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Abstract

The following thesis has the classic purpose of exposing a problem and

evaluate and analyze a possible solution to it.

In this case, the problem is Face Morphing Detection, that is the recog-

nition of alterations and counterfeits of facial images in order to enhance

today’s biometric security systems.

The solution explored is the Federated Learning, which is a branch of

Deep Learning more concerned with privacy and data protection, which

could represent one of the few approaches able to respect the stringent

regulations in force today regarding the protection of sensitive data.

In particular the thesis, after a detailed explanation of the morphing prob-

lem and the potential of Federated Learning, explores the use of the

NVFlare framework, a product developed by NVIDIA that enables the

training of machine learning models using Federated Learning.

At the end of the thesis, conclusions are drawn and considerations are

made on the work done and the results obtained.
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Chapter 1

FACE MORPHING

1.1 Definition

Face morphing is a computer graphics technique that consists in combin-

ing two or more images of real existing human faces to create an inter-

mediate image (containing facial features of both subjects) that shows an

additional, realistic but nonexistent face, which can be seen as a specific

frame belonging to a gradual transition from one face to the other of the

input faces[1].

This technique is used in both artistic and scientific fields, for example

to create special effects in movies or to study human perception of facial

expressions, but it can also pose a problem as it can be exploited by ma-

licious people to carry out illegal actions.

However, the most common process of face morphing, which will be ex-

plored in more detail in this chapter, consists in identifying key points in

the source images, such as eyes, mouth and nose, and create a kind of
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map of these.

Then a geometric distortion is applied in combination with a blending

operation (averaging of light intensity values) to create an intermediate

image showing a smooth transition between the two source images as re-

ported in figure 1.1.

Figure 1.1: transition of frames, gradually fading from the first subject to

the second. Source: [1].

In addition to this method, there are also other techniques that allows

face morphing and it’s important to cite GAN-based methods that don’t

use landmark points and don’t need the blending and warping process.

Face morphing can be done manually or by using specialized software,

which helps automate the process of identifying key points of the face and

generating the intermediate image quickly and accurately[2].

In particular, this report addresses face morphing from its most prob-
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lematic point of view, highlighting its potential risks, consequences and

possible solutions.

In fact face morphing, by creating hybrid images of two or more people,

can be used as an attack and deception tool for biometric security systems

that are increasingly beginning to be adopted by entities such as banks

or airports[3].

Consider in particular:

• bypassing facial recognition systems through the creation of hybrid

images that allow malicious attackers to gain undeserved access to

private and sensitive information or places where they could not

gain access

• violation of the principle that the link between a document and its

rightful owner must be unique

• falsification and identity theft

• privacy threats → given by the fact that face morphing is capable of

creating images that represent an individual in a false or misleading

way, also causing damage to his reputation

• difficulty in identification and thus loss of effectiveness of biometric

security measures.

In order to prevent these security problems, it is important to implement

a strong awareness and sensitization campaign about the limitations of

state-of-the-art biometric technologies, and thus stimulate and fund re-

search not only related to the creation of more advanced and robust facial

recognition systems, but also research related to the study and implemen-
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tation of sophisticated algorithms capable of doing face morphing detec-

tion (a topic covered extensively in the following chapter).

1.2 A case study

An exemplary case study to further explore the concepts expressed above

may be that of a criminal who intends to trick an airport’s facial recogni-

tion systems to catch a flight despite being prohibited from doing so.

Well, since 2002, the face has been chosen as the anatomical biometric

trait for automatic identity confirmation in machine readable electronic

travel documents (eMRTDs[4]).

However, to be considered valid, the facial image portrayed in the elec-

tronic document must meet stringent requirements set by ISO[5].

Nevertheless, nowadays it is possible to submit the image that will be at-

tached to the electronic document in two ways, depending on the country:

• or by capturing the applicant’s face using a high-resolution camera

carried out directly in the office issuing the document → rather safe

method, which effectively prevents the possibility of any alteration

to the image

• or, and it is much more problematic in that it allows face morphing,

through a paper printout of a photo of one’s face that the citizen

delivers to the office that issues the electronic document.

The second case in fact makes it possible to alter the photo by morphing

before its delivery[6].

In any case, we point out that this type of attack does not affect the va-

lidity of the document: the attack is not about altering its content, but
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about deceiving the controller (human or electronic).

It is also worth noting that unintentional or otherwise independent of

face morphing but equally problematic alterations may be present, such

as embellishment filters or distortions and resizing, which still alter the

morphology and geometry of the face.

Indeed, any alteration, whether intentional or not, is problematic because

it risks compromising the proper process of identification and automatic

identity verification[7].

Several studies[8] in the literature have gone into detail of the effects

of image alteration on facial recognition systems, demonstrating that cur-

rently popular recognition algorithms work properly only on slight and

simple alterations, while proving to be unrobust and dangerously vul-

nerable to more significant alterations, causing a significant increase in

the false rejection rate, that is the number of times in which the system

wrongly denies access to those in good faith and therefore in possession

of authentic images with respect of the total number of attempts.

In practice, what is analyzed by the studies cited above is the feasibil-

ity of an attack on an ABC system[9] carried out using morphed facial

images obtained by combining the faces of different subjects.

At the time of verification at ABC, a live captured facial image of the

person presenting (for example at the airport) is compared with the face

image saved in the eMRTD.

Well, if the digital image contained in the e-passport is the result of a

face morphing process, then the same document can be brought back by

the people to whom the input faces belong, potentially allowing criminals
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and malicious people to take advantage of the passport of an accomplice

or unsuspecting victim to get through security checks[10].

This process is shown in figure 1.2.

Figure 1.2: illustration of the classic scenario of a possible attack carried

out by submitting a morphed photo during electronic document creation.

Source: [10].

As anticipated, several studies in the literature have tried to evaluate these

scenarios, focusing not only on the feasibility of such deception, but also

on the robustness of currently popular control systems in the presence of

morphed images[11].

Regarding the attack on ABC systems, an emblematic study is that car-

ried out by the University of Bologna[1], conducted through two common

facial recognition software (Neurotechnology VeryLookSDK and Luxand

FaceSDK) but confirmed by subsequent studies carried out through other

software commonly used in airports.
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This study is exceptionally valuable because it places a great deal of em-

phasis on the realistic reliability of its process, suffice it to say that a pre-

liminary phase of setting the operational threshold of the facial recognition

software was conducted in a manner that complies with what is specified

by the guidelines provided by FRONTEX[12], the European agency for

the management of cooperation at the borders of the member states of

the European Union.

In particular the reference maximum threshold value is 0.1% FAR with

maximum 5% FRR.

Once this parameter was adjusted, the attack was structured by selecting

two images of different subjects having some facial similarity but whose

individual images would not cause a false match using the threshold de-

scribed above[13].

Finally that pair of images was combined into a third image by a morph-

ing process described below.

At this point the third image generated was compared with the input

images and the results obtained were studied which, as anticipated, un-

derscore a clear vulnerability of the currently used systems.

The morphing process of the two images is discussed in detail below before

commenting on the results obtained.

Keep in mind that morphing can be seen as an animation, a special tran-

sition effect that shows one face morphing into another.

In the reported study in particular, morphing was performed on the im-

ages using GIMP and GAP (GIMP Animation Package) with the aim of

producing an artificial image that is very similar to one of the two subjects

but has particular facial features taken from the other subject, so that it

is possible to confuse and swap the two faces.
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It is good to specify that the goal of creating a realistic third face is eas-

ily achievable even if the two input faces are quite different from each

other[14].

Taking two images in particular, the morphing process used in the first

study mentioned above involves the following steps using the two software

programs above:

• the two images are overlaid manually according to the position of

the eyes but on two different layers

• a set of relevant facial points such as eyes, cheekbones, eyebrows,

nose, chin and forehead are marked in the two images

• a long sequence of frames showing the transition from one face to

another is automatically generated through a special function of the

GAP software

• one of the resulting frames is carefully selected, scanning the frames

starting from the image of the accomplice and advancing until the

examined frame also matches with a test photo of the criminal’s face

• finally, it is possible to manually retouch the resulting frame to make

it more realistic, such as removing visible artifacts introduced by the

morphing process.
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In figure 1.3 is shown the final step of morphing process.

Figure 1.3: representation of the selected frame before and after manual

retouching. Source: [1].

The above experiment was performed on 5 pairs of men, 5 pairs of women

and two extra cases: a man-woman mix and a mix between three men.

The test showed that all of these trials resulted in a successfully executed

attack, that is a deception of the facial recognition software, which was

found to be unable to detect morphing and thus recognize the counterfeit

image as belonging to both individuals involved.

The study’s conclusions focus on a few main aspects:

• first of all these critical issues are traced to the possibility given

to the citizen to submit, when applying for the eMRTD, a printed

photo produced prior to the application and therefore potentially

subject to alteration → the study therefore suggests eliminating this

possibility by maintaining as the only method of face presentation

its acquisition in the office by an attendant alone;

• moreover, the study underscores that the quality of morphing can

be so high as to fool even an experienced human examiner;
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• finally, it could be shown that the blending operation[15] is respon-

sible for producing, especially in some areas near landmark points,

noticeable artifacts that can lower the quality of morphing.

1.3 Face morping generation

It is necessary to point out that actually the one given in the previous

section is only one among many possible ways to generate a morphed

image, called Landmark-based morph generation[16].

In addition to this there are also other more advanced techniques that

take advantage of Deep Learning[17], specifically neural networks called

Generative Adversarial Networks[18].

All the face morphing generation methods are depicted in figure 1.4.

Figure 1.4: taxonomy and subdivision of major face moprhing generation

techniques [10].
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1.3.1 Landmark-based morphing

Landmark-based morphing algorithms, as mentioned earlier, rely on the

detection of facial points of interest, such as the nose, eyes and mouth,

which are used to align and combine the faces of the two contributing

subjects.

There are now several software programs that can perform automatic de-

tection of the specific somatic features required for morphing the two

images (such as Dlib[69]), and once this is done, these points are overlaid

and aligned in an intermediate position.

There are various techniques for doing this procedure, among which it

is good to mention Free Form Deformation[19] and the Deformation by

moving least squares[20].

It should be specified that the accuracy of the previously described pro-

cedure of identifying and overlaying facial points of interest has a direct

impact on the quality and credibility of the generated morphed images.

It is also specified that manual detection currently provides more accu-

rate points than automatic localization, which in fact focuses only on the

central region of the face, ignoring the forehead and cheekbones.

Once the relevant points of the two faces have been identified, the morph-

ing process can be described by the following mathematical formulas[21].

Defined I0 and I1 as the two images that are intended to be combined

and P0 and P1 as the corresponding two sets of points, each frame is a

weighted linear combination of I0 and I1, formally:

Iα(p) = (1− α) · I0(ωPα→P0(p)) + α · I1(ωPα→P1(p))

where

• p is a generic pixel position
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• α is the frame weight factor, that is the contribution of the image I1

in morphing (for example α = 0.4 means that the morphed image

will be obtained for 40% from I1 and for 60% from I0)

• Pα is the set of corresponding points aligned according to the pa-

rameter α

• ωPα→Pβ
(p) is a warp function[22].

As mentioned, as a result of this process some blocks of pixels are re-

placed, leading to the misalignment of other pixels that contributes to the

generation of some inconsistent and unrealistic features, which risk com-

promising the quality of the morphing process and thus its credibility[23].

In particular, the problems that arise are mainly two:

• macroscopic ghost effect in the area surrounding the face → caused

by the fact that landmarks are placed in the central region of the

face, while landmarks are not considered for hair or ears[24]

• minor counterfeit marks (for example double edges or unnatural

iris reflections) present in facial features for which insufficient or

inaccurate landmark points were used.

These two defects need to be addressed by adjustment operations such as

image smoothing, image sharpening, edge correction, manual retouching,

backgroud substitution and skin color equalization.

As mentioned, many open source libraries and software including GIMP

and OpenCV take advantage of landmark-based morphing.
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1.3.2 Deep Learning based morphing

The second type of technology that can generate morphed images is called

Deep Learning Based.

These techniques use special neural networks called Generative Adversar-

ial Networks (GANs), which can synthesize morphed images generated

from sampling the two input facial images in the latent space of the net-

work itself (that is in a compressed and summarized representation of it).

Generally this type of generation produces morphing with some problems,

especially low similarity with the two starting subjects, as it is difficult to

preserve their identity.

They are still used because they do not exhibit the artifacts of landmark-

based methods, although artifacts typical of GANs remain[25].

In essence, although morphing via GAN does not require manual cor-

rective interventions subsequent to image generation or even preliminary

steps of landmark-points search and alignment, landmark-based methods

remain the best in terms of the quality of the face produced.

GANs are based on the action of two different agents: a generator and a

discriminator.

The former is concerned with producing distribution samples that are as

indistinguishable from the training distribution as possible, while the lat-

ter trains to determine whether the samples submitted to it come from

the real set of training images or the artificially generated samples from

the generator.

The training process of these neural networks gradually improves the qual-

ity of the samples produced by the generator, which thus perfects its abil-

ity to deceive the discriminator.
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It should be noted, however, that this basic idea has been progressively

refined and improved over time, introducing other actors (for example en-

coders) as well, in order to achieve better and better performance.

Note in the table 1.1 below a summary of the advantages and disad-

vantages pertinent to the two morhped image generation techniques seen

above:
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TECHNIQUE ADVANTAGES DISADVANTAGES

LANDMARK

BASED

Availability

of free

tools, high

quality

of the generated

image,

ability to easily

deceive

the FRSs today

widespread, ease of

usage from

automatic procedures[26]

and similarity between

subjects increases the

chances of success[27]

Needs of

manual

interventions for

artefact removal and

needs of

posthumous actions

DEEP

LEARNING

BASED

Manual

interventions not

required, greater

simplicity

and similarity between

subjects increases the

chances of success

Needs of

complex training,

possibility

of geometric

undesirable

distorsions,

it needs attention

when choosing

subject for

what concerns age,

gender and ethnicity

and low similarity with

contributing subjects

Table 1.1: advantages and disadvantages pertinent to the morhped image

generation techniques cited.
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Chapter 2

FACE MORPHING

DETECTION

2.1 Introduction

Face morphing detection[28] (or MAD, Morphing Attack Detection) is the

process that detects whether a face image has been generated using mor-

phing techniques.

These techniques are important for verifying the authenticity of images

and fight the use of false images for illicit purposes.

As mentioned, the goal of a morphing attack is to circumvent the fa-

cial recognition system (FRS) in an ABC (Automatic Border Control)

gate by presenting an eMRTD or electronic document whose image was

obtained through a face morphing process.

In this way a criminal could, with the help of an accomplice, unduly pass

such controls and gain access to areas prohibited to him.
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Not only border controls, this kind of deception can increase the vul-

nerability of so many environments: health care, banking and even law.

In fact, it should be noted that today the presence of free software that

makes it easy and accessible to anyone (even non-experts) to create these

types of counterfeit images exponentially increases exposure to facial recog-

nition system deception.

A further factor contributing to the increase in the prevalence of this type

of scam concerns the possibility of autonomous renewal of documents:

more and more nations, including the United States, New Zealand and

Ireland, are in fact offering the possibility of renewing a passport without

physically going to any office, but simply uploading to a web portal an

updated facial photo, which therefore may have been previously counter-

feited through face morphing.

