
Alma mater studiorum - Università di Bologna

SCUOLA DI INGEGNERIA E ARCHITETTURA

Dipartimento di Informatica - Scienza e Ingegneria
Corso di Laurea Magistrale in Ingegneria Informatica

TESI DI LAUREA

in

Scalable and reliable services - M

Implementation of an ETS on the Solana Blockchain

CANDIDATO RELATORE
Federico Pomponii Michele Colajanni

Anno Accademico 2021/2022

1

2

1 - Emission trading systems 7
1.1 - Baseline and credit system 8
1.2 - Cap and trade system 8
1.3 - EU ETS 9
1.4 - Benefits and Challenges of using blockchain for ETS 10

2 - Blockchain 12
2.1 - What is a blockchain? 12

2.1.2 - Origin of the Blockchain 13
2.1.3 - The blockchain revolution 14
2.1.4 - Blockchain and Cryptocurrencies 15

2.2 - The Solana Blockchain 15
2.2.1 - Solana network 16
2.2.2 - Proof of History (PoH) 18
2.2.3 - What is Byzantine Fault Tolerance? 19

2.3 - Smart Contracts 21
2.3.1 - Smart Contracts within the Solana Ecosystem 23
2.3.2 - Accounts 24
2.3.3 - Transactions 25
2.3.4 - JSON-RPC 26

2.4 - Solana Tokens 27
3 - Rust Programming 30

3.1 - Working with Cargo 31
3.2 - Key Concepts in Rust 31

3.2.1 - Ownership 31
3.2.2 - Reference and Borrowing 33

3.3 - Solana smart contracts in Rust 34
4 - Project 36

4.1 - Client implementation 36
4.2 - Solana program deploy 56

5 - Conclusion 59
Bibliography 61

3

4

Considering the growth of blockchain-based technologies and

decentralized applications this thesis aims to explore the potential of

Solana, an open-source project implementing a new, high-performance,

permissionless blockchain, and taking steps to bring the chain’s footprint

to zero. The Solana Blockchain, designed by Anatoly Yakovenko, stands

out for its innovative approach to scalability. By utilizing a unique

combination of breakthrough technologies, such as Proof-of-History

(PoH), Tower BFT consensus, and high-performance architecture,

Solana has achieved remarkable throughput and low-latency transaction

processing. These key features make it an ideal platform for building

complex and data-intensive applications, capable of handling thousands

of transactions per second.

Specifically, the thesis will examine how Solana's features, such as its

high transaction speed and low transaction fees, can facilitate the

implementation and operation of a simplified version of an Emission

Trading System.

An Emission Trading System, or ETS, is a market-based mechanism

used to regulate and reduce greenhouse gas emissions. It involves the

issuance, trading, and retirement of emission allowances or permits

among participating entities, encouraging them to invest in cleaner

technologies and practices. By introducing a Solana-powered ETS, we

can explore how this blockchain's features can enhance the efficiency,

transparency, and accessibility of the system.

5

Leveraging Solana's robust infrastructure, we can address scalability and

real-time data and we can create an ETS that is both more efficient and

user-friendly. The high-speed transaction processing and low fees on the

Solana blockchain could significantly reduce the costs associated with

trading emissions permits and enable seamless transactions at scale.

Furthermore, Solana's ability to handle large amounts of data in real-time

can empower regulators, participants, and market observers to access

up-to-date and reliable emission data. This transparency could facilitate

accurate monitoring, reporting, and verification of emissions, improving

compliance and accountability within the ETS. The decentralized nature

of the Solana blockchain also ensures data integrity and immutability,

adding an extra layer of trust and security to the system.

Through this thesis, I will explore the technical aspects, challenges, and

potential benefits of implementing a simple Solana-based ETS. By

conducting an analysis of the existing ETS frameworks, examining the

capabilities of the Solana blockchain, and designing and implementing a

prototype system, we can gain insights into the practicality and

scalability of such an application. The outcome of this project is a simple

implementation of a trading system, that could be used as a starting point

for more detailed projects.

6

1 - Emission trading systems

The Emission Trading System (ETS) is a market-based mechanism

designed to reduce greenhouse gas emissions. A broader use of an ETS

would be one of the most efficient ways of promoting green growth.

Polluters who would find it costly to reduce their emissions are allowed

to buy emission allowances from polluters that can abate at lower costs.

In a ‘perfectly’ working market, the costs of reducing an additional unit

of emissions would be equalized, and the total costs of reaching a given

environmental target would be minimized.

There are two different main types of ETS, the “Cap-and-trade” and

the “baseline-and-credit systems”.

The European Union emissions trading system , or EU ETS, is currently

the world’s largest system. It operates in all EU countries plus Iceland,

Liechtenstein, and Norway, limiting emissions from more than 11,000

heavy users of energy including power stations and industrial plants, and

airlines operating between the ETS member countries.

Under the third phase of the ETS, which runs from 2013–20, a single,

centralized cap covering the whole EU was set. This cap is reduced year

by year during phase 4 (2021-2030). The International Carbon Action

Partnership (ICAP) estimates that emissions trading now covers 15% of

global emissions [1]. Two of the main credit system type are the Baseline

and credit system and the Cap and Trade system.

