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Abstract

When studyng monoparameter persistent homology, the bottleneck distance

is the most standard choice in literature. The advantage of this choice is that

persistence diagrams in the monoparameter setting are a complete invariant

as shown by the Isometry Theorem. However, they are not a complete invari-

ant in multiparameter persistent homology. This makes the multiparameter

case much more harder to study.

In this work we study some properties of the biparametric matching dis-

tance, which is an analogue of the bottleneck distance for higher dimensions,

between persistence diagrams, along with the set of special values pa, bq in

which the matching realising this distance may change abruptly. We prove a

result that drastically reduces the cost of the computation of the matching

distance, under suitable regularity conditions on the filtered space pX,φq and

on the special set. Moreover, we give a proof for an extension of the Position

Theorem, which is a central step in the proof of our main theorem.



Chapter 1

Introduzione

L’analisi topologica dei dati (TDA) svolge un ruolo importante in uno dei più

grandi problemi della società contemporanea: l’organizzazione e l’analisi di

grandi quantità di dati. L’approccio di questo ramo della topologia applicata

consiste nell’analizzare questi grandi insiemi di dati utilizzando strumenti di

topologia e dell’algebra omologica. Nell’ambito della TDA, un modo abituale

per rappresentare i dati è quello di considerarli come una nuvola di punti,

cioè come un insieme finito. Questo insieme viene ulteriormente arricchito

con delle strutture simpliciali e metriche. I diversi invarianti topologici e geo-

metrici di questo spazio corrispondono a certe features, ossia a particolari in-

formazioni intrinseche ai dati, che sono di interesse per la loro comprensione.

In particolare, l’omologia persistente cerca di costruire un collegamento tra

la topologia e la geometria utilizzando i gruppi di omologia, che sono un in-

variante centrale nella topologia algebrica, per identificare le proprietà topo-

logiche che persistono nei diversi livelli di analisi dell’insieme rappresentante

i dati e risultano contemporaneamente compatti e discriminanti.

L’approccio classico all’omologia persistente si basa sullo studio dei cam-

biamenti omologici degli insiemi di sottolivello Xφ
u di uno spazio topologico

filtrato pX,φq, con φ : X Ñ Rn una funzione continua, al variare di u in Rn.

Quando il codominio della funzione filtrante φ ha dimensione 1 parleremo

di omologia persistente monodimensionale o monoparametrica, e per n ą 1

parleremo di omologia persistente multidimensionale o multiparametrica. Gli

oggetti di studio dell’omologia persistente sono i diagrammi di persistenza,

e il nostro lavoro si incentra sullo studio di una delle pseudometriche più

comunemente usate tra questi oggetti, la bottleneck distance.

La persistenza monoparametrica fornisce un riassunto dei dati attraverso
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una filtrazione unidimensionale, fornendo una panoramica dei dati a molte

scale diverse. L’omologia persistente monoparametrica è stata oggetto di

numerosi studi ed è risultata utile in molte applicazioni, tra cui [11], [14].

Inoltre la persistenza monoparametrica rende disponibile una descrizione

completa delle features osservate dall’omologia, nel seguente senso: i dia-

grammi di persistenza offrono un invariante completo dell’oggeto geometrico

in analisi. Inoltre, nel caso monoparametrico basato su un approccio cat-

egoriale alla TDA, il cosiddetto Isometry theorem fornisce un’uguaglianza

tra la distance di bottleneck e la distanza di interleaving [9]. La rilevanza di

questo risultato e una motivazione per lo studio della distanza di bottleneck

è il fatto che per il calcolo di questa distanza esistono algoritmi con costi

computazionali bassi. Al contrario, è stato dimostrato in [15] che il calcolo

dell’interleaving distance è NP-hard. Il lettore interessato agli algoritmi per

il calcolo della bottleneck distance può consultare [5], [17].

Nonostante la persistenza monoparametrica sia stata ampiamente stu-

diata in ambito teorico e a lungo utiliizzata nelle applicazioni, alcuni dati

richiedono una filtrazione lungo più parametri per catturare multiple e più

complesse informazioni: questo è il ruolo dell’omologia persistente multi-

parametrica [7]. In alcuni contesti, può, infatti, essere utile utilizzare più

parametri per catturare diverse misurazioni dei datimiller2020data. Purtroppo,

comprendere, visualizzare e calcolare gli invarianti nell’omologia persistente

multiparametrica rimane un compito difficile sia dal punto di vista

matematico che computazionale. Questa difficoltà si applica anche al cal-

colo delle distanze tra tali invarianti. Per esempio, non vale in generale un

equivalente dell’Isometry Theorem.

L’assenza di invarianti analoghi ai diagrammi di persistenza nel caso bi-

parametrico, lo rende più difficile da studiare rispetto al caso monopara-

metrico e richiedi lo sviluppo di nuove idee e metodi matematici. Uno di

questi metodi consiste nel ridurre una filtrazione bidimensionale associata a

una certa funzione φ : X Ñ R2 a una famiglia di filtrazioni unidimensionali

associate a funzioni φ˚
pa,bq : X Ñ R, con a Ps0, 1r, b P R, definite come

φ˚
pa,bqpxq “ minta, 1 ´ aumax

"

φ1pxq ´ b

a
,
φ2pxq ` b

1 ´ a

*

.

Ogni coppia pa, bq identifica la retta con pendenza positiva rpa,bq in R2 definita

dall’equazione parametrica pu, vq “ pat ` b, p1 ´ aqt ´ bq. In altre parole,

la precedente filtrazione unidimensionale associata alla funzione φ˚
pa,bq viene
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ottenuta proiettando X sul piano R2 mediante φ e considerando, per ogni

p P rpa,bq, il sottoinsieme Xp Ă X formato dai punti che si trovano in basso a

sinistra di p. È noto che, per ogni grado k, la conoscenza di tutte le funzioni

dei numeri di Betti persistenti associate alle filtrazioni di X definite dalle

funzioni φ˚
pa,bq al variare di a e b è equivalente alla conoscenza della funzione

dei numeri di Betti persistenti associata alla filtrazione di X data da φ [7].

In questo lavoro affrontiamo lo studio di una metrica ampiamente studiata

in persistenza biparametrica, la matching distance. Questa metrica è definita

per due funzioni φ, ψ : X Ñ R2 come il supremo delle distanze di bottleneck

tra i diagrammi di persistenza φ˚
pa,bq, ψ

˚
pa,bq al variare di pa, bq.

In particolare, affrontiamo una congettura ampiamente studiata nella let-

teratura (si vedano, per esempio, [13], [19]) che riguarda la persistenza bi-

parametrica: è possibile calcolare la distanza di matching studiando soltanto

le rette filtranti rpa,bq di pendenza 1, ovvero, fissando il parametro a “ 1
2
?

Un tale risultato sarebbe molto utile dal punto di vista applicativo e com-

putazionale, giacché consentirebbe di passare dello studio dei valori su una

striscia allo studio dei valori su una retta, riducendo nettamente il costo

computazionale del calcolo.

Purtroppo questo risultato non sussiste in generale nel caso discreto ed è

probabilmente falso anche nel caso topologico.. Alcuni controesempi possono

essere trovati in [19]. Tuttavia alcune versioni deboli, ancora computazional-

mente interessanti, della congettura possono essere dimostrate sotto oppor-

tune ipotesi di stabilità. In questa tesi imponiamo delle condizioni sull’insieme

dei valori pa, bq che sono “speciali” nel senso che in tali punti il matching il

cui costo realizza la distanza di matching potrebbe cambiare in modo discon-

tinuo. In questo modo riusciamo a dimostrare che la distanza viene realizzata

su almeno una delle tre rette, a “ 0, a “ 1
2
e a “ 1 oppure su almeno un

punto di un insieme costituito da un numero finito di valori pa, bq speciali.

Questo studio è il contenuto dei capitoli 5 e 6 di questo lavoro.

È interessante osservare che, in un setting più generale di quello presentato

in questa tesi, l’omologia persistente appartiene a una classe di operatori

adatti a modelizzare il ruolo degli osservatori che trasformano e interpretano i

dati, i recentementi introdotti Group Equivariant Non-Expansive Operators,

GENEOs. Questi costituiscono un recente approccio al collegamento tra

topologia e analisi dei dati, e sono attualmente oggeto di studio, p.e. in [12],

[20], [22].

Il contenuto della tesi è il seguente. Nel capitolo 2 richiamiamo la definizione
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di diagramma di persistenza insieme ad altri concetti e teoremi di base in

omologia persistente monoparametrica e multiparametrica che utilizzeremo

nello sviluppo del resto dei capitoli. Inoltre introduciamo l’extended Pareto

grid, che sarà lo strumento centrale per la dimostrazione del Position Theo-

rem 6. Nel capitolo 3 introduciamo le distanze di bottleneck e di matching per

lo studio dei diagrammi di persistenza monoparametrici e multiparametrici,

rispettivamente. Il contenuto del capitolo 4 è l’estensione del Position Theo-

rem presentato in [13]. Nel capitolo 5 ci concentriamo sullo studio dei valori

pa, bq in cui i matching che realizzano la distanza di matching bidimensionale

potrebbero cambiare in modo discontinuo. Finalmente, nel capitolo 6 intro-

duciamo le nostre assunzioni di regolarità sui valori pa, bq e dopo dimostriamo

il nostro risultato principale.
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Chapter 1

Introduction

Topological Data Analysis (TDA) plays a crucial role in one of the most

significant challenges of contemporary society: organizing and analyzing large

quantities of data. The approach of this branch of applied topology consists

in the analysis of these large datasets by using tools from topology and

homological algebra. In the field of TDA, a common way to represent data is

by considering them as a point cloud, which is a finite set. This set is further

enriched with simplicial and metric structures. The different topological and

geometric invariants of this space correspond to particular features, which

are specific intrinsic information about the data that are of interest for their

understanding. Persistent homology is a method in TDA that aims to

establish a connection between topology and geometry by using homology

groups, which are a central invariant in algebraic topology, to identify the

topological properties that persist across different levels of analysis of the

data and are relevant for their interpretation.

The classical approach to persistent homology is based on studying homo-

logical changes of the sublevel sets Xφ
u of a filtered topological space pX,φq,

where φ : X Ñ Rn is a continuous function, as u varies in Rn. When the

codomain of the filtering function φ has dimension 1, we will speak of one-

parameter or monodimensional persistent homology, and for n ą 1, we will

speak of multi-parameter or multidimensional persistent homology. The ob-

jects of study in persistent homology are persistence diagrams, and our work

focuses on studying one of the most standard pseudometrics on these objects,

the bottleneck distance.

Monodimensional persistence provides a summary of data through a one-

dimensional filtration, offering an overview of the data at multiple scales.
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Monodimensional persistent homology has been extensively studied and

proven useful in various applications, including [11], [14]. Furthermore,

monodimensional persistence provides a complete description of the features

observed by homology. Persistence diagrams provide a complete invariant of

the geometric object under analysis. Furthermore, in the monoparametric

case based on a categorical approach to TDA, the Isometry theorem provides

an equality between the bottleneck distance and the interleaving distance

[9]. This result highlights the relevance of the bottleneck distance and its

computationally efficient algorithms, as opposed to the NP-hardness [15] of

effectively calculating the interleaving distance. The reader interested in the

algorithms for the calculation of the bottleneck distance can refer to [5], [17].

Despite monoparametric persistence having been extensively studied in

theory and widely used in applications, some data require filtrations along

multiple parameters to fully capture their information: this is the role of

multiparameter persistent homology [7]. In certain contexts, using multiple

parameters can be helpful in capturing data details. Unfortunately, under-

standing, visualizing, and computing invariants in multiparameter persistent

homology remains a challenging task from both the mathematical and com-

putational viewpoints. This difficulty also applies to the computation of

distances between such invariants. For example, the Isometry Theorem does

not generally hold in the multiparameter setting.

The absence of invariants analogous to persistence diagrams in the bipara-

metric case makes it more challenging to study compared to the monopara-

metric case and requires the development of new mathematical ideas and

methods. One such method consists on the reduction from the two-

dimensional case to the one-dimensional case by using a family of functions

φ˚
pa,bq : X Ñ R2, where a Ps0, 1r and b P R, defined as follows:

φ˚
pa,bqpxq “ minta, 1 ´ aumax

"

φ1pxq ´ b

a
,
φ2pxq ` b

1 ´ a

*

.

Each pair pa, bq corresponds to a line with positive slope rpa,bq in R2,

defined by the parametric equation pu, vq “ pat`b, p1´aqt´bq. The function

φ˚
pa,bq allows us to pass from a two-dimensional filtration to a one-dimensional

filtration. In simple terms, the aforementioned one-dimensional filtration

associated with the function φ˚
pa,bq is obtained by projecting X onto the plane

R2 through φ and considering, for each p P rpa, bq, the subset Xp Ă X

consisting of points that lie below and to the left of p. It is known that,

6



for each degree k, the knowledge of the persistent Betti numbers functions

associated with the filtrations defined by the filtering functions φ˚
pa,bq for

varying a and b is equivalent to the knowledge of the persistent Betti numbers

function associated with the filtration defined by φ.

In this work, we tackle the study of a widely studied metric in bipara-

metric persistence, the matching distance. This metric is defined for two

continuous functions φ, ψ : X Ñ R2 as the supremum of bottleneck distances

between the persistence diagrams φ˚
pa,bq, ψ

˚
pa,bq over varying pa, bq.

In particular, we address a conjecture that has been extensively studied in

the literature (see, for example, [13], [19]) regarding biparameter persistent

homology: Can we effectively compute the matching distance by considering

only the filtering lines rpa,bq with slope 1, that is, by fixing the parameter

a “ 1
2
? Such a result would be highly useful from both an applicational and

computational perspective, as it would allow us to transition from studying

values on a strip to studying values on a line, significantly reducing the

computational cost of calculations.

Unfortunately, this result does not generally hold in the discrete case, and

it is likely false in the topological case too. Counterexamples can be found

in [19] for the discrete case. However, weakened versions of the conjecture,

which are still computationally interesting, can be proven under suitable

stability assumptions. In this thesis, we impose conditions on the set of

values pa, bq that are ”special” in the sense that at these points, the matching

that realizes the matching distance may change discontinuously. In this way,

we can prove that the distance is realized either on at least one of the three

lines a “ 0, a “ 1
2
, and a “ 1, or on at least one point of a set consisting of

a finite number of exceptional pa, bq values. This is the content of Chapters

5 and 6 of this work.

It is interesting to note that, in a more general setting, persistent ho-

mology belongs to a class of operators suitable for modeling the role of ob-

servers that transform and interpret data, namely the recently introduced

Group Equivariant Non-Expansive Operators (GENEOs). GENEOs repre-

sent a novel approach to the connection between topology and data analysis,

and they are currently being studied in works such as [12], [20], [22].

The content of the thesis is as follows:

In Chapter 2, we review the definition of persistence diagrams along with

other basic concepts and theorems in monodimensional and multidimensional

persistent homology that we will use in the development of the remaining
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chapters. We also introduce the extended Pareto grid, which will be the

central tool for proving the Position Theorem 6. In Chapter 3, we introduce

the bottleneck and matching distances for the study of monodimensional and

multidimensional persistence diagrams, respectively. The content of Chapter

4 is the extension of the Position Theorem presented in [13]. In Chapter 5,

we focus on studying the values pa, bq where the matchings that realize the

two-dimensional matching distance may change discontinuously. Finally, in

Chapter 6, we introduce our assumptions of regularity on the values ppa, qbq

and then prove our main result.
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Chapter 2

Preliminaries

Throughout this chapter let F be a field and let X be a finitely triangulable

topological space. Also, fix the following notations:

∆ “ tpu, uq P R2
u that we refer to as the diagonal,

∆`
“ tpu, vq P R2 such that u ă vu \ t∆u,

∆˚
“ ∆`

\ tpu,8quuPR.

Most of the definitions and results in this chapter and the following one

come from [7].

2.1 One-parameter Persistent Homology

We start with a general definition:

Definition 2.1 (Persistence module). A (n-parameter) persistence module is

a covariant functorM : Rn Ñ VectF whereVectF is the category of F´vector

spaces and linear maps, and Rn is the category induced by the poset pRn,ĺq,

with

x, y P Rn, x ĺ y if and only if xi ď yi for every 0 ď i ď n.

Persistence modules can be defined in a more general setting, which we

present briefly in appendix A.

In TDA, persistence modules codify topological information about a topo-

logical space X which represents the data, and the homology of X represents

“features” of the data we wish to study. Persistence modules encode the
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2.1. One-parameter Persistent Homology

variation in the homology of a filtered topological space. They are usu-

ally obtained by applying the homology functor to a filtration of topological

spaces, where an inclusion of topological spaces is associated to the linear

maps between their homology vector spaces.

Definition 2.2. A filtration is a functor F : Rn Ñ Top from the poset

category Rn induced by the partially ordered set pRn,ĺq to the category of

topological spaces and continuous functions, such that for each morphism

u ď v, Fpu ď vq is an inclusion.

Any continuous map φ : X Ñ R induces a filtration Fφ : R Ñ Top, with

Fφptq “ Xφ
t for each t P R, and Fφps ď tq “ ιφs,t for each s ď t in the

following way: for any t P R define

Xφ
t “ tx P X : φpxq ď tu.

For each ps ď tq there is a canonical inclusion

ιφs,t : X
φ
s ãÝÑ Xφ

t .

Notice that, since X is finitely triangulable, each continuous function

φ : X Ñ R is bounded and thus there exists T “ maxtPR φptq P R such that

for every t1 ě t ě T

Xφ
T “ Xφ

t1 “ X and ιφt,t1 “ idX .

We will write Xφ
8 “ X, and this allows us to naturally extend the indexing

poset of our filtration Fφ to pR Y t8u,ďq, by putting

Fφp8q “ X, and Fφpt ď 8q : Xφ
t ãÝÑ X,

extending the order relation with t ă 8 for each t P R.
Fix a degree k P Z. Let Hkp´;Fq denote the Čech homology functor in

degree k. To avoid some encumbering notation, in the following we will omit

the coefficient field F and we will write ιφ˚
s,t “ Hkpιφs,tq when the degree of

homology is not specified or clear from the context.

Remark 2.1. The collection of objects tHkpXφ
t qutPRY8 and morphisms

tιφ˚
s,tupsďtqPRY8 parametrised by the ordered set pR,ďq is a persistence module.

Definition 2.3 (Persistent homology group). For any pu ď vq define

Hφ
k pu, v;Xq “ Hφ

k pu, vq “ Imιφ˚
u,v ă HkpXφ

v q

the k-th persistent homology group of X at pu, vq.
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2.1. One-parameter Persistent Homology

Remark 2.2. Since we are taking Čech homology with coefficients in a field,

the Čech homology groups are F-vector spaces fully described by dimFHkpXφ
v q,

hence the persistent homology groups are determined up to isomorphism of

vector spaces by their dimension as subspaces of HkpXφ
v q.

Definition 2.4 (PBNF). For any continuous function φ : X Ñ R and for

any k P Z define the PBNF, standing for persistent Betti numbers function,

of φ in degree p as follows:

βφk : ∆
˚

Ñ N Y t8u

pu, vq ÞÑ dimFH
φ
k pu, vq

One could wonder why working with Čech homology and why working

with coefficients in a field F, therefore losing the topological information

about the torsion of the space X. The reason for the latter choice is that

there is a decomposition theorem for persistence modules with codomain

VectF which is central in persistent homology. The result appeared initially

in [2] and we present a modern generalization from [16] in Appendix A.

The motivation for using Čech is to exploit some properties proved in [7]

for persistent Betti numbers functions that we are about to introduce. In

particular the authors of [7] showed that Proposition 2.1 is false in general

for singular homology. This is Proposition 2.9 from [7]:

Proposition 2.1. βφk pu, vq is right-continuous in both its variables.

The next result is Theorem 2.3 in [7] and guarantees that persistent ho-

mology groups are finite-dimensional. The authors of [7] showed it in general

for multiparameter persistent homology.