Given all these vulnerabilities, several studies have been published in re-

cent years[29][30][31], both academic and industrial, some of which are

also funded by government institutions[32] (such as the European Union),

which aim to research, describe and illustrate ever-better techniques and

algorithms for performing the so-called MAD (Morphing Attack Detec-

tion).

Even the University of Bologna has contributed actively in this area of

research by submitting the SOTAMD project, which with its platform is

now a benchmark for the evaluation of MAD techniques through a dataset

containing nearly 6,000 high-quality images to perform comparative anal-

yses under realistic conditions.
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2.2 MAD techniques

As anticipated in the previous sections, various tests[33] have shown that

a human examiner, whether expert or not, dramatically fails to detect

whether morphing has been applied to an image.

Automatic approaches are therefore needed to solve the problem of MAD[34].

The MAD techniques available today can be classified into two sets based

on the number of images provided as input:

• Single-image based MAD[35] (S-MAD) → the presence of mor-

phing alterations is detected using only the single suspected image

• Differential image based MAD (D-MAD) → receives as input

a pair of images, one of which can be viewed as the image on the

passport and the other as a trusted photo captured live.

All the MAD techniques are shown in figure 2.1.

22



Figure 2.1: taxonomy and subdivision of MAD techniques. Source: [10].

Whatever MAD technique is used, it is worth noting that facial images

may come from different sources and therefore may also have very different

characteristics, such as size and resolution.

Therefore, it is important to preliminarily normalize the photos before

subjecting them to the detection process.

2.2.1 S-MAD

S-MAD techniques are the one applied when one needs to perform detec-

tion based solely on the image submitted to the algorithm, not on other

hypothetical images with which to perform analysis and comparisons.

This is for example the practical case of verifying the image during en-

rollment.
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Figure 2.2 briefs the S-MAD process.

Figure 2.2: note that in this case the detection of the attack must be done

using a single image. Source: [10].

In turn, it is possible to distinguish these techniques into 5 additional

subtypes based on the functional characteristics employed:

• Texture Features Based S-MAD[36] → based on extracting and

analyzing surface layer texture characteristics of the image, that is

using image processing algorithms to identify unique properties of

textures such as gradient distribution, variance and correlation be-

tween neighboring pixels to identify any defects or inconsistencies

→ this method is all in all accurate and fast and is based on the fact

that some studies[37] have shown that morphed images are charac-

terized by a different texture than unaltered images and that JPG

compression emphasizes this aspect

• Quality Based S-MAD[38] → uses multiple aesthetic quality pa-

rameters of the acquired images to identify any anomalies or incon-

sistencies, for example measurement of brightness and sharpness or

angle distortion → these evaluations are then aggregated and pro-

cessed to determine and estimate the degradation of the image and
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if it is greater than a certain threshold the algorithm assumes it has

been manipulated → this method is less precise than others but is

often faster and easier to implement

• Residual Noise Based S-MAD[39] → analyzes pixel discontinu-

ity through a process of subtraction between the given image and

the version cleaned of noise (for example imperfections and distor-

tions present in a digital image such as chromatic aberrations or

ghosting) to identify any anomalies

• Deep Learning Based S-MAD[40] → as the name implies, this

method uses neural networks previously trained through a large

dataset to autonomously identify any anomalies in the image

• Hybrid S-MAD[41]→ as the name suggests, combines two or more

morphing detection methods to improve the accuracy and overall ro-

bustness of the system → unfortunately, this approach also involves

a significant increase in cost and computational complexity.

S-MAD techniques are generally considered to be the most complex com-

pared to D-MAD techniques, since having a second comparison image is

a great help in correctly solving the problem.

Since there is no second image available, S-MAD techniques base their de-

cision on the principle that morphing procedures leave marks and traces

on the counterfeit image that, although slight and imperceptible, help

spotting the attack[42].

2.2.2 D-MAD

The goal of Differential Image Based MAD is to verify whether the ana-

lyzed image has been morphed by comparing it with another photo of the
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same subject acquired in a safe environment.

These techniques are therefore particularly well suited to the classic bor-

der control scenario described above, in which precisely the image on the

passport potentially subject to morphing is compared with an image ac-

quired live by the ABC system.

Figure 2.3 briefs the D-MAD process.

Figure 2.3: in this other case, however, you have two photos of the subject,

which are therefore compared to detect the possible attack. Source: [10].

This approach can also be divided basically into two techniques:

• Feature Difference Based D-MAD[43] → uses the difference

between the characteristics extracted from the two representations

of the subject (the one presented and the one acquired) to identify

any anomalies and inconsistencies → examples of algorithms used to

extract features may be the study of landmark points, spectral anal-

ysis or the study of textures → image points with a high difference

are identified as defects and thus possible morphing signals
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• Demorphing[44] → involves reversing the morphing process to re-

veal and study the basic images initially provided as input → this

inversion can be done either by landmark points or by deep learning.

2.2.3 Performance study

Several studies analyzing the behavior and performance of the most pop-

ular MAD techniques can be found in the literature.

Well, such studies focus on identifying and evaluating the following pa-

rameters:

• vulnerability of the facial recognition system

• MAD performance.

Regarding the first point, that is the vulnerability assessment of the FRS,

this is intended to measure whether a set of morphed images is capable

of deceiving a face recognition system (FRS).

There are mainly two mathematical metrics in the literature that are

usually considered and that accurately describe this parameter:

• Mated Morph Presentation Match Rate → defines the pro-

portion between the morphed images identified and the morphed

images contributed by the formula

MMPMR =
1

M
·

M∑
m=1

[min(1..Nm) · Sn
m] > τ

Where M is the number of morphed images, Nm is the total num-

ber of subjects that contributed to morphing, Sn
m is the degree of

compatibility of the n-th subject in morph number m and finally τ
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is the threshold of the FSR → in practice, this mathematical for-

mula is based on the fact that a morphing attack is successful if all

of the contributors are recognized in the morphed image, and thus

this metric assesses the degree of vulnerability of an FRS by mak-

ing an authentication attempt for each contributor to produce the

morphed image and verifying that this attempt exceeds the prede-

termined minimum authentication threshold

• instead the Fully Mated Morph Presentation Match Rate can

be seen as an evolution of the previous metric → always concerns

the vulnerability of an FRS but also takes into account the weight

and number of successful attempts made using test images of the

subjects that contributed to the morphed image →

FMMPMR =
1

P
·
∑
M,P

(S1PM > τ)AND...AND(SkP
M > τ)

where P is the number of attempts made comparing all test im-

ages of subjects with the M-th morphed image, while K=1..k is the

number of subjects who contributed to the creation of the morphed

image, SkP
M is the degree of compatibility of the k-th subject in the

p-th attempt corresponding to the M-th morphed image and finally

also here τ is the threshold of the FRS → the fact that the num-

ber of attempts evaluated for each morphed image is also taken into

account results in greater accuracy and reliability.

As for the evaluation of the second significant aspect, MAD performance,

however, these focus on measuring the robustness of MAD algorithms

through metrics established by ISO[5].
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Since MAD can be viewed as a binary classification problem, the two

main metrics for evaluating performance are:

• Attack Presentation Classification Match Rate → calculates

the percentage of examples of morphing attacks misclassified as au-

thentic facial images (false negative, a forged image is mistakenly

considered valid)

• Bona Fide Presentation Classification Match Rate → cal-

culates the percentage of authentic facial images misclassified as

morphing attacks (false positive, an image that is instead authentic

is mistakenly believed to be forged).

From an algebraic point of view:

BPCER(τ) =
1

N
·

N∑
i=1

H(bi − τ)

APCER(τ) = 1−
[
1

M
·

M∑
i=1

H(mi − τ)

]
where:

• N is the number of training datatsets

• M is the number of models trained

• bi and mi are the detection scores

• τ is the score threshold at which are compared bi and mi

• H(x) is a generic step function.
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There is also an additional metric that encapsulates the two parameters

described above to assess the quality of morphing recognition systems,

namely the Detection Equal-Error-Rate (EER), which corresponds to the

error rate where BPCER and APCER coincide.

To detect and visualize EER, the Detection Error Trade-off (DET) curve

is usually used, which shows the change in BPCER values as a function

of APCER values (that is the change in their ratio).

The EER is identified by intersecting the DET curve with the bisector of

the plane (also called the identity line).
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The EER representation is shown in figure 2.4.

Figure 2.4: EER representation. As easy to guess, a low EER indicates

better morphing attack recognition capability. Note also the distance

between the points and the admissible region, that is the one that meets

the operational thresholds required by FRONTEX.

Finally, note that in addition to EER, other points of interest are often

highlighted on the DET curve, such as:

• BPCER0.1 → BPCER value when the APCER is equal to 10%,

that is is the percentage of genuine images that are misclassified as

manipulated when APCER is 10%

• BPCER0.05 → BPCER value when the APCER is equal to 5%,

that is is the percentage of genuine images that are misclassified as
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manipulated when APCER is 5%

• BPCER0.01 → BPCER value when the APCER is equal to 1%,

that is the percentage of genuine images that are misclassified as

manipulated when APCER is 1%.

It is worth noting that these particular metrics are useful to evaluate

because FRONTEX has established minimum acceptable thresholds con-

cerning them that must be met for a system performing morphing attack

detection to be deemed sufficiently reliable.

Also for this topic, the technical and scientific literature has conducted and

published several studies and experiments[2][3][4], evaluating the above

metrics also through the databases and datasets produced.

The most interesting results can be summarized in the list below:

• gender weighs heavily on the chance of deception → the chance of

cheating recognition software appears to be 10% higher whether the

subject portrayed is a woman

• the accuracy and quality of manual corrective retouching is a deter-

mining parameter → mild or poor interventions can lead to attack

failure, while correct and sophisticated interventions increase the

chance of a successful attack

• the behavior of the recognition software changes depending on which

morphing algorithm was used to produce the image

• as expected, the quality of morphing directly and still too heavily

impacts S-MAD and D-MAD techniques
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• is generally much more problematic with S-MAD than with D-MAD,

because of the less information in preliminary possession that is

useful for correctly estimating the authenticity of the image

• none of the algorithms today have performance compatible with the

operational requirements demanded by FRONTEX → this confirms

that the problem of face moprhing attack detection remains chal-

lenging to solve and absolutely urgent[45].

The studies present today also agree about the identification of outstand-

ing challenges and environmental and operational conditions that hinder

the search for optimal algorithms for MAD resolution, such as:

• the absence of large-scale public datasets, due to GDPR and regu-

lations on privacy protection of portrayed subjects

• confusing, contradictory and nonstandardized criteria about the se-

lection of subjects for morphing

• problems related to the recognition of twins, look-alikes and people

with similar facial features

• one of the most complex challenges involves the fact that photos,

which are natively digital, are first printed by the photographer and

then scanned to be attached to the electronic document → MAD is

therefore done on the image after undergoing this process known as

printing/scanning (P&S), which increases the level of difficulty in

evaluation because it removes most of the small digital details that

would be useful in detecting morphing.

It is good to elaborate on this last point since, in order to achieve high ac-

curacy, neural networks used in Deep Learning based MAD, as mentioned
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extensively in this thesis, need a large training dataset.

But unfortunately, it is difficult to collect adequate databases of samples

due to the fact that manual production of morphed images at high quality

is a long and tedious process.

An interesting proposed solution to this problem is a study[29] that in-

vestigates the possibility of artificially and automatically generating large

sets of morphed images even simulating their submission to the process

P&S, which would therefore be very useful in the training process of neu-

ral networks.

The results of that study show that the use of imaging P&S artificially

simulated significantly improves MAD performance.

2.2.4 The new approaches

Recent studies[46] are focusing on overcoming the obstacles and restric-

tions in current approaches to MAD, such as training data that are limited

in quantity and variety or privacy issues that prevent the exchange and

sharing of data.

Some studies, in particular, are exploring the possibility of using incre-

mental training for MAD on data also held by different research groups,

a learning strategy that would no longer involve sharing data but rather

transferring the entire model.

The specific problem that this method attempts to overcome is that pri-

vacy regulations in place today impose stringent practical limitations

about the collection, dissemination and sharing of biometric data (par-

ticularly facial images).

In such a scenario, the search for new and more effective algorithms for
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MAD is greatly slowed by the fact that each laboratory is forced to de-

velop, train, evaluate and test its own MAD model on its own data.

In particular, these limitations have a strong impact on the reproducibility

and generalization ability of the model, which in fact sees its performance

drop dramatically when subjected to previously unseen data.

There are now two specific types of Deep Learning that could overcome

these limitations:

• Continual Learning[47] → a learning paradigm described in this

section

• Federated Learning[48] → the approach explored and studied in

this thesis.

Continual Learning focuses on the ability of models to learn new knowl-

edge continuously without forgetting previously acquired knowledge[49].

This is a major problem with regard to artificial intelligence because many

models tend to forget previous information when trained with new data.

This technique, which is still being studied in terms of its application to

the MAD problem, involves showing, during model training, each dataset

once, so that incremental learning is simpler and can be extended to the

case of new data encountered for the first time, without the need for time-

consuming review procedures or storing all training data in the same place.

This peculiarity helps to counteract the so-called catastrophic

forgetting[50], that is the phenomenon that occurs in artificial intelligence

models when they forget previously acquired knowledge during training

on new data, caused by the fact that most models are optimized to fit new

training data by overlapping or deleting previously acquired information.
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Luckily, the Continual Learning paradigm assumes that not all training

data are always available at all times, effectively leading to the creation

of agents adept at continuously learning from newly acquired data rather

than accessing past data.

The classic workflow of this approach is summarized in figure 2.5 below:

Figure 2.5: note that the model is trained incrementally on different

datasets (d1..dN) and evaluated at many validation stages (t1..tN). The

training procedure can be continued at will and without the need to re-

train the model from the beginning or transfer past model data. Source:

[46].

This particular development allows a research group to train its model

internally on its own data and then share it with other researchers so that

they can continue to train it on their own datasets, thus without any data

transfer.

This way of training could foster the emergence of new MAD algorithms

or the updating and improvement of existing ones.

36



Emblematic turns out to be the study[46], conducted by carrying out

several experiments with an increasing degree of Continual Learning in

order to observe changes in training behavior and performance:

• Naive → classical classifier training, in which data are available at

all times and catastrophic forgetting is not counteracted

• Fine tuning → the model is initially trained as in the previous

point, but after some time the intermediate part of the neural net-

work is suspended from its work, while the terminating part of the

network (that is the part that is charged with classification) contin-

ues the learning process

• Continual Learning→ implemented through the methods of Learn-

ing Without Forgetting (in which in addition to the current model

being trained, the previous one is also available) and Elastic Weight

Consolidation (where past data classification weights are considered

less reliable).

Well, the results obtained from comparing the metrics calculations made

in these different situations suggest that Continual Learning may be a

suitable and effective solution in MAD, although further in-depth studies

are needed.

2.3 Databases for MAD

MAD techniques benefit from the existence of so many datasets and

databases, both public and private, that contain useful information to

evaluate the reliability of FRS systems and the performance of MAD al-

gorithms.
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Incidentally, it is worth pointing out that one of the first databases for face

morphing, based on morphed image generation through landmark-based

techniques, was introduced by researchers and professors at the University

of Bologna.

Despite its initial small size, this dataset is continuously expanding with

public databases.

However, despite the existence of many different morphing-themed datasets,

almost all of them are private due to licensing and regulations regarding

the privacy of the portrayed subjects.
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Chapter 3

FEDERATED LEARNING

3.1 Definition

Federated Learning is a distributed machine learning technology that al-

lows devices to train common patterns without having to share their sen-

sitive data.