7

https://ec.europa.eu/clima/policies/ets_en
https://icapcarbonaction.com/en/icap-status-report-2018
https://icapcarbonaction.com/en/icap-status-report-2018

1.1 - Baseline and credit system

Baseline and credit schemes identify, measure and provide incentives for

activities that reduce emissions. Under a baseline and credit scheme, an

emissions intensity is set for emitting activities against a baseline, and

credits are created for activities that achieve emissions intensities below

the baseline. Activities that have emissions intensities above the baseline

have to buy such credits. The ability to generate credits from emissions

reductions relative to baseline and the pressure to avoid having to buy

permits for emissions above the baseline provide incentives for

participants to find lower emission production processes.

1.2 - Cap and trade system

The essence of cap-and-trade is encapsulated in its name: there is a "cap"

or maximum limit on the total amount of certain pollutants (such as

carbon dioxide) that can be emitted by certain industries or sectors, and

the ability to "trade" emission permits. The cap is set by a regulatory

authority and is reduced gradually over time with the ultimate goal of

reducing total emissions.

Companies are issued to purchase tradable allowances, each equivalent

to the right to emit a specific amount. Firms that reduce their emissions

below their allowance level may sell or "trade" their excess allowances

to firms that find it harder or more costly to make reductions. This

market mechanism incentivizes companies to innovate and reduce their

emissions cost-effectively.

8

The cap-and-trade principle first gained prominence in the U.S. during

the late 20th century as a policy tool to mitigate acid rain. It achieved

significant success by reducing sulfur dioxide emissions from power

plants. The approach has since been applied to GHG emissions, with the

European Union Emissions Trading Scheme (EU ETS) becoming the

largest ETS system globally.

However, cap-and-trade systems are not without their critics. Issues

around the allocation of allowances, the potential for market

manipulation, and impacts on energy prices have all been raised.

Additionally, the success of a cap-and-trade system depends on effective

monitoring, reporting, and enforcement mechanisms.

1.3 - EU ETS

The EU ETS, a cap-and-trade system focused on CO2, is the world’s

largest and first multicountry emissions trading system.

The EU ETS directive was adopted for the first time in 2003 and then

launched in 2005. The cap on allowances was set at the national level

through national allocation plans (NAPs).

The EU ETS is divided into distinct phases or trading periods. The first

phase (2005-2007) was a learning period. The second phase (2008-2012)

coincided with the first commitment period of the Kyoto Protocol. From

the third phase (2013-2020) onward, the system was significantly

reformed, including the introduction of auctioning as a default method

9

https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets/development-eu-ets-2005-2020/national-allocation-plans_en

for allocating allowances, harmonized rules across the EU, and the

expansion of the system to cover more sectors and gases.

The EU ETS provides a valuable case study in operating a large-scale

cap-and-trade system. It illustrates both the potential of such systems to

drive emission reductions and the challenges associated with their design

and implementation.

1.4 - Benefits and Challenges of using blockchain for ETS

Blockchain technology has been proposed as a potential solution to

enhance the performance and transparency of emissions trading systems

(ETS), such as the EU ETS.

It can help to create a more transparent and auditable system, as all

transactions are recorded on an immutable ledger that can be verified by

anyone. Secondly, it can enable faster and more secure settlement of

trades. Finally, it can help to reduce the administrative load of ETS, as it

can automate many of the processes involved in allowance allocation

and trading.

However, several challenges need to be addressed when using

blockchain for ETS.

Scalability and performance are critical issues, as the system needs to be

able to handle a large number of transactions in real-time.

Also, interoperability with existing ETS systems and market participants

is important, as it ensures that the blockchain-based system can integrate

with the existing market infrastructure. Thirdly, privacy and security are

10

key concerns, as sensitive information such as emissions data and

allowance ownership needs to be protected from unauthorized access.

11

2 - Blockchain

2.1 - What is a blockchain?

A blockchain is a distributed ledger technology (DLT). It works like a

database, with some differences, it is stored in various locations around

the network and the world, called nodes. Each node processes

transactions submitted by clients, that become committed records, called

the ledger, of a replicated database on all nodes.

The difference from traditional DLT is that a Blockchain uses a

consensus mechanism when records are committed to immutable

ledgers. Each record is ordered in time, and each block of records is

cryptographically linked to the prior committed block. The records are

typically represented by a hash tree known asMerkle Tree.

When a new transaction is initiated, it is broadcast to all the nodes in the

network. These nodes verify the transaction and add it to a new block,

which is then added to the chain. Once a block is added to the chain, it

cannot be altered or deleted, since doing so would require changing the

hash of that block and all subsequent blocks in the chain.

Because of this immutability and decentralization, blockchains are often

used to power cryptocurrencies such as Bitcoin, Ethereum, and Solana.

However, they can also be used for a wide range of other applications,

12

including supply chain management, healthcare, finance, voting systems,

and identity verification.

2.1.2 - Origin of the Blockchain

It’s common to date the birth of the blockchain with the publication of

the Bitcoin paper authored by Satoshi Nakamoto, in 2008. In the paper

“Bitcoin: a peer-to-peer Electronic Cash System” [2], Satoshi

Nakamoto, proposed a new payment system that solved the

double-spending problem: the risk in digital currency systems where a

user can spend the same amount of money more than once, undermining

the integrity and trust of the system. It arises due to the inherently digital

nature of transactions, which allows for easy replication and

simultaneous use of the same fund. The solution, without using a

third-party entity, was an ongoing chain of hash-based proof-of-work,

forming a record that cannot be changed without redoing the

proof-of-work [2].