Theorem 1. Let φ : X Ñ R be a continuous function, X a finitely triangu-

lable topological space and k P Z. Then βφk pu, vq ă 8 for every pu, vq P ∆˚.

Definition 2.5 (Multiplicity). Let φ : X Ñ R and k P Z. Define, for every

p “ pu, vq P ∆`, the multiplicity of p as

µφk ppq “ lim
εÑ0

βφp pu`ε, v´εq´βφp pu´ε, v´εq´βφp pu`ε, v`εq`βφp pu´ε, v`εq,

and, for q “ pu,8q P ∆˚z∆`, define the multiplicity of q as

µφk pqq “ lim
εÑ0

βφp pu ` ε,8q ´ βφp pu ´ ε,8q.
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2.1. One-parameter Persistent Homology

We will omit the degree k and the filtering function φ for the sake of clarity

when it is not ambiguous. Let us justify the terminology “multiplicity” for

the number µppq:

Proposition 2.2. For every p “ pu, vq P ∆˚ µppq P N Y t0u.

Proof. It is enough to show that βpu2, v1q ´ βpu1, v1q ě βpu2, v2q ´ βpu1, v2q

and βpu2,8q´βpu1,8q ě 0 for any real numbers u1 ď u2 ă v1 ď v2. Indeed,

note that if

ι˚u2,v2 “ ι˚v1,v2 ˝ ι˚u2,v1

then the Rank-nullity theorem - see Appendix C - implies

βpu2, v2q “ dim Imι˚u2,v2 “ dim Imι˚u2,v1 ´ dimker
´

ι˚v1,v2 |Imι˚u2,v1

¯

.

Conversely,

ι˚u1,v2 “ ι˚v1,v2 ˝ ι˚u1,v1

implies

βpu1, v2q “ dim Imι˚u1,v2 “ dim Imι˚u1,v1 ´ dimker
´

ι˚v1,v2 |Imι˚u1,v1

¯

.

Now observe that Imι˚u1,v1 “ Im
`

ι˚u2,v1 ˝ ι˚u1,u2
˘

Ă Imι˚u2,v1 ; and from this

follows

dimker
´

ι˚v1,v2 |Imι˚u1,v1

¯

Ă dimker
´

ι˚v1,v2 |Imι˚u2,v1

¯

.

All together yields

βpu2, v2q ´ βpu1, v2q “ dim Imι˚u2,v1 ´ dim Imι˚u1,v1

´ dimker
´

ι˚v1,v2 |Imι˚u2,v1

¯

` dimker
´

ι˚v1,v2 |Imι˚u1,v1

¯

ď dim Imι˚u2,v1 ´ dim Imι˚u1,v1
“ βpu2, v1q ´ βpu1, v1q.

To prove βpu2,8q ´ βpu1,8q ě 0 just observe

Imι˚u1,8 “ Imι˚u1,maxφ “ Im
`

ι˚u2,maxφ ˝ ι˚u1,u2
˘

Ă Imι˚u2,maxφ “ Imι˚u2,8.

Definition 2.6 (Multi-set). A multi-set is a pair pS, fq of a set S and a

function f : S Ñ NYt8u. If S P S and fpSq ą 0, we say that S is an element

of the multi-set and its multiplicity is fpSq. We may refer to the multi-set

pS, fq as the collection Sf “ tpS, nq P S ˆ pN Y t8uq : 0 ă n ď fpSqu.

12



2.1. One-parameter Persistent Homology

Definition 2.7 (Map between multi-sets). Let pS, fq and pS 1, f 1q be two

multi-sets. Any map from Sf to S 1f 1 is called a multi-set map from the

multi-set pS, fq to the multi-set pS 1, f 1q.

Now we are ready to define the geometrical invariant for persistence mod-

ules announced in 2.1. Persistence diagrams play a central role in the compu-

tational aspects of TDA, in particular in multiparameter persistence, when

comparing multiparameter persistence modules directly can be a computa-

tionally infeasible task, see Appendix A.

Definition 2.8 (Persistence diagram). Let φ : X Ñ R be a continuous func-

tion. The persistence diagram Dgmpφq of φ is the multiset consisting of

points pu, vq P ∆˚zt∆u with multiplicity µφpu, vq union the singleton t∆u

with infinite multiplicity.

With a small abuse of notation, throughout this thesis we will also use

the symbol Dgmpφq to indicate the realisation of the multiset Dgmpφq. The

elements of Dgmpφq are called cornerpoints. A cornerpoint pu, vq P ∆z∆

will be called a proper cornerpoint and a cornerpoint pu,8q will be called

an essential cornerpoint. We will denote by Prppφq the set of proper cor-

nerpoints of Dgmpφq union the diagonal t∆u and Esspφq the set of essential

cornerpoints of Dgmpφq.

Now we will endow the set ∆˚ with a metric structure. We introduce the

notion of intrinsic metric in a metric space, and then we define the metric d

in ∆˚ as the intrinsic metric induced by the maximum norm distance. This

definition, that may seem artificial and complicated, is at the base of the proof

of the Stability Theorem 3, which will be fundamental in the construction

that will take place in the following chapters.

The next definitions are from [4].

Definition 2.9. Let pM,dq be a metric space. For any x, y P M , a path from

x to y is a continuous map γ : r0, 1s Ñ M such that γp0q “ x and γp1q “ y.

We will use the notation γ : x ÞÑ y.

The union Pr0,1s “
Ť

nPNtp0 “ t0, t1, . . . , tn, tn`1 “ 1qu0ăt1,...ătnă1 parametrises

the finite partitions tr0, t1q, . . . , rtn´1, tnq, rtn, 1su of r0, 1s.

Define the length of a path γ in M as the quantity

ℓpγq “ sup
p0,t1,...,tn,1qPPr0,1s

n
ÿ

i“0

dpγptiq, γpti`1qq ě 0.

13



2.1. One-parameter Persistent Homology

Define a new (extended) metric di on M , the intrinsic metric induced by

d, as follows: for each x, y P M set dipx, yq “ 8, if there are no paths of

finite length from x to y. Otherwise,

dipx, yq “ inf
γ : x ÞÑy

ℓpγq.

Remark 2.3. pM,diq is a metric space and, in general, di ď d, meaning that

the topology on M induced by di is always finer than the one induced by d.

For more details see [4].

Definition 2.10. Consider the maximum norm distance, or Chebyshev dis-

tance in ∆˚. For each p “ pu, vq, p1 “ pu1, v1q P ∆˚ it is defined as

d8pp, p1
q “

$

’

’

’

’

&

’

’

’

’

%

maxt|u ´ u1|, |v ´ v1|u when p, p1 ‰ ∆,
v´u
2

when p1 “ ∆,
v1´u1

2
when p “ ∆,

0 otherwise.

with the convention that for each r P R, 8 ´ r “ r ´ 8 “ 8,8 ´ 8 “

0, |8| “ 8, 8

2
“ 8,mint8, ru “ r and maxt8, ru “ 8.

We will denote with d the intrinsic metric induced by d8.

Remark 2.4. Explicitly, the extended metric d is given by

dpp, p1
q “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

mintmaxt|u ´ u1|, |v ´ v1|u,maxtv´u
2
, v

1´u1

2
uu if p, p1 P ∆`

|u ´ u1| if v “ 8, v1 “ 8

v´u
2

if p P ∆`, p1 “ ∆
v1´u1

2
if p1 P ∆`, p “ ∆

0 if p “ p1 “ ∆

8 otherwise

for each p “ pu, vq, p1 “ pu1, v1q.

The meaning of the term mintmaxt|u ´ u1|, |v ´ v1|u,maxtv´u
2
, v

1´u1

2
uu is

the following. For each pair of points p, p1 P ∆˚ there are two paths to

consider when computing the intrinsic metric: the path γ : p ÞÑ p1 such

that Imγ coincides with the segment rp, p1s and the path γ1 : p ÞÑ p1 passing

through the point ∆ P ∆˚ such that Imγ is the disjoint union of segments

rp,
`

v´u
2
, v´u

2

˘

s and r
`

v1´u1

2
, v

1´u1

2

˘

, p1s. Indeed,
`

v´u
2
, v´u

2

˘

,
`

v1´u1

2
, v

1´u1

2

˘

are

the points in ∆ nearest from p, p1, respectively.
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2.2. Biparameter Persistent Homology

The next proposition is Proposition 3.9 together with Remark 3.10 in [7],

and will be used very frequently in the proofs that will follow.

Proposition 2.3 (Local finiteness of cornerpoints). Let φ : X Ñ R be a

continuous function and for any ε ą 0 let Uε denote the open ball of radius

ε and center ∆ with respect to the metric d. Then

• PrppφqzUε is a finite set.

• Esspφq is a finite set.

Remark 2.5. The previous proposition implies that the set of accumulation

points of any persistence diagram is t∆u.

Proposition 2.4. For every continuous function φ : X Ñ R, Dgmpφq is a

compact subset of p∆˚, dq.

Proof. Let U “ tUiuiPI be an open covering of Dgmpφq in p∆˚, dq. Then there

exists i0 P I such that ∆ P Ui0 . Because of Proposition 2.3, DgmpφqzUi0 is

a finite set. Put DgmpφqzUi0 “ tp1, p2, . . . , pNu. Therefore it is enough to

choose open sets Uij containing the cornerpoints pj, for 1 ď j ď N . Then,

tUi0 , Ui1 , . . . , UiN u is a finite subcovering of U .

2.2 Biparameter Persistent Homology

All of the definitions of the previous section can be extended to multiparam-

eter persistence. We are particularly interested in the biparameter case, and

in the next section we will introduce a useful tool from differential geometry,

the extended Pareto grid, which the authors of [13] used prove a powerful re-

sult characterising the coordinates of cornerpoints in a persistence diagram.

This result, referred as Position Theorem, will be discused and extended in

Chapter 4.

Any continuous map φ : X Ñ Rn induces a filtration Fφ : Rn Ñ Top,

with Fφpuq “ Xφ
u for each u P Rn, and Fφpu ĺ vq “ ιφu,v for each u ĺ v in

the following way: for any u P Rn put

Xφ
u “ tx P X : φpxq ĺ uu,

and for each pu ĺ vq there is a canonical inclusion

ιφu,v : X
φ
u ãÝÑ Xφ

v .
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2.2. Biparameter Persistent Homology

With the same notation, define multiparater persistent homology groups

and multiparameter PBNFs exactly as in the previous section. The collection

of objects tHkpXφ
u quuPRn and morphisms tιφ˚

u,vupvĺvqPRn parametrised by the

partially ordered set pRn,ĺq is a persistence module. Theorem 1 still holds

for multiparameter persistence, allowing us to give the definitions and results

that will follow.

From now on we will focus on the biparameter case. We introduce a

way of studying a biparameter PBNF through a family of one-parameter

PBNFs associated with filtrations induced by lines of positive slope. This

technique is commonly referred as foliation method. The reader interested in

the generalisation to n-parameter persistence of this technique can refer to

[7].

Definition 2.11. Consider the set of strictly positive slope lines in R2

parametrised by the set p0, 1q ˆ R through

p0, 1q ˆ R Q pa, bq ÞÑ rpa,bq “ tpat ` b, p1 ´ aqt ´ bqutPR.

We will call rpa,bq the filtering line associated with the pair pa, bq.

Remark 2.6. In chapters 5, 6 we will use the cartesian equation of the filtering

line rpa,bq. It follows from a trivial calculation from the parametrisation:

y “
1 ´ a

a
x ´

b

a

Now we construct a filtration Fpa,bq : R Ñ Top induced by rpa,bq. Each

point puptq, vptqq P rpa,bq can be associated with the subspace Xφ
puptq,pvptqq

“

tx P X : φ1pxq ď uptq, φ2pxq ď vptqu Ă X. The filtration given by

Fpa,bqptq “ Xφ
puptq,vptqq

, Fpa,bqptq “ ιφ
pupsq,vpsqq,puptq,vptqq

for each s ď t P R is a one-parameter filtration of X.

The following is a useful result charaterising the filtration we just de-

fined as the one-parameter filtration for a real valued function φ˚
pa,bq. This is

theorem 4.2 in [7].

Theorem 2. Let pa, bq P p0, 1q ˆR The filtration Fpa,bq just introduced is the

one-parameter filtration on X induced by the real-valued function

φ˚
pa,bqpxq “ minta, 1 ´ aumax

"

φ1pxq ´ b

a
,
φ2pxq ` b

1 ´ a

*
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2.2. Biparameter Persistent Homology

Definition 2.12 (Order relation on a filtering line). For each filtering line

rpa,bq we will consider the following binary relation on rpa,bq:

X ďpa,bq Y ðñ xX ď xY or, equivalently yX ď yY , @X, Y P rpa,bq.

When X ďpa,bq Y and X ‰ Y we will write X ăpa,bq Y . Observe that

xX ď xY is equivalent to yX ď yY since rpa,bq is a line with strictly positive

slope.

We will extend the definition of ďpa,bq to a broader set of filtering lines

in Chapter 4. Showing that ďpa,bq is indeed a total order is an application of

the definition:

Proposition 2.5. For each filtering line, ďpa,bq is a total order relation and

ăpa,bq is a strict order relation on that line.

Proof. Fix pa, bq Ps0, 1rˆR. Let P “ pxP , yP q, Q “ pxQ, yQq, R “ pxR, yRq P

rpa,bq. Let us check ďpa,bq first.

• Reflexive and antisymmetric properties follow directly from reflexive

and antisymmetric properties for the order ď in R.

• Transitivity: let P ďpa,bq Q and Q ďpa,bq R. Then xP ď xQ ď xR, and

it follows P ďpa,bq R.

• The order relation ďpa,bq is total: by contradiction suppose that neither

P ďpa,bq Q nor Q ďpa,bq P . Equivalently, neither xP ď xQ nor xP ě xQ,

but that is an absurd since pR,ďq is totally ordered.

As for ăpa,bq:

• Irreflexive and asymmetric properties follow directly from irreflexive

and asymmetric properties for the strict order ă in R.

• Transitivity: let P ăpa,bq Q and Q ăpa,bq R. Then xP ă xQ ă xR, and

it follows P ăpa,bq R.

• Connectedness: by contradiction suppose that P ‰ Q and neither

P ăpa,bq Q nor Q ăpa,bq P . Equivalently, neither xP ă xQ nor xP ă xQ,

but that is an absurd when xP ‰ xQ since ă is a strict total order on

R.
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2.3. Extended Pareto grid

Now we present the natural pseudo-distance. The natural-pseudo dis-

tance is a dissimilarity measure for topological spaces endowed with vector-

valued continuous functions that is intrinsically hard to compute, motivating

the interest in methods for its estimation, which will be treated in Section 3.

The following is definition 5.1 from [7]:

Definition 2.13 (Natural pseudo-distance). Let φ, ψ : X Ñ Rn be two con-

tinuous functions. The natural pseudo-distance between the pairs φ and ψ

is

δpφ, ψq “ inf
hPHomeopXq

sup
xPX

}φpxq ´ ψphpxqq}8

2.3 Extended Pareto grid

Let M be a closed smooth manifold paired with a Riemannian structure. In

this chapter we recall the relation between a differential construction associ-

ated with a smooth function φ : M Ñ R2, called the extended Pareto grid,

and the points of the persistence diagrams Dgmpφ˚
pa,bqq. This connection is

established in the Position Theorem proved in [13].

Definition 2.14. The Jacobi set of φ is the collection

Jpφq “ tp P M | ∇φ1 “ λ∇φ2 or ∇φ2 “ λ∇φ1, for some λ P Ru.

The Pareto critical set of φ is the subset of Jpφq given by

JP pφq “ tp P Jpφq | ∇φ1 “ λ∇φ2 or ∇φ2 “ λ∇φ1, for some λ ď 0u .

Assume now that φ is not only smooth, but it also satisfies the following

properties:

(i) No point p exists in M at which both ∇φ1 and ∇φ2 vanish.

(ii) Jpφq is a 1-manifold smoothly embedded in M consisting of finitely

many components, each one diffeomorphic to a circle.

(iii) JP pφq is a 1-dimensional closed submanifold of M, with boundary in

Jpφq.
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2.3. Extended Pareto grid

(iv) If we denote by JCpφq the subset of Jpφq where ∇φ1 and ∇φ2 are

orthogonal to Jpφq, then the connected components of JP pφqzJCpφq are

finite in number, each one being diffeomorphic to an interval. With

respect to any parameterisation of each component, one of φ1 and φ2 is

strictly increasing and the other is strictly decreasing. Each component

can meet critical points for φ1, φ2 only at its endpoints.

These properties are generic on the set of smooth maps M Ñ R2 (see

[1]).

Definition 2.15 (Extended Pareto grid). Denote by tp1, . . . , phu and

tq1, . . . , qku, respectively, the critical points of φ1 and φ2. Since the func-

tion φ satisfies (i), then tp1, . . . , phu X tq1, . . . , qku “ ∅. The extended Pareto

grid of φ is defined as the union

Γpφq “ f pJP pφqq Y

˜

ď

i

vi

¸

Y

˜

ď

j

hj

¸

where vi is the vertical half-line tpx, yq P R2 | x “ φ1ppiq, y ě φ2ppiqu and hj
is the horizontal half-line tpx, yq P R2 | x ě φ1pqjq, y “ φ2pqjqu. We refer to

these half-lines as improper contours and to the closure of the image of the

connected components of JP pφqzJCpφq as proper contours of Γpφq. For any

improper contour extending from the point px0, y0q P R2, we will call px0, y0q

the basepoint of that improper contour.

We will denote Ctrpφq the set of contours in Γpφq.

Remark 2.7. Observe that, because of property (ii), Ctrpφq is a finite set.

Moreover, property (iv) ensures that every contour can be parametrised

as a curve whose two coordinates are respectively non-increasing and non-

decreasing. In particular, this implies that the slope of the tangent to any

contour at any point cannot have strictly positive slope. This fact will be

useful in the proof of our main theorem.

Remark 2.8. Properties (ii) and (iv) guarantee that proper contours are

bounded in R2. For any proper contour α Ă Γpφq its closure in Jpφq, which

is just α union one or both its endpoints, is diffeomorphic to a closed interval

in R.
We can consider the embedding ι : Γpφq ãÝÑ R2

, with R the extended

half-line. The closure of the image of this embedding

Γ̂pφq “ Imι
R2

.
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2.3. Extended Pareto grid

is homeomorphic to the union of Γpφq with the endpoints pφ1ppiq,`8q and

p`8, φ2pqjqq for each improper contour vi, hj,respectively. Call β Ă Γ̂pφq a

(proper or improper) contour in Γ̂pφq if there exists a (proper or improper)

α in Γpφq such that β “ αR2

.

The topology on Γ̂pφq is the topology induced by the product topology in

R2
, where R is equipped with the usual topology on the extended real line.

Then every contour in Γ̂pφq is bounded and homeomorphic to a closed

interval. Moreover, proper contours are diffeomorphic to a closed interval.

With a small abuse of notation, we will use the symbol Γpφq to denote both

spaces in the remaining pages of this work.

Proposition 2.6. Let α Ă Γpφq be a contour. Then rpa,bq X α is either the

empty set or a single point, for each pa, bq Ps0, 1rˆR.

Proof. By contradiction, suppose rpa,bq X α “ tP,Qu two different points.

Because of property (iv) in Section 2.3, there is a diffeomorphism

ξ : r0, 1s Ñ α

t ÞÑ pξ1ptq, ξ2ptqq

such that when x1 or x2 is strictly increasing, the other one is strictly de-

creasing. Let T1, T2 P r0, 1s such that P “ ξpT1q and Q “ ξpT2q, and without

loss of generality assume T1 ă T2.

The vector pP ´Qq is a multiple of the director vector of the filtering line

rpa,bq, which is pa, 1´aq, and since a Ps0, 1r, both its coordinates are positive.