This type of learning takes place at a decentralized level, as data is

processed on the device itself, without being transferred to a central

server[51].

3.2 Scope of application

Federated Learning was originally developed to solve privacy and security

problems in the processing of personal data.

Sensitive data can be difficult to protect and its dissemination or process-

ing on a third-party server, in addition to being a point of huge vulnera-

bility, violates data protection laws.
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We recall in fact that, as is also the case with MAD, collecting and an-

notating datasets is a costly, laborious and problematic process from the

standpoint of compliance with regulations that protect user privacy (such

as GDPR, HIPAA, SHIELD, and PCI).

It is worth noting that today, however, there are technologies that al-

ready enhance the protection of personal data, including:

• cancelable biometrics[52] → provides for changing data through

revocable but nonreversible transformations

• BioHashing[53] → uses random projections to generate templates

• Differential privacy[54] → the behavior of the algorithm changes

little if a single individual joins or leaves the dataset

• Homomorphic encryption[55] → implements processing and cal-

culations on encrypted data.

Nevertheless, the Federated Learning-oriented approach introduces a more

robust and wider protection mechanism: efficient neural network learning

from decentralized data.

3.3 The workflow

Through Federated Learning, machine learning models are trained on data

on individual devices, such as smartphones, laptops or tablets, and infor-

mation is shared only in the form of statistical aggregates, without indi-

vidual raw data being transferred directly to other devices.

This makes the model training process more private and secure.
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The Federated Learning process can be summarized in the following steps:

• diffusion → the server distributes the basic model to the various

devices (clients) that form the machine learning network

• local training → each device trains the model locally on its local

data and sends the aggregated results to the central server

• model aggregating → the central server uses these results to per-

form a secure aggregation[56] of the received parameters, improving

the global model without storing any local information of the indi-

vidual client

• parameters broadcasting→ the server distributes the aggregated

parameters to the devices

• model updating → all clients update their local models with the

received aggregate parameters and check their performance.

This process is repeated several times until the overall model reaches a

satisfactory level of accuracy.
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The devices network required for Federated Learning is shown in figure

3.1.

Figure 3.1: network structure for Federated Learning. Source: [57].

Federated Learning is already used today in many fields, including health

care, artificial intelligence for mobile devices, advertising and cybersecu-

rity.

In fact, today’s applications of greatest interest are distributed learning

on smartphones (for example for predicting the next word in Google’s

keyboard[58] or developing Apple’s voice assistant without sharing user

data with a central server), learning between organizations (fostering

multi-institutional cooperation and collaboration) and the Internet of

Things (think about wearable devices, autonomous vehicles and home

automation).

3.4 The limitations still present

Despite the many advantages that have emerged so far, the Federated

Learning paradigm still introduces challenges and obstacles[59] related
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to:

• communication → internal communications in federated networks

are much slower than local computations → methods are therefore

needed to improve and speed up communications by iteratively send-

ing model updates as part of the training process

• heterogeneity of systems → the different storage, performance,

power and connectivity capabilities of each device lead to a system

that is less stable and more prone to failures and slowdowns

• non-IID data → devices often generate and collect data in a non-

IID manner (that is not independently and identically distributed),

thus leading to unbalanced data

• privacy-related pathological problems remain.

An example of a problem related to the last point is collaborative deep

learning, described in figure 3.2 below:

Figure 3.2: an example of collaborative[60] deep learning, in which the

purpose of the ”adversary” user is to reconstruct face images stored in

the ”victim” device via GAN. Source: [57].

The image above also allows us to expose three key properties of the
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combined use of Federated Learning and Differential Privacy, which used

together can bring benefits in some specific area of research:

• performance and privacy level are inversely proportional

• fixed the level of data protection, increasing the number of clients

participating in Federated Learning can improve performance and

convergence

• it is possible to calculate the optimal number of aggregations (or

communication rounds) from the desired convergence and privacy

level.

3.5 Split Learning Network

Federated Learning is made possible through the use of particular neural

networks known as Split Learning Networks[61].

These involve each client training a partial neural network only up to a

certain layer (called the cut layer).

The outputs of the cut layer are then sent to the server, which completes

the training on the remaining part of the neural network and does back-

propagation up to the cut layer.

The gradients of the cut layer are then sent back to the individual clients

and the process continues until the network has completed training.
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Figure 3.3 shows a more detailed view about Split Learning Networks.

Figure 3.3: structure of Split Learning Networks [57].

Using a large number of clients and partitioning the learning process shows

positive results and an increase in computational, communication and

memorization efficiency.

3.6 Conclusions

Let us finally focus on the possible benefits that the Federated Learning

approach brings in relation to the two main problems highlighted in the

previous chapters: face recognition and face morphing attack detection.

Note in particular the following image:
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The Federated Face Recognition process is depicted and summarized

in figure 3.4.

Figure 3.4: illustration of the so-called Federated Face Recognition[62].

Source: [57].

As noted in figure, the Federated Face Recognition process is initiated by

passing a labeled input image through a feature extractor to obtain the

feature vector, which is then multiplied by the classification matrix to ob-

tain the probability that the input image belongs to each of the identities.

To summarize, the Federated Learning paradigm requires that training

data and procedures are distributed across multiple devices and that the

model is shared and learned collaboratively.

In this particular architecture, the server does not disappear, but rather

plays the key role as the center for coordinating interactions.

By doing so, this approach turns out to be compliant with current data

protection regulations and overcomes the problems highlighted in previ-

ous chapters regarding MAD algorithm research, namely the obstacles

associated with sharing and transferring data between different research

groups.
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Figure 3.5 represents the interactions between server, user and data

centers in a network based on Federated Learning.

Figure 3.5: example of training and application of Federated Learning for

the facial recognition problem. Source: [57].

However, despite the presence of some technical limitations such as con-

nection latency or low throughput, Federated Learning is undoubtedly an

interesting alternative to traditional approaches.

The in-depth evaluation of its applicability to the MAD problem, specifi-

cally, is studied in this report and presented in the following chapters.
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Chapter 4

PRELIMINARY CONCEPTS

Before embarking on the study and testing of the practical operation

of the Federated Learning framework NVFlare, some basic preliminary

theoretical concepts essential for understanding the operations that will be

carried out in the programming guide are given in the following sections.

4.1 Training and testing

The machine learning process that characterizes machine learning ab-

stractly consists of finding a model that can describe and/or predict a

phenomenon from a set of data.

The model is built using a dataset called training set, while its validity

and correctness is verified using a different dataset called test set.

The training set is used to train the model, that is to make it learn from

the data.

Specifically, the model is trained on the data in the training set in order
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to study it, understand it and thus be able to describe and/or predict the

phenomenon in question.

The testing set, on the other hand, is used to evaluate how the model

behaves on data it has never seen before.

In this way, it is possible to check its correctness and robustness, but also

its generalization, that is its ability to make good predictions on new data

not present in the training set.

To give a concrete example, we can mention one of the most popular

areas of machine learning use: image classification, a topic that is very

extensive but which we will nonetheless go into in more detail in a follow-

ing section.

Let us imagine that we want to build a model that can recognize images

of cats.

The training set might consist of a thousand images of cats, while the

testing set might consist of a hundred images of cats that the model has

never seen before.

As stated earlier, during training the model learns to recognize cats, while

during testing we assess how well the model has learned and thus how well

it can recognize cats in the novel images in the testing set.

4.2 Epochs

Epochs are a key concept in deep learning: an epoch represents a com-

plete cycle through the entire training dataset.

Thus, an epoch can also be defined as the time it takes the model to see

and learn from all the samples in the training dataset.
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Then an epoch, which is an important training hyperparameter, is com-

pleted whenever the model sees the entire training dataset.

For example, if a training dataset consisting of 100 images is used and

10 epochs are set, the model will evolve its ability to learn and generalize

by studying all 100 images 10 times.

In practice, this means that as many iterations will be performed as the

number of epochs set and each iteration covers all the images that make

up the dataset.

The number of epochs is a very important parameter in training a ma-

chine learning model and is inherently dependent on the complexity of the

model itself and the amount of training data available.

In general, it is important to find the right balance between the number

of epochs needed to achieve good accuracy and the time and cost that can

be invested in model training activities.

In theory, in fact, a model might learn better if it sees the data several

times.

In reality, however, if too many epochs are used, the model may overtrain

and then begin to memorize the data from the training set and wrongly

repeat it to the new instances instead of generalizing the notions learned

to the new data.

This problematic behavior is known as overfitting.

To avoid overfitting, it is important to use well-established strategies to

identify the appropriate number of epochs, such as cross-validation eval-

uation (which is the method used by the NVFlare framework) or early

stopping, which allow model training to be stopped when significant im-
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provement in accuracy is no longer achieved.

4.3 Cross-site validation

As anticipated in the previous section, cross-validation is a technique used

to evaluate the generalization ability of a machine learning model.

There are several variants of cross-validation, the best known of which

are:

• k-fold cross-validation→ the training data are divided into k sets

and the model is trained on k-1 sets and evaluated on the last set

• holdout cross-validation → the training data are divided into a

training set and an evaluation set and the model is trained on the

training set and then evaluated on the evaluation set.

As mentioned in the previous section, it is of particular interest that cross-

validation helps to identify the appropriate number of epochs for a ma-

chine learning model.

This can be done in several ways:

• by monitoring the evaluation error → during training the evaluation

error should decrease while the number of epochs increases until a

point is reached where no significant improvement is observed → the

number of epochs in which such a halt in the decrease in evaluation

error is observed can be considered as the optimal number of epochs

• analyzing the learning curve, that is how the occurrence of the rating

error changes in relation to the current epoch → the number of
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epochs at which the inflection point of the learning curve is observed,

following which the rating error no longer decreases significantly

despite the progression of epochs can be considered as the optimal

number of epochs.

4.4 Learning curves

In deep learning, loss function and accuracy are two fundamental metrics

commonly used to evaluate the performance of a model.

Specifically, loss is a measure of the model’s error with respect to the

training data.

There are different loss functions depending on the type of machine learn-

ing problem being addressed, such as the log-loss function for classification

problems or the mean-squared-error loss function for regression problems.

Instead, accuracy is a measure of model precision that is calculated as

the percentage of correct predictions to the total number of predictions

made.

It is a common metric for classification problems, but can also be used for

regression problems.

Both of these metrics allow the model to be evaluated throughout its

operation, both during and after training.

In particular, loss is used to monitor the performance of the model during

training, while accuracy is essential to evaluate the performance of the

model on the test data, thus once the training is over.
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A more refined tool for evaluating model performance than the individual

indices of loss and accuracy are the graphs of these two parameters as a

function of advancing time or epochs (called learning curves) which, in a

classical correctness situation, should show a general trend toward model

improvement.

The loss graph should in fact show a descending trend towards a lower

value as the model learns from the training data and the error decreases.

Initially, the loss might be high and fluctuate significantly, but it should

stabilize and decrease over time.

The accuracy graph, on the other hand, should show a trend toward a

higher value as accuracy is expected to increase.

Also in this case, large fluctuations are possible in the initial phase of

training, but the value should stabilize and increase over time.

Examples of learning curves are depicted in figure 4.1.

Figure 4.1: ideal curves for accuracy and loss. Source: Microsoft, machine-

learning.paperspace.com/wiki/accuracy-and-loss.
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In both graphs, one should then observe a point where the model per-

formance does not improve significantly.

In this case, as extensively expressed in the previous sections, an early

stopping technique can be used to stop training the model.

It is also important to note that the graphs may look different depending

on the characteristics of the model and the training data.

For example, there may be spikes in the graphs due to overfitting or un-

derfitting.

Loss and accuracy graphs are a powerful tool for studying and evalu-

ating the performance of the training process for another reason as well:

through these, it is possible to inviduate unexpected errors or behaviors,

which could be symptoms of weakly robust training.

For example, if a high fluctuation of the loss function or a trend toward a

high value is observed during training, these could be signs of overfitting

or underfitting.

This could indicate that the model is too complex or too simple compared

to the training data used, and therefore it is advisable to take counter-

measures such as regularizing the model or providing more training data.

Similarly, if a trend toward a low value of accuracy or its excessive fluctu-

ation is observed, these could be signals of underfitting or a problem with

the training data (for example poor quality or unbalanced distribution).

In this case, it may be necessary to collect more data or improve the

quality of existing data in order to increase their completeness and repre-

sentativeness.
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Usually each graph is actually composed of two curves, one describing

the behavior during the training process and one describing the valida-

tion process.

4.5 Tensors

A tensor is a mathematical object that can be used to represent and ma-

nipulate multidimensional data efficiently.

There are several types of tensors (scalars, vectors, matrices...) but they

all share the property of using indexes to refer to a specific element they

contain.

In general, a tensor can in fact be represented by an array of numbers,

each of which is associated with a set of indices that locates it.

For example, a third-dimensional tensor can be represented by a three-

dimensional array of numbers in which each element is associated with

three indices i, j and k that uniquely locate it.

In the context of neural networks, that is the context of interest for this

report, tensors are used to represent input data, neuron weights and the

intermediate and final results of the neural network’s computational op-

erations.

For example, the input data of a neural network can be represented by a

tensor of size N ×M × C, where:

• N and M are the dimensions of the image

• C is the number of channels (for example 3 for RGB images).
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Instead, the weights of neurons can be represented by a tensor of dimen-

sion K × L×M ×N , where:

• K and L are the sizes of the filters used by the neural network

• M and N are the sizes of the input data.

Tensors are also used to represent intermediate results of the neural net-

work’s computational operations, such as neuron activation values and

the results of convolution (a function that through mathematical vector

product operations allows the identification of specific features in the in-

put data such as lines and shapes) and pooling operation (an operation

used after convolution to reduce the resolution of the data and make a

kind of summary of the information that emerged, also to avoid overfitting

problems and make the model more robust).

Summarizing, using tensors to represent the data and operations of the

neural network allows complex calculations and operations to be per-

formed efficiently, quickly and accurately.

In addition, the use of tensors underlies the development of numerical

computing libraries such as TensorFlow and PyTorch, which have become

an essential tool for creating and training neural networks.

Both of these libraries are discussed in detail in the chapters and sections

that follow.

4.6 Neural networks

As is well known, the technology behind deep learning is the so-called

neural networks.
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They are nothing more than an artificial imitation of neurons in the hu-

man brain.

In fact, such innovative idea has rather old origins, so much so that the

first artificial neuron was introduced by McCulloch and Pitts in 1943.

In an artificial neuron (AN), simulating what occurs in nature:

• there are inputs → not analog signals but digital numbers

• these inputs are weighted, that is each is given a priority specifying

its importance

• the inputs are also merged via a sum function

• finally an activation function is used to generate the final output.

As easy to imagine, a single artificial neuron can only solve linear prob-

lems, but one can solve this problem using multiple NAs organized in

layers.

This technique is called Multi Layer Perceptor (MLP) and, although it

greatly improves computational capacity, it introduces several complex

mathematical problems.

In summary, neural networks can thus be said to consist of groups of

artificial neurons divided into layers, typically structured as follows:

• surely one input layer and one output layer are present.

• there are also one or more hidden, that is intermediate, layers present.
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The structure of neural layers is shown in figure 4.2.

Figure 4.2: structure of neural layers.

