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Introduction

Named after Kunihiko Kodaira, founder of the Japanese school of alge-

braic geometry and the first Japanese mathematician to ever win the Fields

Medal in 1954, the Kodaira dimension is the most basic birational invariant

in algebraic geometry. The main goal of this thesis will be to state the def-

inition of the Kodaira dimension of a variety and compute it for irreducible

smooth projective hypersurfaces and curves.

We begin the exposition with a rapid review of the construction of the

category of algebraic varieties defined over an algebraically closed field. We

introduce the concept of structure sheaf of a variety and remind that the

categorical product of varieties differs from the topological product of their

underlying topological spaces.

In Chapter 1 we define the construction of an algebraic vector bundle. We

introduce the first immediate consequences, transition functions and sections,

which we will show contain in fact equivalent information as the vector bundle

itself. We also show that a lot of endofunctors of the category of vector spaces

can also be applied to vector bundles: for example, to define the dual of a

vector bundle, or the tensor product of two vector bundles.

Next, in Chapter 2 we study algebraic vector bundles of rank 1, called

line bundles. Line bundles are very important in algebraic geometry since

they govern all rational maps to projective space (in particular, all possible

embeddings in projective space). Line bundles over a fixed variety X also

have the natural structure of a group, called the Picard Group of X. Fur-

thermore, we define the canonical line bundle of a variety. The canonical
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ii Introduction

bundle is invariant under isomorphism of varieties; it is important because

it and its powers are the only line bundles on an algebraic variety which are

intrinsically defined.

Finally, in Chapter 3 we have the necessary tools to define the Kodaira

dimension of an irreducible projective variety. We also prove the birational

invariance of the Kodaira dimension for irreducible smooth projective va-

rieties. Afterwards we explicitly compute the canonical bundles of affine

and projective smooth irreducible hypersurfaces, as well as for the blowup

of a point in A2; we get a formula for the Kodaira dimension of an irre-

ducible smooth projective hypersurface, based on its degree. We finish the

dissertation with a complete Kodaira dimension classification of irreducible

projective smooth curves, based on their (geometrical) genus. To do this we

develop the terminology of divisors in order to define the degree of a line bun-

dle. We can then employ the powerful Riemann-Roch theorem (for curves)

for the classification. We conclude with an example of how to construct a

variety of a fixed (algebraic) dimension of all possible Kodaira dimensions,

by considering products of curves, thanks to the additivity of the Kodaira

dimension.
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Chapter 0

Algebraic Varieties

In this section we introduce the category of quasi-projective varieties over

a fixed algebraically closed field k. This will by no means be a thorough

introduction to the subject; the reader is expected to have some familiarity

with algebraic geometry. A good introduction on which this work is partly

based is [6]. Some basic familiarity with the theory of sheaves will be given

for granted; we use the terminology found in [7, Section 7]. The goal of this

chapter is to introduce clear definitions and notation, as well as some facts

that will be used later.

While algebraic varieties can be defined over any field (with important ap-

plications!) within the context of this thesis the symbol k will always denote

an algebraically closed field. This gives us access to Hilbert’s Nullstellensatz

[6, 2.3]. An will denote the affine n-space, kn with the Zariski topology, and

similarly the projective n-space Pn := Pn(k) will also be equipped with the

Zariski topology.

Definition 0.0.1. A quasi-projective variety (or simply, a variety) is a locally

closed subset of Pn. That is, it is the intersection of an open subset and a

closed subset of Pn.

Unless stated otherwise, we do not require varieties to be (topologically)

irreducible. We give this temporary definition of a morphism of varieties:

given a variety V ⊆ Pn, a map f : V → Pm is a morphism of varieties if for
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2 0. Algebraic Varieties

all p ∈ V there exist homogeneous polynomials of same degree F0, . . . , Fm ∈
k[x0, . . . , xn] such that the map

V −→ Pm

q 7−→ [F0(q) : . . . : Fm(q)]

is well defined at p (not all polynomials vanish) and agrees with f in some

neighbourhood of p. An isomorphism of varieties is a bijective morphism

whose inverse is also a morphism.

Zariski-closed subsets of An are quasi-projective varieties: we may imag-

ine X as the intersection of the zero locus in Pn of the homogenisation of its

defining ideal I(X) with the affine chart U0.

Definition 0.0.2. A variety is said to be affine if it is isomorphic as a quasi-

projective variety to some Zariski-closed subset X of An (for any n). The

coordinate ring k[V ] of an affine variety V is defined to be the coordinate

ring k[X] of any Zariski-closed subset X of affine space isomorphic to V .

More precisely, it consists of all functions f : V → k which are pullbacks

of functions in k[X] under the isomorphism. This does not depend on the

choice of isomorphism or Zariski closed subset X.

Definition 0.0.3. A variety is said to be projective if it is isomorphic as a

quasi-projective variety to some Zariski-closed subset Y of Pn.

To define better define morphisms between varieties, we first introduce

regular functions :

Definition 0.0.4. Let U ⊆ V be an open subset of an affine variety. A

function f : U → k is regular at a point p ∈ U if there exist polynomials

g, h ∈ k[V ] such that h(p) ̸= 0 and f agrees with g
h
in a neighbourhood of p.

f is regular on U if it is regular at every point of U .

We introduce the first important fact: affine open subsets of any quasi-

projective variety form a basis for the Zariski topology. We can introduce

the following more general definition:
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Definition 0.0.5. Let U ⊆ V be an open subset of a variety. A function

f : U → k is regular at a point p ∈ U if there exists an affine open set

containing p on which f is regular at p. f is regular on U if it is regular at

every point of U . We denote the set of all regular functions on U by OV (U).

If V is affine, this definition agrees with the previous one. The next

important fact is that, for affine varieties, OV (V ) = k[V ] (see [6, 4.3]). We

can finally introduce the definition we will use for morphisms of varieties :

Definition 0.0.6. A map ϕ : V → W between quasi-projective varieties is a

morphism of varieties if for all p ∈ V there exist affine open neighbourhoods

U ⊆ V of p, U ′ ⊆ W of ϕ(p) such that ϕ(U) ⊆ U ′ and ϕ|U is given by a

set of regular functions in the coordinates of U . Informally, a morphism of

varieties is a map locally given by polynomials.

Remark 0.0.7. Morphisms of varieties are continuous in the Zariski topol-

ogy. We have thus defined the category of algebraic varieties, whose objects

are quasi-projective varieties and whose arrows are morphisms of varieties.

Remark 0.0.8. Unlike the Euclidean topology, the product Zariski topology

on A1×A1 is strictly weaker than the Zariski topology on A2. The categorical

product of varieties is not the topological product of varieties; it is instead

given by the Segre map [6, 5.3]. When we write the product V × W of

varieties, we will always mean the categorical product of varieties, which

comes with the categorical projections π1, π2.

We introduce some more facts:

• The intersection of affine varieties is affine.

• The product of affine varieties is affine; the product of projective vari-

eties is projective.

• There are no non-constant regular functions on projective varieties.

• A smooth variety is irreducible if and only if it is connected.
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Let V be a variety, consider the set OV (U) of regular functions on U for each

open subset U of V . We summarize the local nature of regular functions with

the following properties:

1. Every OV (U) is a ring (in fact, a k-algebra) with respect to pointwise

addition and multiplication.

2. If a function is regular on U , it is regular on all its open subsets; if

U ′ ⊆ U is open, then the restriction to U ′ defines a ring homomorphism

OV (U)→ OV (U ′).

3. Let {Ui}i∈I be an open cover of U , {fi}i∈I a family of functions such

that fi is defined and regular on Ui and fi, fj agree on the intersection

Ui ∩ Uj for all i, j ∈ I. Then they define a unique function f regular

on U , and the fi are the restrictions of this function to the sets Ui.

4. If F : V → W is a morphism of varieties, U ⊆ W is an open set, then

for any f ∈ OW (U), the pullback is a regular function

f ◦ F ∈ OV (F−1(U)).

The first three properties mean that regular functions on a variety V satisfy

the definition of a sheaf of k-algebras. We denote this sheaf by OV and call

it the structure sheaf of V . The pair (V,OV ) is a ringed space. Property

4 states that every morphism of algebraic varieties induces a morphism of

sheaves of k-algebras from OW to f ∗OV .



Chapter 1

Vector Bundles

Vector bundles are a very natural construction for manifolds and vari-

eties. In fact vector bundles can be defined on arbitrary topological spaces;

we adapt this concept to algebraic varieties. Topological, differentiable and

complex manifolds are very similar to varieties in this regard, in the sense

that the entire contents of this chapter can be translated with minimal effort

to the language of manifolds (or even to the simple topological space case).

1.1 Vector Bundles

Let B be a fixed variety, which we will call the base space.

Definition 1.1.1. [5, § 2] A vector bundle ξ over B consists of the following:

1. A variety E = E(ξ) called the total space,

2. A surjective morphism π : E → B called the projection map,

3. For each b ∈ B we call the preimage π−1(b) := Eb the fibre over b and

require it to have the structure of a vector space over k.

The structure satisfies the following property: there exists an open covering

{Uλ}λ∈Λ of B such that there exist isomorphisms φλ which make the following

5



6 1. Vector Bundles

diagram commute:

π−1(Uλ) Uλ × An

Uλ

φλ

π π1

where π1 is the categorical projection to the first factor. We require that

the restriction to each fibre φλ|Eb
: Eb = π−1(b) → {b} × An is a linear

isomorphism (of vector spaces) for all b in Uλ. We call the pair (Uλ, φλ) a

local trivialisation; we will refer to Uλ as a trivialising open.

If it is possible to choose U to be equal to the entire base space, we will

call ξ a trivial vector bundle.

Again, we stress that Uλ×An is the categorical product of varieties as in

Remark 0.0.8. Note that the structure of a vector space over k is compatible

with that of a variety, since:

1. They can be thought of as kn and thus equipped with the Zariski topol-

ogy;

2. Vector space operations and linear functions are given by linear poly-

nomials in their coordinates, so they define morphisms of varieties.

Thus it makes sense to consider morphisms of varieties which restrict to linear

functions between vector spaces.

Remark 1.1.2. In general the dimension n of each fibre is allowed to be a

(locally constant) function of b; in most cases of interest, and in the context

of this thesis, n will be constant and we will call it the rank of the vector

bundle.

Remark 1.1.3. We may assume the trivialising opens to be affine. Indeed,

If U is a trivialising open, then all of its open subsets will also be trivialising.

