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Time you enjoy wasting, was not
wasted.

Il tempo che ti piace sprecare
non è sprecato.

John Lennon





Sommario

Microservizi e serverless sono stili architetturali all’avanguardia, che consento-
no la scalabilità e la semplice distribuzione degli applicativi software. Entram-
bi richiedono la scomposizione del software monolitico in unità più piccole. I
microservizi si comportano al meglio quando gestiscono un traffico costante,
mentre le piattaforme serverless sono economicamente più vantaggiose durante
carichi di lavoro sporadici. In questa tesi presentiamo JFN, una piattaforma
serverless in grado di eseguire le funzioni in una modalità affine ai microser-
vizi. Quando una funzione sotiene un un carico di richieste costante, JFN la
converte dinamicamente in uno o più microservizi. Questo approccio combina
la scalabilità granulare delle funzioni serverless con le prestazioni e la efficienza
dei microservizi in situazioni di carico costante.
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Abstract

Microservices and serverless are state-of-the-art architectural styles, allowing
simple scaling and distribution of software applications. They both involve
the decoupling of monolithic software into smaller units. Microservices per-
form best when handling steady traffic, while serverless platforms are more
cost-effective during sporadic, bursty loads. In this thesis we introduce JFN, a
serverless platform capable of executing functions in a microservice-like fash-
ion. When a steady load is applied to a function, JFN dynamically converts it
to one or more long-running microservices. This approach provides the same
granular scalability of serverless functions coupled with the performance and
efficiency of microservices under a constant load.
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1 Introduction

In today’s software development, there is a growing demand for applications
that can effortlessly handle highly variable levels of traffic. This requires in-
tricate hardware and network setups along with software that is specifically
designed to be scalable.

Microservices [4] and Serverless [5] (FaaS) are two state-of-the-art software ar-
chitectural styles. Both styles share one common trait: they essentially slice
monolithic1 applications into smaller and independent software units. Archi-
tecturally, the main difference between the two styles is that microservices are
software programs consisting of multiple cohesive functionalities, while a func-
tion corresponds to one specialized functionality. Since developers decouple
their software programs, deployment platforms can then scale those software
units independently. Functionally, microservices are always-on processes that
consume resources (i.e., hardware, power) even when they serve no requests.
On the contrary, serverless functions are allocated and executed each time a
new request comes in; wasting no resources in the absence of inbound traf-
fic. Usually, microservices rely on predefined thresholds to determine when
replication or deduplication is needed, while FaaS dynamically scales based
on inbound requests. Hence, the one-request-one-allocation approach of FaaS
makes scaling implicit and automatically determined by the amount of inbound
traffic – so that, when there are no requests, no functions are running, and no
resources are wasted for their execution.

1A monolithic software is a single software unit containing multiple heterogeneous func-
tionalities.
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1 Introduction

Choosing between these architectural styles early in the development process
is crucial, as transitioning afterwards can prove to be costly. Microservices
come with the challenge of predicting what kind of traffic the application will
endure, whereas serverless platforms handle scaling automatically.

In this thesis, we present JFN, a platform designed to facilitate the deploy-
ment of microservices as serverless functions. JFN allows developers to convert
microservices to functions, with minimal effort (i.e., specifying which microser-
vice operation is exposed by the function), and to run the latter on a hybrid
serverless platform, capable of executing functions in a microservice-like fash-
ion.

1.1 State of the art
In this section we briefly overview the state of the art in terms of microservices
deployment and serverless platforms.

From the deployment point of view, microservices are close to traditional com-
puter programs, which can be deployed directly on any supported operating
system. However, while this approach is feasible, when dealing with many
microservices, and their different scaling policies, we need to automate the de-
ployment of services. The de-facto standard for microservice deployments are
containers, which consist of a para-virtualization runtime, where the software
is executed, and which provide a convenient way to package the software. The
two most popular container platforms are Docker [3] and Kubernetes [10], the
former of which is described in further detail in Section 3.3.9.

Hence, while microservices are standalone, long-running processes, serverless
functions depend on a serverless platform to run them at each invocation,
making them essentially stateless operations. In the FaaS model, the devel-
oper submits a function to a provider which takes care of exposing it on a
public endpoint where it can be called. The state of the art FaaS platforms
are OpenWhisk, an open-source project developed by the Apache foundation,
and the proprietary AWS Lambda, offered Amazon. For safety and isolation,
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1.2 Goal

functions are always executed in containerized environments. Because of this,
all platforms use container orchestrators, such as Docker Swarm or Kubernetes,
to scale the number containers where the code is run.

As far as we know, the work by Li et al. [11] is the only scientific publication
outlining a project similar to JFN. While both works try to unify FaaS and
microservice deployments, we took a different approach compared to Li et al.
Their solution involves running microservices on demand, emulating a FaaS
environment where functions are loaded as needed. Ours, on the other hand,
forces the conversion of microservices to functions, which may then be exe-
cuted in microservice mode.
We see the two works as complementary, although we conjecture possible per-
formance penalty in Li et al.’s approach, e.g. due to the unnecessary allocation
of resources for a whole microservice (which usually encompasses multiple op-
erations, each with its code, dependencies, and potential connections to other
resources such as databases and dependent microservices; resulting in possi-
ble chains of allocations). Because of this, JFN forces developers to decouple
microservice operations into functions, allowing the platform to handle more
granular scaling, compared to other approaches.