The peculiarity of this structure is that each neuron is completely con-

nected with those of the next level: this feature is also inherited from the

hierarchical nature of human neurons.

In specific, it is possible to distinguish between two types of neural net-

works:

• feedforward → is the most widely used type and involves neurons

in one level being connected to those in the next level, that is no

connections backward or to neurons in the same level

• recurrent → in this type, recommended when the need is to simu-

late a short-term memory effect, feedback or even recursive connec-

tions are possible instead.

On the other hand, as far as training layers of neural networks is con-

cerned, the basic consideration to emphasize is that the greater is the
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number of hidden layers , the greater is the performance .

However, it must also be considered that with a high number of layers

comes the need for more training data and reflexively greater computa-

tional complexity.

Although training tasks are extremely complicated, there are specific

frameworks that greatly simplify the work, some of which are also used in

the NVFlare package.

From a purely statistical point of view, training a neural network means

minimizing the loss function, that is the mathematical function that mea-

sures the error between the prediction of the label and its actual value

and returns a real number as a presentation of the peformance.

Regarding classification tasks, the best-known loss functions are:

• Cross Entropy → indicates the difference between what the model

predicts as the output of the distribution and the actual value of the

distribution

• Binary Cross Entropy (BCE)

• Categorical Cross Entropy (CCE).

Mathematically, the last two functions can be calculated using the formu-

las

BCE = −γi · logβi − (1− γi) · log(1− βi)

CCE = −
∑

γi · logβi

where:
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• βi represents the i-th scalar value of the model output (that is its

prediction)

• instead γi is the value of the corresponding label.

It must be specified that to use the Cross Entropy loss function it is nec-

essary for the output layer to return probabilities.

To do this it is possible to use a layer called softmax which, given an

n-dimensional vector of real numbers, is able to transform it into another

vector of real numbers in the interval [0, 1] whose sum is exactly 1.

Any continuously differentiable mathematical function has these proper-

ties.

Defined the loss function, to minimize it it is sufficient to apply a process

of adjusting the weights and biases of each neuron by using gradients.

The use of these mathematical tools is justified by the fact that, looking at

the mathematical definition of the derivative of a function, it can be said

that it measures the sensitivity to the change in the value of the function

itself (that is its output) in relation to the change in its argument (that

is its input), and that is its gradient.

In other words, the gradient is the mathematical tool that can describe

the direction in which a function is pointing.

Introduced this mathematical tool, it is possible to minimize the loss func-

tion with descending gradient approaches that adjust the weights in the

following manner:

w′ = w − η
∂L

∂w
In fact, the formula states that the new weights are calculated from the

old ones and a certain amount of gradient having as coefficient the learn-
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ing rate η.

In the literature, a wide variety of descending gardient approaches (called

optimizers) are described, including:

• Vanilla Gradient Descent → computes the gradient relative to

parameters of the entire training dataset → is not recommended for

large training datasets given the slowness and computational cost of

the algorithm

• Stochastic Gradient Descent → is based on an iterative ap-

proach, in which for each iteration a simple batch of data is selected

and gradients are computed on it → disadvantages are that this

algorithm is rather tortuous and requires strong parameterization

• Adam[63] → is an improved and more efficient optimizer than the

previous type, in fact it requires fewer parameters and memory re-

quirements.

Related to what was stated earlier in this section, calculating the gradient

in neural networks can be complex since there are many layers present

that make the loss dependent on hidden parameters despite having access

only to the output values.

Luckily, it is possible to use an algorithm called backpropagation for calcu-

lating the gradient of loss functions considering all the parameters present,

the procedure of which is based on calculating the derivative of a com-

pound function via chain rule.

The backpropagation is a local process, in which neurons do not need to

know the topology of the global network containing them.

By jointly using backpropagation and chain rule, it is therefore possible
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to propagate the derivative of the loss function to the prior inputs of the

network.

For all these processes to be possible, it is shown that the loss function

must be derivable.

4.7 Convolutional neural networks

A convolutional neural network (CNN[64]) is a type of feed-forward neu-

ral network, that is on in which data flows unidirectionally from input to

output, without any loop or return.

As is also the case with classical neural networks, data in this technology

also flows through a series of layers of neurons, each of which processes

data independently of the others, that is without interacting in any way

with other layers before or after it.

Convolutional neural networks are special neural networks specifically de-

signed to process images.

In fact, the traditional MLP architecture has difficulty adapting to images,

this is because it attempts to flatten the input data, which physiologically

would be three-dimensional.

In contrast, CNNs exploit the reverse approach: they do not twist the

structure of the input images but convert that of the neurons into a 3D

format.

In fact, unlike those in MLP networks, CNN layers are composed of neu-

rons methodically arranged in 3 dimensions: width (W), height (H) and

depth (C, often greater than 1):
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Figure 4.3 shows how to convert traditional MLP into a structure suit-

able for CNN.

Figure 4.3: transition from traditional MLP structure to three-

dimensional structure for CNN.

At this point, a mathematical operation called convolution, applied through

a sliding-windows process, is exploited to go from the three-dimensional

input to the kernel of neurons that is also three-dimensional.

In image convolution, each kernel is convolved with the input data vol-

ume, producing a 2D mapping.

Since the depth is often greater than 1, multiple kernels exist and there-

fore a mapping is produced for each kernel.

All these produced maps are then stacked on top of each other to create

the output volume.
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An example of convolution operation is reported in figure 4.4.

Figure 4.4: convolution operation.

At this point, the learnable weights of the MLP network are grouped

in the kernel, where each cell can be viewed as a single learnable weight.

Taking these tasks, the convolutional layers learn to extract various types

of visual information from the image in a hierarchical manner such as

lines, shapes and textures:

• in the layers closer to the input the CNNs include filters to extract

simple visual information

• in the layers placed deeper, in contrast, filters are able to extract

much more complex visual information.

As repeated many times, this feature of differentiated layered processing

of information also simulates the actual working mechanism of the cere-

bral cortex of the human brain.

In addition, it has been shown in the literature that the filters in question

can be equated in both behavior and characteristics with the neurological
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stimuli of the human brain.

In addition to the convolution layers mentioned above, there are also other

types of layers, which perform fundamentally important tasks, among

which it is worth mentioning:

• pooling layers → partition the input volume into spatial subsam-

ples in order to more accurately provide the location of detected

features, reduce the required storage space and filter features by

importance

• activation layers→ deal with the calculation of activation features

• flatten layers → used for their ability to connect a 3D feature

extractor with a one-dimensional classifier

• fully-connected layers → are used last to perform the final image

classification based on the extracted features.

Finally, training a CNN often requires having a large number of examples

of images labeled during the training phase, that is images that have been

previously labeled with the correct categories.

During the training process, the CNN in fact learns to recognize the rel-

evant features for each category and use them to generalize and classify

new images.

More specifically, training of CNNs can be done in different ways:

• from scratch→ when starting only from the initialization of weights

and using a large amount of training data

• pre-trained → when a previously trained network is used
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• fine-tuned → when a previously trained network is used, in which,

however, the feature extractor is kept unchanged but changes are

made to the classifier, such as changing the number of classes.

Once the model has been trained, the testing process allows its accuracy

to be evaluated on a set of new test data, which consists of images not

used during the training process.

At this stage, the model uses the features extracted from each test image

to try to make its exact classification and the predicted label is compared

with the correct label to calculate the accuracy of the model.

4.8 Image classification

In the programming guide that follows, the establishment of a Federated

Learning system in order to solve the problem of image classification (an

area to which the MAD problem can also be traced) will be frequent.

Image classification is an active research area in machine learning and

artificial intelligence, with many practical applications in various fields

such as medicine, security, robotics and entertainment.

The main task of an image classification system is to assign a label to an

image based on the recognized content.

For example, an image classification system could be trained to recognize

pets in a picture and label it as ”cat” or ”dog” based on its content.

There are several methods for classifying images, but one of the most

popular and successful is the use of convolutional neural networks (CNNs).
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Image classification is a rapidly evolving area, with new techniques and

methods being continuously developed to improve the accuracy and speed

of the classification process.

In order to better understand the problem of image classification, it is use-

ful to study the Python script proposed below (excerpted from the guide

found at the link https://learn.microsoft.com/en-us/windows/ai/windows-

ml/tutorials/pytorch-data), which also provides an opportunity to intro-

duce the PyTorch library, a topic addressed in more detail later.

For the moment, suffice it for us to know that PyTorch is an open-source

machine learning library developed by Facebook that provides a wide

range of features for data processing, machine learning and its optimiza-

tion, including support for neural networks, machine learning algorithms,

pre-trained models and many other utility functions.

The Torchvision package, in particular, includes the most popular ma-

chine vision datasets, including CIFAR10, which is also widely used in

NVFlare.

In the next chapter, a section has been devoted specifically to delve into

the features of this dataset: for now, it is sufficient to know that it is

widely used to train an image classification model and consists of 50000

training images and 10000 test images, all of size 32× 32 with RGB color

coding.

The images are divided into 10 classes: airplane, car, bird, cat, deer, dog,

frog, horse, ship and truck.

We now begin to study an example of a Python script dedicated to image

classification, which is a significant example of what will also happen at
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the algorithm level during the execution of jobs involving this application

in NVFlare.

As we see in the first code snippet below, one must initially follow three

steps to import and load the CIFAR10 dataset into PyTorch:

• define the transformations that are to be applied to the images →
to train the model it is indeed necessary to transform the images

into normalized tensors in the interval [-1, 1]

• create an instance of the dataset and load it → this is possible using

the Dataset class

• access the data using the DataLoader class, whose methods allow

you to fetch data from the dataset and load it into memory, effec-

tively handling all interfacing and access operations to the dataset.

1 from __future__ import print_function

2 from torchvision.datasets import CIFAR10

3 from torchvision.transforms import transforms

4 from torch.utils.data import DataLoader

5 import torch

6 import torch.nn as nn

7 import torchvision

8 import torch.nn.functional as F

9 from torch.optim import Adam

10 from torch.autograd import Variable

11 import matplotlib.pyplot as plt

12 import numpy as np

13

14 # Loading and normalizing the data.

15 transformations = transforms.Compose([

16 transforms.ToTensor(),
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17 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

18 ])

19

20 #We define the batch size of 10 to load 5,000 batches of

images.

21 batch_size = 10

22 number_of_labels = 10

23

24 # Create an instance for training: the CIFAR10 train dataset

will be downloaded locally.

25 train_set =CIFAR10(root="./data",train=True,transform=

transformations,download=True)

26

27 # Create a loader for the training set.

28 train_loader = DataLoader(train_set, batch_size=batch_size,

shuffle=True, num_workers=0)

29 print("The number of images in a training set is: ", len(

train_loader)*batch_size)

30

31 # Create an instance for testing, note that train is set to

False.

32 test_set = CIFAR10(root="./data", train=False, transform=

transformations, download=True)

33

34 # Create a loader for the test set, note that each shuffle is

set to false for the test loader.

35 test_loader = DataLoader(test_set, batch_size=batch_size,

shuffle=False, num_workers=0)

36 print("The number of images in a test set is: ", len(

test_loader)*batch_size)

37

38 print("The number of batches per epoch is: ", len(train_loader

))
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39 classes = (’plane’, ’car’, ’bird’, ’cat’, ’deer’, ’dog’, ’frog

’, ’horse’, ’ship’, ’truck’)

Once the dataset has been acquired, the next step is to define the convo-

lutional neural network (CNN) to be used.

The theory regarding this topic is given in the previous section, but it

should be specified that the CNNs used in the script being analyzed are

structured in 14 layers, each of which is capable of detecting specific fea-

tures in an image.

From a more practical point of view, during the training tasks the net-

work will process and study the input across its many layers, compute the

loss function to understand how far the predicted label deviates from the

actual label and finally propagate the gradients backward to update the

layer weights.

Iterating this process for all the input data that make up the dataset, the

network is able to learn how to set its weights to get the best results.

As anticipated earlier, remember that CNNs are called feed-forward net-

works, so they require the definition of a forward function, whose job is

simply to compute the value of the loss function.

The backward function in PyTorch is in fact implicitly and automatically

defined.

Based on the above, the following script fragment defines the CNN:

1 class Network(nn.Module):

2 def __init__(self):

3 super(Network, self).__init__()
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4

5 self.conv1 = nn.Conv2d(in_channels=3, out_channels=12,

kernel_size=5, stride=1, padding=1)

6 self.bn1 = nn.BatchNorm2d(12)

7 self.conv2 = nn.Conv2d(in_channels=12, out_channels

=12, kernel_size=5, stride=1, padding=1)

8 self.bn2 = nn.BatchNorm2d(12)

9 self.pool = nn.MaxPool2d(2,2)

10 self.conv4 = nn.Conv2d(in_channels=12, out_channels

=24, kernel_size=5, stride=1, padding=1)

11 self.bn4 = nn.BatchNorm2d(24)

12 self.conv5 = nn.Conv2d(in_channels=24, out_channels

=24, kernel_size=5, stride=1, padding=1)

13 self.bn5 = nn.BatchNorm2d(24)

14 self.fc1 = nn.Linear(24*10*10, 10)

15

16 def forward(self, input):

17 output = F.relu(self.bn1(self.conv1(input)))

18 output = F.relu(self.bn2(self.conv2(output)))

19 output = self.pool(output)

20 output = F.relu(self.bn4(self.conv4(output)))

21 output = F.relu(self.bn5(self.conv5(output)))

22 output = output.view(-1, 24*10*10)

23 output = self.fc1(output)

24

25 return output

26

27 # Instantiate a neural network model

28 model = Network()

The next step is to define the loss function.

In the fragment we will see is used a loss function that is characterized

by two complex statistical tools introduced in the previous sections, the
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Cross-Entropy loss and the Adam optimization algorithm.

Then follows the code that trains the model, which actually cycles over

the data iterator, feeds inputs to the network and takes care of optimiza-

tion.

Note that the device defined in the code will be an NVIDIA GPU if

present, otherwise the CPU:

1 loss_fn = nn.CrossEntropyLoss()

2 optimizer = Adam(model.parameters(), lr=0.001, weight_decay

=0.0001)

3

4 def saveModel():

5 path = "./myFirstModel.pth"

6 torch.save(model.state_dict(), path)

7

8 def testAccuracy():

9 model.eval()

10 accuracy = 0.0

11 total = 0.0

12

13 with torch.no_grad():

14 for data in test_loader:

15 images, labels = data

16 outputs = model(images) # run the model on the

test set to predict labels

17 _, predicted = torch.max(outputs.data, 1) # the

label with the highest energy will be our prediction

18 total += labels.size(0)

19 accuracy += (predicted == labels).sum().item()

20

21 accuracy = (100 * accuracy / total) # compute the accuracy

over all test images
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22 return(accuracy)

23

24 def train(num_epochs):

25 best_accuracy = 0.0

26

27 device = torch.device("cuda:0" if torch.cuda.is_available

() else "cpu") # Define your execution device

28 print("The model will be running on", device, "device")

29 model.to(device) # Convert model parameters and buffers to

CPU or Cuda

30

31 for epoch in range(num_epochs): # loop over the dataset

multiple times

32 running_loss = 0.0

33 running_acc = 0.0

34

35 for i, (images, labels) in enumerate(train_loader, 0):

36

37 # get the inputs

38 images = Variable(images.to(device))

39 labels = Variable(labels.to(device))

40

41 optimizer.zero_grad() # zero the parameter

gradients

42 outputs = model(images) # predict classes using

images from the training set

43 loss = loss_fn(outputs, labels) # compute the loss

based on model output and real labels

44 loss.backward() # backpropagate the loss

45 optimizer.step() # adjust parameters based on the

calculated gradients

46

47 # Let’s print statistics for every 1,000 images
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48 running_loss += loss.item() # extract the loss

value

49 if i % 1000 == 999:

50 print(’[%d, %5d] loss: %.3f’ %

51 (epoch + 1, i + 1, running_loss / 1000))

52 running_loss = 0.0

53

54 # Compute and print the average accuracy fo this epoch

when tested over all 10000 test images

55 accuracy = testAccuracy()

56 print(’For epoch’, epoch+1,’the test accuracy over the

whole test set is %d %%’ % (accuracy))

57

58 # we want to save the model if the accuracy is the

best

59 if accuracy > best_accuracy:

60 saveModel()

61 best_accuracy = accuracy

Finally, as reported in the last snippet below, we can also proceed to de-

fine the testing function and the main of the script.

