage (LREAL) If the queue is limited, the
filling percentage.

Q Error (BOOL) Debugging flag used to check for errors. If TRUE an input
parameter is incorrect.

Q ErrorID (STRING) If Q_Error is TRUE, this is the error description.

The internal structure of the Function Block is based on the two algo-
rithms previously illustrated: the request handling logic is governed by a
Finite State Machine (FSM) while movers adoption by an independent rou-
tine inside the same FB. A few methods have been added to handle common
tasks, such as sorting mover IDs by position.

Every instance of this FB needs to be implemented in a separate program
(PRG) in the PLC project: the same structure can be reused with minimal
changes and correct parameterization of FBs is all that’s needed.

4.3 Testing

The proposed design has been tested to check its usefulness: using the XTS
viewer in TwinCAT, a simple simulation has been set up. The goal was
to test the cycle times of a real automatic machine in development at IMA
Automation: its mechanical design still needed to be finalized.

4.3.1 TwinCAT setup

As can be seen in figure 4.7, the setup has been configured according to the
project needs. The placement of 18 stations along the track needed to be
verified. In particular: it was necessary to test the cycle time of the whole
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Figure 4.8: Cycle Time Trace of the last station. On the horizontal axis is
shown the simulation time of the trace (1 minute), while on the y-axis the
cycle time is expressed in seconds.

loop while verifying the correct distance between stations to allow for queues
to form freely. To test the productivity of the machine, simple timers have
been used to simulate the processing time of every station.

4.3.2 Results

Concerning cycle times, in this application every mover will be expected to
transport one product unit. To test the productivity of the machine, the
output of the last station of the loop has been studied. As can be seen in
figure 4.8, while a fluctuation is present, the average cycle time appears to
be close to 2.1 seconds. This value has been computed by measuring the
time elapsed between two consecutive processed movers. Since the required
productivity of the final design will need to be 30 product units per minute,
this initial layout has been found satisfying.

Regarding the spacing needed for queues, 3 stations on this track need
to work on multiple movers: station 14 needs 4 movers, 15 needs 3 and 16
needs 2. By monitoring the movers present in their queues in simulation,
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thanks to the output Q_NumberOfMoversInQueue illustrated in 4.2.3, it has
been possible to estimate the minimum distance required before each station
to ensure smooth operations. The trace is shown in figure 4.9.

The proposed solution for a generalized workstation has been very useful
to deploy these simulations very quickly. In the very early stages of design,
the possibility of changing the logic of all movers by simply tuning some
parameters in the appropriate instances has been extremely convenient.
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Figure 4.9: Trace of the numbers of movers in queue. On the horizontal axis
is shown the simulation time of the trace (1 minute), while on the y-axis is
indicated the number of movers in the queue at any given time. Thanks to
these findings, it has been possible to move the stations closer than what was
originally planned.
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Chapter 5

Conclusions

5.1 Achievements

During the internship that led to this master’s thesis, different software solu-
tions to motion applications on the Beckhoff XTS system have been designed
and tested. To achieve it, in IMA Automation has been possible to familiar-
ize with the source code of automatic machines and the Beckoff development
environment. While the developed code has been proven effective using the
Beckhoff simulation tool and the virtual commissioning 3D model, a test on
a real system is still required.

5.2 Future developments

As just stated, a test on a real system will be performed in the near future
to complete the development.

Concerning the rephasing tool, a proper optimization study is still re-
quired. Even if the developed work is able to complete the presented task,
it may be the case that a different algorithm would perform better than the
proposed solutions. Due to the heuristic nature of the current logic, a proper
mathematical formulation could lead to an optimal solution to the problem.

Regarding the XTS workstation, the amount of generalized features that
could be added depends greatly on the task at hand. The scope of this
work, in the industrial environment of IMA Automation, has been to reduce
development time for future XTS tracks’ logic. In this framework, it’s clear
that has been avoided the design of features too specific that would require
more time to be generalized with respect to the actual saving that they would
bring. That said, an example of a feature that could be useful to introduce
is the possibility to parameterize dynamic stations: sometimes the movers
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need to advance at constant speed to allow the station to work. Until now,
only the case of standstill processing has been contemplated.
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