1.2 Goal

With JFN, we aim to unify the deployment of microservices and serverless
functions, by allowing developers to easily transition from a series of microser-
vices, written in Jolie, to serverless functions. These functions can then be
deployed on the JFN platform, which is capable of executing them as either
a stateless function or as a long-running microservice. The platform shall be
able to self-scale and automatically perform the conversion from function to
service, based on the incoming traffic.

3



1 Introduction

1.3 Structure of the document
In Chapter 2, we cover the background knowledge required to understand this
work. We describe in detail the microservice and serverless paradigms, along
with the technologies used, such as Jolie and Docker.

In Chapter 3, we describe the implementation details of JFN, to facilitate
future work on the platform and intuitively prove its scaling capabilities. Fur-
thermore, we provide an example conversion of a microservice to a series of
serverless functions.

Finally, in Chapter 4, we provide some closing remarks and list a number of
compelling future work directions to improve JFN’s performance, reliability,
and coverage. We also tie this work to other active research topics which could
lead to improvements in serverless platforms at large.
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2 Background

This chapter covers the bacgrkound knowledge that is extensively used through-
out the thesis. We provide informal definitions for all the tecnologies involved
and explore iteration between the cloud paradigm and the microservices and
serverless architectural styles. Furthermore, we detail some of the fundamen-
tal software for the implementation of JFN, such as the Jolie programming
language, which offers some unique features which shaped the project, and
Docker, the platform of choice for the deployment of most of microservices.

2.1 Microservices and Jolie

In this section, we focus on Jolie and how it aids the building of Microservice
architectures. We start by defining the Microservice paradigm and its fun-
damental principles. Later, we show how Jolie’s primitives can be effectively
applied to tackle the various challenges of building microservices.

2.1.1 The micorservice paradigm

The microservice paradigm is an architectural approach in software develop-
ment by which applications are built as a collection of small, loosely coupled,
and independently deployable services. Each service is intended to perform
a specific business task and emphasis is placed on communication between
them. A complete application can be built by combining, in various ways, all
the available microservices.
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2 Background

A monolithical application is a computer program which offers, in a single soft-
ware or executable, several heterogeneous functionalities. A microservice is a
piece of software which accomplishes only one task. Multiple microservices
can be combined to match the functionality of a single monolithic applica-
tion. Microservices are easier to maintain, manage and upgrade, compared
to monolithic applications, making it a desirable architectural technique in
software development.

A monolithical application can be decomposed in a set of self-contained, in-
dependent services that communicate with each other through well-defined
APIs, typically over lightweight protocols such as HTTP, message queues (i.e.,
MQTT), or efficient remote-procedure-call implementations such as gRPC [7]
and SODEP (see Section 2.2.2). Each microservice can be implemented using
different technologies and programming languages, depending on the require-
ments at hand, allowing developers to always chose the best tool for the job.

The key principles of this paradigm can be summed up as follows:

1. Service autonomy: each microservice runs independently, often with its
own dedicated auxiliary services (i.e., databases, storage systems). This
autonomy allows teams to better split and organize their assignments, so
that they can work on different services concurrently. Ad hoc decisions
can be taken on a per-service basis, when performance or scalability is
of critical interest (see Item 4).

2. Scalability and resilience: microservices can be scaled horizontally to
address rising demand because they are independently deployed. In ad-
dition, having multiple instances of the same service running at the same
time, automatically creates a resilient cluster with high availability. This
means that, even if a service stops working, the end user faces minor to
no service disruption, as the whole architecture can route traffic meant
for the broken instance to a properly working one.

3. Bounded contexts: services are defined around specific business capa-
bilities and represent a bounded context that encapsulates a specific
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2.1 Microservices and Jolie

functionality or domain. This allows for better application organization
and separation of concerns. Furthermore, it forces developers to think
deeply about the interfaces the services use to communicate, improving
the overall code quality.

4. Heterogeneity: as stated before, each microservice can be implemented
using a completely different technology stack, as the developers see fit.
They can even be deployed on different hardware based on the compu-
tation requirements of the specific piece of software (i.e., services which
run machine learning models can be deployed on a cluster node which
has access to GPU cores).

5. Continuous deployment: microservices are decoupled by design, so they
can be deployed separately from one another. Thanks to this practice,
projects with dozens of microservices can be upgraded progressively, in
order to easily spot issues and roll back soley the malfunctioning services.
It is often the case that automatic pipelines are created to deploy these
services once a new release is tagged. This means that developers are
the ones in charge of defining the deployment strategies, which adds
flexibility and also one extra task to tackle. This is one of the problems
which serverless (see Section 2.3.2) aims to solve.

The microservice paradigm promotes modularity, flexibility, and scalability,
making it easier to build and maintain complex applications. However, it also
introduces new challenges such as service discovery, inter-service communica-
tion, and distributed data storage. These issues have to be carefully considered
and addressed in order to build an optimal microservices architecture.