Since affine open sets form a base for the Zariski topology, affine opens cover

U , thus immediately B has a cover of open affine trivialising sets.
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Even though bundles can be defined with fibres not necessarily isomorphic

to vector spaces, from now when we mention bundles in this thesis we will

always refer to algebraic vector bundles.

Definition 1.1.4. [5, §3] A morphism of vector bundles ξ, η over the same

variety B is a morphism ϕ between the total spaces ϕ : E(ξ)→ E(η) which

maps every fibre Eb(ξ) linearly into the corresponding vector space Eb(η).

If ϕ is additionally an isomorphism of varieties which defines a linear isomor-

phism when restricted to each fibre, we say that ξ is isomorphic to η.

Example 1.1.5. A trivial bundle defined earlier can thus be interpreted as

a bundle isomorphic to B ×An, with projection map π(b, v) = b, and vector

structure on the fibres defined by

t1(b, v) + t2(b, w) = (b, t1v + t2w) ∀ t1, t2 ∈ k.

As in most branches of mathematics, we are not interested in the differ-

ences between isomorphic vector bundles, and will often identify them.

1.2 Transition Functions

Let ξ be an algebraic vector bundle of rank n over the variety B, {Uλ}λ∈Λ
a covering of affine trivialising opens. For each α, β ∈ Λ the composition

φα ◦ φ−1
β : (Uα ∩ Uβ)× An → (Uα ∩ Uβ)× An

is an isomorphism of varieties which restricts to a linear isomorphism when

evaluated at each point b ∈ Uα ∩ Uβ. Thus we have morphisms of varieties

gαβ : Uα ∩ Uβ → GLn(k) such that

φα ◦ φ−1
β (b, v) = (b, gαβ(b)v) ∀ b ∈ Uα ∩ Uβ, v ∈ An = kn

Definition 1.2.1. [1, 3.1.6] The maps gαβ are called transition maps for the

bundle ξ with respect to the open cover {Uλ}λ∈Λ.
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We introduce the following notation for trivialising open sets:

Uλµ := Uλ ∩ Uµ

Remark 1.2.2. GLn(k) has a natural structure of affine variety: since the

determinant is a polynomial, GLn(k) is the complement of the hypersurface

V(det) ⊆ An2
and is isomorphic to V((xn2+1 · det) − 1) ⊆ An2+1. Since the

intersection of affine varieties is still affine, each transition function gαβ :

Uαβ → GLn(k) defines a morphism of affine varieties.

Remark 1.2.3. Given a local trivialisation (U,φ) of a vector bundle ξ of rank

n, what are the other possible trivialisations φ′ : π−1(U) → U × An defined

on π−1(U)? The composition φ′ ◦ φ−1 : U × An → U × An must preserve

each vector space {p} × An for all p ∈ U and be a linear isomorphism when

restricted to these spaces. Thus all possible trivialisations (U,φ′) are of the

form

φ′(p) = (id, χ) ◦ φ : π−1(U)→ U × An

where χ : U → GLn(k) is a morphism of varieties (which is a linear isomor-

phism when evaluated at each p ∈ U).

Remark 1.2.4. Transition functions are not unique! By the previous re-

mark, if gαβ = φα ◦φ−1
β is a transition function for ξ with respect to the open

cover {Uλ}λ∈Λ, then

χα|Uαβ
◦ gαβ

◦ χ−1
β

∣∣
Uαβ

are still transition functions for ξ for any fixed morphisms χα : Uα →
GLn(k), χβ : Uβ → GLn(k) (of which we considered the pointwise inverse)

for all α, β ∈ Λ.

Proposition 1.2.5. [1, 3.1.8]

(i) Let {gαβ}α,β∈Λ be transition functions of an algebraic vector bundle ξ

of rank n with respect to the trivialising open cover {Uλ}λ∈Λ of B. We



1.2 Transition Functions 9

have:

gαα(b) = In ∀ b ∈ Uα (1.1)

gβα(b) = gαβ(b)
−1 ∀b ∈ Uαβ (1.2)

gαβ(b)gβγ(b) = gαγ(b) ∀b ∈ Uαβγ (1.3)

(ii) Viceversa, suppose we have an open affine cover {Uλ}λ∈Λ of B, mor-

phisms gαβ : Uαβ → GLn(k) satisfying the previous properties. Then

there exists a unique vector bundle (up to isomorphism) ξ over B which

has {gαβ}α,β∈Λ as transition functions with respect to the open cover

{Uλ}λ∈Λ.

Proof. (i) This follows immediately from the properties of the trivialisa-

tions {(Uλ, φλ)}λ∈Λ:

φα ◦ φ−1
α = id in Uα × An

φβ ◦ φ−1
α = (φα ◦ φ−1

β )−1 in Uαβ × An

(φα ◦ φ−1
β ) ◦ (φβ ◦ φ−1

γ ) = φα ◦ φ−1
γ in Uαβγ × An.

(ii) We define the total space E by

E =

(∐
λ∈Λ

Uλ × An

)
/ ∼

where ∼ is the equivalence relation identifying (p, v) ∈ Uα × An with

(q, w) ∈ Uβ×An if and only if p = q ∈ Uαβ and v = gαβ(p)w. Properties

(1.1)-(1.3) guarantee that this is indeed an equivalence relation. No

two distinct elements of Uα × An are ∼-related: we have a surjective

map π : E → B such that π−1(Uα) = (Uα × An)/∼ and a natural

bijection φα : π−1(Uα) → Uα × An. The latter restricts to a bijection

π−1(p) → {p} × An for all p ∈ Uα, so we can define a vector space

structure on π−1(p) induced by the bijection. We still need to show

that this structure does not depend on the trivialisation we used. On
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the intersections Uαβ × An we get φα ◦ φ−1
β (p, v) = (p, gαβ(p)v) by

construction. Then for any w1, w2 ∈ An let vi = gαβ(p)wi, i = 1, 2, we

have

φ−1
α (p, v1 + v2) = φ−1

α (p, gαβ(p)w1 + gαβ(p)w2)

= φ−1
α (φα ◦ φ−1

β (p, w1 + w2))

= φ−1
β (p, w1 + w2)

so our structure is well defined. The last thing is to show that E is a

variety. This is not easy, but we can sketch how the local structure of a

ringed space on E is defined. We assign to each π−1(Uα) the structure of

an affine variety given by its bijection φα with Uα×An, and declare this

to be an open cover of E. The transition maps recover how the pieces

of the cover are glued together; in particular they define the restrictions

OE(π−1(Uα))→ OE(π−1(Uαβ)), OE(π−1(Uβ))→ OE(π−1(Uαβ)).

Suppose we have another vector bundle π̃ : Ẽ → B with the same

transition functions with respect to trivialisations φ̃α : π̃−1(Uα) →
Uα × An. For each α ∈ Λ we define Lα : π−1(Uα) → π̃−1(Uα) by

Lα = φ̃−1
α ◦ φα. Clearly Lα is an isomorphism linear in each fibre, and

π̃ ◦Lα = π. Finally Lα ≡ Lβ on π−1(Uαβ), since φ̃
−1
α ◦φα ≡ φ̃−1

β ◦φβ if

and only if φα ◦φ−1
β = φ̃α ◦ φ̃−1

β and this is true since E and Ẽ have the

same transition maps. We get a well defined isomorphism of bundles

L : E → Ẽ by gluing together the Lα.

Remark 1.2.6. If the transition functions for two vector bundles ξ1, ξ2 over

the same variety are defined for two different open covers {Uλ}λ∈Λ, {Uδ}δ∈∆,
we can still determine if they are isomorphic. We need to consider the open

cover consisting of pairwise intersections, {Uλ∩Uδ}λ∈Λ,δ∈∆ on which we have

the restrictions of the transition functions for the two bundles. If the condi-

tions of Proposition 1.2.5 still hold for these restrictions, then the two bundles

are isomorphic.



1.3 Constructions on Vector Bundles 11

1.3 Constructions on Vector Bundles

Definition 1.3.1. [5, §3] Let ξ be a bundle over the variety B of rank n, B′

be any variety. Any morphism f : B′ → B induces the pullback bundle f ∗ξ

over B′ defined as follows:

1. The total space E ′ is the fibred product B′ ×B E, that is, the closed

subset of the variety B′ × E defined by

B′ ×B E = {(x, e) ∈ B′ × E | f(x) = π(e)};

,

2. The projection map π′ : E ′ → B′ is defined by π′(x, e) = x (the

restriction of the canonical projection);

3. We have the following commutative diagram:

E ′ E

B′ B

π′ π

f̂

f

where f̂(x, e) = e. The vector space structure on each fibre E ′
x =

π′−1(x) is defined by

t1(x, e1) + t2(x, e2) = (x, t1e1 + t2e2) ∀ t1, t2 ∈ k, e1, e2 ∈ π−1(f(x))

so f̂ carries each fibre E ′
x isomorphically onto Ef(x);

4. If (U,φ) is a local trivialisation for ξ, then by setting U ′ = f−1(U),

defining

φ′ : π′−1(U ′)→ U ′ × kn φ′(x, e) = (x, π2 ◦ φ (e)) = (x, v)

where φ(e) = (f(x), v) ∈ U × An, π2 : U × An → An is the projection

to the second factor. Then (U ′, φ′) is a local trivialisation for f ∗ξ.
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It follows immediately that if ξ is trivial, then f ∗ξ is trivial.

Example 1.3.2. If ξ is a vector bundle over B, B ⊆ B a subvariety, ι : B ↪→
B the inclusion map, then the restriction of ξ to B is the vector bundle ι∗ξ.

Remark 1.3.3. It is clear by how the trivialisations of the pullback bundle

are defined that if gλµ : Uλµ → GLn(k) is a transition function for ξ, then

f ∗gλµ := (gλµ ◦ f) : f−1(Uλµ) −→ GLn(k)

is a transition function for f ∗ξ.

There exist many important constructions on vector spaces which produce

new vector spaces. For example, if V,W are vector spaces over k:

1. The direct sum V ⊕W ;

2. The vector space homk(V,W ) of linear functions f : V → W ;

3. The dual vector space V ∨ = homk(V, k);

4. The tensor product V ⊗W ;

5. The n-th exterior product Λn V ;

and many others. We will now show that all of these constructions can also

be applied to vector bundles.

Definition 1.3.4. Let V be the category whose objects are all finite dimen-

sional vector spaces over the field k, and whose arrows are all isomorphisms

between such spaces. A (covariant) functor T : V × V → V is an operation

which assigns:

1. to each pair V,W ∈ V a vector space T (V,W ) ∈ V ;

2. to each pair f : V → V ′, g : W → W ′ of isomorphisms, a new isomor-

phism T (f, g) : T (V,W )→ T (V ′,W ′) such that:

(a) T (idV , idW ) = idT (V,W );
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(b) T (f1 ◦ f2, g1 ◦ g2) = T (f1, g1) ◦ T (f2, g2).

