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Introduction

The computation of short-term credit transition matrices is a problem for

which di�erent solution approaches have been proposed over the years ([19],

[20]). In this thesis, carried out with the support of Prometeia S.p.A., we

give a full overview of these methods with a main focus on the mathematical

foundation; moreover, we include a study on the scenario-dependence.

A credit transition matrix (CTM) is a stochastic matrix that represents

the probabilities of migration from a rating class to another; it refers to a

given time interval and considers a speci�c class of debtors. Following the

path already traced by the literature, we assume that the credit rating migra-

tions can be described through a discrete time-homogeneous Markov model

([20]). Basic concepts of credit risk ([1]) and details about the credit transi-

tion matrices and the Markov model ([26]) are in Section 1.1. Many annual

CTMs are published by rating agencies ([15]), but in credit risk framework

banks usually compute their own matrices that only consider their opera-

tions. In both cases, the smallest time interval in which a CTM is available

is usually one year but for some �nancial applications a short-term CTM (e.g.,

monthly/quarterly CTM) is needed ([19]). Thanks to the time-homogeneity

assumption and to the semigroup property, we have that short-term CTMs

can be obtained as roots of the annual CTM. However, given a stochastic

matrix A ∈ Sn×n, we need to understand how it is possible to compute A
1
p ,

for p ∈ N. For this reason, in Section 1.2 we discuss functions of matri-

ces ([13]). In this section, we give two equivalent de�nitions of function of

matrix and observe that knowing log(A) we can compute each p-th root as

i



ii INTRODUCTION

A
1
p = exp(1

p
log(A)).

Once we are able to compute A
1
p , the problem is not solved at all since

some entries could be complex, which is nonsensical from a probabilistic point

of view. We solve this problem at the end of Chapter 1: consistently with

the literature ([17]), we assume that a credit transition matrix is strongly

diagonally dominant (this assumption is the result of empirical observations

on annual CTMs published by rating agencies) and thanks to this assumption

it is possible to prove that a credit transition matrix always admit a real

logarithm and, consequently, a real p-th root for each p ∈ N ([11]). However,

a real root is not su�cient, since we need the transition matrix to be also

stochastic. Indeed, the exact root can have some negative entries or, more

rarely, a row whose sum is not one. For this reason, we need to �nd a

stochastic matrix X ∈ Sn×n that is a good approximation of A
1
p .

In Chapter 2, we report three mathematical methods and some other

widely-spread methods for doing this approximation. Following the general

approach in literature, we consider ∥Xp−A∥ as the measure of the error ([20]).

In Section 2.1 we analyse the quasi optimization of the root (QOM) method

([19], [29]), which �nds the nearest stochastic matrix to the exact root, i.e.

an X such that ∥X − A
1
p∥ is minimized. We provide a lean algorithm with

detailed proof, for which some convex optimization results are required. In

2.2, we study the quasi optimization of the generator (QOG) method ([15],

[22]). This method looks for a continuous-time Markov chain of the form

X(t) = exp(tG) that �ts well with A; G ∈ Mn×n is called generator and it has

the property that exp(tG) is stochastic for each t ≥ 0. We prove that most of

the CTMs do not admit a generator and then provide an original algorithm,

similar to the QOM one, which �nds the generator G that minimizes ∥G −
log(A)∥. In Section 2.3, we discuss the nonlinear optimization approach ([20],

[5]), which is the most accurate but it is not given much credit in literature

because of its complexity and low e�ciency.

In Chapter 3 we provide numerical results. We tested the algorithms

also on a credit transition matrix that Prometeia received from an Italian
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bank: this matrix is much bigger than those published by rating agencies and

for this reason does not meet the empirical assumption of strong diagonal

dominance.

Chapter 4 is about the inclusion of the scenario-dependence ([27], [4]).

In fact, credit transition matrices are estimated on historical data but, if

we want to use them to forecast the future migrations, we de�nitely need

to include the macroeconomic forecasts of in�uencing variables ([24], [16]).

In 4.1 we describe a simpli�ed approach for the inclusion of the scenario-

dependence, while in 4.2 we propose two strategies for the inclusion of the

scenario-dependence in quarterly credit transition matrices.
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Glossary and notations

We provide de�nitions and notations that will be valid throughout the

thesis, unless there are duly noted exceptions.

� Mn×n denotes the set of n-dimensional matrices with complex entries;

� R≥0 is the set of non-negative real numbers;

� R<0 is the set of negative real numbers;

� nJor is the number of Jordan blocks of a given matrix;

� ∥ · ∥ is the Frobenius norm;

� x∗ is the optimal solution of an optimization problem of the type

min
x∈D

/max
x∈D

f(x),

with f : D ⊆ Rn → Rn;

� Bold numbers/letters are vectors where every component is equal to

that number/letter. In some cases, the dimension is given as a sub-

script. For instance:

0 = (0, ..., 0) ∈ Rn,

1n = (1, ..., 1) ∈ Rn;

� Given x, y in Rn, x > y means xi > yi for any i = 1, ..., n; the same

holds for non-strict inequalities. Wordings like "x is non-negative"

mean that x ≥ 0;

vii
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� Given a sequence of square matrices (Bk)k≤m, we denote with diag(Bk)k≤m

a block diagonal matrix in which the k-th block is equal to Bk. Please

note that the matrices can be of di�erent dimensions;

� Sn is the probability simplex, namely the set of real vectors with non-

negative entries and sum equal to one:

Sn := {x ∈ Rn|x⊤1 = 1, x ≥ 0};

� Sn×n is the set of all the stochastic matrices, namely matrices such that

each row is in the probability simplex.



Chapter 1

Financial and mathematical

context

In this chapter we provide some knowledge about credit transition matri-

ces and credit risk. Moreover, we give the de�nition of function of matrices

and provide results about the p-th root of a credit transition matrix.

1.1 An introduction to short-term credit tran-

sition matrices

Credit risk. Bank of Italy de�nes credit risk as "the contingency for the

creditor that a �nancial obligation is not ful�lled either at maturity or subse-

quently" ([2]). Throughout this thesis, it is possible to simplify the �nancial

aspect by thinking about the creditor as a bank and about obligations as

loans to privates.

Rating systems. In credit risk management, information about the �nan-

cial health of the debtors is essential. For this reason, debtors are divided

in rating classes that, decreasingly from the best one to the worst, represent

how likely it is that the debtor will not be able to pay o� debts. There are

di�erent rating systems with di�erent notations, but the choice is totally ir-

1



2 1. Financial and mathematical context

relevant for the purpose of the thesis, since each class (except for the worst)

is treated in the same way and therefore the only important variable is the

dimension of the problem.

Non-performing loans. We will follow the Italian standards ([3], [1]) that

di�erentiate between:

� Non-performing loans, divided into:

� Bad loans: "are exposures to debtors that are insolvent or in

substantially similar circumstances". We will consider a speci�c

credit class named DEF3;

� Unlikely-to-pay exposures: "aside from those included among bad

loans, are those in respect of which banks believe the debtors are

unlikely to meet their contractual obligations in full unless action

such as the enforcement of guarantees is taken". We will consider

a speci�c credit class named DEF2;

� Overdrawn and/or past-due exposures: "aside from those classi�ed

among bad loans and unlikely-to-pay exposures, are those that are

overdrawn and/or past-due by more than 90 days and for above a

prede�ned amount". We will consider a speci�c credit class named

DEF1;

� Performing loans : operations not included in the previous classes, that

are not showing particular anomalies. These loans will be divided into

n− 3 credit classes called BO1, BO2,...,BO(n-3) in decreasing order of

goodness.

In this thesis we will use both acronyms and numbers to refer to rating classes

in decreasing order of goodness; in this sense, {1, ..., 4, ..., n} correspond to

{DEF3,...,BO(n-3),...,BO1}.
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Credit transition matrices. While performing a credit risk analysis, a

creditor needs to make forecasts of the amount of unpaid conceded loans in

a given period and for this reason needs to keep track of the migrations from

a credit class to another. Let us consider a rating system with n classes; a

credit transition matrix (CTM) is an n-dimensional stochastic matrix A such

that the element aij represents the probability to move from class i to class

j. We will assume that the stochastic process representing the rating class of

a certain debtor is a time-homogeneous Markov chain and for this reason we

have that the probability of migration does not depend on the history of the

debtor. Therefore, we can describe the entire stochastic process if we know

the starting class and the CTM.

Absorbing DEF3 assumption. We will assume that the last class is

absorbing in the sense of Markov chains, i.e. a DEF3 debtor will never pay

and has probability 1 of remaining in DEF3. This is a classical assumption,

see any of the references about CTMs.

Applying CTMs to exposures. We de�ne an exposure as an n-dimensional

vector in which the i-th component represents the amount of loans globally

conceded to debtors in the i-th credit class:

x = (xBO1, ..., xDEF1, xDEF2, xDEF3).

Given the actual exposure and the one year CTM, we can provide a forecast

of the exposure in 1 year from now by computing the matrix product of the

transposed exposure and the CTM. Naming the new exposure x̃ we have that

x̃i =
n∑

j=1

xjpji.

For example, consider a Markov chain with 6 states and transition matrix A

in Table (1.1). If a bank has a current exposure of x = (60, 20, 0, 20, 0, 0)

we expect that in one year the new exposure will be

x̃ = x⊤A = (51.2, 22.6, 9.6, 10.8, 3.8, 2.0).
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BO1 BO2 BO3 DEF1 DEF2 DEF3

BO1 0.80 0.12 0.06 0.02 0.00 0.00

BO2 0.14 0.63 0.10 0.08 0.04 0.01

BO3 0.06 0.16 0.53 0.09 0.08 0.08

DEF1 0.02 0.14 0.20 0.40 0.15 0.09

DEF2 0.00 0.05 0.10 0.15 0.50 0.20

DEF3 0.00 0.00 0.00 0.00 0.00 1.00

Table 1.1: Example of a CTM with 3 bonis and 3 default states.

Strong diagonal dominance There are some properties which are met

by most of the credit transition matrices available online. These matrices are

also published by rating agencies such as Moody's and Standard & Poor's,

and sometimes we will refer to them as standard CTMs.

A complete list of the empirically derived properties can be found in [17] but

we are mainly interested in the most popular one: we will assume that a

CTM is strongly diagonally dominant, i.e. for each i, j we have that

|aii| >
∑
j ̸=i

|aij|;

we notice that, since A is stochastic, this condition is satis�ed if and only if

aii > 0.5.

The importance of the p-th root. The shortest time interval in which

a CTM is available is usually one year; indeed, considering a shorter time

interval would lead to a matrix too in�uenced by �uctuations. In many

�nancial applications a shorter time interval is needed ([19]): for example, if

we want to study the future wallet of a bank every three months, we need to

know the forecasts of the quarterly probability of migrations. If we assume

that the Markov chain is time-homogeneous, i.e. setting the time span the
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CTM is always the same, thanks to the semigroup property (De�nition 2.2.1)

we have that the quarterly CTM is the 4-th root of the annual CTM. In the

same way, the monthly matrix is the 12-th root.

Stochastic approximation. However, it is not always possible to com-

pute the root of a matrix in the real sense ([20]) and complex numbers are

nonsensical from a probabilistic point of view. Furthermore, even if the root

is real, we have no guarantee that stochasticity holds since we could have

some negative entries and, more rarely, row-sums other than 1. For these

reasons, we want to �nd the stochastic matrix that best approximates the

exact root: we will refer to it as the best stochastic approximation of the

p-th root.

Remark 1.1.1. We say that the approximation is stochastic in the sense that

we are looking for an approximation in the space of the stochastic matrices:

all the algorithms that we are about to see are deterministic.

1.2 Function of matrices

We have discussed the p-th root of a matrix previously, and we will delve

into other matrix functions in subsequent sections. We need to clarify what

it means to apply a complex function to a matrix. We follow the approach

by [13].