2.1.2 The Jolie language

Jolie [13], which stands for Java Orchestration Language Interpreter Engine,
is a microservice-oriented, contract-first programming language that is based
on a formal specification to guarantee the correctness of its distributed com-
putations. It is being developed and used in research at different research
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institutions, primarly at the University of Bologna and at the Southern Den-
mark University.

Services are fist class citizens of the language. Any task, besides what’s pro-
vided by the builtin semantic of the language, is accomplished by sending
requests to services. For example, the entire standard library is composed of
plethora of services which implement a wide range of utilities, ranging from an
operation to print to screen (i.e., println@Console) to utilities for database
interactions. By default, no additional services are available, and you have
to specify new output ports (see Section 2.1.3) in order to reach the services
required for your progam.

We use the syntax operation@Port(request)(response) to invoke the op-
eration operation on the service reachable via the output port Port, provid-
ing it with the input data from the variable request and storing the output
in a variable called response.
Every output port has an associated interface (see Section 2.2.3) which de-
scribes the list of available operations. Before the execution of the service, the
Jolie interpreter takes care of checking for the existence of the operation calls
in the source code, preventing the execution of an invalid program.

By incentivizing service separation and providing powerful communication
primitives, Jolie allows developers to build microservice-ready software from
the start. In the following sections we detail these primitives and explain how
they are useful in the development of JFN and microservices at large.

2.1.3 Output ports

An output port in Jolie describes an outwards facing communication endpoint.
Each service can have multiple output ports to describe all the external end-
points it can talk to. For example, an HTTP API, another microservice or a
service such as MQTT can all be identified by an output port. Defining an out-
put port allows the service to communicate with its endpoint using operations.
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2.1 Microservices and Jolie

Operation calls are translated differently based on the type of the output port.
For example, provided an Output Port with the following definition:

outputPort HttpApi {
location: "https://example.com"
protocol: http
interface: …

}

Calling op@HttpApi translates in an HTTP POST request for https://example.com/op
with the operation parameters encoded in the body of the request. Support
for the most common protocols is provided by default, but new ones can be
easily defined in Java if needed1.
Two most commonly used protocols are:

1. Hypertext Transfer Protocol, commonly referred to as HTTP, is the
standard for communication on the Web. Many Web-accessible APIs
use the JSON or XML format, to which the protcol supports encoding
and decoding. It also supports various options to tweak how operations
are mapped in HTTP requests, allowing developers to model any HTTP
API in Jolie. Options can be provided as an object following the protocol
specification, such as follows:

protocol: http {
compression = true
…

}

2. The Simple Object Access Protocol [16] is an XML-based protocol de-
signed to allow communication between various services. It allows the
use of various transport protocols, such as HTTP, TCP/IP, and SMTP
(which is nowadays deprecated). It provides structured remote program
calls and is interoperable across many programming languages, provided

1See the Jolie documentation: https://docs.jolie-
lang.org/v1.10.x/tutorials/advanced-scenarios/supporting-new-protocols-
in-jolie/index.html.
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they support XML and one of the transport protocols. The use of HTTP2

combined with XML, add a significant data overhead for each message.

3. The Simple Operation Data Exchange Protocol, or SODEP for short, is
a lightweight, binary encoded, protocol to exchange data between Jolie
services. Along with its compact representation, it is also able to carry
type information, which was fundamental in the JFN development. More
details are available in Section 2.2.2.

Each output port must specify one or more interfaces which it offers. Inter-
faces specify the operations available on the endpoint described by the output
port. More details are provided in Section 2.2.3

2.2 Input ports

Just like an output port, an input port defines a communication endpoint
where requests can be received and handled by the service. A service can pro-
vide multiple input ports (i.e., one for internal communications, one publicly
accessible), each using its dedicated protocol. All the procotocols provided in
the previous Section are also supported for input ports.

Finally, the interfaces parameter describes what operations are available on
this endpoint. Interfaces specified on an input port imply that such operations
must be offered by the service. At runtime, Jolie performs two main checks:

1. For each call, in the form op@Service, it checks that the operation op
is defined in one of Service’s interfaces.

2. For each call, it checks that the input payload corresponds with the type
of the operation’s request.

2SOAP with HTTP has been standardized by W3C, making it the most commonly used
transport protocol.
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2.2.1 Location

The location of an output port is a string containing an URI [15] which points
to the resource the protocol shall access. When a location is provided to an
input port though, it is used to bind to that address before the Jolie interpreter
starts the service.

Most commonly locations use the URI protocol component socket, but Jolie
also supports a special local value. When such a location is used, two services
running under the same system process (cfr., Java Virtual Machine instance)
can talk to each other without opening Unix or BSD sockets. It is often
desirable to have local communication between services. For example, local
locations are used in:

• The standard library’s Scheduler service uses local locations to invoke a
callback operation on the service which requested a schedule for a cron
job. In fact, in order to use the service properly, a new inputPort
with location local has to be added, specifying that it implements the
SchedulerCallBackInterface interface. The Scheduler service is used
extensively throughout JFN to periodically health-check the system.