While blockchain was initially designed to support Bitcoin, the potential

of this technology soon became evident. The launch of Ethereum in 2015

introduced the concept of smart contracts, self-executing contracts with

the terms of the agreement directly written into lines of code. This

evolution extended the applicability of blockchain technology beyond

cryptocurrencies to numerous sectors, including finance, supply chain

management, healthcare, and energy. Some years later, In November of

2017, Anatoly Yakovenko published a whitepaper describing Proof of

13

History, a technique for keeping time between computers that do not

trust one another. That whitepaper created the basis for the Solana

blockchain, often called “The Ethereum Killer”.

2.1.3 - The blockchain revolution

Bitcoin is commonly described as Blockchain 1.0, a blockchain

technology without the concept of Smart Contracts. After the release of

the Ethereum paper people started to talk about Blockchain 2.0.

With the revolution introduced by Ethereum, interest from enterprise

companies grew and IBM, Intel, Oracle, Linux Foundation and others

started to invest in and develop tools for Blockchains.

The financial industry has been one of the earliest adopters of blockchain

technology. With its ability to securely and transparently track

transactions, the blockchain has the potential to revolutionize the way we

transfer and manage money. For example, blockchain-based payment

systems can eliminate the need for intermediaries like banks, reducing

transaction costs and increasing speed and efficiency.

Blockchain can also enable the creation of decentralized finance (DeFi)

platforms, which can provide financial services without the need for

traditional financial institutions. These platforms can offer a range of

services, like trading, in a decentralized and secure manner.

14

2.1.4 - Blockchain and Cryptocurrencies

The blockchain decentralized ledger can be utilized to store and validate

currency transactions. All blockchain protocols have coins that represent

value and can be traded (SOL, ETH, BTC …).

Unlike traditional currencies, cryptocurrencies are not issued by a

government or financial institution and are not backed by physical assets

or commodities. Instead, their value is based on supply and demand in

the market.

One of the defining characteristics of cryptocurrencies is their security

and resistance to fraud and counterfeiting. Cryptocurrencies utilize

advanced cryptographic techniques to secure transactions and prevent

double-spending (the act of spending the same cryptocurrency more than

once).

2.2 - The Solana Blockchain

Solana is a high-performance, open-source blockchain platform designed

to support decentralized applications (dApps) and cryptocurrencies. It

was founded in 2017 by Anatoly Yakovenko, a former Qualcomm

engineer, and the mainnet beta was officially launched in 2020.

Anatoly watched as blockchain systems without clocks, such as Bitcoin

and Ethereum, struggled to scale beyond 15 transactions per second

worldwide when centralized payment systems such as Visa required

peaks of 65,000 tps. Without a clock, it was clear they'd never graduate

15

to being the global payment system or global supercomputer most had

dreamed them to be. When Anatoly solved the problem of getting

computers that don’t trust each other to agree on the time, he knew he

had the key to bring 40 years of distributed systems research to the world

of blockchain. The resulting cluster wouldn't be just 10 times faster, or

100 times, or 1,000 times, but 10,000 times faster, right out of the

gate![7]

Solana's primary objective is to address the scalability and performance

limitations of existing blockchain platforms while maintaining

decentralization and security. Solana's unique architecture, which

includes innovations such as Proof of History (PoH), Tower Byzantine

Fault Tolerance (BFT) consensus mechanism, and a highly optimized

network stack, enables the platform to process thousands of transactions

per second (tps) with low latency and minimal fees. As a result, Solana

has attracted a growing number of developers, projects, and investors

seeking to leverage its capabilities for various use cases, including DeFi

(decentralized finance), NFTs (non-fungible tokens), and gaming.

2.2.1 - Solana network

The Solana Blockchain proposes a new implementation of a blockchain

based on the Proof Of History- PoH. The PoH is a mechanism that

provides a proof of time between two events, using a cryptographic

algorithm.

16

The proof of history, used alongside Proof of Stake, enhances the

efficiency and resilience and can reduce messaging overhead in a

Byzantine Fault Tolerant (class of failures that belong to the Byzantine

Generals' Problem) replicated state machine, resulting in sub-second

finality times [3].

In the Solana network at each time, a Node is responsible to generate a

consistent Proof of History, as described in the following figure. Each

node executes the transaction as is stored in the RAM and other nodes,

called verifiers, replicate the same transaction with the confirmations as

computed signatures, returning the same state.

2.1 Solana network design

17

2.2.2 - Proof of History (PoH)

Proof of history is a sequence of instructions cryptographically executed.

The output of the function can then be re-computed and verified by

external computers in parallel by checking each sequence segment on a

separate core.

With a cryptographic hash function, whose output cannot be predicted

without running the function (e.g. sha256, ripemd, etc.), run the function

from some random starting value and take its output and pass it as the

input into the same function again [3].

2.2 - Solana PoH Sequence

This sequence of hashes can be used to timestamp functions and record

that some data are recorded before some particular hash index is created.

If some external events occur a function append is used to compute the

new data recorded, the image below describes this workflow

18

2.3 - Solana PoH Sequence 2

We can see that based on the hash we can determine at which moment

the photograph1 and photograph2 entered the chain.

2.2.3 - What is Byzantine Fault Tolerance?

Solana uses a variant of the Practical Byzantine Fault Tolerance (PBFT)

protocol to achieve consensus [3].

