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Abstract

Teaching operating systems to students has always been a challenging task for
lecturers. To address this issue, educational architectures, and emulators have
been developed to offer students an easier entry point into the subject matter.

In this context, Virtual Square has created a simplified architecture named
𝜇MPS, along with its emulator. This simplified architecture serves as a start-
ing point for students to familiarize themselves with the operating systems,
allowing them to gain foundational knowledge and understanding in the field.

Virtual Square has developed a range of software tools that emulate the MIPS
and ARM RISC architectures. In recent years, RISC-V has emerged as a new
and interesting RISC architecture. Known for its open-source nature, RISC-V
offers a promising instruction set architecture. One of its significant advantages
is the ability for students and professionals to directly study and customize
the architecture, making it a valuable resource for learning and exploration.
This thesis aims to expand Virtual Square’s software family by incorporating
the new RISC-V architecture, inheriting the skeleton of the previous project
𝜇MPS3.
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Sommario

Insegnare i sistemi operativi agli studenti è sempre stato un compito impeg-
nativo per i docenti. Per affrontare questo problema, sono state sviluppate
architetture didattiche ed emulatori con l’obiettivo di offrire agli studenti un
approccio semplificato a questa materia complessa.

In questo contesto, Virtual Square ha sviluppato, insieme al suo emulatore,
un’architettura semplificata chiamata 𝜇MPS. Questa architettura è stata pro-
gettata con l’obiettivo di fungere da punto di partenza per gli studenti, of-
frendo loro l’opportunità di familiarizzare con i sistemi operativi, di acquisire
conoscenze e comprensione fondamentali in questa materia.

Virtual Square ha sviluppato una gamma di strumenti software che emulano le
architetture di tipo RISC: MIPS e ARM. Negli ultimi anni è comparsa RISC-
V, una nuova e interessante architettura RISC. Conosciuta per la sua natura
open source, RISC-V offre una promettente architettura di istruzioni. Uno dei
suoi punti di forza è la possibilità che da a studenti e professionisti di studiare
e personalizzare direttamente l’architettura, rendendola una risorsa preziosa
per l’apprendimento e l’esplorazione. Lo scopo di questa tesi è espandere
questa famiglia di software sviluppata da Virtual Square incorporando la nuova
architettura RISC-V, ereditando lo scheletro del precedente progetto 𝜇MPS3.

vii





Contents

1 Introduction 1
1.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 RISC-V . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 𝜇MPS . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Emulation . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.4 Translation Lookaside Buffer (TLB) . . . . . . . . . . 6
1.2.5 Disassembler . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.6 Debugger . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.7 Symbol Table . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.8 Toolchain . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.9 Build System . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Implementation 15
2.1 Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 New Processor’s State . . . . . . . . . . . . . . . . . . 16
2.1.2 Removed Coprocessor . . . . . . . . . . . . . . . . . . 17
2.1.3 Control and Status Register (CSR) . . . . . . . . . . . 17

2.2 Exception Handling . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Processor Behaviour . . . . . . . . . . . . . . . . . . . 21

2.3 BIOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Library Services . . . . . . . . . . . . . . . . . . . . . 24

ix



Contents

2.4 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Terminal . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 A simple disassembler . . . . . . . . . . . . . . . . . . . . . . 27
2.5.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 GNU Debugger (GDB) . . . . . . . . . . . . . . . . . . . . . . 27
2.6.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.2 Features implemented . . . . . . . . . . . . . . . . . . 30
2.6.3 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7.1 uriscv-elf2uriscv . . . . . . . . . . . . . . . . . . . . . . 33
2.7.2 uriscv-mkdev . . . . . . . . . . . . . . . . . . . . . . . 33
2.7.3 uriscv-mkconfig . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Command-Line Interface (CLI) . . . . . . . . . . . . . . . . . 35
2.8.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 PandOS plus 37
3.1 The project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.3 Phase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Compiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 Toolchain . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Compiling the kernel . . . . . . . . . . . . . . . . . . . 42
3.2.3 Compiling the User processes . . . . . . . . . . . . . . 43

3.3 Running PandOS on 𝜇RISCV . . . . . . . . . . . . . . . . . . 44
3.3.1 Making the config . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Running the Emulator . . . . . . . . . . . . . . . . . . 44

4 Conclusions 45
4.1 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Memory Management Unit (MMU) . . . . . . . . . . . 45
4.1.2 Terminal Device . . . . . . . . . . . . . . . . . . . . . 46
4.1.3 Graphical Interface and GDB . . . . . . . . . . . . . . 46

x



Contents

4.1.4 Software Packaging . . . . . . . . . . . . . . . . . . . . 47
4.2 Final thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Bibliography 51

Acknowledgements 55

xi





1 Introduction

This chapter presents a summary of the subject matter, providing the reader
with adequate background knowledge to comprehend the Implementation sec-
tion (see chapter 2). Furthermore, it aims to establish the objective of the
thesis.

1.1 State of the Art
Educational emulators represent cutting-edge technology in the education field,
providing immersive and interactive learning experiences that bridge the gap
between theory and practice. These software applications emulate real-world
environments, allowing students to explore and engage with various subjects
in a safe and controlled virtual setting. With the advancement of technology,
educational emulators have evolved to offer increasingly sophisticated and re-
alistic simulations, revolutionizing the way we teach and learn across multiple
disciplines.

Over the years, multiple projects have been initiated to educate individuals
about the intricacies of computer architecture. Albeit many researchers have
expressed their concern about the difficulty of that task [3], this effort has been
acknowledged as a crucial undertaking, as it guarantees continuous advance-
ment and exploration in the development and research realm. Projects worth
to be cited are (three of them suggested by C. Yehezkel and W. Yurcik [36])
EasyCPU [36], Little Man Computer [36, 37], RTLSim [36], and Nand2Tetris
[28]. EasyCPU [36] is a simulator designed to emulate a simplified version of
the Intel X86 microprocessor. It offers users a user-friendly graphical user in-
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1 Introduction

terface (GUI) that allows them to edit, assemble, execute, and debug programs.
Little Man Computer [36, 37] is a web-based simulation tool aimed at provid-
ing students with a comprehensive understanding of the internal operations of
a CPU, including the fetch-execute cycle. On the other hand, RTLSim [36]
simulates a non-pipelined processor similar to MIPS, where the user assumes
the control unit (CU) role. The last cited project was incorporated as a com-
ponent of the Computer Architecture examination in the Computer Science
course (2020/2021) at the University of Bologna. Nand2Tetris [28] is a step-
by-step course where participants acquire fundamental computer knowledge,
starting from the basic logic gate NAND [20] and progressing to developing
complex programs such as Tetris [29].

Over the years, the complexity of what such projects could achieve increased,
even though keeping such works user-friendly and approachable to undergrad-
uate students. For instance, VisibleZ [35] is a mainframe architecture emulator
that helps students to understand how the mainframe technology works and
its inner components, including storage and I/O channels. In VisibleZ, users
can also define their instructions with custom semantics, broadening their
understanding of how computer architectures work. Related to the RISC-V
instruction set and this thesis, it is relevant to cite three recent projects: Emul-
siV [31], riscvOVPsim [17], and 𝜇MPS [15]. EmulsiV [31] is a visual simulator
based on the minimal 1 subset of the RISC-V instruction set called Virgule [31].
In EmulsiV, the users, albeit limited by design, can discover how a processor
works, compiling a C program, linking it, and executing it, giving them a broad
overview of such a process. In addition, riscvOVPsim [17] is a RISC-V Instruc-
tion Set Simulator (ISS) perfect entry point for learning computer architecture.
It provides users with debugging facilities. The students’ source code can be
compiled easily using a cross-compiler, while the GUI helps the users to see
memory and register values. One of the key features of riscvOVPsim is the
possibility to simulate real Operating Systems (OS) and Real-time operating
systems (RTOS). 𝜇MPS [15] provides users with a user-friendly GUI, debug-
ging features, and virtual memory management, allowing students to develop

1”minimal” means only the base instructions generated from a simple C program
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1.2 Background

their operating system and run it using the emulator bundled with 𝜇MPS.
𝜇MPS is described in further detail in section 1.2.2.

1.2 Background

This section provides the reader with an understanding of the larger context
and offers a concise description of the subjects that have been addressed in the
thesis.

1.2.1 RISC-V

RISC-V is an open standard instruction set architecture (ISA). The name
“RISC-V” stands for “Reduce Instruction Set Computer - Version 5”, which
means that RISC-V is designed based on the reduced instruction set computer
(RISC) principles. RISC-V is available under royalty-free open-source licenses,
which means that any firm or user can freely use, modify, distribute, and in-
corporate code to RISC-V without the need to pay royalties or licensing fees.
The RISC-V ISA is a load-store architecture, meaning that the instructions are
of two categories: memory access and arithmetic logic unit (ALU) operations.