• JFN when services embedded by a loader (see Section 3.3.8) desire to
talk to their embedder. All loaders open a local inputPort to receive
operation calls from other services.

2.2.2 The SODEP protocol

As opposed to other supported protocols in Jolie, SODEP [9] has been specif-
ically designed for Jolie, with the aim of providing a simple, safe and efficient
communication protocol. In essence, SODEP encodes in a compact binary
representation all details to accurately describe an operation call, including
information about the types of the arguments provided.

This enables SODEP-talking microservices to exchange data structures con-
taining polymorphic or non-typed values. In JFN, we harnessed this feature to
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avoid expensive type casts which would have been necessary before any func-
tion could access the data received in input. Thanks to SODEP, all typing
information is carried along with the data, allowing end users writing func-
tions in Jolie to avoid any cast, as all input parameters have already been
type-checked by the interpreter before the function operation gets called.

2.2.3 Interfaces

Interfaces are Jolie type definitions which describe what operations are avail-
able on a given port. An example definition found in Listing 2.1 shows the
main fields applicable.

interface ExecutorAPI {
OneWay:
ping(int)

RequestResponse:
hello(string)(string),
sqrt(int)(int)

}

Listing 2.1: A sample Jolie interface, defining both OneWay and RequestResponse
operations.

The interface definition is essentially split in two sections: OneWay and
RequestResponse. The operation definitions found beneath each section must
follow the rules for operations of that kind. A OneWay operation must not have
a return value and the caller should not block waiting for the response. On
the other hand, a RequestResponse operation has both an input and output
type, and the caller must wait for the response of the operation. In the example
shown in Listing 2.1, only native types are provided as request and response
types, but nothing prevents a developer from defining an operation which uses
complex types.

12



2.2 Input ports

As stated in Section 2.2, when an input port specifies one or more interfaces all
the operations defined in such interfaces must be implemented by the service.
This is the same technique used in JFN to force function defined by developers
to all respect a standard signature (see Section 3.5).

2.2.4 Embedding

As previously stated, in Jolie everything is a service. All standard library
utilities are implemented inside services. If a developer wants to access a
standard library functionality, an outputPort for the standard library service
shall be created and pointed at the right location, specifying the appropriate
interface. This approach would quickly get cumbersome and expensive,
requiring several processes to be run on a system as dependencies for a single,
even simple, service.

Instead, Jolie offers the powerful embed instruction. When defining a new ser-
vice, the developer can define a list of services that shall be loaded alongside it,
and embedded into the current runtime (cfr., Java Virtual Machine). A single
interpreter instance can execute multiple services, and they can all commu-
nicate with local locations (see Section 2.2.1). In fact, when using embed, an
outputPort with a local location and the appropriate interface is automati-
cally created to reach the newly embedded service. This not only speeds up
the communication, but it also reduces the burden on developers while allow-
ing refactoring, such as the division of a single service in multiple services,
to be low effort. For example, in the future, a currently embedded service
requires to be deployed separately (i.e., it needs its own dedicated hardware)
an outputPort can be created instead of using embed.

2.2.5 Java service

When a task requires a functionality which is not provided by one of the
standard library’s builtin services, it may be necessary to resort to a third-party
language to implement that feature. Of course, any language which supports
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one of the protocols described in Section 2.1.3 would allow the developers to
communicate with Jolie and implement such a feature in a separate servcie
which can then be called from Jolie.

Another, simpler approach, which does not require running a separate service
and can work with embedding is building a Java Service Such a service is a
java class which extends the jolie.runtime.JavaService class. It can then
be packaged inside a JAR (cfr., Java Archive) and placed in a path where the
Jolie runtime loads in upon startup. Now, every public method on the class
can be access in Jolie, but first, a stub service has to be defined as follows:

interface ExampleInterface {
RequestResponse:
sqrt(int)(int)

}

service Example {
inputPort Input {

location: "local"
interfaces: ExampleInterface

} foreign java {
class: "com.example.ExampleService"

}
}

Where "com.example.ExampleService" is a string containg the Java Canon-
ical Name for the class which extends JavaService.

This approach was used to implement some checksum operations required for
JFN which are, at the time of writing, missing in Jolie’s stanrd library.

2.2.6 Redirection

With the powerful embedding feature (see Section 2.2.4) it is often the case
that an operation from an embedded service is desired to be exposed though

14
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the inputPort of the embedder. In such cases, one could simply create a
“proxy” operation, duplicating all type definitions and implementing it as just
a forward to the embedded service’s. An example of which can be seen in
Listing 2.2.

service Example {
embed Calculator

…

main {
[sqrt(req)(res) {
sqrt@Calculator(req)(res)

}]
}

}

Listing 2.2: Redirection achieved via a proxy operation.

Instead of repeating types and adding many “proxy” operations, a better way
to handle forwarding of operations to other services is via redirections. A redi-
rection allows you create a sub-path on the chosen input port where all requests
are be forwarded to another given service. Take the example in Listing 2.3

service Example {
embed Calculator

inputPort {
location: "local://example"
protocol: sodep
redirects:
Calculator => Calculator

}
}

Listing 2.3: Redirection using the builtin redirects rule on an input port.
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In this example, if a service tryies to reach local://example/!/Calculator
its request will be forwarded to the embedded Calculator service. Note that the
redirection destionation is not limited to embedded services, any outputPort
will do.