Byzantine Fault Tolerance (BFT) is a critical feature of a blockchain

network that allows it to reach consensus and continue to function

correctly even if some nodes fail or act maliciously. The name comes

from the Byzantine Generals' Problem, a situation where actors must

coordinate their actions while dealing with potential traitors.

PBFT is a widely-used BFT protocol that is designed to tolerate

Byzantine faults, which occur when nodes in the network behave

maliciously or fail. In PBFT, a leader is elected to propose a block of

19

transactions, which is then validated by a group of nodes called

validators. The validators communicate with each other to ensure that

they all agree on the proposed block before it is added to the blockchain

[4].

In Solana, the validators are selected based on their stake in the network,

and they use PoH to establish a time-ordered sequence of events. The

validators are responsible for validating transactions and adding them to

the blockchain.

To ensure that the validators are behaving honestly, Solana uses a

mechanism called gossip to detect Byzantine faults. Gossip is a process

by which validators communicate with each other to exchange

information about the state of the network. If a validator detects that

another validator is behaving maliciously or is failing, it can broadcast

this information to the other validators.

The other validators can then use this information to remove the

malicious or failing validator from the network. Handling Byzantine

Faults In Solana, if a validator behaves maliciously or fails, the other

validators can detect this through gossip and remove the faulty validator

from the network. When a validator is removed, its stake in the network

is slashed, which incentivizes validators to behave honestly. If a validator

has a high stake in the network, the penalty for malicious behavior is

greater, which further incentivizes validators to act honestly. In addition,

20

Solana has a process for replacing faulty validators with new validators,

which ensures that the network remains secure and operational.

Combining PoH and PoS, Solana can efficiently handle the 'Byzantine

Generals' Problem' as it ensures that validators agree on the order of

transactions (PoH) and the state of the network (PoS). Even if some

nodes act maliciously or go offline, the rest of the network can continue

processing transactions, maintaining the integrity and security of the

blockchain.

2.3 - Smart Contracts

Looking at the overall history of blockchain, it has been more than a

decade since Bitcoin was proposed in the late 2000s. A few years after

Bitcoin became the first and the biggest case of blockchain technology,

the emergence of Ethereum immediately changed the research direction

on blockchain at that time. Digital encryption currency moved into the

programmable “era of smart contract”. Ethereum is a collection of

protocols that provide an Ethereum Virtual Machine (EVM) that can

execute any complex code and allow users to write their applications.

Ethereum is a Turing completeness system compared to complex script

in Bitcoin [8].

Unlike blockchains like Ethereum, where the heart of the system is the

EVM, Solana offers different structural logic. The development of

decentralized applications involves two dimensions – Program (creating

21

and deploying smart contracts called programs) and Client (writing

Dapps to communicate with these deployed programs).

This diagram shows this division in the build process. Find out about

three key distinctions of Solana below.

2.4 - Solana Smart Contracts overview

We can resume by saying that a smart contract is an executable that runs

on the blockchain. It is used to facilitate, verify and enforce the

negotiation between parties without the need for an intermediary.

Smart contracts can automate different operations like financial

transactions, property transfer, supply chain management, and more.

They are particularly useful in situations where trust is an issue.

22

2.3.1 - Smart Contracts within the Solana Ecosystem

In Solana, smart contracts are referred to as 'programs', and they are

written in either Rust or C. These contracts are open source and reside at

an address on the blockchain. The terms 'smart contract' and 'program'

are often used interchangeably in the Solana ecosystem.

A key aspect of Solana's architecture is that it treats smart contracts as

shared libraries, pieces of code that any program can link to. This design

allows Solana to execute transactions involving smart contracts much

faster and more efficiently than other blockchains.

Rust is known for its safety and performance, making it well-suited for

developing smart contracts that require high-speed execution and low

latency [5].

Solana programs can be deployed to the core of the network as native

programs or deployed on-chain by users. Programs are the core building

of blocks and can be used for sending tokens between wallets, accepting

votes of a DAO, or tracking ownership of NFTs.

There are plenty of Solana programs deployed on the net that any users

can use and link to their programs, on this GitHub repository we can

access the source code of that programs:

https://github.com/solana-labs/solana-program-library.

23

https://github.com/solana-labs/solana-program-library

2.3.2 - Accounts

On a high level, memory inside a Solana cluster can be thought of as a

monolithic heap of data and each smart contract have access to its part of

that heap.

All state lives in this heap. Your SOL accounts, smart contracts, and

memory that is used by smart contracts. Each memory region has a

program that manages it (sometimes called the “owner”). The Solana

term for a memory region is "account".

An Account is like a file in an operating system and it also includes

metadata that tells the runtime who is allowed to access the data and

how. If an account is marked "executable" in its metadata, then it is

considered a program that can be executed by including the account's

public key in an instruction's “program_id” [5]. Since all state lives in

the heap, even programs themselves live there. Accounts that the

BPFLoader owns store programs. This is a program that can be used to

deploy and upgrade other programs. The Native Loader owns the

BPFLoader and that is where the recursion ends.

The lifetime of each account is defined by the lamports owned by the

account itself. A Lamport is a fraction of the SOL that can be used to

“rent” a certain amount of time for the account. Every account that drops

to zero lamports is purged and the only way to maintain an account

active is to “rent-exempt” by charging a sufficient amount of lamports.

Transactions include one or more digital signatures each corresponding

to an account address referenced by the transaction. Each of these

24

https://docs.solana.com/terminology#signature

addresses must be the public key of an ed25519 keypair, and the

signature signifies that the holder of the matching private key signed,

and thus, "authorized" the transaction. In this case, the account is

referred to as a signer [5].

