
ALMAMATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Deep Learning

EXPLORING LATENT EMBEDDINGS IN
DIFFUSION MODELS FOR FACE
ORIENTATION CONDITIONING

CANDIDATE SUPERVISOR

Antonio Guerra Prof. Andrea Asperti

Academic year 2022-2023

Session 1st

Abstract

Facial rotation is a critical task in computer vision with numerous applica-

tions across various domains. Traditional facial rotation techniques, such

as reconstruction-based and 3D geometry-based approaches, require ground

truth data for training, which presents limitations. This thesis proposes two

novel techniques for addressing the facial rotation problem without relying

on pairs of images. These techniques leverage the latent space of a DDIM

trained to reconstruct human faces and condition the generation process to pro-

duce rotated faces. A comprehensive overview of facial rotation techniques

and Diffusion Models (DMs) is provided, along with the development, imple-

mentation, and evaluation of the newly proposed methods. The first method

modifies specific input image pixels, while the second technique fits a linear

regressor to sample from the latent space. The second method demonstrates

better stability and simplicity, effectively producing rotations of up to ±30◦.

Future research directions include using unbiased datasets with greater face

orientation variation and improving the second method’s computational effi-

ciency.

iii

Contents

1 Introduction 1

2 Background 4

2.1 Diffusion Models for Image generation 4

2.1.1 Diffusion Models Overview 4

2.1.2 Forward diffusion process 5

2.1.3 Reverse diffusion process 7

2.1.4 Training and Loss function 8

2.1.5 Variance schedule . 10

2.1.6 Model architecture 11

2.1.7 Denoising Diffusion Implicit Model 12

2.2 Conditioned image generation 15

2.2.1 Classifier Guidance 15

2.2.2 Classifier-free Guidance 16

2.3 CelebFaces Attributes Dataset 17

2.4 Exploring Embeddings in Denoising Diffusion Models 18

3 Related Works 20

3.1 Face Rotation before Deep Learning 20

3.2 Face Rotation after Deep Learning 21

3.2.1 Latent Space-based Techniques 21

3.2.2 Reconstruction-Based Techniques 21

3.2.3 3D Geometry-Based Techniques 22

v

3.2.4 Face Rotation with Neural Radiance Fields 22

4 Proposed Method 24

4.1 DDIM and Embedding Models 24

4.2 Dataset Preparation . 25

4.2.1 Analysis of Annotations 25

4.2.2 Light Direction Analysis 26

4.2.3 Analyzing Face Orientation 28

4.3 Preprocessing . 31

4.4 Postprocessing . 32

4.5 Filtering CelebA images . 35

4.6 Method 1: Pixel-based conditioning on Input Image 38

4.7 Method 2: Linear Regression and latent interpolation 44

4.8 Differences between the two methods 51

5 Conclusions 53

A Slope computation analysis 55

A.1 Slope Stability analysis . 55

A.2 Slope Similarity Analysis among different Images 58

A.3 Effects of Attribute Removal on Slope Computation 60

Bibliography 62

Acknowledgements 67

vi

List of Figures

1.1 Reification of the portrait of Señora Sabasa Garcia by Fran-

cisco Goya (c. 1806/1811) 2

1.2 Output of the two methods to perform facial rotation on a

CelebA sample. 2

2.1 Overview of the Diffusion Process for image generation 5

2.2 The Markov chain of forward diffusion process 5

2.3 Reverse diffusion process . 7

2.4 Comparison of linear (top) and cosine (bottom) variance sched-

ulers. Source: Improved denoising diffusion probabilistic mod-

els[7] . 11

2.5 The U-Net architecture. Source: U-Net: Convolutional Net-

works for Biomedical Image Segmentation[8] 12

2.6 Random samples from CelebA Aligned dataset. 18

2.7 Examples of embedding for the CelebA dataset. The first row

shows the original images, the second row displays the synthe-

sized latent seed, and the third row presents the reconstructed

images.

Source: Image Embedding for Denoising Generative Models

[14] . 19

4.1 Distribution of CelebA attributes 26

4.2 Distribution of light direction on CelebA 27

4.3 Random sample from CelebA for each light direction 27

vii

4.4 Yaw, Pitch and Roll angles in Head Pose Estimation 28

4.5 Figure (a) displays all facial landmarks, while Figure (b) shows

a reduced set used for head pose estimation. 29

4.6 Example of results of head pose estimation on CelebA. The

estimated yaw is indicated by the green color, pitch by blue,

and roll by red. 30

4.7 Yaw distribution on CelebA dataset 30

4.8 In Figure (a), the original CelebaMask-hqmasks are displayed,

while Figure (b) shows the cropped versionwith unifiedmasks

used to train the segmentation model. 31

4.9 Architecture of the proposed super-resolution model 32

4.10 Output of the proposed Super-Resolutionmodel. UsingGoogle

Colaboratory, the model generates three predictions in less

than 1 second. 33

4.11 Output of the CodeFormer model. Using Google Colabora-

tory, the model generates three predictions in about 30 seconds. 34

4.12 The top row displays the mean images for specified yaw an-

gles when the male attribute is -1. The bottom row shows the

mean images for specified yaw angles when the male attribute

is 1. 36

4.13 Figure (a) displays the mean images for different light direc-

tions, while Figure (b) shows the images for different values

of the smiling attribute. 37

4.14 Pipeline of generation process using the Embedding Model

and the DDIM. 38

4.15 Computation of the raw correction on the first image of CelebA. 39

4.16 Figure (a) shows the computation of the adapted mean for the

starting orientations, while Figure (b) shows the computation

of the adapted mean for the target orientations. 40

4.17 Computation of the final correction. 41

viii

4.18 Final generation step . 42

4.19 Method 1 applied with additional steps on 3 samples from

CelebA. 42

4.20 Image 25000 from CelebA dataset: the original image (left),

the pre-processed image (center), and the resized version (right)

used as input. 44

4.21 This image demonstrates the process of computing the root

point 0, based on a subset of attributes including ’male’, ’gen-

der’, and ’smiling’. These attributes were used to get similar

images from CelebA. 45

4.22 In Figure (a), the root point is computed using the embedding

of the mean image, while in Figure (b), it is computed as the

average of the embeddings of similar images. 46

4.23 The full set of root points that were computed for the left di-

rection. 46

4.24 Visualization of all the components involved in the second

method using the PCA with 2 principal components. 49

4.25 This image shows the result of sampling using a linear regres-

sor with root points that extend towards the left direction. . . . 49

4.26 This image shows the result of sampling using a linear regres-

sor with root points that extend towards the right direction. . . 50

4.27 This figure compares the outputs of the two methods on three

CelebA images. The input image is in the middle, with the

first method’s output on the top row and the second method’s

output on the bottom row. 52

A.1 First attribute subset cosine similarity heatmap. 56

A.2 Second attribute subset cosine similarity heatmap. 56

A.3 Third attribute subset cosine similarity heatmap. 57

A.4 Fourth attribute subset cosine similarity heatmap. 57

ix

A.5 Cosine similarities heatmap between different images 59

A.6 Images used for attribute utility analysis. 60

x

List of Tables

2.1 FID scores on CIFAR10 and CelebA datasets by diffusion

models of different settings. Source: Denoising diffusion im-

plicit models [9] . 14

A.1 Results of left slopes cosine similarities. 61

A.2 Results of right slopes cosine similarities. 61

xi

List of Algorithms

1 Color correction . 35

2 Filtering on CelebA . 37

3 Method 1 pseudocode . 43

4 Method 2: Root points computation 47

5 Method 2 pseudocode . 50

xii

xiii

Chapter 1

Introduction

The generation of realistic images has long been a challenging problem in the

field of machine learning that has recently become a hot topic thanks to a vast

number of successful applications proposed in the literature. One approach

that has shown promise is the use of diffusion models, which can generate

high-quality images by iteratively refining a Gaussian noise via a Denoising

process. The latent space of these models, which represents the underlying

structure of the generated images, could play a crucial role in the quality and

diversity as well as for the conditioning of the generated images.

The focus of the work conducted is to investigate the latent space of dif-

fusion models for image generation. Specifically, the aim is to explore the

properties of the latent space and how it can be manipulated to generate im-

ages with desired characteristics. This investigation will involve analyzing

the structure of the latent space, developing techniques for manipulating it,

and evaluating the impact of these manipulations on the generated images.

Specifically, two main applications of conditional generation were ex-

plored:

1. Embedding human portraits into the latent space to feed a diffusion

model, trained to generate real human faces, to produce the most likely real

approximation of input portraits, we call this operation ”reification”.

Introduction 2

An output example is given in Figure 1.1

Reification Input Reification Output

Figure 1.1: Reification of the portrait of Señora Sabasa Garcia by Francisco

Goya (c. 1806/1811)

2. Exploit the latent space of a diffusion model trained to reconstruct hu-

man faces and condition the generation process to produce rotated faces. Two

methods were proposed: the first involves modifying specific pixels in the

input image fed to the diffusion model to condition the generation, and the

second fitting a linear regressor to sample from the latent space the rotated

faces. The corresponding output of the two methods are shown in figure 1.2

Figure 1.2: Output of the two methods to perform facial rotation on a CelebA
sample.

The focus of this thesis will be to condition the generation process in order

to produce rotated faces. Facial rotation is a crucial task in computer vision

Introduction 3

with a wide range of applications in security, entertainment, and healthcare. In

recent years, deep learning techniques have revolutionized the field of facial

rotation, enabling the development of more accurate and efficient methods.

Traditional facial rotation techniques, including the reconstruction-based

approach and the 3D geometry-based approach, have advantages and limita-

tions. However, both approaches require ground truth data for training, which

consists of pairs of images captured from various angles of a specific person,

along with a frontal image of that person.

To address this limitation, this work proposes two novel techniques for

solving the facial rotation problem without relying on pairs of images. Both

techniques explore the latent space of a DDIM trained to reconstruct human

faces and condition the generation process to produce rotated faces.

This thesis provides a theoretical background on DiffusionModels (DMs),

which are a class of models that can revert the diffusion process by iteratively

adding Gaussian noise to an image. The text also discusses some works, such

as DDPM, that have successfully implemented DMs by simplifying their loss

function. Furthermore, the evolution of DMs across recent years is explored,

both from an architectural and theoretical perspective, in order to improve the

sampling speed and the quality of generated samples.

