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Abstract

Synchronization is ubiquitous in nature. Indeed, periodic phenomena with similar fre-
quencies have been observed to synchronize their phases during their evolution. From a
mathematical point of view it can be defined as the tendency of coupled periodic systems
to reach a point of equilibrium characterized by a relative phase equal to a multiple inte-
ger of 2π (in-phase oscillations) or to an odd integer of π (anti-phase oscillations). In this
report we analyzed this phenomenon using two different dynamical systems coupled via
a trolley: one built with simple pendulums, where oscillations are damped by friction,
and the other built with metronomes, where a spring supplies energy to the oscillating
mass to compensate dissipative effects. In each system both in-phase and anti-phase
synchronization have been observed by varying the initial conditions. By building the
systems and employing both an analytical and numerical model in order to understand
experimental data, the primary causes of the synchronization phenomenon can be linked
to the variation of energy, and consequently to dissipation and energy supplied by the
spring.

La sincronizzazione è onnipresente in natura. Infatti, si osserva che fenomeni periodici
con frequenze simili sincronizzano le loro fasi durante la loro evoluzione. Da un punto di
vista matematico puó essere definita come la tendenza di sistemi periodici in interazione
tra loro a raggiungere uno stato di equilibrio caratterizzato da una fase relativa pari ad
un multiplo intero di 2π (oscillazioni in fase) oppure un multiplo dispari di π (oscillazioni
in controfase). In questa tesi viene studiato il fenomeno della sincronizzazione per due
diversi sistemi di oscillatori accoppiati mediante un carrellino; il primo costituito da due
pendoli semplici, soggetti all’attrito, e il secondo da due metronomi, in cui la dissipazione
viene compensata da una molla che fornisce energia alla massa oscillante. Sia lo stato
sincrono in fase che in controfase sono stati osservati sperimentalmente in entrambi i
sistemi, in base alle condizioni iniziali. Utilizzando un approccio analitico, sperimentale
e numerico, le cause che portano alla sincronizzazione sono state ricondotte alla variazione
di energia, ovvero alla dissipazione dell’attrito e all’energia immessa dalla molla.
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Introduction

Physics of Complex Systems is the study of systems composed by many components
and considers the peculiar global properties which emerge from the interactions between
subsystems. Examples of systems where the whole is greater than the sum of its parts
can be found in many fields, such as neuroscience [1], Earth sciences [2], economics [3],
city planning [4] and many more. An instance of a non trivial property which stems
from interaction is synchronization; a complex system is in a synchronous state when a
specific phenomenon occurs at the same time in every subsystem.
The phenomenon of synchronization is not uncommon in biological systems, and in
certain cases it is a crucial mechanism employed to ensure the correct functioning of
important organs, such as hearts, were coupled pacemaker cells act in synchronous fash-
ion [5]. Sometimes the reason beyond synchronization is more mysterious and might be
linked to evolutionary advantages: certain species of fireflies have been seen blinking in
unison, turning pitch black nights into beautiful light shows [6].
The most successful approach to study synchronous behaviour in these types of systems,
was introduced by Kuramoto [7], who proposed a non-linear model which can be solved
analytically, even in the limit of infinite oscillators. The strength of the model lies in
its ability to describe huge networks of oscillators, and their eventual evolution towards
synchronous states.
Christiaan Huygens (1629-1695) was the first to observe and describe synchronous be-
haviour in pendulum clocks [8], which were invented by him. By hanging two identical
clocks to the same support beam, the pendulums could interact with each other by ex-
changing momentum, meaning that the dynamic of each clock was influenced by the
behaviour of the other, hence the two oscillators were coupled. Although the clocks were
put in motion with different phases, the “ticks” eventually occurred at the same time,
as the pendulums swung in synchronous motion, with opposite angular velocities. We
decided to follow Huygens’ steps and study two different types of systems of physical
oscillators, one built using pendulums and the other made with metronomes. These sys-
tems are comprised of two oscillators each, and the aim of this report is to experimentally
verify the stability of synchronous motion and to create a linear model which predicts
the final state.
A system of coupled oscillators can be easily built by attaching two pendulums to the
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same trolley: due to the law of conservation of momentum, the swings of a pendulum
cause the cart to move, thus influencing the dynamic of the other pendulum; since each
oscillator interacts with the other, they are coupled. A point of equilibrium is reached
when phase locking occurs, a state in which each oscillator can be mathematically mod-
elled as a time dependent periodic function with a constant phase. When the relative
phase difference between the oscillators is a multiple integer of 2π or an odd integer of
π the system has reached a synchronized state; in the first case the oscillations occur
in-phase while in the other in anti-phase. When perfect in-phase synchronization occurs,
the pendulums swing together and the motion of the trolley is maximized, while in the
case of perfect anti-phase the pendulums have opposite angular velocities, hence the cart
does not move at all and the pendulums behave as if they were uncoupled. In recent
years, an analogous system built using metronomes [9] has been popularized by online
videos: the key difference between a pendulum and a metronome is that in the former
case oscillations are damped by friction, while in the latter a spring injects energy into
the oscillating mass, increasing its angular velocity, thus compensating friction and sus-
taining the oscillations.
This thesis contains the results of experiments we performed, verifying the conditions
for the existence of synchronized states and that different synchronous stationary states
are possible depending on the initial conditions. In Chapter 1 we explore in detail the
theoretical analysis of both systems, and mathematically explain how synchronization is
linked to the variation of energy, caused either by friction or by the spring’s action on the
swinging mass. In Chapter 2 we report data which we gathered by building the setups
and by carrying out frame by frame video analysis of the dynamical evolution of these
systems. Finally, in Chapter 3 we present numerical solutions to the equations of mo-
tion, as well as some modifications to the model which can be made to more accurately
reproduce real world data.
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Chapter 1

Theoretical analysis

1.1 Coupled pendulums
A system of oscillators is said to be coupled if the dynamic of a single member is influenced
by the behaviour of all the others. The simplest system of this kind is one comprised of
the most well known oscillators: pendulums.