Remark 1.3.5. The above conditions imply T (f−1, g−1) = T (f, g)−1.

The concept of a functor T : V × . . . × V → V in n variables is defined

similarly. Note that all of the previous examples are functors in one or two

variables.

Fix a functor T (in two variables), given two vector bundles ξ, ξ′ over a

variety B of rank r1, r2 which have Ep, E
′
p as fibres, we want to define a new

vector bundle with T (Ep, E
′
p) as fibre over p for all p ∈ B. To do this we

focus on the assignment T (f, g) for any two isomorphisms of vector spaces

f, g from Ep, respectively E
′
p to any vector space. Let (Uλ, φλ), (Uλ, φ

′
λ) be

local trivialisations around p for each bundle on the same neighbourhood.

When restricted to each fibre, they define linear isomorphisms from Ep, E
′
p

to {p}×Ar1 = {p}× kr1 , respectively {p}× kr2 . With an abuse of notation,

we denote by T (φλ, φ
′
λ) the function

T (φλ, φ
′
λ) :

∐
p∈Uλ

{p} × T (Ep, E ′
p) −→

∐
p∈Uλ

{p} × T (kr1 , kr2)

which when restricted to each fibre T (Ep, E
′
p) is the map T (φλ|Ep

, φ′
λ|E′

p
).

Given other trivialisations around p (Uµ, φµ), (Uµ, φ
′
µ), consider the map on

Uλµ×T (kr1 , kr2) (for now, this is a set product and not a product of varieties!)

to itself(
T (φλ, φ

′
λ) ◦ T (φµ, φ′

µ)
−1
)
(p, T (v1, v2)) =

=
(
T (φλ, φ

′
λ) ◦ T (φ−1

µ , φ′−1
µ )
)
(p, T (v1, v2))

=
(
T (φλ ◦ φ−1

µ , φ′
λ ◦ φ′−1

µ )
)
(p, T (v1, v2))

= (p, T (gλµ, g
′
λµ)T (v1, v2))

where gλµ, g
′
λµ are the transition maps for ξ, respectively ξ′. The equations

make sense on the restrictions to each fibre: on those restrictions we used

the functoriality of T . Now if we show that

T (gλµ, g
′
λµ) : Uλµ −→ GL(T (kr1 , kr2))
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is indeed a morphism of varieties for all λ, µ ∈ Λ, we are done thanks to

Proposition 1.2.5. We will see that, for all our relevant examples, the coef-

ficients of T (gλµ, g
′
λµ) are given by products, inverses, sums or compositions

of the coefficients of gλµ, g
′
λµ. Since regular functions are closed with respect

to these operations, the coefficients of T (gλµ, g
′
λµ) are also (locally) regular

functions; in other words, it is a morphism of varieties.

Definition 1.3.6. [5, §3.6 ] Let T : V×. . .×V → V be a functor in n variables

whose assignment T (f1, . . . , fn) of isomorphsisms depends rationally (in the

sense p
q
, where p, q are polynomials in multiple variables) on the coefficients

of f1, . . . , fn. Let ξ1, . . . , ξn be vector bundles on the same base variety B

with transition maps g
(1)
λµ , . . . , g

(n)
λµ with respect to a trivialising open cover

{Uα}α∈Λ. Then we define the vector bundle T (ξ1, . . . , ξn) to be the bundle

with transition maps T (g
(1)
λµ , . . . , g

(n)
λµ ) with respect the open cover {Uα}α∈Λ.

Its fibres are Eb = T (Eb(ξ1), . . . , Eb(ξn)) for each b ∈ B.

Example 1.3.7. Let ξ, ξ′ be two vector bundles over the variety B of rank

r1, respectively r2. The tensor product bundle ξ⊗ξ′ is the vector bundle over
B given by the tensor product functor. The fibres over each point p ∈ B is

Ep ⊗ E ′
p. The way the functor acts on linear isomorphisms is given by the

Kronecker product [1, 1.E.6]. If A ∈ Mr1(k), B ∈ Mr2(k) are two matrices,

the Kronecker product A⊗B is the (block) matrix

A⊗B :=


a11B . . . a1r1B
...

. . .
...

ar11B . . . ar1r1B

 ∈Mr1r2(k)

(the Kronecker product is defined on non-invertible matrices, or even non-

square matrices).

Example 1.3.8. The dual bundle ξ∨ of a bundle ξ over B of rank r is

given by the dual functor; its fibres are E∨
p . The dual functor is actually

contravariant: it assigns every linear function f : V → W to its transpose

f∨ : W∨ → V ∨. This is one of the reasons why we considered the category
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of finite vector spaces with as arrows only linear isomorphisms: it does not

really matter if the functor is covariant or contravariant (the other reason

being that transition functions are given by invertible matrices on the fibres,

so it is not restrictive to consider only isomorphisms). Since we want a

function T (f) : V ∨ → W∨, our assignment will be T (f) = (f∨)−1.

Example 1.3.9. The i-th exterior product bundle
∧i ξ of a bundle ξ over

B of rank r is given by the i-th exterior product functor; its fibres are∧iEp. The functor assigns to each f ∈ homk(V,W ) the function
∧i f ∈

homk(
∧i V,

∧iW ) defined by

i∧
f(v1 ∧ . . . ∧ vi) = f(v1) ∧ . . . ∧ f(vi).

It is easy, yet tedious, to show that the coefficients of
∧i f are just differences

of products of the coefficients of f . We are mainly interested in the highest

exterior product of ξ,
∧r ξ. This yields a vector bundle of rank one, and the

functor assigns to each isomorphism f its determinant det f .

1.4 Sections

Definition 1.4.1. [6, 8.3] Let ξ be a vector bundle with base space B, U ⊆ B

an open subset. A section of ξ over U is a morphism

s : U → E(ξ)

such that

π ◦ s = ιU↪→B

that is, which takes each b ∈ U into the corresponding fibre Eb. We denote

the set of all sections over U by E(U). We call the elements of E(B) the

global sections of ξ.

Remark 1.4.2. Every vector bundle admits a unique global zero section.

Indeed, the map B
s−→ E defined by

b 7→ 0b
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where 0b is the zero vector in Eb, is clearly a morphism. Since π ◦ s is the

identity on B, we may interpret this map as an embedding of B into E.

Every vector bundle thus admits at least one section over each open set,

namely the restriction of its zero section to each open. If s1, s2 ∈ E(U) are
two sections over U of a vector bundle ξ on B, λ ∈ k, then s1+s2, λ·s1 are also
sections over U : sections are morphism of varieties, that is, locally defined

by a set of regular functions in the coordinates of U , which are closed under

addition and scalar multiplication. Furthermore, for any regular function

f ∈ OB(U) the product fs is still a section over U . Indeed, this map is

defined by b 7→ f(b) · s(b), where f(b) ∈ k simply acts by multiplication on

the vector s(b) ∈ Eb(ξ).
The sections of an algebraic vector bundle are a sheaf; more specifically,

they satisfy the following definition:

Definition 1.4.3. Let (X,R) be a ringed space. A sheaf of R-modules is

the datum of a sheaf E over X with the structure of an R(U)-module on

E(U) for all U ⊆ X open subsets such that the following diagram commutes:

R(U)× E(U) E(U)

R(V )× E(V ) E(V )•

•

σUVρUV ×σUV

where V is any open subset of U , ρUV , σUV are the sheaf restriction maps

of R, respectively E , and • is the module multiplication. We call E an R-
module.

The sheaf of sections E of an algebraic vector bundle over a variety B is

an OB-module: for each open set U ⊆ B, E(U) is a module over the ring

OB(U) of regular functions on U . If U is a trivialising open, then a section

on U is a morphism

U −→ π−1(U) ∼= U × An

b 7−→ (b, f1(b), . . . , fn(b))
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where each fi is a regular function from U to k. We have an isomorphism of

OB(U)-modules

E(U) ∼= OB(U)⊕n

These isomorphisms commute with sheaf restriction maps: any open subset

V of a trivialising open U is still trivialising, so we still have the isomorphism

of OB(V )-modules E(V ) ∼= OB(V )⊕n commuting with the respective sheaf

restrictions. The sheaf of sections of an algebraic vector bundle thus also

satisfies the following important definition:

Definition 1.4.4. Let (X,R) be a ringed space, E an R-module. E is locally

free of rank r if there exists an open cover {Uλ}λ∈Λ such that for all λ ∈ Λ

we have an isomorphism of sheaves

E|Uλ

∼=
(
R|Uλ

)⊕ r
.

If E is locally free of rank 1, we call it an invertible sheaf.

Notice the difference in notation between an isomorphism of sheaves

(more precisely, an isomorphism of R|U -modules) ϕ : E|U ↔ (R|U)⊕r, and
the corresponding isomorphism of R(U)-modules ϕU : E(U)↔ R(U)⊕r com-

muting with the sheaf restriction maps.

Lemma 1.4.5. Let ξ be a vector bundle of rank r over a variety B, E its

sheaf of sections, (Uλ, φλ) (Uµ, φµ) local trivialisations, gλµ the corresponding

transition function, s ∈ E(U) where U := Uλ ∪ Uµ. Then

(π2 ◦ φλ ◦ s|Uλµ
)(b) = gλµ(b)

(
(π2 ◦ φµ ◦ s|Uλµ

)(b)
)

∀ b ∈ Uλµ

where π2 : Uλµ × Ar → Ar is the projection to the second factor, so we are

comparing vector-valued functions Uλµ → Ar. In sheaf terminology, if ϕλ, ϕµ

are the sheaf isomorphisms ϕλ : E|Uλ
↔ (OB|Uλ

)⊕r, respectively ϕµ : E|Uµ
↔

(OB|Uµ
)⊕r, then

(ϕλUλµ
◦ σU,Uλµ

)(s) = gλµ(ϕ
µ
Uλµ
◦ σU,Uλµ

)(s)

where σU,Uλµ
is the sheaf restriction U → Uλµ in E.
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Proof. The lemma follows from the commutativity of the following diagram:

Uλµ × Ar Ar

Uλµ π−1(Uλµ)

Uλµ × Ar Ar

s|Uλµ

φµ|Uλµ π2

φλ|Uλµ

π2

(b,v)7→(b,gλµ(b)v)

This lemma states that we can define transition maps for the sheaf of

sections of a vector bundle, and that these are precisely the same transition

maps we previously defined for vector bundles.