The principal characteristics of the RISC-V ISA include:

• Openness and Modularity: RISC-V is an open standard, meaning anyone
can access and contribute to its development. The design of RISC-V
allows it to be modular, letting the user select specific instruction sets
that best suit their needs;

• Simplicity: the instructions provided by the RISC-V ISA are minimal
and easy to decode. The core instruction set provides the basic op-
erations, while more complex instructions, such as vector processing is
available thanks to the extensions;

• Multiple Privilege Levels: RISC-V supports a hierarchical privilege model
with multiple privilege models (in 𝜇RISC-V just user and machine-level
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1 Introduction

are used). This allows the implementation of operating systems and
virtualization techniques;

• Scalability: RISC-V is designed to be used either on embedded devices
or high-performance computing systems. It supports 32-bit, 64-bit, and
128-bit words, although the latter is still “not frozen” 2.

• Software Ecosystem: due to the open nature of RISC-V, the ecosystem
of compilers, development tools, and libraries for that architecture has
grown considerably.

The RISC-V ISA has become popular among students and educational insti-
tutions as a valuable learning resource thanks several reasons. First of all,
the openness of RISC-V allows students to approach it easily, while onlinea
documentation fosters hands-on exploration. Although remaining a very ex-
pressive architecture, the simplified architecture makes RISC-V a perfect entry
point for students new to computer architecture. For instance, on a RISC-V
core can be executed Linux [18]. Over the years, the community has grown,
and numerous educational content appeared on the Internet, such as courses,
tutorials, and community-driven projects.

1.2.2 𝜇MPS

𝜇MPS is an educational computer system architecture that aims to be simple
but remains realistic. The 𝜇MPS processor implements the MIPS I 3 instruc-
tion set, avoiding the need to develop a compiler for it, since the existing MIPS
compilers work.

The architecture and its emulator are now at their third version (fourth if we
consider MPS, see Preface in [13]): 𝜇MPS3, which is not backward compatible
with 𝜇MPS2 (nor 𝜇MPS). The evolution of 𝜇MPS has been gradual:

2Frozen means that it is being reached a point in the development after which making
changes to ISA has become strictier

3MIPS R2000/R3000
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1.2 Background

1. MPS [27]: it is the first attempt, but the virtual memory management
was unsuitable for undergraduates;

2. 𝜇MPS [15]: implemented the virtual memory management that better
matched the theory of textbooks;

3. 𝜇MPS2 [19]: upgrade of the GUI, multiprocessor support implemented,
and debugging features;

4. 𝜇MPS3 [13, 1]: migrating from GNU Autotools [8] to CMake [4], changed
exception handlers, migrating the GUI to Qt5, and introduced the new
class of flash devices.

All these projects are part of the project family under the umbrella of Virtal-
Square [12]. 𝜇ARM [22] is another project from the same family, that shares
the same goals with 𝜇MPS, but through a more popular architecture: ARM
(used in almost every Android device).

1.2.3 Emulation

Emulation is a powerful technique that replicates the behavior and functional-
ity of one system on another. It enables running software or operating systems
designed for a specific platform on different hardware or software environments.
Emulation can be achieved through software or hardware approaches.

Software emulation involves creating an emulator that interprets instructions
intended for the original hardware and executes them on the host system.
This method allows running legacy software on modern computers or virtual
machines, extending the lifespan and accessibility of obsolete systems. The
emulation of gaming consoles, such as the GameBoy, is a perfect example of
software emulation.

Hardware emulation goes beyond software emulation by replicating both the
software and physical hardware components of the target system. It requires
building specialized hardware platforms that accurately mimic the architecture
and behavior of the original system. Hardware emulation is particularly useful
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for studying, debugging, and analyzing complex systems at a low level. For
instance, the MiSTer project 4 is a popular hardware emulation platform based
on FPGA (Field Programmable Gate Array) technology.

Emulation offers students valuable opportunities to explore and understand
different computer systems, software, hardware, and programming concepts
interactively. By emulating the behavior of different computer architectures,
to say one, emulation provides a practical and immersive learning experience.
By examining the behavior of emulated systems at the hardware level, stu-
dents can gain insights into concepts such as instruction execution, memory
management, and I/O operations. Emulation platforms enable them to ex-
periment with different instruction sets and architectures, fostering a deeper
understanding of computer organization and design, which is one of the goals
of 𝜇RISCV.

1.2.4 Translation Lookaside Buffer (TLB)

The Translation Lookaside Buffer (TLB) is a relevant component in computer
science systems that helps the efficiency of virtual memory management. It
serves as a cache for memory address translations, reducing the time and re-
sources required to access data from a physical address.

The TLB consists of an array of entries, with each storing a virtual-to-physical
address mapping. Each entry typically contains the virtual page number, the
corresponding page number, and other control bits, such as the dirty bit. The
TLB is organized as a content-addressable memory (𝜇RISCV uses this type
of TLB) or a hash table, allowing for fast associative lookup based on virtual
page numbers.

The TLB works besides the memory management unit (MMU) and the page
table to translate virtual addresses into physical ones. When a program ref-
erences a memory location, the TLB first check a match in its cache. If there
is, the TLB retrieves the corresponding physical address directly, avoiding the

4https://mister-devel.github.io/MkDocs_MiSTer
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1.2 Background

need to access the page table. In the event of a TLB miss, where the requested
virtual address is not found in the TLB, the MMU performs a page table walk
to retrieve the information needed to: fill the TLB (TLB-Refill event in Pan-
doOS plus [14]) and complete the translation.

1.2.5 Disassembler

A disassembler is a powerful tool that analyzes binary code and converts it
into assembly language instructions. It plays a vital role in reverse engineer-
ing, software debugging, and understanding the inner workings of compiled
programs. The disassembler’s work is the symmetrical opposite of the assem-
bler’s one.

The disassemblers operate by reading the binary code of a program, analyzing
the code, identifying the operation code (opcode), and translating it into their
corresponding mnemonic representations. The disassembler’s output provides
details about the program’s instructions, including the opcode, operands, reg-
isters, memory addresses, and control flow instructions.

One main application of a disassembler is reverse engineering, where it enables
the examination of compiled software without having access to the source code.
Reverse engineering can use the disassembled code to analyze the algorithm,
identify vulnerabilities, understand program behavior, perform malware analy-
sis, and extract valuable information such as data structures, function names/-
calls, and control flow.

In addition, a disassembler plays a vital role in debugging and troubleshoot-
ing. When investing the reasons behind a program’s crash, the disassembler
allows the developers to trace the execution flow, and examine the registers
and memory to identify potential bugs or errors.

Disassemblers can be found in various forms, ranging from standalone command-
line tools to integrated development environment (IDE) plugins. Some disas-
semblers offer advanced features such as symbolic debugging (such as 𝜇RISCV),
cross-referencing, and graph visualization to assist the code analysis.
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1.2.6 Debugger

Debuggers are powerful tools, that allow the programmers to analyze the pro-
gram execution. They assist developers in the laborious activity of bug finding
and error fixing. Debuggers provide a wide range of features to aid in the
debugging process, such:

• Breakpoints: debuggers allow programmers to set breakpoints at a spe-
cific line of code, which pause the normal execution flow when reached
and allow a to examine the current status of the program, including the
processor’s state;

• Variable inspection: developers can inspect variables’ value at specific
points of the program, helping them to discover potential issues;

• Call stack and Stack trace: debuggers keep trace and display the call
stack, which shows the sequence of function calls that led to the current
point in the program. This feature helps the developer to understand
the path, and which branches have been taken to reach a point of the
execution;

• Watchpoints: watchpoints are similar to breakpoints, but they can be set
only on variables and are triggered when such variables change their val-
ues. This helps track down unexpected modifications and avoid useless
interruptions;

• Stepping and flow control: debuggers provide the functionalities to run
programs step-by-step, to step over lines (bypassing checking), and to
step out to return to the calling function;

• Memory inspection: debuggers allow developers to inspect the content of
an arbitrary memory location, helping them to identify potential issues,
such as buffer overflow or memory leaks.

• Debug symbols: debuggers work in conjunction with a compiler to in-
corporate debug symbols into the executable (see section 1.2.7).
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1.2 Background

Debuggers are essential tools for software development, not only do they help
find issues, but they also accelerate the whole process. In the 𝜇RISCV project,
a debugging stub (see section 2.6) has been implemented. A debugging stub is
a component of the debugging system that resides on the target device. It
works as a bridge between the debugger and the host machine. A debugging
stub provides communication channels and services that enable the exchange
of debugging information and commands between the target (e.g. 𝜇RISCV)
and the debugger.