Figure 1.1: Example of coupled pendulums. The system can be mathematically modeled by
using the position of the trolley’s center and the angle between the oscillating masses and the
vertical.

Consider two point mass pendulums of length l and mass m pivoted on the same
cart of mass M (Fig. 1.1), which can move on a straight line along the x axis, dragging
the pendulums’ pivot points. As the pendulums swing around their respective resting
point, the cart moves, since the x component of momentum is conserved. The horizontal
velocity of each pendulum can be written as ẋi = Ẋ + l cos(θi)θ̇i, where X is the position
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of the center of the cart and θ is the angle between the oscillating mass and its point of
equilibrium; therefore the relation which defines the conservation of momentum is

MẊ + m(Ẋ + l cos(θ1)θ̇1) + m(Ẋ + l cos(θ2)θ̇2) = 0

which yields an equation for Ẋ

Ẋ = − m

2m + M
l(cos(θ1)θ̇1 + cos(θ2)θ̇2) = −al(cos(θ1)θ̇1 + cos(θ2)θ̇2) (1.1)

where a = m/(2m + M) can be related to the effectiveness of coupling: a super massive
cart would not be affected by the motion of the swinging masses and would remain
stationary, consequently preventing the oscillators from interacting (for M → +∞, a →
0), while a lighter cart would cause the dynamic of each pendulum to be greatly influenced
by the motion of the other (for M → 0, a → 1

2) . Using yi = l cos(θi), ẏi = −l sin(θi)θ̇i

we can derive the kinetic energy T and potential energy V of the system

T = M

2 Ẋ2 + m

2 (ẋ1
2 + ẏ1

2) + m

2 (ẋ2
2 + ẏ2

2) =

=
(

M

2 + m
)

Ẋ2 + mẊl(cos(θ1)θ̇1 + cos(θ2)θ̇2) + m

2 l2(θ̇1
2 + θ̇2

2)

By substituting Ẋ with the expression given by Eq. 1.1, the energy of the system can be
expressed solely as a function of the angular positions θi

T = m

2 l2(θ̇1
2 + θ̇2

2) + ma(a + a
M

2m
− 1)l2(cos(θ1)θ̇1 + cos(θ2)θ̇2)2 =

= m

2 l2(θ̇1
2 + θ̇2

2) − ml2 a

2(cos(θ1)θ̇1 + cos(θ2)θ̇2)2

V = mgl(2 − cos(θ1) − cos(θ2))

where g is the acceleration due to gravity. To simplify these relations, one can adopt a
second order small angle approximation, which is fairly accurate as long as θi < π/6. By
assuming sin(θi) ≈ θi and cos(θi) ≈ 1 − θ2

i /2 an approximate form of the total energy
of the system can be obtained

E = T + V = l2 m

2 (θ̇1
2 + θ̇2

2) − ml2 a

2

[(
1 − θ2

1
2

)
θ̇1 +

(
1 − θ2

2
2

)
θ̇2

]2

+ mgl

2 (θ2
1 + θ2

2)

(1.2)

For the sake of simplicity, let us consider the limit of low angular velocities, and treat
θ̇i as a term of the same order of magnitude of θi. In general this is not true, but it
should be justified as long as low enough frequencies are considered. The implications of
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this approximation will be further explored in the following sections and are confirmed a
posteriori by experimental data (Sect. 2.2). When the approximation holds, the product
θ2

i θ̇i is of the third order and therefore the energy can be rewritten as

T = ml2

4 [(θ̇1 + θ̇2)2 + (θ̇1 − θ̇2)2] − mal2

2 (θ̇1 + θ̇2)2 (1.3)

V = mgl

4 [(θ1 + θ2)2 + (θ1 − θ2)2] (1.4)

The phenomenon of synchronization can be nimbly studied by introducing two new
variables, d = θ1 − θ2 and s = θ1 + θ2. These variables grant meaningful insight on the
state of the system, as in-phase motion is characterized by d = 0, while an identically
null value of s is typical of anti-phase synchronization. The equations of motion can be
cast as a function of s and d, and are easily obtained by using the Lagrangian:

d̈ + ω2d = 0 (1.5)

(1 − 2a)s̈ + ω2s = 0 (1.6)
where ω2 = g/l. These equations describe a periodic dynamic of d and s with respective
angular frequency ω and ω/

√
1 − 2a; they also provide an effective way to study the

evolution of the system, as they are uncoupled and can be studied separately. A syn-
chronous state is achieved when either s or d is identically null while the other variable
is described by a periodic function, hence in this case, where energy is conserved and the
dynamic is described by uncoupled equations, no synchronization can occur.
However, the real-world system is not accurately modeled by this approach, as it is sub-
ject to friction, which causes energy to vary; this key effect needs to be introduced into
the equations of motion as it is crucial to the study of synchronization.
The simplest way to model friction is by introducing a new term to the differential equa-
tions which is proportional to the angular velocity and a constant, γ, with the dimensions
of a frequency. The underlying assumption here is that the dominant dissipative effect is
the one acting on the pivot, thus mainly affecting the rotational dynamic of the swinging
masses by damping oscillations. As long as all the aforementioned approximations are
valid, the system is described by the following coupled equations

θ̈1 + γθ̇1 + ω2θ1 − a(θ̈1 + θ̈2) = 0 (1.7)
θ̈2 + γθ̇2 + ω2θ2 − a(θ̈1 + θ̈2) = 0 (1.8)

which can be uncoupled by using the variables d and s

d̈ + γḋ + ω2d = 0 (1.9)
(1 − 2a)s̈ + γṡ + ω2s = 0 (1.10)
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It is convenient to substitute the parameter γ with γd in Eq. 1.9 and γ/(1−2a) with γs

in Eq. 1.10 in order to account for the more general case, where other dissipative effects,
which might affect d and s asymmetrically, should be considered. When the conditions
ω2 > γ2

d/4, (1 − 2a)γ2
s /4 hold the solution to the system can be written as follows:

d(t) = exp
(

−γd

2 t
)