Theorem 1.4.6. Let X be a variety, r ∈ N. We have a bijection (up to

bundle and sheaf isomorphisms):{
Algebraic vector bundles

over X of rank r

}
←→

{
Locally free sheaves of

OX-modules of rank r

}
E(ξ)

π−→ X 7−→ E sheaf of sections of ξ

Proof. The assignment from each vector bundle to its sheaf of sections, which

we have just shown to be a locally free OX-module, is clear. We now show

the reverse assignment.

Let E be a locally free OX-module of rank r; we have an open cover of X

{Uλ}λ∈Λ such that

E|Uλ

∼= (OX |Uλ
)⊕r ∀λ ∈ Λ.

Let us denote these isomorphisms of sheaves by ϕλ for all λ in Λ. For each

non-disjoint pair Uλ, Uµ we have two isomorphisms of OX(Uλµ)-modules

E(Uλµ) ∼= (OX(Uλµ))⊕r via ϕλUλµ
,

E(Uλµ) ∼= (OX(Uλµ))⊕r via ϕµUλµ
.
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By composing the first isomorphism with the inverse of the second, we get

an isomorphism of (OX(Uλµ))⊕r with itself. When evaluated at each point

x ∈ Uλµ, this gives a morphism

gλµ : Uλµ −→ GLr(k).

We argue that these are the transition maps of a unique vector bundle (up

to isomorphism) by Proposition 1.2.5. The conditions of the proposition

follow immediately by the properties of sheaf restriction maps and how they

commute with sheaf morphisms. By Lemma 1.4.5 which we just showed, E
is indeed the sheaf of sections of this vector bundle.

In conclusion, when thinking about vector bundles we can either define

the total space and its trivialisations, the sheaf of sections or the transition

functions: they all contain equivalent information, and we can use whichever

is most helpful case by case. Because of this, a frequent abuse of notation

in Algebraic Geometry is to use the same symbol to denote both a vector

bundle and its sheaf of sections. We will also adopt this convention.
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Chapter 2

Line Bundles

Definition 2.0.1. A line bundle is an algebraic vector bundle of rank 1.

We know from our previous discussion that the sheaf of sections of a line

bundle is an invertible sheaf.

2.1 Examples of Line Bundles

Let X be a variety.

The Trivial Bundle

The trivial line bundle over X is

X × A1 π−−→ X

(p, λ) 7−→ p.

Its sections are the morphisms p 7→ (p, f(p)), in the sense that giving a

section of the trivial line bundle over an open set U is the same as giving

a regular function f : U → A1. Thus we can identify the sheaf of sections

with the structure sheaf OX of the variety. If X is projective, then OX(X)

consists precisely of locally constant functions X → k. In particular, if X is

projective and connected, then OX(X) = k.

21
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The transition functions of the trivial line bundle are as follows: since

{X} is already a trivialising open cover, on any pair of open subsets they

are just the identity on all points. We denote the trivial line bundle over X

(and its sheaf of sections!) by OX .
We have already seen the trivial vector bundleX×An: its sheaf of sections

is isomorphic to O⊕n
X and its transition maps are also just the identity on all

points for all pairs of opens.

For the next two examples we fix an embedding X ↪→ Pn.

The Tautological Line Bundle

All varieties embedded in Pn have a natural line bundle inherited from the

embedding, called the tautological bundle. Indeed, because the points in Pn

are precisely the lines through the origin in An+1, we associate to each point

p = [x0 : . . . : xn] ∈ Pn its corresponding line ℓp := {(tx0, . . . , txn) | t ∈ k} in
An+1. More precisely, we construct the bundle over X as follows: consider

the set

E = {(p, x) | p ∈ X, x ∈ ℓp} ⊆ X × An+1 ⊆ Pn × An+1

together with the natural projection

π := π1 : E → X.

E is a variety, since its defining property can be locally written as polynomial

equations in the coordinates of X and An+1. The affine charts

Ui = {[p0 : . . . : pn] ∈ X | pi ̸= 0} =

{[
p0
pi

: . . . : 1︸︷︷︸
i

: . . . :
pn
pi

]
∈ X

}
= {[q0 : . . . : qn] ∈ X | qi = 1}

trivialise the bundle. Again, we stress that the tautological bundle depends

on the embedding of X in a particular projective space; in other words, the

pullback of the tautological bundle under an isomorphism may fail to be

tautological.
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Tautological line bundles over a connected projective variety X have no

nonzero global sections at all (unless X is just a single point in Pn). Indeed
a global section on X defines a morphism

X −→ An+1

p 7−→ (f0(p), . . . , fn(p))

where each (f0(p), . . . , fn(p)) lies on the line through the origin corresponding

to p and f0, . . . , fn are regular functions on X. But since all regular functions

on a connected projective variety are constant, fi must be zero functions: the

only point lying on all lines through the origin is the origin 0. Thus X admits

no nonzero global sections.

We study the transition functions of the tautological bundle: on the affine

charts, the trivialising maps are:

φi : π
−1(Ui) −→ Ui × A

(p, (x0, . . . , xn)) 7−→ (p, xi)

since p = [p0/pi : . . . : 1︸︷︷︸
i

: . . . : pn/pi], and either xi = 0 or

ℓp ∋ x = (x0, . . . , xn) = xi

(
x0
xi
, . . . , 1︸︷︷︸

i

, . . . ,
xn
xi

)
= xi

(
p0
pi
, . . . , 1︸︷︷︸

i

, . . . ,
pn
pi

)
so x is the point on the line ℓp identified by xi. Thus, since xj/xi = pj/pi

(and pj/pi does not depend on the choice of representatives for p),

φi ◦ φ−1
j : Uij × k −→ Uij × k

(p, λ) 7−→
(
p,
pj
pi
λ

)
and the transition functions are

gij : Uij −→ GL1(k)

p 7−→ pj
pi
.

We denote the tautological line bundle over X by OX(−1).
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The Hyperplane Bundle

The hyperplane bundle H on a variety X is defined to be the dual of

the tautological bundle (as in Example 1.3.8): its fiber Hp over a point

p ∈ X is the space of one-dimensional linear functionals on the line ℓp ⊆ kn+1

corresponding to p. Again it is important to realise that, by definition,

the hyperplane bundle also depends on the embedding of X in a specific

projective space.

The hyperplane bundle has many global sections: consider any linear ho-

mogenous polynomial
∑n

i=0 aixi. It defines a linear functional on kn+1 which,

when restricted to a line ℓ through the origin, defines a linear functional on

the line. We have a well defined global section:

X −→ H

p 7−→

p, n∑
i=0

aixi

∣∣∣∣∣
ℓp

 .

If X is projective (and again, not finite), the converse is also true: given any

global section, the coefficients ai of the linear functionals when restricted to

the lines must vary continuously with the points of X; in other words, we

have morphisms (regular functions) ai : X → k, so the ai are constant and

we have a homogenous polynomial of degree one.

Finally, we study the transition functions of the hyperplane bundle. The

trivialising maps are:

φi : π
−1(Ui) −→ Ui × kp, n∑

j=0

ajxj

∣∣∣∣∣
ℓp

 7−→ (
p,
a0p0
pi

+ . . .+ ai · 1 + . . .+
anpn
pi

)

where p = [p0 : . . . : pi : . . . : pn] = [p0/pi : . . . : 1︸︷︷︸
i

: . . . : pn/pi]. Indeed since

we are dealing with linear functionals over a line, we can identify them by

their value on a chosen (nonzero) point. Since we do not want this evaluation

to depend on choices of representatives for p, evaluating in pk/pi is good



2.2 The Picard Group 25

choice. Now, since in Uij

n∑
k=0

akpk
pj

=
pi
pj

n∑
k=0

akpk
pi

the transition maps are

gij : Uij −→ GL1(k)

p 7−→ pi
pj

=

(
pj
pi

)−1

,

in accordance with how we defined transitions functions for the dual of a line

bundle. From now on we denote the hyperplane bundle over X by OX(1).

2.2 The Picard Group

We recall the tensor product of bundles we described in Example 1.3.7.

Since the tensor product of one-dimensional vector spaces is again one-

dimensional, the tensor product of line bundles is also a line bundle. Its

transition maps are given by the Kronecker product of the transition maps

of the bundles, which for the one-dimensional case is just

f ⊗ g = fg.

Analogously, the dual of a line bundle (Example 1.3.8) is also a line bundle.

Its transition maps are given by (f∨)−1 = f−1, the inverse of the transition

maps of the original line bundle.

The immediate consequence is that isomorphism classes of line bundles

over a fixed variety together with the tensor product of bundles form a group.

The identity element is the isomorphism class of trivial line bundle. The

group is abelian by the commutativity of the tensor product (up to isomor-

phism).

Definition 2.2.1. [7, 7.9.1] Given a ringed space (X,R), the abelian group

of isomorphism classes of invertible sheaves of R-modules on X is called the

Picard group of X and is denoted Pic(X).
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Recall the correspondence between line bundles and invertible sheaves we

showed in Theorem 1.4.6.

Example 2.2.2. Let X = Pn, in the previous section we defined the line

bundles OPn(0) := OPn ,OPn(−1),OPn(1). We can define OPn(d) for any

d ∈ Z, by considering the group generated by these line bundles (in fact this

is the entire Picard group of Pn, but showing this is non-trivial). OPn(d) has

global sections for all d ≥ 0: we can interpret the fibres as all homogenous

polynomial functionals of degree d over the lines in An+1 (the d-tensor prod-

uct of the linear functionals with themselves). Thus the global sections of

OPn(d) are precisely the homogenous polynomials of degree d in k[x0, . . . , xn],

following an analogous argument as in the hyperplane case). The fibres of

OPn(d) for negative d do not have an easy interpretation, and the bundles

have no nonzero global sections.

The transition maps for OPn(d), d ∈ Z with respect to the standard affine

charts are:

gij : Uij −→ GL1(k)

p 7−→
(
pi
pj

)d

2.3 The Canonical Line Bundle

As in differential and complex geometry, the concept of a tangent space

at a point is a very important construction in algebraic geometry. A formal

definition of tangent space of a variety X not depending on a particular

embedding X ↪→ Pn requires abstract algebraic tools outside the scope of

this thesis; the reason why this however is crucial is that the tangent space

is a vector bundle TX over X, and we want it to be invariant under the

pullback of an isomorphism (that is, if f : Y → X is an isomorphism, then

TY should be isomorphic to f ∗(TX)). Similarly to the theory of manifolds,

the dual cotangent bundle ΩX := T ∗X is of much more interest than the
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tangent bundle itself; we will limit ourselves to just stating a proposition

which guarantees the existence and uniqueness of ΩX .