Polynomial case. Applying a polynomial function p to a matrix A ∈
Mn×n is straightforward: a simple substitution works. In case of a rational

polynomial r = p
g
, if g(A) is invertible we de�ne r(A) := p(A)g(A)−1. This

approach can also be used for functions with a power series representation

with in�nite radius of convergence. For example, the exponential

exp(tA) = I +
∑
n≥1

tnAn

n!
,

where t ∈ R.
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However, we need a de�nition that is consistent with this approach but

applicable to non-polynomial functions. We see two approaches in the next

subsections.

1.2.1 Jordan decomposition approach

De�nition 1.2.1. Consider f : C → C and A ∈ Mn×n with s distinct

eigenvalues. We say that f is de�ned on the spectrum of A if:

f (j)(λi), j = 0, ..., ni − 1, i = 1, ..., s

exists for every λi eigenvalue of A, with ni representing the dimension of the

highest-order Jordan block in which λi appears.

De�nition 1.2.2 (Matrix function via Jordan canonical form). Consider

f : C → C de�ned on the spectrum of A ∈ Mn×n. Suppose that A has

Jordan canonical form A = ZJZ−1, then

f(A) := Zf(J)Z−1 = Z diag(f(Jk)k=1,...,nJor
)Z−1,

where Jk ∈ Mmk×mk is the Jordan block relative to λk.

f (Jk) :=


f (λk) f ′ (λk) · · · f(mk−1)(λk)

(mk−1)!

f (λk)
. . .

...

. . . f ′ (λk)

f (λk)

 .

Example 1.2.1. Consider f(x) = x2 and the matrix

A =


0.5 0.5 0

0 0.5 0.5

0 0 1

 .
A = ZJZ−1 with

Z =


1 −0.5 −1

1 0 −1

1 0 0

 ,
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J1 = [1] , J2 =

[
0.5 1

0 0.5

]
, J =


1 0 0

0 0.5 1

0 0 0.5

 ,

f(J1) = [1] , f(J2) =

[
0.25 1

0 0.25

]
, f(J) =


1 0 0

0 0.25 1

0 0 0.25

 ,
so we can compute the square of A in the following way:

A2 = Zf(J)Z−1 =


0.25 0.5 0.25

0 0.25 0.75

0 0 1

 ,
that is exactly the same result obtained with polynomial substitution.

Remark 1.2.1. In the case of a multi-branch complex function, it is important

to always apply the same branch to di�erent Jordan blocks, otherwise the

de�nition becomes dependent on the choice of the Jordan normal form. We

will see an example later in this chapter.

Remark 1.2.2. Given a diagonal matrix D ∈ Mn×n, we have that f(D) is also

diagonal with non-negative entries f(λi)i=1,...,n. If A is diagonalizable, then

f(A) = Zf(D)Z−1, so f(A) has the same eigenvectors as A with eigenvalues

f(λi)i=1,...,n.

Mathematical motivation behind the de�nition. Observe that, writ-

ing Jk = λkI + Nk, we have that Nk is composed of zeros except for the

superdiagonal of ones:

Nk =



0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0

0 · · · 0 0 1

0 · · · 0 0 0


.
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Note that Nk is nilpotent of order mk. Considering the formal Taylor series,

f(x) =
∑
n≥0

f (n)(λk)(x− λk)
n

n!
,

substituting Jk for x we �nd

f(Jk) =

mk−1∑
n=0

f (n)(λk)(Nk)
n

n!
,

that is the same as De�nition 1.2.2.

Now we provide another approach that does not rely on Taylor expansion.

1.2.2 Hermite approach

Let us call ψA the minimal polynomial of A ∈ Mn×n; we have that ψA

divides any polynomial p such that p(A) = 0. To verify this, write p = ψAq+r

with deg(r) < deg(ψA) and note that 0 = p(A) = r(A), so r must be

identically null due to the minimality of ψA. It is a classical result of linear

algebra that

ψA(x) =
s∏

i=1

(x− λi)
ni , (1.1)

where the notation is the same as in the previous approach.

Recalling that the polynomial functions of A are de�ned by substitution,

we study an interesting property that we want to keep valid for a generic

function.

Lemma 1.2.1. Let p, q be polynomials and consider A ∈ Mn×n. Then p(A) =

q(A) if and only if p(j)(λi) = q(j)(λi) for i = 1, ..., s, j = 0, ..., ni − 1. If the

latter is veri�ed, we say that p and q coincide on the spectrum of A.

Proof. Let ψA be the minimal polynomial of A. If p(A) = q(A) we have that

(p−q)(A) = 0 and so ψA divides p−q. On the other hand, if p and q coincide
on the spectrum of A the same result comes directly from the explicit formula

in (1.1). Hence, in both cases p− q = ψAr and:
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� p(A)− q(A) = ψA(A)r(A) = 0

� p(j)(λi)− q(j)(λi) =
∑j

k=0

(
j
k

)
ψ

(k)
A (λi)r

(j−k)(λi) = 0

for i = 1, ..., s, j = 0, ..., ni − 1

so the statement holds.

We have that the value of p(A) is completely de�ned by the value of p

on the spectrum; to maintain this good property valid for a generic f , we

provide a de�nition with polynomial interpolation.

De�nition 1.2.3 (Hermite interpolating polynomial). Given f : C → C
de�ned on the spectrum of A ∈ Cn×n, the Hermite interpolating polynomial

is the polynomial p such that:

� deg(p) < deg(ψA),

� p(j)(λi) = f (j)(λi), j = 0, ..., ni − 1, i = 1, ..., s.

Such a polynomial always exists and showing its uniqueness is not a dif-

�cult task.

Existence. The Hermite interpolating polynomial can be represented with

an explicit formula:

p(x) =
s∑

i=1

((
ni−1∑
j=0

1

j!
ϕ
(j)
i (λi)(x− λi)

j)

)∏
j ̸=i

(x− λj)
nj

)
,

where ϕi(x) =
f(x)∏

j ̸=i(x−λj)
nj . For a matrix with distinct eigenvalues this for-

mula reduces to the Lagrange interpolating polynomial:

p(x) =
n∑

i=1

(
f(λi)

n∏
j=1,j ̸=i

x− λj
λi − λj

)
.
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Uniqueness. Let us consider two polynomials p and q respecting the in-

terpolation conditions. We consider d = p− q which is a polynomial of order

lower than max{deg(p), deg(q)}. Note that each eigenvalue is a root of d

with multiplicity ni, so we have that d has to be exactly zero because

deg(d) < max{deg(p), deg(q)} < deg(ψA) =
s∑

i=1

ni.

Example 1.2.2. Let us solve the problem in the Example 1 with the Hermite

interpolation approach. We divide the sum in two components, one for each

eigenvalue:

p(x) = p1(x) + p0.5(x).

For what concerns the �rst one,

ϕ1(x) =
x2

(x− 0.5)2

and so

p1(x) = 4(x− 0.5)2.

For the second we also need the derivative:

ϕ0.5(x) =
x2

(x− 1)
, ϕ′

0.5(x) =
x2 − 2x

(x− 1)2
,

from which

p0.5(x) = (−0.5− 3(x− 0.5))(x− 1).

Then we have that

p(x) = 4(x− 0.5)2 − 0.5(x− 1)− 3(x− 1)(x− 0.5)

and substituting x with A we �nd the same result of Example 1.2.1.

Remark 1.2.3. If f is given by a convergent power series, this de�nition

yields that f(A) can be written as a polynomial in A of degree at most n−1.

The same result can be obtained as a consequence of the Cayley-Hamilton

theorem.
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Theorem 1.2.1 (Equivalence of de�nitions). The de�nitions of function of

matrices obtained by the Jordan canonical form and the Hermite interpolation

are equivalent.

Proof. Using the de�nition obtained with Hermite interpolation, for a certain

polynomial depending on the matrix A it holds that f(A) = pA(A). Applying

simple properties of matrix polynomials, we �nd that

f(A) = pA(A) = pA(ZJZ
−1) = ZpA(J)Z

−1 = Z diag(pA(Jk)k=1,...,njor
)Z−1.

We can actually derive the expression for f(Jk) in De�nition 1.2.2 from Def-

inition 1.2.3, observing that since Jk is a Jordan block it has only one eigen-

value λk with algebraic multiplicity equal to the dimension of the block. The

properties of Nk do the rest and we �nd pJk such that f(Jk) = pJk(Jk). No-

tice that pJk and pA coincide on the spectrum of Jk and so for Lemma 1.2.1

pA(Jk) = pJk(Jk), that concludes the proof.

Remark 1.2.4. In general, pA will be of higher order than pJk ; anyway, this

does not a�ect the ability of both to reproduce f(Jk). Similarly, it is always

possible to ask for additional conditions when looking for the interpolating

polynomial, but asking for additional conditions will lead to an increase of

the degree of the polynomial.

Non-primary matrix functions. The matrix functions obtained with

the previous de�nitions are called primary matrix functions. We explain the

existence of non-primary matrix functions through an example. Consider

the identity matrix I ∈ R2×2 and f(x) =
√
x: we have that the Hermite

interpolation approach �nds I and −I as square roots. Applying De�nition

1.2.2, we can consider di�erent branches of the complex square root and �nd

other results such as[
−1 0

0 1

]
,

[
1 0

0 −1

]
,
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that of course are still valid. We quickly pass to the conclusion that there

are in�nite possible square roots of the identity matrix by writing the House-

holder re�ections

H(θ) =

[
cos(θ) sin(θ)

sin(θ) − cos(θ)

]
, θ ∈ [0, 2π].

All these roots are called non-primary and occur when there is at least one

multiple eigenvalue that appears in more than a single Jordan block. Some of

these roots can be found from De�nition 1.2.2 by applying di�erent branches

of the function f to di�erent Jordan blocks referring to the same eigenvalue.

We recall that, in this way, f(A) becomes dependent on the choice of the

Jordan form and for this reason most of the theoretical results in literature

refers to primary matrix functions.

1.2.3 Real roots and logarithm of a CTM

Let A ∈ Sn×n be a CTM and recall that we assume A to be strongly diag-

onally dominant. We start providing a classical result about the eigenvalues

of a matrix (see [25]).

Theorem 1.2.2 (Gershgorin circle theorem). Let A ∈ Mn×n. For each

i = 1, ..., n we de�ne

Ci = {z ∈ C : |z − aii| ≤
n∑

j=1,j ̸=i

|aij|}.

Let Λ be the set of all eigenvalues of A. Then, we have that

Λ ⊆ ∪n
i=1Ci.

Corollary 1.2.1. Let A ∈ Sn×n be strongly diagonally dominant. Then

we have that Re(λ) > 0 for every λ eigenvalue of A. In particular, A is

invertible.

Theorem 1.2.3. Given A ∈ Cn×n with no eigenvalue on R<0 and α ∈
[−1, 1], we have that

log(Aα) = α log(A).
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Thanks to this result, whose proof can be found in [13, Theorem 11.2],

we �nd a strong relationship between the logarithm of a matrix and the p-th

roots. In fact, if we are able to �nd log(A), then

A
1
p = exp

(
log
(
A

1
p

))
= exp

(
1

p
log (A)

)
.

In particular, if the logarithm of A is real, then also the p-th root is real.

This is important since all the methods we are about to see need an input

matrix whose entries are all real.

Now we present a necessary condition for the logarithm of a matrix to be

real. This result is proven in [11] and the assumptions are satis�ed by any

credit transition matrix.

Theorem 1.2.4. Let A ∈ Rn×n be invertible. If A has no eigenvalues on

R<0, then A has a real logarithm.

Corollary 1.2.2. Given A ∈ Sn×n that is strongly diagonally dominant, we

have that A has a real logarithm. In particular, A admits a real p-th root for

each p ∈ N.



14 1. Financial and mathematical context



Chapter 2

Stochastic approximation of the

p-th root of a credit transition

matrix

This chapter is about the stochastic approximation of the p-th root of a

credit transition matrix A ∈ Sn×n, that is, we want to �nd a matrixX ∈ Sn×n

that is a good approximation of the exact root A
1
p . We will go through

three di�erent approaches: QOM method, which works on the exact root;

QOG method, which works on the exact logarithm to �nd a generator for an

homogeneous continuous-time Markov chain compatible with A; nonlinear

optimization methods, in particular BAM, which do not require the compu-

tation of the exact root but are computationally expensive. At the end of the

chapter we report some popular methods, that are trivially not competitive

with QOM, QOG and BAM.