2.5 - Solana Accounts overview

2.3.3 - Transactions

In Solana, each program's execution begins with a transaction being

submitted to the cluster [5]. A transaction contains a compact array of

signatures, followed by a message.

In Solana transactions, there are three essential components. First,

signatures are required from all accounts authorizing any state update,

but an account can sign the transaction once, even if it's updated multiple

times within the transaction. Second, metadata includes information

about the number of signing, non-signing, and read-only accounts, as

well as a recent block hash. Finally, the instructions form the core of the

transaction, specifying the accounts involved, the program ID to be

25

executed, and the data buffer containing relevant information. In Solana

transactions, there are three essential components. First, signatures are

required from all accounts authorizing any state update, but an account

can sign the transaction once, even if it's updated multiple times within

the transaction. Second, metadata includes information about the number

of signing, non-signing, and read-only accounts, as well as a recent block

hash. Finally, the instructions form the core of the transaction, specifying

the accounts involved, the program ID to be executed, and the data

buffer containing relevant information.

2.3.4 - JSON-RPC

Solana JSON-RPC is an application programming interface (API) that

allows developers to interact with the Solana blockchain network using

the JSON-RPC protocol. It provides a standardized way to send requests

and receive responses in JSON format, facilitating communication

between client applications and Solana nodes.

With Solana JSON-RPC, developers can access a wide range of

functionalities and retrieve information from the Solana blockchain.

These functionalities include querying blockchain state, submitting

transactions, retrieving account balances, fetching transaction history,

and more. It serves as a powerful tool for building decentralized

applications (dApps), wallets, and other blockchain-related services on

the Solana network.

To use Solana JSON-RPC, developers typically construct JSON-RPC

requests specifying the method they want to invoke, along with any

26

required parameters. These requests are sent to a Solana node via HTTP

or WebSocket connections. The Solana node processes the request and

sends back a JSON response containing the requested data or

confirmation of the operation.

Solana JSON-RPC supports various methods, each serving a specific

purpose. For instance, the getAccountInfo method retrieves information

about a specific account, while the sendTransaction method submits a

new transaction to the network. By leveraging these methods and their

associated parameters, developers can interact with the Solana

blockchain programmatically and build sophisticated applications that

leverage the blockchain's capabilities.

A common widely-used method to access the JSON-RPC API is the

Solana Javascript SDK (https://solana-labs.github.io/solana-web3.js/).

The SDK allows every application in JS to connect to the RPC endpoint

and interact with the network.

2.4 - Solana Tokens

Solana tokens refer to digital assets or cryptocurrencies built on the

Solana blockchain. Solana tokens can represent various types of assets,

including utility tokens, security tokens, and non-fungible tokens

(NFTs). They leverage the Solana blockchain's infrastructure and smart

contract capabilities to enable secure and efficient token transfers and

interactions.

Developers and projects can create their tokens on the Solana blockchain

by utilizing Solana's smart contract language, which is based on Rust and

27

https://solana-labs.github.io/solana-web3.js/

provides flexibility for creating customized token functionalities. These

tokens can be used for various purposes, such as accessing dApps,

participating in decentralized finance (DeFi) protocols, or representing

unique digital assets in the form of NFTs.

Inside the context of smart contracts, the operation of creating new

tokens is called mint. In the Solana Blockchain in order to mint or

exchange tokens is needed to have an associated token account to the

program or to a wallet.

That’s because an user may own arbitrarily many token accounts

belonging to the same mint which makes it difficult for other users to

know which account they should send tokens to and introduces friction

into many other aspects of token management. This program introduces

a way to deterministically derive a token account key from a user's main

System account address and a token mint address, allowing the user to

create a main token account for each token they own. We call these

accounts Associated Token Accounts.

In order to easily handle this operation Solana defines a common

implementation for Fungible and Non-Fungible tokens, called

SPL-Token Program [9].

The token program CLI can be installed using cargo (see Chapter 3 for

cargo and Rust details), with the following script:

28

2.6 - Cargo install instruction

or is possible to use a Javascript SDK in order to use the Spl-Token

program inside dApps (like described in Chapter 4).

The Spl-Token program offers different commands for many use cases,

some of these are:

● spl-token create-token: allows to create a new Fungible Token and

returns the signature of the newly created token.

● spl-token mint [signature] [amount]: mint the amount provided

using the signature of the token.

● spl-token accounts: list all the tokens that the user owns

● spl-token create-account [signature]: create a new token

associated with the users.

For a full reference of the spl-token program take a look at the

documentation: https://spl.solana.com/token.

29

https://spl.solana.com/token

3 - Rust Programming

Rust is a high-performance systems programming language that offers a

high level of safety against common programming errors, such as null

pointer dereferencing and data races. It was first developed by Graydon

Hoare at Mozilla Research in 2006 to provide memory safety without

sacrificing performance, and it has seen growing adoption in industry

and open-source projects since its 1.0 released in 2015.

One of the primary advantages of Rust is its emphasis on zero-cost

abstractions, which means that it provides high-level functionalities

without imposing a runtime overhead. Rust accomplishes this through a

combination of compile-time checks and a unique ownership model.

The Rust compiler is renowned for its helpful error messages. The

compiler does more than just check the syntax; it also ensures that

memory use is safe across the entire program, tracking who owns what

data and preventing many common bugs that would be runtime errors in

other languages.