Proposition 2.3.1. Let X be a variety. There exist a unique sheaf ΩX of

OX-modules (up to isomorphism) such that:

1. For any affine open subset U ⊆ X, if

OX(U) = k[U ] =
k[x1, . . . , xm]

(f1, . . . , fr)

then

O⊕r
U

Jacobian matrix
of the fi−−−−−−−−−→ O⊕m

U −→ ΩX |U −→ 0

is an exact sequence of sheaves of OU -modules;

2. For any U ⊆ X affine open subset as above, for any non-invertible

g ∈ k[U ], denote Ug := {x ∈ U | g(x) ̸= 0}, then Ug is affine and

OX(Ug) = k[Ug] =
k[x1, . . . , xm, y]

(f1, . . . , fr, yg − 1)
.

The restriction morphism σ : ΩX(U) → ΩX(Ug) fits into the following

commutative diagram:

OX(U)⊕r OX(U)⊕m ΩX(U) 0

OX(Ug)⊕(r+1) OX(Ug)⊕(m+1) ΩX(Ug) 0

Jac(f1,...,fr)

(Ir0 ) σ

Jac(f1,...,fr,yg−1)

(Im0 )

Moreover:

• If X is smooth of dimension n, then ΩX is locally free of rank n;

• For any affine open subset U ⊆ X ΩX |U ∼= ΩU .

Proof. See [2, II.8].
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Remark 2.3.2. Complements of hypersurfaces in an affine space U are a

basis for the Zariski topology of U . To see this, first we consider U as

a closed subset of affine m-space V(f1, . . . , fr): then any open in U is of

the form V(f1, . . . , fr) \ V(g1, . . . , gl) where the gi ∈ k[U ] are non-invertible.

Then clearly it is covered by
⋃

(V(f1, . . . , fr) \ V(gi)) =
⋃
Ugi . Thus we have

correctly defined sheaf restriction maps σ : ΩX(U) → ΩX(U
′) for all open

subsets U ′ ⊆ U .

We denote the exterior product of ΩX by Ωk
X :=

∧k ΩX , so ΩX = Ω1
X .

Definition 2.3.3. Let X be a smooth variety of dimension n. The canonical

line bundle ωX is the highest exterior power of the cotangent vector bundle,

ωX := Ωn
X .

The elements of the fibres of ωX over each point p ∈ X are the algebraic

n-forms α · (dx1 ∧ . . . ∧ dxn)|p for α ∈ k. The canonical line bundle on a

variety X is the most important line bundle because it (and its powers, that

is, the subgroup of Pic(X) generated by ωX) are the only line bundles that are

intrinsically defined on X. In other words, if f : Y → X is an isomorphism

of varieties, then f ∗ωX ∼= ωY .

Example 2.3.4. The cotangent bundle on affine space An is trivial. Since An

is already affine and its coordinate ring is just k[x1, . . . , xn], by Proposition

2.3.1 we have the isomorphism of sheaves O⊕n
An
∼= Ω1

An . This implies that its

exterior products are also trivial, so in particular ωAn ∼= OAn .

Example 2.3.5. Let us compute the transition maps of ωP1 . On the affine

charts we have isomorphisms

φ̃0 : U0 → A1 [x0 : x1] 7→
x1
x0

=: s

φ̃1 : U1 → A1 [x0 : x1] 7→
x0
x1

=: t.

Since the canonical bundle is intrinsic, these isomorphisms induce an isomor-

phism between the trivial ωA1
∼= OA1 and the restriction of ωP1 to the affine
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charts. Let us denote

OU0
∼= ωP1|U0

OU1
∼= ωP1|U1

1 7→ ds 1 7→ dt

the isomorphisms induced on the sheaves of sections. On the intersection

U0 ∩ U1 we have

s =
x1
x0

= −
(
x0
x1

)−1

= t−1

which implies

ds = − 1

t2
dt.

Thus the corresponding transition map g01 is

g01 =
1

t2
=

(
x1
x0

)2

.

so ωP1 is isomorphic to OP1(−2) (we can ignore the minus sign by Remark

1.2.4).

Example 2.3.6. Analogous computations show that the canonical bundle

of projective n-space is

ωPn ∼= OPn(−(n+ 1)).

Remark 2.3.7. Let X, Y be varieties, X × Y their product, p1, p2 the cate-

gorical projections. Then

Ω1
X×Y

∼= p∗1ΩX ⊕ p∗2ΩY

by [2, Exercise II.8.3]. Since the determinant of a diagonal block matrix is

just the product of the determinants of the blocks, we get

ωX×Y ∼= p∗1ωX ⊗ p∗2ωY .
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2.4 Rational Maps to Projective Space

Definition 2.4.1. [6, 7.2] LetX, Y be algebraic varieties, U,U ′ be dense open

subsets of X. Two morphisms of varieties U
φ−→ Y, U ′ φ′

−→ Y are equivalent

in they agree on the intersection U ∩ U ′. It is easy to check that this is an

equivalence relation.

Remark 2.4.2. If X is irreducible, then any non-empty open subset of X

is dense.

Definition 2.4.3. A rational map X Y is an equivalence class of mor-

phisms defined on dense open subsets of X as above.

We think of a rational map as a morphism defined only on a dense open

set, and we do not concern ourselves with the particular open set on which it is

defined. A rational map should be interpreted as a morphism “defined almost

everywhere”. Despite its name, a rational map is not an actual mapping,

which is the reason why we use a broken arrow to denote it. One must take

care when composing rational maps that the image of (a representative of)

φ1 is dense in Y in order to define a composition

X
φ1 Y

φ2 Z.

Rational maps are extremely important in Algebraic Geometry; varieties are

often studied up to birational equivalence instead of up to isomorphism.

Definition 2.4.4. Let X, Y be algebraic varieties. We call them birationally

equivalent if there exist mutually inverse rational maps

X
F
Y Y

G
X.

In other words, there exist dense open subsets U ⊆ X and V ⊆ Y which are

isomorphic. We denote birational varieties by X ∼bir Y .

Line bundles and their global sections govern all rational maps to Pn. An
understanding of all the possible ways in which a variety may be mapped

to projective space is tantamount to a complete understanding of all line

bundles on the variety.
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Definition 2.4.5. Let L be a line bundle over X. Its global sections have the

structure of a vector space, called the complete linear system of L H0(X,L).

A linear system relative to L is a linear subspace of H0(X,L).

Theorem 2.4.6. [6, 8.5] Let X be an irreducible variety.

Let L be a line bundle over X, {s0, . . . , sn} a basis for a linear system

relative to L. Then

X Pn

x 7−→ [s0(x) : . . . : sn(x)]

is a rational map. If U is a dense open subset of X on which F makes sense

as a morphism of varieties f : U → Pn, then

f ∗OPn(1) ∼= ι∗L

where ι : U ↪→ X is the inclusion map.

Conversely, if X is also smooth, under the same notation as before, let

X
F Pn be a rational map. Then there exists a line bundle L over X such that

the rational map is given by a set of global sections of L, and f ∗OPn(1) = ι∗L.

Proof. First we need to make sense of the expression [s0(x) : . . . : sn(x)].

Consider a trivialisation (V, φ) of L around x; we identify the sections si

V
si−→ π−1(V )

φ−→ V × A1

x 7→ si(x) 7→ (x, s̃i(x))

with the regular functions s̃i : V → A1. These functions depend on the

choice of local trivialisation, and we know that this dependence is given by

the transition functions of L (Lemma 1.4.5). Thus the s̃i(x) are determined

pointwise up to multiplication by the same nonzero scalar: the notation

[s0(x) : . . . : sn(x)] := [s̃0(x) : . . . : s̃n(x)]

is well defined unless s̃i(x) = 0 ∀ i = 0, . . . , n. Unfortunately there is nothing

to prevent the sections from simultaneously vanishing, so the map

X
F Pn

x 7−→ [s0(x) : . . . : sn(x)]
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is only rational and not an everywhere-defined morphism of varieties. Indeed,

the base locus consisting of the points on which all the sections vanish is the

intersection of closed sets
n⋂
i=0

s−1
i (0).

where 0 denotes the closed subvariety of E(L) consisting of the zero vector

of each fibre. Since X is irreducible, the complement of the base locus U is

open and dense, and F is a well defined morphism of varieties on U . Now, a

couple of remarks. We assumed linear independence of the n+ 1 sections to

study maps to Pn; linearly dependent sections will define a map whose image

can be embedded in a lower dimensional projective space. What happens if

we choose a different basis of sections {s′1, . . . , s′n} for the same linear system?

It is easy to check that the two maps can be transformed into each other by

an automorphism of Pn; that is, a linear change in coordinates. The base

locus on which the new rational map is not defined will still be the same.

The last thing to show is f ∗OPn(1) ∼= ι∗L. Consider the bundle f ∗OPn(1):

we define the pullback of a (global) section s ∈ H0(Pn,OPn(1)) to be the map

f ∗s : U −→ U ×Pn OPn(1) = f ∗OPn(1)

p −→ (p, s(f(p))).

We study the pullbacks of the global sections xk, k = 0, . . . , n, which form

a basis for the global sections of OPn(1) (the linear polynomials). We get,

on the trivialisations (U ′
i = f−1(Ui), φ

′
i) corresponding to the trivialisations

(Ui, φi) of OPn(1):

φ′
i(f

∗xk(p)) = φ′
i(p, xk([f0(p) : . . . : fn(p)])) =

(
p,
fk(p)

fi(p)

)
where fl, l = 0, . . . , n denote the components of f (they are regular functions

determined up to a nonzero scalar and, under the same notation as before,

fl(p) = s̃l(p)). This yields transition maps for the sections

f ∗gij : f
−1(Uij) −→ GL1(k)

p 7−→ fi(p)

fj(p)
=
s̃i(p)

s̃j(p)
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in accordance with Remark 1.3.3. By definition of f , we can actually interpret

f−1(Ui) = f−1(Ui ∩ f(U)) = X \ s−1
i (0). These opens cover U =

⋂n
i=0 s

−1
i (0)

and trivialise ι∗L: more precisely, if (V, φ) is a trivialisation for ι∗L inducing

the correspondence sl 7→ s̃l, then the composition

π−1(V ∩ f−1(Ui))
φ−→ (V ∩ f−1(Ui))× A1 −→ (V ∩ f−1(Ui))× A1

Ep ∋ e 7→ (p, λ) 7→
(
p, λ

s̃i(p)

)
is still a trivialisation inducing the correspondence sl 7→ s̃l

s̃i
. Thus we get

transition functions for the sheaf of sections of ι∗L on opens (V1∩ f−1(Ui))∩
(V2 ∩ f−1(Uj))

s̃l
s̃i
· s̃i
s̃j

=
s̃l
s̃j

=⇒ gij(p) =
s̃i(p)

s̃j(p)

(by remebering that the ratio s̃l
s̃k

does not depend on the choice of trivialisa-

tion), proving ι∗L ∼= f ∗OPn(1).