2.1 QOM - Quasi optimization of the root ma-

trix

In this section the exact root is assumed to be already computed with one

of the approaches seen in Chapter 1: we will focus on �nding the stochastic

15
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matrix that best approximates the exact root (in case it is not already a

transition matrix). Consider the problem

min
X∈Sn×n

1

2
∥X − A

1
p∥2 (QOM)

that can be solved with a row by row approach

min
x∈Rn

1

2
∥x− a∥2

s.t. x⊤1 = 1

x ≥ 0,

where x is the row of the matrix X that will be found projecting the row

a of the matrix A onto the probability simplex. We will discuss the algo-

rithm proposed in [29] because of its simple proof, for which some convex

optimization results are required.

Remark 2.1.1. We are looking for the closest vector in the probability sim-

plex, but we are proposing the problem in this form to emphasize the fact

that it is a constrained problem in Rn.

Before going into details, let us recall some important results of optimiza-

tion theory that will be useful to prove the correctness of the algorithm.

2.1.1 Karush - Kuhn - Tucker conditions

Consider a more general convex optimization problem

min
x∈Rn

f(x)

s.t. Cx = b

x ≥ 0,

(P)

where C ∈ Rn×m, with m being the number of linear equality constraints.

The function f : Rn → R is named objective or target function and is assumed

to be convex and di�erentiable; moreover, in this case, Rn is the search space.
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We de�ne L(x, λ, β) := f(x)− λ⊤(Cx− b)− β⊤x and g(λ, β) := min
x∈Rn

L(x, λ, β)

and consider the dual problem of (P):

max
(λ,β)∈Rm×Rn

g(λ, β)

s.t. β ≥ 0.
(D)

De�nition 2.1.1 (Feasible set). We de�ne the feasible set F as the set of

points in the search space that meet the constraints. In case of problem (P)

we have

F := {x ∈ Rn s.t. Cx = b, x ≥ 0}.

De�nition 2.1.2 (Bounded problem). We say that an optimization problem

is lower/upper bounded if the objective function f is lower/upper bounded

over the feasible set.

Theorem 2.1.1 (Weak duality). Supposing that the optimization problem

(P) is lower bounded, we have that

g(λ∗, β∗) ≤ f(x∗),

that is, the optimal dual solution represents a lower bound for the primal

problem. This property is called weak duality and the di�erence between the

two solutions is called duality gap.

Proof.

g(λ, β) = min
x
L(x, λ, β) ≤ L(x∗, λ, β) = f(x∗)−λ⊤(Cx∗−b)−β⊤x∗ ≤ f(x∗),

where the last inequality comes from the feasibility of x∗.

Remark 2.1.2. The convexity of the function is not necessary for the weak

duality.

De�nition 2.1.3 (Strong duality). Consider the optimization problem (P)

and its dual (D). We say that strong duality holds if all the following are

true:
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� (P) admits optimal solution x∗ if and only if (D) admits optimal solu-

tions λ∗, β∗,

� f(x∗) = g(λ∗, β∗) (zero duality gap).

Unlike weak duality, strong duality does not always hold. However, we

provide a classical su�cient condition for convex problems proved by [6].

Theorem 2.1.2 (Slater's condition). Consider the convex optimization prob-

lem (P). Then strong duality holds if and only if there exists a strictly feasible

x, that is, x such that Cx = b and x > 0.

Proof. Without any loss of generality, we assume C to be full rank and the

primal problem to be lower bounded. De�ne the sets

� A = {(u, v, t) ∈ Rn×Rm×R : ∃x ∈ Rn,−x ≤ u, b−Cx = v, f(x) ≤ t},

� B = {(0, 0, s) ∈ Rn × Rm × R : s < f(x∗)}.

These sets have empty intersection, since the opposite would imply the exis-

tence of a point x′ such that x′ is feasible and f(x′) < f(x∗). Moreover, both

sets are convex, so we can apply the separating hyperplane theorem (see [6],

2.5.1) which guarantees the existence of a triplet (β, λ, µ) such that

� β
⊤
u+ λ

⊤
v + µt ≥ α ∀(u, v, t) ∈ A,

� µt ≤ α ∀t such that (0, 0, t) ∈ B,

for some value α ∈ R. We can suppose β and µ to be non-negative, otherwise

α would not be a lower bound since t and u can become arbitrarily large.

Moreover, we observe that ∀x ∈ Rn we have that (−x, b−Cx, f(x)) ∈ A and

so

−β⊤
x− λ

⊤
(Cx− b) + µf(x) ≥ α ≥ µf(x∗) ∀x ∈ Rn,

where the latter follows from µt ≤ α ∀t < f(x∗) (since (0, 0, t) ∈ B).
If µ ̸= 0, dividing by µ we get that:

L(x, λ, β) = f(x)− λ⊤(Cx− b)− β⊤x ≥ f(x∗),
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where λ = λ
µ
, β = β

µ
. In particular this holds for the x that minimizes L,

which means that g(λ∗, β∗) ≥ g(λ, β) ≥ f(x∗). By weak duality we have

g(λ∗, β∗) ≤ f(x∗) and so the equality holds. Now we show that µ cannot be

zero. Supposing that µ = 0 we �nd that

−β⊤
x− λ

⊤
(Cx− b) ≥ 0.

By assumption Cx = b and so −β⊤
x ≥ 0, but since x is positive and β is

non-negative it has to be β = 0. Then we have that ∀x ∈ Rn:

−λ⊤(Cx− b) ≥ 0.

By the separing hyperplane theorem (β, λ, µ) ̸= (0, 0, 0), that implies λ ̸= 0.

Then we have that

−λ⊤(Cx− b) = 0

and since C is full rank there is an x such that −λ⊤(Cx − b) < 0, that is

absurd.

Theorem 2.1.3 (KKT conditions). Consider the convex optimization prob-

lem (P) and its dual (D) and let us assume that strong duality holds. Then

x∗, λ∗, β∗ are the optimal solutions, of (P) and (D) respectively, if and only

if they satisfy all the following conditions:

1) Cx∗ = b, x∗ ≥ 0 (primal feasibility),

2) ∇f(x∗)− C⊤λ∗ − β∗ = 0 (stationarity condition),

3) β∗ ≥ 0 (dual feasibility),

4) x∗iβ
∗
i = 0 for i = 1, ..., n, (complementarity condition).

Proof. Suppose x∗, λ∗, β∗ are optimal solutions for (P) and (D) respectively.

For strong duality:

f(x∗) =g(λ∗, β∗) = min
x∈Rn

f(x)− λ∗⊤(Cx− b)− β∗⊤x

≤ f(x∗)− λ∗⊤(Cx∗ − b)− β∗⊤x∗ ≤ f(x∗), (*)
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where the last inequality follows from the feasibility conditions. Then we

have that all the inequalities above are equalities and so

x∗ = argmin
x∈Rn

f(x)− λ∗⊤(Cx− b)− β∗⊤x,

from which stationarity condition holds. Furthermore, from (*) we have that

f(x∗)− β∗⊤x∗ = f(x∗) and so

β∗⊤x∗ = 0.

Since both have non-negative entries it has to be x∗iβ
∗
i = 0 for i = 1, ..., n,

i.e. complementarity condition holds.

We now prove su�ciency. From conditions 1) and 3) x∗, λ∗, β∗ are feasible.

The convexity of f and the stationarity condition imply that x∗ is a global

minimum for L(x, λ∗, β∗). Therefore

g(λ∗, β∗) = f(x∗)− λ∗⊤(Cx∗ − b)− β∗⊤x∗ = f(x∗),

where the last equality follows from 1) and 4). This equality implies the

optimality of the points. To see this, suppose by contradiction that x∗, λ∗, β∗

are not optimal and let x, λ, β be optimal points. Then we have that

f(x) ≤ f(x∗) = g(λ∗, β∗) ≤ g(λ, β)

and f(x) = g(λ, β) for strong duality. This completes the proof.

Remark 2.1.3. The convexity of the objective function was used only for

su�ciency; necessity holds in general.

2.1.2 Algorithm

We move back to the row by row minimization problem

min
x∈Sn

1

2
∥x− a∥2 , (RM)

where we recall that Sn is the probability simplex.

We begin by describing the algorithm and then provide the proof of the

correctness.
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Algorithm 1 Projection onto the probability simplex
Input a ∈ Rn

1 De�ne u = a sorted in descending order

2 Find ρ = max{i = 1, ..., n : ui +
1
i
(1−

∑i
j=1 uj) > 0}

3 De�ne λ = 1
ρ
(1−

∑ρ
i=1 ui)

Output x ∈ Sn×n s.t. xi = max{ai + λ, 0} for i = 1, ..., n.

Theorem 2.1.4. Algorithm 1 �nds the optimal solution.

Proof. (RM) is a convex optimization problem and Slater's condition holds

trivially, so we can apply the KKT conditions to �nd the optimal point.

1)
∑n

i=1 x
∗
i = 1, x∗ ≥ 0,

2) x∗i − ai − λ∗ − β∗
i = 0, for i = 1, ...n,

3) β∗ ≥ 0,

4) x∗iβ
∗
i = 0, for i = 1, ..., n,

where λ∗ is a scalar since we have only one equality constraint.

If x∗i = 0 then β∗
i ≥ 0 and ai + λ∗ = −β∗

i ≤ 0.

If x∗i > 0 then β∗
i = 0 and x∗i = ai + λ∗ > 0.

It is clear that x∗i is zero for the lowest values of ai, so we can suppose x∗ and

a to be sorted. There is no loss of generality since we can �nd the optimal

point for the sorted vector and then apply the inverse permutation: this will

lead to the optimal solution, indeed the KKT conditions still hold. De�ne ρ̃

as the number of positive entries in the optimal solution, so that

x∗i > 0 for i = 1, ..., ρ̃ and x∗i = 0 for i = ρ̃+ 1, ..., n.

For the primal feasibility we have

1 =

ρ̃∑
i=1

x∗i =

ρ̃∑
i=1

(ai + λ∗).
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It follows that

λ∗ =
1

ρ̃
(1−

ρ̃∑
i=1

ai),

so we only need to prove that ρ̃ = max{i = 1, ..., n : ai+
1
i
(1−

∑i
j=1 aj) > 0}.

To prove the equality we observe that

aρ̃ +
1

ρ̃
(1−

ρ̃∑
j=1

aj) = aρ̃ + λ∗ = x∗ρ̃ > 0

and if i > ρ̃

ai +
1

i
(1−

i∑
j=1

aj) =
1

i
(iai + 1−

i∑
j=1

aj)

=
1

i
(iai + 1−

ρ̃∑
j=1

aj −
i∑

j=ρ̃+1

aj)

=
1

i
(iai + ρ̃λ∗ −

i∑
j=ρ̃+1

aj)

=
1

i
(ρ̃(ai + λ∗) +

i∑
j=ρ̃+1

(ai − aj)) < 0.

We have proved that the algorithm �nds the optimal solution for (RM),

that is a row by row formulation of (QOM). Anyway, it is not trivial that the

stochastic matrix closest to the exact root is the best one. Indeed, the most

used error measure is ∥Xp − A∥. For this reason, we provide a relationship

between the quantities ∥X − A
1
p∥ and ∥Xp − A∥ that was found in [20] and

holds for credit transition matrices.

Theorem 2.1.5. Consider A ∈ Mn×n and suppose that A has no eigenvalues

on the closed negative real axis.

If ∥X − A
1
p∥ = ϵ∥A

1
p∥, then

∥Xp − A∥ ≤ ∥A
1
p∥p((1 + ϵ)p − 1).
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Proof. Let B = A
1
p and E = X − A

1
p . We have that

Xp = (B + E)p = Bp + (Bp−1E +Bp−2EB + ...+ EBp−1) + ...+ Ep.

It follows that:

∥Xp −Bp∥ ≤ p∥B∥p−1∥E∥+ p(p− 1)

2
∥B∥p−2∥E∥2 + ...+ ∥E∥p

=
(
∥B∥p + p∥B∥p−1∥E∥+ ...+ ∥E∥p

)
− ∥B∥p

= ∥B∥p ((1 + ϵ)p − 1) ,

since ϵ = ∥E∥
∥B∥ .