Rust's ownership model is one of its defining features. This model

governs how Rust programs manage memory and resources. It consists

of three main concepts: ownership, borrowing, and lifetimes. This

ownership model eliminates entire classes of bugs associated with null or

dangling pointers, double-free, and concurrent data access.

Moreover, Rust supports a hybrid of imperative procedural, concurrent

actor, object-oriented, and pure functional styles. It also supports generic

programming and metaprogramming, in both static and dynamic styles.

30

Lastly, the Rust ecosystem is growing rapidly. With its built-in package

manager, Cargo, and the online repository Crates.io, it is easier than ever

to find libraries (referred to as "crates" in the Rust community) for

virtually any task.

3.1 - Working with Cargo

Cargo is Rust's build system and package manager. It is responsible to

build the code, download libraries and maintain the dependencies of a

project. All the settings and configuration of Cargo are written in a file at

the root of every project, the Cargo.toml.

Relative to Solana development, Cargo is very useful because it allows

developers to import libraries such as the solana_program.

3.2 - Key Concepts in Rust

In Rust, as in many other low-level programming languages, there are

common concepts such as variables mutability, data types, functions, and

structs, but the main three concepts are Ownership, Borrowing, and

Lifetimes.

3.2.1 - Ownership

Ownership is Rust’s most unique feature and has deep implications for

the rest of the language. It enables Rust to make memory safety

guarantees without needing a garbage collector.

31

All programs have to manage the way they use a computer’s memory

while running. Some languages have garbage collection that regularly

looks for no longer-used memory as the program runs; in other

languages, the programmer must explicitly allocate and free the memory.

Rust uses a third approach: memory is managed through a system of

ownership with a set of rules that the compiler checks. If any of the rules

are violated, the program won’t compile. None of the features of

ownership will slow down your program while it’s running [6].

Every value in Rust has a single 'owner' at a specific moment. When the

owner goes out of scope, the value is automatically deallocated and its

memory is reclaimed. This ensures that memory is managed efficiently,

and there are no memory leaks.

The following snippet will highlight how the ownership of a variable is

related to its scope (closure).

3.1 - Rust ownership example

32

3.2.2 - Reference and Borrowing

If a function or another part of the code needs to temporarily access a

value without taking ownership, Rust allows us to reference that value by

using the “&” keyword. A reference is like a pointer in that it’s an

address we can follow to access the data stored at that address; that data

is owned by some other variable. Unlike a pointer, a reference is

guaranteed to point to a valid value of a particular type for the life of that

reference. We call the action of creating a reference borrowing [6].

There are two types of borrowing: mutable and immutable. Immutable

borrowing means that multiple parts of the code can read the value

simultaneously, but none can modify it. Mutable borrowing allows only

one part of the code to access and modify the value, but no other part can

access it at the same time. This ensures that data races and concurrent

modifications are prevented.

When ownership of a value is transferred from one variable to another,

the original variable can no longer be used to access the value. This is

called 'moving' the value. Moving ensures that there is always a single

owner for a value, and once the ownership is transferred, the original

owner loses access to prevent double-free errors.

33

3.2 - Rust ownership transfer example

These rules are checked by the Rust compiler at compile time, which

helps guarantee memory safety and improve code quality without

introducing a runtime performance penalty.

3.3 - Solana smart contracts in Rust

According to the Solana docs, Solana allows developers to write smart

contracts in C/C++ or Rust.

Before developing smart contracts we need to pull in the solana-program

library (https://crates.io/crates/solana-program).

TBC

34

https://crates.io/crates/solana-program

35

4 - Project

The goal of this thesis is to explore the potentiality of the Solana

blockchain applied to a real scenario such as the ETS. The outcome of

this work is a project written in React (https://react.dev/) and served with

Next.JS (https://nextjs.org/), a Server-side rendering framework widely

used.

4.1 - Client implementation

The client of the application allows users to interact with different

programs (smart contracts) deployed on the Solana devnet network.

To allow users to interact with the Smart Contracts the application is

secured by an authentication layer with auth0 (https://auth0.com/) that

allows users to use the Private Keys stored in a third-party tool called

web3auth (https://web3auth.io/), in this way the application allows users

to login with SSO or email and password and use a non-custodial wallet

for the key pair.

36

https://react.dev/
https://nextjs.org/
https://web3auth.io/

Figure 4.1 - Project authentication overview

The dashboard of the application allows users to see the actual balance

and to trade custom tokens that are backed by the carbon price.

Figure 4.2 - Project structure

The project is splitted into features packages, as described in Figure 4.2.

The entry point of the project is the pages/_app.tsx file, it instantiates the

root of the application and defines layout and styles. All the logic related

to the wallet interactions is in the ApplicationContextProvider, which

37

wraps the entire application (Fig. 4.3). Under the components folder

there are all the modules re-usable inside the application, such as atoms,

cards, headers, containers, and so on…

The utils folder contains all the code utilities like functions for

formatting public keys, formatting class names of the application, and

other valuable functions. The types folder contains all the Typescript

types used in the application. The hooks folder has inside all the React

hooks used in the project, like the useProfile.ts hook.

Figure 4.3 - _app.tsx file

38

The ApplicationContextProvider uses the React useContext hook and

allows to reuse logic and the wallet state all around the application. The

state exported by this context is described in Figure 4.4.