Now let F be a rational map X
F Pn, let U be a dense open subset of

X on which F makes sense as a morphism of varieties f : U → Pn. We

study the line bundle on U defined by the pullback f ∗OPn(1). Consider the

pullbacks of xk, k = 0, . . . , n. For all p ∈ U we have (separately on each

open of the cover {f−1(Ui)}, i = 0, . . . , n)

[f ∗x0(p) : . . . : f
∗xn(p)] =

[
f0(p)

fi(p)
: . . . :

fn(p)

fi(p)

]
= [f0(p) : . . . : fn(p)] = f(p)

so f agrees on U with the map we previously defined for the set of global

sections {f ∗x0, . . . , f
∗xn} of f ∗OPn(1). f ∗OPn(1) is a bundle over only the

dense open set U ; however the bundle can be extended uniquely to the whole

of X. This is because a rational map from a smooth variety to a projective

one always admits a representative U of codim 2 [4, 4.1.16], and there is

a bijection between the Picard groups of X and U for such an open [2,

II.6.5.b]. We denote this extension by F ∗OPn(1); then clearly f ∗OPn(1) is

the restriction ι∗(F ∗OPn(1)) where ι : U ↪→ X is the inclusion map.
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Remark 2.4.7. In the proof we said that, for a line bundle L on X, if

s ∈ H0(X,L), the open X \s−1(0) trivialises the bundle. More generally, any

line bundle with a nowhere vanishing global section (such as the restriction

of L to X \ s−1(0)) is trivial. We can define the map

X × A1 −→ E(L)

(p, λ) 7−→ λs(p)

which is an isomorphism of bundles. The same argument holds for any bundle

of rank r, provided we have r pointwise linearly independent global sections.

Definition 2.4.8. A line bundle L is very ample if the rational map de-

termined by its complete linear system is an everywhere defined morphism

that defines an isomorphism of varieties with its image; that is, a (closed)

embedding into projective space. A line bundle M is ample if there exists an

n > 0 such that M⊗n is very ample.

As a corollary to Theorem 2.4.6, we may interpret a very ample line

bundle over X as the hyperplane bundle for a particular embedding of X

into projective space.

Lemma 2.4.9. Let L be a line bundle on an irreducible projective variety X

which admits a non-zero global section. Then L∨ admits a non-zero global

section if and only if L is trivial.

Proof. Suppose s1, s2 are non-zero global sections of L, respectively L
∨. Then

the product s1s2 defines a non-zero global section of OX because the union

of the two zero locuses cannot be the whole of X. But a non-zero global

section of OX is just a non-zero constant, since X is projective. Thus s1 is

actually nowhere vanishing: L has a nowhere vanishing global section.



Chapter 3

The Kodaira Dimension

3.1 Definition

Let X be a variety, E be a locally free sheaf of OX-modules. We denote

by H0(X, E) := E(X) the vector space of its global sections.

Remark 3.1.1. If X is projective then H0(X, E) is finite-dimensional [2,

III.5.2], and we denote its dimension by

h0(X, E) := dimH0(X, E).

Definition 3.1.2. Let X be a smooth, projective, irreducible variety of di-

mension 1. The geometric genus of X is

g(X) := h0(X,ωX).

Remark 3.1.3. A smooth, projective, irreducible variety X of dimension 1

over k = C has the natural structure of a Riemann Surface. In this case

the geometric genus of X agrees with the topological definition of genus by

Hodge theory [8].

Definition 3.1.4. [3, 2.1.1] Let L be a line bundle over an irreducible variety

X. We define the semi-group of L

N(L) := {m ∈ N | H0(X,L⊗m) ̸= {0}}

where L⊗0 = OX .

35
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Remark 3.1.5. If X is irreducible, then N(L) is indeed a semigroup: the

trivial line bundle has constant global sections; if s1 ∈ H0(X,L⊗m1), s2 ∈
H0(X,L⊗m2) are nonzero sections, then s1 ⊗ s2 = s1 · s2 is a nonzero global

section in H0
(
X,L⊗(m1+m2)

)
. Since X is irreducible, so the union of the zero

locuses of s1, s2 cannot be the whole of X.

Definition 3.1.6. The exponent e(L) of a line bundle L over an irreducible

projective variety is the greatest common divisor of the elements of N(L).
By the previous remark, all sufficiently big multiples of e(L) are in N(L).

For all m ∈ N(L) we have a rational map X
Fm Pdm , where dm =

h0(X,L⊗m)− 1, defined by the complete linear system of L. We denote

Ym := Fm(X) ⊆ Pdm

where Fm(X) is the image of the rational map Fm on any dense open subset

on which it is defined as a morphism. Since the image of a morphism is not

necessarily a variety, we consider its Zariski closure in Pdm .

Remark 3.1.7. If L is ample, then Ym ∼= X for a sufficiently large m.

Definition 3.1.8. [3, 2.1.3] Let X be an normal variety1, L a line bundle

over X. If N(L) ̸= {0}, the Iitaka dimension of L is

κ(L) = max
m∈N(L)

(dimYm) .

where Ym is the closure of the image of X under any rational map defined

by the complete linear system of L⊗m, as defined above.

If instead H0(X,L⊗m) = {0} for all m > 0, then we set

κ(L) = −∞.

Remark 3.1.9. The dimension of the (closure of the) image of a variety X

under any morphism is at most dimX. Thus for any line bundle L on X

κ(L) = −∞ or 0 ≤ κ(L) ≤ dimX.

1All irreducible smooth varieties are normal.
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Definition 3.1.10. [3, 2.1.5] Let X be a smooth, projective variety. The

Kodaira dimension of X is κ(ωX), which we will also denote by κ(X).

Example 3.1.11. The canonical bundle of Pn is isomorphic toOPn(−(n+1)).

We know that this bundle does not admit any nonzero global sections, and

neither do its powersOPn(−m(n+1)) form > 0. Thus the Kodaira dimension

of the projective n-space is

κ(Pn) = −∞ ∀n ∈ N \ {0}.

Proposition 3.1.12. Let X be an irreducible projective variety, L be a line

bundle on X with κ := κ(L) ∈ N, Ym be the closure of the image of X under

a rational map defined by any complete linear system of L⊗m. Then there

exists an M > 0 such that

dimYm = κ ∀m > M, m ∈ N(L).

Proof. Let e be the exponent of L, replace L with L⊗e. Let J ∈ N be such

that j ∈ N(L) for all j ≥ J . Let k ∈ N(L) be such that dimYk = κ, set

M = k + J . For j ≥ J , let 0 ̸= s ∈ H0(X,L⊗j), consider the map

H0(L⊗k)
⊗s−→ H0(L⊗k+j).

This is an injection (as per Remark 3.1.5, or more generally by how the

sections of a tensor product of bundles are defined: the tensor product of

sections). We thus get the corresponding projection

Pdk+j

X Pdk

factorizing any rational map defined by linear system of L⊗k. So

κ ≥ dimYk+j ≥ dimYk = κ.
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Definition 3.1.13. Let X be an irreducible smooth projective variety. The

m-th plurigenus Pm of X is

Pm := h0(X,ω⊗m
X ).

Proposition 3.1.14. [3, 2.1.37] The Kodaira dimension of an irreducible

smooth projective variety X is the rate of growth of its plurigenera; that is,

κ(X) = min

{
k ∈ N |

(
Pm
mk

)
m∈N+

is bounded

}
.

Remark 3.1.15. If Pm = 0 for all m > 0, then κ(X) = −∞. This is in a

way still consistent with the formula in Proposition 3.1.14, since

lim
k→−∞

sup
m>0

Pm
mk

= lim
k→−∞

sup
m>0

0

mk
= 0.

We will now prove the birational invariance of the Kodaira dimension for

smooth varieties.

Proposition 3.1.16. Let X be an irreducible variety, V ⊆ X a non-empty

open set, L ∈ Pic(X), L its sheaf of sections. Then the restriction map

L(X)
σ−−→ L(V )

is injective.

Proof. Let s ∈ L(X) be a global section whose image under σ is the zero

section in L(V ): s vanishes on V . Since the zero locus of s is a closed subset

of X containing V , it is actually the whole of X (V is dense since X is

irreducible). So s is the zero section in L(X).

Proposition 3.1.17. Let X be a smooth irreducible variety, V ⊆ X an open

subset such that codim(X \ V,X) ≥ 2, L ∈ Pic(X), L its sheaf of sections.

Then the restriction map

L(X)
σ−−→ L(V )

is bijective.
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Proof. The idea of the proof is that since codim(X \ V,X) ≥ 2, a section on

V can be uniquely extended to a section on X, proving surjectivity. For a

proof of this fact in the case when X is affine and L = OX see [2, II 6.3.A].

The general case follows by taking an affine open cover of X which trivialises

L.

Theorem 3.1.18. [2, II 8.19] Let X ∼bir Y be birational irreducible smooth

projective varieties. Then for every integer m ≥ 0 one has

Pm(X) = Pm(Y )

and consequently

κ(X) = κ(Y ).

Proof. Given the birational map X Y , let V be the largest open subset

of X for which there is a morphism f : V → Y representing the rational

map. Note that f is not necessarily an isomorphism; in any case there is a

dense open subset U of V on which f restricts to an isomorphism with its

image f(U), which is open in Y . The morphism f induces a morphism of

sheaves f ∗Ω1
Y → ΩV ; since these are locally free sheaves of the same rank, we

get an induced map on the exterior powers f ∗ωY → ωV , and consequently

morphisms f ∗ω⊗m
Y → ω⊗m

V for all m ∈ N \ {0}. We have a morphism on

the spaces of global sections f ∗ : ω⊗m
Y (Y ) → ω⊗m

V (V ) commuting with the

following diagram:

ω⊗m
Y (Y ) ω⊗m

V (V )

ω⊗m
Y (f(U)) ω⊗m

V (U)

f∗

∼

where the vertical arrows are the sheaf restrictions, which are injections by

Proposition 3.1.16. Thus necessarily f ∗ : ω⊗m
Y (Y ) → ω⊗m

V (V ) is injective.