2.2 QOG - Quasi optimization of the generator

In this section, we consider an alternative formulation of the problem. We

try to �nd an homogeneous continuous-time Markov chain whose transition

matrix at time one is exactly equal to the stochastic matrix A in input.

To do that, we introduce the concept of generator, inspect the theoretical

background and provide an algorithm similar to Algorithm 1 for �nding the

generator that best approximate the logarithm of a given stochastic matrix.

The theoretical results come mainly from [22].

2.2.1 Generator of a Markov chain

Suppose that we want to �nd best stochastic approximation of the p-th

root of a stochastic matrix A ∈ Sn×n and that we are able to �nd a matrix

G such that exp(G) = A exactly. In this case we have that A
1
p = exp(1

p
G)

and so, if this exponential is stochastic, the problem is immediately solved.

We will show that P : R≥0 → Rn×n, P (t) := exp(tG) is an homogeneous

continuous-time Markov chain if and only if G is a generator; in case G is

not a generator, exp(1
p
G) = A

1
p is not stochastic.

De�nition 2.2.1 (Transition semigroup). Given a discrete state space E ⊂ Rn,

we say that P : R≥0 → E is a transition semigroup if, for each s, t ≥ 0, all

the following hold:
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1) P (t) is a stochastic matrix,

2) P (0) = I,

3) P (t+ s) = P (t)P (s).

We refer to 3) as semigroup property, also known in Markov chains theory as

Chapman - Kolmogorov identity.

De�nition 2.2.2 (Generator). A square matrix G ∈ Rn×n is said to be a

generator if

� G has row-sums constantly equal to zero,

� gij ≥ 0 for each i, j ∈ E, i ̸= j.

Lemma 2.2.1. Consider A,B ∈ Mn×n. Then we have that

exp(tA+ tB) = exp(tA) exp(tB) for all t > 0 if and only if AB = BA.

In particular, exp(tA) = exp(A)t for every A ∈ Mn×n.

Proof. If AB = BA the proof is the same as in the scalar case, since Newton's

formula for binomial powers is still valid. Vice versa, writing both members of

the equality and asking for t2 coe�cients to be equal we �nd (AB+BA)
2

= AB,

hence the statement.

We now prove some useful results that hold for the exponential of any

square matrix.

Lemma 2.2.2. Consider Q ∈ Rn×n and P : R≥0 → Rn×n, P (t) := exp(tQ).

Then P has the following properties:

1. P is the unique solution of the Kolmogorov backward Cauchy problem:

d

dt
P (t) = QP (t) P (0) = I (KB)

2. P is the unique solution of the Kolmogorov forward Cauchy problem:

d

dt
P (t) = P (t)Q P (0) = I (KF)
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3. dk

dtk
P (0) = Qk for any k ∈ N.

Proof. The exponential series has in�nite radius of convergence, so its deriva-

tive has in�nite radius of convergence. It is obtained by term-by-term di�er-

entiation:

P ′(t) =
∞∑
k=1

tk−1Qk

(k − 1)!
= P (t)Q = QP (t),

from which we have that P solves Kolmogorov di�erential systems and 3.

holds. For what concerns the uniqueness, assuming that M(t) is a solution

of (KB) we �nd that

d

dt
(M(t) exp(−tQ)) =

(
d

dt
M(t)

)
exp(−tQ) +M(t)

(
d

dt
exp(−tQ)

)
= M(t)Q exp(−tQ) +M(t)(−Q) exp(−tQ) = 0

and so M(t) exp(−tQ) is constantly equal to the initial data, that means

M = P . A similar argument proves (KF).

Theorem 2.2.1. Consider G ∈ Rn×n and P : R≥0 → Rn×n, P (t) := exp(tG).

Then P is a transition semigroup if and only if G is a generator.

Proof. First of all we prove that if P is a transition semigroup then G is a

generator. We have that for t→ 0

P (t) = I + tG+O(t2),

and so pij(t) ≈ tgij if i ̸= j and t is small enough. So we have that pij(t) ≥ 0

for all t implies that gij ≥ 0. About the row-sums, since
∑n

j=1 pij(t) = 1 for

all t ≥ 0, then

n∑
j=1

gij =
n∑

j=1

dpij
dt

(0) =
d

dt

[
n∑

j=1

pij

]
(0) = 0.

Now suppose that G is a generator. Observe that from Lemma 2.2.1 we have

that P (t + s) = P (t)P (s), from which P (t) = P ( t
n
)n and pij(t) ≥ pij(

t
n
)n

for every integer n. Since P is continuous, if we �x t we can choose n(t) big
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enough so that pij(
t
n
)n ≥ 0, i.e. pij(t) is non-negative for every t ≥ 0. With

the same reasoning we �nd that pii(t) ≥ 0 whatever the sign of gii is.

For what concerns the row-sums, we use the following lemma.

Lemma 2.2.3. Given A,B ∈ Rn×n with row-sums that are constantly equal

to α and β respectively, we have that:

� A+B has row-sums constantly equal to α + β;

� AB has row-sums constantly equal to αβ.

Proof. The �rst one is trivial, while for the second we have that:

n∑
j=1

n∑
k=1

aikbkj =
n∑

k=1

aik

(
n∑

j=1

bkj

)
= αβ,

where the �rst equality follows from Lemma 2.2.2.

Then we have that P (t) = exp(tG) = I +
∑

n≥1
tn

n!
Gn has row-sums

constantly equal to 1 and so P is a transition semigroup.

Example 2.2.1.

G =


−0.3 0.3 0

0.4 −0.6 0.2

0 0 0


is a generator for the stochastic matrix with absorbing state

A =


0.781 0.196 0.023

0.261 0.586 0.153

0 0 1

 .
Then we have that P : R≥0 → Sn×n, P := exp(tG) is the transition semigroup

of a continuous-time Markov chain such that P (1) = A. Finally,

exp

(
1

12
G

)
=


0.976 0.024 0

0.032 0.952 0.016

0 0 1


is a stochastic 12-th root of A.
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2.2.2 Algorithm

Let us go back to the original problem; now we know that we are look-

ing for a generator of the given stochastic matrix A = P (1). A matrix A

that admits an exact generator is usually called embeddable and there are

many theoretical results concerning both embeddability and uniqueness of

generators, for example in [15] and [26]. We report a necessary condition for

the existence of an exact generator that is often violated by credit transition

matrices.

In case a generator does not exist, regularization of the logarithm of the

given stochastic matrix is required, where regularization means �nding the

generator closest to the exact logarithm.

Theorem 2.2.2. Let P be a transition semigroup which admits a generator

G. Then for any couple of states i, j ∈ E we have that if pij(t) = 0 for some

t > 0, then pij(t) = 0 for all t > 0.

Proof. Notice that pij(t) is an analytic function and therefore, according to

analytic continuation theory, either the function is exactly null or the set

of all its zeros is a set of isolated points. For each state i, we have that

pii(t) → 1 for t → 0 and so, for each t > 0, and in particular for t that is

the zero of pij, there exists a big n(t) such that pii

(
t
n

)
> 0. Thanks to the

monotonicity of probability measures, we �nd

pij(t) ≥ pii

(
t

n

)n−1

pij

(
t

n

)
for every t ≥ 0, n ∈ N. If we consider t and n ≥ n it has to be pij

(
t
n

)
= 0

(or t would not be a zero for pij). In conclusion, we found that
(
pij

(
t
n

))
n≥n

is a convergent sequence of points in the set of zeros and so, since pij is

analytical, pij ≡ 0 and thesis holds.

Remark 2.2.1. In most cases, given a credit transition matrix A there is

not an embeddable homogeneous continuous-time Markov chain compatible

with A. In fact, we usually �nd that the probability that a debtor in the



28

2. Stochastic approximation of the p-th root of a credit transition

matrix

best rating class BO1 migrates to the absorbing default DEF3 is zero, but

transition to DEF3 is almost always possible with a path made of more than

one time step. This means that there is zero probability to go from BO1 to

DEF3 in one year but considering a higher amount of years (i.e., a higher t)

this transition is not negligible anymore. Then, the necessary condition in

Theorem 2.2.2 is not met.

For example, the CTM in Table 1.1 has zero probability to move from

BO1 to DEF3, but DEF3 is accessible from BO1 by using the DEF1 state

as an intermediate step (BO1 → DEF1 → DEF3).

Motivated by this result, we present a method to regularize the exact

logarithm of an input matrix; the idea is similar to Algorithm 1 and the

logarithm of the matrix is assumed to be already computed. The problem is

min
G∈Rn×n

1

2
∥G− log(A)∥2

s.t.
n∑

j=1

gij = 0 for all i = 1, .., n

gij ≥ 0 for all i, j = 1, ..., n, i ̸= j. (QOG)

(QOG) can be solved with a row by row approach, but we need to keep track

of the non-positive element's index i, which represents the position of the

row vector in the input matrix.

min
g∈Rn

1

2
∥g − a∥2

s.t. g⊤1 = 0

gj ≥ 0 for j ̸= i. (QOGr)

In order to solve this set of problems, we present an original algorithm ob-

tained by following the same procedure exposed for Algorithm 1.
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Algorithm 2 Regularization algorithm

Input a ∈ Rn, i ∈ {1, ...n}
1 If ai ≥ max{aj : j ̸= i} output 0
2 De�ne u = a sorted in descending order except for un = ai

3 Find ρ = max{j = 1, ..., n− 1 : uj − 1
j+1

(
∑j

l=1 ul + un) > 0}
4 De�ne λ = − 1

ρ+1
(
∑ρ

l=1 ul + un)

Output g s.t. gi = ai + λ, gj = max{aj + λ, 0}, for j = 1, ..., n, j ̸= i.

Lemma 2.2.4. Consider the problem (QOGr). There is a non-zero optimal

solution if and only if ai < max{aj : j ̸= i}.

Proof. Suppose that ai < max{aj : j ̸= i} and suppose by contradiction that

0 is the only optimal solution. Let us call j the smallest index such that

aj = max{aj : j = 1, ..., n}.

We have that the vector g such that

gj :=


0 if j ̸= i, j

aj − ai if j = j

ai − aj if j = i

is feasible and it is an optimal solution. Indeed

∥g − a∥2 = (
∑
j ̸=i,j

|aj|2) + |aj − ai − aj|2 + |ai − aj − ai|2

= (
∑
j ̸=i,j

|aj|2) = ∥a∥2

and then we have a contradiction.

On the other hand, suppose that ai ≥ max{aj : j ̸= i}: we need to prove

that 0 is the only optimal solution. Let us observe that 0 is the only point in

which gi can be zero, while moving to another point means having a negative

i-th component for g. Moreover, assume that i = 1 to simplify the notation;

a generic movement from 0 can be written as

g̃ = (−ϵ, λ2ϵ, ..., λnϵ)
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with ϵ > 0,
∑n

j=2 λj = 1.

Then we have that

∥g̃−a∥2 = (a1+ ϵ)
2+

n∑
j=2

(aj+λjϵ)
2 = ∥a∥2+ ϵ2+

n∑
j=2

λ2jϵ
2+2ϵ(a1−

n∑
j=2

λjaj)

and this quantity is clearly bigger than ∥a∥2, since the �rst two other addends
are positive and the last one (for which the assumption is crucial) is non-

negative.

Theorem 2.2.3. Algorithm 2 �nds the optimal solution of problem (QOGr).

Proof. The proof is strongly related to the proof of Algorithm 1. Recall that

i represents the index of the element that can be negative in the solution.

Let us �rst assume that ai < max{aj : j ̸= i} : since (QOGr) is a convex

optimization problem and Slater's condition holds trivially, we can apply the

KKT conditions to �nd the optimal point.

1)
∑n

j=1 g
∗
j = 0, g∗j ≥ 0 for j ̸= i,

2a) g∗j − aj − λ∗ − β∗
j = 0 for j ̸= i,

2b) g∗i − ai − λ∗ + β∗
i = 0,

3) β∗ ≥ 0,

4) g∗i β
∗
i = 0, for i = 1, ..., n,

where λ∗ is a scalar since we have only one equality constraint.