Figure 4.4 - Application Context State

As we can see in the image above the ApplicationContext exports the

login and logout functions, which are implemented using the web3Auth

+ Auth0 and then standard pieces of information regarding the

blockchain interaction, like tokenAccount, balance, and the

transferTokens function.

39

To setup the web3 authentication a Web3AuthNoModal object is

instantiated, as shown in Figure 4.5.

Figure 4.5 - Web3AuthNoModal implementation

and to interact with the auth0 verifier for the login with a JWT token

(Figure 4.6).

Figure 4.6 - OpenLoginAdapter implementation

40

then is possible to implement the login flow as in the function onLogin

(Figure 4.7).

Figure 4.7 - Login flow inside the onLogin callback

At this point, after that the user login using the modal provided by auth0,

the application is ready to use the SolanaWallet provider and starts to

sign transactions using the key pair of the user. Transactions are used to

41

interact with the smart contracts of the application. The most important

smart contract of this project is the one used for exchange tokens, I’ll

provide info about its implementation in Rust later in this chapter. There

are two functions exported by the ApplicationContext: buyTokens

(Figure 4.8) and sellTokens (Figure 4.9).

Breaking down the implementation of these two functions we can

understand how the communication with the smart contract works.

42

Figure 4.8 - buyTokens callback implementation

43

Figure 4.9 - sellTokens callback implementation

44

By looking at the implementation of the buyTokens and sellTokens

functions we can see that using the SolanaWallet is possible to sign and

send a Transaction object in which is added a TransactionInstruction, as

shown in Figure 4.10.

Figure 4.10 - SolanaWallet provider sign and send a transaction

Taking a look at the buyTokens function we can see that to build the

TransactionInstruction the method setupBuyTokensIx is called.

Inside the setupBuyTokensIx (Figure 4.11), is defined the transactions as

requested by the smart contract for the exchange. Keys for the wallet and

the token accounts are provided to allow the smart contract to transfer

the exact amount provided in the TransferInstruction.

The programId field inside the TransferInstruction tells the network the

program that the transaction is interacting with, in this specific scenario,

is the public key of the exchange smart contract deployed on the

network.

45

To allow the smart contract to decode the informations provided, Borsh

is used to serialize the payload, using the same struct defined in the

program (Figure 4.12). Borsh is a serialization hashing format

specifically designed for the Rust programming language. It provides a

way to convert Rust data structures into a binary format that can be

easily stored or transmitted.

The name "Borsh" stands for "Binary Object Representation Serializer

for Hashing." It focuses on simplicity, compactness, and speed. Borsh

aims to provide an efficient serialization solution for Rust applications,

especially for blockchain and decentralized application (dApp)

development.

46

Figure 4.11 - setupBuyTokensIx method implementation

47

Figure 4.12 - Borsh serialization on the client

After analyzing the client is important to take a look at the smart contract

implementation to understand how it works.

In Figure 4.13 is shown the code of the instructions interface of the

program.

Figure 4.13 - Smart contract instruction interface

This interface means that the program is processing three different types

of instructions and that the function for exchange tokens is the one with

index 2, if we look at the implementation of the setupBuyTokensIx

(Figure 4.11) we can see that in the TransactionInstruction a

48

Buffer.from(new Uint8Array([2])) is passed: in that way, the contract

knows that the transaction is for the ExchangeTokens action.

Then by looking at the implementation of the smart contract processor,

we can get information regarding all the accounts and the signers needed

for the program to be executed.

As described in the figure 4.14 the program needs 6 Account info to be

executed:

● wallet_ai: the wallet in which we want to transfer tokens.

● admin_ai: the wallet that will receive the SOL and will exchange

tokens, in this case, is called admin_ai because is the wallet owned

by the ETS.

● src_token_account_ai: the Account that owns the tokens,

associated with the admin wallet

● dst_token_account_ai: the Account owned by the wallet which

stores the tokens.

● token_prograk_ai: this is the token program account info, needed

for calling the tokens transfer instruction.

● system_program: the Solana system program account info, needed

for the execution of the SOL transfer instruction.

The same order of accounts is provided in the TransactionInstruction in

the setupBuyTokensIx function (Figure 4.11).

49

Figure 4.14 - ExchangeTokens processor implementation

Going deeper into the implementation in figure 4.15 there is the

implementation of the transfer instruction. As we can see we’re calling a

specific Solana program included in the SPL (Solana Program Library),

responsible to transfer tokens from a source to a destination.

Once the token transfer instruction is instantiated it is invoked using the

invoke program function provided by Solana (figure 4.16)

Figure 4.15 - spl_token transfer instruction implementation

50

Figure 4.16 - spl_token instruction invoke

And at this point, the exact amount of token requested is traded for the

corresponding SOL amount needed.

The other due instructions exposed by the smart contract are the Create

and Update. These two functions allow to create and/or update a

Company profile. The behaviour of the interaction between the client

and the program is almost the same as the ExchangeTokens, with the

same differences that we can see by looking at the program

implementation (Figure 4.17, 4.18) and the Company state (Figure 4.19).

To serialize and deserialize data inside the Company object is used Borsh

in Rust. The try_from_slide_unchecked allows deserializing an object

using the Company struct. On the other hand, the serialize function

serializes the Company struct.

51

Figure 4.17 - Create instruction implementation

Figure 4.18 - Update instruction implementation

52

Figure 4.19 - Company State

The most important part of the Company instructions is that for storing

company informations the program is using a Program Derived Address.