This approach is used by the JFN Singleton (see Section 3.3.7) to forward
requests to the embedde function it is serving. This reduces the overhead and
simplifies the code.

2.2.7 Execution Modalities

Each Jolie service must specify its execution modality, which determines its
lifetime and concurrency properties. There are three available execution modal-
ities: three available:

1. single: only one operation call is handled after which the service is shut
down.

2. sequential: only one operation call can be handled at a time. It two
or more concurrent requests are received, all but one have to wait in a
queue until the previous requests have been handled.

3. concurrent: all requests are handled in parallel.

The default execution modality is single, which would have been ideal for a
function service, which is meant to be called only once. Due to a shortcoming
of the language and in order to leave room for future optimizations, JFN func-
tion services must use the concurrent execution modality. A more detailed
explanation of the reasons behind this decision is provided in Section 3.6.

2.2.8 Service Parameters

It is often desirable to provide parameters to a piece of software in order to alter
its behavior. Commonly, this is achieved via configuration files or environment
variables. In Jolie, each service can receive a complex type as a parameter
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input. This can be either provided via command line when launching the
service using the --params flag, or via the embed facility, using the following
syntax:

embed Service(params)

The parameters are type checked by the compiler and the service will refuse
to start if invalid options are provided.

As the Jolie interpreter doesn’t offer a native way of reading parameters from
environment variables, in JFN we built ancillary services, called loaders, with
the purpose of fetching the environment variables, building the parameters
object and then embedding the target service itself with the appropriate pa-
rameters. A more thorough explanation is available in Section 3.3.8.

2.2.9 The parallel operator and the spawn directive

Jolie provides a syntactic operator to perform operation calls in parallel, com-
bining two or more requests into a single blocking instruction. The program
flow is interrupted until all parallel calls have returned. The following syntax
executes op@Service1 in parallel with op@Service2:

op@Service1(req1)(res1) | op@Service2(req2)(res2)

In the case that any of the operation calls runs into an error, an exception is
thrown as usual.

The parallel operator, combined with operation recursion, allows the user to
implement parallel loops. A more elegant solution is provided by the spawn
primitive, which loops an iterator over a range of incremental values. As the
iteration is parallel and Jolie provides a separate session to each execution
branch, collecting the computation results of each iteration would be unfea-
sible. To achieve this, Jolie allows the developer to define a variable shared
between the original session as well as all execution sessions.

spawn(i over 10) in result {
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result[i] = i * 10
}

Listing 2.4: An example of the spawn primitive.

In the example shown in Listing 2.4 all multiples of 10 lower than 100 are
computed in parallel. The results are stored in the shared variable result,
which can be accessed outside the spawn directive to observe the computation
results.

The spawn directive has been used in JFN in the Provisioner service to exe-
cute parallel health-check requests. These requests are executed every second,
so it is vital that they all finish before the next second. Running them in
parallel prevents a single slow executor to block all other ping requests (see
Section 3.3.3).

2.2.10 Dynamic Embedding

As we shown in Section 2.2.4, embedding is a powerful feature which drastically
lowers the burden of splitting microservices, as it allows for a single service to
internally run many other without having to run them separately one by one.
Sometimes, it is desirable to dynamically load a service, only when it’s needed.
Jolie allows the user to do so using the loadEmbeddedService operation on
the Runtime builtin service. This call receives information about the service
to run and loads it. It returns the location at which the new service’s input
port is reachable (an input port with a local location on the embedded service
is used as the target, just like in static embedding).

outputPort Function {
protocol: sodep
interface: Function

}

…
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loadEmbeddedService@Runtime({
filepath = "fn.ol"
type = "jolie"

})(loc)
Function.location = loc
fn@Function(input)(output)

Listing 2.5: An exmaple of dynamic embedding

In the example found in Listing 2.5 the service in file fn.ol is dynamically
embedded and its operation fn is executed. The type of service is provided
alongside the filepath, to allow the embedding of Java services directly (see
Section 2.2.5). Once the service has been embedded it can be stopped via the
callExit@Runtime operation which requires the target service’s location as
an input.

This approach is used in JFN in all executors to dynamically embed the re-
quested function’s service, as well as in all the ancillary loader services (see
Section 3.3.8) to embed the service after some computation has been done,
which is not possible with the syntactic embed primitive.

2.3 Cloud and Serverless
In this section, we present the cloud and serverless paradigms, exploring the
use cases and the engineering problems which led to the development of these
solutions. Later on, we describe some software which was developed specifically
for these environments and that is vital to the inner workings of JFN.

2.3.1 Cloud computing

Cloud computing is a consolidated approach to resource allocation at the dat-
acenter, allowing multiple entities to share computational, storage and, net-
working capabilities. Access to a pool of resources is given on-premises, allow-
ing companies to easily and quickly scale based on their needs, paying only for
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the hardware they actually use. This not only reduces the upfront investment
that is usually required to purchase the necessary hardware, but also lowers
the amount of technical knowledge needed to manage such complex systems,
as more and more work is offloaded to the service provider. That, of course,
rasises a question of data security, which shall always be taken into account,
but is outside the scope of this dissertation.