1.2.7 Symbol Table

The symbol table is a data structure used by compilers, linkers, and debuggers
to store information about symbols (names) in a program. It serves as a
database for mapping symbols to their attributes and provides efficient lookup.

The symbol table stores a wide range of information related to symbols, includ-
ing variable names, function names, constants, labels, memory addresses, and
their respective offsets. It also keeps track of data types, scope information,
visibility, and other relevant attributes.

During the compilation phase, the symbol table is populated by the compiler
as it scans the source code. Symbols encountered such functions and variables
are added to the table. This allows, later on, the compiler to perform name
resolution, type checking, and other semantic analysis tasks.

In the linking phase, the symbol table plays a relevant role, especially in resolv-
ing external symbols. Indeed, when multiple object files (programs, modules)
are compiled together in a single executable or library, the linker can use sym-
bols already resolved in one program on another one, reducing the linking time
and avoiding issues related to redundancy.

Debuggers utilize the symbol table to facilitate program debugging. When
debugging a program, the debugger can access the symbol table to display
meaningful names and information about the variables and functions currently
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1 Introduction

involved in the debugging (this is the case of 𝜇RISCV). This helps programmers
in understanding state, set breakpoints, and examine stack traces.

1.2.8 Toolchain

A toolchain is a collection of development tools that work together to facilitate
the building, compilation, testing, and deployment of complex software. It in-
cludes tools like compilers, linkers, assemblers, debuggers, and code analyzers.

The streamline of the software development process made in the act by a
toolchain usually begins with the compiler. A compiler is a tool that translates
highlevel source code into machine code or an intermediate machine language.
Compilers convert the code written in programming languages like C, C++,
and Rust into executable or object files.

Once the source code is compiled, the linker comes to play. The role of the
linker is to resolve symbols and references, combine object files and generate
the final executable of library files. It ensures that all the dependencies are
linked together and that the program can run.

Assemblers are a vital component of toolchains, especially when programming
in low-level languages. They translate assembly language code into machine
code, providing a bridge between human-readable instructions and the com-
puter’s processor.

Debuggers are powerful tools, that allow the programmers to analyze the pro-
gram execution (see section 1.2.6).

Code analyzers and static analysis tools perform static code analysis. They
examine the code for potential errors, security vulnerabilities (CVE) [25], code
quality issues, and coding standards (e.g. naming convention, refactoring).
These tools assist developers in writing cleaner, safe, and more maintainable
code.

10
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In addition to these tools, a toolchain may also include profiles, performance
analysis tools, documentation generators, build systems (see section 1.2.9), and
version control systems.

Toolchains can be customized based on the language, target platform, and
development workflow. A particular type of toolchain called cross-platform
toolchains allows the developer to write code on platform A to compile an
executable targetted for platform B. It provides a unified development en-
vironment, allowing developers to write code once and deploy it across dif-
ferent platforms without significant modifications. To achieve the goal of
cross-platform compatibility, toolchains often rely on inherently portable pro-
gramming languages, such as C, C++, or Python. Cross-platform toolchains
allow developers to develop the program without directly owning the target
machine, reducing the cost for the programming environment in its complex.
In general, they provide various advantages, including code reusability, faster
development cycles, and reduced maintenance efforts.

In this dissertation, to compile the PandoOS plus project (see chapter 3),
the RISC-V GNU cross-platform toolchain 5 has been used, since usually, the
developer host’s architecture is x86, while the project has to be compiled for
the RISC-V architecture.

1.2.9 Build System

A build system is a software tool that automates the process of compiling source
code, linking dependencies, and generating executables or object files. It pro-
vides a structured and repeatable approach to building software applications,
simplifying the complex sequence of steps to perform to transform source code
into a runnable application.

5The GNU cross-platform toolchain can be found on GitHub: https://github.com/
riscv-collab/riscv-gnu-toolchain
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The main goal of a build system is to provide efficiency, consistency, and
reliability in the process of building an executable independently from the
platform or development environment.

One of the striking features of a build system is the ability to track dependen-
cies between source files. Moreover, it can manage the subsequent build, when
a build is triggered, the system only recompiles the changed source, avoiding
unnecessary recompilation and speeding up the whole process.

In addition, a build system is also capable of managing external dependen-
cies, automatically downloading required libraries, and integrating them into
the project. This feature assists developers to find and keep dependencies
upgraded, especially among different platforms.

Another relevant feature of build systems is their integration with version
control systems. Indeed they often support continuous integration (CI) and
continuous delivery (CD) workflows. This allows to automatize the whole
process of compiling, testing, and generating deployable artifacts.

Many are popular build systems, such as Make, Maven, Gradle, and Autotool,
each with its advantages and features for specific programming languages.

Make is one of the most popular build systems. It is generally used to build
software, but it has applications whenever arbitrary commands need to be
executed. When executed, Make searches the current directory for a 𝑚𝑎𝑘𝑒𝑓𝑖𝑙𝑒,
which is a well-formatted list of rules. Although Make is an incredible tool, it
has problems when comes to executing a makefile on different platforms. For
instance, a compiler on x86 might not accept the same options on RISC-V. To
resolve this issue, tools like Cmake or Autoconf, have been developed.

Cmake is not a build system itself, indeed it only generates configuration files
for other build systems like Make. It allows developers to specify project
structure, dependencies, compiler options, and other build-related settings in
a 𝐶𝑀𝑎𝑘𝑒𝐿𝑖𝑠𝑡𝑠.𝑡𝑥𝑡 file. One of the key advantages of CMake is that developers
can define different configurations based on, for instance, platform or compiler
availability. In addition, it provides a modular and hierarchical approach to
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organizing projects, allowing the creation of libraries, executables, and sub-
projects, keeping a clear and structured representation of complex software.

1.3 Objective
The learning-by-doing principle is a widely adopted teaching method, where
the students learn hands-on on a practical project: their source of knowledge is
the direct experience [26]. 𝜇RISCV and all the versions of 𝜇MPS agreed with
such a theory. This project aims to teach students how computer architecture
and operating systems work, avoiding relatively useless and convoluted imple-
mentation details, that spread in those fields. Inner components had to be
simplified, to achieve the goal of practical learning and maintain the project’s
realism. For instance, even though students do not directly manage external
devices, they understand their functioning and how to interact with them.

The previous MIPS-based editions of 𝜇MPS (𝜇MPS2, 𝜇MPS3) were optimal
for teaching, but not ahead of the time, since nowadays its real-world appli-
cations are rare. On the other hand, RISC-V (see section 1.2.1), an emerging
instruction set architecture, is gradually revolutionizing the entire market,
thanks to its versatility ranging from embedded devices to high-performance
computers. 𝜇RISCV provides an entry point for students to discover this
practical instruction set.

The knowledge acquired through the utilization of 𝜇RISCV should not be
limited to its specific environment, but rather it should be transferable and
applicable in diverse contexts. For instance, the debugger feature section 1.2.6,
which uses GDB [10], is a practical skill that students can reuse in future
projects, thanks to the popularity of GDB.

To summarize, the objectives of 𝜇RISCV are: teaching students the fundamen-
tal concepts of computer architectures and operating systems in a straightfor-
ward yet realistic manner; introducing students to the RISC-V instruction set,
which holds great potential for future advancements and innovations in the
field of computer architecture; enabling students to acquire skills that extend
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beyond the specific 𝜇RISCV environment, ensuring that the knowledge and
competencies gained are applicable and transferrable to other contexts.

14



2 Implementation

This chapter covers the implementation of 𝜇RISCV, including all the addi-
tional and modified features. By the end of this chapter, the reader should
have a clear understanding of how the processor, exception handling, and other
components of the emulator function. The assumption is that the reader al-
ready possesses an overview of 𝜇MPS3, enabling them to comprehend exten-
sively the enhancements made by this porting.

2.1 Processor

The processor is the heart of the computer and so of the emulation. It
is responsible for operations like fetching, decoding, and executing the pro-
gram’s instructions, commonly called Fetch-Decode-Execute (FDE) cycle. The
𝜇RISCV’s processor emulates the RV32I [33] version supporting the Integer
Multiply/Divide (I) extension. Every machine cycle, the processor checks
whether the CPU TIMER (see section 2.2) interrupt has to be signaled, then
the previously fetched instruction is executed. If an exception occurs during
the previous step, the exception handler is called while the various registers are
correctly assigned to handle it. After incrementing the PC (Program Counter),
the processor checks for the interrupts. If an interrupt occurs during this pro-
cess, similarly to exceptions, the exception handler will tackle it. In the end,
the processor fetches the next instruction, and whether necessary, the MMU
translates its address from a virtual to a physical address. The executing
behavior of the processor’s steps heavily depends on the ISA. The various op-
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codes defined by RISC-V, based on their composition, can be divided into six
groups:

• R type: branching instructions (BEQ, BNE, BLT, BGE, BLTU, BGEU);

• I type: basic unsigned integer arithmetic and bitwise instructions (ADDI,
SLLI, XORI, ANDI, etc.);

• I2 type: operations over CSR (see section 2.1.3) and break, ecall, return
instructions (non-canonical);

• S type: store instructions;

• U type: sign extended unconditional jump instructions;

• J type: unconditional jump instructions;

The phases of Decoding and Execute of the instruction are combined to sim-
plify the logic of the processor, while the Fetch of the new instruction is ac-
complished immediately after those two steps.