(Ad cos(ωdt) + Bd sin(ωdt)) (1.11)

s(t) = exp
(

−γs

2 t
)

(As cos(ωst) + Bs sin(ωst)) (1.12)

where ωd =
√

ω2 − γ2
d/4, ωs =

√
ω2/(1 − 2a) − γ2

s /4 and Ad, Bd, As, Bs are determined
by the initial condition. Since the exponential factors are different, one solution might be
dissipated faster than the other, leading to synchronization. This is the case described
by Eqs. 1.9 and 1.10, with γd = γ and γs = γ/(1 − 2a); a is bound by 0 and 1/2, which
implies that the oscillation amplitude of s(t) has an higher decay rate than that of d(t),
hence with “fair” starting conditions, where the initial amplitudes Ad, Bd and As, Bs are
comparable, anti-phase synchronization is favoured.

1.2 Energy of the system
In the case of high angular velocities, the kinetic energy cannot be written as in Eq. 1.3,
but, if the small angle approximation is still valid, it can be expressed as

T ≈ m

2 l2
(
θ̇1

2 + θ̇2
2)− ml2 a

2

[(
1 − θ2

1
2

)
θ̇1 +

(
1 − θ2

2
2

)
θ̇2

]2

≈ ml2

4
[
(θ̇1 + θ̇2)2 + (θ̇1 − θ̇2)2

]
− mal2

2

[(
1 − θ2

1

)
θ̇1

2 +
(
1 − θ2

2

)
θ̇2

2 + 2
(

1 − θ2
1 + θ2

2
2

)
θ̇1θ̇2

]

= ml2

4
[
ṡ2 + ḋ2

]
− mal2

2
[
θ̇1

2 + θ̇2
2 + 2θ̇1θ̇2 − θ2

1 θ̇1
2 − θ2

2 θ̇2
2 − (θ2

1 + θ2
2)θ̇1θ̇2

]
which can be rewritten solely as a function of d, s and their time derivatives by making
the following considerations:

(θ2
1 + θ2

2)θ̇1θ̇2 = 1
2(s2 + d2)1

4(ṡ2 − ḋ2)

= 1
8(s2ṡ2 − s2ḋ2 + d2ṡ2 − d2ḋ2)
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θ2
1 θ̇1

2 + θ2
2 θ̇2

2 = (θ2
1 + θ2

2)θ̇1
2 + (θ2

1 + θ2
2)θ̇2

2 − θ2
2 θ̇1

2 − θ2
1 θ̇2

2

= (θ2
1 + θ2

2)(θ̇1
2 + θ̇2

2) + (θ2
1 − θ2

2)θ̇1
2 − (θ2

1 − θ2
2)θ̇2

2 − θ2
1 θ̇1

2 − θ2
2 θ̇2

2

= 1
8(s2 + d2)(ṡ2 + ḋ2) + 1

2sdṡḋ

and

(θ2
1 + θ2

2)θ̇1θ̇2 + θ2
1 θ̇1

2 + θ2
2 θ̇2

2 = 1
4 ṡ2(s2 + d2) + 1

2sdṡḋ

which implies that 4T/(ml2) = ṡ2 + ḋ2 − 2aṡ2 + a
2 ṡ2(s2 − d2) + asdṡḋ

Therefore, we obtain an expression for the energy of the system which was derived by
only employing the small angle approximation

E = ml2

4 ṡ2
(

1 − 2a + a

2(s2 − d2)
)

+ ml2

4 ḋ2 + mal2

4 sdṡḋ + mgl

4 (s2 + d2). (1.13)

Unfortunately, the equations of motion yielded by 1.13, which provides a more realistic
depiction of the physical reality, have no analytical solutions. Nevertheless, it is possible
to identify the corrective terms Ec which are neglected when the small angular velocity
approximation is adopted by comparing Eq. 1.13 with Eq. 1.3, thus providing a formal
way to evaluate the accuracy of such estimate. We can introduce three new quantities,
es, ed and ec, defined by the following relations

es = 4Es

ml2 = ṡ2(1 − 2a) + ω2s2 (1.14)

ed = 4Ed

ml2 = ḋ2 + ω2d2 (1.15)

ec = 4Ec

ml2 = asdṡḋ − a

2 ṡ2d2 + a

2 ṡ2s2 (1.16)

and claim that the simplified approach is still reasonable as long as |ec| ≪ ed, es. If the
approximate forms given by 1.11 and 1.12 are still valid to some degree, one can observe
that the rate at which ec is dissipated is equal to γd + γs, which means that in certain
cases the approximation might be valid after a certain period of time, since ec decays
faster than es and ed.
When ec is negligible, another valid course of action is to express the energy of the system
as the sum of the energy contained in the pendulums Ep and the energy of the trolley
Et, which is purely kinetic and defined by the relation Et = MẊ2/2 ≈ Ml2a2ṡ2/2.
Observing that Ma = mM/(2m + M) = m(1 − 2a) we derive

Ep = Tp + Vp = ml2

4 ((1 − 2a)2ṡ2 + ḋ2 + ω2(s2 + d2)) (1.17)

Et = Tt = ml2

4 2a(1 − 2a)ṡ2 (1.18)
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Now that all the relevant physical quantities have been expressed as a function of s d
and their time derivatives, we have established a framework which eases the study of
synchronization, as it reduces the phenomenon to the evolution of these variables.