The main benefits of cloud computing can be summed up as follows:

1. Ease of scalability: resources can be allocated on demand and are man-
aged by a third party.

2. Resiliance and Redundancy: cloud providers offer better safety guaran-
tees for your data, an aspect which is often neglected in local deploy-
ments.

3. Convenient pricing: companies do not need to pay for expensive hard-
ware to cover the peak resource needs, they can just pay for what they
use.

2.3.2 The Serverless paradigm

Serverles computing, also known as Function as a Service or FaaS for short, is
a more radical take on the same pricinples of the cloud. While Cloud abstracts
away the hardware and gives access to the machines with the desired resources,
serverless abstracts away the machines altogether and puts emphasis on the
actual business logic. A Function as a Service platform has the sole purpose of
executing code provided by the user. Customers are billed based on the time
and resources used by the execution of their logic.

Here is a brief list of the benefits of FaaS. While some points are similar to the
cloud’s, serverless often offers improvements:

1. Ultimate scalability: having stripped a service to its atom (i.e., the func-
tions or operations it’s made up of), the provider is able to handle the
dynamic scaling based on demand with the finest detail.
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2. Ease of use: developers don’t have to worry about how their software is
deployed and how the machines running the software are interconnected.
They only have to implement the business logic, and the provider will
take care of making the functions available.

While serverless solves many problems, it does also have a few downsides for
which solutions are actively being researched. Here a few examples of problems
which are not yet optimized or completely ill-suited for serverless computing:

1. The ephemeral nature of the function execution doesn’t pair well with
classical database systems, where a connection is expected to be long-
lived and serve hundreds or thousands of queries before closing. While
databases are accessible from serverless functions, the quick opening and
closing of connections for each function invocation puts a higher strain
on common databases.

2. Functions are expected to be stateless, meaning no state within the func-
tion should be preserved from one invocation to another. This is nec-
essary for the provider to change the machine computing the function
when need. This implies that any storage across calls relies on external
services, which makes realtime, long-lived communications unpractical.

2.3.3 Docker

Many UNIX operating systems offer the ability to change what an individual
process sees by altering the result of the system calls. These features are called
Jails in BSD kernels and Namespaces in the Linux kernel. Via namespaces a
processes can be secluded in a virtual filesystem, network and its access to
physical resources, such as CPU time and memory. This technique of partial
virtualization has been named containerization. At a first glance, containers
can appear identical to virtual machines, but it must be noted that a process
in a namespace is still communicating with the same kernel as the rest of the
system, therefore any vulnerability in the kernel would imply a compromise of
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the whole system. Because of this, virtualization offers a safer encapsulation,
at the expense of some performance.

Containers are now part of the OCI standard, which describes other aspects
besides how processes namespaces should be created:

1. Filesystem isolation: to isolate containers from the host system at the
filesystem level, all processes are chrooted in their own root filesystem.
To avoid high disk usage, multiple containers based on the same distri-
bution can share the common parts of their filesystems via a overlays3.

2. Network isolation: each container can be run in several network modes,
among which we have:

a) host: the network is shared with the host’s, so no virtualization is
happening.

b) bridge: each container appears as a new host in a virtual network,
where all containers can talk to each other. Optionally, a port from
a container can be mapped to an host’s.

Furthermore, they can be attached to other virtual networks in bridge
mode, to allow limit the connectivity between containers.

Docker is an ubiquitous container runtime, implementing the OCI specifica-
tion. It has been chosen as the runtime for JFN because of its support in Jolie
(see Section 2.3.5) and its builtin clustering features. While not as flexible as
Kubernetes [12], it was the best trade-off between performance and complexity.

Docker and other container technologies are an instrumental part in the cloud
and serverless paradigm. Most serverless runtimes use Docker as a lightweight
isolation layer to run functions without acess to the hosts’s system. Usually,
either one function or multiple functions of the same owner are executed in
a single container, which can be re-used for several invocations. Containers
have had an even bigger impact in the cloud, where they are the primary

3Either overlayfs (see OverlayFS on Wikipedia) or BTRFS or ZFS can be used to achieve
union mounting.
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way of software deployment, thanks to their ease of use, reproducibility and
scalability.

2.3.4 Docker Compose

Besides the command line interface and the Unix socket, used for programmatic
control, Docker offers a third method of creating and managing container:
Compose. With Compose we can specify a list of required containers in a file
which uses a subset of yaml for its syntax. For each container, its mapped
ports, volumes and the networks to which it belongs can be specified. Once a
docker-compose.yaml file has been written, we can use Compose’s command
line utility to create, manage and do bulk actions on the specified containers.
We use Compose to locally develop JFN, as described in Section 3.4.

Furthermore, Docker Swarm, Docker’s clustering feature uses a superset of the
Compose syntax to define the number of desired container replicas and their
distribution across the cluster. This means that a slightly modified version of
what we present in Section 3.4 can be deployed on a Swarm cluster, obtaining
High Availability and enhanced the load balancing with little effort 4.