Now we show that the restriction ω⊗m
X (X) → ω⊗m

X (V ) ∼= ω⊗m
V (V ) is a bi-

jection. By [2, II 4.7] codim(X \ V,X) = 2, so we can apply Proposition
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3.1.17. Combining our results, we get an injective map ω⊗m
Y (Y )→ ω⊗m

X (X),

hence Pm(Y ) ≤ Pm(X). We obtain the reverse inequality by symmetry, so

Pm(X) = Pm(Y ).

The equality κ(X) = κ(Y ) follows from by Proposition 3.1.14.

Theorem 3.1.19 (Hironaka’s desingularization theorem). [6, 7.1] Assume

char k = 0. Let X be a variety. There exists a smooth variety X̃ and a

projective birational morphism X̃
π−→ X. Furthermore, π may be assumed to

be an isomorphism on the smooth locus of X, and if X is a projective variety,

then so is X̃. X̃ is called a smooth model for X.

Definition 3.1.20. Assume char k = 0. Let X be an irreducible projective

variety, X̃ a smooth model for X. The Kodaira dimension of X is

κ(X) := κ(X̃).

Remark 3.1.21. Let X be an irreducible projective variety. A direct con-

sequence of Hironaka’s desingularization theorem is that if X1, X2 are two

smooth models for X, then they are birationally invariant. Indeed, the bira-

tional maps are isomorphisms on the smooth locus of X, so we can compose

them. This, together with Theorem 3.1.18 ensures that the Definition 3.1.20

is well defined.

Theorem 3.1.22. Assume char k = 0. The Kodaira dimension is a bira-

tional invariant.

Proof. All open subesets of irreducible varieties are dense, thus we may al-

ways compose birational equalities between two varieties and their smooth

models and conclude by Theorem 3.1.18.

3.2 Basic Examples

The last two sections are the applied part of this thesis: after finally

stating the definition of the Kodaira dimension, we compute it for some

basic cases. In this section we explicitly calculate the canonical bundle for

hypersurfaces and the blowup of a point in A2.
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Hypersurfaces

Proposition 3.2.1. Let X ⊆ An be a smooth irreducible hypersurface defined

by a polynomial f . Then

ωX ∼= OX .

Proof. On X

0 = df =
n∑
i=0

∂f

∂xi
dxi,

let us denote Xi = X ∩ { ∂f
∂xi
̸= 0}. We argue that the canonical bundle ωX

is trivial. To do this, we construct isomorphisms OXi
∼= ωXi

through the

Poincaré residues of f :

OXi
−→ ωXi

= ωX |Xi

1 7−→ (−1)i−1

∂f/∂xi
dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn.

These are indeed isomorphisms with the trivial bundle since they describe a

nonzero section for ωXi
, i = 1, . . . , n. The Xi are an affine cover (since they

are complements of V( ∂f
∂xi

) in X) and cover X (otherwise if ∂f
∂xi

(p) = 0 for all

i, then
∑ ∂f

∂xi
(p)=0, but X is smooth). Suppose i < j, on the intersections

Vij we get

0 = df = df ∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ d̂xj ∧ . . . ∧ dxn

=

(
∂f

∂xi
dxi +

∂f

∂xj
dxj

)
∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ d̂xj ∧ . . . ∧ dxn

= (−1)i−1 ∂f

∂xi
dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxn

+ (−1)j−2 ∂f

∂xj
dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn

so

(−1)j−1

∂f/∂xj
dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxn =

(−1)i−1

∂f/∂xi
dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn

which means that the transition maps are the identity.
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Proposition 3.2.2. Let X ⊆ Pn be a projective smooth irreducible hyper-

surface defined by the homogenous polynomial F of degree d. Then

ωX ∼= OX(−n− 1 + d).

Proof. We know by the previous affine case that ωX |Uj
is trivial on the affine

charts Ui. In particular we defined a nowhere vanishing global section sj ∈
H0(Uj ∩X, ωX |Uj

) by gluing together the Poincaré residues of F |Uj
. We will

compute the transition maps relative to Uj ∩ Uk for these sections. First we

introduce some notation:

fj(y0, . . . , ŷj, . . . , yn) = F

(
x0
xj
, . . . , 1︸︷︷︸

j

, . . . ,
xn
xj

)
= F |Uj

where yl =
xl
xj
. We get, on the intersections Ujk (i ̸= j), for

fj(y0, . . . , ŷj, . . . , yn), fk(z0, . . . , ẑk, . . . , zn):

yl =
xl
xj
, zl =

xl
xk

=⇒ yl =
zl
zj
, zl =

yl
yk

l ̸= j, k

yk =
xk
xj

= z−1
j

F

(
x0
xj
, . . . ,

xn
xj

)
=

(
xk
xj

)d
F

(
x0
xk
, . . . ,

xn
xk

)
so

dyl =
1

zj
dzl −

zl
z2j
dzj =

zjdzl − zldzj
z2j

l ̸= j, k

dyk = −
1

z2j
dzj

fj(y0, . . . , ŷj, . . . , yn) = z−dj fk(z0, . . . , ẑk, . . . , zn).

We will the interpret the transition maps for ωX in (Uj ∩ Xi) ∩ (Uk ∩ Xi),

since there we have an explicit expression for the sections sj, sk. In order

for our notation to make sense, we need to suppose i ̸= j, k: indeed F has

n + 1 partial derivatives, but the restrictions fj only have n. Under such

conditions, we have
∂F

∂xi

∣∣∣∣
Uj

=
∂ F |Uj

∂yi
.
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We now employ the chain rule (i ̸= k):

∂fj
∂yi

=
n∑

m=1
m ̸=k

∂fj
∂zm

∂zm
∂yi

=
∂fj
∂zi

∂zi
∂yi

= z−dj
∂fk
∂zi

1

yk
= z

(1−d)
j

∂fk
∂zi

We finally compute the transition map relative to (Uj ∩ Xi) ∩ (Uk ∩ Xi),

i < j < k (in the other cases they will just differ by a sign, which we can

ignore):

sj|Xi
=

(−1)i−1

∂fj/∂yi
dy0 ∧ . . . ∧ d̂yi ∧ . . . ∧ d̂yj ∧ . . . ∧ dyk ∧ . . . ∧ dyn

=
(−1)i−1

z
(1−d)
j

∂fk
∂zi

zjdz0 − z0dzj
z2j

∧ . . . d̂zi . . . d̂zj . . .
−dzj
z2j

. . . ∧ zjdzn − znzj
z2j

=
(−1)i−1

z
(1−d)
j

∂fk
∂zi

(−1)k−j

znj
dz0 ∧ . . . ∧ d̂zi ∧ . . . ∧ dzj ∧ . . . ∧ d̂zk ∧ . . . ∧ dzn

= (−1)k−jz(−n−1+d)
j sk|Xi

.

Thus the transition maps are

gjk = z−n−1+d
j =

(
xj
xk

)−n−1+d

that is, ωX ∼= OX(−n− 1 + d).

If −n− 1+ d > 0, then ωX is very ample: the (rational) maps defined by

the positive powers of the hyperplane bundleOX(m), m > 0 are the Veronese

maps νm [6, 5.1], which are embeddings Pn νm
↪−→ Pk (where k =

(
n+m
n

)
− 1).

Corollary 3.2.3. Let X ⊆ Pn be a smooth irreducible projective hypersurface

defined by a homogenous polynomial of degree d. Then

κ(X) =


−∞ d < n+ 1

0 d = n+ 1

dim(X) = n− 1 d > n+ 1

Remark 3.2.4. Every irreducible variety is birational to a hypersurface in

Pn for some n ∈ N [2, I.4.9]. However the hypersurface might not be smooth.
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Blowup of a point

The blowup at the origin of An is the set

B = Bp(An) := {(x, ℓ) ∈ An × Pn−1 | x ∈ ℓ}

together with the natural projection

B
π−−→ An

(x, ℓ) 7−→ x

(the same set, together with the other projection to Pn−1 defines the tauto-

logical bundle OPn−1(−1)). B is a closed subvariety of An × Pn−1: indeed, if

we use coordinates x = (x1, . . . , xn) for An, ℓ = [y1 : . . . : yn] for Pn−1, then

x ∈ ℓ if and only if the matrix(
x1 . . . xn

y1 . . . yn

)
has rank less than or equal to one. This holds precisely if all the 2×2 minors

of the matrix vanish:

B = V(xiyj − xjyi | 0 ≤ i < j ≤ n) ⊆ An × Pn−1.

The fibre of π over any point x other than the origin is just the single point

(x, ℓ), where ℓ is the unique line passing through x and the origin. However,

the origin lies on all lines through the origin, so the preimage of 0 is an entire

copy of Pn−1, namely {0} × Pn−1 ⊆ An × Pn−1. π is a birational map, with

inverse

An \ {0} −→ An × Pn−1

(x1, . . . , xn) 7−→ (x1, . . . , xn;x1 : . . . : xn).

We explicitly compute the canonical bundle of B for n = 2: in this case B

is defined by a single polynomial f = x1y2 − x2y1. Consider the affine open

cover of B = Bp(A2)

{Vi} = {(A2 × Ui) ∩B} i = 1, 2.
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We have

V1 = {(x, y, [1 : s]) ∈ A2 × P1 | xs− y = 0} ∼= {(x, y, s) ∈ A3 | xs− y = 0}

V1 ∼= {(x, y, s) ∈ A3 | xs− y = 0}←̃→A2
x,s

(x, y, s) 7−→ (x, s)

(x, xs, s) 7−→(x, s)

V2 = {(x, y, [t : 1]) ∈ A2 × P1 | x− yt = 0} ∼= A2
y,t

where x = x1, y = x2, s =
y2
y1
, t = y1

y2
and in the intersection Vij we have the

relations

x = yt s = t−1

=⇒ dx = tdy + ydt ds = − 1

t2
dt

so

dx ∧ ds = (tdy + ydt) ∧
(
− 1

t2
dt

)
= −1

t
dy ∧ dt.

The transition map g12 is thus t−1 = y2
y1
. These are the same transition

maps as for π∗
2OP1(−1), where π2 : B → P1 is the projection to the second

factor. Let h12 = z2
z1

be the transition function h12 : P1
[z1:z2]

→ GL1(k) for

OP1(−1). We have Vi = π−1
2 (Ui), so by Remark 1.3.3 the transition functions

for π∗
2OP1(−1) are

π∗
2 (h12) (x1, x2; y1, y2) = h12 ◦ π2(x1, x2; y1, y2) = h12([y1 : y2]) =

y2
y1
.