In addition, this thesis provides an overview of facial rotation techniques

developed over time and categorizes them into two groups: those created be-

fore the emergence of deep learning techniques and those developed after-

ward. Finally, this thesis covers the development, implementation, and evalu-

ation of these novel facial rotation techniques. We also discuss future research

directions in this area.

Chapter 2

Background

2.1 Diffusion Models for Image generation

Image generation is an essential task in computer vision and artificial intelli-

gence, with applications such as generative art, content creation, image edit-

ing, and data augmentation. One of the prevailing techniques for image gen-

eration is the use of generative models, which learn the underlying data dis-

tribution and use it to produce new samples that resemble the training data.

2.1.1 Diffusion Models Overview

DiffusionModels have emerged as a promising approach to image generation,

based on the principles of the Diffusion Process, a stochastic process that de-

scribes the random motion of particles in a fluid or gas.

One of the significant advantages of Diffusion Models is their ability to

generate high-quality images with realistic textures and fine details. The diffu-

sion process enables the model to capture the complex statistical dependencies

between pixels in an image, a challenging task for other generative models.

This makes Diffusion Models a promising approach to image generation.

2.1 Diffusion Models for Image generation 5

Figure 2.1: Overview of the Diffusion Process for image generation

Numerous generativemodels based on diffusion have been proposed, shar-

ing similar underlying ideas. These models include: deep unsupervised learn-

ing using Nonequilibrium Thermodynamics [1], noise-conditioned score net-

work (NCSN) [2], and denoising diffusion probabilistic models (DDPM) [3].

In the context of image generation, the Diffusion Model defines a Markov

chain of diffusion steps that slowly adds random noise to the data, and learns

to reverse the diffusion process to construct desired data samples from the

noise. Unlike other generative models like VAEs or flow models, diffusion

models are learned with a fixed procedure, and the latent variable has high

dimensionality, the same as the original data.

2.1.2 Forward diffusion process

Figure 2.2: The Markov chain of forward diffusion process

As mentioned previously, the first step in generating images using diffusion

models is to perform a forward diffusion process. This involves taking a data

point sampled from a real data distribution, denoted as x0 ∼ q(X), and adding

2.1 Diffusion Models for Image generation 6

small amounts of Gaussian noise to it in a series of steps. The resulting se-

quence of noisy samples is denoted as x1, . . . , xT . The step sizes are deter-

mined by a variance schedule β1, . . . , βT , which controls how much noise

is added at each step. The forward diffusion process can be mathematically

described by the following equation:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) q(x1:T |x0) =
T∏

t=1
q(xt|xt−1) (2.1)

The figure 2.2 illustrates how the Diffusion Process gradually degrades the

distinctive features of a data sample x0 as the step t becomes larger. Eventu-

ally, as T approaches infinity, the resulting image xT becomes indistinguish-

able from an isotropic Gaussian distribution.

The Diffusion Process, despite causing degradation of the image features

over time, has a valuable property that enables the generation of a noisy image

at any given time step t with a single step. This is possible due to the Gaus-

sian distribution of the added noise, which allows for the pre-composition of

various noise functions while maintaining a Gaussian distribution. To achieve

this, we require the following premises:

let αt = 1− βt and ᾱt =
t∏

i=1
αi (2.2)

thanks to 2.2 we can derive xt as:

xt =
√

αtxt−1 +
√

1− αtϵt−1 ;where ϵt−1, ϵt−2, · · · ∼ N (0, I)

= √αtαt−1xt−2 +
√

1− αtαt−1ϵ̄t−2 ;where ϵ̄t−2 merges two Gaussians (*).

= . . .

=
√

ᾱtx0 +
√

1− ᾱtϵ

(2.3)

2.1 Diffusion Models for Image generation 7

finally, we can obtain the formula for sampling xt at an arbitrary time step

t as:

q(xt|x0) = N (xt;
√

ᾱtx0, (1− ᾱt)I) (2.4)

2.1.3 Reverse diffusion process

Figure 2.3: Reverse diffusion process

In contrast to the forward diffusion process, the reverse diffusion process aims

to remove noise from a noisy image and generate a clear output. However, ac-

curately estimating q(xt−1|xt) is not a simple task, as it requires using the en-

tire dataset. Therefore, we must rely on deep learning models to approximate

these conditional probabilities, allowing us to execute the reverse diffusion

process effectively. We will define the deep learning model pθ as:

pθ(x0:T) = p(xT)
T∏

t=1
pθ(xt−1|xt)

pθ(xt−1|xt) = N (xt−1; µθ(xt, t), Σθ(xt, t))
(2.5)

One notable feature is that the reverse conditional probability is tractable when

conditioned on x0:

q(xt−1|xt, x0) = N (xt−1; µ̃(xt, x0), Σ̃tI) (2.6)

Finally, as derived inUnderstanding Diffusion Models: A Unified Perspective

[4], we can conclude that:

2.1 Diffusion Models for Image generation 8

µ̃(xt, x0) =
√

αt(1− ᾱt−1)
1− ᾱt

xt +
√

ᾱt−1βt

1− ᾱt

x0

Σ̃t = β̃t = σ̃2
t = 1− ᾱt−1

1− ᾱt

· βt

(2.7)

given that we have access to both the original image X0 and the noisy images

at Xt and Xt−1 during the training phase, we are able to train a model on this

specific distribution.

Furthermore, utilizing Equation 2.3, we can expressx0 as 1√
ᾱt

(xt−
√

1− ᾱtϵ).

Subsequently, by applying Equation 2.7, we arrive at:

µ̃t = 1
√

αt

(
xt −

1− αt√
1− ᾱt

ϵ
)

= 1
√

αt

(
xt −

βt√
1− ᾱt

ϵ
)

(2.8)

as our target µ̃t now only depends on xt, we can employ a neural network to

approximate ϵ and, in turn, approximate µ̃t as well:

µ̃θ(xt, t) = 1
√

αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)
)

(2.9)

2.1.4 Training and Loss function

By analyzing the situation from a broader perspective, it becomes apparent

that the pairing of q and p resemblance to that of a Variational Autoencoder

(VAE) [5]. As a result, we can employ the variational lower bound technique

to enhance the optimization of the negative log-likelihood.

According to [6], it can be demonstrated after some mathematical manip-

ulation that:

LVLB =Eq[DKL(q(xT |x0) ∥ pθ(xT))︸ ︷︷ ︸
LT

+
T∑

t=2
DKL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))︸ ︷︷ ︸

Lt−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0

]

(2.10)

2.1 Diffusion Models for Image generation 9

analyzing these terms, we can observe that:

• The L0 term can be interpreted as a reconstruction term, similar to the

one found in the evidence lower bound (ELBO) of a variational autoen-

coder. In [3], this term is learned using a separate decoder;

• LT is a constant term that can be safely ignored during training. This is

because q has no learnable parameters and xT is assumed to be Gaus-

sian noise, which means that it does not contribute to the gradient of

the loss function. Therefore, we can neglect LT without affecting the

optimization process;

•
∑T

t=2 Lt−1, also referred to asLt, is particularly interesting as it captures

the difference between the desired denoising steps q(xt−1|xt, x0) and

their approximations pθ(xt−1|xt, x0).

From equation 2.8 and equation 2.9, as shown in [6], the Lt of the loss

function can be expressed as:

Lt = Ex0,ϵ

[1
2∥Σθ(xt, t)∥2

2
∥µ̃t(xt, x0)− µθ(xt, t)∥2

]

= Ex0,ϵ

[(1− αt)2

2αt(1− ᾱt)∥Σθ∥2
2
∥ϵt − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵt, t)∥2

] (2.11)

this clearly indicates that the model is not predicting the mean of the dis-

tribution, but rather the noise ϵ for each time step t.

Additionally, research presented in [3] indicates that the diffusion model

achieves superior results through the use of a simplified objective that omits

the weighting term. As a result, the Lt term can be expressed as:

Lsimple
t = Et∼[1,T],x0,ϵt

[
∥ϵt − ϵθ(xt, t)∥2

]
= Et∼[1,T],x0,ϵt

[
∥ϵt − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵt, t)∥2

] (2.12)

Moreover, in DDPMs, as described in equation 2.7 and [3], the parameters βt

2.1 Diffusion Models for Image generation 10

are fixed as constants, rather than being learned. In particular, the diagonal

covariance matrix Σθ(xt, t) = σ2
t I, where σt is set to either βt or a modified

value β̃t = 1−ᾱt−1
1−ᾱt

·βt. This approach was found to be more stable and produce

higher-quality samples than attempting to learn the diagonal variance directly,

which can lead to unstable training.

In the paper titled Improved Denoising Diffusion Probabilistic Models [7],

the authors propose a method to learn Σθ(xt, t) by interpolating between βt

and β̃t. This is achieved through the use of a mixing vector v:

Σθ(xt, t) = exp(v log βt + (1− v) log β̃t) (2.13)

Since the loss Lsimple does not depend on Σθ. To add the dependency, they

constructed a hybrid objective:

Lhybrid = Lsimple + λLVLB (2.14)

Where to prevent the dominance of LVLB over Lsimple, λ is set to 0.001. Ad-

ditionally, to ensure that LVLB only guides the learning of Σθ, the gradient is

stopped on µθ(xt, t) for the LVLB term.

2.1.5 Variance schedule

The variance parameter βt can either be fixed to a constant or chosen as a

schedule over the T time steps. For instance, in the paper Denoising diffusion

probabilistic models [3], the forward variances are set to a sequence of linearly

increasing constants, starting from β1 = 10−4 and ending at βT = 0.02. How-

ever, in the paper Improved denoising diffusion probabilistic models [7], it is

demonstrated that using a cosine schedule leads to better results. Specifically,

they proposed the variance scheduling shown below:

ᾱt = f(t)
f(0)

where f(t) = cos
(

t/T + s

1 + s
· π

2

)2
(2.15)

2.1 Diffusion Models for Image generation 11

Moreover, to avoid singularities at the end of the diffusion process, they con-

strained βt to be no greater than 0.999:

βt =

1− ᾱt

ᾱt−1
, if 1− ᾱt

ᾱt−1
< 0.999

0.999, otherwise
(2.16)

Figure 2.4: Comparison of linear (top) and cosine (bottom) variance sched-

ulers. Source: Improved denoising diffusion probabilistic models[7]

The figure 2.4 shows latent samples generated from linear and cosine sched-

ules, respectively, at evenly spaced values of t from 0 to T . In the linear sched-

ule, the samples in the last quarter of the interval are mostly noise. In contrast,

the cosine schedule adds noise at a slower rate, leading to smoother and more

coherent samples throughout the entire interval.