Also note in particular the testClasses() function, which reports the ac-

curacy performed for each category:

1 def imageshow(img):

2 img = img / 2 + 0.5 # unnormalize

3 npimg = img.numpy()

4 plt.imshow(np.transpose(npimg, (1, 2, 0)))

5 plt.show()

6

7 def testBatch():

8 images, labels = next(iter(test_loader)) # get batch of

images from the test DataLoader

9
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10 imageshow(torchvision.utils.make_grid(images)) # show all

images as one image grid

11

12 # Show the real labels on the screen

13 print(’Real labels: ’, ’ ’.join(’%5s’ % classes[labels[j]]

14 for j in range(batch_size)))

15

16 # Let’s see what if the model identifiers the labels of

those example

17 outputs = model(images)

18

19 _, predicted = torch.max(outputs, 1) # We got the

probability for every 10 labels. The highest (max)

probability should be correct label

20

21 # Let’s show the predicted labels on the screen to compare

with the real ones

22 print(’Predicted: ’, ’ ’.join(’%5s’ % classes[predicted[j

]]

23 for j in range(batch_size)))

24

25 def testClassess():

26 class_correct = list(0. for i in range(number_of_labels))

27 class_total = list(0. for i in range(number_of_labels))

28 with torch.no_grad():

29 for data in test_loader:

30 images, labels = data

31 outputs = model(images)

32 _, predicted = torch.max(outputs, 1)

33 c = (predicted == labels).squeeze()

34 for i in range(batch_size):

35 label = labels[i]

36 class_correct[label] += c[i].item()
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37 class_total[label] += 1

38

39 for i in range(number_of_labels):

40 print(’Accuracy of %5s : %2d %%’ % (

41 classes[i], 100 * class_correct[i] / class_total[i

]))

42

43 if __name__ == "__main__":

44

45 # Let’s build our model

46 train(5)

47 print(’Finished Training’)

48

49 # Test which classes performed well

50 testAccuracy()

51

52 # Let’s load the model we just created and test the

accuracy per label

53 model = Network()

54 path = "myFirstModel.pth"

55 model.load_state_dict(torch.load(path))

56

57 # Test with batch of images

58 testBatch()

59 testClassess()

Proceeding with the execution of the script just created, it can be seen

that the loss value will be printed every 1000 batches of images and that

this value should decrease as time progresses.

The accuracy, that is the number of images correctly identified by the

model, will also be reported.

After the training phase is completed, in fact, an output similar to the

following shown in figure 4.5 is obtained:
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Figure 4.5: output following the training phase of the script shown above.

Note, as expected, the increase in accuracy and decrease in loss.

77



After printing the training-related outputs, the script also reports the

results obtained during the testing phase.

The expected output would be similar to the one depicted in figure 4.6.

Figure 4.6: output following the testing phase of the script reported above.

Note the behavior of the model in a test of 10 images and the accuracy

reported relative to the category.

It is important to understand the reported script well since it summarizes

very clearly and faithfully what the jobs we will study below present in

the framework (specifically cifar10 and hello-pt-tb) consist of.

4.9 Scatter and gather

The concept of scatter and gather is central to parallel programming, as

it allows data to be distributed and gathered among different processors

or compute nodes.

It makes it possible to take full advantage of the computing power of mul-

tiprocessor systems and clusters, significantly speeding up data processing.
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The scatter function distributes input data across multiple processors so

that each can process a portion of the data in parallel.

For example, if you have a large array of data that you want to process,

scatter can divide this data into smaller parts and assign each part to a

different processor.

In this way, each processor can independently process its portion of the

data in parallel, greatly speeding up the overall processing.

After the data has been processed by the various processors, the gather

function collects and merges it into a single output.

For example, if each processor has processed a portion of data, gather can

gather them into a single output array.

In this way, data processed in parallel are gathered and returned as a

single data set.

In general scatter and gather are used for distributing and collecting data

in parallel environments such as computer clusters or single multi-core

computers.

These operations are used in a variety of applications, such as big data

processing, parallel computing and distributed programming: in fact, they

form the basis of the overall NVFlare workflow.

There are several high-level libraries that provide scatter and gather func-

tions to facilitate parallel programming.
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Chapter 5

NVFLARE

After an introduction and explanation of the main deep learning concepts,

it is now possible to go deeper into the study of NVFlare, based on the

detailed documentation at the link

https://nvflare.readthedocs.io/en/2.3.0/.
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The structure of the framework can be seen in figure 5.1.

Figure 5.1: NVFlare general overview. Source: NVIDIA.

5.1 Overview

As presented in the documentation, NVFlare (NVIDIA Federated Learn-

ing Application Runtime Environment) is a Python-based, open-source,

extensible and flexible SDK that allows researchers and users to adapt

the existing classical Deep Learning workflow to the Federated Learning

paradigm.

Through the NVFlare framework, developers can collaborate on the cre-

ation of distributed applications in a secure and privacy-friendly manner.

The framework is also designed to ensure scalability and robustness to

realistic deployments of Federated Learning applications.
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The kit offers:

• a runtime development environment that easily enables Federated

Learning experiments in realistic scenarios, even supporting parallel

execution of multiple tasks to optimize productivity

• a system capable of implementing Federated Learning with a highly

flexible and malleable infrastructure

• built-in implementation of various tools, including federated train-

ing workflows (for example scatter-and-gather), federated evaluation

workflows (global model evaluation and cross site model validation),

learning algorithms, privacy-preserving algorithms (homomorphic

encryption and Differential Privacy), extensible management tools

for secure provisioning (TLS certificates) and for easier management

and orchestration (admin console and admin APIs), as well as tools

for monitoring experiment results (such as TensorBoard)

• a rich set of programmable APIs that allows researchers to create

new and original workflows and privacy-friendly learning algorithms.

5.2 System architecture

As outlined very superficially above, NVFlare includes a wide range of

components that enable researchers and developers to build and deploy

end-to-end Federated Learning applications.

The high-level architecture is depicted in figure 5.2 below:
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Figure 5.2: NVFlare component stack overview. Source: NVIDIA.

The center column shows the fundamental components and tools for

proper and secure management of the platform.

On either side of the center column are two sections devoted respectively

to experimentation via simulator on a single local workstation on the one

hand and to tools dedicated to workflow management and effective and

secure deployment on the other.

5.3 Design principles

To further explore the philosophy behind this framework, it may be useful

to list the design principles that guided its development:

• keep it simple, less is more → only the necessary components have

been built and described

• design to specifications → the design is based on well-defined and
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approved specifications, which are in fact a guide for using the sys-

tem and help ensure that it meets the needs of users

• build for real-world scenarios → the framework has been developed

considering the situations, circumstances and real-world use cases

in which it will be used

• keep the system general-purpose→ the framework has been designed

to be flexible and adaptable to a wide range of applications and

uses, that is it has a general architecture that allows it to be easily

expanded or modified to meet future needs without the need for

a complete rewrite → this principle emphasizes the importance of

avoiding overly specific solutions that may make the system more

rigid and less suitable for situations other than those for which it

was originally designed

• client system friendly → the framework is designed to be easy to

use and accessible for clients or end users, that is it is intuitive and

compatible with the equipment and systems most commonly used

by clients.

5.4 Key features

The main functionalities offered by the NVFlare platform can be distin-

guished into 5 areas:

• training workflows → it is possible to choose between a scatter

and gather type workflow (that is the default one, in which the

central server acts as controller and sends the tasks to be executed

to the clients, who respond with their shareable results, that is the
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training model weights, which are finally aggregated by the server)

or a cyclic workflow (in which the server submits a series of tasks

scheduled to be performed in a cyclic execution by a group of clients

and in this case the shareable results are passed from one client to

the next to be refined until the last client, which returns the final

results to the server)

• evaluation workflows → it is possible to adopt either cross site

model validation (in which the results of a local validation are col-

lected by the server) or global model evaluation (the server’s global

model is distributed to each client for local validation)

• privacy protection algorithms → including differential privacy

and homomorphic encryption

• different learning algorithms → including FedAverage (in which

a set of the initial weights is distributed among the clients perform-

ing training locally and after that they return the local weights in

aggregate and in turn these are redistributed to the clients), Fed-

Prox (implements a loss function to penalize a client’s weights based

on its deviation from the global model) or FedOpt (implements a

generator that can use a specific optimizer when updating the global

model)

• rich and extensive set of example applications to practice about

the whole process of Federated Learning.

Among the new features introduced by the latest version, 2.2, it is worth

mentioning the efforts made toward:

• workflow acceleration
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• simplification of deployment in real-world scenarios

• enabling and enhancing integration with other systems and plat-

forms.
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Chapter 6

PROGRAMMING GUIDE

Having addressed the general overview, a more practical analysis of the

operation that characterizes the NVFlare framework is given in this chap-

ter, so that key concepts can be better understood through simulations

and meaningful practical examples.

Note that the examples that follow will have an incremental difficulty,

in fact starting from the simulation of small systems and analyzing simple

situations will lead to the construction of an increasingly complex and

complete architecture that can potentially be used to establish a realistic

Federated Learning infrastructure.

This guide therefore also aims to summarize and simplify the documen-

tation present today for the use of NVFlare.

In fact, this chapter seeks to provide a reference point not only for new and

inexperienced users, but also for developers with experience in Machine

Learning, who may struggle with the excessive verbiage of the present doc-
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umentation and may instead find in the following document an extraction

of the main concepts, at least to understand the features and enormous

potential of the framework.

In particular, the guide will delve more concretely into the following as-

pects of the framework:

• installation

• application simulation

• evaluation of its use applied to the problem of face morphing detec-

tion.

It should be noted that this programming guide does not aim to study in

depth the individual files and algorithms used by the framework, but in-

tends to focus more on the infrastructure that this innovative tool enables

and the interrelationships that emerge between the various components.

Consequently, only rarely we will look at the code of any of the scripts

that make up the framework and make an assessment of them, as this is

beyond the scope of this report.

Finally, it should be noted that the examples addressed will often require

interacting with external tools that are famous in the Deep Learning field,

such as Numpy, PyTorch and Tensorflow.

Therefore, these tools will be introduced and explained before they are

used, in order to make this paper accessible to all and self-contained, that

is searchable without the need to query external resources for its under-

standing.
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6.1 Requirements

The only requirement for the proposed practice tests is to have a Unix-

Like operating system and basic knowledge of bash scripting.

In particular, we recommend the use of Ubuntu 22.04.1 LTS (down-

loadable from the link https://releases.ubuntu.com/22.04/) since it cor-

responds exactly to the version used for the experiments that follow.

Note that the choice to deploy the NVFlare framework exclusively on

Unix-Like operating systems is not accidental: not only does NVIDIA’s

development team prefer these systems, but one must also consider that

the Linux environment greatly simplifies many aspects related to Deep

Leaerning and that some libraries do not work on other operating sys-

tems, for example the library related to homomorphic encryption.

6.2 Installation

The easiest way to install NVFlare is to follow the guide in the documen-

tation attached at the beginning of this chapter, on which the concepts

that will be explained in the following sections are also based.

6.2.1 The importance of a virtual environment

A virtual environment is an isolated system environment, created within

an existing operating system, that allows software to run independently

of the configurations of the host operating system.

This means that a virtual environment can have its own system settings,

libraries and software versions, which may also be different from those of
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the host operating system.

Virtual environments are used primarily for the enormous advantages they

provide:

• isolation → virtual environments allow software to run in an envi-

ronment isolated from the host operating system → so any changes

made to the virtual environment will not affect the host operating

system and vice versa and this is critical when working with soft-

ware that might conflict with other applications or operating system

configurations

• reproducibility → virtual environments allow you to create repro-

ducible development and test environments, that is ones that can be

recreated multiple times with the same configurations and libraries

• simplicity → virtual environments are generally easy to configure

and use and allow for easy management of software dependencies,

packages and library versions → this means that developers no

longer have to deal with any conflicts with other versions of libraries

or software on the host operating system

• collaboration and sharing → virtual environments make it easy to

share a development environment with other users

• portability → virtual environments can be easily exported to other

systems, ensuring that the software runs completely identically on

different platforms

• resource saving → virtual environments allow users to use only the

system resources they actually need, saving host operating system
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resources.

It is possible to create a virtual environment at the level of the entire oper-

ating system, using virtualization software such as VirtualBox or VMware,

but there are also some programming language-specific virtual environ-

ments such as virtualenv or conda for Python (which we will in fact set

up and use extensively throughout the guide).

As also specified by the long list of advantages, this guide recommends

the use of a virtual environment as it allows you to work in a more pro-

tected environment, where you can install different versions of Python

and its libraries without creating conflicts and indeed greatly simplifying

the learning process also thanks to the possibility of specifying from the

beginning the necessary dependencies, that is which libraries to download.

In particular, for the creation of the virtual environment, we suggest the

use of Anaconda[70], an open-source distribution of Python that includes

a wide range of libraries and tools for data processing, statistical anal-

ysis and data visualization, as well as a package manager called conda

that allows you to easily install, update and manage Python libraries and

packages.

It makes it possible and easy to create custom virtual environments.

Among other things, Anaconda also offers a user-friendly GUI called Ana-

conda Navigator that allows users to easily manage packages and virtual

environments or launch other applications more easily.

We then proceed to install Anaconda, substituting from the commands

under the tag <VERSION>with the version you want to install (for ex-
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ample 2022.10):

1 root $> sudo apt update

2 root $> wget https://repo.anaconda.com/archive/

Anaconda3-<VERSION>-Linux-x86_64.sh

3 root $> bash Anaconda3-<VERSION>-Linux-x86_64.sh

4 root $> cd ˜

5 root $> source .bashrc

We proceed with the creation and activation of the virtual environ-

ment, specifying 3.8 as the version of Python.

Please note that the latest available version is not used but an earlier one

for reasons of security, compatibility, stability and robustness.

1 root $> conda create -n "venv" python=3.8 ipython

2 root $> conda activate venv

You then need to update the pip and setuptools versions:

1 (venv) $> python3 -m pip install -U pip

2 (venv) $> python3 -m pip install -U setuptools

Finally, the latest stable version of the NVFlare framework needs to

be installed:

1 (venv) $> python3 -m pip install nvflare
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6.3 The FL simulator

As mentioned earlier, one of the main features of the NVFlare framework

is the ability to run simulations, that is to emulate the behavior of a Fed-

erated Learning server and several clients that are connected but actually

reside in the local workstation and are nothing more than processes and

threads.