For j ̸= i we have that:

� if g∗j = 0 then β∗
j ≥ 0 and aj + λ∗ = −β∗

j ≤ 0,

� if g∗j > 0 then β∗
j = 0 and g∗j = aj + λ∗ > 0.

Otherwise we �nd that:

� if g∗i = 0 then β∗
i ≥ 0 and ai + λ∗ = β∗

i ≥ 0,
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� if g∗i < 0 then β∗
i = 0 and g∗i = ai + λ∗ < 0.

It is clear that, except for j = i, g∗j is zero in correspondence of the lowest

components of a. We therefore suppose that g∗ and a are sorted except for

the i-th element. For simplicity, we insert the i-th element at the end of the

sorted vector and for the observations in the proof of Algorithm 1, there is

no loss of generality.

We de�ne ρ̃ as the number of positive entries in the optimal solution and

we observe that ρ̃ > 0 thanks to our assumption and Lemma 2.2.4. We have

that

g∗j > 0 for j = 1, ..., ρ̃ and g∗j = 0 for j = ρ̃+ 1, ..., n− 1, g∗n ≤ 0.

For the primal feasibility we have

0 =

ρ̃∑
i=1

g∗i + g∗n =

ρ̃∑
i=1

(ai + λ∗) + (an + λ∗).

It follows that

λ∗ = − 1

ρ̃+ 1
(

ρ̃∑
i=1

ai + an)

so we only need to prove that ρ = ρ̃, where we recall that ρ := max{j =

1, ..., n− 1 : uj − 1
j+1

(
∑j

l=1 ul + un) > 0}. Let us �rst observe that ρ is well-
de�ned thanks to our assumption, in fact a1− 1

2
(a1+an) > a1− 1

2
(a1+a1) = 0

and so the set is not empty. For what concerns the equality:

aρ̃ −
1

ρ̃+ 1

(
ρ̃∑

k=1

ak + an

)
= aρ̃ + λ∗ = g∗ρ̃ > 0



32

2. Stochastic approximation of the p-th root of a credit transition

matrix

and for any η > ρ̃:

aη −
1

η + 1

(
η∑

k=1

ak + an

)
=

1

η + 1

(
(η + 1)aη −

η∑
k=1

ak − an

)

=
1

η + 1

(
(η + 1)aη −

ρ̃∑
k=1

ak −
η∑

k=ρ̃+1

ak − an

)

=
1

η + 1

(
(η + 1)aη + (ρ̃+ 1)λ∗ −

η∑
k=ρ̃+1

ak

)

=
1

η + 1

(
(ρ̃+ 1)(aη + λ∗) +

η∑
k=ρ̃+1

(aη − ak)

)
≤ 0.

We conclude the section providing a relationship between the solution of

problem (QOG) and the most common way to compute the error made in

the approximation of a generator, that is ∥exp(G)− A∥. Proof in [9].

Theorem 2.2.4. Consider A ∈ Mn×n with no eigenvalues on R≤0. De�ne

∥A∥s := {∥Av∥∞ : v ∈ Rn, ∥v∥∞ ≤ 1}.

If ∥G− log(A)∥s = ϵ, then

∥A− exp(G)∥s ≤ min{2, 2ϵ}.

2.3 BAM - Best approximating matrix

In this section, we study a completely di�erent approach that does not re-

quire the computation of the exact root. However, the algorithm is iterative,

so we need a starting point and we will use the output of one of the previous

methods. We consider a nonlinear optimization problem on the space of the

stochastic matrices

min
X∈Sn×n

1

2
∥Xp − A∥2. (BAM)
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This problem cannot be solved row by row, but it is possible to apply the

sequential quadratic programming (SQP) method, whose theory is extremely

complex and will be inspected super�cially. The theoretical results mainly

come from [30] and [18], which is the o�cial reference in the documentation

of the minimize function of the SciPy python library, which will be used in

the implementation of the BAM method.

2.3.1 Sequential Quadratic Programming

Sequential quadratic programming is a well-known technique used to solve

nonlinear constrained optimization problems. In general, the problem can be

written as:
min
x∈Rn

f(x)

s.t. Cx = b

x ≥ 0,

(NLP)

where b ∈ Rn and C ∈ Rm×n is the linear equality constraint matrix. More-

over, we ask that f : Rn → R is twice continuously di�erentiable.

SQP algorithm is iterative and starts from a given vector x0 to provide

new values following the rule

xk+1 = xk + αkdk,

where αk > 0 and dk ∈ Rn are named step length and search direction.

The step length can be chosen in di�erent ways depending on the problem,

while the search direction is the key of the algorithm and is found solving a

quadratic sub-problem (from which the name SQP). It is always possible to

solve a quadratic problem with a �nite amount of iterations ([30]); however,

some characteristics of the problem have a big in�uence on solvers' e�ciency.

A generic quadratic problem is

min
x∈Rn

1

2
x⊤Gx+ x⊤c

s.t. Cx = b

Hx = 0,
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and we di�erentiate between convex problems, in which the matrix G is pos-

itive semide�nite, strictly convex problems, where G is positive de�nite and

non-convex problems, in which the matrix is inde�nite. The sub-problem to

be solved has to represent the local characteristics of the main problem and

in our case we consider

min
d∈Rn

1

2
d⊤∇2

xxf(xk)d+∇f(xk)d

s.t. Cd+ Cxk = 2b

d+ xk ≥ 0.

(QP)

In general, (NLP) can be solved with nonlinear constraints and (QP) is our

adaptation to (BAM) of the general form that can be found both in [18] and

[30]. For the theoretical motivation behind the choice of the sub-problem,

see one of the references above.

If xk is close to the optimal solution then (QP) is convex, since Bk is

positive de�nite; otherwise non-convex techniques need to be used. In our

application, the output of QOM should work well thanks to Theorem 2.1.5.

Remark 2.3.1. Even if the theoretical results are in Rn, we can apply this

method to (BAM), where the feasible set is made of n×n matrices. We just

need to write all the elements of the matrix into a n2×1 column vector x and

the target function is still well-de�ned and di�erentiable. The constraints are

still linear and can be expressed in the following vectorial form:

x ≥ 0n2

Cx = 1n,

where A is a n× n2 matrix that is basically the identity matrix where each

scalar is replaced by the correspondent n-dimensional vector:

C =


1n 0n 0n · · · 0n

0n 1n 0n · · · 0n

...
...

...
...

...

0n 0n · · · 0n 1n

 .
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At the end of the process we reshape the optimal vector to obtain the optimal

matrix X.

Global optimum Since the objective function is not convex, we can guar-

antee the convergence to a local minimum only. To obtain convergence to

a global optimum our main attempt was to use stochastic optimization al-

gorithms such as simulated annealing and genetic algorithms. However, the

sample space is too big so our attempts have proved ine�cient and never

able to �nd a better solution than the output of BAM.

2.3.2 BAG - Best approximating generator

We can use the SQP method to �nd the best approximating generator

for a given stochastic matrix. It su�ces to change the target function and

the constraints and study the problem

min
G∈Rn×n

∥ exp(G)− A∥

s.t.
n∑

j=1

gij = 0 for all i = 1, .., n

gij ≥ 0 for all i, j = 1, ..., n, i ̸= j.

All the observations about the BAM approach are still valid, and for what

concerns the starting point it is possible to use the output of QOG thanks

to Theorem 2.2.4.

2.4 Popular methods

Despite being less accurate than the previous methods, there are some

algorithms that are widely used in applications due to their simplicity. We

believe that they're worth a mention, and that is why we present three of

them in this section.
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2.4.1 Clip method

The reference for this method is a Prometeia's internal source. Consider

a stochastic matrix A ∈ Sn×n and suppose that we want to �nd a stochastic

matrixX ∈ Sn×n that approximates A
1
p . We can use the row by row approach

and work individually on a row a. De�ne a+ as the positive part of a, which

is

a+j = max{0, aj}, for j = 1, ..., n.

The output of the clip method is the positive part normalized:

xj =
a+j∑n
k=1 a

+
k

and it is clearly an element of the probability simplex.

Remark 2.4.1. Notice that this method is not applicable to non-positive vec-

tors. However, this is not really a problem in the �nancial applications, since

regularizing a non-positive vector would be senseless (any result would be a

poor approximation).

2.4.2 Diagonal Adjustment and Weighted Adjustment

Diagonal adjustment (DA) and weighted adjustment (WA) are two meth-

ods for the regularization of the logarithm of a credit transition matrix. Re-

call that A ∈ Sn×n is the input matrix and a is a row of log(A), i is the index

of the element that can be negative (that is, we are working on the i-th row

of the generator). Both the methods work row by row and start setting to

zero all the negative components except for the i-th; at this point

� in the diagonal adjustment we only modify the i-th element so that the

sum of the elements is zero,

� in the weighted adjustment all the non-zero elements are modi�ed so

that the sum of the elements is zero.

In particular:
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DA gj = max{0, aj} for j ̸= i and gi = −
∑n

j=1,j ̸=i gj

WA g̃j = max{0, aj} for j ̸= i, g̃i = ai

gj = g̃j − |g̃j|
∑n

j=1 g̃j∑n
j=1 |g̃j |

for j = 1, ..., n.

For additional results, see [19] and [15].

2.5 Example of application of Clip, QOM, QOG

We apply the Clip method to regularize the square root of the CTM in

Table 1.1. The exact root is

A
1
2 =



0.8906 0.0692 0.0341 0.0097 −0.0027 −0.0009

0.0824 0.7831 0.0591 0.0525 0.0213 0.0016

0.0321 0.1010 0.7152 0.0593 0.0507 0.0417

0.0057 0.0880 0.1418 0.6123 0.1077 0.1135

−0.0028 0.0233 0.0588 0.1111 0.6961 0.1135

0 0 0 0 0 1


.

Thinking row by row, we need to regularize only the �rst and the �fth row.

For the �rst row a1 we have that

a1
+
= (0.8906, 0.0692, 0.0341, 0.0097, 0, 0)

and

x1 =
1

1.0036
a1

+
= (0.8874, 0.0689 0.0340, 0.0097, 0, 0)

that is in the probability simplex. Similarly

x5 =
1

1.0028
a5

+
= (0, 0.0232 0.0587, 0.1108, 0.6941, 0.1132)
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and so the proposed solution is

XClip =



0.8874 0.0689 0.0340 0.0097 0 0

0.0824 0.7831 0.0591 0.0525 0.0213 0.0016

0.0321 0.1010 0.7152 0.0593 0.0507 0.0417

0.0057 0.0880 0.1418 0.6123 0.1077 0.1135

0 0.0232 0.0587 0.1108 0.6941 0.1132

0 0 0 0 0 1


.

Now we try to apply the QOM method to regularize the same two rows.

First of all, we sort the rows

u1 = (0.8906, 0.0692, 0.0341, 0.0097,−0.0009,−0.0027)

u5 = (0.6961, 0.1135, 0.1111, 0.0588, 0.0233,−0.0028)

and then we �nd

ρ1 = max{i = 1, ..., 6 : u1i +
1

i
(1−

i∑
j=1

u1j) > 0} = 4

ρ5 = max{i = 1, ..., 6 : u5i +
1

i
(1−

i∑
j=1

u5j) > 0} = 5.

We have that

λ1 =
1

5
(1−

5∑
j=1

u1j) = −0.0009,

λ5 =
1

4
(1−

4∑
j=1

u5j) = −0.0007,

and so

x1 = (0.8897, 0.0683, 0.0332, 0.0088, 0, 0),

x5 = (0, 0.0228, 0.0582, 0.1105, 0.6955, 0.1130),
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from which we get the proposed solution

XQOM =



0.8897 0.0683 0.0332 0.0088 0 0

0.0824 0.7831 0.0591 0.0525 0.0213 0.0016

0.0321 0.1010 0.7152 0.0593 0.0507 0.0417

0.0057 0.0880 0.1418 0.6123 0.1077 0.1135

0 0.0228 0.0582 0.1105 0.6955 0.1130

0 0 0 0 0 1


.