Program Derived Addresses (PDAs) are home to accounts that are

designed to be controlled by a specific program. With PDAs, programs

can programmatically sign for certain addresses without needing a

private key. To understand the concept behind PDAs, it may be helpful to

consider that PDAs are not technically created, but rather found. PDAs

are generated from a combination of seeds and a program id. This

combination of seeds and program id is then run through a sha256 hash

function to see whether or not they generate a public key that lies on the

ed25519 elliptic curve (Figure 4.20).

53

Figure 4.20 - Pda generation from the elliptic curve

Using a PDA allows the program to store information based on the

public key of the user, in this way, after the login a user can provide and

retrieve information regarding his company.

In the client, the function that allows interaction with the PDA is the

getCompanyPDA callback described in Figure 4.21.

It uses borsh to perform a deserializeUnchecked operation using the

BorshCompanySchema struct (Figure 4.22)

54

Figure 4.21 - Retrieve information about the PDA in the client

55

Figure 4.22 - Retrieve information about the PDA in the client

4.2 - Solana program deploy

This chapter covers the steps needed in order to develop and deploy the

Solana program

56

First of all we need to setup the local environment as described in the

Solana quick start (https://docs.solana.com/getstarted/local).

Then a file system wallet is needed, in order to create a new one we can

run the script:

solana-keygen new

and then create a new keygen and config as the default wallet in the local

file system with the script:

solana config set -k ~/.config/solana/id.json

Once that the local environment is ready we need to generate the

byte-code of the program, in order to do that we can run the following

script inside the program folder:

cargo build-sbf

Once that the BPF is compiled the program can be deployed with the

script:

solana program deploy ./target/deploy/{PROGRAM_NAME}.so

At this point, the public key returned by the CLI is the program_id that

needs to be called inside the client of the application.

57

https://docs.solana.com/getstarted/local

Is possible to see all the transactions and the status of the program on the

network using the Solana explorer

(https://explorer.solana.com/?cluster=devnet), using the address of the

deployed program.

Figure 4.23 - Smart contract details on the Solana explorer

58

https://explorer.solana.com/?cluster=devnet

5 - Conclusion

This research aimed to identify the key features of the Solana Blockchain

and the benefits to use a blockchain infrastructure in a real scenario such

as the Emissions Trading System. The outcome of this thesis is a

decentralized application that allows users to interact with the blockchain

inside the context of an ETS. The high number of transactions per

second, low carbon impact, and average lower fees compared to the main

competitor like Ethereum, make Solana the perfect choice for a system

like the ETS.

The use of Rust for the Smart Contracts development is a good win for

Solana, Rust is a common development language nowadays, so is easy to

deep into program development for developers, without learning a new

language (like Solidity for Ethereum).

I really liked the Program Derived Addresses, it allows to organize

accounts into smart contracts in a different way that makes Solana a very

powerful blockchain for dApps.

In the end, I think that this work could be a good starting point for

people that want to explore the Solana network and build something on

top of it, in this thesis there is a good example of a non-custodial

authentication and the integration of the smart contracts inside a Next.Js

application. Starting from this is possible to adapt these technologies for

many different use cases and projects.

The project is uploaded on GitHub at the link:

https://github.com/pmpwith2i/solana-ETS

59

60

Bibliography

[1]- How do emissions trading system work - LSE UK

(https://www.lse.ac.uk/granthaminstitute/explainers/how-do-emissions-tr

ading-systems-work/)

[2] - Bitcoin: A Peer-to-Peer Electronic Cash System

(https://bitcoin.org/bitcoin.pdf)

[3] - Solana: A new architecture for a high performance blockchain

(https://solana.com/solana-whitepaper.pdf)

[4] - Practical BFT Research (Microsoft)

(https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/

tr-2001-12.pdf)

[5] - Solana Docs (https://docs.solana.com/)

[6] - The Rust Programming Language (https://doc.rust-lang.org/book/)

[7] - History | Solana Docs (https://docs.solana.com/history)

[8] - Research and Application of Smart Contract Based on Ethereum

Blockchain

(https://www.researchgate.net/publication/348822434_Research_and_Ap

plication_of_Smart_Contract_Based_on_Ethereum_Blockchain)

[9] - Solana - SPL Token Program Docs (https://spl.solana.com/token)

61

https://www.lse.ac.uk/granthaminstitute/explainers/how-do-emissions-trading-systems-work/
https://bitcoin.org/bitcoin.pdf
https://solana.com/solana-whitepaper.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2001-12.pdf
https://docs.solana.com/
https://doc.rust-lang.org/book/
https://docs.solana.com/history
https://www.researchgate.net/publication/348822434_Research_and_Application_of_Smart_Contract_Based_on_Ethereum_Blockchain
https://www.researchgate.net/publication/348822434_Research_and_Application_of_Smart_Contract_Based_on_Ethereum_Blockchain
https://spl.solana.com/token

62

Alla fine di questo elaborato un ringraziamento speciale va al professore

Michele Colajanni, grazie per avermi dato la possibilità di approfondire

un tema come quello della Blockchain, svolgere questa tesi è stato

davvero interessante sia per le conoscenze acquisite che per le sfide

affrontate.

Grazie alla mia famiglia, i miei amici, colleghi e tutte le persone che ho

avuto la fortuna di incontrare in questi anni.

Grazie a Claudia, vivere questo periodo con te è stata la cosa più bella

che mi sia mai capitata.

63