This possibility represents a great tool for doing a quick deployment on

which perform testing and debugging.

In particular, once the installation is complete, it is possible to access

and control the FL simulator via CLI.

It is possible to obtain the list of parameters accepted by the simulator

by running the command

1 (venv) $> nvflare simulator -h

Among the most interesting parameters that appear, it is worth not-

ing those that will be needed shortly, which are essential for the proper

execution of the simulation:

• w → WORKSPACE → to specify the folder dedicated to execution

• n→ N CLIENTS→ to specify the number of clients to be simulated

• t → THREADS → to specify the number of clients executing the

task in parallel.

Finally, to verify the correct installation of the framework, you can run

one of the many test applications in the repository, for example hello-

pt-tb, a simple example of image classification (we will explain in more
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detail what this example includes, for now let’s just use it as an example

to verify the correctness of the previous steps).

Configured the working environment, we need to clone the repository con-

taining the framework and run the job.

Note in the following commands that the hello-pt-tb application also

needs to install some dependencies for its execution:

• PyTorch[65] → open-source machine learning library in Python

that provides a wide range of machine learning algorithms and data

processing tools and is very useful for working with different neural

network architectures and creating machine learning models → a

peculiar feature of this library is that it supports parallelization on

GPUs, which makes it easier and faster to process large amounts of

data

• Torchvision→ PyTorch-based machine vision library that provides

the most popular pre-trained datasets and models for machine vision

and therefore greatly simplifies classification, segmentation, object

detection and image generation problems

• TensorBoard[66] → web-based interface to visualize and analyze

via intuitive and interactive graphs the data generated during the

training of a machine learning model → more precisely offers graphs

of the loss and accuracy and values of model weights in a spatiotem-

poral manner, which makes it easy to detect any problems or anoma-

lies during the training process of the model → TensorBoard also

supports visualization of performance profiling data such as memory

consumption and CPU utilization.
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1 (venv) $> cd Desktop

2 (venv) $> sudo apt install git

3 (venv) $> git clone https://github.com/NVIDIA

/NVFlare.git

4 (venv) $> mkdir simulator-example

5 (venv) $> cp -rf NVFlare/examples/hello-pt-tb

simulator-example/

6 (venv) $> python3 -m pip install torch torchvision

tensorboard

7 (venv) $> mkdir simulator-example/workspace

8 (venv) $> nvflare simulator -w simulator-example/

workspace -n 2 -t 2 simulator-example/hello-pt-tb

The key execution command is the last one, which in fact starts the sim-

ulator using two dummy clients using two parallel threads.

Once the command is executed, the directory designated as the workspace

will fill with the necessary codes and configurations, as well as the outputs

and evolutions of the local and global models.

Taking a more detailed look at the important elements of this directory

structure, it can be seen that:

• the hello-pt-tb folder contains the configuration files needed to run

the job

– in the file config fed client.json, in which the structure of the

client is described, we note that this is a LearnerExecutor (that

is a special type of Executor that delegates the training task to
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the Learner class for reasons of decoupling and encapsulation,

that is to have this class handle overly specific communication

constructs or, for example, error handling, thus allowing the

end user to concentrate on the training and validation process)

and that it has among its tasks train, submit model, and vali-

date, that is exactly the list of actions that a client can perform

– in the config fed server.json file instead you can see the de-

cidedly more complex structure of the server → this in fact

is the union of several components, among which it is good

to mention Persistor (object that helps to save and keep some

specific information, so as to increase abstraction), Shareable

Generator (component that converts a shareable object into

model objects), Aggregator (Federated Learning server com-

ponent used to accept client contributions and thus aggregate

them with previous contributions), Model Locator (deals with

finding models to include for cross-site evaluation), JSON Gen-

erator (whose purpose is to generate, from the validation re-

sults received as a result of the cross-site validation process,

a results file.json containing for each client the accuracy of its

local model validated by him) and TB Analytics Receiver (com-

ponent that receives the log data from the clients and writes

it to TensorBoard) → also note that the server workflow in-

cludes two actions extensively described in the previous sec-

tions, namely scatter and gather and cross-site validation

– in the custom folder we find the customizable Python codes→
of particular interest turn out to be the files pt learner.py

and simple network.py, which we will elaborate later
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– also themeta.json file contains important information, mainly

related to the deployment of the application (minimum number

of clients, minimum requirements, etc.)

• instead the workspace folder contains all the results obtained from

the job execution

– here are stored all the log files (both of the server and of each

client)

– also provides an additional subdivision into folders to better

separate the server (app server folder), client (app site-1

and app site-2 folders), validator (cross site val folder) and

TensorBoard events (tb events) components.

Understanding well the structure above is crucial because it is repeated

for all the application examples in the repository, changing only a few

parameters.

We therefore end the explanation of the simulator by going to look at

the performance obtained by the two clients during the training process

having the hello-pt-tb application as its object:

1 (venv) $> tensorboard --logdir=simulator-example/

workspace/simulate_job/tb_events

It should be noted, also for subsequent experiments, that the command

given above must specify as a parameter the path to reach the tb events

folder.
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Following the instructions that appeared on the terminal and opening

the search browser, it is possible to evaluate the correctness of the two

graphs of train loss and accurcay, the characteristics of which have been

described in a separate section.

An example of the results obtained is given in figure 6.1 below:

Figure 6.1: loss and accuracy graphs related to the training performance

of two models on two clients with training on 5 epochs.
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The next section will take a next step toward a more realistic (though

still very limited) application, while also taking the opportunity to delve

into some additional features of the framework.

6.4 POC FL

The next step is to run an example of Federated Learning in the so-called

Proof Of Concept mode, which is a slightly more advanced mode than the

simulator seen in the previous section for simulating a deployment.

Also absent in this mode is the Overseer, as well as HA and security

mode (all concepts that we will explain later since they will be added as

we continue with the experiments).

We will also see examples run on a single machine and not distributed.

We will still have processes for the FL server, multiple clients and the

admin console, again to invoke a realistic deployment.

From a more technical point of view, NVFlare commands in POC mode

enable configuration and execution of training processes without the pro-

visioning steps.

Provision refers to the process of generating and deploying component

software packages (called startup kits).

In fact, the various clients and servers may be in different locations and

there is therefore a clear need for mutual trust and reliability to commu-

nicate properly.

The provisioning process is precisely to generate the SSL certificates used

for client authentication, which will be part of the startup kits, which

eventually need to be distributed to the different organizations before
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starting the Federated Learning process.

In POC mode, on the other hand, the server will communicate with clients

and the admin without HTTPS encryption and without the need for SSL

certificates.

As mentioned, POC still allows all components to run on the same ma-

chine.

To better understand how this architecture works, which is still simu-

lated locally but comes closest to a realistic deployment, let us consider

the CIFAR10 application, which is always present in the application

examples that can be found in the framework repository.

6.4.1 CIFAR10

In the present section, the topic of the CIFAR10 dataset is discussed fur-

ther, as the CIFAR10 application of the NVFlare package is perhaps

one of the most interesting from the educational point of view, in fact

it allows experimentation with both realistic and POC deployment, deals

with image classification, introduces a more in-depth study of the CI-

FAR10 dataset and finally anticipates that it is possible to use different

algorithms during the same training process, also with the purpose of

making comparisons and evaluations.

As mentioned earlier, CIFAR10 is a small 32 × 32 image dataset, con-

sisting of 60,000 RGB images divided into 10 mutually exclusive object

classes, that is with no possibility of overlapping.

This dataset is often used to test the performance of machine learning

models on classification and detection problems.
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It was developed by the Canadian Institute For Advanced Research to at-

tempt to achieve the best possible performance in image recognition using

convolutional neural networks.

In the end, it should be pointed out that there are numerous interesting

papers in the literature today claiming to have achieved state-of-the-art

results by working with this dataset.

This application uses and therefore also allows for further investigation

of other interesting concepts:

• matched averaging → optimization technique used in neural net-

works that consists of maintaining a weighted average of the states

of all layers in the optimization of the model, so as to correct for the

variance of the parameters that might occur during training → the

result is a more stable and predictable model with therefore better

performance[67]

• Dirichlet distribution[68] → a multivariate probability distribu-

tion describing the distribution of probabilities relating to multiple

events → is commonly used to model the probability distribution of

a category, where the probabilities relating to subgroups are uncer-

tain → it is defined by a set of parameters (alpha) that determine

the shape of the distribution

• homomorphic encryption→ cryptographic technology that makes

it possible to operate on encrypted data while maintaining its con-

fidentiality → this means that data can be securely transmitted or

processed without the need to decrypt it first, unlike in traditional

cryptography, where data must be decrypted before any operation

can be performed on it.
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Homomorphic encryption explanation is summarized in figure 6.2.

Figure 6.2: summary diagram on how homomorphic encryption works.

In fact, this application within the framework uses an algorithm to im-

plement heterogeneous generation of data splits from CIFAR10 based on

the Dirichlet distribution, where the alpha parameter expresses the het-

erogeneity of the distribution of data splits.

To better understand how POC FL works, we execute the job named

just CIFAR10 in POC mode.

Let us remember that we are still at a rather simulative level which is,

however, very useful for understanding the structure and operation of the

system.

First, it is necessary to configure the virtual environment so that it meets

some requirements:
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1 (venv) $> cd Desktop

2 (venv) $> cp -rf NVFlare/examples/cifar10 .

3 (venv) $> cd cifar10/

4 (venv) $> pip install -r ./cifar10-real-world/

virtualenv/min-requirements.txt

5 (venv) $> pip install -r ./cifar10-real-world/

virtualenv/plot-requirements.txt

Specifically, these two commands have installed additional libraries

and dependencies that are secondary but necessary for the experiments

that will follow, including seaborn (to visualize data in Python via a simple

but complete graphical interface that also allows the creation of advanced

and appealing statistical graphs) and pandas (to have specific data struc-

tures and functions for the manipulation and analysis of tabular and time

series data, as well as methods for data cleaning, filtering, aggregation

and manipulation of missing data).

We continue by downloading the dataset:

1 (venv) $> python3 ./pt/utils/

cifar10_download_data.py

Having reached this point, it is necessary to open the

/cifar10/cifar10-real-world/job configs/cifar10 fedavg stream tb/meta.json

file and, if necessary, modify the minimum requirements for each client to

suit your possibilities.

By default the file assumes you have 8 clients each with GPUs of at least

1 GB memory.
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If you do not have any GPUs, you cannot perform the following experi-

ment, but to get an idea of how Federated Learning works in POC mode

anyway you can skip to the next section, which shows how to run the CI-

FAR10 application in a secure workspace even without GPUs, performing

the training and testing operations on CPU (resulting in a considerable

lengthening of time).

From the terminal we continue with the present example by running the

following commands that, in a very simulator-like manner, will create a

FL structure with 8 different clients but in POC mode:

1 (venv) $> nvflare poc --prepare -n 8

2 (venv) $> export PYTHONPATH=\${PWD}/..

3 (venv) $> nvflare poc --start

In particular, the first command will also create a temporary folder

used as a workspace and provide its path.

This folder has identical structure to the one seen in the simulator case

but it will contain a larger number of clients.

Executed the last command, we will see the 8 clients that will gradually

begin to connect to the server and finished this procedure the terminal

will change to be the CLI dedicated to the admin, from which we can run

the main commands to manage the progress of the job (job submission,

information request, etc.).

At this point, we need to open an additional terminal that will be used

to run the script that sends the application into execution:
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1 (venv) $> conda activate venv

2 (venv) $> cd cifar10-real-world/

3 (venv) $> ./submit_job.sh cifar10_fedavg_stream_tb

1.0 --poc

In doing so, we ran the cifar10 fedavg stream tb application in

POC mode.

Note that the parameter specified with value 1.0 corresponds to the alpha

explained earlier concerning the heterogeneity of the Dirichlet distribution

regarding the data splits of the dataset.

Having executed the command, the terminal will provide us with the

id of the job (which is a unique code suitable to identify it, for exam-

ple 4524151e-8be7-4440-826f-641a9d421551) and thanks to this, once the

job is finished, it is possible to download the results from the previous

terminal (the one showing the admin CLI) just by specifying the id there:

1 > download_job <ID>

To better understand how to use the results obtained and possibly

graph them, refer to the final part of the following subsection.

6.4.2 Secure workspace

In order to solve the problem seen above of the technical requirements of

nodes (that is the need for them to possess a GPU), it is possible to resort

to the so-called secure workspace, which is an execution environment that

is more flexible with regard to these requirements.
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Well, it should be specified that actually the main feature of the secure

workspace is that it is an execution environment with more security and

therefore considered more realisitic.

In fact, using this mode increases the reliability and confidentiality of

communications since SSL/TLS encryption certificates will be generated

during the provisioning phase and will actually be used to encrypt trans-

actions (which is exactly what is needed in a real-world deployment).

Finally, the secure workspace also allows you to generate the keys for the

homomorphic encryption explained in the previous subsection.

To start working in the secure workspace, you can preliminarily down-

load the dataset in order to speed up the following experiments.

Once you are placed in the directory of the application you want to start

(in the following case cifar10/cifar10-real-world), simply run:

1 (venv) $> python3 ../pt/utils/

cifar10_download_data.py

Having reached this point, you can continue with secure provisioning,

which is done by submitting to the system a .yml file containing the

outline structure of the FL network you intend to create (by default, you

can specify the secure project.yml file, which is already present in the

framework):
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1 (venv) $> cd cifar10-real-world/

2 (venv) $> cd ./workspaces

3 (venv) $> nvflare provision -p ./secure_project.yml

4 (venv) $> cp -r ./workspace/secure_project/prod_00

./secure_workspace

5 (venv) $> cd ..

At this point, taking advantage of the potential offered by the secure

workspace and its improved flexibility, it is necessary to act on the speci-

fications required of the nodes, so as to eliminate the requirement on the

mandatory presence of GPUs.

To do this, it is sufficient to modify the file

cifar10/cifar10-real-world/job configs/cifar10 fedavg stream tb/

meta.json as shown in figure 6.3 by going to remove the ”resource spec”

section, obtaining a file with contents similar to the one shown below:

Figure 6.3: meta.json file modified for use on even non-GPU nodes.

Having completed this minor modification to the initial configurations,
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you can start the Federated Learning system in safe mode and submit the

job via CPU:

1 (venv) $> ./start_fl_secure.sh 8

2 (venv) $> ./submit_job.sh cifar10_fedavg_stream_tb

1.0

Note again that 8 indicates the number of clients, while 1.0 is the al-

pha parameter explained earlier.

Having executed the first command we will see the creation of the in-

frastructure and thus the initialization of the server and the connection

of the clients.

The second command activates the execution of training on the clients

and a long exchange of validation information with the server.

Once the process is finished, it is possible to observe the loss and accuracy

graphs in a similar way as before, that is by accessing the admin terminal

via the appropriate folder, downloading the job via the download job

<JOB ID>command, and graphing the TensorBoard events via the ap-

propriate tensorboard - -logdir command specifying the path to reach

the tb events folder.

6.5 Real world FL on single host

Once the potential of the secure workspace has been explained, we can

proceed to study the most advanced possible case of FL deployment but

still on a single node.

In fact, as is also the case in a realistic deployment, a chosen node con-
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ducts the infrastructure configuration process (that is provisioning) and

thus is tasked with generating the startup kits for every other node that

is to be used for the FL project.