The QOG method needs to be applied to the logarithm of the matrix

G = log(A) =



−0.2408 0.1605 0.0783 0.0181 −0.0129 −0.0032

0.1959 −0.5150 0.1392 0.1422 0.0431 −0.0052

0.0681 0.2589 −0.7030 0.1596 0.1294 0.0870

−0.0030 0.2253 0.4136 −1.0371 0.3171 0.0841

−0.0121 0.0361 0.1331 0.3371 −0.7561 0.2618

0 0 0 0 0 0


,

in particular the regularization is required for rows g1, g2, g4, g5. We do the

computation for g1 and present the proposed solution.

We note that the �rst component (i.e. the one that can be negative) is the

minimum of the vector, and therefore we only need to sort g1

u1 = (0.1605, 0.0783, 0.0181, −0.0032, −0.0129, −0.2408)

and compute

ρ1 = max{i = 1, ..., 5 : u1i −
1

i+ 1
(

i∑
j=1

u1j + u16) > 0} = 3,

λ1 = −1

4
(

3∑
j=1

u1j + u16) = −0.0040.

Finally we �nd

x1 = (−0.2448, 0.1565, 0.0743, 0.0141, 0, 0)
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and doing the computation for the other rows

XQOG =



−0.2448 0.1565 0.0743 0.0141 0.0000 0.0000

0.1948 −0.5159 0.1381 0.1411 0.0421 0.0000

0.0681 0.2589 −0.7030 0.1596 0.1294 0.0870

0.0000 0.2247 0.4130 −1.0377 0.3165 0.0835

0.0000 0.0337 0.1307 0.3347 −0.7585 0.2594

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


.

To �nd the root we compute

exp

(
1

2
XQOM

)
=



0.8887 0.0673 0.0324 0.0085 0.0022 0.0010

0.0819 0.7825 0.0585 0.0521 0.0211 0.0039

0.0322 0.1009 0.7151 0.0592 0.0507 0.0418

0.0071 0.0877 0.1415 0.6120 0.1074 0.0443

0.0020 0.0225 0.0579 0.1101 0.6951 0.1124

0.0000 0.0000 0.0000 0.0000 0.0000 1.0000


.
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Numerical results

In this chapter, we present numerical results and comparisons among the

methods previously analysed. All the experiments were conducted in Python

using NumPy and SciPy python libraries. The clip method is included in the

comparison because it is widely used, even if it is poor from a mathematical

point of view. Furthermore, we provide results of an application to a realistic

non diagonally dominant credit transition matrix.

3.1 Accuracy results for standard CTMs

In this section, we consider two di�erent dasasets of randomly generated

credit transition matrices. We compute the error made approximating the

12-th root with each of the studied methods using three measures: Frobenius

norm of the error, 1-norm of the error and the maximum absolute error on a

single element. In the absence of other speci�cations, we call error the matrix

E = Xp − A

or its norm, where in this analysis p = 12. We observe that with the gener-

ators methods this quantity is exactly equal to

Eg = exp(G)− A

and does not depend on p.

41
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For both BAM and BAG the tolerance was set to 10−6 and the maximum

number of iterations (never reached) at 1000. We recall that in iterative

methods, in particular for BAM and BAG, the tolerance is on the step-size:

the algorithm stops when the maximum number of iterations is reached or

when the step size becomes less than the tolerance (∥xk+1 − xk∥ < tol).

We have used QOM/QOG output as starting point for BAM/BAG: for this

reason, we already know that the optimization methods (BAM and BAG)

will be more accurate than the projection methods (QOM and QOG) since,

in the worst case, they will produce the same result. However, nonlinear

optimization is computationally expensive, so we are interested in whether

there is an improvement and in the extent of it. Furthermore, we will try

to understand if the generators approach is competitive with respect to the

exact root approach.

We recall that the results of the clip method are inserted to give an idea

of the improvement that the studied methods could provide with respect to

the widely spread and most intuitive method; however, clip will never give

a better result than QOM since QOM �nds the stochastic matrix that best

approximates A
1
p .

Results for random 8× 8 CTMs We consider a set composed by 10000

randomly generated CTMs. We can see in Table 3.1 that the mean of all the

errors in Frobenius norm is smaller for QOM than for QOG and, furthermore,

QOM performed better than QOG for 79.9% of the matrices. The improve-

ment obtained with BAM and BAG is negligible, with a mean percentage

improvement of 0.6% and 0.3% and a maximum percentage improvement of

8.22% and 26.46%. For nearly six thousands matrices, BAM produced no

improvement at all.

It is interesting to observe that BAM and BAG performed worse in 1-norm;

this suggests us that the choice of the measure of the error is not trivial. How-

ever, 1-norm cannot be used for nonlinear optimization since, even squared,

it is not di�erentiable.
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On the other hand, nonlinear optimization methods required a very small

number of iterations (1.06 on average with a maximum of 6 iterations) and

so there was no issue with the e�ciency.

Clip performance is the worst on average.

Clip QOM QOG BAM BAG

Frob norm (mean) 0.002310 0.001842 0.002162 0.001820 0.002153

Max on s.e. (mean) 0.001651 0.001525 0.001770 0.001498 0.001758

1-norm (mean) 0.005174 0.004959 0.005976 0.005130 0.006090

Frob norm (max) 0.0296132 0.0217305 0.0239416 0.020655 0.022526

Table 3.1: Errors for 8× 8 standard CTMs

Results for 8×8 matrices with an exact stochastic root. We consider

a set of matrices with an exact stochastic root. Trivially, all the methods

that work on the root are able to �nd the exact root (error below 1e-14)

since they have to do nothing besides the computation of the root itself: it

would be a nice stability property if also QOG and BAG were able to do this.

However, as you can see in Table 3.2 this statement turns out to be false.

Notice that doing the same thing with embeddable matrices (i.e. matrices

with an exact generator) we would have that all the methods trivially �nd an

exact stochastic root, so QOM meets this stability requirement with respect

to embeddable matrices.

<1e-12 <1e-8 <1e-5 <1e-3 <1e-2

23.3% 23.3% 24.2% 95% 100%

Table 3.2: Percentage of matrices such that the error of the output of the

QOG method is lower than the thresholds.

In�uence of p on the error We already observed that, using the gener-

ators approach, the algorithm (and then the error) does not depend on p.
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Figure 3.1: Evolution of the error as p increases

However, this is not true for the exact root approach, where the size of p

in�uences the accuracy of the algorithm. In Figure 3.1 there is the result of

the application of QOM to 100 randomly generated CTMs for every p from

2 to 100: the mean error of QOM is always increasing and it looks like it is

converging from below to the mean error of QOG.

Remark 3.1.1. In general, it is not true that QOM always gives a better result

than QOG (there are counterexamples in our dataset as underlined before).

3.2 Accuracy results for a non-standard CTM

The assumption that a CTM is strongly diagonally dominant is based on

empirical evidences, but the empirical studies are made on credit transition

matrices published by rating agencies. In practice, banks compute speci�c

credit transition matrices that consider only their own operations. This could

lead to CTMs that are far from being strongly diagonally dominant: one

main reason could be that the number of rating classes is higher than eight
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(that is usually considered by the most famous credit agencies) and this

leads to a higher number of migrations, which means a weakening of the

diagonal. In order to test our algorithms in such situations, we provide results

of their application on a realistic 21×21 credit transition matrix provided to

Prometeia by an Italian bank. The presence of such a big number of classes

makes the diagonal weaker, in particular the mean of the diagonal elements

is 0.4.

Remark 3.2.1. QOM, QOG and Clip need a real matrix as input. However,

this matrix does not admit a real 12-th root and for this reason we compute

the principal branch complex root and then take the real part. In this way,

a �rst error is made yet in the computation of the exact root and in this

example

∥(Re(A
1
12 ))12 − A∥ = 0.0074.

Accuracy results The results are condensed into Table 3.3. Again, the

generators approach performs worse than the exact root approach. The in-

credible result is in the improvement we got applying the nonlinear opti-

mization methods: Clip, QOM and QOG return matrices that are essentially

unusable due to the error, that goes as high as 0.26 on a single element. In

our �nancial application, this means an error of more than 26% on the prob-

ability of transition from one rating class to another. On the other hand,

BAM has a maximum error on the single element of 0.026. In our �nancial

application, this means an error of 2.6% on the probability of migration from

one rating class to another. This error is high, but it may be acceptable if

it is located in a non-crucial part of the CTM (this type of analysis depends

strictly on the application).

E�ciency The biggest concern about the usage of nonlinear optimization

techniques is e�ciency. In this section, we will not try to compare nonlinear

optimization methods with projection methods, since the latter are obviously

extremely e�cient even in higher dimensions; rather we will try to understand
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Measure Clip QOM QOG BAM BAG

Frob. norm 0.7200 0.6273 0.2733 0.0867 0.1017

Max err. 0.2228 0.2598 0.0853 0.0262 0.0319

1-norm 8.1240 5.9522 2.8434 0.9745 1.1395

Table 3.3: Errors in Frobenius norm for the 21x21 matrix

what is the behavior of BAM and BAG when we decrease the tolerance.

Please notice that the goal of the study is to give a general idea of the

decrease in e�ciency that we get when performing the nonlinear optimization

with a smaller tolerance; we do not provide any time performance since to

do that the experiments should be repeated thousands of times and with a

bigger dataset of matrices.

E�ciency results We provide the results in the form of graphs (Figure

3.2 and 3.3), with − log10 tol on the x axis and error or number of iterations

on the y axis. We can see that a decrease in tolerance can imply a small

improvement in accuracy but a big decrease in e�ciency, and for this reason

looking for an optimal tolerance is necessary. The meaning of optimality is

strictly dependent on the goal of the application. In the example of CTMs,

if we need to compute the monthly matrix for a single scenario we can ask

for a very low tolerance, but if we need to compute the monthly matrix for

thousands of di�erent macroeconomic scenarios we have to settle for a lower

tolerance.

Remark 3.2.2. Experiments with di�erent values of p were carried on. The

index of the root has a determinant in�uence on the performances: setting

a high value for p makes the generators approach much more competitive.

In fact, the errors tend to coincide and BAG becomes more e�cient than

BAM. This behavior could probably be justi�ed looking at the power series

representation of the exponential: with a lower p BAM is more e�cient on

the single iteration, but with a high value of p we have that the numerical

approximation of the exponential requires less computation than Xp.
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Figure 3.2: Evolution of the error as the tolerance decreases

Figure 3.3: Evolution of the number of iterations as the tolerance decreases
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Chapter 4

Conditioning quarterly CTMs to

a macroeconomic scenario

In this chapter we will see two possible techniques to condition a quarterly

CTM to a macroeconomic scenario; the quarterly CTM will be obtained by

applying some of the techniques seen in the previous chapter. For what

concerns the credit risk model, our main references were [27] and [12].

4.1 Scenario-dependent credit transition matrix

The average transition matrix First of all, we will assume that an aver-

age annual credit transition matrix is available. An average CTM represents

the estimated transition probabilities in case of a "neutral" macroeconomic

scenario; it is usually obtained by applying the cohort method to previous

years' data.

The cohort method estimates the probability of transition from credit

class i to class j, aij, with the following formula:

aij =
Nij

Ni

,

where Nij represents the amount of debtors migrated from credit class i

to j and Ni is the amount of debtors in i at the beginning of the period.

49
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Note that, in general, it can happen that
∑n

j=1Nij ̸= Ni because some of

the debtors might not be rated at the end of the year. In this case, the

matrix is not stochastic and needs to be adapted in order to be considered

as a transition matrix for a Markov chain model. This adjustment is usually

made normalizing the matrix row by row, so that each row-sum is equal to

one and the matrix becomes stochastic.

Creditworthiness of a debtor Let us start considering only two possible

outcomes, default and performing. We name PD the probability of default

unconditional on the current rating class. Consider a set of debtors D and

let K be a partition of D: a set k ∈ K is called cluster and represents a set of

debtors sharing some features; examples of clusters are risk segments, such

as private, small business and corporate. This distinction is needed since

changes in di�erent macroeconomic variables may in�uence, for example,

small business segment more than corporate segment, or vice versa.