2.3.5 Jocker

Jocker [8] is a microservice which exposes a Jolie-friendly interface for Docker’s
daemon UNIX socket, which is used to control the containers, networks and
volumes on the system. Through this Jolie service, JFN can orchestrate the
scaling of the infrastructure.

As the Docker daemon uses an HTTP API over the local socket, the Jocker
service is quite simple: it exposes an input port where it accepts a list of
operations, with the names matching those offered by the Docker’s API. Then,
for each operation some glue and data mapping code is used, in order to make

4This only applies to the Provisioner, Function Catalog and Gateway. The Executors are
scaled by the Provisioner. You can read more on how such scaling support would be
implemented in Section 4.1 and Section 4.2
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match the request and response types match with those required by docker.
Then, the communication with the daemon happens on an output port which
has also been entirely typed in Jolie.
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This chapter covers the specifics of JFN’s implementation. We thoroughly
explain the architecture, with examples and graphics where needed. By the
end, the reader should be aware of the system’s guarantees for scalability and
reliability as well as, more broadly, how to invoke a function and how data
flows in the system. Finally we present a simple development to test JFN’s
capabilities alonside some notes for production deployments.

3.1 High level overview

The software shall process incoming requests and compute the function’s result
based on the provided input data. The name of the function to be invoked and
the optional input data shall be provided in the request body by the client.
The communication can be held over HTTP or SODEP (see Section 2.2.2) and
all the data is exchanged within one single request, regardless of the chosen
protocol.

An invoke request is sent to the Gateway, who is responsible to route it to
a chosen Executor, which then executes the function. After termination the
Executor sends the result to the Gateway, and the latter forwards it to the
client. Aside from the two main services outlined above, a function catalog
and a Provisioner service respectively stores the functions’ source code and
balances and scales, in independent steps, the system as the load varies.

Each step in the function invoke process has been divided so that many in-
stances of each service can be deployed, allowing JFN to scale both Gateways
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and Executors. The Provisioner, which ties these services together, is currently
the only non-scalable component of the architecture. It can be distributed, pro-
vided some rework is done to move its logic state in a decentralized store, as
described in Section 4.2.

Overall, the runtime is made up of:

• The Function Catalog, which is responsible for the storage and serving
of the function’s code.

• One or more Gateways, which receive the incoming invoke requests and
route them to the best Executor. The load-balancing choice is made by
the Provisioner.

• The Provisioner is the component tasked to load balance the system and
schedule the start and termination of new Executors, as the load shifts.

• One or more Executors, which have the task of running a function with
the provided data.

3.2 Example function call

We show a call for a function 𝑓 with input 𝑥 in the sequence diagram found
in Figure 3.1.

Client Gateway Executor 𝑓

invoke 𝑓(𝑥)
invoke 𝑓(𝑥)

compute on 𝑥
𝑓(𝑥)

result of 𝑓(𝑥)
result of 𝑓(𝑥)

Figure 3.1: Abstract sequence diagram of a function call.
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In the Figure, the client starts the process by requesting a function execution
to the Gateway. The Gateway has mainly one purpose: act as a single point of
communication for the whole system. This allows architectural changes, such
as the addition or removal of Executors which happens transparently to the
client. This design allows to, for example change the underlying implementa-
tion of the load balancing or the interface of the Executor, without requiring
changes for the end user.

The Gateway then forwards to the Executor. The Executor’s task is to run
the function and relay back the result. The details of how this is achieved are
discussed later but, intuitively, the executor has access to the function’s source
code and can interpret it. This way, calling the function with the input data
produces the desired result. Once the call has been executed successfully the
result is returned unchanged to the client.

3.3 Detailed description

The JFN architecture refines what we have outlined in the previous section. All
the load balancing decisions are taken by a separate service called Provisioner,
whose job is to start and stop the Executors based on the load of the whole
system, as well as trying to manage the load by dynamically assigning the
routing of function calls to the various Executors.
Even the Executors themselves can be implemented in different ways with
various trade-offs in terms of performance and flexibility. JFN currently has
two implementations available:

1. a Runner, meant to be a generic runtime capable of running all supported
functions (see Section 3.5). This high level of flexibility comes at the cost
of performance, which is slowed down by the time needed to fetch the
function, dynamically load it and then unload it. While the current
implementation can be improved, lowering the flexibility can provide
further performance gains which are unachievable otherwise.
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2. a Singleton, an Executor specialized in computing a single function, with
little to no performance penalty. The function is loaded only once during
the runtime’s startup, and all invocations are directly forwarded to the
function in order to remove all the overhead. The downside is that there
is no flexibility as just one function can be executed by this Executor.

The two Executor types come into play when the Provisioner has to do load
balancing: a function begin very called “often” would get its dedicated Single-
ton to cope with the high demand load. The definition of “often” is voluntarily
lax: this is an area in which research is still to be done, and improvements could
easily lead to big leaps in performance. A few example policies to promote a
function and grant it its dedicated Singleton could be:

• when a certain threshold of calls over time frame (i.e., calls per second)
is reached.