We therefore proceed to create a new working directory (let’s call it rw

for example), which in fact can be seen as the file system of this special

node.

Within the newly created directory we insert the NVFlare folder, obtained

as a result of cloning the framework’s GitHub repository, and within the

same folder (that is rw, not NVFlare) we execute the provisioning com-

mand, so as to define the structure of the FL network we intend to estab-

lish:

1 (venv) $> nvflare provision

The terminal will warn us that it has not found any suitable provi-

sioning file in the current folder and will therefore generate a default one,

waiting for our choice based on whether we want a provisioning file for

HA mode or not.

In short HA stands for High Availability and it is a more reliable mode

since it also provides for a node to play the role of Overseer.

While the classic roles of Client, Server and Admin perform exactly the

tasks specified by their names and therefore it is possible to omit a de-

scription of them, the role of the Overseer may not be so clear, so it is

good to make it explicit.

An Overseer is a node that is responsible for monitoring the behavior of

the FL server.

In HA mode, at least two servers are indeed required (the second one as
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a backup).

Well, the Overseer is the node that specifies to the admin which server to

connect to in case of problems: in fact, if a server becomes unreachable

in the middle of the Federated Learning process, the Overseer will be the

one to have clients automatically point to the secondary server.

Therefore, the Overseer is a role attributable to a node only if HA mode

is active.

For the purposes intended by this practical proof, we can also choose

the non-HA mode and continue.

Pressed then the button corresponding to our choice, the terminal alerts

us to the creation of the provisioning file project.yml.

It is possible to edit that file to adapt it to the configuration we need.

Trying to open the file that has just been created, you can spot an inter-

esting section: that of the participants, shown in figure 6.4.
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Figure 6.4: participants section of the project.yml file, which is useful

for understanding and modifying the structure you are going to create.

Indeed, from the image it can be seen that the default generation has

created an infrastructure consisting of a server, two clients and an admin.

For each node, additional information is then specified, such as the

organization to which it belongs or the communication port (which we do

not suggest changing).

Then note that the admin name represents a generic username that will

be useful in the setup phase of the node having the admin role (in fact,

for reachability reasons, an e-mail address must be specified).

Once you have finished studying and editing the provisioning file, you

can proceed by running the command to actually create the structure
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and startup kits:

1 (venv) $> provision -p project.yml

Following this command, a workspace folder is created, containing

among others the prod 00 folder, which in turn contains a folder for each

node specified in the project.yml file.

These folders are the basic constituents that each node must possess in

order to perform their designated role within the network structure de-

signed to perform FL properly.

So we will have one folder for the admin and as many folders for server

and client as specified when editing the project.yml file (plus possibly a

folder for the Overseer, if any).

A distinction should be made here in particular:

• in a realistic deployment, all the folders described above would have

to be properly distributed to the various nodes (the folder site-1

to the first client, the folder server1 to the server, etc.) → un-

til the last version of the framework such distribution provided for

folder compression and folder extraction only via password, so as

to increase the confidentiality of this deployment, however this fea-

ture has recently been removed and now this process is easier but

also less secure → in a real deployment one must therefore adopt

proper security and encryption techniques to solve the problem, as

this undoubtedly represents a very vulnerable point to attacks and

intrusions

• on the other hand, as far as the case under consideration with this
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experiment is concerned, since it is still the use of a single node, the

security issues expressed above do not exist, however a preliminary

step must be taken.

Indeed, it is necessary, since this is a centralized architecture, to associate

the name of the server with the machine being used (thus localhost) so that

the machine itself, when performing client operations, does not attempt

to resolve the name conventionally via DNS.

To do this, it is necessary to modify the system file /etc/hosts, which

is used as the primary source for mapping IP addresses to host names

in order to provide an alternative name resolution mechanism to name

resolution services using DNS.

To do this, the write permissions of that file must first be changed:

1 (venv) $> sudo chmod 777 /etc/hosts

2 (venv) $> sudo chmod 777 /etc

3 (venv) $> nano /etc/hosts

We therefore also enter the association between server1 and localhost

in the list that appears, as shown in figure 6.5:
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Figure 6.5: /etc/hosts file as a result of adding the association between

the name server1 and the localhost ip address.

Note that if the project.yml file has been modified, for correct reso-

lution of server names it is necessary not only to add an association line

for each server present, but also that the name specified is correct (in fact,

if the name has been modified when editing the project.yml file it may

no longer be ”server1” and in that case it is therefore necessary to enter

the name chosen).

Note also that when editing the project.yml file it is not possible to as-

sign the same name to two different nodes, otherwise one would not know

how to resolve that name, that is which association to refer to.

Finally, note that only the association between server and IP should be

specified in the /etc/hosts file and not also the association between client

and IP, this is for logical reasons: since the client’s IP could also vary, it

would be useless to specify a static one in this file, in fact unlike the

server it is not important that the client node has a certain IP address,

it is enough only that it has the correct cryptographic certificates to es-

tablish communication with the server, also because it is the client itself

that requests to communicate to the server, which in this way is aware of

the client’s IP address anyway.
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At this point, simulating that you have spread the various folders to the

right nodes, you can place the folder of the jobs you intend to submit inside

the transfer folder of the folder reserved for the admin (in the following

example we will submit hello-pt-tb and therefore copy the appropriate

folder by taking it from rw/NVFlare/examples).

At this point you can open a terminal for each component (the recom-

mended order is first the overseer if present, then all servers, then all clients

and only at the end the admin) and on each terminal run the startup/s-

tart.sh script (pay attention to the fact that actually the script contained

in the admin’s folder is called fl admin.sh, so run this).

In this way it is possible to understand what happens even in the case of

truly distributed nodes when connecting and creating the network:

• started the server, it is waiting to receive new connections

• for each client started this will register correctly to the server →
in the server terminal it is in fact possible to see that a new client

has been added, reporting also its IP address and a unique token

assigned to it

• finished the registration of all clients it is possible to register also

the admin by entering the username, which corresponds to the email

entered when editing the provisioning file → the terminal reserved

for the admin is a fundamental constituent, since it is able to com-

mand the FL processes, that is to submit jobs or obtain information

about the status of other nodes or previously submitted jobs.
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For example, by running the commands check status server and

check status client it is possible to check the status of the nodes and

thus verify the correctness of the steps so far.

The expected output is depicted in figure 6.6.

Figure 6.6: execution of commands to check the status of servers and

clients.

It is then finally possible, again in the admin’s terminal, also to sub-

mit the job through the submit job <FOLDER NAME> command,

where the folder name refers to the name of the folder inserted inside the

admin’s own transfer folder.

Submit the command, in the various terminals we can observe the fol-

lowing events:

• in the server terminal it is possible to see that he receives from
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the scheduler the job to execute and specifies a scatter and gather

workflow to start the training process

• on the other hand each client pulls the job folder from the server and

proceeds with the training process, of which it is possible to see the

progression in epochs and the evolution of the loss parameter which,

as extensively mentioned in the previous sections, should decrease

as time progresses.

Again, loss and accuracy graphs can be studied using TensorBoard by

having it pointed via logdir:

• to the tb events folder contained in the server folder if the job is

still running

• otherwise to the workspace/tb events folder contained in the

folder produced as a result of downloading the final results of the

job from the admin terminal with the download job <JOB ID>

command.

Having finished this experiment, we can finally move to a distributed in-

frastructure, in which the various client and server nodes are truly remote,

networked nodes.

6.6 Distributed real world FL

The purpose of this section is to move from the examples seen above cen-

tralized to truly distributed training over the network.

First we need to restore the /etc/hosts file to its original content, so
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if it has been modified for the previous experiments we need to remove

those modifications.

As in the previous section, we then provision the application in a working

directory by running the command

1 (venv) $> nvflare provision

This time, however, we choose from the possible options number 1,

which is the one related to the high reliability provisioning mode.

In our case, let us assume that we want to create a network infrastructure

having:

• one FL server having IP 137.204.72.9

• two clients, understood as two different processes on the same ma-

chine having IP 137.204.72.37

• one admin and one overseer, understood as additional processes on

the server machine.

Well, we need to modify the project.yml file to match the specifications

we are interested in.

In particular, we need to change the section ”participants” and ”over-

seer agent” as shown in the following figures (6.7 and 6.8):
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Figure 6.7: note the changes to the server name parameter and the org

parameter of all participants.

Figure 6.8: the overseer section, on the other hand, needs to be modified

more.

Once these changes to the file are finished, you can proceed to provi-

sioning and thus creating the startup kits of all participants by repeating

the command

1 (venv) $> nvflare provision

A few things need to be made sure before going any further:
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• the server and clients must have the same version of NVFlare →
you can verify the version number by running the command conda

list

• the ports 8002 and 8003 of the server must be free, that is not

listening → you can verify this by running the command sudo lsof

-i -P -n | grep LISTEN and making sure that the ports of our

interest do not appear in the list

• any active firewall rules must allow communication between clients

and server.

Once all these checks have been made, it is possible to distribute the

startup kits (that is the subfolders in ./workspace/example project

/prod 00) to the respective nodes, that is the site-1 and site-2 folders

must be sent to the client (in our case this was done using the scp com-

mand).

The next step is to copy the folder of the job you intend to run (that

is hello-numpy-sag) within the subfolder

admin@nvidia.com/transfer.

It is necessary at this point to perform an additional verification that

within this folder:

• in the file hello-numpy-sag/meta.json the parameter ”min clients”

is compatible with our architecture, otherwise change it

• same thing in the file

hello-numpy-sag/app/config/config fed server.json.

After finishing this final check, exactly as in the previous section you can

proceed to run the start.sh script on overseer, server and client and the
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fl admin.sh script on the admin node and in the CLI that will open sub-

mit the job (hello-numpy-sag) through the submit job hello-numpy-

sag command.

Note that after the training is finished, it may be necessary to run, via

the admin’s CLI, the client shutdown command.

This allows clients to be disconnected from the server, which is useful to

prevent client processes from remaining active and in communication with

the server even when not needed.

6.7 FL for morphing

This section represents the closure of the chapter on programming guide.

In fact, this encapsulates the notions and knowledge learned above and

explains how they have been modified and adapted in order to conduct

training of a model doing face morphing attack detection via Federated

Learning implemented with NVFlare.

In particular, compared to the previous section, some aspects remain to

be clarified and certain problems solved in order to achieve the goal of

training a model for MAD using Federated Learning:

• assign each client a different dataset among those available for mor-

phing

• set some hyperparameters such as learning rate or number of epochs

• in the presence of clients belonging to the same physical machine,

assign each one a different GPU
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• implement a truly distributed training process, that is in which

client, admin and server do not reside on the same machine but

must communicate over the network.

So let us see how to proceed to solve the problems raised above, dis-

tinguishing the steps to be taken between client and server to properly

configure and start the training with the desired settings.

6.7.1 Client-side FL for morphing

Remember to perform the following steps in a virtual environment (for

example using Anaconda):

1. install the NVFLARE package →

1 (venv) $> python3 -m pip install nvflare

2. install utility libraries →

1 (venv) $> python3 -m pip install torch

torchvision tensorboard facenet-pytorch tqdm

3. organize the available dataset in a manner similar to that reported

→
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/
...

dataset
train

morphed
bona-fide

test
morphed
bona-fide

4. notify the server administrator of the absolute path to the dataset folder

5. notify the server administrator on which GPU of the client machine you

intend to run the training → it is suggested to use the GPU labeled as

the result of the command

1 (venv) $> nvidia-smi

6. request from the server administrator the startup kit (folder) dedicated

to the client

7. once obtained the folder wait until the server is properly started and

listening

8. move to the startup folder in the startup kit received and execute the

script →

1 (venv) $> ./start.sh

123



6.7.2 Server-side FL for morphing

The following steps must also be performed in a virtual environment (for

example Anaconda):

1. install the NVFLARE package →

1 (venv) $> python3 -m pip install nvflare

2. install utility libraries →

1 (venv) $> python3 -m pip install torch

torchvision tensorboard

3. clone the github repository and create a folder as workspace →

1 (venv) $> git clone

https://github.com/NVIDIA/NVFlare.git

2 (venv) $> cd NVFlare

3 (venv) $> git switch 2.2

4 (venv) $> mkdir ws

4. within the workspace folder created in the previous step run the

provisioning command and select option number 1 (the one referring

to provisioning in HA mode, high reliability) →

1 (venv) $> nvflare provision
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5. edit the project.yml file created as a result of the previous com-

mand by specifying the architecture you intend to implement →
specifically, in this file you need to add, remove and change the pa-

rameters referring to the nodes you plan to include in the Federated

Learning network you want to implement → certainly you need to

change the parameters shown in figure 6.9 and 6.10 →

Figure 6.9: in the participants section replace <IP>with the IP address

of the node designated as the server and add/remove clients according to

the network configuration you want to create.
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Figure 6.10: in the section for overseer agent carefully change the param-

eters exactly as shown in the figure, also taking care to replace <IP>with

the IP address of the server.

6. finished the above file changes, run the provisioning command again

to generate the startup kits →

1 (venv) $> nvflare provision

7. move to the ./workspace/prod 00 folder and distribute the vari-

ous startup kits to the respective components (that is the first client

should receive the site-1 folder and so on)

8. copy in the transfer folder of the startup kit dedicated to the admin

the folder of the training job that you intend to submit → if you

do not have your own job, it is suggested to follow the steps below,

copying and editing one of the examples in theNVFlare/examples

folder, generated as a result of cloning the repository (step 3)

9. request from the various clients the absolute path to their datasets

10. within the folder transferred in step 8 modify the file app/cus-

tom/pt learner.py in a manner similar to figure 6.11 below →
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Figure 6.11: image shows how to delete the default DataLoader and re-

place it with one that can accept the different paths referred to the various

clients.

11. request clients on which GPU they prefer to start training → once

the response is received, edit the pt learner.py file similarly to

figure 6.12 below:

Figure 6.12: image shows how and where to specify for each client the

GPU you prefer to devote to the training process.

12. it is also possible to change other important parameters in the file

pt learner.py → their use is beyond the scope of this report, so
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the exact code for making the changes is not given, but it is still

considered useful to mention the possible changes, in particular:

• it is possible to specify a different model than the default one

simply by reassigning the variable self.model → in case of a

change to the model it is also necessary to change the path pa-

rameter in the config fed server.json file as shown in figure

6.13 below

Figure 6.13: replace the previous template with the new one, having pre-

viously placed the Python script containing it in the app/custom folder.

• it is also possible to specify a different dataset loader by defin-

ing and using your own custom class

• is also possible to specify a different learning rate through the

variable self.lr

• finally, it is also possible to specify a different loss function by

reassigning the variable self.loss.

13. at this point, having finished editing the pt learner.py file, before

proceeding you need to make sure that:

• all components (clients and servers) are using the same version

of NVFlare
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• ports 8002 and 8003 on the server are available, not already

listening

• any firewalls present allow communication between all compo-

nents

• in the file meta.json present in the folder specified in step 8

the parameter ”min clients” is compatible with the architec-

ture of the network you want to implement (for example if you

have two clients available this parameter must be set to 2) →
perform the same check also in the file ./app/config/con-

fig fed server.json

• in the file ./app/config/config fed client.json the desired

number of epochs is specified.