In conclusion, ωB ∼= π∗
2OP1(−1).

3.3 Divisors

In this section we introduce the terminology of divisors, which are a gen-

eralisation of codim 1 subvarieties of an irreducible smooth variety X. In a

sense, divisors are zero sets “counted with multiplicity”.

Definition 3.3.1. Let X be a smooth irreducible variety. A prime divisor

on X is an irreducible closed subvariety D ⊂ X of codimension 1.
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Let D be a prime divisor of a smooth irreducible variety X. Then there

exist an affine open cover of X {Ui}i∈I and functions fi ∈ OX(Ui) such that

D ∩ Ui = {fi = 0} ⊆ Ui.

More precisely, we require that each fi is a generator of the ideal of the closed

embedding D ∩ Ui ↪→ Ui. On the intersections Uij necessarily {fi = 0} =

{fj = 0}, so
∃ gij ∈ OX(Uij) | fi = gijfj.

Definition 3.3.2. The line bundle associated to a prime divisor D OX(D)

is the line bundle on X with as transition maps the maps gij. It has a global

section s (given locally by the fi) such that {s = 0} = D.

Remark 3.3.3. Beware of the notation! OX(U) (regular functions on U)

and OX(D) (a line bundle) have very different meanings for an open U of X

and respectively D a closed irreducible subvariety of codimension 1 of X.

Proposition 3.3.4 (Adjunction Formula). [2, II.8.20] Let X be a smooth

irreducible variety, D ⊆ X be a smooth prime divisor. Then

ωD ∼= (ωX ⊗OX
OX(D))|D .

Remark 3.3.5. The adjunction formula can be used to compute the canon-

ical bundle for the cases we already examined. Let X = An, D = V(f) be

a smooth irreducible hypersurface. Since D is described by a single polyno-

mial in the affine An, the transition maps for OAn(D) are just the identity:

OAn(D) ∼= OAn . Thus

ωD ∼= (OAn ⊗OAn)|D ∼= OD.

If X = Pn, D = V(F ) a smooth irreducible hypersurface where F is homoge-

nous of degree d, then the polynomial F is a global section of OX(d), so the

adjunction formula yields

ωD ∼= (OPn(−n− 1)⊗OPn(d))|D ∼= OD(−n− 1 + d).
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Consider an arbitrary codimension 1 closed (reduced, but not necessarily

irreducible) subvariety Y (whose irreducible components we require to all

have codimension 1) of an irreducible smooth variety X. Let D1, . . . , Dm

denote its irreducible components, which are prime divisors of X. Then on a

suitable affine open cover {Ui} such that Dk ∩ Ui = {f (k)
i = 0}, we get that

Y is described locally by

Y ∩ Ui = {f (1)
i · . . . · f

(m)
i = 0}

and on the intersections we get

f
(1)
i · . . . · f

(m)
i = g

(1)
ij · . . . · g

(m)
ij f

(1)
j · . . . · f

(m)
j

where g
(k)
ij are the transition functions of OX(Dk) with respect to the cover

{Ui}. We denote Y by
m∑
k=1

Dk.

From Definition 3.3.2 we see the importance of taking generators of the ideal

of Dk in X: a different choice of functions would give a different line bundle.

For example, if instead of the fi we took f
2
i , then we would still get D∩Ui =

{f 2
i = 0}, but on the intersections we get transition functions f 2

i = g2ijf
2
j .

These transition functions still induce a line bundle, namely OX(D)⊗2, which

we denote by OX(2D).

Definition 3.3.6. Let X be an irreducible smooth variety. Let Div(X)

denote the abelian free group with

{D ⊆ X irreducible subvariety of codim 1}

as Z-basis. The elements of Div(X) are called the divisors of X. For∑
nkDk ∈ Div(X), we call ⊗

OX(Dk)
⊗nk

the line bundle associated to the divisor (for negative nk consider OX(D)∨).

Furthermore:
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- If the coefficients of a divisor are either 0 or 1, then the divisor is

called a reduced effective divisor. For instance (if not all coefficients

are 0),
∑

kDk corresponds to the subvariety Y ⊆ X of codim 1 whose

irreducible components are Dk;
⊗
OX(Dk) has a global section s, given

locally by the product of the f
(k)
i defining the Dk (as discussed above)

such that {s = 0} = Y =
∑
Dk.

- If the coefficients of a divisor are non-negative, then the divisor is called

an effective divisor. For instance,
∑

k nkDk, with nk ≥ 1. Its local

equations still describe the same subvariety Y as the reduced divisor∑
Dk, but the multiplicity of the prime divisors may be more than one.

Indeed,
⊗
OX(Dk)

⊗nk has a global section s whose zero set is Y , but

it is given locally by the product of the (f
(k)
i )nk .

- Non-effective divisors do not correspond to any subvariety of X.

Definition 3.3.7. Let L be a line bundle on a smooth, irreducible variety

X.
∑
nkDk ∈ Div(X) is a divisor of L if L ∼=

⊗
OX(Dk)

⊗nk . In particular,

if L admits a non-zero global section s, then its zero set, counted with the

right multiplicity given by the transition functions of L, is an effective divisor

of L. Different non-zero global sections of L might have different zero sets,

so the (effective) divisor of a line bundle is not unique. Two divisors giving

the same line bundle are said to be linearly equivalent.

Proposition 3.3.8. [3, 1.1.5] Let X be a smooth irreducible variety. The

mapping

Div(X)
ϕ−−→ Pic(X)∑

niDi 7−→
⊗
OX(Di)

⊗ni .

is a surjective group homomorphism. If dimX = 1 the following statement

also holds: ∑
niDi ∈ kerϕ =⇒

∑
ni = 0.
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3.4 Kodaira Dimension of Curves

Definition 3.4.1. Let X be a smooth, irreducible projective curve, L a line

bundle over X. The degree of a L degL is
∑
ni ∈ Z, where

∑
niDi is any

preimage of L under ϕ. The previous proposition ensures that the degree of

a bundle is well defined.

Remark 3.4.2. deg is a group morphism Pic(X)→ Z: since ϕ : Div(X)→
Pic(X) is surjective, then

Pic(X) ∼=
Div(X)

kerϕ
.

Let ψ denote the morphism

ψ : Div(X) −→ Z∑
niDi 7−→

∑
ni.

Now since kerϕ ⊆ kerψ, there is a unique map ψ such that the diagram

Div(X) Z

Pic(X) ∼= Div(X)
kerϕ

ψ

ϕ
ψ

commutes, and by definition deg = ψ.

Lemma 3.4.3. Let X be a smooth, irreducible projective curve, L a line

bundle on X of degree degL < 0. Then h0(X,L) = 0.

Proof. By contradiction suppose that there exists s ∈ H0(X,L) \ {0}. Then∑
niDi = {s = 0} is an effective divisor of L. So we get

degL =
∑

ni ≥ 0

so we have reached a contradiction.

Theorem 3.4.4 (Riemann-Roch for curves). Let X be a smooth irreducible

projective curve of genus g. For any L ∈ Pic(X)

h0(X,L)− h0(X,L∨ ⊗ ωX) = degL+ 1− g.
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Proof. We refer the reader to [2, IV.1.3].

Corollary 3.4.5. Let X be a smooth irreducible projective curve of genus g.

Then

degωX = 2g − 2.

Theorem 3.4.6 (Kodaira Dimension Classification of Curves). Let X be a

smooth, irreducible projective curve of genus g = h0(X,ωX). Then

if g = 0 κ(X) = −∞,

if g = 1 κ(X) = 0,

if g ≥ 2 κ(X) = 1.

Proof. By Corollary 3.4.5 degωX = 2g − 2, so

degω⊗m
X = m(2g − 2) ∀m ∈ Z.

Suppose g = 0. Then degω⊗m
X = −2m for all m ∈ Z. By Lemma 3.4.3

h0(X,ω⊗m
X ) = 0 for all m > 0, so

κ(X) = κ(ωX) = −∞

by definition of Iitaka dimension of a bundle.

Now suppose g = 1. Then degω⊗m
X = 0 for all m ∈ Z. In particular,

ωX is trivial. Since there exists 0 ̸= s ∈ h0(X,ωX), ωX admits an effective

divisor
∑
niDi. However, degωX = 0 implies

∑
ni = 0 and since ni ≥ 0 for

all i, s must have empty zero set. Thus ωX and consequently all of its powers

of are trivial, so

κ(X) = 0.

Finally, suppose g ≥ 2. Then degω⊗m
X = m(2g − 2) for all m ∈ Z. In

particular h0(X,ω⊗m
X ) = 0 for all m < 0 by Lemma 3.4.3. By the Riemann-

Roch theorem for curves, for m ≥ 2 we get

h0(X,ω⊗m
X )− h0(X,ω−m+1

X ) = h0(X,ω⊗m
X )− 0 = m(2g − 2) + 1− g.
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Since the plurigenera grow linearly in m, by Proposition 3.1.14 we get

κ(X) = 1.

Remark 3.4.7. The geometric genus of a singular (non-smooth) irreducible

curve is defined as the geometric genus of any of its smooth models. Propo-

sition 3.1.18 ensures that it is well-defined. Thus, if char k = 0, by the

birationality of the Kodaira dimension smoothness is not required in the

Kodaira classification of curves.

Remark 3.4.8. The product of two irreducible smooth projective varieties

X, Y is also smooth, projective and irreducible.

Proposition 3.4.9 (Additivity of the Kodaira dimension). Let X, Y be ir-

reducible smooth projective varieties. Then

H0(ω⊗m
X×Y )

∼= H0(ω⊗m
X )⊗k H0(ω⊗m

Y ).

In particular,

κ(X × Y ) = κ(X) + κ(Y ).

Proof. This follows from Remark 2.3.7.

After fixing a dimension n, we now have a way to construct n-dimensional

varieties of each possible Kodaira dimension by considering the product of

smooth, irreducible, projective curves:

• For κ = −∞, we have Pn, alternatively consider the product of a curve

of genus 0 with n− 1 other curves of arbitrary genus;

• For κ = i, 0 ≤ i ≤ n, we consider the product of i curves of genus ≥ 2

with n− i curves of genus 1;

• Alternatively for κ = n we may consider an irreducible smooth hyper-

surface in Pn+1 defined by a polynomial of degree d > n+ 2.
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