2.1.1 New Processor’s State

A processor state is the collection of information and data that represents the
current condition and context of the processor’s execution. The processor’s
state constantly changes as instructions are fetched, executed, and results are
stored in registers. During a context switch, the processor’s state is saved
to memory by a BIOS routine (see section 2.3), and another state previously
saved in memory is executed.

Since the status register no more holds information about the interrupts en-
abled, a new register, called 𝑚𝑖𝑒 (see fig. 2.6), must to be saved in the proces-
sor’s state.

Listing 2.1: Processor’s state

typedef struct state {
unsigned int entry_hi;
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unsigned int cause;
unsigned int status;
unsigned int pc_epc;
unsigned int mie;
unsigned int gpr[STATE_GPR_LEN];

} state_t;

Every field of the processor’s state stores the corresponding register value (see
section 2.1.3). For instance, 𝑒𝑛𝑡𝑟𝑦_ℎ𝑖 holds 𝐶𝑆𝑅_𝐸𝑁𝑇 𝑅𝑌 𝐻𝐼 value.

The ℎ𝑖 and 𝑙𝑜 fields, previously dedicated to holding results from multiplication
and division operations (see 2.1 of [13]), have been completely removed since
unused in 𝜇RISCV.

2.1.2 Removed Coprocessor

The 𝜇MPS3 project included a coprocessor, which extends the processor func-
tionality. Such a coprocessor had a series of special purpose registers and
provided support for two operation modes, for exception handling, a processor
Local Timer, and a Memory Management Unit (MMU) [13]. Unlike MIPS,
which provides support for an ISA-level coprocessor, RISC-V does not. It
would be possible to design a coprocessor specific to the project architecture,
but since the aim of 𝜇𝑅𝐼𝑆𝐶𝑉 is educational, the idea has been discarded.
Some of the registers of the MIPS processor supported the TLB handling, so
those are the only ones that have to be ported in the new project. RISC-V
architecture provides additional registers for custom purposes that have been
used to cover the missing coprocessor (see section 2.1.3).

2.1.3 Control and Status Register (CSR)

The Control and Status Registers (CSR) are registers that store CPU data.
RISC-V defines 4096 CSRs. A few of them are allocated by RISC-V [33], whilst
the others are designed for custom purposes.
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The relevant CSRs used in 𝜇RISCV are:

• time: real-time counter;

• mtvec: trap handler address (see section 2.2);

• mepc: address to return after an exception is handled;

• mcause: code indicating the event that caused the trap (see fig. 2.1);

• mstatus: keeps track of current processor state (see fig. 2.2);

• mie: interrupt enabled bits (see fig. 2.6);

• mip: interrupt pending bits (see fig. 2.7);

Interrupt
31

1
Exception Code

30 0

30
Figure 2.1: Machine cause register layout [33] (only relevant bits are named)
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1
Figure 2.2: Machine status register layout [33] (only relevant bits are named)

Since there are no registers dedicated to the TLB, some from the custom
CSRs area have been selected (see fig. 2.3). The names and semantics of these
registers are inherited from the TLB handling of 𝜇MPS3 to keep compatibility
with previous projects.
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Macro Value Description
ENTRYLO 0x800 Higher part of a TLB entry
ENTRYHI 0x801 Lower part of a TLB entry
INDEX 0x802 Index of the TLB table
RANDOM 0x803 Random index of the TLB table
BADVADDR 0x804 Virtual address that generated an

error

Figure 2.3: Custom CSRs

19



2 Implementation

2.2 Exception Handling
Exceptions are events that change the normal execution flow of the instruction
currently processed by the machine. There are two main types of exceptions:
interrupts and exceptions. From the point of view of the hardware, the latter
can be again divided into two categories: User TLB exceptions and all the
other ones. The handling proposed in the RISC-V manual is quite different
compared to the MIPS one. The RISC-V specs provide a list of interrupts and
exceptions that a machine should handle (see fig. 2.4).

Interrupt Exception code Description
1 3 Machine software interrupt (In-

terval Timer)
1 7 Machine timer interrupt (CPU

Timer)
1 ≥16 Designed for platform use (De-

vices)
0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Load address misaligned
0 5 Load access fault
0 6 Store address misaligned
0 7 Store access fault
0 8 Environment call from U-mode
0 11 Environment call from M-mode
0 12 Instruction page fault
0 13 Load page fault
0 15 Store page fault
0 24-31,48-63 Designed for custom use

Figure 2.4: Machine cause register (mcause see fig. 2.1) values after trap (see Table
3.6 in [33])
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There are no predefined codes for handling TLB exceptions. Consequently, a
portion of the Designed for custom use area has been used (see fig. 2.5) for
this purpose.

Interrupt Exception code Description
0 24 TLB mod
0 25 TLB load fault
0 26 TLB store fault
0 27 User TLB load fault
0 28 User TLB store fault

Figure 2.5: Custom exceptions to handle TLB events

mtvec is a special register that defines how the machine should retrieve the cor-
rect subroutine to handle a specific event. This register has two fields: BASE
(30-bit) and MODE (first 2-bit). Where BASE indicates the base address of
the subroutine, MODE specifies how the processor must interpret the BASE
field. There are two possible values for mode: 0 (direct mode) or 1 (vectorized
mode). This project aims to let students develop their small kernel in a high-
level language (e.g. C). Using the vectorized mode would mean introducing
another layer represented by the assembly code to handle the various excep-
tions. So to maintain the logic of the processor simple, 𝜇RISCV implements
the direct mode. Since the mtvec in the direct mode stores only one address,
the procedure to determine whether the TLB-Refill or general exception han-
dlers should be called, is now incorporated in the BIOS (see section 2.3).

2.2.1 Processor Behaviour

An interrupt breaks the normal flow of the machine, so when raised the pro-
cessor state (i.e. registers) must be saved to continue the stopped execution
after such an interrupt has been handled. The routine to handle exceptions/in-
terrupts has not changed apart from the processor state field that has been
modified (see section 2.1.1). Indeed since the cause register, replaced with
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the CSR register mcause (see fig. 2.1), no more holds the information about
which interrupts are enabled, a new CSR register, mie (see fig. 2.6), has been
introduced to achieve that. In addition, a new CSR register, called mip (see
fig. 2.7), holds the pending bits of all interrupts. Interrupt cause number 𝑖
(see fig. 2.1, fig. 2.8) corresponds to the 𝑖-th bit in both mip and mie.
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Figure 2.6: Interrupt enable bits (mie 0:15) layout [33]

———–
15 12

4
MEIP

11

1
0
10

1
0
9

1
0
8

1
MTIP

7

1
0
6

1
0
5

1
0
4

1
MSIP

3

1
0
2

1
0
1

1
0
0

1
Figure 2.7: Interrupt pending bits (mip 0:15) layout [33]

The full procedure is similar to the one described in [13] but slightly modified:

1. Load the Exception PC (EPC) CSR register with the current PC value;

2. Set the exception cause code in mstatus (see fig. 2.1, fig. 2.2, fig. 2.4)

3. Copy the value of the mie bit in mstatus CSR register into the mpie bit
of mstatus, then reset the mie bit;

4. Copy the current machine mode into the mpp field of mstatus, then set
the current machine mode to Machine (0x3) [33];

5. Load the PC with the value of the mtvec CSR register (see section 2.2).

Then whenever a mret instruction [33] is executed, the complementary opera-
tions are performed: the mie bit of mstatus is set to the value of mpie bit, and
the current mode is set to the value of the mpp field of mstatus.
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2.3 BIOS

Interrupt Line Description
16 Inter Processor Interrupt
17 Disk Device
18 Flash Device
19 Ethernet Device
20 Printer Device
21 Terminal Device

Figure 2.8: Custom interrupt lines

2.3 BIOS
The BIOS ROM code provides low-level services such as:

• Bootstrap function: then BIOS routine is the first code executed when
𝜇RISCV is turned on;

• TLB-Refill handler: routine invoked whenever a TLB-Refill event occurs;

• Exceptions handler: routine invoked whenever an exception occurs;

• Library services: wrapper function to access/modify CPU registers and
to manage the TLB table;

2.3.1 Bootstrap

The bootstrap program initializes hardware facilities and starts execution. The
routine code can be found in 𝑐𝑜𝑟𝑒𝑏𝑜𝑜𝑡.𝑆. The start-up of the emulator performs
the following legacy operations:

• Setting the BIOS data page address;

• Setting the TLB-Refills and exception handlers to point to the Kernel
Panic routine;

• Setting the next PC to the start of the kernel (fixed at 0𝑥20001004);
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In addition, the address of the exception handler is loaded in the CSR 𝑚𝑡𝑣𝑒𝑐
(see section 2.2), as stated in the RISC-V manual.