2.1.6 Model architecture

The architecture of the diffusionmodel for image generation is primarily based

on the U-net [8], a type of convolutional neural network (CNN) designed for

image segmentation tasks. The U-net was chosen for its ability to process and

generate high-resolution images while maintaining a relatively low number

of trainable parameters, which is crucial for efficient training and reducing

overfitting.

The U-net architecture consists of an encoder-decoder structure with skip

connections between corresponding layers in the encoder and decoder. This

design allows the network to learn both global and local structures within the

image, making it suitable for the diffusion model’s requirements.

2.1 Diffusion Models for Image generation 12

In the original implementation of DDPMs [3], the U-Net consists of Wide

ResNet blocks, group normalization, and self-attention blocks.

In addition to the U-Net architecture, the diffusion model for image gener-

ation also employs sinusoidal position embeddings to encode the noise level

of each image in a batch. Then, this embedding is added into each residual

block of the network. This technique is inspired by the Transformer architec-

ture and enables the neural network to share its parameters across all the T

denoising steps and to keep track of the time step it is currently processing for

each image.

Figure 2.5: The U-Net architecture. Source: U-Net: Convolutional Networks

for Biomedical Image Segmentation[8]

2.1.7 Denoising Diffusion Implicit Model

DDPM models have a critical drawback: they require many iterations to pro-

duce high-quality samples. This is because the generative process approx-

imates the reverse of the forward diffusion process, which could have thou-

sands of steps. To produce a single sample, DDPMs must iterate over all these

steps, making them much slower than GANs.

2.1 Diffusion Models for Image generation 13

In [9], Denoising Diffusion Implicit Models (DDIMs) are introduced as

an alternative diffusion model to improve the efficiency of generating high-

quality samples, reducing the gap between DDPMs and GANs.

One of the main differences between the DDPMs and the DDIMs is that

the latter proposes a non-Markovian method that enables skipping steps in

the denoising process. This means that it’s no longer necessary to visit all

past states before the current state. Specifically, the DDIM paper introduces a

more general forward process that depends on both the initial state x0 and the

current state xt, given the previous state xt−1

To improve the denoising process, the previous state xt−1 is redefined to

be parameterized by a desired standard deviation σt. The new equation is as

follows:

xt−1 =
√

ᾱt−1x0 +
√

1− ᾱt−1 − σ2
t

xt −
√

ᾱtx0√
1− ᾱt

+ σtϵ (2.17)

This modification allows us to also parameterize the reverse denoising process

q(xt−1|xt, x0) by a desired σt:

qσ(xt−1|xt, x0) = N (xt−1;
√

ᾱt−1x0 +
√

1− ᾱt−1 − σ2
t

xt −
√

ᾱtx0√
1− ᾱt

, σ2
t I)

(2.18)

recalling from equation 2.6 and equation 2.7 that:

q(xt−1|xt, x0) = N (xt−1; µ̃(xt, x0), β̃tI)

where β̃t = σ2
t = 1− ᾱt−1

1− ᾱt

· βt

(2.19)

to improve the denoising process in equation 2.18, we can choose σ2
t to be

η · β̃t. Setting η to 0 makes the sampling process deterministic, while still

maintaining the same marginal noise distribution. In this case, DDIM maps

noise back to the original data samples deterministically. Another special case

is when η = 1, which is the definition of the original DDPMs. Any η between

0 and 1 is an interpolation between a DDIM and DDPM.

2.1 Diffusion Models for Image generation 14

During the generation process, we only sample a subset of S diffusion

steps, denoted by τ1, . . . , τS . As a result, the inference process is given by the

following equation:

qσ,τ (xτi−1|xτt , x0) = N (xτi−1 ;
√

ᾱt−1x0+
√

1− ᾱt−1 − σ2
t

xτi
−
√

ᾱtx0√
1− ᾱt

, σ2
t I)

(2.20)

In the experiments, all models are trained with T = 1000 diffusion steps.

However, it was observed that DDIM produces the best quality samples when

S is small, while DDPM performs much worse on small S. DDPM performs

better when we can afford to run the full reverse Markov diffusion steps (i.e.,

S = T = 1000).

With DDIM, it is possible to train the diffusion model up to any arbitrary

number of forward steps, but only sample from a subset of steps during gen-

eration.

Moreover, DDIM exhibits a “consistency” property due to its determin-

istic generative process. This property implies that when multiple samples

are conditioned on the same latent variable, they should display similar high-

level features. Thanks to this consistency, DDIM can perform semantically

meaningful interpolation in the latent variable.

Table 2.1: FID scores on CIFAR10 and CelebA datasets by diffusion models
of different settings. Source: Denoising diffusion implicit models [9]

2.2 Conditioned image generation 15

2.2 Conditioned image generation

Image generation often requires a way to control how samples are created to

manipulate the final output. This process is commonly referred to as guided

diffusion. Several techniques have been developed to incorporate image and/or

text embeddings into the diffusion process to guide the generation. In math-

ematical terms, “guidance” refers to the process of conditioning a prior data

distribution, denoted by p(x), with a specific condition, such as a class label

or an image/text embedding. This conditioning results in a conditional distri-

bution, denoted by p(x|y).

To convert a diffusion model pθ into a conditional diffusion model, we can

introduce conditioning information y at each diffusion step as follows:

pθ(x0:T |y) = pθ(xT)
T∏

t=1
pθ(xt−1|xt, y) (2.21)

In general, guided diffusion models aim to learn the gradient of the logarithm

of the conditional density pθ(xt|y). By applying Bayes’ rule, we can express

this gradient as:

∇xtlogpθ(xt|y) = ∇xtlog

(
pθ(y|xt) · pθ(xt)

pθ(y)

)
(2.22)

Since the gradient operator only applies to xt, we can eliminate the term pθ(y)

and simplify the expression using the logarithmic product rule:

∇xtlogpθ(xt|y) = ∇xt log pθ(xt) + s · ∇xt log pθ(y|xt) (2.23)

Where s is a scalar term used to modulate the strength of the guidance term.

2.2.1 Classifier Guidance

The use of a second model, a classifier fϕ(y|xt, t)), to guide the diffusion dur-

ing training has been demonstrated in [10]. This technique involves training

2.2 Conditioned image generation 16

a classifier fϕ(y|xt, t) on a noisy image xt to predict its class y. The gradient

∇x log fϕ(y|xt) can then be utilized to guide the diffusion sampling process

towards the conditioning information y by modifying the noise prediction. In

particular, in [10] is showed that:

∇xt log pθ(xt, y) = ∇xt log pθ(xt) +∇xt log pθ(y|xt)

= − 1√
1− ᾱt

(ϵθ(xt, t)−
√

1− ᾱt∇xt log fϕ(y|xt))
(2.24)

Therefore, a new classifier-guided predictor ϵ̂θ can be expressed as:

ϵ̂θ(xt, t) = ϵθ(xt, t)−
√

1− ᾱt · s · ∇xt log fϕ(y|xt) (2.25)

As before, s is a scalar term that modulates the strength of the guidance term.

2.2.2 Classifier-free Guidance

As demonstrated in [11], performing conditional diffusion steps can be achieved

without relying on an independent classifier fϕ(y|xt, t). Specifically, by start-

ing from the formulation in Equation 2.23, a classifier-free guided diffusion

model can be defined as follows:

∇xtlogpθ(xt|y) = (1− s) · ∇xt log pθ(xt) + s · ∇xt log pθ(y|xt) (2.26)

Instead of training a separate classifier, the authors trained a conditional diffu-

sionmodel ϵθ(xt|t, y) along with an unconditional model ϵθ(xt|t, 0). Notably,

the same neural network is used for both models. During training, the class y

is randomly set to 0, exposing the model to both conditional and unconditional

setups. Finally, as shown in [11], we obtain:

ϵ̂θ(xt|t, y) = (s + 1) · ϵθ(xt, t, y)− s · ϵθ(xt, t) (2.27)

2.3 CelebFaces Attributes Dataset 17

This process offers two significant advantages. Firstly, it uses only a single

model to guide the diffusion process. Secondly, it simplifies the conditioning

process when working with data that is difficult to predict using a classifier,

such as text embeddings.

2.3 CelebFaces Attributes Dataset

The CelebFaces Attributes dataset (CelebA) [12] is a large-scale dataset con-

taining over 200,000 annotated celebrity images, widely used in computer vi-

sion and machine learning for facial recognition and attribute prediction. Each

image has 40 binary attribute annotations, such as gender, age, and facial hair,

as well as bounding box annotations for the faces.

CelebA’s diverse collection of images vary in quality, resolution, and come

from different sources, with awide representation of ethnicities, ages, and gen-

ders. An aligned version of the dataset ensures consistent size and orientation

by centering faces in a common coordinate system, making it more suitable

for deep learning models.

Additionally, CelebAMask-HQ [13] is a variant of CelebA consisting of

30,000 high-resolution images with manually-annotated segmentation masks

for 19 facial components and accessories. This dataset is useful for training

and evaluating face parsing, recognition, and generative adversarial networks

(GANs) in face generation and editing.

In conclusion, the CelebFaces Attributes dataset (CelebA) and its variant

CelebAMask-HQ are valuable resources for researchers and practitioners in

the fields of computer vision and machine learning.

2.4 Exploring Embeddings in Denoising Diffusion Models 18

Figure 2.6: Random samples from CelebA Aligned dataset.

2.4 ExploringEmbeddings inDenoisingDiffusion

Models

Generativemodels, like the DenoisingDiffusion ProbabilisticModel (DDPM)

and the Generative Adversarial Network (GAN), aim to capture a compressed

version, or “embedding”, of high-dimensional data like images. This embed-

ding is used to either model the input’s probability distribution or generate

new samples that follow the learned distribution.

However, the challenge with embeddings is that there are many possible

ways to represent the data, and it’s unclear which one is optimal. Further-

more, embeddings must be learned through unsupervised learning, so there’s

no labeled data available to guide the process.