Therefore, there exists a point Q1 P α such that the line tangent to α in X

has director vector pa, 1 ´ aq, that is, slope equal to 1´a
a

ą 0, This is against

(iv).
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Chapter 3

Matching distance

In this chapter we introduce the bottleneck distance and the matching dis-

tance. The first was firstly introduced as a lower bound for the pseudo-

natural distance 2.13, making it relevant and computable in the applica-

tions. It is also deeply connected with a certain notion of distance between

persistence modules, see Appendix A. The bottleneck distance is a readily

computable mean of comparing persistence modules and is widely used in

TDA and shape comparison problems. The latter is its natural generalisa-

tion in n-parameter persistence. For more details about these distances, see

[3].

Definition 3.1 (Matching between multi-sets). Let pS, fq and pS 1, f 1q be

two multi-sets. Any bijection from Sf to S 1f 1 is called a matching from the

multi-set pS, fq to the multi-set pS 1, f 1q.

With a slight abuse of notation, we will identify the multiset pS, fq with

the support of f , tSiuiPI , where its elements Si are taken with the multiplicity

mi “ fpSiq.

Definition 3.2 (Bottleneck distance). For any pair of continuous functions

φ, ψ : X Ñ R we define the bottleneck distance:

dBpDgmpφq,Dgmpψqq “ inf
σPSpφ,ψq

costσ “ inf
σPSpφ,ψq

sup
pPDgmpφq

dpp, σppqq

where Spφ, ψq is the set of matchings between Dgmpφq and Dgmpψq.

If there exists a matching σ P Spφ, ψq such that

dBpDgmpφq,Dgmpψqq “ costσ
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we will say that the matching σ realises the bottleneck distance between

Dgmpφq and Dgmpψq. Such a matching will be called an optimal matching.

With a slight abuse of notation, if σ is an optimal matching for Dgmpφq

and Dgmpψq and there exist p P Dgmpφq, q “ σppq P Dgmpψq such that

costσ “ dpp, qq

we will also say that the points p, q realise the bottleneck distance.

Remark 3.1. Let φ, ψ : M Ñ R be any two continuous functions. For any

matching σ : Dgmpφq Ñ Dgmpψq the cost of σ is 8 if and only if there is one

of the two following situations:

1. There exists p P Prppφq with σppq P Esspψq.

2. There exists p P Esspφq with σppq P Prppψq.

Moreover, dBpDgmpφq,Dgmpψqq is infinite if and only if Esspφq and Esspψq

have different cardinality. In this case, any matching σ P Spφ, ψq necessarily

sends a proper cornerpoint in Dgmpφq to an essential one in Dgmpψq or

viceversa.

Proposition 3.1. dB is an extended metric between persistence diagrams.

Proof. For any continuous function φ, dBpDgmpφq,Dgmpφqq “ 0

since idDgmpφq P Spφ, φq is a matching with cost zero. Symmetric property is

also trivial since every matching is a bijection on its domain. Let us check

triangular inequality for Dgmpφq,Dgmpφ1q,Dgmpφ2q. Fixing σ P Spφ, φ1q,

for any τ P Spφ, φ2q, there exists σ1 P Spφ1, φ2q such that σ1 ˝ σ “ τ . Using

this fact on the definition:

dBpDgmpφq,Dgmpφ2
qq “ inf

τPSpφ,φ2q
sup

pPDgmpφq

dpp, τppqqq

“ inf
σ1PSpφ1,φ2q

sup
pPDgmpφq

dpp, σ1
pσppqqq

ď inf
σ1PSpφ1,φ2q

sup
pPDgmpφq

´

dpp, pσppqq ` dpσppq, σ1
pσppqq

¯

ď sup
pPDgmpφq

dpp, σppqq ` inf
σ1PSpφ1,φ2q

sup
qPDgmpφ1q

dpq, σ1
pqqq

“ sup
pPDgmpφq

dpp, σppqq ` dBpDgmpφ1
q,Dgmpφ2

qq.
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Taking the infimum varying σ P Spφ, φ1q yields the triangle inequality

dBpDgmpφq,Dgmpφ2
qq ď dBpDgmpφq,Dgmpφ1

qq ` dBpDgmpφ1
q,Dgmpφ2

qq.

Now we have to check that dB is actually an extended metric. By contra-

diction, we assume that dBpDgmpφq,Dgmpψqq “ 0 and Dgmpφq ‰ Dgmpψq.

By definition of infimum, the distance dBpDgmpφq,Dgmpψqq equals zero if

and only if for every ε ą 0 a matching σε P Spφ, ψq exists such that

dpp, σεppqq ă ε for every p P Dgmpφq. Assuming Dgmpφq ‰ Dgmpψq implies

that there exists at least a point p “ pu, vq P ∆˚zt∆u with µφppq ‰ µψppq.

Without loss of generality assume µφppq ą µψppq. Let us consider

c “ inf
qPDgmpψq

q‰p

dpp, qq ą 0.

Then for every matching σ : Dgmpφq Ñ Dgmpψq, costσ ě dpp, σppqq ě c.

Hence, choosing ε ă c contradicts our assumption.

Lemma 3.1. For any matching σ : Dgmpφq Ñ Dgmpψq there exists p P

Dgmpφq such that costσ “ suppPDgmpφq dpp, σppqq “ dpp, σppqq.

Proof. Fixing a matching σ, assume that costσ “ C. If C “ 0, then σ can

be assumed to be the identity of Dgmpφq and every cornerpoint p realises

the cost of the matching, dpp, σppqq “ 0.

Now, we suppose that C ą 0. By contradiction, assume that dpp, σppqq ă

C for each p P Dgmpφq. Then for every n P N there exists a cornerpoint

pn P Dgmpφq such that 0 ă C ´ dppn, σppnqq ă 1
n
and the sequence of real

numbers dppn, σppnqqnPN is increasing and bounded by C. By using monotone

convergence lemma, see Appendix C:

lim
nÑ8

dppn, σppnqq “ sup dppn, σppnqq “ C.

Because of the compactness of persistence diagrams 2.4, there exists a

converging subsequence ppnk
qkPN of ppnqnPN. Local finiteness 2.3 of corner-

points implies that the only accumulation point in a persistence diagram is

∆. Therefore,

lim
kÑ8

pnk
“ ∆.

23



Consider now the sequence pσppnqqnPN. As before, there exists a sub-

sequence pσppnj
qqjPN converging to ∆. Therefore, there are subsequences

ppnki
qiPN, pσppnji

qqiPN with

lim
iÑ8

dppnki
, σppnji

qq “ 0.

But this contradicts C ą 0.

Proposition 3.2 (Existence of an optimal matching). For every

φ, ψ : X Ñ R continuous functions there exists an optimal matching σ such

that

dBpDgmpφq,Dgmpψqq “ costσ.

Proof. Let D “ dBpDgmpφq,Dgmpψqq. If D “ 8 the statement follows

from the fact that there exists a matching σ : Dgmpφq Ñ Dgmpψq and a

point p P Dgmpφq with p P Prppφq and σppq P Esspψq or viceversa. Then

costσ “ 8 and σ realises the bottleneck distance. Hence, assume D “

dBpDgmpφq,Dgmpψqq ă 8.

By contradiction suppose costσ ą D for every matching

σ : Dgmpφq Ñ Dgmpψq. Then there is a sequence of matchings pσnqnPN such

that

0 ă costσn ´ D ă
1

n
.

Let UD be the metric open ball of radius D centered in ∆. For each

matching σ P Spφ, ψq consider the new matching

σ : Dgmpφq Ñ Dgmpψq

p ÞÑ ∆ if p P UD X Dgmpφq

q ÞÑ σpqq otherwise.

Observe that costσ ď costσ, for each σ P Spφ, ψq. Let Spφ, ψq

“ tσ | σ P Spφ, ψqu Ă Spφ, ψq. The definition of D yields:

D “ dBpDgmpφq,Dgmpψqq “ inf
σPSpφ,ψq

costσ “ inf
σPSpφ,ψq

costσ.

Moreover, recall from Lemma 3.1 that for each matching σ there is a

cornerpoint p that realises the cost of the matching. Observe that if costσ “
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dpp,∆q, for some p P UD XDgmpφq, then costσ ă D, against the assumption

that D “ infσPSpφ,ψq costσ. Thus, for each σ, costσ belong to the set

tdpp, σppqqupPDgmpφqzUD
.

But this set is finite because of Proposition 2.3.

In particular, this implies that the set tcostσnunPN is finite. But then

there exists N P N sufficiently big such that for each n ą N

costσn “ D.

We have reached a contradiction and we can conclude.

Remark 3.2. Since we just proved that a matching realising the bottleneck

distance always exists, by combining this result with the previous lemma the

definition of bottleneck distance can be rewritten as

dBpDgmpφq,Dgmpψqq “ min
σPSpφ,ψq

costσ “ min
σPSpφ,ψq

max
pPDgmpφq

dpp, σppqq

where Spφ, ψq is the set of all matchings between Dgmpφq and Dgmpψq.

The following is Theorem 3.13 from [7], which is a generalisation to con-

tinuous functions of the original Stability Theorem for tame functions in [3]:

Theorem 3 (Stability theorem). Let φ, ψ : M Ñ R be two continuous func-

tions. Then

dBpDgmφ,Dgmψq ď }φ ´ ψ}8.

Now we are ready to estabilish a metric between persistence diagrams in

biparameter persistence.

Definition 3.3 (Biparameter matching distance). Let φ, ψ : M Ñ R2 be two

continuous functions. Define

Dmatchpφ, ψq “ sup
pa,bqPs0,1rˆR

dBpDgmpφ˚
pa,bqq,Dgmpψ˚

pa,bqqq

If there exists a pair pa, bq Ps0, 1rˆr´C,Cs such that

Dmatchpφ, ψq “ dBpDgmpφ˚
pa,bqq,Dgmpψ˚

pa,bqqq

we will say that the pair pa, bq realises the matching distance between φ and

ψ.
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There is an analogous theorem to 3 for the biparameter matching distance.

The following is Corollary 2.5 from [13]:

Theorem 4 (Stability theorem for biparameter matching distance). Let

φ, ψ : M Ñ R2 be two continuous functions. Then

Dmatchpφ, ψq ď }φ ´ ψ}8.
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Chapter 4

Position Theorem

In this chapter we state the Position Theorem proved in [13], which benefits

from the extended Pareto grid defined in the previous chapter to give a

characterisation of the coordinates of cornerpoints in the persistence diagram.

We also prove an extension of this theorem for vertical and horizontal filtering

lines. To do this, we first recall some results from [21] and introduce a new

operator
8
X that formalises the informal idea of “intersection at infinity”

between parallel filtering lines and contours of the extended Pareto grid.

For this chapter, let M be a closed smooth manifold with a Riemannian

structure on it, and let φ, ψ : M Ñ R2 be two smooth functions satisfying

properties (i)-(iv) from Section 2.3 and Γpφq,Γpψq are the corresponding

extended Pareto grids. Moreover, let us define the following constant

C “ maxt}φ}8, }ψ}8u.

Remark 4.1. Since φ, ψ are continuous and M is compact, the constant C is

finite.

4.1 Horizontal and vertical filtering lines

In [21, Theorem 4.3], the authors observed that:

Theorem 5. If |b| ď C, then for every a, a1 Ps0, 1r and b P R the following

inequality holds:

}φ˚
pa,bq ´ φ˚

pa1,b1q}8 ď 4|a ´ a1
|p}φ}8 ` Cq ` 3|b ´ b1

|.
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4.1. Horizontal and vertical filtering lines

In particular, the previous theorem implies that φ˚
pa,bq is locally Lipschitz

on the variables a, b, and so it can be uniquely extended to r0, 1s ˆ R as

φ˚
p0,bqpxq “ lim

pa1,b1qÑp0,bq
φ˚

pa1,b1q,

φ˚
p1,bqpxq “ lim

pa1,b1qÑp1,bq
φ˚

pa1,b1q.

Explicitly, we can state the following result characterising φ˚
p0,bq and φ

˚
p1,bq:

Proposition 4.1. Let φ : M Ñ R2 be a continuous function and let b P R.
Then

φ˚
p0,bqpxq “ maxtφ1pxq ´ b, 0u,

φ˚
p1,bqpxq “ maxt0, φ2pxq ` bu.

Proof. We will omit the dependency on x for the sake of clarity. For a “ 0,

lim
pa1,b1qÑp0,bq

φ˚
pa1,b1q “ lim

pa1,b1qÑp0,bq
minta1, 1 ´ a1

umaxt
φ1 ´ b1

a1
,
φ2 ` b1

1 ´ a1
u

“ maxtpφ1 ´ bq lim
a1Ñ0

a1

a1
, pφ2 ` bq lim

a1Ñ0

a1

1 ´ a1
u

“ maxtφ1 ´ b, 0u.

For a “ 1, an analogous calculation gives the result.

Thus, the persistence diagrams Dgmpφ˚
pa,bqq and Dgmpψ˚

pa,bqq are defined

for every pa, bq in r0, 1s ˆ R, and the function

pa, bq ÞÑ dBpDgmpφ˚
pa,bqq,Dgmpψ˚

pa,bqqq

can also be extended naturally to a continuous function defined on r0, 1sˆR,
since the limit commutes with the operator Dgmp¨q because of the Stability

Theorem from [7], see Lemma 4.2.

Remark 4.2. From Theorem 4 and the continuity of

pa, bq ÞÑ dBpDgmpφ˚
pa,bqq,Dgmpψ˚

pa,bqqq, it follows that:

lim
aÑ0

dBpDgmpφ˚
pa,bqq,Dgmpφ˚

p0,bqqq “ 0.

Let us now define the lines rp0,bq and rp1,bq as the lines of equations x “ b

and y “ ´b, respectively. We observe that this definition agrees with 2.11,

since for both rp0,bq and rp1,bq the director vector is pa, 1 ´ aq with a “ 0 and

a “ 1.

The total ordering we introduced in 2.12 extends naturally to horizontal

and vertical filtering lines:
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4.2. The intersection operator
8
X

Definition 4.1. Fixing pa, bq in r0, 1s ˆ R, for each P “ pxP , yP q, Q “

pxQ, yQq P rpa,bq define

P ďpa,bq Q ðñ

$

’

’

&

’

’

%

xP ď xQ and yP ď yQ when a Ps0, 1r,

yP ď yQ when a “ 0,

xP ď xQ when a “ 1.

When P ďpa,bq Q and P ‰ Q we will write P ăpa,bq Q.

Remark 4.3. For a Ps0, 1r, xP ď xQ is equivalent to yP ď yQ and the order

relation P ăpa,bq can be read as “Q is above and on the right with respect to

P”. If a “ 0 then P ăpa,bq Q ðñ yP ă yQ and if a “ 1 then P ăpa,bq Q ðñ

xP ă xQ. Thus in these cases the strict order relation can be read as “Q is

above P” and “Q on the right with respect to P”, respectively.

Furthermore, in [21, Proposition 4.4] the authors showed that the match-

ing distance can be realised by parameter values lying in a bounded region

of r0, 1s ˆ R:

Proposition 4.2. There exists pa, bq in r0, 1s ˆ r´C,Cs, such that

DMatchpφ, ψq “ max
r0,1sˆr´C,Cs

dB
`

Dgmpφ˚
pa,bqq,Dgmpψ˚

pa,bqq
˘

“ dB

´

Dgmpφ˚

pa,bq
q,Dgmpψ˚

pa,bq
q

¯

.

The previous results allow us to work with a compact space of parameters,

r0, 1s ˆ r´C,Cs.

4.2 The intersection operator
8
X

In order to proceed, we need a notion of intersection between vertical pa “ 0q

and horizontal pa “ 1q lines with the vertical and horizontal half-lines in the

extended Pareto grid. Also, later in the exposition - see Chapter 6 - we will

need a notion of intersection between two vertical (respectively, horizontal)

parallel lines. For this purpose we define a new operator
8
X between lines

and contours in R2
, where R denotes the extended real line endowed with its

usual topology.
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4.2. The intersection operator
8
X

Definition 4.2 (Intersection operator). Let φ : M Ñ R2 be a smooth func-

tion satisfying properties (i)-(iv) in Section 2.3 and let Γpφq be the extended

Pareto grid of φ.

For every pa, bq P r0, 1s ˆ r´C,Cs and every contour α Ă Γpφq put

rpa,bq
8
X α “

#

rpa,bq X α if a ‰ 0, 1

tP “ limnÑ8 Pn | Pn P rpan,bnq X αu if a P t0, 1u.

where ppan, bnqqnPN is a sequence, whenever it exists, such that limnÑ8 bn “ b

and

limnÑ8 an “ a.

Remark 4.4. With a small abuse of notation we will write, for any pa, bq P

r0, 1s ˆ r´C,Cs and for any filtering function φ

rpa,bq
8
X Γpφq “

ď

αPCtrpφq

rpa,bq
8
X α.

Example 4.1. Notice that the operator
8
X can differ from the regular inter-

section, and therefore
8
X is not an extension of the intersection.

Fix some b P r´C,Cs. Now consider there exists a horizontal improper

contour hx0,y0 in Γpφq, with x0 ą b, y0 ą ´b. There exists a strictly posi-

tive real value 0 ă A ă 1 such that for every a P rA, 1r the filtering line

rpa,bq intersects the contour. In particular, A is uniquely determined by the

condition px0, y0q P rpA,bq:

rpA,bq Q px0, y0q ðñ

#

x0 “ At ` b

y0 “ p1 ´ Aqt ´ b

ðñ There exists t “
x0 ´ b

A
“
y0 ` b

1 ´ A

ðñ A “
x0 ´ b

x0 ` y0
.

Note that x0 ` y0 ą 0 because of x0 ą b, y0 ą ´b, and it is trivial that

any line with smaller slope than rpA,bq intersects the horizontal half-line with

basepoint px0, y0q.

Therefore the sequence
``

n´1`A
n

, b
˘˘

nPN converges to p1, bq and yields the
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4.2. The intersection operator
8
X

sequence pPnqnPN of intersection points given by

tPnu “ rpn´1`A
n

,bq X hx0,y0

with ordinate y0 “

ˆ

1 ´
n ´ 1 ` A

n

˙

t ´ b “
1 ´ A

n
t ´ b

ùñ t “ n
b ` y0
1 ´ A

.

Therefore, its abscissa is xn “

ˆ

n ´ 1 ` A

n

˙

t ` b

“ pn ´ 1 ` Aq
b ` y0
1 ´ A

` b “
nb ` pn ´ 1 ` Aqy0

1 ´ A
.

Since limnÑ8 xn “ 8, we conclude

rp1,bq
8
X hx0,y0 “ tp`8, y0qu.

More in general, there is the following characterisation of the operator
8
X :

Proposition 4.3. Let hxh,yh “ tx ě xh, y “ yhu, vxv ,yv “ tx “ xv, y ě

yvu Ă Γpφq denote the improper horizontal and vertical contours with base-

points pxh, yhq, pxv, yvq P R2, respectively. Then

1. If both the filtering line and the contour are vertical then:

rp0,bq
8
X vxv ,yv “

$

’

’

&

’

’

%

∅ if xv ă b

tpxv,8qu if xv ą b

vxv ,yv if xv “ b

2. If both the filtering line and the contour are horizontal then:

rp1,bq
8
X hxh,yh “

$

’

’

&

’

’

%

∅ if yh ă ´b

tp8, yhqu if yh ą ´b

hxh,yh if yh “ ´b

In any other case, the operator
8
X is just the regular intersection in R2.

Remark 4.5. Recall from section 2.3 that we are considering the closure of

Γpφq in R2
,
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4.2. The intersection operator
8
X

Proof. Case 1. We distinguish the following subcases:

• If xv ă b, then

rp0,bq X vxv ,yv “ ∅

and then there is a right neighbourhood r0, εr, ε ą 0 of 0 such that

rpa1,bq X vxv ,yv “ ∅ @a1
P r0, εr.

We will show the existence of this neighbourhood explicitly. Indeed, for

any a1 Ps0, εr the parametrisation of rpa1,bq allows us to write a rational

(in particular is smooth on s0, εr) expression for the ordinate ypa1q of

the point in rpa1,bq having abscissa xv:

xv “ a1t ` b ùñ t “
xv ´ b

a1

ypa1
q “ p1 ´ a1

qt ´ b “ p1 ´ a1
q
xv ´ b

a1
´ b “

xv ´ b

a1
´ xv.