2.3.2 Library Services

𝜇RISCV is bundled with a library: 𝑙𝑖𝑏𝑢𝑟𝑖𝑠𝑐𝑣. That library provides a series
of wrapper functions, that works as an abstraction for the user to read/write
CPU registers or manipulate the TLB. The 𝑙𝑖𝑏𝑢𝑟𝑖𝑠𝑐𝑣 functions can be divided
into three categories:

• Wrappers to RISC-V assembly instructions, since it is impossible to use
them in C (see fig. 2.10);

• Wrappers to CSR registers, since it is impossible to access them in C
(see fig. 2.9);

• New instructions to extend the RISC-V architecture and useful for kernel
authors;

Wrapper(s) CSR Register
getINDEX(), setINDEX() CSR_INDEX
getRANDOM() CSR_RANDOM
getENTRYLO(), setENTRYLO() CSR_ENTRYLO
getENTRYHI(), setENTRYHI() CSR_ENTRYHI
getBADVADDR() CSR_BADVADDR
getTIMER(), setTIMER() TIMER
getSTATUS(), setSTATUS() MSTATUS
getCAUSE(), setCAUSE() MCAUSE
getEPC() MEPC
getMIE(), setMIE() MIE
getMIP() MIP

Figure 2.9: Wrapper functions of CSR register

𝑙𝑖𝑏𝑢𝑟𝑖𝑠𝑐𝑣 provides C-language access to two RISC-V assembly instructions:
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Wrapper(s) Description RISC-V instruction
WAIT() Idle Processor wfi
SYSCALL(a0,a1,a2,a3) Syscall ecall

Figure 2.10: Wrapper functions of RISC-V assembly instructions

In addition to providing “wrapper” functions to access various 𝜇RISCV regis-
ters and assembly instructions, 𝑙𝑖𝑏𝑢𝑟𝑖𝑠𝑐𝑣 extends the RISC-V instruction set
with the following services/instructions:

Wrapper(s) Description Ebreak code
LDCXT() Load Context 0
LDST() Load Processor State 1
PANIC() Kernel Panic 2
HALT() Halt Processor 3
TLBWR() TLB-Write-Random 4
TLBWI() TLB-Write-Index 5
TLBR() TLB-Read 6
TLBP() TLB-Probe 7
TLBCLR() TLB Clear 8
STST() Store Processor State /

Figure 2.11: Wrapper functions of custom services

Excluded 𝑆𝑇 𝑆𝑇 , all the instructions in fig. 2.11 are implemented using the
𝑒𝑏𝑟𝑒𝑎𝑘 assembly instruction. 𝑒𝑏𝑟𝑒𝑎𝑘 is an instruction used to return control
to a debugging environment, but in that case, as 𝜇MPS3 did, 𝜇RISCV uses it
to generate a trap and handle the custom instruction based on its code (e.g.
4 for 𝑇 𝐿𝐵𝑊𝑅). The idea is to first set the 𝑎0 register with the command
code value (see fig. 2.11) and then call 𝑒𝑏𝑟𝑒𝑎𝑘. The emulator will check that
register to decide which function has been requested. Such a trick is necessary
because unlike MIPS (see [16]), RISC-V does not provide, at the ISA level,
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instructions to manipulate the TLB. That is the reason why 𝑙𝑖𝑏𝑢𝑟𝑖𝑠𝑐𝑣 has to
expose specific functions.

Further details can be found in [13].

2.4 Devices

𝜇RISCV supports five different classes of external devices: disk, tape, network
card, printer, and terminal. Furthermore, 𝜇RISCV can support up to eight
instances of each device type. Each single device is operated by a controller.
Controllers exchange information with the processor via device registers; spe-
cial memory locations. Further details can be found in [19].

2.4.1 Terminal

Since the graphical interface is optional in 𝜇RISCV, the terminals can no more
send their output to the GUI as in 𝜇MPS3. The console where the emulator
has been executed will log their output with this format:

[!] TERM (i) `Output from terminal i`

where “i” is the terminal number that printed the string “Output from ter-
minal i”. The controller of each terminal stores the characters received from
the kernel/user processes in a buffer. When the controller reads a new line
character (i.e. “\n”), the emulator prints the buffer into the console and clears
it.

Note:
The terminals at the moment can not read the user input (see section 4.1.2).
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2.5 A simple disassembler

A disassembler is a tool capable of translating the machine language (e.g.
000101010) to assembly language. The disassembler has no utility in the em-
ulation itself. Nonetheless, when comes to debugging, the disassembler plays
a vital role. Since disassembling is not the purpose of this thesis, just the ba-
sic operations are implemented. 𝜇RISCV disassembles the instructions when
the processor executes them, so the disassembling process is linear with the
program flow. In that way, it is possible to output, along with the assembly,
the current value of the registers involved in the opcodes. For instance, the
𝐴𝐷𝐷𝐼 opcode will be disassembled in:

[200018c0] (fe010113) I-type | ADDI sp,sp(20000fe0),-32
| PC | | OPCODE | | TYPE || Disassembled opcode |

Exploiting the uriscv-elf2uriscv (see section 2.7.1) utility to generate a sym-
bol table (see section 1.2.7), the emulator, based on the current PC, prints
the function name where such instruction resides. The latter print will be
performed whether the program flow joins a new function/exits one.

2.5.1 Usage

Disassembling is an optional functionality since students would probably use
this feature in specific scenarios (e.g. unexpected behavior and GDB not use-
ful). The user to enable it has to pass a specific flag while running the emulator
(i.e. —disass).

2.6 GNU Debugger (GDB)

GNU Debugger (GDB) [10] is one of the program parts of the GNU toolchain
(see section 1.2.8). GDB has plenty of features, but just a subset of them
are implemented in this thesis to keep the project simple but powerful enough
to permit the debugging of the code. The inclusion of GDB support in the
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implementation aims to provide students with the ability to debug without
the need to learn assembly language. By utilizing GDB, students can better
understand the actual processes occurring and obtain precise insights into the
execution of their code. Although 𝜇MPS3 includes a debugger embedded in the
emulator, certain characteristics limit its effectiveness during actual debugging
phases:

• Users can insert breakpoints only at the beginning of a function;

• When a breakpoint is reached, the state of the variables is unknown;

• The execution flow is not fully understandable since the only code visible
is the assembly one;

The GDB support resolves each of these issues. To implement the GDB sup-
port, the 𝜇RISCV emulator has been provided by a debugging stub (see sec-
tion 1.2.6), which works as a bridge between 𝜇RISCV and 𝐺𝐷𝐵.

2.6.1 Design

The GDB feature works as a wrapper for the emulator and manages its steps
according to the commands received by the GDB client.