The focus of the study by [14] is to investigate the problem of embedding

an image into the latent space of Denoising Diffusion Models. Specifically,

the study aims to identify a suitable “noisy” image that, when denoised, results

in the original image. This is a challenging task because the generator of a

diffusion model is non-injective, meaning that for each sample, there exists a

cloud of elements that can generate that sample. This set of elements is called

the embedding of the sample, denoted as emb(x).

2.4 Exploring Embeddings in Denoising Diffusion Models 19

The authors experimented with several approaches for the embedding task

and found that the most effective ones were direct synthesis of the embed-

ding representation of an image through a neural network trained to compute

a “canonical” embedding for each image. The network takes an image x as

input and produces a seed zx ∈ emb(x). The loss function used to train the

network is the distance between x and the result of the denoising process start-

ing from zx. The best results were obtained with a U-Net architecture, which

is practically identical to the denoising network.

Figure 2.7: Examples of embedding for the CelebA dataset. The first row

shows the original images, the second row displays the synthesized latent seed,

and the third row presents the reconstructed images.

Source: Image Embedding for Denoising Generative Models [14]

It’s important to note that embedding is not an iterative process and a single

forward pass through the embedding network is enough to compute the latent

representation. The reconstruction quality is high, with just slight blurriness

and an MSE of around 0.0012 for the CelebA dataset.

Chapter 3

Related Works

Face rotation is a crucial task in computer vision with widespread applica-

tions in areas such as security, entertainment, and healthcare. In recent years,

the field of facial rotation has been transformed by deep learning techniques,

which have facilitated the development of more accurate and efficient meth-

ods for rotating faces. This section provides an overview of facial rotation

techniques developed over time and categorizes them into two groups: those

created before the emergence of deep learning techniques and those developed

afterward.

3.1 Face Rotation before Deep Learning

Prior to the advent of deep learning, facial rotation techniques typically in-

volved applying the characteristics of the input face image to a 3D face model

and rotating it to generate a rotated version of the input image. Some exam-

ples of this approach include [15] and [16]. However, [17] proposed a differ-

ent method that involved constructing a 3D transformation matrix to map each

point in a 2D face image to a corresponding point on a 3D face model. Despite

their ability to produce rotated face images, these techniques were limited by

the distortion and blurring effects that arose from the conversion of 2D images

into 3D models.

3.2 Face Rotation after Deep Learning 21

3.2 Face Rotation after Deep Learning

The advancement of deep learning has greatly accelerated facial rotation tech-

niques, particularly those based on generative adversarial networks (GANs).

GAN-based facial rotation techniques have been extensively researched and

developed due to their effectiveness in producing high-quality results.

3.2.1 Latent Space-based Techniques

Recent research has developedmethods tomanipulate and control the attributes

of generated faces through a latent space-based approach. This includes con-

trolling attributes such as age, eyeglasses, gender, expression, and rotation

angles. Several methods have been developed, including PCA analysis to ex-

tract important latent directions [18], semantic analysis to control various at-

tributes [19], and composing a new latent vector to control multiple attributes

[20]. However, these methods have not prioritized face rotation or pose con-

trol, potentially limiting their ability to produce faces with various poses and

angles.

3.2.2 Reconstruction-Based Techniques

Reconstruction-based techniques useGenerativeAdversarial Networks (GANs)

to generate a composite face image from a specific angle, with face frontaliza-

tion being the most common. Face frontalization aims to enhance the accuracy

of face recognition by synthesizing a frontal face image from a side view of

facial images.

DR-GAN [21], TP-GAN [22], CAPG-GAN [23], and FNM [24] are popu-

lar techniques in this category. DR-GAN separates the input image’s features

and angle to create a frontal image, while TP-GAN learns the overall outline

features and detailed features separately to synthesize the frontal face image.

CAPG-GAN uses a heat map to frontalize an input face, and FNM combines

labeled and unlabeled data to improve learning efficiency.

3.2 Face Rotation after Deep Learning 22

However, these methods struggle to generate convincing results for input

images with angles close to the side and for angles other than the front.

3.2.3 3D Geometry-Based Techniques

Various 3D geometry-based approaches have been developed to tackle face

rotation challenges by combining conventional techniques with Generative

Adversarial Networks (GANs). Notable methods include FF-GAN [25], UV-

GAN [26], HF-PIM [27], and Rotate-and-Render [28].

FF-GAN creates rotated face images by combining 3D deformable model

coefficients with an existing 3D model, while UV-GAN rotates images using

a UV map. HF-PIM synthesizes characteristic information of an input image

and applies it to the result, and Rotate-and-Render uses texture feature infor-

mation of an input image to construct a dataset for synthesizing rotated images

from multiple angles.

Compared to reconstruction-basedmethods, 3D geometry-based approaches

produce more realistic results for side-facing images but require additional

processing for the 3D model, which consumes more computational resources.

3.2.4 Face Rotation with Neural Radiance Fields

Neural Radiance Fields (NeRF) [29] is an advanced approach for represent-

ing complex 3D scenes using neural networks. It has shown great potential

in various computer vision tasks due to its ability to generate photorealistic

renderings of scenes from novel viewpoints. NeRF models the radiance and

volume density of a scene as a continuous function, which is parameterized by

a neural network that takes a 3D coordinate and a viewing direction as inputs.

The scene’s appearance is then rendered by integrating the radiance along each

camera ray.

Despite its impressive results, NeRF has some limitations. It is computa-

tionally expensive and requires largememory resources, making it challenging

3.2 Face Rotation after Deep Learning 23

to apply to large-scale environments. Additionally, NeRF is sensitive to input

data and has limited ability to capture fine geometric details.

One area where NeRF has received increasing attention is in face rotation.

For example, a recent paper called FENeRF: Face Editing in Neural Radi-

ance Fields [30] proposes a two-stage approach for editing facial attributes in

images using NeRFs. The first stage involves predicting a 3D representation

of the face using a NeRF, and the second stage involves manipulating the 3D

representation to edit the face attributes. The method has demonstrated effec-

tiveness in changing the pose and expression of faces, among other editing

tasks.

Chapter 4

Proposed Method

Facial rotation techniques that use either the reconstruction-based approach or

the 3D geometry-based approach have their respective advantages and limi-

tations. However, a common drawback of both approaches is that they rely

on ground truth data for training, specifically pairs of images captured from

different angles of a specific person, along with a frontal image of that person.

To overcome this limitation, this work proposes two novel techniques for

solving the facial rotation problem without relying on pairs of images. Both

techniques aim to explore the latent space of a DDIM trained to reconstruct

human faces and condition the generation process to produce rotated faces.

4.1 DDIM and Embedding Models

The proposed techniques are built upon two key models: the Diffusion De-

noising Implicit Model (DDIM) and the EmbeddingModel, which were intro-

duced in [14] and analyzed in the background chapter of this work. The DDIM

is trained to reconstruct realistic human faces using the CelebA dataset, while

the Embedding Model is trained to produce embeddings in the latent space

that enable the generation of faces. The use of a diffusion model is partic-

ularly interesting as it allows for a more visible analysis of the latent space.

This is because the dimensionality of the latent space is the same as that of the

4.2 Dataset Preparation 25

visible space.

4.2 Dataset Preparation

The dataset utilized for this experiment is a modified version of the Celeb-

Faces Attributes dataset (CelebA-aligned). This extensive dataset includes

over 200,000 images of celebrity faces, which have been annotated and cen-

tered. For this experiment, a central crop of dimension 128 × 128 was em-

ployed, which is a common crop size used in previous research [31, 32]. The

128×128 crop size was chosen to facilitate down-sizing to a final input-output

dimension of 64× 64, which is the required size for the reverse diffusion pro-

cess.

4.2.1 Analysis of Annotations

Out of the 40 binary attribute annotations available in the dataset, this study

has focused on a subset that includes gender, smiling, youthfulness, andmouth

opening, which are considered important factors in conditioning the genera-

tion of the DDIM using the proposed techniques.

In this section, an analysis will be conducted on the distribution of these

attributes across the images in CelebA to determine if there are any biases that

need to be taken into account.

In CelebA, each attribute is annotated with either -1 or 1. For example,

for gender, ”male = 1” indicates images of males, and ”male = -1” indicates

images of females.

4.2 Dataset Preparation 26

Figure 4.1: Distribution of CelebA attributes

As shown in Figure 4.1, the dataset is unbalanced. Specifically, approxi-

mately 58% of the images in the dataset are of females, and about 77% of the

images are of young people. This imbalancemay negatively impact the perfor-

mance of the proposed method, particularly for faces of males and older indi-

viduals compared to females and younger individuals. Instead, there is no sig-

nificant imbalance in the distribution of the ”smiling” and ”mouth_slightly_open”

attributes.

4.2.2 Light Direction Analysis

In order to enhance the results, the CelebA-aligned dataset has been expanded

to include information about the direction of light that falls on each face. This

additional data enables us to differentiate between three types of light direc-

tion: ”Center”, ”Right”, and ”Left”.

4.2 Dataset Preparation 27

Figure 4.2: Distribution of light direction on CelebA

As illustrated in Figure 4.2, approximately half of the images in the dataset

exhibit a center light direction, while the remaining images are almost equally

distributed between left and right directions.

Figure 4.3: Random sample from CelebA for each light direction

4.2 Dataset Preparation 28

4.2.3 Analyzing Face Orientation

To condition the generation of DDIM for producing faces with varying orien-

tations, information about head orientation in the CelebA dataset is required.

Unfortunately, this information is not provided in the standard CelebA-aligned

dataset’s annotations. As a result, the head orientation for each image in the

dataset must be estimated through head pose estimation.

Head pose estimation is a computer vision task that determines a person’s

head orientation in three-dimensional space by calculating three rotation an-

gles: yaw, pitch, and roll. These angles comprehensively represent the head’s

orientation. Specifically, yaw denotes the rotation around the vertical axis,

pitch refers to the rotation around the horizontal axis, and roll signifies the

rotation around an axis perpendicular to the other two.

Figure 4.4: Yaw, Pitch and Roll angles in Head Pose Estimation

To calculate these angles, the facial landmarks for each image in CelebA

need to be computed. For this purpose, the Face Recognition library [33] was

employed, which is a robust Python library built on top of Dlib and deep learn-

ing models. The face detection algorithm used in this library is based on the

Histogram of Oriented Gradients (HOG) method. This technique computes

the gradient orientation and magnitude at every pixel in an image, then groups

these values into cells and blocks. The resulting histogram is used to identify

regions of the image that may contain a face. Once faces have been detected,

4.2 Dataset Preparation 29

the library employs a deep learning model to extract facial landmarks, achiev-

ing an accuracy of 99.38% on the Labeled Faces in the Wild benchmark.