Now consider a random vector X(t) ∈ Rm that represents the value of

m chosen macroeconomic factors, such as GDP or unemployment rate. This

vector is assumed to be normally distributed with mean 0 and covariance

matrix Ω. Since the economic e�ect on the PD is not the same for every

cluster, we de�ne the systematic component of risk zk(t) as a function of

X(t):

zk(t) := β⊤
k X(t) + ηk(t),

where βk is a vector of cluster-speci�c weights and ηk(t) is a cluster-speci�c

deterministic scalar.

The systematic component of risk is not su�cient since it di�erentiates

only between clusters and for this reason we add an idiosyncratic component

of risk ϵd(t), d ∈ D, that includes all the debtor-speci�c risk and is assumed

to be independent to zk(t). We assume this component to be distributed as

a standard normal.

Finally, we de�ne the obligor-speci�c creditworthiness yd(t) as

yd(t) := αdzk(t) +
√

1− α2
d ϵd(t),
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where αd is the correlation of the single debtor d ∈ k, k ∈ K, to the systematic

component. Notice that yd(t) has a normal distribution.

Scenario-dependent PD Following the approach by [27] we de�ne an

obligor-speci�c threshold cd such that

PDd(t) = Prob(yd(t) ≤ cd),

where PDd(t) is the probability of default in time t of debtor d ∈ D (that is,

the probability that debtor d is in default at time t). To �nd such thresholds

we observe that the default occurs when

ϵd(t) ≤
cd − αdzk(t)√

1− α2
d

and since we supposed that the idiosyncratic risk factor is distributed as a

standard normal we have that

PDd(t) = Prob

(
ϵd(t) ≤

cd − αdzk(t)√
1− α2

d

)
= Φ

(
cd − αdzk(t)√

1− α2
d

)
,

where Φ is the cumulative distribution function (CDF) of the standard nor-

mal. Applying the quantile function we �nd that

Φ−1(PDd(t)) =
cd − αdzk(t)√

1− α2
d

and then the explicit formula for cd

cd =
√
1− α2

d Φ
−1(PDd(t)) + αdzk(t).

This formula is extremely useful since cd is constant over time. For this

reason, given 0 ≤ t1 < t2, we can obtain cd as a function of PDd(t1) and

zk(t1) and we can use this expression to compute forward probabilities of

default:

PDd(t2) = Φ

(√
1− α2

d Φ
−1(PDd(t1)) + αdzk(t1)− αdzk(t2)√

1− α2
d

)

= Φ

(
Φ−1(PDd(t1))−

αd√
1− α2

d

(∆zk(t1, t2))

)
,
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where ∆zk(t1, t2) = zk(t2)− zk(t1) represents the variation of systematic risk

in the interval [t1, t2]. Now suppose that at time t1 we want to estimate the

probability of default at time t2. Conditioning to the information at time

t1, the only random variable left is zk(t2). In practice, we can substitute

this quantity with an approximation z̃k(t2); as an approximation, we will use

the systematic risk factor that is obtained replacing X(t2) with qualitative

forecasts of the macroeconomic factors at time t2. Moreover, we suppose that

the correlation αd does not depend on the debtor but only on the cluster,

αd = αk ∀d ∈ k,

so that we can also de�ne the cluster-dependent credit index

∆mk(t2|t1) := − αk√
1− α2

k

(∆z̃k(t2|t1)),

where ∆z̃k(t2|t1) := z̃k(t2) − zk(t1). Then, for every cluster k ∈ K and

for every debtor d ∈ k, we have that the probability of default at time t2

conditioning to the information at time t1 is

PDd(t2|t1) = Φ(Φ−1(PDd(t1)) + ∆mk(t2|t1)),

∀d ∈ k, ∀k ∈ K, ∀0 ≤ t1 < t2.

Scenario-dependent CTM In the previous paragraph we focused on the

PD, but now we want to include the scenario in the full credit transition ma-

trix, that is, we want to compute scenario-dependent migration probabilities.

Given a CTM at time t1, A(t1), we want to estimate the CTM at time

t2 > t1 conditional to the information at time t1, A(t2|t1). This framework

works well for any choice of t2 and t1, but in our application it will always be

t1 = t2 − #months
12

since we are usually interested in credit rating migrations

that occur in a �xed number of months.

To begin with, let us simplify the notation assuming that all the debtors

in the same cluster share the same CTM. Furthermore, we remove the cluster-

dependence in α, z and ∆m (we will not have to consider it again since in our
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application we will consider one cluster with a CTM that is the same for all

debtors in the cluster). Notice that all the computation will be conditional

on the starting rating class, that we will call i. Mathematically speaking, we

are updating A row by row, so we want to write an expression for aij(t2|t1)
depending on aij(t1) and the credit index ∆m(t2|t1), for every j = 1, ..., n.

We de�ne n− 1 thresholds {ci,0, ..., ci,n−2} such that:

� ai,n(t) = Prob(yd(t) ≤ ci,0);

� ai,j(t) = Prob(ci,m−1 ≤ yd(t) ≤ ci,m) for m = 1, ...n− 2, j = n−m;

� ai,1(t) = Prob(yd(t) ≥ ci,n−2);

where yd(t) is the creditworthiness of debtor d ∈ D at time t.

Even if yd(t) is not a standard gaussian, we can rescale it so that the mean is

zero and the variance is one; then, we can provide a graphical representation

of the rescaled thresholds dividing the area under the standard gaussian in

bins. For example, Figure 4.1 represents the thresholds for the third row of

Table 1.1, while Figure 4.2 represents the same but for the �rst row. In this

case not all the migrations are possible and for this reason some colors are

missing: this is because the area under the curve delimited by the thresholds

is zero.

For what concern the absorbing default DEF3 we have that it is veri�ed

if

ϵd(t) ≤
ci,0 − αz(t)√

1− α2

and so

ai,n(t) = Φ

(
ci,0 − αz(t)√

1− α2

)
.

From this equality we �nd an explicit expression for ci,0 depending on t and

so, following the same reasoning as before

ain(t2|t1) = Φ(Φ−1(ain(t1)) + ∆m(t2|t1)).
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For what concerns BO1, we �nd the scenario-dependent probability of mi-

gration imposing that the row-sum is 1, that is

ai1(t2|t1) = 1−
n∑

j=2

aij(t2|t1).

For all the other states we need to compute the probability that yd(t) is in

the area delimited by the respective thresholds. Writing it in terms of ϵd(t)

for t > 0, d ∈ D, m = 1, ..., n− 2 and j = n−m, we �nd

aij(t) = Prob

(
ci,m−1 − αz(t)√

1− α2
≤ ϵd(t) ≤

ci,m − αz(t)√
1− α2

)
,

that can be seen as the intersection of two events (with implicit dependence

on d and t)

E1 =

(
ci,m−1 − αz(t)√

1− α2
≤ ϵd(t)

)
E2 =

(
ϵd(t) ≤

ci,m − αz(t)√
1− α2

)
,

whose probabilities are

P (E1) = 1− Φ

(
ci,m−1 − αz(t)√

1− α2

)
P (E2) = Φ

(
ci,m − αz(t)√

1− α2

)
.

Then, observing that P (E1 ∪ E2) = 1 we have that

aij(t) = P (E1 ∩ E2) = P (E1) + P (E2)− P (E1 ∪ E2)

= Φ

(
ci,m − αz(t)√

1− α2

)
− Φ

(
ci,m−1 − αz(t)√

1− α2

)
.

Now we prove by induction that for all m = 0, ..., n− 2 we have that

Φ

(
ci,m − αz(t)√

1− α2

)
=

m∑
γ=0

ai,n−γ(t).

The statement is trivial for m = 0 since it is exactly the explicit formula for

the probability of absorbing default. Supposing that the statement holds for

m− 1 we have that

aij(t) = Φ

(
ci,m − αz(t)√

1− α2

)
− Φ

(
ci,m−1 − αz(t)√

1− α2

)
= Φ

(
ci,m − αz(t)√

1− α2

)
−

m−1∑
γ=0

ai,n−γ(t),
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from which the statement holds since j = n−m.

From the equality that we have just proven, we �nd that

ci,m =
√
1− α2Φ−1

(
m∑

γ=0

ai,n−γ(t1)

)
+ αz(t1).

Finally, we have that

aij(t2) = Φ

(
ci,m − αz(t2)√

1− α2

)
− Φ

(
ci,m−1 − αz(t2)√

1− α2

)
= Φ

(√
1− α2Φ−1(

∑m−1
γ=1 ai,n−γ(t1) + αz(t1)− αz(t2)√

1− α2

)
−

m−1∑
γ=1

ai,n−γ(t2)

= Φ

(
Φ−1

(
m∑

γ=1

ai,n−γ(t1)

)
− α√

1− α2
∆z(t1, t2)

)
−

m−1∑
γ=1

ai,n−γ(t2).

Conditioning to the information at time t1 and using the same de�nition of

credit index given for the PD we �nd that

aij(t2|t1) = Φ

(
Φ−1

(
j∑

k=1

aik(t1)

)
+∆m(t2|t1)

)
−

j−1∑
k=1

aik(t2|t1),

for all j = 2, ..., n− 1, where aij(t2|t1) is the annual probability of migration

from class i to class j at time t2 conditioning to the information at time t1.

Remark 4.1.1. As we saw in Figure 4.1 and 4.2, rescaling the normal distri-

bution of the credit worthiness, the distribution of each row of a CTM can

be represented as a subdivision of the area under the standard gaussian. If

we look at the formulas we found before, upgrading a CTM is equivalent to

shifting all the thresholds by the factor ∆m (Figure 4.3): for this reason, we

refer to the scenario-dependent upgrade of a CTM as shift.

Remark 4.1.2. A positive credit index corresponds to a worsening of the

macroeconomic scenario, in the sense that the number of defaults in the

cluster increases and the probability of migration to a lower class is higher.

Vice versa, a negative credit index (Figure 4.3) corresponds to an improve-

ment of the macroeconomic scenario.
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Figure 4.1: pdf of the probability of migration from BO3

Figure 4.2: pdf of the probability of migration from BO1
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Figure 4.3: shifted distribution of the probability of migration from BO3

with ∆m = −0.2

4.2 Including the macroeconomic scenario in

quarterly CTMs

In this subsection, we present through an example two possible strategies

for obtaining quarterly credit transition matrices that include information

about the macroeconomic scenario. Inconsistencies in the computation could

be due to the fact that for the sake of illustration all the numbers in the

example are rounded to the fourth decimal place, but the computation was

done considering all the digits.

The data We list the macroeconomic factors considered and provide the

sources we used:

� Italian GDP at market value, with historical data from [16] and fore-

casts from [24];
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� Italian GDP with reference year 2015, where historical data are from

[16] and the forecasts are from [24];

� Italian unemployment rate, with historical data and forecasts that can

be found in [23];

� Euribor 3-month rate, with historical data from [31] and forecasts from

[24],

where historical refers to all data prior to 2022 and forecasts means macroe-

conomic forecasts for years 2023 and 2024. We will focus on one cluster, small

business, for which we suppose that the annual credit transition matrix at

the end of 2022 is the one in Table 4.1 and we will consider a quarterly time

step. Our goal is to estimate the quarterly CTM at 2023Q1, 2023Q2, 2023Q3,

BO1 BO2 BO3 DEF1 DEF2 DEF3

BO1 0.86 0.11 0.02 0.01 0 0

BO2 0.22 0.64 0.11 0.02 0.01 0

BO3 0.05 0.19 0.6 0.1 0.03 0.03

DEF1 0.02 0.05 0.15 0.53 0.15 0.1

DEF2 0 0.03 0.05 0.08 0.71 0.13

DEF3 0 0 0 0 0 1

Table 4.1: CTM at 2022Q4 for small business

2023Q4, 2024Q1, 2024Q2, 2024Q3, 2024Q4 where Q stands for quarter.

Credit index To �nd the annual credit index at each time step we use a

PD satellite model implemented by Prometeia. A PD satellite model is a

statistical model that links macroeconomic factor forecasts with the future

evolution of the probability of default.