GDB

Emulator

Figure 2.12

This feature implements a simple TCP Server that receives commands sent
by the GDB client on port 8080. The steps to receive, decode and reply to
messages are the following:
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1. The server starts;

2. The server listens and then accepts one connection;

3. The server starts a thread aimed to run the emulator;

4. The server waits for command;

5. In case of a message from the client:

a) The message is decoded;

b) The corresponding action is executed;

c) The reply is crafted and sent back;

6. Jump to step 4;

To simultaneously listen for commands while the machine is actively running,
𝜇RISCV executes the emulator and the TCP server in different threads. In
that way, while the emulator is running, threads can listen for a pause com-
mand and permit the user to add a breakpoint in the mid of the execution
(see section 2.6.2). For instance, if the program becomes stuck in an infi-
nite loop, the user can utilize GDB to pause the execution and analyze the
path that led to that particular point. This feature allows for a better un-
derstanding of the program’s behavior and aids in identifying the cause of
the infinite loop. To communicate between threads is necessary a messaging
system. Two different approaches achieve this: sockets and global variables.
The socket-based approach offers the advantage of having pre-implemented
communication, but it has a significant overhead due to the protocol involved.
On the other hand, global variables provide a simple solution without any
additional overhead. However, using global variables requires proper synchro-
nization between threads and addressing potential issues related to critical
sections. Considering that the program behind the GDB server is not com-
plex, the option of using global variables appears to be more suitable for this
situation.
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2.6.2 Features implemented

GDB offers plenty of features to debug every part of the source code and
tempestively find the issues. However, this project has implemented just the
essential subset of them. This limitation is justified by the educational purpose
of the project, aiming to keep every function simple and accessible to as many
students as possible. The commands handled by this implementation can be
divided into two groups: initialization and action. The first group consists of
the supported actions question and the question mark command. The supported
actions question is used to inquire about the functionalities implemented by
the server. In this implementation, the only supported action is swbreak (i.e.
software breakpoints). The question mark command is used to determine the
reason why the target halted and is utilized by both the step and continue
actions. The reply to this message is S05, representing the signal SIGTRAP.
In the second group, there are the following commands:

• g: returns the list of CPU registers and the PC register;
• G [registers]: writes [registers] to the current CPU’s registers;
• c: continues the execution until a breakpoint is reached;
• z, Z [addr]: respectively adds or removes a breakpoint at [addr];
• m [addr] [length]: reads [length] addressable memory units at the address

[addr];
• P [reg] [value]: writes [value] to [reg]-th CPU register;
• k: pauses the execution at the current state (e.g. pressing Ctrl-c), that

later can be resumed by the c command;

Every other command will receive an empty reply (i.e. 00).
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Emulator GDB Server GDB Client

qSupported
swbreak

qAttached
1
?

S05
...
...

InitializationInitialization

g
read registers

[00000123,...,00002345]
0000028303...
m1fc00000,4

read memory
[13010101,...,b7020010]

6f000019
c

OK
run

Z0,200024b8,4
OK

stop
Z0,200024d0,4

OK
run

ActionAction

Figure 2.13: Communication between the emulator, the gdb server and the gdb client
Note: the diagram is just an example
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2.6.3 Usage

Debugging is an optional functionality and the user to enable it has to pass a
specific flag while running the emulator (i.e. —gdb). The program starts and
creates the TCP Server, while the user just has to open a client to connect.
Users can use the command line interface of GDB or the extension for the IDE
they prefer the most. For instance, Visual Studio Code [24] has an extension
called Native Debug developed by Webfreak [34]. The following configuration
is an example of a launch.json file for Native Debug:

Listing 2.2: VS Code config
1 {
2 "version": "0.2.0",
3 "configurations": [
4 {
5 "name": "URISC-V GDB",
6 "type": "gdb",
7 "request": "attach",
8 "executable": "/path/to/the/kernel",
9 "target": "localhost:8080",

10 "remote": true,
11 "cwd": "${workspaceRoot}",
12 "valuesFormatting": "parseText",
13 "gdbpath":

↪ "/path/to/riscv/bin/riscv32-unknown-linux-gnu-gdb",
14 "stopAtEntry": true
15 }
16 ]
17 }

The user have to compile the projects with the —ggdb flag [32] to produce
debugging information for use by GDB.
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2.7 Utilities

The uriscv-elf2uriscv and uriscv-mkdev utilities are inherited from 𝜇MPS3
and modified slightly to ensure compliance with the new architecture. As the
current project is independent of the Graphical Interface (GUI), a new utility,
called uriscv-mkconfig, is necessary to create a configuration file.

2.7.1 uriscv-elf2uriscv

The utility uriscv-elf2uriscv converts an ELF object into RISC-V file formats:
.core, .rom, or .aout. The utility uriscv-elf2uriscv generates a symbol table (see
section 1.2.7) and implements a function that, given an address, identifies the
symbol containing that address. Although the structure of the ELF remains
largely consistent across architectures, a minor modification has been made
to the metadata-checking process to ensure compatibility with the current
architecture, which should now be identified as EM_RISCV.

To convert the ELF formatted executable and object files produced by the gcc
cross-platform development tools into the .core, .rom, and .aout formatted files
required by 𝜇RISCV the command is:

uriscv-elf2uriscv [-v] [-m] {-k | -b | -a} <file>

Further details can be found in [13].

2.7.2 uriscv-mkdev

The uriscv-mkdev utility allows one to create an empty disk only; this way
an OS developer may elect any desired disk data organization. The created
“disk” file represents the entire disk contents, even when empty. Hence this
file may be very large. It is recommended to create small disks which can be
used to represent a little portion of an otherwise very large disk unit. Disks
are created via:

uriscv-mkdev -d <diskfile>.uriscv
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[cyl [head [sect [rpm [seekt [datas]]]]]]

Flash devices in 𝜇RISCV are “random access” nonvolatile read/write devices.
A 𝜇RISCV flash device is essentially equivalent to a seek-free one-dimensional
disk drive. The uriscv-mkdev utility allows one to create both slow flash devices
(e.g. USB stick) or fast flash devices (e.g. SSDs). Furthermore, the utility
allows one to create both empty flash devices as well as ones preloaded with a
specific file. The created flash device file represents the entire device contents,
even when empty. Hence this file may be very large. It is recommended to
create small flash devices which can be used to represent a little portion of an
otherwise very large device. Flash devices are created via:

uriscv-mkdev -f <flashfile>.uriscv <file> [blocks [wt]]

Further details can be found in [13].

2.7.3 uriscv-mkconfig

The utility uriscv-mkconfig allows the user to create the configuration file
(i.e. 𝑐𝑜𝑛𝑓𝑖𝑔_𝑚𝑎𝑐ℎ𝑖𝑛𝑒.𝑗𝑠𝑜𝑛) that the emulator will use to run the machine.
The config is created via:

uriscv-mkconfig <file> [--proc <nproc>] [--clock-rate <mhz>]
[--tlb-size { 4 | 8 | 16 | 32 | 64 }]
[--tlb-floor { RAMTOP | 0x4000000 | 0x8000000 | OFF }]
[--ram-size <size>]
[--boot-bios <coreboot>.rom.uriscv]
[--exec-bios <exec>.rom.uriscv]
[--core <kernel>.core.uriscv]
[--load-core { true | false }]
[--stab <kernel>.stab.uriscv]
[--stab-asid <asid>]

where:

• file: the path where the config file will be generated;
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• —proc: the processors number (default 1);

• —clock-rate: the clock rate in MHz (default 1);

• —tlb-size: the size of the tlb (default 16);

• —tlb-floor: the threshold below which address translation is
disabled and the logical address is the physical address (default OFF);

• —ram-size: the size of the RAM (frames) (default 64);

• —boot-bios: the path of the ROM with the bootstrap instructions
(default /𝑢𝑠𝑟/𝑠ℎ𝑎𝑟𝑒/𝑢𝑟𝑖𝑠𝑐𝑣/𝑐𝑜𝑟𝑒𝑏𝑜𝑜𝑡.𝑟𝑜𝑚.𝑢𝑟𝑖𝑠𝑐𝑣);

• —exec-bios: the path of the ROM of the bios
(default /𝑢𝑠𝑟/𝑠ℎ𝑎𝑟𝑒/𝑢𝑟𝑖𝑠𝑐𝑣/𝑒𝑥𝑒𝑐.𝑟𝑜𝑚.𝑢𝑟𝑖𝑠𝑐𝑣);

• —core: the path of the kernel (default 𝑘𝑒𝑟𝑛𝑒𝑙.𝑐𝑜𝑟𝑒.𝑢𝑟𝑖𝑠𝑐𝑣);

• —load-core: load the core file (default 𝑡𝑟𝑢𝑒);

• —stab: the path of the symbol table file (default 𝑘𝑒𝑟𝑛𝑒𝑙.𝑠𝑡𝑎𝑏.𝑢𝑟𝑖𝑠𝑐𝑣);

• —stab-asid: the ASID of the symbol table (default 0𝑥40);

Once the utility is launched the user will be asked whether there are devices.
The user can choose from the five available devices in 𝜇RISCV: Disks, Flash
Devices, Network, Printers, and Terminals. For each added device, the user
will be prompted to insert: the device file and whether the device is enabled.