(a) (b)

Figure 4.5: Figure (a) displays all facial landmarks, while Figure (b) shows a

reduced set used for head pose estimation.

Next, a subset of facial landmarks is selected, including the nose tip, chin,

eye corners, and mouth corners (as shown in figure 4.5 (b)). By combining

these points with a generic 3D face model, the face’s rotation and transla-

tion vectors can be estimated. The cv2.solvePnP() function from the OpenCV

library [34] is used to accomplish this, which solves the Perspective-n-Point

(PnP) problem. Specifically, the iterativemethod (cv2.SOLVEPNP_ITERATIVE)

is applied to refine the estimates. If the estimation is successful, the Euler

angles (yaw, pitch, and roll) are computed from the decomposed projection

matrix using the cv2.decomposeProjectionMatrix() function, based on the fol-

lowing equations:

pitch = atan2
(
−R2,0,

√
R2

2,1 + R2
2,2

)
yaw = atan2(R1,0, R0,0)

roll = atan2(R2,1, R2,2)

(4.1)

Here, Ri,j represents the entries of the rotation matrix obtained through

the cv2.solvePnP() function.

Finally, the pitch, yaw, and roll angles are converted from radians to de-

grees and corrected to ensure that these angles lie within the appropriate range,

using the following formulas:

4.2 Dataset Preparation 30

pitch = arcsin (sin(pitch))

roll = − arcsin (sin(roll))

yaw = arcsin (sin(yaw))

(4.2)

Figure 4.6: Example of results of head pose estimation on CelebA. The esti-

mated yaw is indicated by the green color, pitch by blue, and roll by red.

After completing the head pose estimation, an analysis was performed on

the distribution, especially of yaw, as it represents the most significant rota-

tion for this task. Figure 4.7 shows that, as expected for an aligned dataset,

over 40% of the images have yaw in the [−10, +10] degree range. Addition-

ally, only 4.48% of the images have yaw outside the [−40, +40] degree range.

This is an important factor to keep in mind as it will certainly reduce the per-

formance of the proposed method in cases of more extreme rotations.

Figure 4.7: Yaw distribution on CelebA dataset

4.3 Preprocessing 31

4.3 Preprocessing

To improve the obtained results, CelebA images were subjected to a prepro-

cessing phase. Specifically, as mentioned previously, a 128 × 128 crop of

the images was utilized, followed by resizing to 64 × 64. This allowed the

images to be compatible with the DDIM’s input requirements. Subsequently,

to reduce unnecessary information and facilitate conditioning, a segmentation

process was employed to eliminate the background from the images.

To execute this segmentation, aU-Netmodel was trained on the CelebaMask-

HQ dataset, which contains high-quality face masks that were manually anno-

tated. To ensure consistency throughout the pipeline, the dataset was cropped

in the same manner as the original CelebA images used to train the DDIM.

All masks were merged and treated as a binary segmentation mask problem,

addressing background/foreground segmentation.

(a) (b)

Figure 4.8: In Figure (a), the original CelebaMask-hq masks are displayed,

while Figure (b) shows the cropped version with unified masks used to train

the segmentation model.

The U-Net model is widely employed for image segmentation tasks. In

this implementation, the model accepts an input size of 256 × 256 and con-

sists of four levels of convolutional and deconvolutional layers, starting with

32 filters. The model adopts a U-shaped architecture, utilizing skip connec-

tions between corresponding encoder and decoder blocks to retain spatial in-

formation and enhance segmentation performance.

This approach allowed for precise segmentation of the facial region, achiev-

ing a precision of 96.78% and a recall of 97.60%.

4.4 Postprocessing 32

4.4 Postprocessing

In order to enhance the final results, a post-processing pipeline has been de-

veloped, which involves two key steps: super-resolution and color correction.

The original output generated at 64 × 64 resolution is upscaled to 256 × 256

using one of two available architectures: a custom-built model developed and

trained specifically for this project, or the CodeFormer [35]. While the for-

mer is faster, it produces lower quality results compared to the latter, which is

slower but yields significantly better output.

This section will provide a brief analysis and discussion of both the super-

resolution architecture and the color correction technique used.

Proposed Super-Resolution Model

The proposed super-resolution architecture is based on the generator architec-

ture from [36], with the addition of a Self-Attention Mechanism as described

in [37]. The architecture includes self-attention layers and residual blocks to

capture long-range dependencies and avoid the vanishing gradient problem. It

consists of a skip connection, 16 residual blocks with self-attention modules,

and two upsampling blocks.

The overall architecture is described in figure 4.9.

Figure 4.9: Architecture of the proposed super-resolution model

4.4 Postprocessing 33

The model was trained on a cropped version of CelebAMask-HQ using a

custom loss that combines mean squared error and perceptual loss based on

VGG-19 [38].

Figure 4.10: Output of the proposed Super-Resolution model. Using Google

Colaboratory, the model generates three predictions in less than 1 second.

CodeFormer for Super-Resolution

The CodeFormer [35] is a recently proposed model for Blind Face Restoration

and Super-Resolution. It effectively combines the powerful characteristics

of transformers and codebooks to achieve high-quality results. Transformers

have become a widely popular class of models, extensively employed in nat-

ural language processing and computer vision tasks. Codebooks, conversely,

serve as ameans to quantize and represent data in amore compact and efficient

manner.

The primary advantage of employing Codebook Lookup Transformers for

4.4 Postprocessing 34

face restoration tasks lies in their capacity to capture and leverage the struc-

ture and semantics of face images. By utilizing a pre-defined codebook en-

compassing facial features or characteristics, the model can effectively restore

high-quality face images from low-quality or degraded inputs, even in pres-

ence of various types of noise, artifacts, and occlusions. Owing to the ex-

pressive codebook prior and global modeling capabilities, the CodeFormer

surpasses state-of-the-art methods in terms of both quality and fidelity.

Figure 4.11: Output of the CodeFormer model. Using Google Colaboratory,

the model generates three predictions in about 30 seconds.

Color Correction

As a final step in the post-processing phase, a color correction technique is

applied to minimize any color discrepancies between the generated faces and

their corresponding source images. This technique helps to enhance the over-

all visual coherence of the final result.

The color correction process utilizes the Lab color space to align the color

4.5 Filtering CelebA images 35

statistics of two images. This process involves several steps, beginning with

the conversion of the images to Lab color space. The Lab channels of the tar-

get image are then normalized using the mean and standard deviation of the

source image, followed by the conversion of the target image back to the RGB

color space. These steps are outlined in detail in Algorithm 1.

Algorithm 1: Color correction
Input: target_image, source_image
Output: Color corrected target image
lab_target = convert_color_space(target_image, ”RGB”, ”LAB”)
lab_source = convert_color_space(source_image, ”RGB”, ”LAB”)

mean_target = compute_mean(lab_target)
mean_source = compute_mean(lab_source)
std_target = compute_standard_deviation(lab_target)
std_source = compute_standard_deviation(lab_source)

lab_target = ((lab_target−mean_target)
std_target)× std_source + mean_source

target_image = convert_color_space(lab_target, ”LAB”, ”RGB”)
return target_image

The LAB color space is a widely used color model in color correction algo-

rithms due to its ability to separate the luminance (brightness) component from

the chrominance (color) information. This separation allows for the manipu-

lation of color and brightness information independently, resulting in a more

precise and reliable color correction process.

4.5 Filtering CelebA images

To properly condition the generation of the diffusion model, it’s crucial to

understand how filtering on CelebA is performed. This step involves defining

a function that retrieves from the CelebA dataset all the images that match a

specific subset of attributes and fall within a specified range of orientations.

4.5 Filtering CelebA images 36

The filtering algorithm plays a critical role, the more images that meet the

specified conditions, the better the results will be.

The filtering process involves several augmentation steps, such as includ-

ing flipped images to change the light direction. For example, if the search is

for images with a yaw of -45 degrees and a light direction of ’LEFT’, images

with a yaw of +45 degrees and a light direction of ’RIGHT’ can also be used

by flipping them. This greatly increases the subset of possible images. Addi-

tionally, the accepted range of orientations also grows with each augmentation

step. After the filtering process, the mean of all retrieved images is computed,

which in this work will be referred to as ”mean image”. Typically, using a

number of images between 500 and 1000 produces good results. Increasing

the number of images can lead to noisier mean images due to the increased

number of augmentation steps performed on the orientation range.

The algorithm is presented in pseudocode in Algorithm 2, while Figure

4.12 and Figure 4.13 display different mean images obtained using different

subsets of attributes and orientations.

Figure 4.12: The top row displays the mean images for specified yaw angles

when the male attribute is -1. The bottom row shows the mean images for

specified yaw angles when the male attribute is 1.

4.5 Filtering CelebA images 37

(a) (b)

Figure 4.13: Figure (a) displays the mean images for different light directions,

while Figure (b) shows the images for different values of the smiling attribute.

Algorithm 2: Filtering on CelebA
Input: orientations, attributes, max_augmentation_attempt
Output: Images matching specified attributes and orientations.
yaw_offset, pitch_offset, roll_offset := 2
images, flipped_images := []
attempt_count := 0
flip_orientations, flip_attributes := flipData(orientations, attributes)

while (length(images) + length(flipped_images) < 500)
and (attempt_count < max_augmentation_attempt) do
images.append(getImages(orientations, attributes,

yaw_offset, pitch_offset,
roll_offset))

flipped_images.append(getImages(flipped_orientations,
flipped_attributes, yaw_offset,
pitch_offset, roll_offset))

attempt_count := attempt_count + 1
yaw_offset = yaw_offset + 2
pitch_offset = pitch_offset + 2
pitch_offset = pitch_offset * 2

end
merged_list := images + flipped_images
return merged_list[:min(length(merged_list, 1000)]

4.6 Method 1: Pixel-based conditioning on Input Image 38

4.6 Method 1: Pixel-based conditioning on Input

Image

To explain the first proposed conditioningmethod, it’s necessary to understand

how an image is generated using the Embedding Model and the DDIM.