1.3 Coupled Metronomes
A metronome can be modelled as a damped harmonic oscillator attached to a spring,
which supplies energy to the system in order to sustain the oscillations by compensating
dissipation. The stability of synchronous solutions have been the subject of many papers,
such as [10]. The effect of the spring can be modelled as an impulsive boost to the
magnitude of the oscillating mass’ angular velocity: this boost is triggered when the
mass reaches its resting position (θ = 0). The equation of motion of an uncoupled
metronome can therefore be written using the small angle approximation as

θ̈ + γθ̇ + ω2θ = sgn(θ̇)Kδ(θ)

where sgn is the sign function, δ(θ) is Dirac’s delta and K is the angular velocity boost
(“kick”). Dirac’s delta introduces a discontinuity in the time derivative of θ of magni-
tude K and sign sgn(θ̇) when θ = 0. By coupling two identical metronomes using a
cart, similarly to what we already discussed with pendulums in Sect. 1.1, we obtain the
following equations

θ̈1 + γθ̇1 + ω2θ1 − a(θ̈1 + θ̈2) = sgn(θ̇1)K ′δ(θ1)
θ̈2 + γθ̇2 + ω2θ2 − a(θ̈1 + θ̈2) = sgn(θ̇2)K ′δ(θ2)

where K ′ = (1 − a)K so that the absolute value of the kick is always equal to K. We can
now introduce s = θ1 + θ2 and d = θ1 − θ2 in order to rewrite the system as

s̈(1 − 2a) + γṡ + ω2s = K ′[sgn(θ̇1)δ(θ1) + sgn(θ̇2)δ(θ2)] (1.19)
d̈ + γḋ + ω2d = K ′[sgn(θ̇1)δ(θ1) − sgn(θ̇2)δ(θ2)] (1.20)

Note that both in-phase (d identically null, sgn(θ̇1) = sgn(θ̇2)) and anti-phase (s iden-
tically null, sgn(θ̇1) = − sgn(θ̇2)) motion are solutions of the system. In general, the
final state depends on the initial conditions; in order to show that both states are stable
we can study the behaviour of the equations in a neighbourhood of a synchronous solu-
tion (either in-phase or anti-phase). Let us hypothesize that the angular position of a
metronome can be expressed as a function of the position of the other, θ2(t) = θ1(t)−z(t),
where |z| ≪ |θ1|, so that the system is close to an in-phase synchronous state (the other
case is analogous). In order to find an analytical solution, it is convenient to rewrite
both Dirac’s deltas as a function of time instead of angular position, as the equations
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contain time derivatives. This could be done by approximating the dynamic of the first
metronome to its uncoupled behaviour, so that the times in which the spring is triggered
can be easily computed. Since an ideal uncoupled metronome has a fixed frequency, the
position of its oscillating mass can be arbitrarily described as a cosine, and the delta can
be rewritten as

δ(θ1) ≈ δ(A cos(ωt)) =
+∞∑
n=0

δ(t − tn)

where tn = π
2ω

(2n+1) are the instants in which cos(ωt) = 0. The other delta is triggered
when θ2 = 0, that is when θ1(t) = z(t); in virtue of the fact that z is small, the sequence
of times tn−ϵ which solves the latter equation is not that far off from tn, and can be
expressed as tn−ϵ = tn − ϵn, where ϵn is assumed to be a small positive time. Finally, in
a neighbourhood of in-phase synchronization the sign of θ̇1 is the same as θ̇2, and since
we chose to mathematically model θ1 as a cosine, sgn(θ̇1(tn)) = (−1)n+1. The variables
s and d can be expressed as s = 2θ1 − z and d = z, which implies that Eq. 1.20 can be
cast as a function of z.

z̈ + γż + ω2z = K ′(−1)n+1
+∞∑
n=0

[δ(t − tn) − δ(t − tn−ϵ)] (1.21)

The system can be considered solved once the sequence of ϵn is known, as well as the
functions zn−1, zn−ϵ and zn which satisfy Eq. 1.21 and are respectively defined in the
time intervals ]tn−1, tn−ϵ[, ]tn−ϵ, tn[ and ]tn, tn+1−ϵ[. A possible solution for the unknown
functions zn which satisfy Eq. 1.21 is

zn = exp
(

−γ

2 (t − tn)
)

[An cos(ω′t) + Bn sin(ω′t)]

where γ2/4 ≪ ω2 and ω′ =
√

ω2 − γ2/4 ≈ ω. The presence of Dirac’s deltas imply the
following conditions:

zn−1(t = tn−ϵ) = zn−ϵ(t = tn−ϵ)
żn−ϵ(t = tn−ϵ) − żn−1(t = tn−ϵ) = −(−1)n+1K

zn(t = tn) = zn−ϵ(t = tn)
żn(t = tn) − żn−ϵ(t = tn) = (−1)n+1K

By noticing that

tn − tn−1 = π

ω
cos(ω(tn − ϵn)) = cos(ωtn) cos(ωϵn) + sin(ωtn) sin(ωϵn) ≈ (−1)nωϵn + o(ϵ3

n)
sin(ω(tn − ϵn)) = sin(ωtn) cos(ωϵn) − cos(ωtn) sin(ωϵn) ≈ (−1)n + o(ϵ2

n)
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and expressing the time derivative of zn in the convenient form

żn = −γ

2zn − ω exp
(

−γ

2 (t − tn)
)

[An sin(ωt) − Bn cos(ωt)]

the first two conditions yield the following equations

An−ϵ = exp
(

−γ

2 (π

ω
− ϵn)

)
An−1 − K

ω
+ o(ϵ2

n) (1.22)

Bn−ϵ = exp
(

−γ

2 (π

ω
− ϵn)

)
Bn−1 + Kϵn + o(ϵ2

n) (1.23)

Using the remaining conditions, we can express An and Bn as a function of An−1 and
Bn−1