2.8 Command-Line Interface (CLI)

A command-line interface (CLI) is a text-based interface that enables users or
clients to interact with a device or program using commands. In contrast to
the graphical user interface (GUI), the CLI consumes fewer resources and does
not rely on a window manager. The CLI is often preferred in scenarios where
resource efficiency is crucial or when automation and scripting capabilities are
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required. Unlikely 𝜇MPS3, 𝜇RISCV incorporates a command-line interface
(CLI) for the following reasons:

• Automate the testing of the kernel;

• Possibility to execute the kernel on a remote server using, for instance,
by utilizing protocols such as SSH;

2.8.1 Usage

To launch the emulator is necessary a console; the command to run is:

uriscv-cli [config_machine.json]
{ [--help] | { [--disass] [--gdb] } }

Where:

• config_machine.json: the path of the config file (default 𝑐𝑜𝑛𝑓𝑖𝑔_𝑚𝑎𝑐ℎ𝑖𝑛𝑒.𝑗𝑠𝑜𝑛
in the current directory);

• —help: prints the help message;

• —disass: enables the disassembler messages;

• —gdb: enables the gdb server;
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This chapter covers the PandoOs plus project, what it is, and how it is com-
posed. Then, an example of a compilation of the project for 𝜇RISCV is pro-
posed, and in conclusion an explanation of how to execute the now compiled
project in the 𝜇RISCV emulator.

3.1 The project

PandOS Plus serves as the laboratory project for the Computer Science course
on Operating Systems at the University of Bologna for the academic year
2021/2022. This project is a revised edition of PandOS [14], which is one
of the projects within the collection developed under the umbrella of Virtual
Square [12, 15]. PandOS plus is based on the 𝜇MPS3 architecture, therefore
the only way to run a PandOS plus is to emulate it through 𝜇MPS3 [13]. The
project is designed to be completed by groups consisting of 3 to 4 individuals.
It is divided into three phases, each introduces various concepts to the students.
The students at the end of each phase can test their code on a series of tests
thought ad hoc to verify their competencies. The phases represent layers of
an operating system, in which a layer 𝑖 is based on the implementation of
layer 𝑖 − 1, based on “THE” Multiprogramming system [6]. The architecture
of PandOS plus is composed of 6 abstraction layers (see fig. 3.1).
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Phase Layer Description
/ 6 Interactive shell
/ 5 File system
3 4 Support layer
2 3 Kernel of the O.S.
1 2 Queue management
Given 1 Services of the ROM
Given 0 Hardware of 𝜇MPS3

Figure 3.1: PandOS plus layers

The successful implementation of the developed emulator can be validated by
porting the PandOS Plus project from 𝜇MPS3 to 𝜇RISCV. Since PandOS
Plus covers essential features such as user processes, virtual memory, external
devices, and paging, verifying its correct functioning on the 𝜇RISCV emu-
lator will serve as a reliable test. By ensuring that PandOS Plus operates
seamlessly on the 𝜇RISCV architecture, it confirms the emulator’s successful
implementation and compatibility with a real-world operating system project.

3.1.1 Phase 1

In phase 1 of PandOS plus the students have to implement the various data
structures of the kernel and the queue management. Specifically, the queue
management component involves implementing 4 functionalities related to Pro-
cess Control Block (PBC):

• Allocation and Deallocation of PCBs;

• PCB queues management;

• PCB tree management;

• Active Semaphore List (ASL) management, which manages the queue of
blocked processes on a semaphore;
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During this phase, the requirements of PandOS Plus are exclusively focused
on logic and implementation of the kernel’s data structures and queue man-
agement. This implies that there is no involvement with the hardware, and
thus the original project can remain unchanged during this stage.

Further details can be found in [14].

3.1.2 Phase 2

With all the structures implemented by the previous phase, it is the moment
to implement the operating system kernel. The functionalities that the kernel
has to manage are:

• Initialization of the system: initialize the data structures (i.e. PCBs and
semaphore lists), the devices, the interval timer, the pass-up vector, and
the scheduler;

• Scheduling of the processes: scheduling of the processes based on two
priority queues (low and high) and the round robin algorithm;

• Exception handling: handling of the exceptions that could occur during
a normal program flow. Such exceptions can be broken down into two
categories:

– TLB-Refill events, triggered every time, during an address transla-
tion, there is no matching between the entries in the TLB;

– All other exceptions, that can be grouped like:

∗ Interrupts: external devices and timers;

∗ System Service Calls;

∗ TLB exceptions;

∗ Program Trap exceptions;
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In that phase, the kernel should be able to execute sequential processes and
grant synchronization primitives. Since the virtual memory will be imple-
mented in the following phase (see section 3.1.3), all the addresses have to be
physical.

During that stage, the kernel needs to possess the capability to execute pro-
cesses sequentially and provide synchronization primitives. All addresses uti-
lized during this stage are physical since virtual memory implementation is
planned for phase 3 (see section 3.1.3).

No effective modifications have been made as the initialization and scheduling
functionalities are independent of the hardware or architecture in general. On
the other hand, the exception handling has been tweaked to adequate with the
new processor state (see section 2.1.1), in particular: cause register (mcause,
see fig. 2.1), interrupt pending bits (mip, see fig. 2.7), and interrupt enable bits
(mie, see fig. 2.6).

Further details can be found in [14].

3.1.3 Phase 3

After the development of the scheduler and ensuring the readiness of processes
to run, the subsequent task is to implement virtual memory. This implemen-
tation enables the creation of user processes and provides a supportive layer
for them. During this phase, the students are given 8 pre-compiled processes,
each contained within a flash device [13], and having distinct behaviors. The
main function has to:

• initialize the various data structures like in phase 2 (see section 3.1.2);

• load and start the 8 processes, each with its local address space (kuseg)
and a unique identifier, ASID [13]. The support layer provides the ex-
ception handlers that manage exceptions unhandled by the kernel, such
as page faults (pager) or “custom” syscalls;

• wait for all the processes to terminate;
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The project did not require any revisitation since the memory layout and
paging remained unchanged. However, similar to phase 2, there were slight
modifications in the activation and deactivation of interrupts due to differences
in the register configuration (see fig. 2.2).

Further details can be found in [14].

3.2 Compiling

𝜇RISCV is based on the RISC-V ISA architecture, so to build an executable
for this emulator a RISC-V compiler is mandatory. This section describes
which compiler could be used to build PandOS Plus, including a step-by-step
guide to compiling both kernel files and U-procs.

3.2.1 Toolchain

A toolchain, as described in section 1.2.8, is a set of programming tools that
can be used to build and test a complex software program. Given that students
typically do not have access to a physical RISC-V machine to execute a native
compiler, the utilization of a cross-compiler becomes necessary. The toolchain
developed by GNU [9] can be used to accomplish that, it has all the necessary
tools, such as compiler, linker, objdump, and debugger. The RISC-V GNU
compiler toolchain can be found on GitHub [32], allowing students to build it
themselves if desired. Otherwise, it is available at the following locations:

• Archlinux repository (AUR): 𝑟𝑖𝑠𝑐𝑣–𝑔𝑛𝑢–𝑡𝑜𝑜𝑙𝑐ℎ𝑎𝑖𝑛–𝑏𝑖𝑛1;

• Debian bullseye repository: 𝑔𝑐𝑐–𝑟𝑖𝑠𝑐𝑣64–𝑢𝑛𝑘𝑛𝑜𝑤𝑛–𝑒𝑙𝑓2;

Note:
At present, GDB (GNU Debugger) is exclusively accessible in the Arch Linux

1https://aur.archlinux.org/packages/riscv-gnu-toolchain-bin
2https://packages.debian.org/bullseye/gcc-riscv64-unknown-elf
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3 PandOS plus

repository. Debian users, on the other hand, are required to build GDB from
source in order to run it on their system.

3.2.2 Compiling the kernel

This is just an example using:

• phasex.o: compiled phases;

• uriscvcore.ldscripts: linker scripts for .aout and .core executables [19];

• crtso.o: start-up modules for .core executables [19];

• liburiscv.o: uriscv library [19];

To build the kernel the commands are:

riscv32-unknown-linux-gnu-ld -G 0 -nostdlib -c \
-march=rv32imfd -mabi=ilp32da -m elf32lriscv \
<...>.o -o phasex.o

riscv32-unknown-linux-gnu-ld -G 0 -nostdlib \
-march=rv32imfd -mabi=ilp32da -m elf32lriscv \
-T /usr/local/share/uriscv/uriscvcore.ldscript \
phase1.o phase2.o phase3.o \
/usr/local/lib/uriscv/crtso.o \
/usr/local/lib/uriscv/liburiscv.o \
-o kernel

The 𝑘𝑒𝑟𝑛𝑒𝑙 file is properly a RISCV executable but has to be converted in
a format that 𝜇RISCV is able to read. To do that the user should use the
command:

uriscv-elf2uriscv -k kernel

Further details about 𝑢𝑟𝑖𝑠𝑐𝑣–𝑒𝑙𝑓2𝑢𝑟𝑖𝑠𝑐𝑣 can be found in the manual [13].
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3.2.3 Compiling the User processes

In PandOs plus, the students are provided with 8 .𝑐 files (u-procs), each rep-
resenting a different program that has to run on 𝜇RISCV.

To build a test program 𝑡𝑒𝑠𝑡.𝑐 the commands are:

riscv32-unknown-linux-gnu-gcc -G 0 -nostdlib -c \
-pedantic -ffreestanding -Werror -Wall -ansi \
-std=gnu99 -c -static -ggdb -nostartfiles \
-nostdlib -O0 \
-march=rv32imfd -mabi=ilp32da -m elf32lriscv \
test.c -o test.o

riscv32-unknown-linux-gnu-ld -G 0 -nostdlib \
-march=rv32imfd -mabi=ilp32da -m elf32lriscv \
-T /usr/local/share/uriscv/uriscvcore.ldscript \
/usr/local/lib/uriscv/crti.o \
/usr/local/lib/uriscv/liburiscv.o \
test.o \
-o test.t

uriscv-elf2uriscv -a test.t # generates a test.aout.uriscv file

The U-proc executable now has to be pre-loaded in a flash device

uriscv-mkdev -f test.uriscv test.aout.uriscv
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3.3 Running PandOS on 𝜇RISCV

3.3.1 Making the config

To run the emulator, it is necessary to create a configuration file. This file
should include all the essential information: kernel’s path, bios’ path, ram
size, etc3. To generate such a file the user has 2 options:

• uriscv-mkconfig: command line interface program (see section 2.7.3);

• 𝜇MPS3: since the config file of 𝜇MPS3 is compatible with 𝜇RISCV the
user can generate it using the 𝜇MPS3 emulator;

3.3.2 Running the Emulator

After compiling the kernel, preparing the user processes (u-procs), and creat-
ing the configuration file, the final step is to execute the emulator using the
following command:

uriscv-cli
# or
uriscv-cli /path/to/the/config.json

Further details on 𝑢𝑟𝑖𝑠𝑐𝑣–𝑐𝑙𝑖 can be found in section 2.8.

3Exstensively described in the 𝜇MPS2 dissertation [19]
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4.1 Improvements

In this section, various improvements are suggested for future works. The
project is distributed under the GPL-3.0 license, allowing individuals the free-
dom to share and modify the software according to their requirements without
any restrictions.

4.1.1 Memory Management Unit (MMU)

The memory management unit (MMU) is a computer component that man-
ages access to the memory. In the 𝜇MPS3 project [13], the MMU’s main
activity is translating virtual memory addresses to their respective physical
address using paging and TLB (see section 1.2.4). The current solution de-
vised for 𝜇MPS3 is a simplified version of the MIPS’ MMU, which due to its
complexity, has been simplified. Such modifications are the fruit of years of
change based on students’ feedback. The virtual-memory system proposed by
the RISC-V manual [33] is thought to be used on real-world computers, which
includes features such as multi-level paging. In 𝜇RISCV, the MMU is com-
pletely inherited from 𝜇MPS3. In the future, energies could be spent to design
a new MMU that follows the RISC-V directives, while keeping the complexity
at the undergraduate level. For instance, the multi-level paging support could
be removed and substituted with a classical one-level paging, similar to the
one used in 𝜇MPS3.
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4.1.2 Terminal Device

Within the 𝜇RISCV framework, one of the implemented devices is the Termi-
nal, which serves as a means for kernel and user processes to output strings to
the console. In the 𝜇MPS3 project, terminals not only enable the printing of
information but also facilitate user input, thereby enabling the development
of more interactive and expressive programs. As 𝜇RISCV does not feature a
graphical user interface (GUI), the console itself, where the emulator is initi-
ated, becomes the primary and practical method for user output. In general,
an input event on the console is a blocking event, meaning that the whole
emulator should be paused until the user has not input some data. Such a
situation can not happen, since it would temporarily disable the parallelism
achieved by 𝜇RISCV, harming its realistic characteristic, which is one of the
objectives of the project (see section 1.3). A possible solution could be to use a
terminal multiplexer 1 as tmux [21] to multiplex several pseudoterminals, one
for the emulator, and other N-pseudoterminals, one per terminal device in-
stalled. Alternatively, a file could be targeted as the input source for terminal
“i”, and every time the user writes on it, the emulator captures it and sends
it to the terminal “i” controller.

4.1.3 Graphical Interface and GDB

The objective of this thesis is to port only the emulator itself, without including
the GUI. In future work, the GUI can incorporate the GDB features developed
by 𝜇RISCV. It should be noted that 𝜇MPS3 already possessed debugging
utilities [13]. When porting the GUI, a decision needs to be made whether to
replace the existing utilities to uniquely provide support for GDB or to devise
a solution that maintains both sets of features. This would enable students to
choose the debugging support that best suits their needs and abilities.

1A terminal multiplexer is an application that can be used to have multiple pseudoterminals
inside a single terminal display
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4.1.4 Software Packaging

Software packaging refers to the process of bundling software and its associ-
ated components into a distributable format that can be easily installed and
managed on various computer systems. Packaging involves organizing the
necessary files, libraries, dependencies, and configuration settings to create a
self-contained package that can be distributed to end-users or other systems.
Packaging permits tracking installed files and automatically updates the soft-
ware while providing users with a simple way to install their programs. After
the release of 𝜇RISCV, as happened for 𝜇MPS3, the usual distribution pro-
cess expects the software to be packaged for Linux distros 2. The major Linux
distributions for which 𝜇RISCV should be packaged are Debian, ArchLinux,
and Ubuntu. Those three distros cover the majority of the operating systems
usually installed by students. Whether a user has a niche Linux distro, they
can easily clone 3 the 𝜇RISCV repository available on GitHub [23]. The ideal
solution should be to package 𝜇RISCV ad hoc for the various distros, similar
to what has been done with the 𝜇MPS3 project. Alternatively, other package
manager software could be used such as Flatpak [7], Snapcraft [2], and Ap-
pImage [30], which enable software distribution compatible with every Linux
distro.

4.2 Final thoughts
In conclusion, this thesis has explored the design and implementation of an
educational computer architecture called 𝜇RISCV and its emulator. Moreover,
giving an example of a project, PandOS Plus (see chapter 3), that students
can achieve to develop and run on 𝜇RISCV.

Implementing such a computer emulator makes how feasible can be to provide
a realistic and interactive environment for students to explore computer archi-
tecture concepts. The emulator allows students to experiment with different

2A Linux distro is a software distribution of an operating system based on the kernel Linux
3Clone is a Git [11] command line utility used to target an existing repository and create

a copy of it
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configurations and observe their effects, while providing valuable insights into
the inner workings of processors, memory management, and external devices.

𝜇MPS is an inspiring project that surely has reached its goals, but the 𝜇MPS
architecture is based on MIPS, a family of instruction sets released in 1985. Al-
though studying historical systems is significant, keeping up with cutting-edge
technologies is equally crucial. The technology world is in continuous evolu-
tion, new techniques and project versions are released every year. RISC-V is
a relatively new instruction set architecture, that lately has gained popular-
ity, thanks to its features, such as modularity and scalability. Undoubtedly,
RISC-V is yet to be perfect and at the moment it can not compete with other
ISAs, such as ARM or x86. The RISC-V ecosystem is rapidly evolving, with
new extensions, tools, and frameworks being developed [5]. While RISC-V
offers simplicity and flexibility, there is room for research to further optimize
its performance. The 𝜇RISCV project tries to introduce such an ISA to stu-
dents and let them familiarize themselves with it. Students not only broaden
their knowledge about computer architecture, but they study a technology
that promises to revolutionize the whole computer landscape. 𝜇RISCV is an
entry point to RISC-V, from where students can begin their journey and later
on make beneficial improvements for the whole community.

Furthermore, 𝜇RISCV has introduced a notable debugging feature: support
for GDB (see section 2.6). GDB is a widely used debugger that offers numer-
ous functionalities. By incorporating support for this well-known debugger,
experienced users can have a more seamless experience with the emulators.
Simultaneously, students who are unfamiliar with GDB have the opportunity
to explore and learn about this powerful tool, which can be utilized not only
with 𝜇MPS3 but also in their future projects or professional endeavors.

In addition, 𝜇RISCV now includes the capability to run the emulator in a
command-line interface mode. This feature enables experienced users and
tutors to perform automated tests on projects created using this architecture,
including projects like PandOS Plus (see chapter 3).
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While the study of computer architecture may appear challenging, the stu-
dents need to remember that even the construction of a skyscraper is done
brick by brick. This analogy emphasizes the incremental nature of learning
and highlights that complex concepts can be understood by breaking them
down into smaller, manageable components. Just as a skyscraper is built by
laying one brick at a time, students can approach computer architectures by
gradually building their knowledge and understanding, mastering the funda-
mental concepts and later tackling more advanced topics. By taking it step by
step, students can overcome the initial difficulty and gradually develop a solid
understanding of computer architectures.
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