Suppose an image, X1, is given as input to the Embedding Model, which

approximates its representation in the latent space, denoted as l1. Finally, the

reverse diffusion process is applied through the DDIM on the embedding l1 to

generate the output image y1. Figure 4.14 illustrates this process.

Figure 4.14: Pipeline of generation process using the Embedding Model and

the DDIM.

The first proposed method involves conditioning the generation of the dif-

fusion model by modifying specific pixels in the input image X1 passed as

input to the Embedding Model. This ensures that the resulting embedding l1

reflects the conditioning, allowing the DDIM to produce a conditioned image.

This process consists of several steps. In this section, the process is de-

scribed in detail using the first image of CelebA aligned as an example. We

refer to this image as X1. As seen in Figure 4.15, the face is turned to the

left, so in this case, starting_yaw ≈ 30◦. Suppose the goal is to condition

DDIM to generate the same face but more centered, so the target yaw is set to

target_yaw = starting_yaw − 15◦ ≈ 15◦. This operation is called a single

4.6 Method 1: Pixel-based conditioning on Input Image 39

conditioning step.

The process is as follows:

• Use the function described in section 4.5 to obtain the two mean images

associated with the starting yaw and the target yaw, respectively called

original_mean and target_mean. Then, subtract the original_mean

from the target_mean to obtain a first correction called correctionraw.

This process is shown in Figure 4.15 and described in equation 4.3:

correctionraw = target_mean− original_mean (4.3)

Figure 4.15: Computation of the raw correction on the first image of

CelebA.

• After obtaining the raw correction, the next step involves computing the

mean_originaladapted and mean_targetadapted images. These mean

images are computed using linear interpolation in the latent space of the

DDIM to obtain images that more closely resemble the input image.To

compute the mean_targetadapted image, the raw correction is used to

perform the interpolation. For the mean_originaladapted image, a fully

black image is used instead. Equation 4.4 shows the computation of

mean_originaladapted, while equation 4.5 describes the computation of

mean_targetadapted. The results are shown in Figure 4.16.

4.6 Method 1: Pixel-based conditioning on Input Image 40

l1 = EmbeddingModel.predict(X1)

lblack_image = EmbeddingModel.predict(black_image)

linterpolated = (w) · l1 + (1− w) · lblack_image

mean_originaladapted = DDIM.reverseDiffusion(linterpolated)

(4.4)

l1 = EmbeddingModel.predict(X1)

lraw_correction = EmbeddingModel.predict(raw_correction)

linterpolated = (w) · l1 + (1− w) · lraw_correction

mean_targetadapted = DDIM.reverseDiffusion(linterpolated)

(4.5)

Where w represents the weight assigned to the latent embedding of

the input image. Increasing w leads to greater similarity between the

adapted mean and the original image, but it also results in less rotation.

(a)

(b)

Figure 4.16: Figure (a) shows the computation of the adapted mean for

the starting orientations, while Figure (b) shows the computation of the

adapted mean for the target orientations.

4.6 Method 1: Pixel-based conditioning on Input Image 41

• After calculating the mean_targetadapted and mean_originaladapted,

the next step is to compute the correctionfinal. This correction is sim-

ply the difference between the adapted means and is calculated using

the equation shown in 4.6. A visual representation of this process can

be seen in figure 4.17.

correctionfinal = mean_targetadapted − mean_originaladapted

(4.6)

Figure 4.17: Computation of the final correction.

• Finally, the next step is to add the correctionfinal to the input image

X1 using a weighted sum. This modified image Xcond is then passed as

input to the Embedding Model, which produces the conditioned latent

embedding lcond. To generate the final output, the DDIM model is used

to perform reverse diffusion on lcond, resulting in the image ycond with

a changed head orientation. This entire process is illustrated in Figure

4.18 and described by the equation shown in 4.7

Xcond = X1 + w · correctionfinal

lcond = EmbeddingModel.predict(Xcond)

ycond = DDIM.reverseDiffusion(lcond)

(4.7)

4.6 Method 1: Pixel-based conditioning on Input Image 42

Figure 4.18: Final generation step

Once the output image ycond is obtained, the process can be repeated by using

ycond as the new input X1 and generating a new output image y′
cond. This

can be done iteratively to obtain multiple output images with different head

orientations. The pseudocode for the entire process is provided in Algorithm

3.

Image 1

Image 7865

Image 114

Figure 4.19: Method 1 applied with additional steps on 3 samples from

CelebA.

4.6 Method 1: Pixel-based conditioning on Input Image 43

Algorithm 3:Method 1 pseudocode
Input: image, steps, correction_degree, correction_weight
Output: Images with different head orientation
output := []
imagefocus = image
orientations = getOrientation(imagefocus)
attributes = getAttributes(imagefocus)

for i← 0 to steps do
original_images = filterCelebA(orientations, attributes)
target_images = filterCelebA(orientations + correction_degree,
attributes)

original_mean = average(original_images)
target_mean = average(original_images)
correctionraw = target_mean - original_mean

mean_originaladapted = getAdaptedMean(imagefocus , imageblack)
mean_targetadapted = getAdaptedMean(imagefocus, correctionraw)
correctionfinal = mean_targetadapted - mean_originaladapted

Xcond = imagefocus + correction_weight · correctionfinal
lcond = EmbeddingModel.predict(Xcond)
ycond = DDIM.reverseDiffusion(lcond)

output.append(ycond)
imagefocus = ycond
orientations = orientations + correction_degree

end
return output

4.7 Method 2: Linear Regression and latent interpolation 44

Figure 4.19 displays some results obtained using the first proposedmethod.

However, this technique has several drawbacks that need to be addressed.

Firstly, it requires extensive parameter tuning, including adjusting the input

image weight for both the adapted mean and the final generation, as well as

the yaw correction degree, for each image individually. Secondly, as the num-

ber of steps increases, this method tends to produce artifacts that can have a

cascading effect on subsequent steps, compromising the overall quality of the

output. Despite these limitations, this technique still enables a reasonably ac-

curate rotation of the face for at least one step, and as mentioned in the chapter

introduction, it does not necessitate training a dedicated network using a spe-

cially curated dataset with ground truth images.

4.7 Method 2: Linear Regression and latent in-

terpolation

The second proposed method involves using two linear regressors, one for

sampling images to the left and the other for sampling images to the right.

These regressors are used to perform sampling in the latent space of the diffu-

sionmodel. The resulting samples are denoted as lri for i ∈ 0, . . . , n_sampleright

for the samples rotated to the right, and lli for i ∈ 0, . . . , n_sampleleft for the

samples rotated to the left. To illustrate this methodmore clearly, let’s consider

a concrete example using image X1, which is the 25000th image of CelebA.

Figure 4.20: Image 25000 from CelebA dataset: the original image (left), the

pre-processed image (center), and the resized version (right) used as input.

4.7 Method 2: Linear Regression and latent interpolation 45

As shown in Figure 4.20, the face in this image is slightly rotated to the

right, with a starting yaw of approximately -5 degrees. This example aims to

sample in the latent space of the DDIM to rotate the face to the left. Note that

the procedure for rotating to the right is identical and will not be discussed

further.

The process is divided into several steps:

• The first step is to create the data on which the Linear Regressor will

be fitted, these data are called root_pointsi. To obtain these points, the

function described in section 4.5 is used to select a subset of CelebA

images that match the attributes and orientations of the input image.

Figure 4.21: This image demonstrates the process of computing the

root point 0, based on a subset of attributes including ’male’, ’gender’,

and ’smiling’. These attributes were used to get similar images from

CelebA.

Next, the embedding for each image in this subset is calculated, and the

average of all the embeddings is taken to obtain the first root_point0.

To obtain the remaining root_pointi, the same process is repeated while

gradually increasing the yaw angle of the selected images. For example,

to obtain the second root_point1, images with a yaw angle of approxi-

mately starting_yaw − 8◦ ≈ 3◦ are selected, based on the current ex-

ample. This process is continued until the desired number of root points

4.7 Method 2: Linear Regression and latent interpolation 46

is obtained, which in this case is 5. So, the last root_point5 will be de-

rived from the CelebA image subset with a yaw angle of approximately

35◦.

(a) (b)

Figure 4.22: In Figure (a), the root point is computed using the em-

bedding of the mean image, while in Figure (b), it is computed as the

average of the embeddings of similar images.

In Figure 4.22, it can be observed that the average of all embeddings was

preferred over computing the embedding directly on the ”mean images”.

This decision was made due to the fact that using the average of all

embeddings results in less noisy root points.

Algorithm 4 outlines the steps involved in this operation, and the result-

ing root points for this example are illustrated in Figure 4.23.

Figure 4.23: The full set of root points that were computed for the left

direction.

4.7 Method 2: Linear Regression and latent interpolation 47

Algorithm 4:Method 2: Root points computation
Input: image, n_points, yaw_step
Output: List containing the root points
root_points := []
orientations := getOrientation(image)
attributes := getAttributes(image)

for i← 0 to n_points do
target_orientations = orientations + i · yaw_step
similar_images = filterCelebA(target_orientations, attributes)
embeddings := []
for j ← 0 to length(similar_images) do

embeddings.append(EmbeddingModel.predict(similar_images[j]))
end
root_pointi = average(embeddings)
root_points.append(root_pointi)

end
return root_points

• After obtaining the root points, the data must be prepared for linear re-

gression. The independent variable, denoted as ’X’, is just a sequence of

integers from 0 to the number of root images. Meanwhile, the depen-

dent variable, denoted as ’y’, is obtained by flattening the root points

computed in the previous step. This operation transforms the shape

from (n_root_points, 64, 64, 3) to (n_root_points, 64 · 64 · 3), which

is (5, 12288) in this case.

Once the data is prepared, a linear regression line can be fitted to the

data, and the slope, denoted asm, of the regression line can be computed

using the Ordinary Least Squares method. This process is described by

4.7 Method 2: Linear Regression and latent interpolation 48

the following equation 4.8:

y = mX + b + ϵ

m =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2

(4.8)

In this equation, b represents the intercept term, and ϵ represents the

error term.