14. if the network architecture includes an overseer, move to its startup

kit and run the script ./startup/start.sh

15. open a new terminal, move to the server’s startup kit, run the ./s-

tartup/start.sh script and alert clients that the server is finally

listening → executing this step may result in the terminal failing to

start the server due to a process already listening on the specified

port (this is often due to an incorrect server shutdown that occurred

earlier), so to resolve it you need to run the following commands and

unfortunately also restart the server machine, so that the process is

safely and permanently eliminated

1 (venv) $> kill <PID>

2 (venv) $> rm ../daemon_pid.fl
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16. wait for the various clients to connect to the server

17. open a new terminal, move to the admin startup kit, run the script

./startup/fl admin.sh, enter the credentials and inside the termi-

nal that will open run the command check status server to verify

the correct connection of the clients to the server and finally run the

command submit job <FOLDER> to start the training process

→ obviously replace <FOLDER>with the name of the folder copied

in step 8

18. once the training process is finished, you can download the folder

containing the results via the download job <JOB ID> com-

mand, always run in the admin terminal → obviously replace

<JOB ID>with the ID of the job whose results you intend to down-

load, which can be found by running the list jobs command

19. you can use TensorBoard to show learning curves by running the

command tensorboard - -logdir=<PATH>, where <PATH>is

the path pointing to the tb events folder contained in the folder

downloaded in the previous step.
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Chapter 7

EXPERIMENTAL RESULTS

ON MORPHING ATTACK

DETECTION

7.1 Trainings conducted and results obtained

With the skills and knowledge learned from studying the NVFlare frame-

work, it was possible to perform the training of 11 different models capable

of doing Face Morphing Detection.

It was decided to set up the training of the various models based on vari-

ous combinations of the available datasets, so that subsequently we could

evaluate how the different distributions of datasets affected the accuracy

of the models.

It is possible to briefly summarize the composition of the datasets used:

• UBO→ 2216 bona fide images and 1108 morphed images, appropri-

ately divided between training (2326), testing (665) and validation
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(333)

• OPENCV, FACEMORPHER, STYLEGAN → 5405 bona fide

images and 2715 counterfeit images, appropriately divided between

training (5685), testing (1623) and validation (812).

Table 8.1 summarizes the composition of the different experiments:
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ID CLIENT N° EPOCHS DATASET

ID1 1 48 UBO

ID2 1 14 OPENCV

ID3 1 25 FACEMORPHER

ID4 1 30 STYLEGAN

ID5 2 31 UBO/OPENCV

ID6 2 37 UBO/FACEMORPHER

ID7 2 39 UBO/STYLEGAN

ID8 2 20 OPENCV/FACEMORPHER

ID9 2 22 OPENCV/STYLEGAN

ID10 2 28 FACEMORPHER/STYLEGAN

ID11 4 30
UBO/OPENCV/

FACEMORPHER/STYLEGAN

Table 7.1: Composition of the different experiments.

Note that the number of epochs for each training was chosen uncon-

ventionally.

Remember that the number of epochs is a fundamental hyperparameter,

which heavily affects the accuracy of the model, so normally one would

have to identify the most suitable one by mathematical estimation or by

several practical attempts.

Since the purpose of this thesis was never the best possible training of a

model capable of doing MAD but rather to study and evaluate the po-

tential of the Federated Learning framework, it was deemed sufficient to

adopt as the number of epochs optimal values used in previous successful

trainings with the same datasets (without the use of Federated Learning).

Obviously, these values were then manipulated for experiments with mul-
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tiple clients and therefore datasets, using the arithmetic mean of the num-

ber of epochs used for individual instances of the datasets involved.

For example, the number of epochs in experiment ID5 (UBO/OPENCV)

is 31 because this corresponds to the average of the epochs used in train-

ings ID1 (UBO only) and ID2 (OPENCV only).

It is considered important to reiterate that this is by no means an op-

timal nor recommended choice, however it was deemed acceptable given

the purposes of this report.

Once the 11 models had been trained, the next step of validating each

was done through a framework known as Revelio.

More precisely, Revelio extracts a set of datasets for MAD and begins a

so-called warmup phase, that is for each image in each dataset it crops

the face so that they all have approximately the same size.

Then the framework takes the trained model submitted to it and validates

it on the previously prepared images by returning in a .json file the value

of the metrics, already divided by dataset, which can be specified in a

special configurationon file.

In this way, the results and metrics of the model can be conveniently ob-

tained on the various testing datasets.

With regard to the results of the conducted trainings, we report a few

tables containing not the classical accuracy and loss results, but the usual

metrics dedicated to face morphing and described in the previous chap-

ters, namely EER and BPCER@APCER (computed at different APCER

values).

It is also necessary to point out that in addition to the classic MAD met-

rics, an additional metric called WAED has also been included: this is

134



not a conventional nor even unified measure, however it is very useful be-

cause with a single value calculated on the basis of all those in the table

but weighted by importance it is possible to summarize and describe the

behavior of the model and this greatly simplifies the comparison between

the results obtained from the different models.

Finally, it should be noted that the tables of each training are not shown

but only a few representative cases that show the variation of metrics in

the presence of multiple clients and therefore multiple training datasets.

In particular, the tables for the trainings are shown:

• ID1 → single client trained on UBO

• ID2 → single client trained on OPENCV

• ID5→ two different clients trained separately on UBO and OPENCV

• ID11 → four different clients trained separately on UBO, OPENCV,

FACEMORPHER and STYLEGAN.
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MORPHING ALG. EER BPCER0.1 BPCER0.05 BPCER0.01

UBO .000 .000 .000 .000

OpenCV .145 .188 .248 .367

FaceMorpher .123 .145 .207 .307

StyleGAN .210 .317 .394 .688

AMSL .006 .000 .000 .100

Webmorph .300 .450 .550 .750

FaceFusion .199 .349 .508 .800

NTNU .136 .221 .396 .757

UTW .134 .193 .329 .748

WAED ↓ .3886

Table 7.2: ID1 training results (UBO).

MORPHING ALG. EER BPCER0.1 BPCER0.05 BPCER0.01

UBO .044 .023 .029 .072

OpenCV .004 .000 .000 .000

FaceMorpher .006 .000 .000 .006

StyleGAN .070 .036 .130 .537

AMSL .001 .000 .000 .000

Webmorph .222 .500 .600 .950

FaceFusion .158 .284 .460 .773

NTNU .147 .245 .485 .806

UTW .375 .663 .763 .899

WAED ↓ .4614

Table 7.3: ID2 training results (OPENCV).
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MORPHING ALG. EER BPCER0.1 BPCER0.05 BPCER0.01

UBO .000 .000 .000 .000

OpenCV .140 .168 .244 .376

FaceMorpher .120 .137 .210 .367

StyleGAN .186 .287 .418 .627

AMSL .050 .050 .050 .050

Webmorph .321 .600 .650 .850

FaceFusion .187 .337 .461 .730

NTNU .101 .107 .266 .622

UTW .249 .452 .593 .844

WAED ↓ .4241

Table 7.4: ID5 training results (UBO/OPENCV).

MORPHING ALG. EER BPCER0.1 BPCER0.05 BPCER0.01

UBO .000 .000 .000 .000

OpenCV .138 .172 .219 .444

FaceMorpher .103 .109 .193 .337

StyleGAN .206 .301 .406 .737

AMSL .012 .000 .000 .050

Webmorph .250 .650 .800 .900

FaceFusion .208 .432 .593 .822

NTNU .172 .362 .603 .868

UTW .144 .233 .478 .823

WAED ↓ .4106

Table 7.5: ID11 training results (UBO/OPENCV/FACEMOR-

PHER/STYLEGAN).
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The results obtained show that unfortunately, contrary to expectation,

performance does not improve by training the model on different datasets

but rather even worsens, so that paradoxically the best model obtained

(ID1) falls among those trained on a single dataset.

These unexpected results may actually also be caused by the fact that

some important hyperparameters such as learning rate and number of

epochs were reused from previous experiments carried out through clas-

sical Deep Learning instead of Federated Learning, whereas instead one

should identify what the optimal values are and use them.

However, although the results obtained sometimes deviate from those

achieved by classical models for MAD, surely it would be reductive to

evaluate only these numbers and not to continue further with the exper-

iments, also because we repeat that many important corrective actions

could be taken in the training phase that instead were not taken as they

were too far from the objectives of this thesis.

Certainly such actions would lead to improved performance: however, it

is difficult to estimate how much impact they might have on performance.

In any case, it has already been ascertained in several areas that the po-

tential offered by Federated Learning can truly be a factor that can solve

many problems and revolutionize classical machine learning approaches,

so this avenue deserves to be explored more thoroughly through new, more

accurate and extensive tests, so as to have a more realistic estimate of how

Federated Learning affects the morphing detection problem.

On the other hand, as far as the purposes of this thesis are concerned, it is

reiterated that among them there has never been to identify a competitive

138



model for MAD, so the training of the 11 models mentioned above must

be evaluated as positive as it represents the most complex and complete

experiment that it has been possible to carry out using the framework

under study, and this certainly represents an important achievement.

7.2 Overall evaluation of the framework

A table follows detailing all the advantages and disadvantages, strengths

but also weaknesses that have emerged from using the NVFlare frame-

work.

Table 8.6 is in fact the answer to the main question of this thesis, which

is whether it is possible to explore and exploit the potential offered by a

Federated Learning framework to apply it to the Morphing Attack Detec-

tion problem.

While the answer may seem obvious, since in fact this has been success-

fully achieved and already reported in the previous section, NVFlare is

a very broad framework with numerous peculiarities, both positive and

negative, that deserve attention as they greatly affect its effectiveness and

intuitiveness.
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ADVANTAGES DISADVANTAGES

Very detailed user guide

Significant difficulty in use due to

lack of intuitiveness

of certain passages

Support team available

for assistance

High number of shares to be

accomplish even to carry out

simple tasks

Examples of code base to study

and modify as needed

Lack of an integrated part

dedicated to the validation of

the trained model

Ease of installation
Difficulties in finding resources

examples of use on the web

Open source

Frequent and consistent

updates often cause

disorientation and confusion if

they touch upon mechanics that

instead were thought to be learned

Table 7.6: advantages and disadvantages on NVFlare framework.

It is worth noting that, despite it is natural and conventional, it is ac-

tually not entirely correct to simply label a given feature as advantageous

or disadvantageous.

Think, for example, of the user guide: it has been included among the

advantages because its presence certainly makes it easier to learn the

framework, but it has also major flaws, such as excessive verbosity and

prolixity or inconsistency due to the fact that it is not updated in parallel

with the framework.
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Such as in any context, one must therefore be able to look at each char-

acteristic in an informed way, not merely evaluating it in a binary way

(advantage or disadvantage), but having the maturity to recognize the

gradualness and depth behind the evaluation assigned to it.

This clarification is necessary not only because it is emblematic of the logic

with which the various evaluations were assigned, but also and above all

because the framework under study represents a very complex product,

so it deserves a careful analysis that takes into account all the various

peculiarities offered, contextualizing them in their own and precise way.

In this sense, an attempt has been made to exploit as much as possi-

ble the objectivity and critical spirit developed also thanks to the skills

and knowledge received from the course of study undertaken, skills that

are essential not only in the engineering field but powerful everyday tools

that allow one to analyze reality in a more in-depth, detailed and metic-

ulous way than it may seem.

Turning to mere conclusions, surely one must count among the strengths

of the framework the extreme helpfulness of the support team

NVIDIA and the presence of the user guide.

However, it is also necessary to mention the great and sometimes even

serious obstacles present to date: not only the lack of intuitiveness of

even simple tasks such as the setup of nodes in the network, but the ex-

treme verbosity and repetitiveness of the steps to be performed even for

simple tasks and the lack of a part dedicated to the validation of the post-

training model represent unfortunately critical flaws that compromise the

effectiveness, completeness and simplicity of the framework.
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Surely these aspects can be improved by the development team as time

progresses, but as of today they remain major drawbacks that result in

excessive effort and time consuming not only to learn how to use the

framework, but also to continue to know how to use it given the high

volume of frequent updates that often undermine established mechanics

going to disorient the user, who not infrequently finds himself overnight

implementing changed or removed actions or steps.

This does not detract from the fact that once the steep learning curve

has been overcome with a lot of patience and technical skills, the frame-

work proves to be extremely adaptable to the different needs and situa-

tions required, in fact turning into a valuable helper tool, effective and

precise in carrying out its tasks of training and graphical visualization of

performance, unfortunately less useful for the later stages of testing and

validation, unfortunately making the use of other external systems neces-

sary.

In any case, it should be stressed that this is a software dedicated more

to the world of research, not a real product finished and released on the

market, so it is also normal that there are some dynamics that can lead

to some disorientation such as continuous updates.
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Chapter 8

CONCLUSIONS AND

FINAL CONSIDERATIONS

Although, as anticipated several times, the purpose of the present the-

sis was to study and evaluate the application of Federated Learning via

NVFlare to the problem of Morphing Attack Detection, driven by curios-

ity and aided by the invaluable help of the professors following me, I was

able to go further and deepen the main objective: not only I summarized

the knowledge and skills learned in this thesis and in a brief guide to using

the framework, but I was also able to train models via Federated Learning

capable of performing morphing detection, which is a first in this field of

research since to date there are no other studies or experiments in this

regard.

Despite of the fact that this thesis work represents the longest, most im-

pressive and complicated challenge faced during my university career, I

feel satisfied and proud of the results obtained.
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While on the one hand I am happy with the enrichment not only cultural

and technical but above all human that the writing of the thesis has left

me, I am perhaps even happier with the falls and mistakes made during

this work, since it is mainly thanks to them that I have learned to know

my limits and deal with them, so I believe that, as is also often the case

in many different fields, the moments of difficulty have had the greatest

impact on my maturity and the development of my skills.

With regard to the enrichment that I mentioned earlier, it is good to

emphasize that I am not referring to the simple acquisition of technical

and theoretical knowledge, but rather to the discovery of some mecha-

nisms that I ignored and that instead the context of the thesis highlighted

to me: I am referring to the immeasurable richness obtained thanks to

the confrontation and dialogue with everyone who helped me to finish the

present work, therefore professors and students who, with commitment,

dedication and passion, work in the university laboratory of biometrics

that hosted me to carry out my research.

From the very first days I could feel an inner growth, composed of practical

and methodological notions regarding the subject studied, but also and

above all of behavior, mutual help, sharing, collaboration and exchange

of ideas and knowledge.

I believe that the main legacy of my thesis is precisely this, that is the

awareness that confrontation with others and the exchange of ideas are

always positive acts, capable of improving and growing all those involved:

looking at things from a different point of view or in any case with some-

one’s help, one often receives confirmation or discovers valid alternatives

to his way of thinking, but in any case the confrontation ends with an
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increase and a direct acquisition of knowledge, a real sharing.

In this regard, I believe that the course of study undertaken, often struc-

tured through abstract technical and mathematical notions, could improve

through more direct and focused explanations at times, accepting the loss

of some detail or technicality if this is necessary to ensure a better under-

standing among interlocutors.

I therefore consider myself extremely lucky to have been able to enjoy the

opportunity of the thesis also to note this aspect, which is often taken

for granted but is in fact a skill that certainly needs to be developed and

improved.

In a virtual and connected world in which it is increasingly difficult to

describe reality, the figure of the engineer needs to adapt and to improve

his communication skills so that his wealth of experience and knowledge

continues to help him in understanding and analyzing as objectively as

possible the world around him, but above all to share with others what

he has learned, so as to give even noble meaning to his research, moving

from the effort and commitment of the individual to collective growth and

knowledge.
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