An = exp
(

−γ

2 ϵn

)
An−ϵ + K

ω
≈ exp

(
−γ

2
π

ω

)
An−1 + γ

2 ϵn
K

ω
+ o(ϵ2

n) (1.24)

Bn = exp
(

−γ

2 ϵn

)
Bn−ϵ ≈ exp

(
−γ

2
π

ω

)
Bn−1 + Kϵn + o(ϵ2

n) (1.25)

tn+1−ϵ = tn+1 − ϵn+1 is defined as the solution to the equation θ1(t) = zn(t) which implies
that

A cos(ωtn+1−ϵ) = zn(tn+1−ϵ)

A(−1)n+1ωϵn+1 ≈ exp
(

−γ

2
π

ω

)
(1 + γ

2 ϵn+1)[An(−1)n+1ωϵn+1 + Bn(−1)n+1]

ϵn+1 = Bn

Aω exp
(

γ
2

π
ω

)
− ωAn − γ

2 Bn

(1.26)

By knowing z and ż at a given time we can compute An−1, Bn−1, ϵn and solve the problem.
Note that under the condition Kϵn < γ

2
π
ω

Bn−1, Bn < Bn−1, which indicates that ϵn+1 < ϵn

(A ≫ An, Bn). The sequence of An, Bn and ϵn reaches 0 for n → +∞ which entails that
zn eventually becomes identically vanishing, hence in-phase synchronization occurs.

1.4 Estimate of the kick value K
As we have shown in the previous section, the increase in the modulus of the angular
velocity K caused by the action of the spring on the oscillating mass is an important
parameter of the model, and it is crucial to know its value when comparing theoretical
predictions to experimental data. K can be easily computed once the elastic constant of
the spring is know; unfortunately it is likely that the latter will not be provided by the
manufacturer, and measuring it directly would require a disassembly of the metronome,
thus risking to damage the mechanism. One way to estimate the value of the kick is
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to assume that the energy supplied by the spring is equal to the energy dissipated by
friction, so that the oscillations are sustained. The value of the dissipation factor γ
can be measured by unwinding the spring, so that the metronome can be thought as
a simple uncoupled pendulum, and the rate at which the amplitude of the oscillations
decays can be obtained by studying the dynamic. By letting the oscillating mass fall
from a certain height, the trajectory of the pendulum can be described approximately as
θ(t) = A exp(−γt/2) cos(ωt), as long as ω2 ≫ γ2/4, and its energy on average decays as
mglA2 exp(−γt)/2. The energy supplied by the spring Es must be equal to the energy
dissipated in half a period, since the spring is triggered twice a period, when θ = 0 and
t = (2n + 1)π/(2ω); we therefore derive

Es = E(0) − E(π/ω) = mgl

2 A2
[
1 − exp

(
−γ

π

ω

)]
≈ mgl

2 A2 γπ

ω
(1.27)

The energy immediately after the spring’s boost, Eb, can be expressed as Eb = E(π/(2ω))+
Es. Since the energy at a quarter of a period is purely kinetic, the previous expression
can be written as θ̇2

b = θ̇(π/(2ω))2 + 2Es/(ml2), where θ̇b is the boosted angular speed;
this allows us to compute the value of the kick K = |θ̇b − θ̇(π/(2ω))|. If we assume
that the boost is relatively small, which is coherent with the condition ω2 ≫ γ2/4,
we can write θ̇2

b − θ̇( π
2ω

)2 = (θ̇b − θ̇( π
2ω

))(θ̇b + θ̇( π
2ω

)) ≈ K2|θ̇( π
2ω

)| which means that
K = Es/(ml2|θ̇( π

2ω
)|). By using Eq. 1.27, ω2 = g/l and |θ̇(π/(2ω))| = ωA exp

(
−γ

2
π

2ω

)
the previous expression can be written as

K = γπA

2 exp
(

γ

2
π

2ω

)
≈ γπA

2

(
1 + γπ

4ω

)
(1.28)

The energy boost provided by the spring can be clearly seen when plotting the energy
of the system as a function of time; as it is shown in Fig. 2.9, the assumption that the
”kick” is instantaneous holds. Another effect exhibited by Eq. 1.27 is that at higher an-
gular frequencies oscillations occur with higher amplitudes; Es = mg2γπA2/(2ω3), which
means that if the energy supplied by the spring and γ do not change with the frequency
(as in standard metronomes) A2/ω3 is constant. An high oscillation amplitude reduces
the effectiveness of the model as it is largely based on the small angle approximation.
For this reason, a numerical study of the equations obtained in the previous paragraphs
is provided in Chapter 3.

12



Chapter 2

Experimental Setup and Results

2.1 Experimental Setup and Trajectory Tracking

(a) Coupled Pendulums (b) Coupled Metronomes

Figure 2.1: The setups used in the experiment.

In order to verify the validity of the model studied in the previous sections, we decided to
build both systems, one with pendulums and the other with metronomes, to provide evi-
dence that synchronization does indeed occur. The first system (Fig. 2.1a) has been built
using two identical plumb-line weights with a mass m = 280 g, connected to a low-friction
trolley (M = 2500 g) via an unextendable metal rod of adjustable length, thus achieving
a system of coupled pendulums characterized by a value of a = m/(2m + M) ≈ 0.09.
The second setup is comprised of Martisan NM-20 mechanical metronomes, which were
chosen for their competitive price. Unfortunately, for this system we could not use the
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same cart, since it is quite massive and the oscillating mass of the metronome is already
much lighter than the weight of its base, meaning that the value of a, hence the effec-
tiveness of coupling, would have been minuscule. In order to maximize the interaction
between the oscillators we had to rely on more rudimentary options, which yield higher
values of a, by employing a cardboard as a base and tennis balls or cans as wheels
(Fig. 2.1b). We could not measure the value of the oscillating mass without damaging
the integrity of the metronome, so we obtained the parameter a ≈ 0.02 through a fit, by
tracking the position X of the center of the trolley and using Eq. 1.1. While crafty solu-
tions had to be adopted, synchronization still occurs and the setup is easily reproducible
without having access to an extensive budget.