• After calculating m, we can use this slope to create a new line with the

same slope, but passing through the embedding of the starting image,

which is represented by the point (x1, l1). To accomplish this, we can

use the point-slope form of the equation of a line, which is given by:

y − l1 = m · (x− x1)

Since the input image has the same orientation as the first root point,

where the x coordinate is defined as 0, x1 is set to 0. After perform-

ing some algebraic manipulations, the line shown in equation 4.9 is ob-

tained:

y = m · (x) + l1 (4.9)

• Obtaining the equation 4.9 allows for sampling points in the latent space

of the diffusion model from this line by substituting values for x. The

best results are typically obtained by using values of x within the range

of [0, . . . , n_root_points]. After reshaping the samples to their origi-

nal dimensions of (64, 64, 3), the samples can be passed as input to the

diffusion model to generate conditioned images with different orienta-

tions.

Figure 4.24 provides a graphical representation of thismethod, where Prin-

cipal Component Analysis (PCA) is utilized to visualize all the components

involved in this example in two dimensions.

4.7 Method 2: Linear Regression and latent interpolation 49

Figure 4.24: Visualization of all the components involved in the second

method using the PCA with 2 principal components.

Furthermore, the complete process for this method is outlined in pseu-

docode in Algorithm 5. Additionally, the results for sampling images condi-

tioned to the left direction are presented in Figure 4.25, while the results for

sampling images conditioned to the right direction are shown in Figure 4.26.

(a) Not post-processed

(b) Post processed with CodeFormer

Figure 4.25: This image shows the result of sampling using a linear regressor

with root points that extend towards the left direction.

4.7 Method 2: Linear Regression and latent interpolation 50

(a) Not post-processed

(b) Post processed with CodeFormer

Figure 4.26: This image shows the result of sampling using a linear regressor

with root points that extend towards the right direction.

Algorithm 5:Method 2 pseudocode
Input: image, n_root_points, yaw_step, x_sampling_points
Output: Images with different head orientation
output := []
root_points := getRootPoints(image, n_root_points, yaw_step)
root_points = [flattenMatrix(r) for r in root_points]

slope:=linearRegression(x= [0, . . . , n_root_points], y = root_points)
slope = reshapeToMatrix(slope, (64, 64, 3))

l1 := EmbeddingModel.predict(image)
xinput_image := 0
foreach x in x_sampling_points do

lcond = slope · (x - xinput_image) + l1
ycond = DDIM.reverseDiffusion(lcond)
output.append(ycond)

end
return output

This type of conditioning in the DDIM latent space has enabled interest-

ing manipulations in head orientation, covering a wide rotation angle of±30◦.

4.8 Differences between the two methods 51

Moreover, it has the advantage of being rather ”intuitive” in its operation.

These results are particularly intriguing, and suggest possibilities for future

development, such as making the calculation of root points and slope inde-

pendent of the input image. Since the subset of attributes on which the slope

depends is shared by images with similar attributes, the same root points and

slope could be used for different images.

However, it’s important to note that there are limitations to this method.

For instance, the CelebA dataset used in this study has biases towards female

and young faces over male and elderly faces, as discussed in section 4.2.1.

Additionally, the dataset has limited variation in face orientation, which could

affect the generalizability of the method, as described in section 4.2.3.

For a more comprehensive understanding of the methodology and stability

of the slope computation process used in this method, please refer to Appendix

A for a detailed discussion.

4.8 Differences between the two methods

The results presented in Figure 4.27 demonstrate that the second method out-

performs the first method in most cases. Specifically, the first method tends to

suffer from artifacts in subsequent steps, while the second method avoids this

issue by generating images independently of those produced in earlier steps.

This results in a more stable and reliable image generation process overall.

In addition to its improved stability, the second method also offers several

advantages over the first method. One of themain advantages is that it requires

tuning fewer parameters, namely only the number of root points, the yaw step

between each root point, and the x coordinates for sampling in the latent space.

This makes the second method much simpler to implement and easier to use

than the first method, which requires tuning a larger number of parameters.

Another advantage of the second method is that it typically produces more

uniform and significant rotation in the generated images, allowing for greater

4.8 Differences between the two methods 52

control over the rotation angle and resulting in more consistent results. In

contrast, the first method is more prone to producing images with uneven or

irregular rotation.

Overall, the results presented in Figure 4.27 strongly suggest that the sec-

ond method is superior to the first method for generating rotated images. Its

improved stability, simplicity, and consistency make it a highly attractive op-

tion for a wide range of applications in image processing and computer vision.

Image 132

Image 114

Image 16399

Figure 4.27: This figure compares the outputs of the two methods on three

CelebA images. The input image is in the middle, with the first method’s

output on the top row and the second method’s output on the bottom row.

Chapter 5

Conclusions

This thesis provides a comprehensive overview of facial rotation techniques

and the challenges posed by traditional approaches that rely on ground truth

data for training. To overcome these limitations, two novel techniques lever-

aging the latent space of a DDIM trained to reconstruct human faces were

proposed to condition the generation process to produce rotated faces.

Both techniques can produce reasonably accurate face rotations without

the need for a dedicated network or specially curated ground truth dataset. The

first technique modifies specific pixels in the input image fed to the diffusion

model, while the second technique fits a linear regressor to sample from the

latent space. However, the first method requires extensive parameter tuning

and may produce artifacts as the number of steps increases.

The second technique is superior to the first one, with improved stability

and simplicity. It can effectively produce a wide rotation angle of±30◦ while

preserving important facial attributes. It is worth noting that the biases and

limited variation in face orientation in the CelebA dataset used for this study

may affect the generalizability and applicability of the proposed techniques to

other datasets and more extreme head poses.

Future research directions may include using a more unbiased dataset with

greater variation in face orientation to improve the DDIM’s ability to generate

Conclusions 54

rotated images with angles larger than ±30◦. Additionally, further develop-

ment of the second method by making the calculation of root points and slope

independent of the input image could lead to greater computational efficiency

and more versatile image generation.

Appendix A

Slope computation analysis

This section analyzes the calculation of slope using various image subsets, as-

sesses the stability of the proposed method, and evaluates the usefulness of the

attributes considered. The primary objectives are to provide a comprehensive

understanding of the factors that influence slope calculation and their impact

on the accuracy of the results.

A.1 Slope Stability analysis

The first analysis aims to evaluate the stability of the proposed slope computa-

tion method by determining whether consistent results can be obtained when

using different image subsets with the same orientations and attributes. To ac-

complish this, three distinct image subsets will be used to calculate the slope

and conduct a cosine similarity analysis between them. This procedure will be

repeated for a total of four attribute subsets, ranging from the most common

attributes to less common ones.

• The first attribute set includes: ’male’ (-1), ’light_direction’ (’CEN-

TER’), ’young’ (1), and ’smiling’ (1). The left and right slopes of three

non-overlapping image subsets with these attributes are computed, and

their cosine similarity is visualized in a heatmap (Figure A.1).

A.1 Slope Stability analysis 56

(a) Left slopes (b) Right slopes

Figure A.1: First attribute subset cosine similarity heatmap.

• The second attribute set comprises: ’male’ (1), ’light_direction’ (’CEN-

TER’), ’young’ (1), and ’smiling’ (-1). Similar to the first case, the

left and right slopes of three non-overlapping image subsets with these

attributes are computed, and their cosine similarity is visualized in a

heatmap (Figure A.2).

(a) Left slopes (b) Right slopes

Figure A.2: Second attribute subset cosine similarity heatmap.

• The third attribute set consists of: ’male’ (-1), ’light_direction’ (’LEFT’),

’young’ (-1), and ’smiling’ (1). Again, the left and right slopes of three

non-overlapping image subsets with these attributes are computed, and

their cosine similarity is visualized in a heatmap (Figure A.3).

A.1 Slope Stability analysis 57

(a) Left slopes (b) Right slopes

Figure A.3: Third attribute subset cosine similarity heatmap.

• The final attribute set includes: ’male’ (1), ’light_direction’ (’RIGHT’),

’young’ (1), and ’smiling’ (1). Similarly, the left and right slopes of

three non-overlapping image subsets with these attributes are computed,

and their cosine similarity is visualized in a heatmap (Figure A.4).

(a) Left slopes (b) Right slopes

Figure A.4: Fourth attribute subset cosine similarity heatmap.

As expected, when using a common attribute subset such as the first one

tested, the slope computation is highly stable, regardless of the image subset

used for the computation. The cosine similarity never falls below 0.96. How-

ever, when employing a rarer attribute subset, the process becomes less stable.

For instance, in the third case, both ’young=-1’ and ’light_direction=LEFT’

significantly reduce the available images in the dataset for slope computa-

tion. Consequently, the slope calculation becomes less stable, and the cosine

A.2 Slope Similarity Analysis among different Images 58

similarity between different subsets with the same attributes can decrease to

approximately 0.80 in certain cases.

A.2 Slope SimilarityAnalysis among different Im-

ages

The second analysis examines the similarity of slopes among different images

with varying orientations and attributes, to determine whether similar images

have similar slopes and vice versa. To conduct this analysis, a sample of eight

CelebA images will be used, and the corresponding cosine similarity heatmap

is presented in Figure A.5.

The results show that similar images have similar slopes, with gender and

light direction appearing to have the most significant effect on slope similarity.

For instance, the cosine similarities between images 16399, 70126, 99, and 18,

which are all women, are higher than those between these images and images

114, 129, 164, and 221, which are all men. Moreover, when both the gender

and light direction are the same, the similarity is even higher, as observed for

images 99 and 18, where both have ”light_direction = center”.

Interestingly, the similarities for male images appear to be generally lower,

which may be due to the bias in CelebA towards female images, resulting in

fewer images available for slope computation. Additionally, small changes in

the yaw degree of ±5◦ seem to impact the similarity, as seen in images 114

and 164. Lastly, the ”young” attribute also appears to influence the slope,

with images 18 and 221, both having ”young = -1”, exhibiting slightly similar

slopes according to cosine similarity.

A.2 Slope Similarity Analysis among different Images 59

(a) Left slopes

(b) Right slopes

Figure A.5: Cosine similarities heatmap between different images

A.3 Effects of Attribute Removal on Slope Computation 60

A.3 Effects of Attribute Removal on Slope Com-

putation

The third analysis aims to investigate the impact of removing one attribute

from the full subset of selected attributes, which includes ’male’, ’light_direction’,

’young’, ’smiling’, and ’mouth_slightly_open’. The objective is to determine

whether any of these attributes can be disregarded without affecting the accu-

racy of the slope computation. A subset of three images, namely image 18,

image 114, and image 99, have been selected to perform this analysis. These

images are displayed in Figure A.6.