Assuming that the PD at the end of 2022 is 0.0103 we �nd that the forecasts

for the future PDs are:

2023Q1 2023Q2 2023Q3 2023Q4

0.0125 0.0137 0.0148 0.0160



4.2 Including the macroeconomic scenario in quarterly CTMs 59

2024Q1 2024Q2 2024Q3 2024Q4

0.0168 0.0187 0.0189 0.0190

Using this data we can �nd an annual credit index for each time step by

applying the following:

∆m(t2|t1) = Φ−1(PD(t2))− Φ−1(PD(t1)).

First strategy: homogeneous method Let's start by applying the above

formula to �nd annual credit indexes for the annual probability of default

∆m(2023Q4|2022Q4) = 0.1693,

∆m(2024Q4|2023Q4) = 0.0706.

We can therefore use these credit indexes to obtain the two CTMs at time

2023Q4 and 2024Q4 (Tables 4.2 and 4.3). We propose to compute the quar-

terly CTMs by applying the BAM method to �nd the best stochastic approx-

imation of the fourth root of both matrices; we call this method homogeneous

since we have four identical quarterly matrices per year (Tables 4.4 and 4.5).

BO1 BO2 BO3 DEF1 DEF2 DEF3

BO1 0.8188 0.1377 0.0280 0.0155 0 0

BO2 0.1732 0.6456 0.1377 0.0280 0.0155 0

BO3 0.0348 0.1558 0.6047 0.1217 0.0395 0.0435

DEF1 0.0131 0.0369 0.1232 0.5201 0.1737 0.1330

DEF2 0 0.0202 0.0375 0.0646 0.7085 0.1693

DEF3 0 0 0 0 0 1

Table 4.2: CTM at 2023Q4 for small business

Second strategy: non-homogeneous method We can also �nd quar-

terly scenario-dependent CTMs by updating the best stochastic approxima-

tion of the fourth root of the annual CTM with an appropriate credit index.
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BO1 BO2 BO3 DEF1 DEF2 DEF3

BO1 0.7997 0.1499 0.0319 0.0185 0 0

BO2 0.1557 0.6439 0.1499 0.0319 0.0185 0

BO3 0.0297 0.1423 0.6027 0.1310 0.0439 0.0504

DEF1 0.0109 0.0322 0.1126 0.5123 0.1831 0.1488

DEF2 0 0.0170 0.0330 0.0585 0.7038 0.1877

DEF3 0 0 0 0 0 1

Table 4.3: CTM at 2024Q4 for small business

BO1 BO2 BO3 DEF1 DEF2 DEF3

BO1 0.9818 0.0153 0.0015 0.0014 0 0

BO2 0.0193 0.9602 0.0176 0.0018 0.0012 0

BO3 0.0018 0.0200 0.9551 0.0172 0.0027 0.0032

DEF1 0.0010 0.0028 0.0170 0.9439 0.0228 0.0125

DEF2 0 0.0018 0.0037 0.0081 0.9706 0.0158

DEF3 0 0 0 0 0 1.0000

Table 4.4: Homogeneous quarterly CTM in 2023 for small business

BO1 BO2 BO3 DEF1 DEF2 DEF3

BO1 0.9798 0.0169 0.0017 0.0017 0 0

BO2 0.0175 0.9599 0.0192 0.0020 0.0014 0

BO3 0.0016 0.0183 0.9549 0.0187 0.0029 0.0036

DEF1 0.0009 0.0025 0.0156 0.9428 0.0243 0.0139

DEF2 0 0.0016 0.0033 0.0074 0.9701 0.0177

DEF3 0 0 0 0 0 1

Table 4.5: Homogeneous quarterly CTM in 2024 for small business

Since we need a quarterly credit index for each quarter, we introduce the

formula

PDq = 1− (1− PDy)
1
4 ,
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which is used in applications to approximate homogeneously the quarterly

probability of default PDq starting from the annual probability of default

PDy. We �nd

2022Q4 2023Q1 2023Q2 2023Q3 2023Q4

0.0026 0.0031 0.0034 0.0037 0.0040

2024Q1 2024Q2 2024Q3 2024Q4

0.0042 0.0047 0.0048 0.0048

from which the quarterly credit indexes per quarter

22Q4-23Q1 23Q1-23Q2 23Q2-23Q3 23Q3-23Q4

0.0628 0.0301 0.0261 0.0259

23Q4-24Q1 24Q1-24Q2 24Q2-24Q3 24Q3-24Q4

0.0169 0.0381 0.0032 0.0016

These credit indexes can be used to shift the quarterly CTMs starting from

the one at time 2022Q4, which is computed with the BAM approach. In this

way, a di�erent matrix is obtained for each of the eight quarters (e.g. 2023Q1

and 2023Q2 in Tables 4.6 and 4.7).

BO1 BO2 BO3 DEF1 DEF2 DEF3

BO1 0.9835 0.0139 0.0014 0.0011 0 0

BO2 0.0208 0.9602 0.0164 0.0016 0.0009 0

BO3 0.0019 0.0214 0.9552 0.0162 0.0025 0.0028

DEF1 0.0012 0.0030 0.0179 0.9445 0.0222 0.0112

DEF2 0 0.0021 0.0040 0.0087 0.9710 0.0141

DEF3 0 0 0 0 0 1

Table 4.6: Quarterly CTM at 2023Q1 for small business

Comparison Making a comparison is not an easy task since we do not

have an error measure. We therefore report only the di�erences in the one
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BO1 BO2 BO3 DEF1 DEF2 DEF3

BO1 0.9822 0.0150 0.0016 0.0012 0 0

BO2 0.0194 0.9602 0.0176 0.0018 0.0011 0

BO3 0.0017 0.0199 0.9552 0.0173 0.0028 0.0031

DEF1 0.0011 0.0027 0.0168 0.9438 0.0236 0.0121

DEF2 0 0.0019 0.0037 0.0081 0.9710 0.0152

DEF3 0 0 0 0 0 1

Table 4.7: Quarterly CTM at 2023Q2 for small business

and two year cumulative matrices, which are obtained multiplying all the

matrices of each quarter in the period considered.

After one year the Frobenius norm of the di�erence between the cumula-

tive matrices obtained with the two strategies is 7× 10−3 and the maximum

di�erence on a single element is 0.4%. As we could expect, the di�erence

gets bigger after two years, in particular the Frobenius norm is 3× 10−2 and

the maximum di�erence on a single element is 1.5%.

In conclusion, the two strategies are not equivalent and we look forward

to exploring the di�erence in the future to better understand whether the

non-homogeneous approach is more convenient or not.

Remark 4.2.1. An alternative could be to perturb the macroeconomic fore-

casts with a stochastic noise and apply a Monte Carlo approach for the

estimation of the CTMs. In this case we observe that, while with the non-

homogeneous method one can compute the root before the simulation, fol-

lowing the homogeneous strategy the computation of the root has to be done

twice for every di�erent scenario. For this reason, it would probably be better

to compute the stochastic approximation of the root using the QOM method

that is more e�cient.

Remark 4.2.2. It is possible to obtain quarterly scenario-dependent CTMs

with a non-homogeneous approach and annual credit indexes: indeed, one

can compute A(2023Q1|2022Q4) as the best stochastic approximation of the

fourth root of A(2023Q4|2022Q4). This approach was not implemented.



Conclusions and future

perspectives

The computation of short-term credit transition matrices is a problem

for which many competitive solutions are already available. We have seen

that, given a CTM A ∈ Sn×n, the problem reduces to the computation of

a stochastic matrix X ∈ Sn×n that well approximates A
1
p . With the strong

diagonal dominance assumption QOM and QOG methods perform very well,

with a preference for the �rst, especially for smaller values of p. Nonlinear

optimization methods stop after few iterations and provide an improvement

that is often negligible. However, bank-sourced credit transition matrices

do not always meet the strong diagonal dominance condition; in the exam-

ple provided in Section 3.2, nonlinear optimization gives a huge accuracy

improvement but proves to be non-e�cient. In the future, it could be inter-

esting to extend the empirical studies on CTMs to bank-sourced matrices and

understand whether they are usually strongly diagonally dominant. In case

they are not, it would be useful to build a consistent dataset of bank-sourced

matrices to conduct a deeper study.

For what concerns the scenario-dependence, we have seen that the clas-

sical technique for including the macroeconomic scenario-dependence in an

annual CTM can be adapted to evolve short-time credit transition matrices.

In future studies, it would be interesting to perform a retrospective validation

of the presented strategies and make a deeper comparison between them.
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Appendix A

Review of Markov chains

De�nition A.0.1 (Discrete-time Markov chain). A discrete-time stochas-

tic process {Xn}n≥0 valued in a discrete space E is a Markov chain if the

following property holds:

P (Xn+1 = j | Xn = in, Xn−1 = in−1, . . . , X0 = i0) = P (Xn+1 = j | Xn = in),

for every n ≥ 0 and for every choice of i0, . . . , in, j ∈ E such that the condi-

tional probability is well de�ned.

In particolar, the elements of E are called states of the chain and E is named

state space.

De�nition A.0.2 (HMC). A discrete-time Markov chain {Xn}n≥0 is said to

be time-homogeneous (HMC) if, for all i, j ∈ E, P (Xn+1 = j | Xn = i) does

not depend on n.

De�nition A.0.3 (Transition matrix). Let X be a discrete-time HMC. We

de�ne the transition matrix P as the matrix P = (pij)i,j∈E such that

pij := P (Xn+1 = j | Xn = i).

Since pij represents the probability of an event, we observe that a transition

matrix is always stochastic.
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De�nition A.0.4. Consider a HMC {Xn}n≥0, with transition matrix P . We

say that X0 is the initial state; moreover, its distribution

v(i) := P (X0 = i) ∀i ∈ E

is named initial distribution.

Remark A.0.1. The distribution of a HMC at any time step is determined

by its initial distribution and its transition matrix. Indeed,

P (X0 = i0, X1 = i1, . . . , Xk = ik) =

P (X0 = i0)P (X1 = i1 | X0 = i0) · · ·P (Xk = ik | Xk−1 = ik−1, . . . , X0 = i0),

from which we have that for the Markov property

P (X0 = i0, X1 = i1, . . . , Xk = ik) = v(i0)pi0i1 · · · pik−1ik .

De�nition A.0.5 (Absorbing state). Let X be a discrete-time HMC and

consider a state i ∈ E. We say that i is absorbing for X if pii = 1, or,

equivalently, pij = 0 for all j ∈ E, j ̸= i.

De�nition A.0.6 (Accessible state). Let X be a discrete-time HMC and

consider two states i, j ∈ E. We say that j is accessible from i for X if there

exist k, n ∈ N such that

P (Xn+k = j | Xn = i) > 0.

De�nition A.0.7 (Continuous-time Markov chain). Consider a continuous-

time stochastic process {X}t≥0 de�ned on a probability space with �ltration

{F}t≥0 and valued in a discrete space E. We say that X is a Markov chain

if, for all i ∈ E and for all 0 ≤ t1 < t2,

P (Xt2 = i | Xt1) = P (Xt2 = i | Ft1) .

De�nition A.0.8 (Continuous-time HMC). Consider a continuous-time Markov

chain {X}t≥0. We say that X is time-homogeneous if, for all 0 ≤ t1 < t2,

P (Xt2 | Xt1) = P (Xt2−t1 | X0) .
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De�nition A.0.9 (Transition semigroup). Consider a continuous-time HMC

{X}t≥0 and a transition semigroup P = (pij)i,j∈E. We say that P is the

transition semigroup associated with X if, for all t ≥ 0,

pij(t) = P (Xt = j | X0 = i).

De�nition A.0.10 (Absorbing state). Let X be a continuous-time HMC

with transition semigroup P and consider a state i ∈ E. We say that i is

absorbing for X if there exists a t such that pii(t) = 1 for every t > t.

De�nition A.0.11 (Accessible state). Let X be a continuous-time HMC

with transition semigroup P and consider two states i, j ∈ E. We say that i

is accessible from j for X if there exists a t > 0 such that pij(t) > 0.
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