An accurate way to gather data on the trajectories of the oscillating masses is to per-
form frame-by-frame analysis of videos of the system. In order to do so, we used a
simple open-source program called “Tracker” [11] (see Fig. 2.2), which allowed to eas-
ily obtain the angular positions θ1, θ2 by changing the frame of reference to the correct
pivot point. By knowing the frame-rate of the videos, which were usually shot at 50
frames per second, we were also able to compute the angular velocities using the formula
θ̇i(t) = (θi(t+∆t)−θi(t))/∆t, where ∆t is the reciprocal of the frame rate. Unfortunately,
this software does not provide standard guidelines on how to estimate uncertainties as
there are many effects to take into account: trajectory detection is less precise around
the points of maximum velocity, as motion blur is stronger, causing the program to some-
times lose its reference point and requiring manual assistance. This effect can be reduced
by shooting at higher shutter speeds, but loss of auto-tracking still occurs, rendering an
objective evaluation of uncertainties arduous.
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Figure 2.2: Interface of “Tracker”, the program used for tracking trajectories. In this case
the wheels were also tracked with the objective of reconstructing the dynamic of the trolley and
obtaining an estimate of the value of a.

2.2 Pendulums: Experimental Data
In the system built using pendulums both synchronized states have been experimentally
observed, but in-phase synchronization only occurred with special initial conditions while
the system generally seemed to evolve towards anti-phase synchronization. Referring to
Eq. 1.11 and 1.12, “fair” starting conditions can be achieved by leaving a pendulum in
its resting state and dropping the other from a certain altitude, so that |s(0)| = |d(0)|
and Ad = As, Bd = Bs = 0, as can be seen in the video of Ref. [12].
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Figure 2.3: Plot of the experimental data of θ1 (blue) and θ2 (red) as a function of time. One
pendulum was left in its resting position, while the other was dropped from a certain height,
thus achieving an “unbiased” start. Anti-phase synchronization occurs after approximately 10
seconds and lasts until the whole energy of the system is dissipated by friction and the pendulums
stop swinging.

The only configuration in which in-phase motion was observed is when the pendulums
were started with a strong bias towards phase synchronization, hence As, Bs ≫ Ad, Bd.
The easiest way to achieve such state was to act on the cart, by forcing it to move with
a frequency close to ω/

√
1 − 2a, thus inducing in-phase motion [13]. The time evolution

of s in this configuration is shown in Fig. 2.4
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(a) Time evolution of d obtained from an unbiased start.

(b) Time evolution of s obtained from a biased start towards in-phase motion.

Figure 2.4: Fits of the experimental data. Picture (a): Plot of d as a function of time, along
with the best fit of the data. Here the pendulums were started with no particular bias towards
phase or anti-phase motion, yet in about 10 seconds the anti-synchronous state was reached.
The fitting region as been restricted, as it appears that virtually no dissipation occurs in the first
5 seconds. Picture (b): Plot of s and the best fit of the data as a function of time, obtained with
a biased start towards phase motion (Ad = Bd ≈ 0). While the angular frequency ωs matches
the predicted result, the decline in the amplitude of oscillations is much steeper than expected.

Since we have data on both angular velocities and positions, we can swiftly com-
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pute the energy of the system and confirm that the low angular velocity approximation
discussed in Chapter 1 is valid (Fig. 2.5).

Figure 2.5: The total rescaled system energy 4E/ml2 (blue), ed (orange), es (yellow) and ec

(purple) plotted as a function of time. Note that ec is negligible when compared to ed and es,
which is a confirmation of the validity of the model. At about 10 seconds, anti-phase synchro-
nization occurs, hence Ed ≈ E. The energy of the system is characterized by a clear exponential
decay, which is correctly described by the equations of motion.

The angular frequencies of phase and anti-phase motion are comparable with the
values predicted by Eq. 1.11 and 1.12; the fit of data gathered from a setup with l =
0.67 m yield ωd = 3.82 Hz ≈ ω and ωs = 4.14 Hz, which is slightly less than the expected
value of ω/

√
1 − 2a ≈ 4.22 Hz. On the other hand, the decay rate of s is much higher

compared to d: while the latter has a value of γd = 0.096 Hz, the former is twice as
fast, with a value of γs = 0.207 Hz > γd/(1 − 2a). When the pendulums swing together
the motion of the trolley is maximized and other effects not included in the model, such
as friction on the cart, affect the evolution of s. The trolley should act purely as an
ideal conveyor of energy, as a way for the pendulums to exchange momentum, and its
dynamic should be described by the approximate form of Eq. 1.1, but this is not the case
in the initial stages of motion (Fig. 2.6): the cart absorbs much more energy than what
is predicted by the model (Eq. 1.18) and does not return it back with the oscillating
masses, resulting in an ulterior dissipative effect and a much higher γs.
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Figure 2.6: Experimental data of the velocity of the cart, in blue the velocity acquired by
tracking the center of the trolley, in red the expected value obtained through s, as described by
Eq. 1.1. There is a discrepancy in the initial stages of motion not predicted by the model, which
assumes an ideal cart; while the mismatch might seem negligible, it implies high differences
energy wise, as the kinetic energy of the cart is proportional to the square of its velocity and its
mass M .