(a) Image 18 (b) Image 114 (c) Image 99

Figure A.6: Images used for attribute utility analysis.

The attribute values for each image are as follows:

• Image 18: ’male’ = -1, ’light_direction’ = ’CENTER’, ’young’ = -1,

’smiling’ = 1, and ’mouth_slightly_open’ = 1;

• Image 114: ’male’ = 1, ’light_direction’ = ’RIGHT’, ’young’ = 1,’smil-

ing’ = -1, and ’mouth_slightly_open’ = 1;

• Image 99: ’male’ = -1, ’light_direction’ = ’CENTER’, ’young’ = 1,

’smiling’ = 1 and ’mouth_slightly_open’ = 1;

The experiment’s results are presented in Tables A.1 and A.2, which display

the cosine similarities for the missing attributes on the left and right slopes,

respectively.

A.3 Effects of Attribute Removal on Slope Computation 61

Missing attributeImage ID Mouth Slightly Open Smiling Young Light Direction Male
18 0.99 0.99 0.92 0.96 0.92
114 0.98 0.95 0.96 0.86 0.82
99 0.98 0.98 0.99 0.98 0.97

Table A.1: Results of left slopes cosine similarities.

Missing attributeImage ID Mouth Slightly Open Smiling Young Light Direction Male
18 0.96 0.99 0.93 0.96 0.92
114 0.99 0.97 0.98 0.88 0.83
99 0.98 0.98 0.98 0.97 0.97

Table A.2: Results of right slopes cosine similarities.

Based on the results, it appears that the attribute ”mouth_slightly_open”

can be safely removed, as it consistently demonstrated very low impact on

similarity across all tested cases. In fact, the cosine similarity without using

this attribute was consistently around 0.98 relative to the slope that considers

it. On the other hand, the impact of all other attributes on similarity varied

depending on the characteristics of the considered image. For instance, if the

input image is of an elderly woman, the attribute ”young” is more important

than for a younger woman. This may be due to the bias in CelebA, which

contains a much larger proportion of images of young people. Similarly, the

attributes ”male” and ”smiling” also have varying impacts on similarity.

Interestingly, the ”light_direction” attribute appears to be much more im-

portant when the light direction is not central. This may be because root points

computed with central light are similar to those computed without considering

the light source at all. Overall, these findings suggest that careful considera-

tion of image attributes is necessary to accurately assess similarity, particularly

in cases where certain attributes may be more relevant than others depending

on image characteristics.

Bibliography

[1] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli.

Deep unsupervised learning using nonequilibrium thermodynamics.CoRR,

abs/1503.03585, 2015. arXiv: 1503.03585.

[2] Y. Song and S. Ermon. Generative modeling by estimating gradients of

the data distribution. Advances in neural information processing sys-

tems, 32, 2019.

[3] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models.

Advances in Neural Information Processing Systems, 33:6840–6851,

2020.

[4] C. Luo. Understanding diffusion models: a unified perspective. arXiv

preprint arXiv:2208.11970, 2022.

[5] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[6] L. Weng. What are diffusion models? lilianweng.github.io, July 2021.

url: https : / / lilianweng . github . io / posts / 2021 - 07 - 11 -

diffusion-models/.

[7] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilis-

ticmodels. In International Conference onMachine Learning, pages 8162–

8171. PMLR, 2021.

BIBLIOGRAPHY 63

[8] O. Ronneberger, P. Fischer, and T. Brox. U-net: convolutional net-

works for biomedical image segmentation. InMedical Image Comput-

ing and Computer-Assisted Intervention–MICCAI 2015: 18th Interna-

tional Conference, Munich, Germany, October 5-9, 2015, Proceedings,

Part III 18, pages 234–241. Springer, 2015.

[9] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models.

arXiv preprint arXiv:2010.02502, 2020.

[10] P. Dhariwal and A. Nichol. Diffusion models beat gans on image syn-

thesis. Advances in Neural Information Processing Systems, 34:8780–

8794, 2021.

[11] J. Ho and T. Salimans. Classifier-free diffusion guidance. arXiv preprint

arXiv:2207.12598, 2022.

[12] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes

in the wild. In Proceedings of International Conference on Computer

Vision (ICCV), December 2015.

[13] C.-H. Lee, Z. Liu, L. Wu, and P. Luo. Maskgan: towards diverse and in-

teractive facial image manipulation. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2020.

[14] A. Asperti, D. Evangelista, S. Marro, and F. Merizzi. Image embedding

for denoising generativemodels. arXiv preprint arXiv:2301.07485, 2022.

[15] T. Hassner, S. Harel, E. Paz, and R. Enbar. Effective face frontalization

in unconstrained images. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 4295–4304, 2015.

[16] X. Zhu, Z. Lei, J. Yan, D. Yi, and S. Z. Li. High-fidelity pose and ex-

pression normalization for face recognition in the wild. In Proceedings

of the IEEE conference on computer vision and pattern recognition,

pages 787–796, 2015.

BIBLIOGRAPHY 64

[17] J. R. A. Moniz, C. Beckham, S. Rajotte, S. Honari, and C. Pal. Unsu-

pervised depth estimation, 3d face rotation and replacement. Advances

in neural information processing systems, 31, 2018.

[18] E. Härkönen, A. Hertzmann, J. Lehtinen, and S. Paris. Ganspace: dis-

covering interpretable gan controls. Advances in Neural Information

Processing Systems, 33:9841–9850, 2020.

[19] Y. Shen, J. Gu, X. Tang, and B. Zhou. Interpreting the latent space of

gans for semantic face editing. In Proceedings of the IEEE/CVF con-

ference on computer vision and pattern recognition, pages 9243–9252,

2020.

[20] R.Abdal, P. Zhu, N. J.Mitra, and P.Wonka. Styleflow: attribute-conditioned

exploration of stylegan-generated images using conditional continuous

normalizing flows. ACM Transactions on Graphics (ToG), 40(3):1–21,

2021.

[21] L. Tran, X. Yin, and X. Liu. Disentangled representation learning gan

for pose-invariant face recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages 1415–1424,

2017.

[22] R. Huang, S. Zhang, T. Li, and R. He. Beyond face rotation: global and

local perception gan for photorealistic and identity preserving frontal

view synthesis. In Proceedings of the IEEE international conference

on computer vision, pages 2439–2448, 2017.

[23] Y. Hu, X.Wu, B. Yu, R. He, and Z. Sun. Pose-guided photorealistic face

rotation. InProceedings of the IEEE conference on computer vision and

pattern recognition, pages 8398–8406, 2018.

[24] Y. Qian, W. Deng, and J. Hu. Unsupervised face normalization with ex-

treme pose and expression in the wild. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 9851–

9858, 2019.

BIBLIOGRAPHY 65

[25] X. Yin, X. Yu, K. Sohn, X. Liu, andM. Chandraker. Towards large-pose

face frontalization in the wild. In Proceedings of the IEEE international

conference on computer vision, pages 3990–3999, 2017.

[26] J. Deng, S. Cheng, N. Xue, Y. Zhou, and S. Zafeiriou. Uv-gan: adver-

sarial facial uv map completion for pose-invariant face recognition. In

Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 7093–7102, 2018.

[27] J. Cao, Y. Hu, H. Zhang, R. He, and Z. Sun. Learning a high fidelity

pose invariant model for high-resolution face frontalization. Advances

in neural information processing systems, 31, 2018.

[28] H. Zhou, J. Liu, Z. Liu, Y. Liu, and X. Wang. Rotate-and-render: unsu-

pervised photorealistic face rotation from single-view images. In Pro-

ceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pages 5911–5920, 2020.

[29] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-

thi, and R. Ng. Nerf: representing scenes as neural radiance fields for

view synthesis. In ECCV, 2020.

[30] J. Sun, X.Wang, Y. Zhang, X. Li, Q. Zhang, Y. Liu, and J.Wang. Fenerf:

face editing in neural radiance fields. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 7672–

7682, 2022.

[31] B. Dai and D. P. Wipf. Diagnosing and enhancing vae models. In Sev-

enth International Conference on Learning Representations (ICLR 2019),

May 6-9, New Orleans, 2019.

[32] A. Asperti, L. Bugo, and D. Filippini. Enhancing variational generation

through self-decomposition. IEEE Access, 10:67510–67520, 2022. doi:

10.1109/ACCESS.2022.3185654. url: https://doi.org/10.

1109/ACCESS.2022.3185654.

BIBLIOGRAPHY 66

[33] P. J. Thilaga, B. A. Khan, A. Jones, and N. K. Kumar. Modern face

recognition with deep learning. In 2018 Second International Confer-

ence on Inventive Communication andComputational Technologies (ICI-

CCT), pages 1947–1951. IEEE, 2018.

[34] G. Bradski. TheOpenCVLibrary.Dr.Dobb’s Journal of Software Tools,

2000.

[35] S. Zhou, K. C. Chan, C. Li, and C. C. Loy. Towards robust blind face

restoration with codebook lookup transformer. In NeurIPS, 2022.

[36] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,

A. Aitken, A. Tejani, J. Totz, Z.Wang, et al. Photo-realistic single image

super-resolution using a generative adversarial network. InProceedings

of the IEEE conference on computer vision and pattern recognition,

pages 4681–4690, 2017.

[37] Q.-M. Liu, R.-S. Jia, C.-Y. Zhao, X.-Y. Liu, H.-M. Sun, andX.-L. Zhang.

Face super-resolution reconstruction based on self-attention residual

network. IEEE Access, 8:4110–4121, 2019.

[38] K. Simonyan and A. Zisserman. Very deep convolutional networks for

large-scale image recognition. In 3rd International Conference on Learn-

ing Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,

Conference Track Proceedings, 2015. url: http://arxiv.org/abs/

1409.1556.

Acknowledgements

As I approach the end of my university journey, I want to express my gratitude

to everyone who has supported me along the way.

Firstly, I am deeply thankful to my supervisor, Prof. Andrea Asperti, for his

patient guidance and giving me the opportunity to explore a fascinating topic.

My family, especially my parents Francesca and Michele, have always be-

lieved in me and provided unwavering support.

My friends, including Gabriele, Nicolas, and Gianluca, have shared both the

joys and challenges of these years with me.

Finally, once again, I extend special thanks to Gabriele for his commitment to

collaborating with me on this project.