Notice that xv´b
a1 is negative for every a1 P p0, εq, and consequently the

sequence y
`

1
n

˘

tends to ´8. So there exists some â ą 0 such that

ypâq ă yv and thus pxv, ypâqq R vxv ,yv . In other words:

rpa1,bq X vxv ,yv “ ∅ @a1
ă â.

Hence there are no sequences

ppan, bnqqnPN, with rpan,bnq X vxv ,yv ‰ ∅, an ą 0 @n P N

such that limnÑ8 an “ 0 and therefore by definition rp0,bq
8
X vxv ,yv “ ∅.

• If xv ą b, then

rp0,bq X vxv ,yv “ ∅

but there exist ε ą 0 such that

rpa1,bq X vxv ,yv ‰ ∅ @a1
Ps0, εr.

Indeed, reasoning in a similar fashion as before, when we compute the

abscissa ypaq of a point in rpa1,bq having abscissa xv we obtain
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4.2. The intersection operator
8
X

ypa1
q “

xv ´ b

a1
´ xv

but this time the quantity xv´b
a1 is positive for any a1 Ps0, εr, hence

the sequence y
`

1
n

˘

tends to 8. This amounts to say that there exists

an â ą 0 such that ypâq ą yv and thus pxv, ypa1qq P vxv ,yv for every

a1 Ps0, âr.

Equivalently, there exist sequences

ppan, bnqqnPN, pPnqnPN with tPnu “ rpan,bnq X vxv ,yv “ tpxv, ypanqqu

with an ą 0 for each n P N such that limnÑ8 an “ 0. It follows

lim
nPN

Pn “ lim
nPN

ˆ

xv,
xv ´ b

an
´ xv

˙

“ pxv,8q P rp0,bq
8
X vxv ,yv .

Let us check that pxv,8q is the only point in rp0,bq
8
X vxv ,yv . By

contradiction suppose there was another point Q ‰ pxv,8q in rp0,bq
8
X

vxv ,yv . Since Q P vxv ,yvztpxv,8qu,

Q “ pxv, yQq for some yQ P ryv,8r.

Then there are sequences

ppa1
n, b

1
nqqnPN, pQnqnPN with tQnu “ rpa1

n,b
1
nq X vxv ,yv “ tpxv, ypa1

nqqu

such that limpa1
n,b

1
nq “ p0, bq and limypa1

nq “ yQ ă 8. But

lim
nÑ8

yp
1

n
“ lim

nÑ8
npxv ´ bq ´ xv “ 8.

Hence rp0,bq
8
X vxv ,yv “ tpxv,8u.

• Lastly, if xv “ b, we will show that any point pb, yq with y ě yv belongs

to rp0,bq
8
X vxv ,yv .

In general, the sheaf of filtering lines passing through a fixed point

px0, y0q P R2 corresponds to a segment in the space of parameters

r0, 1s ˆ r´C,Cs. The equation of this segment in a, b can be deduced

from the cartesian equation in 2.11. Indeed, px0, y0q belongs to rpa,bq if

there exists t P R such that
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4.2. The intersection operator
8
X

#

x0 “ at ` b

y0 “ p1 ´ aqt ´ b.

Putting both equations together gives a grade 1 polynomial on a, b

which describes a segment in r0, 1s ˆ r´C,Cs:

t “
x0 ´ b

a
“
y0 ` b

1 ´ a
,

apx0 ` y0q ´ x0 ` b “ 0.

Therefore, every rotation around a point pxv, yq P vxv ,yv is contained in

the segment

apxv ` yq ´ xv ` b “ 0

Applying Definition 4.2, pxv, yq belongs to rp0,bq
8
X vxv ,yv if and only

if there exist suitable sequences panqnPN, pbnqnPN converging to 0 and b,

respectively. We can choose such sequences with

Pn “ pxv, yq P rpan,bn X vxv ,yv

constant for each n P N. It is enough to put an “ 1
n
and, using the

equation of the segment:

bn “ x0 ´
x0 ` y0
n

.

Then limnÑ8pan, bnq “ p0, bq and for each n P N the line rpan,bnq passes

through the point pxv, yq P vxv ,yv . Hence rpan,bnq X vxv ,yv “ tpxv, yqu for

each n P N. Similar sequences can be constructed for each y ě yv. This

proves rp0,bq
8
X vxv ,yv “ vxv ,yv .

Case 2 is completely analogous to case 1 swapping abscissa with ordinates

and a “ 0 with a “ 1. This concludes the proof.

Now we make an exhaustive example exploring all possible cases in 4.3.

Example 4.2. Consider the improper contour vp2,2q “ tx “ 2, y ě 2u and the

following filtering lines:

rp0,0q, rp 1
5
,0q, rp 1

3
,0q centered in the pointp0, 0q,

rp0,2q, rp 1
9
,2q, rp 1

5
,2q centered in the pointp2,´2q.
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4.2. The intersection operator
8
X

rp0,0q
rp 1

5
,0q

rp 1
3
,0q

rp0,2q

rp 1
9
,2q

rp 1
5
,2q

vp2,2q

• p2, 2q

• p2, 4q

Figure 4.1: A depiction of the intersections between these

filtering lines and the improper vertical contour vp2,2q
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8
X

We will show that rp0,0q

8
X vp2,2q “ tp2,8qu, but instead rp0,2q

8
X vp2,2q “

vp2,2q. The first three lines are parametrised by

pat, p1 ´ aqtq with a P t0,
1

3
,
1

5
u

and the latter by

pat ` 2, p1 ´ aqt ´ 2q with a P t0,
1

9
,
1

5
u.

Substituting these parametrisations in the inequalities describing vp2,2q

it is trivial to compute the regular intersections in R2. We exhibit this

computation for the first two intersections:

•

px, yq P rp0,0q X vp2,2q ðñ

#

x “ at “ 0 and x “ 2

y “ p1 ´ aqt “ t and y ě 2

The first line 0 “ x “ 2 is a contradiction, so the point px, yq does not

exist and the intersection is empty.

•

px, yq P rp 1
5
,0q X vp2,2q ðñ

#

x “ at “ t
5
and x “ 2

y “ p1 ´ aqt “ 4t
5
and y ě 2

Substituting t “ 5x “ 10 gives px, yq “ p2, 8q.

The complete list of intersections is the following:

rp0,0q X vp2,2q “ ∅
rp 1

5
,0q X vp2,2q “ tp2, 8qu,

rp 1
3
,0q X vp2,2q “ tp2, 4qu,

rp0,2q X vp2,2q “ vp2,2q,

rp 1
9
,2q X vp2,2q “ ∅,

rp 1
5
,2q X vp2,2q “ ∅.
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4.2. The intersection operator
8
X

In general, observe that for a ‰ 0 any filtering line rpa,0q centered in p0, 0q has

slope equal to 1´a
a
, and the intersection with vp2,2q will be the point p2, 21´a

a
q

when a ď 1
2
(in particular for r 1

2
,0 X vp2,2q is the basepoint p2, 2q) and the

empty set otherwise. Instead for a “ 0 the filtering line is parallel to vp2,2q

and they do not intersect in R2. All of this implies that

ta Ps0, 1r such that rpa,bq X vp2,2q ‰ ∅u “

ˆ

0,
1

2

ȷ

.

Conversely, for a ‰ 0 no filtering line rpa,2q centered in p2,´2q meets vp2,2q,

since the only point with abscissa 2 in rpa,2q is the common point p2,´2q,

which is below the improper contour. Therefore,

ta Ps0, 1r such that rpa,bq X vp2,2q ‰ ∅u “ ∅.

However, vp2,2q is contained on the vertical line px “ 2q “ rp0,2q, so the regular

intersection in this case is the whole contour (unlike the one given by our

operator).

For a ‰ 0, rpa,bq
8
X vp2,2q “ rpa,bq X vp2,2q. As for a “ 0, since we just

remarked that rpa,2q X vp2,2q “ ∅ for every a ‰ 0 and for the lines rpa,0q the

intersection point is given by the function

ˆ

0,
1

2

ȷ

Q a ÞÑ rpa,0q X vp2,2q “

#

␣ `

2, 21´a
a

˘ (

when a ď 1
2

∅ otherwise.

Let us check the definition and the characterisation agree for rp0,0q and

rp0,2q. In the first case the characterisation gives us

rp0,0q

8
X vp2,2q “ tp2,8qu

since b “ 0 ă 2. Indeed, consider the sequence

ˆˆ

1

n
, 0

˙˙

nPN
with tPnu “ rp 1

n
,0q

8
X vp2,2q,

with

ˆ

2, 2
1 ´ 1

n
1
n

˙

“ p2, 2pn ´ 1qq.

The sequence satisfies the Definition 4.2 and therefore rp0,0q

8
X vp2,2q “

limnÑ8 Pn “ p2,8q.
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4.3. An extension of the Position Theorem

Instead, in the second case, the characterisation yields

rp0,2q

8
X vp2,2q “ vp2,2q

which again agrees with the definition, since for each point p2, yq P vp2,2q, y ě

2, we can find suitable sequences panqnPN, pbnqnPN that satisfy the conditions

on 4.2.

The sheaf of lines passing through p2, yq corresponds to the segment of

equation

p2 ` yqa ` b “ 2.

Then, for each n P N we can choose

an “
1

n
, bn “ 2 ´

2 ` y

n
.

That way, limnÑ8pan, bnq “ p0, bq and each line rpan,bnq meets vp2,2q at the

point p2, yq, for every n P N.
Hence p2, yq P rp0,2q

8
X vp2,2q for every y ě 2. This concludes the example.

4.3 An extension of the Position Theorem

Now, we will give an extension of the Position Theorem proved in [13, The-

orem 2] for horizontal and vertical filtering lines.

Theorem 6 (Extended Position Theorem). Let φ, ψ : M Ñ R2 be two con-

tinuous functions satisfying properties (i)-(iv) from Section 2.3. Let pa, bq P

r0, 1s ˆ R and p P Dgmpφ˚
pa,bqqzt∆u. Then: For each a P r0, 1s and for each

finite coordinate w of p, a point P “ px, yq P rpa,bq
8
X Γpφq exists such that

w “

#

mint1, 1´a
a

upx ´ bq if a P r0, 1q,

mint1, a
1´a

upy ` bq if a P p0, 1s.

with the conventions 1
0

“ 8, mint1,8u “ 1.

Proof. For a Ps0, 1r, the proof is the original Position Theorem as it appears

in [13]. Let a “ 0, b P R and let p P Dgmpφ˚
p0,bqq. Let w be a finite coordinate

of p.
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4.3. An extension of the Position Theorem

Remark 4.2 guarantees that for each sequence pan, bnqnPN converging to

p0, bq in r0, 1sˆr´C,Cs, possibly extracting a subsequence pank
, bnk

qkPN, there

exists a sequence of cornerpoints

pk P Dgmpφ˚
pank

,bnk
qq, with dppk, pq ă

1

k

with limkÑ8 pk “ p.

Fixing k P N such that ank
ă 1

2
, let wk be the finite coordinate of pk P

Dgmpφ˚
pank

,bnk
q
q corresponding to the coordinate w of p P Dgmpφ˚

p0,bqq. Apply

the classical Position Theorem to wk. There exist a point Pk and a contour

αk such that Pk P αk Ă Γpφq and

wk “ xPk
´ bnk

“
ank

1 ´ ank

pyPk
` bnk

q

Recall from Section 2.3 that we are considering the completion of the

extended Pareto grid Γpφq in R2
and each contour is homeomorphic to a

closed interval. By compactness of the contour αk, the sequence pPkqkPN has

a converging subsequence, that is there exists P P αk with

P “ lim
lÑ8

Pkl .

By continuity of pa, bq ÞÑ, taking the limit as l approaches 8 on the first

equality yields

w “ lim
lÑ8

xPkl
´ bnkl

“ xP ´ b

as we wanted to show.

The proof for the case a “ 1 is analogous by considering sequences

pa1
n, b

1
nqnPN converging to p1, bq and qk P Dgmpφ˚

pa1
nk
,b1
nk

q
q for opportune subse-

quences, with dpqk, pq ă 1
n
and limkÑ8 qk “ p. Then when applying Position

Theorem to the finite coordinates w1
k of qk it is enough to take the limit as k

approaches to 8 on the second equality.

Remark 4.6. In the following chapters, whenever we apply the Position The-

orem to the coordinates wp, wq of points p, q realising the bottleneck distance

dBpDgmpφ˚
pa,bqq,Dgmpψ˚

pa,bqqq, we will say that the points P,Q P Γpφq Y Γpψq

satisfying

wp “ mint1,
1 ´ a

a
upxP ´ bq “ mint1,

a

1 ´ a
upyP ` bq
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and

wq “ mint1,
1 ´ a

a
upxQ ´ bq “ mint1,

a

1 ´ a
upyQ ` bq

realise the bottleneck distance between Dgmpφ˚
pa,bqq and Dgmpψ˚

pa,bqq.
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Chapter 5

Special values

Fix pφ, ψq a pair of filtering functions and let Γpφq,Γpψq be their respective

extended Pareto grids. There are pairs pa, bq Ps0, 1rˆr´C,Cs in which the

optimal matching between Dgmpφ˚
pa,bqq and Dgmpψ˚

pa,bqq may change abruptly.

In this chapter we introduce the special set associated with pφ, ψq, which

contains such pairs, and prove some new results relating this set with the

bottleneck distance.

5.1 The special set

Definition 5.1. Let Ctrpφ, ψq “ CtrpφqYCtrpψq be the set of all curves that

are contours of φ or ψ. From our assumptions in Section 2.3 on the functions

φ, ψ, it follows that Ctrpφ, ψq is a finite set. The special set of pφ, ψq, denoted

by Sppφ, ψq, is the collection of all pa, bq at s0, 1rˆr´C,Cs for which two

distinct pairs tαP , αQu, tαS, αT u of contours in Ctrpφ, ψq intersecting rpa,bq

exist, such that tαP , αQu ‰ tαR, αSu and

• c1|xP ´ xQ| “ c2|xR ´ xS|, with c1, c2 P t1, 2u, if a ď 1
2
,

• c1|yP ´ yQ| “ c2|yR ´ yS|, with c1, c2 P t1, 2u, if a ě 1
2
,

where P “ Ppa,bq “ rpa,bqXαP , Q “ Qpa,bq “ rpa,bqXαQ, R “ Rpa,bq “ rpa,bqXαR
and S “ Spa,bq “ rpa,bq X αS, and x˚, y˚ denote abscissas and ordinates of

these points, respectively. We will say that two different pairs of contours

tαP , αQu, tαR, αSu as above satisfy the condition of speciality. An element of

the special set Sppφ, ψq is called a special value of the pair pφ, ψq.
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5.1. The special set

Remark 5.1. Note that in the above definition, the two contours of the two

distinct pairs tαP , αQu, tαR, αSu do not necessarily need to differ. For exam-

ple, the definition allows αP “ αR, αP “ αS, αQ “ αR, αQ “ αS, but not two

of these conditions simultaneously. Moreover, the contours may all belong

to the same extended Pareto grid, as long as the pairs tαP , αQu, tαR, αSu are

different.

Notice that, in general, the special set is not finite. The next proposi-

tion shows that for any point belonging to two different contours, there are

segments in s0, 1rˆr´C,Cs entirely contained in the special set.

Proposition 5.1. Let rpa,bq, a Ps0, 1r be a filtering line intersecting Γpφq Y

Γpψq in at least two different points. If there exists X in rpa,bq X αX X βX ,

where αX ‰ βX are in Ctrpφ, ψq, then pa, bq is a special value.

Proof. Let Y P αY be a point in rpa,bq X pΓpφq Y Γpψqq different from X.

Then the pairs of contours tαX , αY u, tβX , αY u are different and satisfy the

condition of speciality for pa, bq.

There is a relation between the condition of speciality and the pairs of

cornerpoints realising the cost of an optimal matching between the corre-

sponding persistence diagrams. This relation is a consequence of the Position

Theorem.

Proposition 5.2. Let σ : Dgmpφ˚
pa,bqq Ñ Dgmpψ˚

pa,bqq be an optimal match-

ing, σ ‰ idDgmpφ˚
pa,bq

q. If the cost of σ is realised by two different pairs of

points tp1, q1u ‰ tp2, q2u then pa, bq is a special value.

Proof. Let us first examine the case a ď 1
2
. Let wi, zi be the coordinates

of pi, qi, respectively, realising the distance dppi, qiq, for i “ 1, 2. With this

notation the hypothesis becomes

costσ “ dpp1, q1q “ c1|w1 ´ z1| “ dpp2, q2q “ c2|w2 ´ z2| ą 0,

for some c1, c2 P t1, 2u.

Note that cost σ ą 0 because σ is not the identity. Apply Position

Theorem. There are points P,Q,R, S P rpa,bq X pΓpφq Y Γpψqq such that

w1 “ xP ´ b, z1 “ xQ ´ b, w2 “ xR ´ b, z2 “ xS ´ b,

|xP ´ xQ| “ |xR ´ xS| ą 0.
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From the previous equalities we get xP ‰ xQ and xR ‰ xS. In particular

P ‰ Q and R ‰ S. This implies that there exist some contours αP Q

P, αQ Q Q,αR Q R and αS Q S such that tαP , αRu ‰ tαQ, αSu and satisfy the

condition of speciality.

The case a ě 1
2
is obtained analogously by substituting abscissas with

ordinates.

We recall Proposition 5.2 from [21] which shows an important property

of the special set fundamental in the proof of our main theorem in chapter

6.

Proposition 5.3. Sppφ, ψq is a closed subset in s0, 1rˆr´C,Cs.

5.2 The ultraspecial set

Definition 5.2. The ultraspecial set of pφ, ψq, denoted by USppφ, ψq, is the

collection of all pa, bq in r0, 1s ˆ r´C,Cs for which there are three distinct

pairs tαP , αQu, tαR, αSu, tαT , αUu intersecting rpa,bq and such that every two

of them satisfy the speciality condition; that is

• c1|xP ´xQ| “ c2|xR´xS| “ c3|xT ´xU |, with c1, c2, c3 P t1, 2u, if a ď 1
2
,

• c1|yP ´ yQ| “ c2|yR ´ yS| “ c3|yT ´ yU |, with c1, c2, c3 P t1, 2u, if a ě 1
2
,

where P “ Ppa,bq “ rpa,bqXαP , Q “ Qpa,bq “ rpa,bqXαQ, R “ Rpa,bq “ rpa,bqXαR,

S “ Spa,bq “ rpa,bq X αS, T “ Tpa,bq “ rpa,bq X αT , and U “ Upa,bq “ rpa,bq X αU
and x˚, y˚ denote abscissas and ordinates of these points, respectively. An

element of the ultraspecial set USppφ, ψq is called an ultraspecial value of the

pair pφ, ψq.

By definition, USppφ, ψq Ă Sppφ, ψq.

Proposition 5.4. Consider X and Y such that X ‰ Y . Let αX , βX , αY , βY P

Ctrpφ, ψq, with αX ‰ βX and αY ‰ βY . If X is in ra,b X αX X βX and Y is

in ra,b X αY X βY , then pa, bq is an ultraspecial value.

Proof. The claim follows from observing that any three of the four different

pairs

tαX , αY u, tαX , βY u, tβX , αY u, tβX , βY u satisfy the condition of speciality

between them.

43



5.2. The ultraspecial set

α1 α2

α3

rp 4
5
,´ 4

5q•
p0, 1q

•
p2, 0q

•
p4, 2q

Figure 5.1: The contours α1, α2 and α3 with basepoints

p0, 1q, p2, 0q and p4, 2q from Example 5.1; with the filter-

ing line rp 4
5
,´ 4

5q, which is the only admissible one passing

through 2 basepoints and intersects all three contours.

We now give some examples where the ultraspecial set is not finite.

Example 5.1. [An example where USppφ, ψq are not a measure zero subset.]

Let α1, α2, α3 be three different parallel improper contours in Ctrpφ, ψq

such that distpα1, α2q “ distpα2, α3q, where dist denotes the infimum of the

distance between any two points of the contours. Then any pa, bq such that

the filtering line rpa,bq meets all three contours is ultraspecial. Indeed, if

Pi “ rpa,bq X αi, i “ 1, 2, 3, then

|xP1 ´ xP3 | “ 2|xP1 ´ xP2 | “ 2|xP2 ´ xP3 |,

|yP1 ´ yP3 | “ 2|yP1 ´ yP2 | “ 2|yP2 ´ yP3 |,

so the condition of speciality is fulfilled for tα1, α2u, tα2, α3u and tα3, α1u

both when a ď 1
2
and a ě 1

2
.

In particular, according to Defintion 2.11, when a Ps0, 1r the filtering line

is described by the cartesian equation

y “
1 ´ a

a
x ´

b

a

which means that if the improper contours α1, α2, α3 have basepoints

px1, y1q, px2, y2q and px3, y3q then rpa,bq intersects all three contours when

b ď p1 ´ aqxi ´ ayi “ ´pxi ` yiqa ` xi for i “ 1, 2, 3

which, when non-empty, is a subset of s0, 1rˆr´C,Cs limited by three lines

with different slope ´pxi ` yiq.
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5.2. The ultraspecial set

a “ 1a “ 0

b “ 4 ´ 6a

b “ 2 ´ 2a

b “ ´a
•

`

4
5
,´4

5

˘

Figure 5.2: In example 5.1, with the choice of contours

from figure 5.1, the pairs pa, bq in the blue region of the

rectangle s0, 1rˆr´C,Cs are ultraspecial.

Example 5.2. Let αP , αQ be two different parallel improper contours in

Ctrpφ, ψq and let X be a point belonging to two different contours αX , βX
such that distpX,αP q “ distpX,αQq. In this case, any line rpa,bq passing

through X and meeting αP and αQ corresponds to an ultraspecial value,

since the same way as before if P “ rpa,bq X αP and Q “ rpa,bq X αQ then

|xP ´ xQ| “ 2|xP ´ xX | “ 2|xX ´ xQ|,

|yP ´ yQ| “ 2|yP ´ yX | “ 2|yX ´ yQ|,

so any three of the pairs tαP , αQu, tαP , αXu, tαQ, αXu, tαP , βXu and tαQ, βXu

satisfy the condition of speciality.

In particular, if the improper contours αP , αQ have respective basepoints

px0, y0q, px1, y1q; then the filtering lines passing through X and above those

basepoints:

b “ ´pxX ` yXqa ` xX ; b ě maxt´pxP ` yP qa ` xP ,´pxQ ` yQqa ` xQu

are either the empty set or a closed segment in the parameter space.
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Chapter 6

Results

In this chapter we prove our main theorem. Before doing so, we prove two

lemmas, Lemma 6.2 and Lemma 6.3 which will allow us to find, for any

fixed smooth functions φ, ψ satisfying the assumptions in Section 2.3 and for

any pa, bq Ps0, 1rˆr´C,Cs, a pair pa1, b1q such that the bottleneck distance

between the corresponding diagrams increases. We will be able to do this

outside a set of pairs pa, bq that we conjecture to be finite. The proof of

Lemma 6.3 will require the study of the gradients of two auxiliar functions

f, g. For the sake of clarity, some of the calculations for this matter will be

left to the Appendix C.

6.1 Statement of our main theorem

Definition 6.1. Given a contour α, consider the set

Uα “

"

pa, bq P

ȷ

0,
1

2

ȷ

ˆ r´C,Cs | α X rpa,bq ‰ ∅
*

.

For any four contours αP , αQ, αR, αS P Ctrpφ, ψq denote

QP,Q,R,S “
č

XPtP,Q,R,Su

UαX
Ă

ȷ

0,
1

2

ȷ

ˆ r´C,Cs

46



6.1. Statement of our main theorem

and

P pa, bq “ pxP pa, bq, yP pa, bqq “ rpa,bq X αP ,

Qpa, bq “ pxQpa, bq, yQpa, bqq “ rpa,bq X αQ,

Rpa, bq “ pxRpa, bq, yRpa, bqq “ rpa,bq X αR,

Spa, bq “ pxSpa, bq, ySpa, bqq “ rpa,bq X αS

the intersection points when varying pa, bq.

In this setting, define the functions

fP,Q,αP ,αQ
“ f : QP,Q,R,S Ñ r0,8r

pa, bq ÞÑ pxP pa, bq ´ xQpa, bqq
2

gR,S,αR,αS
“ g : QP,Q,R,S Ñ r0,8r

pa, bq ÞÑ pxRpa, bq ´ xSpa, bqq
2

We will prove in 6.1 that the functions f, g defined above are differentiable

in Qo
P,Q,R,S, the interior of QP,Q,R,S. Let

Upφ, ψq “ USppφ, ψqY

$

’

’

’

’

&

’

’

’

’

%

pa, bq P Sppφ, ψq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

∇fP,Q,αP ,αQ
,∇gR,S,αR,αS

are parallel and αP , αQ, αR, αS

are the contours in

condition of speciality for pa, bq

,

/

/

/

/

.

/

/

/

/

-

We will assume the following hypothesis before stating our main result:

: : Upφ, ψq is a finite set.

; : Sppφ, ψq is a finite union of curves.

Now we state our main theorem, which we shall prove at the end of this

chapter.

Theorem 7. [Main theorem] Let φ, ψ : M Ñ R2 be smooth functions sat-

isfying the properties (i)-(iv) in Section 2.3. Under the hypothesis in †, ‡,
Dmatchpφ, ψq is realised either for a P t0, 1

2
, 1u or in the finite set of parame-

ters Upφ, ψq.

In other words,

Dmatchpφ, ψq “ max
t0, 1

2
,1uˆr´C,CsYUpφ,ψq

dBpDgmpφ˚
pa,bqq,Dgmpψ˚

pa,bqqq

47



6.2. Preliminary lemmas

6.2 Preliminary lemmas

Before proving our main theorem, we will write explicit conditions charac-

terizing the set Upφ, ψq and prove auxiliary lemmas.

Firstly we will show that for pa, bq R Sppφ, ψq there exists a clockwise

(when a ď 1
2
) or counter-clockwise (when a ě 1

2
) rotation of the filtering line

for which the bottleneck distance increases.

Definition 6.2. For any pa, bq ‰ pa1, b1q Ps0, 1rˆr´C,Cs, the symbol

pa, bq Ñ pa1, b1q represents the rotation taking the line rpa,bq to the line rpa1,b1q.

We will say pa, bq Ñ pa1, b1q is clockwise if a ă a1, and counter-clockwise if

a1 ă a.

Remark 6.1. Observe that any rotation or translation corresponds to a closed

segment rpa, bq, pa1, b1qs Ă r0, 1s ˆ r´C,Cs.

Remark 6.2. Let pa, bq Ñ pa1, b1q be a clockwise rotation around a point

A “ pxA, yAq. Then xA ` yA ą 0 if and only if b1 ă b. Indeed, the lines

rpa,bq, rpa1,b1q have cartesian equations

ay “ p1 ´ aqx ´ b a1y “ p1 ´ a1
qx ´ b1.

Since both lines contain the point A, b1 ą b if and only if

p1 ´ a1
qxA ´ a1yA ą p1 ´ aqxA ´ ayA ðñ pa ´ a1

qxA ą pa1
´ aqyA

ðñ xA ă ´yA.

The total order ďpa,bq induced on the intersection points of

rpa,bq X pΓpφq Y Γpψqq determines in which way the corresponding points in

the persistence diagram move when rotating the filtering line.

Lemma 6.1. Let A,B,C P rpa,bq X Γpφq belonging to different contours

αA, αB, αC such that C ăpa,bq A ăpa,bq B. Let pa, bq Ñ pa1, b1q, pa, bq Ñ pa2, b2q

be, respectively, a clockwise and a counter-clockwise rotation fixing the point

A; and make the further assumption that the lines rpa1,b1q, rpa2,b2q meet αB, αC.

Let

B1
“ rpa1,b1qXαB, B2

“ rpa2,b2qXαB, C 1
“ rpa1,b1qXαC , C2

“ rpa2,b2qXαC .

Then

xB1 ě xB ě xA, yB2 ě yB ě yA, xC1 ď xC ď xA, yC2 ď yC ď yA

B1
ąpa1,b1q A, B2

ąpa2,b2q A, C 1
ăpa1,b1q A, C2

ăpa2,b2q A.
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rpa,bq

rpa1,b1q

rpa1,b1q

•
B

•
B1

•
B2

•
A

•
C•

C 1

•
C2

Figure 6.1: The points, lines and contours described in

Lemma 6.1.

Proof. We will show the proof for the clockwise rotation pa, bq Ñ pa1, b1q and

the inequalities xB1 ě xB ě xA and B1 ąpa1,b1q A, since the proof for all the

other cases are completely analogous. Let us prove B1 ąpa1,b1q A first. By

2.3 (iv), every proper contour is diffeomorphic to an interval. Hence, there

exists a smooth parametrisation ξ “ pξ1, ξ2q : r0, 1s Ñ R2 of αB.

By contradiction suppose B1 ďpa1,b1q A. This implies xB1 ď xA ď xB and

yB1 ď yA ď yB. Thus, ξ1psq ď ξ1ptq and ξ2psq ď ξptq for any s ď t, which

contradicts property (iv) in Section 2.3. This proves B1 ąpa1,b1q A.

Now we prove xB1 ě xB ě xA. By definition of ďpa,bq, xB ě xA follows.

In order to prove xB1 ě xB, suppose, by contradiction, that xB1 ă xB. That

would imply, because of point (iv) in Section 2.3 that yB1 ą yB. We will

study two cases separately:

1. Case xB1 ´ xA, xB ´ xA ą 0.

The inequality y1
B ě yB implies that

yB1 ´ yA
xB1 ´ xA

ą
yB ´ yA
xB ´ xA

,

being the slopes of rpa,bq, on the right, and the one of rpa1,b1q on the left.

Note that yB1 ´ yA, xB1 ´ xA are non-negative quantities since we just
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rpa1,b1q

rpa,bq

• A

•B

•
B1

Figure 6.2: A graphical representation of the contradic-

tion in the first part of the proof of Lemma 6.1. Any C1

path from B1 to B is strictly increasing in both its coor-

dinates in some open subset. Recall from Section 2.3 that

contours are either horizontal or vertical half-lines or curves

with negative local slope.

proved B1 ąpa1,b1q A. Thus, the rotation sending rpa,bq to rpa1,b1q is

counter-clockwise, which contradicts the hypothesis

2. Case xB1 ´ xA “ 0 or xB ´ xA “ 0.

The hypothesis αA ‰ αB and B ąpa,bq A,B
1 ąpa1,b1q A imply that one

of the filtering lines rpa,bq, rpa1,b1q is vertical, that is, a “ 0 or a1 “ 0

(otherwise for every abscissa there would be a unique point in rpa,bq

and rpa1,1bq). In particular, since pa, bq Ñ pa1, b1q is clockwise, we can

study directly a “ 0 since it must be a ă a1.

For a “ 0, supposing xB1 ă xB “ xA implies B1 ăpa1,b1q A, that is, B
1

belongs to the part of rpa1,b1q which is to the left of rpa,bq. But we saw

before B1 ąpa1,b1q A, which is a contradiction.

By Proposition 3.2, for any pa, bq there exists p P Dgmpφ˚
pa,bqq,

q P Dgmpψ˚
pa,bqq such that

dBpDgmpφ˚
pa,bqq,Dgmpψ˚

pa,bqqq “ dpp, qq;

and by the definition of the metric d 2.10 and the Position Theorem 6, there
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exist A and C in rpa,bq
8
X pΓpφq Y pΓpψqq and c P t1

2
, 1u such that

dpp, qq “ c|pxA ´ bq ´ pxC ´ bq| “ c|xA ´ xC |

when a ď 1
2
; otherwise there exist B and D in rpa,bq

8
X pΓpφq Y pΓpψqq and

c1 P t1
2
, 1u with

dpp, qq “ c1
|pyB ` bq ´ pyD ` bq| “ c1

|yB ´ yD|

Consider pa, bq R Sppφ, ψq. Assume that the bottleneck distance between

Dgmpφ˚
pa,bqq and Dgmpψ˚

pa,bqq is equal to |xA´xC |. It is always possible to find

a rotation pa, bq Ñ pa1, b1q around either A or C corresponding to a segment

in the parameter space r0, 1s ˆ r´C,Cs such that the bottleneck distance

between the new diagrams Dgmpφ˚
pa1,b1q

q and Dgmpψ˚
pa1,1bqq is bigger or equal

than the initial one. This is the content of the following lemma.

Lemma 6.2. Let φ, ψ : M Ñ R2 be two smooth functions satisfying condi-

tions (i)-(iv) on Section 2.3. Let pa, bq Ps0, 1rˆr´C,Cs. If pa, bq R Sppφ, ψq

then there exists a rotation ppa, bq Ñ pa1, b1qq around a point A P rpa,bq X

pΓpφq YΓpψqq corresponding to one of the coordinates realising the bottleneck

distance between the corresponding persistence diagrams and for which:

dBpDgmpφ˚
pa,bqq,Dgmpψ˚

pa,bqqq ď dBpDgmpφ˚
pa1,b1qq,Dgmpψ˚

pa1,b1qqq.

Proof. From the compactness of the persistence diagrams and Proposition

2.4, there is an optimal matching σ : Dgmpφ˚
pa,bqq Ñ Dgmpψ˚

pa,bqq and there ex-

ists a unique - since pa, bq is not special - pair of cornerpoints

p P Dgmpφ˚
pa,bqq, q P Dgmpψ˚

pa,bqq such that costpσq “ dpp, qq. If dpp, qq “ 8

the result is clear, so let us assume dpp, qq ă 8. We have that dpp, qq “

c|w1´w2| for some finite coordinates w1, w2 P txp, xq, yp, yqu and for c P t1
2
, 1u.

In particular, by the definition of d 2.10, c “ 1
2
if dpp, qq “ dpp,∆q or

dpp, qq “ dpq,∆q, and c “ 1 otherwise.

Consider the case a ď 1
2
and assume that p, q are proper cornerpoints.

Then, by Theorem 6, there are A,B,C,D P rpa,bq
8
X pΓpφq Y Γpψqq, A ďpa,bq

B,C ďpa,bq D such that p “ pxA ´ b, xB ´ bq, q “ pxC ´ b, xD ´ bq. Let

αA, αB, αC , αD be the contours in Γpφq Y Γpψq containing A,B,C,D respec-

tively. These are univoquely determined because pa, bq R Sppφ, ψq, so by

Proposition 5.1 each point belongs to a unique contour. If p, q were improper

cornerpoints, then there would still exist some A,C P rpa,bq
8
X pΓpφq YΓpψqq

such that p “ pxA ´ b,8q, q “ pxC ´ b,8q and the following holds.
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Let pa, bq Ñ pa1, b1q be a clockwise rotation around the point A such that

the segment rpa, bq, pa1, b1qs (which is not a singleton set, because by definition

a1 ą a) does not meet Sppφ, ψq. This is because from 5.3 we know Sppφ, ψq

is closed, so for any pa, bq R Sppφ, ψq there exists such a pair pa1, b1q. This

implies in particular that for any pa2, b2q P rpa, bq, pa1, b1qs, the filtering line

rpa2,b2q does not encounter any points from ΓpφqYΓpψq incident to more than

one contour. In particular, no rpa2,b2q encounters the endpoint of any contour,

for any pa2, b2q P rpa, bq, pa1, b1qs. Thus, the rotation pa, bq Ñ pa1, b1q induces a

bijection:

Ψ: rpa,bq
8
X pΓpφq Y Γpψqq ÐÑ rpa1,b1q

8
X pΓpφq Y Γpψqq

rpa,bq
8
X αX “ X ÐÑ ΨpXq “ rpa1,b1q

8
X αX

With this terminology, the rotation pa, bq Ñ pa1, b1q fixes A “ ΨpAq and

sends C to ΨpCq. Applying Lemma 6.1, if C ďpa,bq A then xΨpCq ď xC ď xA
and, conversely, if C ěpa,bq A then xΨpCq ě xC ě xA. In any case

|xΨpCq ´ xA| ě |xC ´ xA| “ dpp, qq “ dBpDgmpφ˚
pa,bqq,Dgmpψ˚

pa,bqqq.

Since outside the special set the optimal matching cannot change abruptly,

the cost of the optimal matching between Dgmpφ˚
pa1,b1q

q and Dgmpψ˚
pa1,b1q

q is

the distance between the points pxΨpAq´b, xΨpBq´bq and pxΨpCq´b, xΨpDq´bq,

which is precisely |xΨpCq ´ xΨpAq| “ |xΨpCq ´ xA|. Combining this with the

previous inequality gives the result:

dBpDgmpφ˚
pa1,b1qq,Dgmpψ˚

pa1,b1qqq ě dBpDgmpφ˚
pa,bqq,Dgmpψ˚

pa,bqqq.

The proof for the case a ě 1
2
is completely analogous by looking at the

ordinates of the points in the persistence diagram, considering a counter-

clockwise rotation and applying Lemma 6.1.

Before stating the technical lemma to give proof for our main theorem,

we will study the gradients of the functions f, g from Definition 6.1.

It is possible to see that Uα is a closed area of s0, 1rˆr´C,Cs bounded by

one or two lines, depending on whether α is an improper or proper contour,

respectively. Below we see an example of this fact.

Example 6.1. We give an example of the computation of Uα as defined in 6.1.

Let α be a proper contour with endpoints p1, 0q, p0, 1q. Let L be the segment
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b

a

Figure 6.3: The domain Uα computed in the example (it

is a strip between the lines b “ 1´a and b “ ´a). The black

square represents the space of parameters r0, 1s ˆ r´C,Cs

with the same endpoints. Then,

rpa,bq X α ‰ ∅ ðñ rpa,bq X L ‰ ∅
ðñ There exists λ P r0, 1s such that

λp0, 1q ` p1 ´ λqp1, 0q belongs to rpa,bq

ðñ There exists λ P r0, 1s and t P R such that
#

1 ´ λ “ at ` b

λ “ p1 ´ aqt ´ b.

The computation becomes a linear system of two equations on the vari-

ables λ, t. In this particular case, substituting λ yields

1 ´ p1 ´ aqt “ at ðù t “ 1,

which gives the solution pλ, tq “ p1 ´ a ´ b, 1q. Therefore, the filtering line

rpa,bq intersects α if and only if 0 ď 1 ´ a ´ b ď 1, which corresponds to a

“strip” in the space of parameters.

Proposition 6.1. The functions f, g as in Definition 6.1 are of class C1 on

the interior of QP,Q,R,S.
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Proof. Since f and g are polynomials of degree 2 on the functions

xP pa, bq, xQpa, bq, xRpa, bq and xSpa, bq it is enough to show that xP pa, bq is of

class C1 on Qo
P,Q,R,S, the interior of QP,Q,R,S. Let α be a contour containing

P

• Assume α is a proper contour. Recall from Section 2.3 that α is dif-

feomorphic to an interval and α Ă Jpφq ãÝÑ M is a smooth embed-

ding. Thus, there exists a differentiable function h : R Ñ R such that

y “ hpxq is the equation of α.

By Propositions 2.6 and 4.3, there exists a unique point px, yq in px, yq “

pxpa, bq, ypa, bqq in rpa,bq X α which is determined by the system:

#

y “ 1´a
a
x ´ b

a

y “ hpxq

Consider the set X “ tpa, b, xpa, bqqu, such that pxpa, bq, ypa, bqq is a

solution of the previous equation system. The set X is the set of zeroes

of a function F on a, b, xpa, bq, with

F pa, b, xq “ hpxq ´
1 ´ a

a
x `

b

a
.

The last entries x of the solutions pa, b, xq of F “ 0 are the abscissas of

the points in rpa,bq X α.

The function F is differentiable in x, because h is. Furthermore, BF
Bx

“
Bh
Bx

´ 1´a
a

ă 0 because the derivative of h is strictly negative due to point

(iv) in Section 2.3 when α is a proper contour. In particular, BF
Bx

‰ 0 in

its domain Qo
P,Q,R,S, and the implicit function theorem can be applied

to F . This yields the differentiability of xpa, bq over Qo
P,Q,R,S.

• Assume now that α is a vertical improper contour lying on the line

x “ x0. Then xpa, bq “ x0 is a constant function, and therefore of class

C8 in Qo
P,Q,R,S.

• Lastly, suppose α is a horizontal vertical contour lying on the line

y “ y0.
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Then, for each pa, bq Ps0, 1rˆr´C,Cs the only point pxpa, bq, ypa, bqq in

rpa,bq X αP is the solution to the system:

#

y “ 1´a
a
x ´ b

a

y “ y0

But then xpa, bq can be calculated explicitly:

xpa, bq “
a

1 ´ a
y0 `

b

1 ´ a
.

Recall from Definition 6.1 that 0 ă a ď 1
2
for each pa, bq P Qo

P,Q,R,S.

Hence xpa, bq as above is of class C8 in its domain.

The functions f, g measure the distance between the abscissa of the points

P,Q and R, S.

We are interested in understanding when the gradients ∇f,∇g, defined
for pa, bq P Qo

P,Q,R,S, are parallel, that is, we wish to study the condition

∇f is parallel to ∇g. (6.1)

When Bg
Ba
, Bg

Bb
‰ 0 (we show in full detail when does this condition hold in

Appendix B), condition (6.1) is equivalent to

Bf
Ba
Bg
Ba

“

Bf
Bb
Bg
Bb

(6.2)

Let X P tP,Q,R, Su and let TXαX denote the line tangent to α at the

pointX. An approximation of the first order of the position of a pointXpa, bq

when varying a, b is given by the intersection between the contour αX and

the tangent line:

TXαX : y ´ yX “ mXpx ´ xXq when X does not belong to an improper

contour

y “ yX when X belongs to a horizontal improper

contour, αX “ hx0,yX “ tx ě x0, y “ yXu

x “ xX when X belongs to a vertical improper

contour, αX “ vxX ,y0 “ tx “ xX , y ě y0u.

55



6.2. Preliminary lemmas

where mX is the local slope of αX at X, when αX is a proper contour .

Explicitly, recall from Section 2.3 that each proper contour αX comes with a

diffeomorphism

ω : r0, 1s Ñ αX

t ÞÑ pω1ptq, ω2ptqq

such that ω1
1ptq ¨ ω1

2ptq ď 0 - this is property (iv) in Section 2.3 - and

ω1
1ptq, ω1

2ptq ‰ 0 for all t Ps0, 1r.

Let tX P r0, 1s be the value such that ωptXq “ X. If X is not an endpoint

of αX , then the local slope of αX at X is

mX “
ω1
2ptXq

ω1
1ptXq

ă 0

Moreover, recall the parameterisation of the filtering line rpa,bq, from Def-

inition 2.11:

puptq, vptqq “ pat ` b, p1 ´ aqt ´ bq, for pa, bq P Qo
P,Q,R,S Ă

ȷ

0,
1

2

ȷ

ˆ r´C,Cs.

Substituting the parametrisation of rpa,bq on the equation of TXαX gives

p1 ´ aqtX ´ b ´ yX “ mXpatX ` b ´ xXq

t
pa,bq
X “ tX “

yX ` b ´ mXpxX ´ bq

1 ´ a ´ mXa

when X does not belong to an improper contour and

p1 ´ aqtX ´ b “ yX

tX “
yX ` b

1 ´ a

atX ` b “ xX

tX “
xX ´ b

a

in the casesX belongs to a horizontal half-line and a vertical half-line, respec-

tively. Remember that we are supposing a P
‰

0, 1
2

‰

, hence tX is well defined

in any case and substituting tX in the parametrisation gives the intersection

point in rpa,bq X TXαX .

In order to avoid some encumbering notation, for each point X P αX and

for every pa, bq P QP,Q,R,S Ă
‰

0, 1
2

‰

ˆ r´C,Cs consider the following degree 1
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polynomials:

ξXpbq “

$

’

’

&

’

’

%

yX ` b ´ mXpxX ´ bq when αX is a proper contour,

yX ` b when αX is an improper horizontal contour,

xX ´ b when αX is an improper vertical contour,

ηXpaq “

$

’

’

&

’

’

%

1 ´ a ´ mXa when αX is a proper contour,

1 ´ a when αX is an improper horizontal contour,

a when αX is an improper vertical contour.

Notice that, for any X P tP,Q,R, Su:

BξX
Ba

“
BηX
Bb

“ 0,

BξX
Bb

“ ´
BηX
Ba

“

$

’

’

&

’

’

%

p1 ` mXq when αX is a proper contour,

1 when αX is an improper horizontal contour,

´1 when αX is an improper vertical contour.

(6.3)

Remark 6.3. Notice that ηXpaq ą 0 @a P
‰

0, 1
2

‰

since the tangent lines TXαX
are either horizontal, vertical or with negative slope because of assumption

(iv) in Section 2.3, and a, 1 ´ a ą 0. Therefore for a P
‰

0, 1
2

‰

we can write

tX “
ξXpbq

ηXpaq

and this value uniquely determines the point X via the (injective) parametri-

sation of rpa,bq. Because of this, for each fixed pa, bq, with a P
‰

0, 1
2

‰

:

ξXpbq

ηXpaq
´
ξX 1pbq

ηX 1paq
“ 0 ðñ X “ X 1

P rpa,bq. (6.4)

Combining the polynomials ξX , ηX with the parametrisation gives an ex-

pression for the intersection point in rpa,bq X TXαX , for each pa, bq P
‰

0, 1
2

‰

ˆ

r´C,Cs,

Xpa, bq “

ˆ

a
ξXpbq

ηXpaq
` b, p1 ´ aq

ξXpbq

ηXpaq
´ b

˙

.
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Therefore, for X P αX , Y P αY and pa, bq P QP,Q,R,S X
‰

0, 1
2

‰

ˆ rC,´Cs:

xXpa, bq ´ xY pa, bq “ a
ξXpbq

ηXpaq
` b ´ a

ξY pbq

ηY paq
´ b

“ a

ˆ

ξXpbq

ηXpaq
´
ξY pbq

ηY paq

˙

.

We can rewrite our distance functions as

fpa, bq “ a2
ˆ

ξP pbq

ηP paq
´
ξQpbq

ηQpaq

˙2

,

gpa, bq “ a2
ˆ

ξRpbq

ηRpaq
´
ξSpbq

ηSpaq

˙2

,

for pa, bq P QP,Q,R,S X

ȷ

0,
1

2

ȷ

ˆ rC,´Cs.

With this notation, a simple computation gives

Bf

Ba
“ 2a

ˆ

ξP pbq

ηP paq
´
ξQpbq

ηQpaq

˙2

` 2a2
ˆ

ξP pbq

ηP paq
´
ξQpbq

ηQpaq

˙

˜

ξQpbq
BηQ
Ba

ηQpaq2
´
ξP pbqBηP

Ba

ηP paq2

¸

“ 2a

ˆ

ξP pbq

ηP paq
´
ξQpbq

ηQpaq

˙

˜

ξP pbq

ηP paq
´
ξQpbq

ηQpaq
´
aξP pbqBηP

Ba

ηP paq2
`
aξQpbq

BηQ
Ba

ηQpaq2

¸

,

(6.5)

Bf

Bb
“ 2a2

ˆ

ξP pbq

ηP paq
´
ξQpbq

ηQpaq

˙

˜

BξP
Bb

ηP paq
´

BξQ
Bb

ηQpaq

¸

,

and an analogous expression for Bg
Ba
, Bg

Bb
just substituting P,Q with R, S. This

expression is well-defined , since as we pointed out before, ηXpaq ą 0 for

every a P
‰

0, 1
2

‰

, X P tP,Q,R, Su.

We rewrite the condition (6.1) we want to study using (6.5). For this step

we are using a P
‰

0, 1
2

‰

, which implies ηX ‰ 0:

´

ξP pbq
ηP paq

´
ξQpbq

ηQpaq

¯

ˆ

ξP pbq
ηP paq

´
ξQpbq

ηQpaq
´

aξP pbq
BηP
Ba

ηP paq2
`

aξQpbq
BηQ

Ba

ηQpaq2

˙

´

ξRpbq
ηRpaq

´
ξSpbq
ηSpaq

¯

ˆ

ξRpbq
ηRpaq

´
ξSpbq
ηSpaq

´
aξRpbq

BηR
Ba

ηRpaq2
`

aξSpbq
BηS
Ba

ηSpaq2

˙

“

´

ξP pbq
ηP paq

´
ξQpbq

ηQpaq

¯

ˆ

BξP
Bb

ηP paq
´

BξQ
Bb

ηQpaq

˙

´

ξRpbq
ηRpaq

´
ξSpbq
ηSpaq

¯

ˆ

BξR
Bb

ηRpaq
´

BξS
Bb

ηSpaq

˙ . (6.6)
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The further assumption that P ‰ Q, R ‰ S implies
´

ξP pbq
ηP paq

´
ξQpbq

ηQpaq

¯

‰

0 and
´

ξRpbq
ηRpaq

´
ξSpbq
ηSpaq

¯

‰ 0 by (6.4). Observe that the definition of spe-

cial pair can be misleading: note that this assumption is not equivalent to

tαP , αRu, tαQ, αSu satisfying the condition of speciality: even if αP ‰ αQ
and αR ‰ αS, nor P ‰ Q nor R ‰ S is implied.

Under the assumption that P ‰ Q and R ‰ S the condition (6.1) becomes

ξP pbq
ηP paq

´
ξQpbq

ηQpaq
´

aξP pbq
BηP
Ba

ηP paq2
`

aξQpbq
BηQ

Ba

ηQpaq2

ξRpbq
ηRpaq

´
ξSpbq
ηSpaq

´
aξRpbq

BηR
Ba

ηRpaq2
`

aξSpbq
BηS
Ba

ηSpaq2

“

BξP
Bb

ηP paq
´

BξQ
Bb

ηQpaq

BξR
Bb

ηRpaq
´

BξS
Bb

ηSpaq

. (6.7)

Now that we have fully characterised f, g, Bf
Ba
, Bf

Bb
, Bg

Ba
, and Bg

Bb
in their re-

spective domains, we provide the necessary and sufficient conditions on the

points pa, bq for the gradient ∇f or ∇g to vanish.

Proposition 6.2. Using the preceding notation, for any pa, bq P Qo
P,Q,R,S and

for any X, Y P rpa,bq consider the functions

ΘX,Y pa, bq “
BξX
Bb

ηY paq ´ ηXpaq
BξY
Bb

,

ΞX,Y pa, bq “ tX

ˆ

1 ´
a

ηXpaq

BηX
Ba

˙

´ tY

ˆ

1 ´
a

ηY paq

BηY
Ba

˙

Then,

∇fpa, bq “ 0 ðñ

$

’

’

’

’

&

’

’

’

’

%

P “ Q, or

ΘP,Qpa, bq “ 0 and P “ Q, or

ΞP,Qpa, bq “ 0 and P “ Q, or

ΘP,Qpa, bq “ 0 and ΞP,Qpa, bq “ 0.

∇gpa, bq “ 0 ðñ

$

’

’

’

’

&

’

’

’

’

%

R “ S or

ΘR,Spa, bq “ 0 and R “ S, or

Θ1
R,Spa, bq “ 0 and R “ S, or

ΘR,Spa, bq “ 0 and Θ1
R,Spa, bq “ 0.

Proof. We will give the proof for ∇f since the one for ∇g is completely

identical substituting the pair tP,Qu with tR, Su. Fix pa, bq P Qo
P,Q,R,S and
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P P rpa,bq X αP , Q P rpa,bq X αQ. From the expression (6.5) for the partial

derivatives it follows

Bf

Ba
“ 0 ðñ

ξP pbq

ηP paq
´
ξQpbq

ηQpaq
“ 0

looooooooooomooooooooooon

C1

or
ξP pbq

ηP paq
´
ξQpbq

ηQpaq
´
aξP pbqBηP

Ba

ηP paq2
`
aξQpbq

BηQ
Ba

ηQpaq2
“ 0,

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

C2

Bf

Bb
“ 0 ðñ

ξP pbq

ηP paq
´
ξQpbq

ηQpaq
“ 0 or

BξP
Bb

ηP paq
´

BξQ
Bb

ηQpaq
“ 0.

looooooooooomooooooooooon

C3

Therefore,

∇f “ 0 ðñ

$

’

’

’

’

&

’

’

’

’

%

C1,

or C1 and C2,

or C1 and C3,

or C2 and C3.

The conditions C1, C2 and C3 are well defined when a P
‰

0, 1
2

‰

. We pointed

out in 6.3 that C1 is equivalent to P “ Q. Conditions C2 and C3 are

equivalent to ΘP,Qpa, bq “ 0 and ΞP,Qpa, bq “ 0, respectively.

The previous discussion was made under the assumption a ď 1
2
, but we

will also need to know how to increase the Bottleneck distance when the

filtering line rpa,bq is rotating with a ě 1
2
. All the previous definitions and

formulas have an analogous for a ě 1
2
. For the sake of brevity, we report here

only the essential steps.

Definition 6.3. For any four fixed contours αP , αQ, αR, αS P Ctrpφ, ψq, X P

tP,Q,R, Su denote

U 1
αX

“ tpa, bq P

„

1

2
, 1

„

ˆ r´C,Cs such that αX X rpa,bq ‰ ∅u,

and

Q1
P,Q,R,S “

č

XPtP,Q,R,Su

U 1
αX

Ă

„

1

2
, 1

„

ˆ r´C,Cs,
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and

P pa, bq “ pxP pa, bq, yP pa, bqq “ rpa,bq X αP ,

Qpa, bq “ pxQpa, bq, yQpa, bqq “ rpa,bq X αQ,

Rpa, bq “ pxRpa, bq, yRpa, bqq “ rpa,bq X αR,

Spa, bq “ pxSpa, bq, ySpa, bqq “ rpa,bq X αS

the intersection points when varying pa, bq.

In this setting, define the functions

f 1
P,Q,αP ,αQ

“ f : Q1
P,Q,R,S Ñ r0,8r

pa, bq ÞÑ pyP pa, bq ´ yQpa, bqq
2

g1
R,S,αR,αS

“ g : Q1
P,Q,R,S Ñ r0,8r (6.8)

pa, bq ÞÑ pyRpa, bq ´ ySpa, bqq
2

An analogous to Proposition 6.1 holds for f 1 and g1:

Proposition 6.3. The functions f 1, g1 are of class C1 on Q1o
P,Q,R,S.

The definitions we gave for ξX , ηX and the first order approximation of

Xpa, bq extend to pa, bq P Q1
P,Q,R,S Ă

“

1
2
, 1
“

ˆ r´C,Cs:

ξXpbq “

$

’

’

&

’

’

%

yX ` b ´ mXpxX ´ bq when αX is a proper contour,

yX ` b when αX is an improper horizontal contour,

xX ´ b when αX is an improper vertical contour,

ηXpaq “

$

’

’

&

’

’

%

1 ´ a ´ mXa when αX is a proper contour,

1 ´ a when αX is an improper horizontal contour,

a when αX is an improper vertical contour,

Xpa, bq “

ˆ

a
ξXpbq

ηXpaq
` b, p1 ´ aq

ξXpbq

ηXpaq
´ b

˙

.

This time we want to look at the second coordinate of Xpa, bq, for X P

tP,Q,R, Su. The functions f 1, g1 can be rewritten as

f 1
pa, bq “ p1 ´ aq

2

ˆ

ξP pbq

ηP paq
´
ξQpbq

ηQpaq

˙2

“

ˆ

1 ´ a

a

˙2

fpa, bq,

g1
pa, bq “ p1 ´ aq

2

ˆ

ξRpbq

ηRpaq
´
ξSpbq

ηSpaq

˙2

“

ˆ

1 ´ a

a

˙2

gpa, bq,

for pa, bq P QP,Q,R,S X

„

1

2
, 1

„

ˆ rC,´Cs.
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Therefore,

Bf 1

Ba
“ 2pa ´ 1q

ˆ

ξP pbq

ηP paq
´
ξQpbq

ηQpaq

˙2

` 2p1 ´ aq
2

ˆ

ξP pbq

ηP paq
´
ξQpbq

ηQpaq

˙

˜

ξQpbq
BηQ
Ba

ηQpaq2
´
ξP pbqBηP

Ba

ηP paq2

¸

“ 2p1 ´ aq

ˆ

ξP pbq

ηP paq
´
ξQpbq

ηQpaq

˙

˜

ξQpbq

ηQpaq
´
ξP pbq

ηP paq
´ p1 ´ aq

ξP pbqBηP
Ba

ηP paq2
` p1 ´ aq

ξQpbq
BηQ
Ba

ηQpaq2

¸

,

Bf 1

Bb
“ 2p1 ´ aq

2

ˆ

ξP pbq

ηP paq
´
ξQpbq

ηQpaq

˙

˜

BξP
Bb

ηP paq
´

BξQ
Bb

ηQpaq

¸

“

ˆ

1 ´ a

a

˙2
Bf

Bb
,

for pa, bq P Q1o
P,Q,R,S Ă

“

1
2
, 1
“

ˆ r´C,Cs.

Hence, assuming Bg1

Ba
, Bg1

Bb
‰ 0 (see Appendix B), the parallelism condition

between ∇f 1 and ∇g1 can be written as
´

ξP pbq
ηP paq

´
ξQpbq

ηQpaq

¯

ˆ

ξQpbq

ηQpaq
´

ξP pbq
ηP paq

´ p1 ´ aq
ξP pbq

BηP
Ba

ηP paq2
` p1 ´ aq

ξQpbq
BηQ

Ba

ηQpaq2

˙

´

ξRpbq
ηRpaq

´
ξSpbq
ηSpaq

¯

ˆ

ξSpbq
ηSpaq

´
ξRpbq
ηRpaq

´ p1 ´ aq
ξRpbq

BηR
Ba

ηRpaq2
` p1 ´ aq

ξSpbq
BηS
Ba

ηSpaq2

˙

“

´

ξP pbq
ηP paq

´
ξQpbq

ηQpaq

¯

ˆ

BξP
Bb

ηP paq
´

BξQ
Bb

ηQpaq

˙

´

ξRpbq
ηRpaq

´
ξSpbq
ηSpaq

¯

ˆ

BξR
Bb

ηRpaq
´

BξS
Bb

ηSpaq

˙ ,

and, under the further assumption that P ‰ Q and R ‰ S,

ξQpbq

ηQpaq
´

ξP pbq
ηP paq

´ p1 ´ aq
ξP pbq

BηP
Ba

ηP paq2
` p1 ´ aq

ξQpbq
BηQ

Ba

ηQpaq2

ξSpbq
ηSpaq

´
ξRpbq
ηRpaq

´ p1 ´ aq
ξRpbq

BηR
Ba

ηRpaq2
` p1 ´ aq

ξSpbq
BηS
Ba

ηSpaq2

“

BξP
Bb

ηP paq
´

BξQ
Bb

ηQpaq

BξR
Bb

ηRpaq
´

BξS
Bb

ηSpaq

.

Proposition 6.2 has an equivalent for f 1, g1:

Proposition 6.4. Using the preceding notation, for any pa, bq P Q1o
P,Q,R,S

and for any X, Y P rpa,bq consider the functions

Θ1
X,Y pa, bq “

BξX
Bb

ηY paq ´ ηXpaq
BξY
Bb

,

Ξ1
X,Y pa, bq “ tX

ˆ

1 `
1 ´ a

ηXpaq

BηX
Ba

˙

´ tY

ˆ

1 `
1 ´ a

ηY paq

BηY
Ba

˙
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6.2. Preliminary lemmas

Then,

∇f 1
pa, bq “ 0 ðñ

$

’

’

’

’

&

’

’

’

’

%

P “ Q, or

Θ1
P,Qpa, bq “ 0 and P “ Q, or

Ξ1
P,Qpa, bq “ 0 and P “ Q, or

Θ1
P,Qpa, bq “ 0 and Ξ1

P,Qpa, bq “ 0.

∇g1
pa, bq “ 0 ðñ

$

’

’

’

’

&

’

’

’

’

%

R “ S or

Θ1
R,Spa, bq “ 0 and R “ S, or

Ξ1
R,Spa, bq “ 0 and R “ S, or

Θ1
R,Spa, bq “ 0 and Ξ1

R,Spa, bq “ 0.

Proof. We will give the proof for ∇f 1 since the one for ∇g1 is completely

identical substituting the pair tP,Qu with tR, Su.

Fix pa, bq P Qo
P,Q,R,S and P P rpa,bq X αP , Q P rpa,bq X αQ. From the

expression for the partial derivatives it follows

Bf 1

Ba
“ 0 ðñ

ξP pbq

ηP paq
´
ξQpbq

ηQpaq
“ 0

looooooooooomooooooooooon

C1

or
ξP pbq

ηP paq
´
ξQpbq

ηQpaq
´

1 ´ aξP pbqBηP
Ba

ηP paq2
`

1 ´ aξQpbq
BηQ
Ba

ηQpaq2
“ 0,

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

C2

Bf 1

Bb
“ 0 ðñ

ξP pbq

ηP paq
´
ξQpbq

ηQpaq
“ 0 or

BξP
Bb

ηP paq
´

BξQ
Bb

ηQpaq
“ 0.

looooooooooomooooooooooon

C3

Therefore,

∇f 1
“ 0 ðñ

$

’

’

’

’

&

’

’

’

’

%

C1,

or C1 and C2,

or C1 and C3,

or C2 and C3.

The conditions C1, C2 and C3 are well defined when a P
‰

0, 1
2

‰

. Condi-

tion C1 is equivalent to P “ Q. Conditions C2 and C3 are equivalent to

Θ1
P,Qpa, bq “ 0 and Ξ1

P,Qpa, bq “ 0, respectively.
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6.2. Preliminary lemmas

Without loss of generality, put a ď 1
2
. If the matching distance is re-

alised by the distance between two different pairs of points tp, qu ‰ tp1, q1u

simultaneously, i.e.

dBpDgmpφ˚
pa,bqq,Dgmpψ˚

pa,bqqq “ dpp, qq “ dpp1, q1
q,

such that

#

dpp, qq “ λ|w0 ´ w1| “ |xP ´ xQ|,

dpp1, q1q “ λ|w1
0 ´ w1

1| “ |xR ´ xS|,

where w0, w1, w
1
0, w

1
1 are the opportune coordinates of p, q, p1, q1, then by

Proposition 5.2 pa, bq is a special pair. We can no longer apply the reason-

ing from Lemma 6.2 because by choosing a rotation that increases the first

distance dpp, qq the same rotation may simultaneously diminish the second

distance dpp1, q1q, therefore decreasing the Bottleneck distance.

The functions f, g (or f 1, g1, depending on whether a ď 1
2
or a ě 1

2
) mea-

sure the distance between two pairs of points tP,Qu, tR, Su in Γpφq. We now

have a complete - see Appendix B - characterisation for the conditions under

which ∇f,∇g are parallel or vanish. When none of these happen, a vector

v P R2 can be chosen such that v ¨ ∇f, v ¨ ∇g ą 0; thus the vector v applied

to a pair pa, bq represents a direction in which both functions fpa, bq, gpa, bq

strictly increase, and hence the bottleneck distance cannot decrease. This is

the main idea in the proof of the following lemma:

Lemma 6.3. Let pa, bq R USppφ, ψq. Assume hypothesis ‡. Let αP , αQ, αR, αS
be contours in Γpφq Y Γpψq and let X “ rpa,bq X αX for X in tP,Q,R, Su.

For X, Y in tP,Q,R, Su consider the functions ΘX,Y ,ΞX,Y ,Θ
1
X,Y and Ξ1

X,Y

from Propositions 6.2 and 6.4.

When P ‰ Q, R ‰ S, the function ΘX,Y ,ΞX,Y ,Θ
1
X,Y and Ξ1

X,Y do not

vanish on pa, bq and the condition 6.7 is not satisfied, there exists a rotation

pa, bq Ñ pa1, b1q, with pa1, b1q R Sppφ, ψq such that

dBpDgmpφ˚
pa,bqq,Dgmpψ˚

pa,bqqq ă dBpDgmpφ˚
pa1,b1qq,Dgmpψ˚

pa1,b1qqq.

Proof. If pa, bq is not a special value, the result follows directly from Lemma

6.2. Assume now that pa, bq is special.

Then there exist two pairs of contours tαA, αBu ‰ tαC , αDu in Ctrpφ, ψq

fulfilling the conditions of speciality. That is,

c1|xA ´ xB| “ c2|xC ´ xD|, with c1, c2 P t1, 2u,
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6.2. Preliminary lemmas

where A “ αA X rpa,bq, B “ αB X rpa,bq, C “ αC X rpa,bq and D “ αD X rpa,bq.

Note that the two pairs tαA, αBu ‰ tαC , αDu in condition of speciality

may not be unique.

But, at the same time, pa, bq is not ultraspecial, so no three different paits

of contours tαA, αBu ‰ tαC , αDu ‰ tαE, αF u ‰ tαA, αBu in Ctrpφ, ψq satisfy

c1|xA ´ xB| “ c2|xC ´ xD| “ c3|xE ´ xF |, with c1, c2, c3 P t1, 2u,

where E “ αE X rpa,bq, F “ αF X rpa,bq.

On the other hand, from 3.2 we know that there exist a matching

σ : Dgmpφ˚

pa,bq
q Ñ Dgmpψ˚

pa,bq
q and two cornerpoints p P Dgmpφ˚

pa,bq
q, q P

Dgmpψ˚

pa,bq
q such that

dBpDgmpφ˚

pa,bq
q,Dgmpψ˚

pa,bq
qq “ costσ “ dpp, qq “ λ|w0 ´ w1|,

where w0, w1 are some coordinates of p and q and λ P t1
2
, 1u.

Assume a ď 1
2
. Applying Position Theorem, there are points P,Q,R, S P

Γpφq belonging to contours αP , αQ, αR, αS respectively; and p “ pxP ´b, xR´

bq, q “ pxQ´ b, xS ´ bq. Without loss of generality, suppose from now on that

the coordinates realising the cost of the optimal matching σ are w0 “ xp “

xP ´ b and w1 “ xq “ xQ ´ b. Hence, the computation of the Bottleneck

distance becomes just

dBpDgmpφ˚

pa,bq
q,Dgmpψ˚

pa,bq
qq “ λ|xP ´ b ´ xQ ` b| “ λ|xP ´ xQ|.

The pair tαP , αQu may coincide with tαA, αBu or tαC , αDu, which are in

speciality condition, so we cannot choose a point to rotate around as we did

in previous Lemma 6.2.

Instead, recall from 6.1 the functions

fP,Q,αP ,αQ
“ f : QP,Q,R,S Ñ r0,8r

pa, bq ÞÑ pxP pa, bq ´ xQpa, bqq
2

gR,S,αR,αS
“ g : QP,Q,R,S Ñ r0,8r

pa, bq ÞÑ pxRpa, bq ´ xSpa, bqq
2

QP,Q,R,S is not empty because rpa,bq intersects the contours αP , αQ, αR, αS.

f, g are of class C1 on its domain due to 6.1, so we can consider its gradients.

Because of Preposition 6.2, our hypothesis guarantee that∇fpa, bq,∇gpa, bq ‰
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0 and they are not parallel. For any vector v “ λf∇f`λg∇g with λf , λg ą 0

the following scalar products are strictly positive:

∇f ¨ v, ∇g ¨ v ą 0.

That is, the following directional derivatives are strictly positive:

Bf

Bv
“ lim

εÑ0

fppa, bq ` εvq ´ fpa, bqq

ε
,

Bg

Bv
“ lim

εÑ0

gppa, bq ` εvq ´ gpa, bqq

ε
ą 0.

In particular, since both limits are strictly positive, it is implied that there

exist εv ą 0 such that fppa, bq ` εvq ą fpa, bq and gppa, bq ` εvq ą gpa, bq for

every ε ă εv. Let pa1, b1q “ pa, bq ` εv ‰ pa1.b1q. Since Sppφ, ψq is closed, and

since it is a finite union of curves because of ‡, v and ε ă εv can be chosen

such that pa1, b1q R Sppφ, ψq and a ‰ a1. Then the rotation pa, bq Ñ pa1, b1q

strictly increases the Bottleneck distance:

dBpDgmpφ˚
pa,bqq,Dgmpψ˚

pa,bqqq ă dBpDgmpφ˚
pa1,b1qq,Dgmpψ˚

pa1,b1qqq.

If a ě 1
2
, applying Position Theorem yields points P 1, Q1, R1, S1 P Γpφq

belonging to contours αP 1 , αQ1 , αR1 , αS1 respectively; and p1 “ pyP 1 ` b, yR1 `

bq, q1 “ pyQ1 ` b, yS1 ` bq. As we did in the case a ď 1
2
, without loss of

generality, suppose that the coordinates realising the Bottleneck distance are

yP 1 and yQ1 ;

dBpDgmpφ˚

pa,bq
q,Dgmpψ˚

pa,bq
qq “ λ|yP 1 ´ yQ1 |,

and suppose the pair tαP 1 , αQ1u is in condition of speciality with some other

pair of contours tβ0, β1u Ă Ctrpφ, ψq.

Then, recall from 6.8 the functions

f 1
P 1,Q1,αP 1 ,αQ1

“ f 1 : Q1
P 1,Q1,R1,S1 Ñ r0,8r

pa, bq ÞÑ pyP 1pa, bq ´ yQ1pa, bqq
2

g1
R1,S1,αR1 ,αS1

“ g1 : Q1
P 1,Q1,R1,S1 Ñ r0,8r

pa, bq ÞÑ pyR1pa, bq ´ yS1pa, bqq
2

which are of class C1 inQ1o
P 1,Q1,R1,S1 because of 6.3; and Proposition 6.2 implies

that the gradients ∇f 1,∇g1 do not vanish in Q1o
P 1,Q1,R1,S1 and they are not

parallel under our hypothesis.
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Therefore, for any λf 1 , λg1 ą 0 the scalar products ∇f 1 ¨ v1,∇g1 ¨ v1 are

strictly positive, for v1 “ λf 1∇f 1 ` λg1∇g1. Hence, there exists εv1 ą 0 such

that for any 0 ă ε ă εv1 ,

f 1ppa, bq ` εv1q ´ f 1pa, bqq

ε
,

g1ppa, bq ` εv1q ´ g1pa, bqq

ε
ą 0.

Let pa2, b2q “ pa, bq ` εv1. As in the previous case a ď 1
2
, our hypothesis

guarantee 0 ă ε ă εv1 can be chosen such that pa2, b2q R Sppφ, ψq and a ‰ a2.

Then:

dBpDgmpφ˚
pa,bqq,Dgmpψ˚

pa,bqqq ă dBpDgmpφ˚
pa1,b1qq,Dgmpψ˚

pa2,b2qqq,

and we can conclude.

6.3 Proof of our main theorem

Now we are finally ready to prove our main theorem 7.

Proof. By contradiction, let pa, bq R Upφ, ψq, a R t0, 1
2
, 1u such that

Dmatchpφ, ψq “ dBpDgmpφ˚

pa,bq
q,Dgmpψ˚

pa,bq
qq.

Without loss of generality, choose pa, bq minimizing |a´ 1
2
|. We are allowed

to do so since r0, 1s ˆ r´C,Cs is compact. This will lead to a contradiction.

For now assume a ă 1
2
. Let us study separate cases.

1. Case pa, bq R Sppφ, ψq.

Because of Lemma 6.2 there is a clockwise rotation pa, bq Ñ pa1, b1q,

with pa1, b1q R Sppφ, ψq, such that

dBpDgmpφ˚

pa,bq
q,Dgmpψ˚

pa,bq
qq ď dBpDgmpφ˚

pa1,b1qq,Dgmpψ˚
pa1,b1qqq

Since pa, bq Ñ pa1, b1q is clockwise, a1 ą a and so |a1 ´ 1
2
| ă |a ´ 1

2
|,

against the minimality of a.

2. Case pa, bq P Sppφ, ψqzUpφ, ψq.

Apply Lemma 6.3. Then there is a (not necessarily clockwise or counter-

clockwise) rotation pa, bq Ñ pa2, b2q which strictly increases the bottle-

neck distance; and such that pa2, b2q is not a special value.
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But this contradicts the hypothesis that pa, bq realises the matching

distance:

dBpDgmpφ˚
pa2,b2qq,Dgmpψ˚

pa2,b2qqq ą dBpDgmpφ˚

pa,bq
q,Dgmpψ˚

pa,bq
qq

“ Dmatchpφ, ψq.

We began by supposing pa, bq R Upφ, ψq, hence we have reached an

absurd.

The proof for a ą 1
2
is completely analogous by considering a counter-

clockwise rotation in case (1).
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Chapter 7

Conclusion

In this thesis we have presented a geometric approach to biparameter per-

sistent homology. At the end of Chapter 6 we have shown a result that

consents to qualitatively improve the computation cost for the calculation

of the biparameter matching distance. Such a result might be important to

the effective application of persistent homology to data analysis, machine

learning, bioinformatics and many other fields.

Moreover, we have extended the Position Theorem from [13], which is the

key step in the proof of our main result.

Regarding future works, we believe that our extended Position Theorem

could be used to prove a further generalisation of our main result, reducing

the computation of the matching distance to the study of lines of slope one,

and maybe a finite quantity of exceptional values pa, bq. Such a generali-

sation will require extending the functions f, g used in Chapter 6 to study

the changes in the distance between intersection points for fixed contours,

and a deeper understanding of the special and ultraspecial set introduced in

Chapter 5.

We believe that these techniques can be easily generalised to general

n-parameter persistent homology, virtually permitting to cut the amount of

parameters needed for the calculation of the n-dimensional matching distance

by one half.
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Appendix A

The categorical viewpoint

A.1 Grothendieck categories and decomposi-

tion theorem

In this appendix we review the definitions and basic results from category

theory underlying the theory of persistence modules. We also present the

interleaving distance between persistence modules and give a motivation for

the study of discrete invariants such as persistence diagrams. Most of the

notation and results in this appendix come from [8], [9], [18].

Let pP,ďq be a partially ordered set, which can also be seen as a category

P where MorP pa, bq is empty, if a ď b, and it has a unique element, if

a ď b. Let R be a unital ring and RMod, ModR the categories of left and

right (respectively) R-modules with R-module homomorphisms. Let X be a

finitely triangulable topological space and φ : X Ñ R a continuous function.

Consider the filtration tXφ
t utPR as in Section 2.

Definition A.1. An abelian category is a category C with a zero object, that

is, an object that is both initial and terminal, with the following additional

properties:

• C is preadditive: for each pair of objects A,B P obpCq HomCpA,Bq is

an abelian group and the composition of morphisms is bilinear in the

sense that it can be seen as a morphism:

HomCpB,Cq b HomCpA,Bq Ñ HomCpA,Cq.

• C is additive: It admits finite products and coproducts.
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• C is preabelian: It admits kernels and cokernels for each morphism.

• Every monomorphism is the kernel of some morphism.

• Every epimorphism is the cokernel of some morphism.

Definition A.2. A Grothendieck category is an abelian category C that

• admits a generator G P obpCq, that is, an object G such that for every

pair of distinct morphisms f, g : A Ñ B in C, there exist a morphism

h : G Ñ A such that f ˝ h ‰ g ˝ h;

• admits coproducts of arbitrary families of objects.

• direct limits are exact: for every directed system of short exact se-

quences t0 Ñ Ai Ñ Bi Ñ Ci Ñ 0uiPI the short exact sequence

0 Ñ lim
ÝÑ

Ai Ñ lim
ÝÑ

Bi Ñ lim
ÝÑ

Ci Ñ 0

is exact.

With this terminology, a general definition of persistence module (2.1)

can be given:

Definition A.3 (Persistence module). A (n-parameter) persistence module

is a covariant functor M : P Ñ C where P is a poset category and C is a

Grothendieck category.

Persistence modules M : P Ñ C with natural transformations between

them form themselves a category that we shall denote with CP. In particular

in section 2.3 in [18] the authors showed that when pP,ď;`, 0q admits a

structure of abelian group compatible with the order ď and C “ RMod

or C “ ModR, there is an isomorphism of categories between the category

of persistence modules and the category of P -graded RrU0s-modules, with

U0 “ tx P P | 0 ď xu, the principal up-set of 0 P P .

An immediate consequence of this is that when the poset pP,ďq is finite

and R is a field then RrU0s is a PID and thus the structure theorem for

finitely-generated modules over PIDs - see Appendix C- can be applied: there

exists a unique decreasing sequence of proper ideals pd1q Ě pd2q Ě ... such

that

M –
à

i

R{pdiq.
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However in general, P is not finite. Recall from Section 2 that in this

work we considered the persistence module

Hk : R
n

Ñ VectF

associating to each u P Rn the F-vector space HkpXφ
u ;Fq, where Hk denotes

the Čech homology functor in degree k P Z, and to each morphism u ď v the

linear application induced in homology by the inclusion Xφ
u ãÝÑ Xφ

u .

Nevertheless, there is a much more general decomposition theorem. The

following is Theorem 1.1 from [16], which generalises the classical result from

Carlsson, Zomorodian, Collins and Guibas (theorem 5.2 in [2]).

Definition A.4. A persistence module M : P Ñ VectF is pointwise finite-

dimensional if dimFMppq ă 8 for every p P P .

Remark A.1. Theorem 1 guarantees that the persistence module Hk : R
n Ñ

VectF is pointwise finite-dimensional.

Theorem 8 (Botnan, Crawley-Boevey). Let M : P Ñ VectF be pointwise

finite-dimensional persistence module. Then there is a family of indecompos-

able persistence modules tMiuiPI such that EndpMiq is local for each i P I

and

M –
à

iPI

Mi.

We now illustrate briefly the categorical construction corresponding to

the foliation method used in this work to study multiparameter persistence

along a filtering line. Consider a line L Ă Rn of positive slope parametrised

by ut ` v when t P R for some u, v P Rn fixed. Consider the functor

L : R Ñ Rn

taking each t P R to ut ` v P Rn and each s ď t to us ` v ĺ ut ` v.

Then the composition functor LM is a one-parameter persistence module,

corresponding to the filtering line L.

Also, the multiparameter matching distance we defined in Chapter 3 has

an analogue on persistence modules. The following is definition 2.7 from [19]

and for n “ 2 agrees with our definition of matching distance:

Definition A.5. Let M,N be n-parameter persistence modules. Denote by

ℓpRnq the set of lines of positive slope in Rn and, for each L P ℓpRnq, let
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ûpLq ą 0 be the minimal coordinate of the director vector upLq of L. Then

the matching distance between M and N is defined as

DmatchpM,Nq “ sup
LPℓpRnq

ûpLq ¨ dBpDgmpLMq,DgmpLNqq

where DgmpLMq,DgmpLNq are the persistence diagrams corresponding to

the persistence modules LM,LN .

A.2 Interleaving distance and isometry theo-

rem

The following is definition 3.1 from [8].

Definition A.6 (Interleaving distance). Let C be a category. For any ε ě 0,

let ε⃗ “ pε, . . . , εq P Rn. Consider the shift functor

Tε⃗ : R
n

Ñ Rn

a ÞÑ a ` ε⃗

a ĺ b ÞÑ a ` ε⃗ ĺ b ` ε⃗.

Note that Tε⃗1Tε⃗2 “ Tε⃗1`ε⃗2 .

Then, an ε-interleaving between functors F,G : Rn Ñ C is a pair of

natural transformations pα, βq defined by the commutative diagram:

Rn Rn Rn

C C C

F

Tε⃗

G

Tε⃗

F
α β

and such that

the following diagrams commute:

F paq F pa ` 2ε⃗q F pa ` ε⃗q

Gpa ` ε⃗q Gpaq Gpa ` 2ε⃗q

F paĺa`2ε⃗q

αpaq αpa`ε⃗qβpa`ε⃗q

Gpaĺa`2ε⃗q

βpaq

We say that F,G are ε-interleaved if there is an ε-interleaving between

them.
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The interleaving distance between two persistence modules M,N is de-

fined as

dIpM,Nq “ inftε P r0,8q such that M,N are ε-interleavedu.

For n “ 1 there is an important result relating the interleaving distance

and the Bottleneck distance. This result can be found in [10] and [9]:

Theorem 9 (Isometry theorem). Let φ, ψ : X Ñ R two continous, real-

valued functions. Fix a degree k P Z. Let Mφ,Mψ : R Ñ VectF be the

persistence modules given by

Mφptq “ HkpXφ
t ;Fq, Mφps ď tq “ HkpXφ

s ãÝÑ Xφ
t q,

Mψptq “ HkpXψ
t ;Fq, Mψps ď tq “ HkpXψ

s ãÝÑ Xψ
t q.

Then

dIpMφ,Mψq “ dBpDgmpφq,Dgmpψqq

where Dgmpφq, Dgmpψq are the persistence diagrams of φ and ψ in degrees

kφ, kψ, respectively.

The isometry theorem allows the computation of the interleaving distance

in one-parameter persistence. However, for n ą 1, the computation of the

interleaving distance is a NP-hard problem, as shown in [15].

This obstruction gives a motivation for the study of other metrics, such as

Dmatch, to study persistence in TDA. The reader interested in other metrics

studied in the same spirit should refer to [6], [13].
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Appendix B

Necessary and sufficient

conditions for Bf
Ba,

Bf
Bb ,

Bg
Ba,

Bg
Bb to

vanish

We study here the conditions under which the partial derivatives of the

functions f, g studied in Chapter 6 vanish. Let φ, ψ : M Ñ R2 be smooth

functions satisfying conditions (i)-(iv) in Section 2.3. Let αP , αQ, αR, αS P

Ctrpφ, ψq be contours in Γpφq Y Γpψq and set

P pa, bq “ pxP pa, bq, yP pa, bqq “ rpa,bq X αP ,

Qpa, bq “ pxQpa, bq, yQpa, bqq “ rpa,bq X αQ,

Rpa, bq “ pxRpa, bq, yRpa, bqq “ rpa,bq X αR,

Spa, bq “ pxSpa, bq, ySpa, bqq “ rpa,bq X αS

the intersection points of the contours with the filtering line rpa,bq when vary-

ing pa, bq P QP,Q,R,S Ă
‰

0, 1
2

‰

ˆ r´C,Cs.

Recall Definition 6.1

fP,Q,αP ,αQ
“ f : QP,Q,R,S Ñ r0,8r

pa, bq ÞÑ pxP pa, bq ´ xQpa, bqq
2

gR,S,αR,αS
“ g : QP,Q,R,S Ñ r0,8r

pa, bq ÞÑ pxRpa, bq ´ xSpa, bqq
2
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and the auxiliary functions

ξXpbq “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

yX ` b ´ mXpxX ´ bq when X does not belong to an improper

contour,

yX ` b when X belongs to an improper

horizontal contour,

xX ´ b when X belongs to an improper vertical

contour,

ηXpaq “

$

’

’

’

’

&

’

’

’

’

%

1 ´ a ´ mXa when X does not belong to an improper contour,

1 ´ a when X belongs to an improper horizontal

contour,

a when X belongs to an improper vertical contour,

for X P tP,Q,R, Su.

A crucial step in the proof of Lemma 6.3 and our main theorem 7 is to

study the values pa, bq P
‰

0, 1
2

‰

ˆ r´C,Cs for which the gradients ∇f,∇g are

parallel. When Bg
Ba

‰ 0 and Bg
Bb

‰ 0 or Bf
Ba

‰ 0 and Bf
Bb

‰ 0 the parallelism

condition is equivalent, respectively, to

Bf
Ba
Bg
Ba

“

Bf
Bb
Bg
Bb

or
Bg
Ba
Bf
Ba

“

Bg
Bb
Bf
Bb

(B.1)

If the above conditions on the partial derivatives are not satisfied, then

there are four possibilities regarding the parallelism of the gradients ∇f,∇g:

Proposition B.1. Let pa, bq P
‰

0, 1
2

‰

ˆ r´C,Cs. If Bg
Ba

“ 0 or Bg
Bb

“ 0, and
Bf
Ba

“ 0 or Bf
Bb

“ 0, then one of the following is true:

1. ∇f “ 0 and ∇g ‰ 0,

2. ∇g “ 0 and ∇f ‰ 0,

3. ∇f and ∇g are parallel and non-vanishing on pa, bq,

4. ∇f and ∇g are orthogonal on pa, bq.
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In particular, under these hypotheses, the gradients of f and g are parallel if

and only if

Bf

Ba
“

Bg

Ba
“ 0, and

Bf

Bb
,

Bg

Bb
‰ 0

or
Bf

Bb
“

Bg

Bb
“ 0, and

Bf

Ba
,

Bg

Ba
‰ 0

Proof. There are four possibilities:

• Bf
Ba

“
Bf
Bb

“ 0. Then ∇f “ 0.

• Bg
Ba

“
Bg
Bb

“ 0. Then ∇g “ 0.

• Bf
Ba

“ 0 and Bf
Bb

‰ 0.

– Bg
Ba

“ 0 and Bg
Bb

‰ 0. Then ∇f,∇g are parallel and non-vanishing.

– Bg
Ba

‰ 0 and Bg
Bb

“ 0. Then ∇f,∇g are orthogonal and non-

vanishing.

• Bg
Ba

“ 0 and Bg
Bb

‰ 0.

– Bf
Ba

“ 0 and Bf
Bb

‰ 0. Then ∇f,∇g are parallel and non-vanishing.

– Bf
Ba

‰ 0 and Bf
Bb

“ 0. Then ∇f,∇g are orthogonal and non-

vanishing.

In Chapter 6 we reduced our study, for the sake of brevity, to the first

equation in B.1. With the previous proposition, all the cases for Bf
Ba
, Bf

Bb
, Bg

Ba
, Bg

Bb

when the form B.1 of the parallelism condition is not available have been

covered. But we want to show explicit conditions under which we restrict

our study to condition B.1.

We will now study when Bf
Ba

and Bf
Bb

do not vanish. The reasoning is

completely analogous for the study of the partial derivatives of g. In 6.5

we found an expression for the partial derivatives as a function of ξX , ηX ,

X P tP,Q,R, Su, pa, bq P
‰

0, 1
2

‰

ˆ r´C,Cs:

Bf

Ba
“ 2a

ˆ

ξP pbq

ηP paq
´
ξQpbq

ηQpaq

˙

˜

ξP pbq

ηP paq
´
ξQpbq

ηQpaq
´
aξP pbqBηP

Ba

ηP paq2
`
aξQpbq

BηQ
Ba

ηQpaq2

¸

,

Bf

Bb
“ 2a2

ˆ

ξP pbq

ηP paq
´
ξQpbq

ηQpaq

˙

˜

BξP
Bb

ηP paq
´

BξQ
Bb

ηQpaq

¸
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and an analogous expression for Bg
Ba
, Bg

Bb
just substituting P,Q with R, S.

Recall that ηX is strictly positive when a P
‰

0, 1
2

‰

; in particular, it is

strictly positive where the gradients ∇f,∇g are defined. Moreover, recall

from 6.3 that for each pa, bq Ps0, 1rˆr´C,Cs:

BξX
Ba

“
BηX
Bb

“ 0,

BξX
Bb

“ ´
BηX
Ba

“

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

p1 ` mXq when X does not belong to an improper

contour,

1 when X belongs to an improper horizontal

contour,

´1 when X belongs to an improper vertical

contour.

Proposition B.2. Let pa, bq P
‰

0, 1
2

‰

ˆ r´C,Cs and P ‰ Q. With the nota-

tions of Chapter 6, the conditions on table B.1 are necessary and sufficient

conditions for Bf
Ba

‰ 0 and Bf
Bb

‰ 0 depending on the contours αP , αQ

Table B.1: Table for the partial derivatives of f in Propo-

sition B.2

Bf
Ba

‰ 0 Bf
Bb

‰ 0

αP , αQ proper
ξP pbqηQpaq2 ‰

ξQpbqηP paq2
mP ‰ mQ

αP horizontal, αQ proper
ξP pbqηQpaq2 ‰

ξQpbqp1 ´ aq2

Q is an endpoint of

αQ and the

basepoint of βQ a

horizontal contour

belonging to the

same EPG

αP vertical, αQ proper ξQpbq ‰ 0 Always

αP , αQ horizontal yP ‰ yQ Never

αP vertical, αQ horizontal yQ ‰ ´b Always

αP , αQ vertical Never Never
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Remark B.1. In the previous table we skipped the cases αP proper and αQ
horizontal, αP proper and αQ vertical, and αP horizontal and αQ vertical

since they are symmetric to the cases presented in the second, third and fifth

rows, respectively.

Proof. We will first show the first column in the table. We pointed out in

6.3 that for P ‰ Q
ξP pbq

ηP paq
´
ξQpbq

ηQpaq
‰ 0

Therefore, since for a P
‰

0, 1
2

‰

ηP paq, ηQpaq ą 0, the equation Bf
Ba

“ 0 is

equivalent to

ξP pbq

ηP paq
´
aξP pbqBηP

Ba

ηP paq2
“
ξQpbq

ηQpaq
´
aξQpbq

BηQ
Ba

ηQpaq2

ðñ ξP pbqηP paqηQpaq
2

´ aξP pbqηQpaq
2BηP

Ba

“ ξQpbqηP paq
2ηQpaq ´ aξQpbqηP paq

2BηQ
Ba

ðñ ξP pbqηQpaq
2

ˆ

ηP paq ´ a
BηP
Ba

˙

“ ξQpbqηP paq
2

ˆ

ηQpaq ´ a
BηQ
Ba

˙

.

Let us denote this condition on P,Q with the letter C.

From the expression for the partial derivatives of the auxiliary equations

ξX , ηX we can refine the condition C using that

ηXpaq ´ a
BηX
Ba

“

#

1 if X does not belong to a vertical contour,

0 if X belongs to a vertical contour,

for X P tP,Qu, a P v. Indeed, if X P αX proper contour, then

ηXpaq ´ a
BηX
Ba

“ 1 ´ a ´ mXa ` a ` mXa “ 1.

Similarly, if αX is an improper horizontal contour,

ηXpaq ´ a
BηX
Ba

“ 1 ´ a ` a “ 1.

But when αX is vertical

ηXpaq ´ a
BηX
Ba

“ a ´ a “ 0.

Now we distinguish cases for αP , αQ:
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1. αP , αQ proper.

In this case, the condition C becomes ξP pbqηQpaq2 “ ξQpbqηP paq2.

2. αP horizontal and αQ proper.

The condition C is the same than in the previous case but can be

specialised using that ηP paq “ 1 ´ a. Therefore C is equivalent to

ξP pbqηQpaq
2

“ ξQpbqp1 ´ aq
2

3. αP vertical and αQ proper.

Then ηP paq´aBηP
Ba

“ 0, and since a P
‰

0, 1
2

‰

implies ηQpaq ą 0, condition

C can be written as

0 “ ξP pbqηQpaq
2

“ ξP pbq.

4. αP , αQ horizontal.

For X belonging to improper horizontal contours, ηXpaq “ 1 ´ a ą 0,

hence condition C is

ξP pbq “ yP ` b “ ξQpbq “ yQ ` b,

which is equivalent to yP “ yQ.

5. αP vertical and αQ horizontal.

In this case ηQpaq´a
BηQ
Ba

“ 1 but ηP paq´aBηP
Ba

“ 0. Therefore condition

C becomes

0 “ ξQpbqηP paq
2

“ a2pyQ ` bq.

Equivalently, yQ “ ´b

6. αP , αQ vertical.

In this situation ηQpaq´a
BηQ
Ba

“ ηP paq´aBηP
Ba

“ 0 and hence conditionC

is tautological. But that means that Bf
Ba

always vanishes when P ‰ Q.

Now let us check the second column of the table.

Using again
ξP pbq

ηP paq
´
ξQpbq

ηQpaq
‰ 0
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for P ‰ Q, the equation Bf
Bb

is equivalent to

BξP
Bb

ηP paq
“

BξQ
Bb

ηQpaq
.

Since a P
‰

0, 1
2

‰

implies ηP paq, ηQpaq ą 0 we are reduced to studying the

equation
BξP
Bb

ηQpaq “
BξQ
Bb

ηP paq.

As we did before, now we study different possibilities for the contours

αP , αQ:

1. αP , αQ proper.

BξP
Bb

ηQpaq “
BξQ
Bb

ηP paq ðñ p1 ` mP qp1 ´ a ´ mQaq

“ p1 ` mQqp1 ´ a ´ mPaq

ðñ 1 ´ a ´ mQa ` mP ´ mPa ´ mPmQa

“ 1 ´ a ´ mPa ` mQ ´ mQa ´ mPmQa

ðñ mQ “ mP

2. αP horizontal, αQ proper.

BξP
Bb

ηQpaq “
BξQ
Bb

ηP paq ðñ 1 ´ a ´ mQa

“ p1 ` mQqp1 ´ aq “ 1 ` mQ ´ a ´ mQa

ðñ mQ “ 0

Notice that if αQ is proper, then mQ “ 0 if and only if mQ is simultane-

ously an endpoint of αQ and the basepoint of some horizontal contour

βQ ‰ αQ belonging to the same extended Pareto grid as αQ.

3. αP vertical, αQ proper.

BξP
Bb

ηQpaq “
BξQ
Bb

ηP paq ðñ mQa ` a ´ 1 “ p1 ` mQqa “ a ` mQa

ðñ ´1 “ 0

In this case we reached a contradiction, so BξP
Bb
ηQpaq and

BξQ
Bb
ηP paq can-

not be equal and therefore Bf
Bb

never vanishes in this situation.
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4. αP , αQ horizontal.

BξP
Bb

ηQpaq “
BξQ
Bb

ηP paq ðñ 1 ´ a “ 1 ´ a

A tautology means that Bf
Bb

“ 0 for each pa, bq P Qo
P,Q,R,S in this situa-

tion.

5. αP vertical, αQ horizontal.

This case yields the equation a ´ 1 “ a, which is contradictory for

a P
‰

0, 1
2

‰

. Therefore Bf
Bb

‰ 0.

6. αP , αQ vertical.

This last case yields a “ a; so once again, a tautology which implies
Bf
Bb

“ 0 for each pa, bq P Qo
P,Q,R,S.

This concludes the proof.

An analogous result can be proven to characterise Bg
Ba

‰ 0, Bg
Bb

‰ 0 de-

pending on the contours αR, αS.

Of course, when a P
“

1
2
, 1
“

, the proof of Proposition B.1 still holds for

f 1, g1 and the necessary and sufficient conditions for Bf 1

Ba
, Bf 1

Bb
, Bg1

Ba
, Bg1

Bb
to be

non-vanishing on pa, bq P Q1o
P,Q,R,S are proven following the same reasoning

as in the proof of Proposition B.2.

Hence we skip the proofs and directly report the tables B.2, B.3, and B.4

containing the conditions under which the partial derivatives of g, f 1, g1 are

non-zero in pa, bq.

Propositions B.1 and B.2 completely classify the relative position of the

gradients ∇f,∇g,∇f 1,∇g1 depending on the partial derivatives Bf
Ba
, Bf

Bb
, Bg

Ba
, Bg

Bb
,

Bf 1

Ba
, Bf 1

Bb
, Bg1

Ba
, Bg1

Bb
and the contours αP , αQ, αR, αS.
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Table B.2: Table for the partial derivatives of g

Bg
Ba

‰ 0 Bg
Bb

‰ 0

αR, αS proper
ξRpbqηSpaq2 ‰

ξSpbqp1 ´ aq2
mR ‰ mS

αR horizontal, αS proper
ξRpbqηSpaq2 ‰

ξSpbqηRpaq2

S is an endpoint of

αS and the basepoint

of βS a horizontal

contour belonging to

the same EPG

αR vertical, αS proper ξSpbq ‰ 0 Always

αR, αS horizontal yR ‰ yS Never

αR vertical, αS horizontal yS ‰ ´b Always

αR, αS vertical Never Never

Table B.3: Table for the partial derivatives of f 1

Bf 1

Ba
‰ 0 Bf 1

Bb
‰ 0

αP , αQ proper
mP ξP pbqηQpaq2 ‰

mQξQpbqηP paq2
mP ‰ mQ

αP horizontal, αQ proper ξQpbq ‰ 0

Q is an endpoint of

αQ and the

basepoint of βQ a

horizontal contour

belonging to the

same EPG

αP vertical, αQ proper
ξP pbqηQpaq2 ‰

´mQa
2ξQpbq

Always

αP , αQ horizontal Never Never

αP vertical, αQ horizontal xP ‰ b Always

αP , αQ vertical xP ‰ xQ Never
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Table B.4: Table for the partial derivatives of g1

Bg1

Ba
‰ 0 Bg1

Bb
‰ 0

αR, αS proper
mRξRpbqηSpaq2 ‰

mSξSpbqηRpaq2
mR ‰ mS

αR horizontal, αS proper ξSpbq ‰ 0

S is an endpoint of

αS and the basepoint

of βS a horizontal

contour belonging to

the same EPG

αR vertical, αS proper
ξRpbqηSpaq2 ‰

´mSa
2ξSpbq

Always

αR, αS horizontal Never Never

αR vertical, αS horizontal xR ‰ b Always

αR, αS vertical xR ‰ xS Never
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Appendix C

Auxiliary elementary results

We report here the statements of some well-known results from linear algebra

classical real analysis we used in our exposition.

Theorem 10 (Rank-nullity theorem). Let F be a field and V,W be vector

spaces over F. For each F-linear map T : V Ñ W ,

dimV “ dim ImT ` dimkerT.

Proposition C.1 (Monotone convergence for sequences). Let panqnPN be a

monotonic sequence of real numbers such that there exists an upper bound

B P R such that |aN | ă B for each n P N. Then the sequence panqnPN is

convergent and:

lim
nÑ8

an “ sup
nPN

an if panqnPN is increasing,

lim
nÑ8

an “ inf
nPN

an if panqnPN is decreasing.

Theorem 11 (Implicit function theorem). Let Ω Ă Rn ˆRm be an open set,

whose points are written in the form px1, . . . , xn, y1, . . . , ymq.. Let F : Ω Ñ

Rm be a function of class C1 on Ω and pa, bq P Ω such that F pa, bq “ 0 and

the matrix BF
By

pa, bq is invertible, where

BF

By
“

ˆ

BFi
Byj

˙

1ďiďm
1ďjďm

“

¨

˚

˝

BF1

By1
. . . BF1

Bym
...

...
BFm

By1
. . . BFm

Bym

˛

‹

‚

.

Then, there exists open sets X Ă Rn, Y Ă Rm with a P X, b P Y and

such that
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• For each x P X there is a unique y “ fpxq P Y such that F px, fpxqq “

0.

• fpaq “ b and f : X Ñ Y is of class C1 on X.

Theorem 12 (Structure theorem for finitely-generated modules over PIDs).

For every finitely generated module M over a principal ideal domain R, there

is a unique decreasing sequence of proper ideals pd1q Ě pd2q Ě ¨ ¨ ¨ Ě pdnq such

that M is isomorphic to the sum of cyclic modules:

M –
À

iR{pdiq “ R{pd1q ‘ R{pd2q ‘ ¨ ¨ ¨ ‘ R{pdnq.
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