2.3 Metronomes: Experimental Data
Both synchronous states have been also observed in the setup built with metronomes,
although one result was more likely than the other depending on the objects used as
wheels: with an unbiased start, using spherical objects such as tennis balls favoured
in-phase synchronization (as shown in the video of Ref. [14]) while using cylindrical
objects, such as cans, favoured anti-phase motion [15]. The explanation of this effect is
beyond the scope of the model, as the cart is assumed to be ideal and the objects used
as wheels should make no difference; we assume that the system built with tennis balls
is more energy efficient, since an inefficient cart favours anti-phase synchronization, as
previously discussed. This conjecture is also compatible with Pantaleone’s paper [9], in
which friction on the trolley had to be artificially increased in order to observe anti-phase
synchronization. Take into account that these rudimentary systems had to be employed
in order not to further decrease the already low ratio between the oscillating mass m and
the cart’s mass M . The value of a ≈ 0.02, has been fitted by reconstructing the dynamic
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of the trolley and relating it to the dynamic of s using the approximate form of Eq. 1.1.

Figure 2.7: Time evolution of d (blue) and s (red) obtained with an unbiased start. The
system built using tennis balls as cart wheels, evolves towards an in-phase synchronized state.
Synchronization is not perfect, as d is not identically null.

In general synchronization is not perfect and only occurs at higher frequencies: after
the oscillators reach the relative phase typical of a synchronous state (2nπ or (2n + 1)π)
there might be a transient time in which the phase changes; as long as this variation is
contained and the metronomes reachieve their original synchronized state, we can claim
that a weaker form of synchronization has occurred. This effect is caused by the intrinsic
frequency difference ∆ω between the two metronomes: despite being bought by the same
manufacturer, their angular frequencies are not identical but the ratio ∆ω/ω decreases
as ω increases. Therefore, an higher frequency implies a “stronger” form of synchro-
nization, one where the transient time, in which the relative phase changes, is shorter
and variations are smaller. A more formal definition of the quality of synchronization is
provided in Chapter 3.
In order to obtain an estimate of the dissipation rate γ, the metronomes’ springs have
been unwound and the trajectories of the oscillating masses have been studied in the
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single uncoupled case as well as the coupled one. When compared to the values esti-
mated in the setup with pendulums, here the dissipation factors are much closer to the
expected theoretical values (Fig. 2.8): γ ≈ γd = 0.24 Hz and γs = 0.26 Hz, which is quite
close to the predicted value of γ/(1−2a) = 0.25 Hz. This is a sign of a relatively efficient
cart system.

Figure 2.8: Plot of d (blue) and s (red) as a function of time, obtained with metronomes
whose springs have been unwound. The two sets of data have been acquired with different
initial conditions, an anti-phase bias for the blue curve and a phase bias for the red one. The
dissipation rates are close, as predicted by the model for a low value of a.

The behaviour of the spring is correctly described by Dirac’s delta (Eq. 1.19, 1.20)
as shown in Fig. 2.9: the energy is injected seemingly instantly into the oscillating mass,
affecting its velocity but not its position. In a neighbourhood of synchronous motion the
dynamic is predicted by the model (Sect. 1.3): the time delay between the activation
of the springs approaches 0 (ϵn+1 < ϵn), which implies that eventually the springs get
simultaneously triggered and the metronomes achieve a synchronous state, which, for a
short duration, is virtually perfect.
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Figure 2.9: Plot of the rescaled system energy 4E/(ml2) (yellow), es (red) and ed (blue).
This graph does not provide a completely accurate picture of the energy of the system as it has
been obtained using the small angle approximation, which is not valid, but the energy peaks
caused by the two springs’ action are clearly visible. As the pendulums reach in-phase motion
(sgn(θ̇1) = sgn(θ̇2)) the peaks get closer in time, until perfect synchronization occurs and the
effect of the springs is seen as an unison high energy spike. Since synchronization is not perfect,
the peaks eventually decouple, while still remaining close.
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Chapter 3

Numerical Solutions

3.1 Equations of Motion and Synchronization Strength
Numerical analysis is a necessary tool to better understand the behaviour of coupled
metronomes, as the equations which describe the dynamic are complex and no analytical
solution can be found without employing approximations that do not accurately represent
the physical reality of the setup. To facilitate the implementation of a Runge-Kutta
algorithm, it is convenient to write the equations in the frame of reference of the trolley,
which is not an inertial system and therefore fictitious forces should be taken into account
(as shown in [9]). The equations which describe the angular position of the oscillating
mass of each metronome are

θ̈1 + γθ̇1 + ω2
1 sin θ1 + cos θ1

Ẍ

l
= K ′ sgn(θ̇1)δ(θ1) (3.1)

θ̈2 + γθ̇2 + ω2
2 sin θ2 + cos θ2

Ẍ

l
= K ′ sgn(θ̇2)δ(θ2) (3.2)

By recalling Eq. 1.1 we can substitute Ẍ/l with a(sin θ1θ̇1
2−cos θ1θ̈1+sin θ2θ̇2

2−cos θ2θ̈2).
These equations have been thoroughly studied by implementing a Runge-Kutta 4 integra-
tion method. This framework allows to introduce differences in the angular frequencies
of the metronomes (ω1, ω2) in order to study the “weaker” form of synchronization which
was observed experimentally. The strength of synchronization S at a given time t and a
given time interval ∆t can be defined as

S(t, ∆t) = max(|s|) − max(|d|)
2Aω

(3.3)

where max(|s|) and max(|d|) respectively are the maximum values of |θ1+θ2| and |θ1−θ2|
in the time interval [t− ∆t

2 , t+ ∆t
2 ] and Aω is the amplitude of oscillations computed at the

nominal frequency ω of the metronomes (Sect. 1.4). Since the amplitude of oscillations
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for s and d in perfectly synchronized states is 2Aω, an absolute value of S near 1 defines
a strong synchronization, while S ≈ 0 represents the lack of synchronized motion. Any
value in between is a measure of the quality of synchronization, while the sign of S
denotes the tendency towards an in-phase (positive S) or an anti-phase (negative S)
state. Notice that the choice of t and ∆t deeply influence the value of S (Fig. 3.4); the
fact that synchronization does not occur in the chosen time interval does not imply that
eventually the system will not evolve towards synchronized motion.

