Potena, Nicandro
(2023)
Exploiting fine tuning on GPT2 transformer for conversational AI.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Informatica [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore.
(
Contatta l'autore)
Abstract
This thesis focuses on the development of a Conversational AI Chatbot that aims to retain conversation history and provide consistent responses. Two approaches are used: fine-tuning the DialoGPT model and multi-task learning with the basic GPT2 model. The conversational dataset preparation phase involves collecting relevant data from sources like chatbots and conversation logs. Two datasets, Persona-Chat and Cornell Movie Dialogs Corpus, are used. Training and testing involve using the prepared dataset to train the chatbots and evaluate their performance using the perplexity metric. The thesis draws inspiration from previous works, such as TransferTransfo, 'gpt2-chatbot' project, and 'How to Build a State-of-the-Art Conversational AI with Transfer Learning.' The goal is to develop an advanced Chatbot using Python, with the code available on GitHub and executable on Google Colab. The transformers, including GPT2 and DialoGPT, are accessible through the Hugging Face platform.
Abstract
This thesis focuses on the development of a Conversational AI Chatbot that aims to retain conversation history and provide consistent responses. Two approaches are used: fine-tuning the DialoGPT model and multi-task learning with the basic GPT2 model. The conversational dataset preparation phase involves collecting relevant data from sources like chatbots and conversation logs. Two datasets, Persona-Chat and Cornell Movie Dialogs Corpus, are used. Training and testing involve using the prepared dataset to train the chatbots and evaluate their performance using the perplexity metric. The thesis draws inspiration from previous works, such as TransferTransfo, 'gpt2-chatbot' project, and 'How to Build a State-of-the-Art Conversational AI with Transfer Learning.' The goal is to develop an advanced Chatbot using Python, with the code available on GitHub and executable on Google Colab. The transformers, including GPT2 and DialoGPT, are accessible through the Hugging Face platform.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Potena, Nicandro
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum B: Informatica per il management
Ordinamento Cds
DM270
Parole chiave
Conversational AI,GPT-2,Fine-tuning,Transfer learning
Data di discussione della Tesi
19 Luglio 2023
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Potena, Nicandro
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum B: Informatica per il management
Ordinamento Cds
DM270
Parole chiave
Conversational AI,GPT-2,Fine-tuning,Transfer learning
Data di discussione della Tesi
19 Luglio 2023
URI
Gestione del documento: