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Abstract

In recent years, a significant technological advancement has determined
the rising of collaborative robotics. While a couple of decades ago robots were
primarily used in industrial applications to replace human labour, today they
have found their way into various everyday activities in close co-operation
with humans. This era is also characterised by the remarkable progress and
development of Artificial Intelligence (AI), which enables robots to exhibit
greater flexibility and adaptability in dynamic and highly complex environ-
ments. Consequently, modern applications allow collaborative robots to work
with humans in a shared environment and even interact one with the other.
Data-based algorithms using a machine learning approach can be exploited
to train robots to perform tasks autonomously. Specifically, robotic manip-
ulators can acquire skills through human demonstration or imitation, using
the so-called Programming by Demonstration (PbD) paradigm, via kines-
thetic teaching, teleoperation, or an abstract idea of the task. This thesis
focuses on employing real-time intuitive teleoperation, used as a tool to en-
force PbD. Through this approach, a human operator can intuitively perform
uni- or bi-manual telemanipulation. In this thesis work, teleoperation was
indeed exploited to provide multiple demonstrations of a given task (or skill)
to collect a dataset of trajectories from different initial poses. The task was
demonstrated to the dual-arm Baxter robot with the specific goal of grasping
a bottle on a table with one arm and pouring its content into a glass held by
the other arm. Using Gaussian Mixture Regression (GMR) it was possible
to embed the skill described by the different demonstration trajectories into
a more general probabilistic description, which also exploits the concept of
dynamical systems for the generation of online trajectories, called Dynami-
cal Movement Primitive (DMP), which can autonomously adapt to variable
conditions. Finally, the GMR-based PbD approach was implemented and
tested by means of grasping and pouring experiments with the real Baxter
robot.



Abstract

Negli ultimi anni, si è verificato un notevole avanzamento tecnologico
che ha portato alla nascita della robotica collaborativa. Mentre in passato
i robot venivano impiegati principalmente nell’ambito dell’industria per sos-
tituire la mano d’opera umana, oggi essi hanno trovato applicazione in una
vasta gamma di attività quotidiane, collaborando strettamente con gli indi-
vidui. Quest’era è altres̀ı caratterizzata da considerevoli progressi e sviluppi
nel campo dell’Intelligenza Artificiale (IA), che consentono ai robot di di-
mostrare una maggiore flessibilità e adattabilità in ambienti dinamici e com-
plessi. Di conseguenza, le moderne applicazioni consentono agli esseri umani
di operare in un ambiente condiviso con robot collaborativi, e persino di
interagire l’uno con l’altro. Gli algoritmi basati sui dati, che utilizzano un
approccio di machine learning, possono essere sfruttati per addestrare i robot
a svolgere compiti in modo autonomo. In particolare, i manipolatori robotici
possono acquisire abilità tramite dimostrazione o imitazione umana, medi-
ante un paradigma noto come programmazione per dimostrazione. Tale ap-
proccio si avvale di modalità di insegnamento cinestetico, teleoperazione o
di una concezione astratta del compito. Questa tesi si focalizza sull’utilizzo
della teleoperazione intuitiva in tempo reale, impiegata come strumento per
raggiungere la programmazione per dimostrazione. Mediante tale approccio,
un operatore umano può manipolare in modo intuitivo il sistema robotico
tramite telemanipolazione, sia con una sola mano che con entrambe. Nella
presente tesi, la teleoperazione è stata impiegata per fornire multiple di-
mostrazioni di uno specifico compito, al fine di raccogliere un insieme di
dati riguardanti le traiettorie da diverse posizioni iniziali. In particolare,
il compito dimostrato consiste nell’afferrare una bottiglia posta sopra un
tavolo con un braccio del robot e versarne il contenuto in un bicchiere tenuto
dall’altro braccio. Attraverso l’utilizzo della Gaussian Mixture Regression
(GMR), è stato possibile incorporare l’abilità espressa dalle diverse traietto-
rie dimostrative in una descrizione probabilistica più generale, che si avvale
anche del concetto di movimenti dinamici per la generazione online di trai-
ettorie. Tale concetto è noto come Dynamical Movement Primitive (DMP)
e permette un adattamento autonomo a condizioni variabili. Infine, questo
approccio è stato implementato e testato attraverso una serie di esperimenti
di presa e versamento utilizzando il robot Baxter.
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Chapter 1

Introduction

Until a decade ago, robots were merely used to indicate an industrial auto-
matic machine able to perform heavy and repetitive jobs. Nowadays, with the
rise of Artificial intelligence (AI), robots have become more flexible and intel-
ligent, providing the possibility of even working in contact with humans. Col-
laborative Robots, also called Cobots, are anthropomorphic robots equipped
with a precise set of sensors, such as force and proximity sensors, which
make them able to interact with humans safely. Technology development
has made possible not only human replacement, but also the usage of robots
in Activities of Daily Living (ADL), collaborating with humans in various en-
vironments and sectors, such as industries, working places, hospitals, houses,
restaurants, and so on. State-of-the-art applications permit collaborative
robots not only to work near humans but also to collaborate with them and
be controlled in real-time by humans remotely. For example, robots can be
teleoperated to perform remote jobs, as in the case of robotic surgery, or they
can be used to navigate across dangerous paths for exploration or research
and rescue tasks. In the prosthetic and rehabilitation field, they can be
utilised to help humans in everyday life with exoskeletons to assist paralysed
people or with prosthetic hands or feet in case of amputated people. Differ-
ently, in industrial applications, robots have always been designed to operate
via model-based control. Starting with complete knowledge of the dynam-
ical model of the robot, the objective is to compute a control law to make
it follow a desired trajectory. Even if this control technique is very efficient
and robust to uncertainty and disturbances, it may be not sufficient in every-
day applications, since it can require a complete design change even for small
changes in the task specification. To overcome this problem, research is going
towards the exploration of data-based algorithms using a Machine Learning
approach, which allows robots to learn by demonstration or human imita-
tion. A possible data-based approach is the programming-by-demonstration
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PbD also known as Learning from Demonstration.
This framework consists of the initial collection of a set of data training set

obtained from the demonstration of the assignment to perform and replicate
by the robot. The demonstration can happen via Kinesthetic teaching, in
which the human moves the robot along a particular trajectory, via primary-
secondary teleoperation, via human imitation using a tracking system to
recognise movements of the human limbs, or via an abstract description of
the task. Then, from the demonstration, an ML-based algorithm performs
the so-called Learning Control, extracting a feasible and robust control law.
In such a way, the robot is able to learn and perform that task with complete
autonomy.

1 IntelliMan Project

This thesis work is related to the activity of the European project Intelli-
Man funded by the European Union and coordinated by the University of
Bologna. IntelliMan is concentrating on the question of “How a robot can
efficiently learn to manipulate in a purposeful and highly performant way”
[1]. To achieve that, IntelliMan is operating on designing and controlling
AI-Powered Manipulation systems for advanced robotic services in the man-
ufacturing and prosthetic field. The proposed solutions are characterized by
persistent learning capabilities regarding the interaction and manipulation of
the surrounding in a purposeful and efficient way. The robotic system will be
capable of learning unique manipulation skills from human demonstration or
from an abstract description of a task suitable for high-level planning, making
it capable of performing the task with complete autonomy and also detecting
any possible failure.
Citing the official website [1], IntelliMan has set the following specific objec-
tives

• Platform-independent knowledge transfer between different domains
and systems;

• Manipulation task structure and hierarchy learning from sensory mea-
sures and human cues, as well as new tasks planning;

• Reduction of training samples need;

• Guaranteed performance, safety and fault detection.
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2 Learning From Demonstration And Ges-

ture Reproduction Via Intuitive Teleoper-

ation Of A Humanoid Bimanual Robot

This thesis project will propose two different setups for the interactive tele-
manipulation of a humanoid bimanual robot and for the development of basic
actions and skills (e.g grasping). The solution developed will be based on
ROS, an open-source operating system for robotics, and the Vicon Tracker,
a tracking system based on infrared sensors, to track the position and ori-
entation in the space of the human upper limbs. In particular, a Baxter
robot made by Rethink Robotics will be controlled. Lastly, teleoperation
will be used as a tool to achieve Learning from Demonstration, a technique
for extracting a control law from the demonstration of a task performed by a
human. The robotic system will be then able to learn how to replicate that
task in an autonomous and robust manner, insensitively to disturbances of
the environment and with possible different starting or arrival points. This
concept inspired multiple research during the last decades, in particular, Cali-
non et al. [2], propose several methods based on the generation of a Dynami-
cal Movement Primitive (DMP), a unidimensional trajectory that represents
the shape of the movement. This can be used as a reference velocity tra-
jectory computed via a Machine learning algorithm. For the computation of
the DMP, in this thesis was used the Gaussian Mixture Regression (GMR),
a stochastic method used to train a Gaussian Mixture Model (GMM) from
a collected Training set, see Figure 1.1. A spring-damper system was then
used to guarantee the asymptotic convergence of the trajectory to the tar-
get point. In such a way, the human operator is able to teach the robot a
new task using teleoperation showing it the right movements to perform. All
the used algorithms, such as GMM and GMR will be deeply explained in
Chapter 5.

Figure 1.1: Robot learning by demonstration is divided into sub-tasks. First,
the robot is teleoperated to make it perform a task N times and to collect a
training set. After that, Learning control extracts a law from the demonstra-
tions and allows the robot to learn the performing of that task autonomy.
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Chapter 2

Robot Set-Up Description

This chapter will explain the setup used throughout the thesis, focusing on
the used components, such as:

• Robot Operating System (ROS)

• Rethink Robotics Baxter Robot

• Vicon tracking system

Lastly, the communications across the entire experimental environment
will be explained. In particular, the methods to control Baxter via ROS and
the way to track the movement of the human upper limbs using the Vicon
system for the robot teleoperation.

1 ROS

ROS [3], ’Robot Operating System’, is an open-source meta-operating sys-
tem designed for robotic applications. It provides the same functionalities
and services as a standard Operating System, such as hardware abstraction,
device driver control, inter-process communication, application management,
and other commonly used functions. The idea of ROS is to generate a high-
level control that can communicate with the lower level of the robot. The
key idea of ROS is the distributed framework of processes that run concur-
rently. Each process, called ”node”, works independently from the others
and represents a different module. The nodes are also capable of sharing in-
formation through a communication system based on the concept of ”topic”
and ”messages”.
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Figure 2.1: ROS communication scheme. Nodes are registered to a central
master and can communicate with each other through messages, services and
actions

1.1 Nodes

In ROS each executed program is denoted as a Node and it can be seen as a
single entity running concurrently in the system. Each node can communicate
with the others through a server-client communication architecture, in which
each node can work as a client but also as a server. as illustrated in figure
2.1 Communication between nodes can happen in two three ways:

• ROS topics: publish/subscribe communication.

• ROS services: a node directly invokes another node service or action.

• ROS actions

A ROS−based robot control system is usually composed of many nodes,
each one designed to have a short and specific task, the result of which
should be exchanged with other nodes. The consequence is a network of
data elaboration with a complex graph−like structure capable of solving
demanding problems. This particular architecture provides many benefits.
The biggest one is fault tolerance, as each node is an isolated part of the
system, and reduces code complexity compared to monolithic systems.

1.2 ROS Topics

ROS topics can be seen as ”mailboxes” used by ROS nodes to exchange mes-
sages in the publish/subscribe communication. One ROS node would publish
the ROS message to a certain ROS topic, while another ROS node would sub-
scribe to that ROS topic and acquire the ROS message sent. Ros nodes can
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publish or subscribe to any Ros topics since they are all characterized by a
unique name.

ROS Messages are described as .txt files inside a specific folder called msg
under the ROS package folder structure. Each ROS message is described
with a data structure that contains only primitive types (integers, floats, or
booleans) or arrays of these types. A ROS message can also include another
ROS message. creating a more complex and longer message. Since this type
of communication is not direct, the topic is the intermediary between two
nodes, the sender and the receiver keep their anonymity.

Figure 2.2: ROS Message communication scheme through a ROS Topic

1.3 Services

ROS services are another method for messages exchange as direct commu-
nication between nodes. By using the ROS services, the publish/subscribe
mechanism is avoided and nodes can send requests and replies to each other
directly using the so-called srv. Also in this case, the services have the target
folder named srv in which a custom service can be defined. Each srv is a
.txt file containing the request sent from the client node and the response
from the Server node. Since the ROS services are a form of direct commu-
nication, they improve the performance of the system, however, they reduce
the system′s decoupling.

1.4 Action

In the case that ROS services are operations requiring a certain amount of
time to be executed, ROS provides Actions. For such a reason, ROS actions
can be seen as particular types of ROS services. Those are useful if an event
occurs before the communication of the response from the server takes place,
changing the system condition. Therefore the execution of the service may be
no longer needed. To overcome this problem, an action message is composed
of three parts: Goal, Feedback and Result. The Goal, sent to the Action-
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Server by an ActionClient, is a part of the message containing information
about the objective to execute. E.g. a position or a series of parameters.
During the execution, the ActionServer is able to tell an ActionClient about
the incremental progress of the goal through some feedback. At last, the re-
sult is sent back to the ActionClient providing information about the correct
execution of the task or some other feedback.

Figure 2.3: ROS Action working scheme. Image taken from [3]

1.5 Rviz

RVIZ is a ROS graphic interface that shows the robot model to the user. It
uses data from the Robot sensors to create a representation as accurately as
possible of how the robot is moving and what it is seeing or detecting [3].
In robotic related work, Rviz is useful to show the user the so-called TFs.
As illustrated in Figure 2.4, each robot element, (E. g.links, end-effectors,
base) can be represented as a reference frame. A ROS TF is a transformation
between a fixed reference frame, called Base, and the considered object frame,
in terms of position and orientation.

Figure 2.4: Robot Baxter TF visualization on RVIZ (left) Robot Panda TF
visualization (right)
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2 Baxter Robot

Baxter is a dual-arm anthropomorphic robot designed by Rethink Robotics
as a research collaborative robot[4]. Each arm is characterized by 7 Degrees
of Freedom as joint angles, as illustrated in figure 2.5, called S0 and S1 for the
shoulder, E0 and E1 for the elbow and W0, W1 and W2 for the wrist. Conse-
quently, the End-Effector will be able to reach every position and orientation
within the Robot workspace. The seventh degree of freedom allows the robot
to extend its positioning capability and eventually perform motion avoidance
algorithms. Another important characteristic of a collaborative Robot is the
capability of operating in a non-isolated place. Due to a force sensor placed
in each joint, the robot is able to detect contact with any other object or
person and then stop the execution of the operation, avoiding hazards or
dangerous situations.

Figure 2.5: Baxter Humanoid Robot (Left) and Baxter’s Arm and Joint
Designations (Right).

2.1 Baxter Robot - Ros Interface

Taking as a reference the official website of the Baxter designer Rethink
robotics [4], the interface between ROS and the Robot is immediate. Inside
the Rethink Robot, there is an Intera SDK that provides a software inter-
face allowing researchers to develop custom applications to run on the robot.
As shown in Figure 2.6, the robot provides a stand-alone ROS Master to
which any development workstation can connect via the various ROS APIs,
simply through an Ethernet interconnection.
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Figure 2.6: Rethink Robot ROS interface.

In such a way, from the Robot State Publisher, it is possible to access all
the robot state data, such as joint angles, joint efforts, joint velocities, ROS
transform system (TF) and so on. It is also possible to control each robot
arm in four different modes:

• Joint Position Control: At every time step, it is specified the joint
angles the robot should achieve, as a list of seven values, resulting
in a full description of the arm configuration. This joint command
is then subscribed to the Motor Controller, which processes the com-
mand ensuring safety (collision avoidance and detection) and expected
behaviour by making the modifications illustrated in figure 2.7.

• Raw Joint Position Control: It is an advanced Control Mode. It is
a control type similar to the Joint position one, but it can be more dan-
gerous as it does not include Collision Avoidance and velocity scaling
algorithm.

• Joint Velocity Control: At every time step, it is specified the joint
velocities the robot should achieve, as a list of seven commanded joint
velocities, which is then subscribed to the Motor Controller. As in the
Joint Position Control, the motor controller fully processes this joint
velocity command (applying collision avoidance, velocity clipping and
detection).
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Figure 2.7: Processing executed by the motor controller to ensure safety in
the Joint Position Control. Image taken from [4]

• Joint Torque Control: At every time step, it is specified the joint
torques the robot should achieve, as a list of seven commanded joint
torques, which is then subscribed to the Motor Controller. As it is
shown in Figure 2.8, are performed only the gravity/spring compensa-
tion, the collision avoidance and the torque scaling algorithms, there-
fore this type of control can be dangerous.

11



Figure 2.8: Processing executed by the motor controller in the Joint Torque
Control. Image taken from [4]

3 Vicon Tracker

Vicon Tracker [5] is a motion capture system to track objects in space. The
system is composed by multiple infrared camera capable to identify the posi-
tion and orientation with respect to a base frame. Each object is composed
by of three or more reflective passive markers, placed accordingly to a unique
geometry, used to avoid mis-detection or confusion among them. Figure 2.9
shows an example of a tracked object, composed by seven reflective passive
markers. The software is able to detect the position in space of each one
of them, and therefore compute the position and orientation in space of its
reference frame, with respect to the Vicon base frame.
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Figure 2.9: Example object composed of seven markers (Left) and same
object tracked by the Vicon system (Right).

After an initial calibration of the cameras through some movements of
the so-called calibration wand, explained in [5], all the objects are detected
and tracked by eight Vicon Bonita cameras sampling at 100 Hz.

Figure 2.10: Vicon tracking cameras arrangement
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3.1 Vicon Ros Bridge

To read the tracked data from Vicon it was created a ROS node that acts as
a bridge and makes the tracked objects available as transformations between
reference frames on ROS. ROS TF is the transform library, presented in
[6], which lets the user keep track of multiple coordinate frames over time.
Therefore, it is possible to obtain the position and orientation of any object,
represented as a reference frame in the 3D space, which is expressed by a
Python list in the following way:

POSEobj = [x, y, z, qx, qy, qz, qw] (2.1)

Where x, y, z is the cartesian position, while qx, qy, qz, qw the quater-
nion orientation, with respect to a fixed reference frame in the exact middle
of the tracking room, called vicon of pose [0, 0, 0, 0, 0, 0, 1]

To obtain the relative TF between two objects it was implemented a ROS
function that simply makes the difference between their TFs. In such a way
it is possible to acquire the position and orientation coordinates of an object
O2 written in another object frame O1.

Figure 2.11: TFs visualization on Rviz of the objects tracked from Vicon
(left) and ROS relative transform between two different reference frames
(right)
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Chapter 3

Experimental Set Up

The teleoperation objective of this thesis work is the map between the move-
ments of human’s upper limbs and the robotic system’s upper limbs. In such
a way, the human operator would be able to intuitively control the Baxter
robot in real-time by only moving the limbs, using visual feedback. To obtain
this result, the human limbs’ movements must be tracked. This chapter will
present the experimental setup for the teleoperation of the robot arms. In
particular, there will be explained the considered mathematical model and,
after an initial calibration, the way it was exploited for the mapping between
the human and the Robot’s upper limbs. The teleoperation technique will
be explained in chapter 4.

1 Mathematical Model Of The Human Arm

An important quality of human-Robot upper limb telemanipulation is the
mapping between the human degrees of freedom and the robots. It may
not be sufficient to make the End-Effector of the robot follow the trajectory
in space of the human hand. In several applications, it is important to be
coherent with the human upper limb positioning in space, paying attention
not only to the hand but also to the elbow positioning. Consequently, it is
necessary to analyse and describe the mathematical model of a human arm.
Compared to a robotic arm, humans are characterized by a higher number
of degrees of freedom. In literature exists multiple models that try to ap-
proximate human behaviour using a lower number of degrees of freedom. As
represented in Figure 3.1 the human arm can be modelled, and thus mathe-
matically described, according to [7], as seven degrees of freedom mechanism,
in the following way.

• A spherical joint for the shoulder, composed by θ1, θ2 and θ3
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• A rotational joint for the wrist, composed by θ4.

• A spherical joint for the wrist, composed by θ5, θ6 and θ7.

• Arm and forearm length, L1 and L2

This simplified model [7] neglects scapula movement and forearm prona-
tion, but it can be considered adequate for many applications. In fact, these
two other degrees of freedom are relatively small movements and are difficult
to replicate by a robotic arm.

Figure 3.1: A simplified model of the human arm as seven degrees of freedom
mechanism. Image taken from [7]

To use the presented model it can be useful to make the same considera-
tion as in [8], in which the authors explain how the shoulder and the elbow
angles,θ1, θ2, θ3 and θ4, provide the cartesian position in space of the human
wrist, while θ5, θ6, θ7 the hand orientation. As in the previous case, this is a
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simplification because, anatomically speaking, the wrist ”rolling” angle, θ7,
is driven by the biceps and the triceps. Therefore, it is a degree of freedom
belonging to the elbow.

2 Tracking Experimental Setup

To perform a complete tracking of the human upper limbs, five different
objects have been created and each one is placed on a different human link.
The first one is called Body Frame and, as illustrated in Figure 3.2, is placed
on the human thorax guaranteeing a fixed reference frame. The remaining
objects have the purpose of tracking the movements of the human upper
limbs. Two of them are placed on the edge of the arm, just above the elbow,
while the remaining two are on the edge of the forearm, in proximity to the
wrist. Since they are placed on each link of the upper limb, they permit
the tracking of the relative motion with respect to the base frame and the
previous link. In Chapter 4, the manner in which this setup is utilized to
compute the cartesian position and orientation of the human wrist in space
will be explained alongh with the method to extract the human joint angles.

Figure 3.2: Placement of the objects on the human body (Left) and their
tracking on Vicon software (right)
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2.1 Digital Signal Processing On Vicon Measurement

In dealing with tracked objects by cameras, one of the main problems is the
faulty detection of the pose of the object, due to disturbances in the envi-
ronment. In the case of multiple tracked objects, there can be also confusion
between two different objects, leading to an inaccurate stream of data.

To deal with these problems and obtain a better detection, the design of
each single object must be unique, and with a redundant number of markers.

To avoid faulty detection of the pose of the object, the stream of data
from the Vicon was filtered with a basic algorithm of digital signal process-
ing. It is important to notice that faulty detection provides a non-continuous
trajectory, which can lead to jumps in position and orientation. To cancel
out any possible detection error, every element of the list from the TF ex-
plained in the previous section, is compared with the respective element of
the previously sampled TF. If the difference between them is greater than a
certain threshold, 10 cm for the positions and 0.1 rad for the orientations,
the new data from Vicon is eliminated and substituted with the previously
sampled data. Using this strategy, if a tracking error happens, the robot
simply remains in a safe position. To make the trajectory smoother, a sim-
ple moving average (SMA) filter of five data points has been implemented,
in the following way.

Let us consider a stream of data from Vicon of n data points in the form of
Equation 2.1, as (pose1, pose2, ..., posen). The SMA filter was performed for
each coordinate of the TF pose, therefore considering a stream of n coordinate
points (p1, p2, ..., pn).

The simple moving average filter is defined as:

SMAk =
pn−k+1 + pn−k+2 + ...+ pn

k

Therefore, considering k = 5:

SMA5 =
pn−4 + pn−3 + pn−2 + pn−1 + pn

5

Since the filter outcome is an average value of K elements, to obtain a
feasible orientation it is mandated to normalize the quaternions. In fact,
these quantities are defined in [9] as a four-parameter representation Q =
(η, ϵ), where:

η = cos
θ

2

ϵ = cos
θ

2
r

(3.1)
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η ∈ R is called the scalar part of the quaternion while ϵ = [ϵx ϵy ϵz]
T ∈ R3

is called the vector part of the quaternion. They are constrained by the
following condition [9]:

η2 + ϵ2x + ϵ2y + ϵ2z = 1 (3.2)

Hence the name unit quaternion. Following the notation of Equation 2.1,
calling (qx, qy, qz, qw) the quaternion obtained from the SMA filter, the
normalization is performed as follows.

ϵx =
qx√

q2x + q2y + q2z + q2w

ϵy =
qy√

q2x + q2y + q2z + q2w

ϵz =
qz√

q2x + q2y + q2z + q2w

η =
qw√

q2x + q2y + q2z + q2w
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3 Initial Calibration

To develop user-friendly teleoperation available for everyone, an initial cal-
ibration is necessary to find the cartesian position of the shoulder and any
possible misalignments between the elbow frame and the shoulder frame.

3.1 Cartesian Position Of The Shoulder

For the cartesian position of the shoulder, the user was asked to do some
calibration movements with both arms, while the Vicon was tracking the rel-
ative position between the Body frame and the elbow objects. In particular,
starting from the initial position with the upper limb parallel to the ground,
Figure 3.3 (right), and the final position with the upper limb down (left).

Figure 3.3: Shoulder calibration of a single arm. The operator alternates
these two calibration positions to compute the distance between the base and
the shoulder reference frame.

In such a way, by storing all data during the calibration time, plotted in
figure 3.4, it is possible to find the following positions:

• X position as the average value of all the samples (red)

• Y position as the minimum value of all the samples (green)

• Z position as the maximum value of all the samples (blue)
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Figure 3.4: X, Y and Z distance between the base and the elbow reference
frame. The X position is the average value of all the samples (red), the Y
position is the minimum value of all the samples (green) and the Z position
is the maximum value of all the samples (blue).

3.2 Elbow - Wrist Misalignment

For the relative orientation of the wrist frame with respect to the elbow
frame, the user was asked to keep the arms steady, as in Figure 3.5, while
the Vicon was tracking the relative orientation of the two respective objects.

Similarly to the previous case, the relative orientation was computed as
the average value of all the samples for each quaternion orientation. After
that, as explained in the previous section, the computation of the normal-
ization of the quaternions is necessary. With those measurements, during
the teleoperation, any possible misalignments were cancelled out merely by
performing a homogeneous transformation as the inverse of the detected ro-
tations from the calibration.
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Figure 3.5: Elbow calibration of a single arm. The operator keeps the
calibration position to compute any possible misalignment between the elbow
and the wrist reference frame.
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Chapter 4

Real-Time Dual-Arm
Teleoperation

Teleoperation is generally used to indicate the remote control of a machine,
called secondary, by a human operator who interacts with a local machine
called primary. These elements exchange information through a communica-
tion channel, as illustrated in Figure 4.2. In this context, the operator must
be able to command the machine by receiving feedback about the secondary’s
actions. It is important to guarantee some performance specifications such
as a stable connection characterized by a delay as low as possible. Teleoper-
ation systems are widely used in robotic applications. In industrial scenarios
whether the task is repetitive or strenuous. In the case of robotic surgery, for
example, the objective is to ensure better precision and eliminate any possible
human generated from hand tremors, as in the case of the Da Vinci robot [10].
In the case the environment is dangerous for human beings, several robotic
applications can be used for research and rescue tasks, as in Figure 4.1 using
underwater manipulation or robotic dogs [11]. To enable the adequate oper-
ation of robots through humans, appropriate human-robot interfaces (HRIs)
must be used, the most common example of interface available in literature
are teach-pendants, joysticks and haptic devices.
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Figure 4.1: Some examples of robotic applications in which human teleopera-
tion is used to achieve more profitable results. Da Vinci surgical robot (Up),
an underwater robot performing research tasks (Down Left) and a robot dog
(Down Right) for rescue tasks in a dangerous environment. Images taken
from [10] and [11] .

Nonetheless, most of the existing teleoperation interfaces do not permit
intuitive use and require unique expertise. It is desirable that the robotic
system can be controlled naturally and intuitively by humans, providing a
minimum dissimilarity between human operator control and robot execu-
tion. This thesis has implemented a real-time upper limb telemanipulation,
transferring human motion into a humanoid robot.

Direct human-robot motion imitation may result impossible due to differ-
ences in their kinematics. To overcome this problem, two existing approaches
of humanoid teleoperation are useful to control robotic arms, such as:

• Cartesian Telemanipulation

• Joint Mapping Telemanipulation.

The distinction is based on the way the human movement is replicated
by the robot. The Cartesian Teleoperation has the objective of controlling
the End Effector position and orientation of the robot within the workspace.
The Joint mapping focuses on imitating the Human upper limb pose by con-
trolling the robot arm directly in the joint space. This technique creates a
direct mapping between the human and the robot joints’ positions. In this
work were developed both the Cartesian and the joint mapping telemanip-
ulation. These techniques were later used as a tool to perform teaching-by-
demonstration, as there will be explained in Chapter 5.
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Figure 4.2: Teleoperation scheme used in this work. The human operator
teleoperates the Robot and interacts with the environment using visual feed-
back.

1 Cartesian Teleoperation

During the cartesian teleoperation, the control was designed to create a map-
ping between the human reference position and the robot’s end-effector. The
control is depicted in figure 4.3. Starting from the two ROS TFs between
the Base and the Wrist frame, it was performed the digital signal processing
explained in Chapter 3, composed of a Moving Average filter followed by the
normalization of the resulting quaternion.

Figure 4.3: Cartesian teleoperation algorithm for each arm.
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In such a way, for each time sample, the position and the orientation of
the human wrist within the human workspace were obtained. To transform
these TFs into a measurement valid for the robot, a scaling operation was
executed as follows:

pR =
pH Rarm

Harm

where Harm is the length of the human operator’s arm, Rarm is the length
of the robotic arm, pH and pR are respectively the cartesian position of the
Human and the robot wrist, in terms of [x, y, z]T components. In addition,
to avoid singularity configurations, a saturation in the Robot workspace was
performed. Whenever the robot receives as an input a cartesian position
outside its workspace, the input is saturated in Xsat Ysat or Zsat admissible
values. Once the position and orientation of the end-effector are known, the
inverse kinematics problem (IK) was solved, which consists on the determi-
nation of the robot joint position starting from a desired robot end-effector
configuration. The solution to this problem is of fundamental importance
in order to transform the motion specifications, assigned to the end-effector
in the operational space, into the corresponding joint space motions allow-
ing the execution of the desired motion. Since the considered Robot arm is
a redundant manipulator, an infinite set of solutions of the IK exist. For
this reason, every time step was performed the so-called Inverse Differential
Kinematics, which is based on the Jacobian matrix J. Following the approach
of [9], let us suppose a motion trajectory assigned to the end-effector in terms
of ve, and the initial conditions on position and orientation. The aim is to
determine a feasible joint trajectory (q(t), q̇(t)) that reproduces the given
trajectory. the differential kinematics equation to consider can be formally
written as:

ve = J(q)q̇

where J(q) is the corresponding (r × n) Jacobian matrix.

In the case of n = r, the IK can be easily performed as follows:

q̇ = J(q)−1ve (4.1)

However, whether the manipulator is redundant (r < n), the Jacobian
matrix is characterized by a higher number of columns than rows and infinite
solutions exist. A viable solution method is to formulate the problem as a
constrained linear optimization problem, that solves 4.1 and minimize the
quadratic cost functional of joint velocities:
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g(q̇) =
1

2
q̇TWq̇

Where W is a suitable (n × n) symmetric positive definite weighting
matrix. As in [9], solving via the Lagrange multipliers methods the optimal
solution yield:

q̇ = W−1JT (JW−1JT )−1ve

If the initial joint configuration q(0) is known, joint positions can be
computed by integrating over time as follows:

q(t) =

∫ t

0

q̇(τ)dτ + q(0)

Since the real-time teleoperation algorithm is performed in discrete time
with a frequency T = 50 Hz, the integration must be done using numerical
techniques. Considering the joint position at the previous time step as the
initial condition q(0), the joint angles are computed for each time samples
using the Euler integration method. Knowing the joint positions q(tk−1) and
velocities q̇(tk−1) at the time sample k − 1, it is possible to compute:

q(tk) = q(tk−1) + q̇(tk−1)T (4.2)
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1.1 Cartesian Teleoperation Result

As illustrated in figure 4.4, the consequence of the cartesian teleoperation is
a perfect robot achievement of the Cartesian position and orientation target
inside the robot workspace, by simply tracking the human wrist position and
orientation. The main advantage is the possibility of controlling directly the
position and orientation of the end-effector of the robot, which may result
to be convenient for the execution of some tasks such as the grasp of an
object. Another important advantage is that, since we have the cartesian
position, the recorded position can be used with different robotics platform
with different kinematics. It will be necessary to update the inverse kine-
matics, but still we have the possibility to transfer the recorded trajetory
to robotic platform. However, in case of an obstacle, the human operator
does not have any type of control over the robot arm positioning within the
workspace, particularly over the elbow position, making the task potentially
unfeasible.

Figure 4.4: Dual-arm Cartesian teleoperation.
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2 Direct Joint Mapping

A teleoperation alternative to the cartesian control is the so-called Joint
Mapping, in which the robot arm is controlled to imitate the pose of the
entire human upper limb. This teleoperation possibility is useful whether
are present some obstacles in the environment. The human operator is then
able to avoid any obstacle by simply using visual feedback (directly watch-
ing it or via webcam) resulting in a safer motion for the robot. The direct
mapping of the robot’s joint with the human body results also in a more ’nat-
ural’ movement, which will be prone to have an higher human acceptance in
collaborative environment. The mapping between the human body position
and the robot position must be carefully studied. As presented in [8], to
control the position of the human wrist, it may be only sufficient to con-
trol the first four angles of the upper limb kinematic chain (θ1, θ2, θ3, θ4, ),
which correspond to the shoulder angles and the elbow Flexione - Extension
rotation.

Figure 4.5: Example of mapping between human joint into robotic arm joint.
To control the position of the wrist, it is necessary to map only the first four
joints of the kinematic chain, which are the shoulder joints and the elbow
joint. Figure taken from [8]

In this thesis, the mapping was done by reading from the Vicon tracking
system the respective Euler angle and then remapping the human angle in-
terval into the robot angle interval. Using a saturation, it was also avoided
any possible miscalculation or tracking misdetection. As will be explained
in the next section, to control one more Degree of Freedom, it was mapped
also the wrist Pronation-Supination rotation, corresponding to the joint θ5.
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The humna-robot joints mapped are

• Shoulder Joint: θ1, θ2, θ3;

• Elbow Joint θ4: which control the position of elbowm usefull for imitiate
the human limb pose;

• Wrist Joint: θ5, θ6, θ7.

In figure 4.6 is presented the general algorithm to perform the joint map-
ping teleoperation. Starting from the two ROS TFs between the Base and
the Elbow frame, and between the Elbow and the Wrist frame, after the
digital signal processing explained in Chapter 3, composed by the Simple
Moving Average filter and the normalization of the quaternion, there were
calculated the Euler angles for the joint mapping.

Figure 4.6: Mapping between human joint into robotic arm joint. To control
the position of the wrist, it is necessary to map only the first four joints of
the kinematic chain, which are the shoulder joints and the elbow joint.

2.1 Shoulder Joint mapping

Let us call B, S and E the reference frames placed respectively on the thorax,
considered ad base frame, on the shoulder and on the elbow. Let AB

E , A
B
S and

AE
S be the Homogeneous transformation matrices respectively from frame B

to frame E, frame B to frame S and frame E to frame S, following [9] notation.
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Figure 4.7: Trasformations among base frame, shoulder frame and elbow
frame.

As is illustrated in Figure 4.7, the first tree angles of the kinematic chain,
θ1, θ2 and θ3 can be simply calculated using the Homogeneous transformation
AS

E as follows:

AS
E = (AB

S )
−1AB

E

Where AB
E is calculated for each time sample from the TF of the object

Vicon ”Elbow”, as explained in the previous chapter. Moreover, AB
S is a fixed

translation of pBS = [pX , pY , pZ ], with the following form:

AB
S =


1 0 0 pX
0 1 0 pY
0 0 1 pZ
0 0 0 1


The calculation of AB

E from the TF read from Vicon is possible by trans-
forming the TF list of 7 elements, posx, posy, posz, rotx, roty, rotz, rotw, into
a transformation matrix in the following form:

AB
E =

[
RB

E pBE
0 1

]
where RB

E is the rotation matrix and pBE is the translation vector from
frame B to frame E. The first step in finding the rotation matrix is to trans-
form the quaternion into the Euler angles, to point out the rotation along
Z, X and then Y. Note that the order of the rotations is important because,
in this applied case, the rotation along θ2 depends on the rotation along θ1,
and consequently the one along θ3 depends on θ1 and θ2. The resulting frame
orientation is then obtained by the composition of rotations with respect to
current frames, and it can be computed via postmultiplication of the matrices
of elementary rotation [9] as follows:
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RB
E = Rz(θ1)Rx(θ2) ∗Ry(θ3) (4.3)

The rotation matrix R(η, ϵ) corresponding to a given quaternion has the
form:

RB
E(η, ϵ) =

2(η2 + ϵ2x)− 1 2(ϵxϵy − ηϵz) 2(ϵxϵz + ηϵy)
2(ϵxϵy + ηϵz) 2(η2 + ϵ2y)− 1 2(ϵyϵz − ηϵx)
2(ϵxϵz − ηϵy) 2(ϵyϵz + ηϵx) 2(η2 + ϵ2z)− 1

 (4.4)

Then, it is possible to extract the Euler angles in the following way. Re-
ferring with Cθ and Sθ respectively the cosθ and the sinθ, as in [9], according
to equation 4.3, the resulting rotation matrix is the following:

RB
E(η, ϵ) =

Cθ1Cθ3 − Sθ1Sθ2Sθ3 −Sθ1Cθ2 Cθ1Sθ3 + Sθ1Sθ2Cθ3

Sθ1Cθ3 + Cθ1Sθ2Sθ3 Cθ1Cθ2 Sθ1Sθ3 − Cθ1Sθ2Cθ3

−Cθ2Sθ3 Sθ2 Cθ2Cθ3


Renaming RB

E(η, ϵ) as:

RB
E(η, ϵ) =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (4.5)

The first three angles of the kinematic chain θ1, θ : and θ3 are computed as:

θ1 = Atan2 (−r12, r22)

θ2 = Atan2

(
r32,

√
r212 + r222

)
θ3 = Atan2 (−r31, r33)

(4.6)
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2.2 Elbow And Wrist Joint Mapping

As in the case of the Shoulder joint mapping, calling E and W the reference
frames placed respectively on the elbow and the wrist, the Homogeneous
transformation matrix between them is called AE

W , and it is known any time
samples from the Vicon TF.

Figure 4.8: θ4 Elbow Flexione - Extension (Left) and θ5 Wrist Pronation -
Supination rotation (Right).

After the initial calibration explained in the previous chapter, is it possible
to find AE

E, MISS, which represents the possible initial misalignment between
the frames E and W due to human error in fixing the Vicon objects. As a
consequence, another reference frame was added, called EMISS.

Therefore, the angles θ4 and θ5, respectively Elbow Flexione-Extension
and Wrist Pronation-Supination, are extracted from the Homogeneous ma-
trix AE,MISS

W , computed as follows:

AE,MISS
W = (AE

E, MISS)
−1AE

W

To isolate the angles, the procedure is exactly the same as for the shoulder
angles in the previous subsection. Then, from AE,MISS

W it were computed
the Euler Angles XZY. All the explained calculations were done for both
arms using the Scipy Spatial Transform Python library, considering intrinsic
rotations [12].
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2.3 Direct Joint Mapping Result

As illustrated in figure 4.9, the consequence of the Joint mapping teleoper-
ation is a perfect robot imitation of the human upper limb pose. The main
advantage is the possibility of controlling directly the position of the elbow of
the robotic arm. Then, in case of an obstacle, the human operator can avoid
it easily by using visual feedback, without worrying about the kinematics of
the robot.

Figure 4.9: Dual arm Joint Mapping teleoperation.
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2.4 Control Of θ6: Wrist Flexion - Extension Rotation

As explained in the last section, the joint mapping was performed controlling
only the first five angles of the kinematic chain, namely the shoulder and the
elbow angles,, in order to control the wrist position and wrist Pronation-
Supination rotation. To make the teleoperation more task suitable, the sixth
joint, called θ6 = W1, see Figure 2.5, was also controlled based on the direc-
tion of the instantaneous end effector cartesian velocity along the x and z
directions. Depending on the performed task, the joint was controlled to be
coherent with the velocity direction or to be inopposition, by simply using a
plus or a minus sign in equation 4.7.

Defining px, t and pz, t the end effector position at time t, it is possible to
calculate vx, t and vz, t the end effector velocity at time t as follow:

vx, t =
px, t − px, t−1

∆T
and vz, t =

pz, t − pz, t−1

∆T

where ∆T is the time interval between the two samples, which is calcu-
lated considering the frequency at which the robot is controlled, so is equal
to 1/50 HZ. Starting with an initial condition of θ6,t=0 = 0, the joint angle
θ6 is computed as follow:

θ6, t = θ6, t−1 ±Kf arctan

(
vz, t−1

|vx, t−1|

)
(4.7)

where Kf is a factor that scales the importance of the velocity and pro-
duces a smoother movement. The velocity vector is calculated considering
only the Z and X components as follows:

vxz(t) = arctan

(
vz, t−1

|vx, t−1|

)
Being coherent with the velocity can be useful to avoid some obstacle

within the robot workspace.

θ6, t = θ6, t−1 +Kf vxz(t)

As illustrated in Figure 4.10b, whenever the velocity vector has a negative
sign and the end effector is going down, θ6 is controlled simulating a wrist
movement downwards, and vice versa if the velocity vector has a positive sign.

Being not coherent with the velocity keeps the gripper always parallel to
the ground. This can be useful in grasping tasks in which the objects are
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(a)

(b)

Figure 4.10: In 4.10a Sixth joint control for each arm based on the end-
effector velocity. Using this control, the human operator is assisted in ob-
stacle avoidance . In 4.10b Sixth joint control for each arm based on the
end-effector velocity. Using this control, the human operator is assisted in
obstacle avoidance

placed on a low table, as performed in this thesis in the next chapters. The
computation is the following:

θ6, t = θ6, t−1 −Kf vxz(t)
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Chapter 5

Humanoid Robots Imitation
Learning

The term Imitation Learning refers to the process of acquiring a control
strategy to achieve a task using a learning algorithm starting from a human
demonstration. Calinon et al. in [2] propose an overview of learning ap-
proaches for the acquisition of control strategies to achieve a task based on
the concept of motion primitive. Based on this framework, the teaching of
the desired trajectory and the following execution of the task can be obtained
from different modalities and learning strategies, such as:

• Human imitation via visual observation: a teaching method that
allows the human operator to communicate new behaviours to the robot
by ’showing’ instead of ’telling’, usually performed utilizing a tracking
system placed on the human operator limbs composed by cameras or
sensors;

• Programming by demonstration (PbD) concentrates on the ex-
traction of the control law from the demonstration of the task per-
formed by a human, for example via kinesthetic teaching, which means
that the operator moves the robot along the trajectory, or teleopera-
tion, via intuitive telemanipulation or using some haptic instruments;

• Reinforcement Learning (RL) can be used to either learn a skill
from a reward signal or like in this scenarion, is used to adapt and
improve the skill from an already existing demonstration. Through
different repetition of trials and errors, the robot is capable to improve
his control law.

Figure 5.1 shows some examples of learning strategies used on humanoids
or robotics arms. The example at the top left is taken from [13] in which the
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humanoid was taught to reach a chess piece and grasp it. In the example
at the top left, from [14], it was taught the humanoid ASIMO the bimanual
pouring of a liquid in a glass. The example at the bottom left is taken from
[15] in which the robotic arm was taught to flip a pancake using an RL ap-
proach. Lastly, in the bottom left, from [16], the humanoid Fujitsu HOAP-3
learned a feeding task.

Figure 5.1: Examples of Robot Learning via Kinesthetic Demonstrations or
human imitation. Images taken from [13] [14], [15], [16].

This chapter will present an overview of a learning algorithm via Programming-
by-Demonstrations based on Gaussian Mixture Regression, and a first initial
study case based on an existing dataset.
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1 Dynamical System Modulation Via Gaus-

sian Mixture Regression

This section will present the algorithm used to extract from several demon-
strations a Dynamical Movement Primitive (DMP) that is modulated with a
converging control law. This will allow a robot to learn a simple goal-directed
motion and accurately replicate it, despite dissimilarities in the initial con-
ditions or environmental perturbations. The starting point of the presented
method is PbD. It is a method that tries to extract a control law from task
demonstrations performed by a human. It is important to notice that while
in [13] PbD was performed via kinaesthetic demonstrations, in this thesis it
was achieved via Teleoperation. As illustrated in figure 5.2, the algorithm
is based on the acquisition of a Training Set of N demonstration (ζ i, ξi)Ni=1,
from which a function Fξ(ζ) is estimated, where ξi is a noisy measurement
of Fξ(ζ

i):

ξi = Fξ(ζ
i) + ϵi (5.1)

where ϵi is the Gaussian noise. The statement is to model the joint
distribution of the input variable ζ and the output variable ξ as a Gaussian
Mixture Model. By merging these variables in a vector v = [ζT ξT ]T , it is
possible to model its probability density function as a mixture of K Gaussian
functions.

P (v) =
K∑
k=1

πKN (v; µK , ΣK), such that
K∑
k=1

πK = 1.

Where πk ϵ [0, 1] are the priors and N (v; µK , ΣK) are Gaussian func-
tions with mean value µk and covariance matrix Σk, defined as follow:

N (v; µK , ΣK) = ((2π)d |ΣK |)−
1
2 exp (−1

2
(v − µk)

TΣ−1
k (v − µk)), (5.2)

where d is the dimensionality of the vector v.
The mean vector µk and the covariance matrices Σk can be separated into
their respective input and output components:

µk = [µT
k, ζ µ

T
k, ξ]

T (5.3)

Σk =

[
Σk, ζ Σk, ζξ

Σk, ξζ Σk, ξ

]
(5.4)

39



The K gaussian functions, see Equation 5.2 characterized by an own mean
vector and covariance matrices are computed through the Expectation Max-
imimization (EM) algorithm, expalined in the next subsection. The GMM
computes a joint probability density function for the input and the output
so that the probability of the output conditioned on the input is a GMM.
Hence, it is possible, after the training process, to recover the expected out-
put variable ξ̃, given the observed input variable ζ.

ξ̃ = Fξ(ζ) =
K∑
k=1

hK(ζ)(µk, ξ + Σk, ξζ Σ
−1
k, ζ(ζ − µk, ζ)), (5.5)

where hK(ζ) are the weights given by:

hK(ζ) =
µk N (ζ; µk, ζ , Σk, ζ)∑K
k=1 µk N (ζ; µk, ζ , Σk, ζ)

(5.6)

The Tilde sign indicates that we are dealing with expectation values.

Figure 5.2: Architecture of the Learning algorithm.

Lastly, the GMM explained above was used to train a Velocity Model, by
taking as input the time and as output the velocity of the end-effector ẋ. In
such a way the movement is modelled as a velocity profile in the following
form:

ẋm = F̃ẋ(t) (5.7)
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1.1 GMM Training Via Standard E-M Algorithm

The Expectation-Maximimization (EM) algorithm is a general method of
finding the Maximum Likelihood Estimation (MLE) from incomplete data
via an improved descent algorithm. [17]. Assuming that the data X =
{x1, ..., xN} are generated in an independent way from a mixture density as

P (xi) =
M∑
j=1

P (xi|ωj; θj)P (ωj)

where each component of the mixture is denoted ωj and parametrized by
θj. Given the independence assumption, the log-likelihood of the parameters
given the dataset is the following:

l(θ|X ) =
N∑
i=1

log
M∑
j=1

P (xi|ωj; θj)P (ωj)

According to [18], the EM algorithm for mixture models is an iterative
method for solving this credit-assignment problem by finding the best model
of the data that maximize the likelihood l(θ|X ). The intuition is to look for
a ”hidden” random variable z indicating which data point was generated by
which component, and then the maximization problem would decouple into a
set of simple maximizations. By using z as the indicator unknown variable, a
”complete-data” log-likelihood function can be written in the following form:

lc(θ|X ,Z) =
N∑
i=1

M∑
j=1

zijlogP (xi|ωj; θj)P (ωj)

Therefore, the EM is an iterative algorithm divided into two steps. The
Expectation step computes the expected complete data log-likelihood, in-
dicated by Q(θ|θ∥) while the Maximization step finds the parameters that
maximize the likelihood. The two steps can be described as follows:

E step : Q(θ|θk) = E[lc(θ|X ,Z)|X , θk] (5.8)

M step : θk+1 = argmaxθQ(θ|θk) (5.9)

In real-valued data 5.8 and 5.9 can be used to model a mixture of Gaus-
sian. The E step is used to compute the probability that gaussian j generates
data point i as:

hi,j =
|Σ̂k

j |−1/2N (xi; µ̂
k
j , Σ̂

k
j )∑M

l=1 |Σ̂k
j |−1/2N (xi; µ̂k

j , Σ̂
k
j )

(5.10)
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According to the notation of the normal distribution in 5.2. Afterwards,
the M step re-estimates the means and covariances of the gaussian using the
weights obtained in 5.10 as:

µ̂k+1
j =

∑N
i=1 hi,jxi∑N
i=1 hi,j

(5.11)

Σ̂k+1
j =

∑N
i=1 hi,j(xi − µ̂k+1

j )(xi − µ̂k+1
j )T∑N

i=1 hi,j
(5.12)

To perform the EM algorithm and compute the Gaussian Mixture Model
of the dataset, the Python library Scikit-learn was used [19].

1.2 Modulated Spring And Damper System

The task model described before is used in addition to a modulated spring-
and-damper dynamical system in order to enable a robotic arm with n joints
to reproduce the task with sufficient flexibility. Calinon et. al, in [16] pre-
sented an algorithm directly in joint angle variables, even if the modulation
ẋm is in end-effector space. This can be advantageous for avoiding singularity
problems related to inverse kinematics. The spring damper system will be:

θ̈s = α(−θ̇ + β(θg − θ))

where θ ∈ Rn is the vector of the joint angles. This dynamical sys-
tem produces straight paths (in joint space) to the target θg, which acts as
an attractor of the system. This ensures that the robot reaches the target
smoothly, despite any possible perturbations. The dynamical system is mod-
ulated by the variable ẋm given by the task model of equation 5.7. To weigh
the modulation is introduced the modulation factor γ ∈ R[0,1], which weighs
the importance of the task model with respect to the spring-and-damper
system.

• If γ = 0 only the Spring Damper system is considered.

• If γ = 1 only the task model is considered.

To guarantee the convergence of the system to the target θg, γ has to
tend to zero at the end of the movement, using the following:

γ̈ = αγ(−γ̇ − 1

4
αγγ) with γ0 = 1
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where γ0 is the initial value and αγ ∈ [0, 1] is a scalar.
Since ẋm lies in the end-effector space, the modulation is performed by

solving the following constrained optimization problem:

θ̇ = argmin
θ̇

(1− γ)(θ̇ − θ̇s)T W̄θ(θ̇ − θ̇s) + γ(ẋ− ẋm)T W̄x(ẋ− ẋm)

Subject to : ẋ = Jθ̇
(5.13)

Where J is the Jacobian of the robot arm m kinematic function K.
W̄θ ∈ Rnxn and W̄x ∈ Rmxm are diagonal matrices necessary to compen-
sate for the different scales of the x and θ variables. The solution to the
minimization problem (5.13) is given by [20]

The solution of the optimization problem according to [16] is the follow-
ing:

θ̇ = (Wθ + JTWxJ)
−1(Wθθ̇

s + JTWxẋ
m)

Where Wθ = (1− γ)W̄θ and Wx = γW̄x

To summarize, the task is performed by integrating the following dynam-
ical system:

θ̈s = α(−θ̇ + β(θg − θ))

θ̇ = (Wθ + JTWxJ)
−1(Wθθ̇

s + JTWxẋ
m)

To obtain a straightforward algorithm, in this thesis the modulated spring
damper system was computed directly in cartesian space, to keep direct con-
trol of the position and orientation of the end-effector in case of some obstacle
within the workspace. All the performed calculations are explained in the
next section.
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2 First Test Using An Existing Trajectories

Dataset

As a first study step, the algorithm was tested using an existing dataset of
trajectories performed by a robot to draw an alphabetic letter. The trajec-
tory was performed twelve times with a different initial point. The result,
illustrated in figure 5.3, are twelve similar trajectories with the same shape.
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Figure 5.3: Plot of N trajecories to perform the same task

To perform the GMR computation explained in the previous section, from
each position trajectory was computed the velocity trajectory, starting with
initial velocity equal to zero. The computation was performed as follow:

vk =
pk − pk−1

∆T
(5.14)

where pk and pk−1 are the position respectively at instant time k and k-1.
∆T is the constant time interval set to 1/50Hz, that is 0.02 seconds.
After the computation of twelve velocity trajectories, the Gaussian mixture
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regression was performed, obtaining a Motion Primitive as a velocity trajec-
tory. In Figure 5.4 are illustrated all the components of the GMR algorithm.

The dots scattered in the plot represent the training data. The ellipses are
the Gaussian components described in Equation 5.2, each one characterized
by a mean vector, Equation 5.3 and covariance matrix, Equation 5.4. Finally,
the red thick line defines the DMP as a velocity trajectory obtained by GMR,
described in equation 5.5.

Figure 5.4: GMR of the velocity dataset computed via equation 5.14 form
the position trajectories in Figure 5.3. The dots symbolise the training data,
the ellipses are the Gaussian components, and the red thick line defines the
trajectory obtained by GMR.

Considering a point Xg as the target the spring damper system can be
written as follow:

ẍS = α (−ẋ+ β(xg − x))

Since the algorithm was performed in discrete time, for an easier under-
standing, the control law can be written as a PD controller in the following
way:
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a(t)S = −Kdv(t) +Kp(x
g − x(t)) (5.15)

where α and β are gains of the control law. Therefore, following the
approach explained in the previous section, a discrete-time control law was
computed as follows:

v(t+ 1) = γF̃v(t+ 1) + (1− γ)vS(t) (5.16)

where γ is the modulation factor.
The velocity of the spring-damper system vS(t) was calculated as a first-order
newton approximation from the acceleration in 5.15, as follows:

vs(t) = v(t) + τaS(t) (5.17)

where v(t) is the real velocity of the system at time t. Then, by replacing
5.15 in 5.17, it is possible to obtain:

vs(t) = v(t) + τ(−Kdẋ+Kp(x
g − x))

The calculations were performed as finite-difference equation, considerng
x(0) = X0 and V (0) = 0.

In Figure 5.5 is represented the algorithm block diagram. R(t) is the
control regulator, which coincides with equation 5.16.

Figure 5.5: Control Law block diagram.

The convergence to the target depends on the modulation factor γ. Fig-
ure 5.6 represents different types of modulation factors used in this thesis,
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with are linear, parabolic and exponential behaviour, representing a different
degree of convergency.

Linear : γ =
−t

T ime Samples
+ 1

Exponential : γ = exp

(
−5.5 ·

(
t

T ime Samples

))
Parabolic : γ =

(
−t

T ime Samples
+ 1

)2

(5.18)

In this applied case: Time Samples = 200 By keeping the modulation
factor constantly to zero or to one, the robot will follow respectively the PD
controller trajectory or the GMR position trajectory.
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Figure 5.6: Different types of modulation factor γ
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3 Resutling Modulated Trajectory

This section will present the resulting trajectory varying several parameters
in the control law. In any case, the resulting trajectory, Figure 5.7, will be a
modulation between a position trajectory obtained from the GMR Dynamical
Movement Primitive velocity trajectory and a position trajectory obtained
from the PD controller, to ensure the fast convergence to the target point xg.

Figure 5.7: Position trajectory obtained from the GMR Dynamical Move-
ment Primitive velocity trajectory (UP left) and position trajectory obtained
from the PD controller (Up Right). The output is a modulation between
these two trajectories (Down).
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3.1 Algorithm Adaptation

One of the essential characteristics of robot Programming by human demon-
stration is the flexibility to variations of initial or final conditions in order to
teach the robot a feasible trajectory for any similar tasks. Figures 5.8 and
5.9 (Right) show two different trajectories with the modulated control law
respectively starting from two different initial points and with two different
target points. In both cases, the target was reached in a robust way.
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Figure 5.8: Trajectories with two different initial points, respectively 4.0
(Red) and −2.0 (Blue).

Figure 5.9 (Left) shows also the robustness of the algorithm in the case the
target point is in the opposite direction with respect to the DMP direction
of the motion.
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Figure 5.9: Trajectories with two different target points, respectively 3.0 and
0.0 (right) and in the case the target point is in the opposite direction with
respect to the DMP direction of the motion, respectively 0.0 and −4.0.
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3.2 Tuning Of The Spring-Damper System

To ensure the convergency to the target point a good tuning of the PD
controller is crucial. Figure 5.10 shows the plot of the output trajectory
and the PD controller with the values of Kp and Kd respectively of 100
and 20, which guarantee a fast asymptotic convergency without any kind of
overshooting.
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Figure 5.10: Modulated output trajectory converging to the target point (Up)
and tuned PD control law ensuring the asymptotic convergency (Down)
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Those values were chosen because a less aggressive control law could fail
with the convergence of the modulated output trajectory. As illustrated in
figure 5.11 with the values Kp = 20 and Kd = 10, the target point on the
output trajectory was not reached on time.
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Figure 5.11: With a less aggressive control, the modulated output trajectory
(UP) does not converge to the target even if the PD control law (Down) does
converge.
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3.3 Differences On The Modulation Factor γ

This subsection compares the three types of modulation factors γ explained
above. In particular, sliding from the GMR trajectory to the PD control law
trajectory in different ways could bring completely distinct results.
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Figure 5.12: Output position (Up) and velocity (Down) trajectories using a
linear modulation factor .
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Figures 5.12, 5.14 and 5.13 illustrate the position and velocity trajectories
with the three different modulation factors, respectively linear, parabolic and
exponential explained in section 2.
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Figure 5.13: Output position (Up) and velocity (Down) trajectories using an
exponential modulation factor.
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Figure 5.14: Output position (Up) and velocity (Down) trajectories using an
exponential modulation factor.

Figures show that each result can have some advantages but also some
drawbacks.

55



• The linear modulation factor maintains the GMR profile for a long time
but if the target is too far from the initial point, the convergence is not
guaranteed even if the PD controller is well-tuned with an aggressive
control.

• The exponential modulation factor is too aggressive from the conver-
gence side. The DMP from the GMR is followed only at the very
beginning of the trajectory.

• The parabolic modulation factor is a good compromise between the
first two. It guarantees convergence to the target while keeping the
DMP from the GMR.

The drawback of the linear modulation factor is shown in figures 5.15 in
which the modulated output trajectory is not able to reach the target.
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Figure 5.15: Possible drawback of the linear modulation factor. The modu-
lated output trajectory (red) is not able to reach the target (black) even if
the PD control (Blue) is well-tuned.
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3.4 Robustness To Obstacle

To check the robustness of the presented control law, some straightforward
obstacle avoidance applications were attempted by changing online the target
point simulating an obstacle in the middle of the workspace. Figures 5.16
and 5.17 show the output trajectories changing the target respectively from
8.0 to 12.0 and from 8.0 to 4.0. In both cases, to move as more as possible
towards the control law trajectory the exponential modulation factor was
utilised.
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Figure 5.16: Output modulated trajectory in case on a obstacle.

57



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
2

3

4

5

6

7

8

Po
sit
io
ns
 [m

]
Position trajectory with exponential modulation factor

Target point
Position

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [s]

2

3

4

5

6

7

8

Po
sit
io
ns
 [m

]

PD controller

Kp = 120, Kd = 15

Figure 5.17: Output modulated trajectory in case on a obstacle.
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Chapter 6

Real Case Scenario:
Teleoperation And Learning
Tests

This Chapter will present a practical experiment with the aim of teaching
the dual-arm Robot Baxter a new job, such as grasping a Bottle placed on
a table with one hand and subsequently pouring the liquid into a glass held
by the other hand. The job is divided into three tasks, namely:

• Grasp the bottle;

• Reach the glass;

• Pouring of the water.

The job was performed as a state machine, in which each task is a state
characterized by its own control loop.
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Figure 6.1: Entire task Flow Chart

60



1 Imitation Learning Via Teleoperation

Following the passages described in chapter 5, the first objective is to demon-
strate to the robot the correct execution of the task. Each task was per-
formed by the human operator via teleoperation fourteen times, while the
end-effector pose and its velocity were recorded. Each demonstration started
from a different initial pose and terminated at a different point. To obtain
that, the position of the bottle on the table was slightly changed every time.
According to 2.1, the end effector pose was recorded as position and quater-
nion orientation, namely for each time instant i:

posei = [px, py, pz, qx, qy, qz, qw]

On the other hand, the velocity was recorded in terms of cartesian velocity
and RPY rate, namely:

posei =
[
vx, vy, vz, Ṙ, Ṗ , Ẏ

]

Figure 6.2: Teleoperation of the task ’Grasp the bottle’.

61



Figures 6.2 and 6.3 show the demonstration through intuitive robot ma-
nipulation of the entire job. Figure 6.2 exhibited the sequence of the teleop-
erated task ’Grasp the bottle’, while in figure 6.3 the sequence of both the
other tasks, such as ’Reach the glass’ and ’Pouring of the water’.

Figure 6.3: Teleoperation of the tasks ’Reach the glass’ and ’Pouring of the
water’.

All the recorded poses and velocities trajectories of the end effector during
the teleoperation, according to the algorithm described in chapter 5, are
necessary to perform GMR. Figure 6.4 shows the X coordinate position and
velocity trajectory recorded.

62



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.4

0.6

0.8

1.0

Po
sit
io
ns
 [m

]

End oint X  osition over time

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [s]

−0.2

0.0

0.2

0.4

0.6

Ve
lo
cit
ie
s [
m
/s
]

End oint X velocity over time

Right End-effector position and orientation over time

Figure 6.4: Examples of X position and velocity sets from the teleoperation
demonstrations.

1.1 Gaussian Filter

As it is possible to notice in Figure 6.4, the demonstrated trajectories present
a lot of noise, due to teleoperation errors. In digital signal processing, a Gaus-
sian filter is a filter having an impulse response which is an approximation of
a Gaussian function used for designing a finite impulse response digital filter
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[21], in the form:

G(u) = e−u2

Mathematically, this filter modifies the input signal by convolution with
a Gaussian function. The result illustrated in Figure 6.5 is a set of smoother
trajectories without noise. To perform the 1D Gaussian filter the python
library scipy.ndimage.gaussianfilter1d [22] was used.
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Figure 6.5: Examples of X position and velocity sets Gaussian filtered to
eliminate noise.
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2 GMR Computation For Each Task

In this section are described the Gaussian Mixture Regression computation
for each one of the three tasks of the overall job namely ’Grasp the bottle’,
’Reach the glass’ and ’Pouring of the water’. The GMR was computed for
each velocity component, both for position and orientation.

V elocity components =
[
vx, vy, vz, Ṙ, Ṗ , Ẏ

]
(6.1)

For each component of 6.1 the GMR was computed according to the
calculations in chapter 5.

2.1 Grasp The Bottle

In Figure 6.6 are illustrated the GMR of the velocity of the cartesian com-
ponents, ẋ, ẏ and ż.

Figure 6.6: GMR of the velocity of the cartesian components in the bottle
grasping task.
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To compute the output modulated velocity of equation 5.16, a target
cartesian point was initialized as [Xg, Y g, Zg], coinciding with the bottle
cartesian position on the table. Finally, a spring-damper system was com-
puted for each component as in Equation 5.15 to asymptotically converge to
the target. Figure 6.7 illustrates the GMR of the velocity of the three ori-
entation components represented in Roll Pitch and Yaw velocity. ϕ̇, θ̇ and
ψ̇.

Figure 6.7: GMR of the velocity of the RPY components in the bottle grasp-
ing task.

To obtain a feasible orientation trajectory, at each time instant, the RPY
velocity was transformed into quaternion velocity as q̇x, q̇y, q̇z and q̇w, using
the Scipy Python library [12], considering intrinsic rotations along xyz axes,
in a similar method of Chapter 4. Subsequently, a modulated spring damper
system was designed for each independent component of the vectorial part
of the quaternion, see Equation 3.1, namely qx, qy and qz. To compute
the output modulated velocity of equation 5.16, a target quaternion point
was initialized as

[
q̇gx, q̇

g
y , q̇

g
z , q̇

g
w

]
, coinciding with the desired quaternion

orientation that the robot should reach to grasp the bottle on the table. The
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last quaternion component qw is computed according to the unit quaternion
definition of Equation 3.2, as:

qw = 1−
√
q2x + q2y + q2z (6.2)

2.2 Reach The Glass

In Figure 6.8 are illustrated the GMR of the velocity of the three cartesian
components, ẋ, ẏ and ż.

Figure 6.8: GMR of the velocity of the cartesian components in the glass
reaching task:

To compute the output modulated velocity, as in the previous case, a
new target cartesian point was initialized as [Xg, Y g, Zg]. To find the target
position the glass cartesian position, which coincides with the left robot end
effector, is translated by a vector that represents the bottle encumbrance. In
this case [Xg, Y g, Zg] . The purpose of this translation is to avoid collision
between the two end effector and to centre the glass with the bottleneck
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during the pouring task, see Figure 6.10. Finally, a spring-damper system
was computed for each component as in Equation 5.15 to asymptotically
converge to the target.

Figure 6.9 illustrates the GMR of the velocity of the three orientation
components represented in Roll Pitch and Yaw velocity. ϕ̇, θ̇ and ψ̇.

Figure 6.9: GMR of the velocity of the RPY components in the glass reaching
task.

As in the previous case, the RPY velocity was transformed into quaternion
velocity as q̇x, q̇y, q̇z and q̇w. Subsequently, a modulated spring damper
system was designed for each independent component of the vectorial part of
the quaternion qx, qy and qz. To compute the output modulated velocity of
equation 5.16, a target quaternion point was initialized as

[
q̇gx, q̇

g
y , q̇

g
z , q̇

g
w

]
. In

this task, the target orientation point was computed by implying a rotation
of 90 along the X axes. According to Equation 4.4, the orientation of the
robot left end-effector can be found from the ROS TF as a rotation matrix.
Calling RB

EEL
(η, ϵ) the rotation matrix from frame Base to the Frame End

Effector Left :
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RB
EEL

(η, ϵ) =

2(η2 + ϵ2x)− 1 2(ϵxϵy − ηϵz) 2(ϵxϵz + ηϵy)
2(ϵxϵy + ηϵz) 2(η2 + ϵ2y)− 1 2(ϵyϵz − ηϵx)
2(ϵxϵz − ηϵy) 2(ϵyϵz + ηϵx) 2(η2 + ϵ2z)− 1


Therefore the target orientation can be computed as a rotation matrix

from frame Base to the Frame End Effector Right, by rotating RB
EEL

(η, ϵ) of
α = 90 along the X axis as follow:

RB
EER

(η, ϵ) =

1 0 0
0 cos(α) −sin(α)
0 sin(α) cos(α)

RB
EEL

(η, ϵ) (6.3)

Once the new rotation matrix is calculated, the target orientation point
can be calculated by computing the quaternion corresponding to a given
rotation matrix [9], following the rotation matrix notation of equation 4.5 as
follow:

η =
1

2

√
r11 + r22 + r33 + 1

ϵ) =
1

2

sgn(r32 + r23)
√
r11 − r22 − r33 + 1

sgn(r13 + r31)
√
r22 − r33 − r11 + 1

sgn(r21 + r12)
√
r33 − r11 + r22 + 1


Lastly, once the converging trajectories of qx, qy and qz were computed

the last quaternion component qw can be found according to the unit quater-
nion definition, see Equation 6.2.

Figure 6.10: Relative position between the bottle and the glass.
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2.3 Pour The Liquid

In Figure 6.11 are illustrated the GMR of the velocity of the three cartesian
components, ẋ, ẏ and ż.

Figure 6.11: GMR of the velocity of the three cartesian components in the
pouring task.

The modulated velocity was then computed as in the previous cases. As it
is possible to notice from Figure 6.11, exclusively the Z component presents
a relatively high peak of velocity obtained from the pouring demonstrations,
due to the necessity to keep the bottle steady along the X and Y directions
during the pouring task.

Figure 6.12 illustrates the GMR of the velocity of the three orientation
components represented in Roll Pitch and Yaw velocity. ϕ̇, θ̇ and ψ̇.
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Figure 6.12: GMR of the velocity of the RPY components in the pouring
task.

To perform the pouring of the water, the target quaternion point was
obtained by rotating the current end-effector orientation of α = 90 along the
Z axis. The rotation was calculated as in Equation 6.3, by considering a
different rotation matrix as follows:

RB
EER

(η, ϵ) =

cos(α) −sin(α) 0
sin(α) cos(α) 0

0 0 1

RB
EEL

(η, ϵ)
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3 Overall Task Trajectory

By applying the PbD algorithm explained in the previous section, the entire
job was completed in a robust manner. As notable in Figures 6.13 and 6.14,
the end effector reaches the bottle position, grasps the bottle in a safe mode
by reaching the target point with a translation only along the Z direction
and then points towards the glass where it performs the pouring of the liquid,
with a single smooth rotation.
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Figure 6.13: Entire task trajectory 3D plot

Figure 6.14 shows the evolution of each component trajectory over time.
It is possible to notice that from the time instant 8 seconds to the end, the
cartesian position is kept constant while the orientation is changing. This
time interval is the ’pouring of the water task’. It is required to keep the
position steady to not spill the water on the ground.
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3.1 Adaptation To Variations Of Initial Or Final Con-
ditions

To validate the result of Chapter 5 about the Robustness to variations of
initial conditions the control algorithm was tested starting from different
positions within the robot workspace. Figure 6.15 illustrates four different
trajectories all converging to the same final point, which in this case is the
bottle position.

x po
siton

 [m]

0.70
0.75

0.80
0.85

0.90
0.95

1.00

  position [m]

−1.00
−0.95

−0.90
−0.85

−0.80
−0.75

−0.70
−0.65

z position [m
]

0.0

0.2

0.4

0.6

0.8

3D trajectories starting from different initial points

Figure 6.15: 3D trajectories starting from different initial points.

The same validation about the algorithm robustness can be observed by
changing the target point. In Figure 6.16 are shown four different trajectories
converging to distinct target points. This was easily obtained by changing
the end-effector position of the robot’s left limb.
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Figure 6.16: 3D trajectories with different target points.

3.2 Practical Results

As illustrated in Figure 6.17 the dual-arm Baxter robot is able to correctly
replicate the job in complete autonomy. The only external information
needed is the position of the bottle in the workspace. Figure 6.17 sequence
1− 4 shows the bottle grasping sub-task, while the sequence 5− 8 the glass
reaching and the water pouring sub-tasks.
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Figure 6.17: Learned job performed by the robot in complete autonomy
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Chapter 7

Conclusion

The objective of this thesis was to perform Imitation Learning to teach a
dual-arm robot a new task starting from a human demonstration. The ob-
jective task was the grasping of a bottle placed on a table with one hand and
then pouring the liquid into a glass held by the other hand. To achieve so, in
this thesis project two different setups for the interactive telemanipulation
of a humanoid bimanual robot are proposed, used for the development of
basic actions like reaching and grasping some objects, etc. In particular, a
Baxter robot made by Rethink Robotics was controlled. The solution de-
veloped is based on ROS, an open-source operating system specialized for
robotic applications, and the Vicon Tracker, a tracking system based on in-
frared sensors, to track the position and orientation in the space of an object.
In this case, it was used to track motion in the space of the human upper
limbs. Teleoperation was used as an instrument to achieve Learning from
Demonstration (LfD), also called Programming by Demonstration (PbD), a
machine learning-based procedure for the extraction of a control law start-
ing from the demonstration of a task performed by a human. Following the
Learning Control approach, a Dynamical Movement Primitive (DMP) was
generated as a reference velocity profile of the task. Gaussian Mixture Re-
gression (GMR) is a stochastic method used in this thesis to train a Gaussian
Mixture Model (GMM) from a collected Training set and then extract the
velocity model of the system. A spring-damper system was then used to
guarantee the asymptotic convergence of the trajectory to the target point.
A modulation factor γ was used to slide from the DMP to the convergent
control law. In such a way, the human operator is able to teach the robot
a new task using teleoperation showing it the right movements to perform.
The robotic system was therefore able to learn how to replicate that task
in an autonomous and robust manner, insensitively to disturbances of the
environment and with possible different starting or arrival points.
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In future works, the teleoperation platform can be integrated with al-
ternative end-effectors such as a human-like hand. The grasping will be
controlled directly from the user operator through EMG sensors placed on
both human forearms. This robotic interface will, according to IntelliMan
objectives, be able to learn new tasks using DMP approach exploiting more
advaced algorithms, such as Hidden Markow Models (HMM), or RL algo-
rithms. Afterwards, a shared-control telemanipulation system AI-driven will
be developed for both prosthetics and robot manipulation applicatoins. The
primary objective will then be the development of a configuration that accu-
rately perceives the operator’s intentions and responds accordingly, reaching
the capability of autonomously executing the task or a perfect co-activity.
By implementing the sliding autonomy paradigm [23], the system will exhibit
resilience and adaptability in the face of changing circumstances.
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