(a) Simulation of the system with ω1 = ω2 = ω.

(b) Simulation of the system with ω1−ω2
ω ≈ 0.03

Figure 3.1: Simulated time evolution of s and d, represented respectively by the red and the
blue curve. In picture (a) the oscillators have the same angular frequency so a wise choice of
t and ∆t provides an accurate evaluation of S ≈ 1. In picture (b) the two frequencies have
been set to different values, yet close to the nominal frequency ω = 10.05 rad

s , to provide a more
accurate depiction of the experimental setup. In the final stages of motion S ≈ 0.9, hence
synchronization is not perfect

24



3.2 Results of Simulations
In Section 1.3 it is shown that in principle both in-phase and anti-phase motion provide a
stable solution to the system of equations, although the final synchronous state depends
on the parameters of the simulation and the initial conditions. For instance an higher
value of a favours anti-phase synchronization, as γs is proportional to 1/(1−2a). On the
contrary, an higher frequency implies higher angular velocities as well as cart velocity,
since they are bound by the conservation of momentum, and values of K (Eq. 1.28, A
scales with ω) which means that any effect which favours in-phase synchronization will
be further enhanced. The springs by acting on the oscillating masses indirectly affect
the dynamic of the cart, pushing it in the opposite direction: when the trolley receives
the boost from the first spring, it skews the oscillations towards in-phase motion, as a
fictitious force acts on both oscillating masses, delaying the second boost if it happened
to be in the opposite direction (sgn(θ̇1) = − sgn(θ̇2)) while anticipating it in the other
case (sgn(θ̇1) = sgn(θ̇2)), reducing the range of conditions which fall in the neighborhood
of anti-phase motion, as the values ϵn studied in Sect. 1.3 are affected. These observations
are backed both by experimental data (Sect. 2.3) and simulations (Fig. 3.2).

It is possible to run the experiment, as well as the simulations, with special initial
conditions characterized by any initial positions (−Aω ≤ θ1, θ2 ≤ Aω) and no initial
velocities (θ̇1 = θ̇2 = 0); when these conditions are met, the two bisectors of the con-
figuration space identify the starts with a strong bias towards in-phase (θ1 = θ2) and
anti-phase (θ1 = −θ2) motion. Simulations conducted with a = 0.02 show that with
lower frequencies (ω ≈ 3 rad

s ) there is an even amount of in-phase and anti-phase final
synchronous states, where the former occupy the first and third sectors of the plane
while the latter populate the second and the fourth sectors. As frequencies get higher,
in-phase synchronization becomes more likely, and the initial conditions which lead to
anti-phase synchronicity get restricted to narrower regions along the bisector θ1 = −θ2.
Fig. 3.3 shows this effect.

As one would expect, an increase in the frequency difference ω1 − ω2 causes in-phase
synchronization to become less likely and of the weaker kind (S < 1) whenever it does
occur. Fig. 3.4 shows how the introduction of different frequencies in the model can
produce results which better resemble experimental data.
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Figure 3.2: Results of many simulations of identical metronomes (ω1 = ω2 = ω) run
with different values of a and ω. The same unbiased initial conditions produced different fi-
nal states depending on the values of the parameters. The heatmap represents the value of
S(t = 47.5s, ∆t = 5s); perfectly anti-synchronized motion (S = −1) is represented by the color
dark blue, while dark red stands for perfect in-phase synchronization (S = 1). Colors of a
lighter shade represent weaker (or lack of) synchronization.
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Figure 3.3: Results of many simulations of identical metronomes (ω1 = ω2 = 2π rad
s ) run with

different initial conditions, defined by null velocities (θ̇1 = θ̇2 = 0) and varying initial positions.
The heatmap represents the value of S(t = 47.5s, ∆t = 5s); perfectly anti-synchronized motion
(S = −1) is represented by the color dark blue, while dark red stands for perfect in-phase syn-
chronization (S = 1). Colors of a lighter shade represent weaker (or lack of) synchronization.
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Figure 3.4: max(|d|) evaluated in the time interval [45 s, 50 s] for different nominal frequen-
cies. The various curves are results of simulations of systems characterized by an intrinsic
frequency difference of magnitude ∆ω = ω1 − ω2: 0 (blue), 0.05 (orange), 0.1 (yellow) and
0.3 (purple) Hz. The blue diamonds represent data acquired from the metronomes used in the
experiment; their placement somewhat resembles the trend of the other curves. Despite a biased
start towards in-phase motion, differences in oscillator frequencies deeply affect the quality of
synchronization.
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Conclusions

The synchronization phenomenon is strictly correlated to the presence of dissipation and
external forcing that allow the system to relax toward a stationary state. In the per-
formed experiment the possibility of writing the relevant physical quantities as a function
of the difference d and the sum s of the angular positions of the oscillators provided useful
insights on synchronization, linking the phenomenon to the change of energy. Both in-
phase and anti-phase motion have been observed, confirming that all synchronous states
constitute stable solutions of the systems. However, the assumptions employed did not
always lead to accurate predictions of all the parameters which characterize our setup;
while there is a qualitative good accordance between experimental data and theoretical
values for ωd, ωs and γd, the obtained value for γs is generally higher than the expected
one of γd/(1 − 2a). This mismatch is probably caused by approximations which do not
perfectly describe the reality of the apparatus, namely the assumption of an ideal trolley;
we believe that the model could convincingly describe the dynamic of a more professional
setup, one where the cart can truly be considered frictionless. An ideal setup would be
built using lighter trolleys with better air cushions; perhaps these could also be employed
in the system of coupled metronomes, since they would increase the effectiveness of cou-
pling, which can be further improved by acquiring more professional metronomes, with
a lower intrinsic frequency difference ∆ω.
Numerical analysis has proven the robustness of the models, which can be tuned to
reproduce the imperfections of real-world oscillators.
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