• when the calls to a function are using up too many resources (i.e., more
than 20% of the CPU time).

3.3.1 The function catalog

The function catalog is the microservice responsible for providing the func-
tions’ code to the various Executors. The service has two output ports (see
Section 2.1.3), one for internal use and one to allow users to access the meth-
ods required for function management.
On the public-facing port, the user is able to add a function to the catalog by
providing the name and code inside an object with the following structure:

type FunctionCatalogPutRequest {
name: string
code: string

}

Instead, on the private output port, two methods are available:
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• get: which is invoked by the Executors to obtain the called function’s
code;

• checksum: it returns the SHA256 hash of the required function; it is
useful for cache (in)validation at the Executor level.

Following is a sequence diagram of two sample requests that cover the entirety
of the function catalog’s api surface.

Client Executor Function Catalog

put("add", 𝑥 + 1)
OK
hash("add")
ec28e47d

get("add")
𝑥 + 1

Figure 3.2: Two sample usages of the function catalog.

In Figure 3.2, the user inserts a function named “add” in the catalog, using
the put operation. The source code for the function, here represented in an
abstract format, is provided alongside the name. An Executor can then query
the function catalog for the function’s hash and code. The hash shall always
preceed the get call, but the latter is not always mandatory: if the Executor
has the code of the function with the matching hash still in cache, it is not
required to re-fetch the code. Alongside saving some bandwidth, this has
another added benefit for some Executors, as explained in Section 3.3.6.

The current implementation of the function catalog stores all the functions’
code in a folder on the filesystem, defined by the environment variable FUNC-
TION_CATALOG_PATH. The storage mechanism can be entirely swapped out for
more reliable options, as described in Section 4.1, furthermore allowing the
service to become distributable.
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3.3.2 The Gateway

The Gateway is the user-facing microservice to which invocation requests are
sent. When a request is received, it firstly consults the privisioner to know
where the call shall be redirected. Then, it forwards the call, modifying it
slightly based on the type of the Executor. Finally, the result is returned back
to the user once the computation finished.

The key job of the Gateway, besides forwarding, is error-handling. No internal
errors shall be propagated back to the user. Rather, they shall be logged
and, when possible, a meaningful but not overly-detailed explanation shall be
communicated to the caller.

In Figure 3.3 we can see an example of a function call being forwarded by the
Gateway to an Executor.

Client Gateway Provisioner Executor #𝑛

invoke 𝑓(𝑥)
where to run 𝑓?

executor #𝑛
invoke 𝑓(𝑥)

result of 𝑓(𝑥)
result of 𝑓(𝑥)

Figure 3.3: Sequence diagram of a Gateway forwarding a function call.

The Gateway’s output port offers only one method, defined by the following
signature:

op(GatewayRequest)(GatewayResponse)

type GatewayRequest {
fn: string
data?: undefined

}

type GatewayResponse {
error: bool
data?: undefined

}
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Calling op invokes the function specified in the fn field with the data provided
in the leaf data. If an error has occurred, the error field is set to true, and
data is a string describing the issue. Otherwise, error is false and the data
field carries the output of the computation.

3.3.3 The Provisioner

The Provisioner is the main microservice that ties all the infrastructure to-
gether. Its main job is to make decisions on load-balancing while keeping track
of the currently running Executors. Because of its function, it has to be aware
of each and every function call that goes through the system, and has to stay
periodically in contact with all the Executors to check their health. This is
necessary, as sending a function call to an unavailable Executor might mean
that the call never gets back to the Gateway, leaving a client hanging until
timeout.

Provisioner Executor

ping
pong

Remove Executor
FailureFailure network down, power outage

HeartbeatHeartbeat repeat every second

Figure 3.4: Heartbeat protocol between the Provisioner and an Executor.

When an Executor comes online, it registers with the Provisioner to notify
the system of its availability. In Figure 3.4, we depict the lifecycle of the
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heartbeat routine, which is executed every second via the Jolie’s standard
library Scheduler service. A ping request is sent to each registered Executor in
parallel (see Section 2.2.9), and any error that may occur, which prevents the
Executor from responding, causes its removal from the list. After the removal,
the Provisioner does not send any more pings to the Executor, which will quit
when no message is received for more than 10 seconds.

Besides the heartbeat protocol, the Provisioner exposes two methods for use
within the backend aprt of the JFN architecture:

• register: is called by all Executors at startup to register to the cluster.
It is the handshake required to join the platform and start receiving
workload. The Executor has to provide all the necessary information
about itself and how to be reached. For example, it has to provide two
locations (see Section 2.2.1), one where pings are meant to be received
and one where invocation calls shall be sent. After a service has been
registered, it is regularly pinged every second as outlined earlier.

• executor: returns the best Executor to run the provided function. This
is the method that does the actual load-balancing. It is currently imple-
mented as a simple round-robin scheduling algorithm [14], giving priority
to the Singleton Executors when available.

As stated before, besides health checking, the Provisioner handles the load
balancing. Currently, we are able to scale up or down Executors running on
a single Docker node. In the future, we could use Docker Swarm (see Sec-
tion 3.3.9) or Kubernetes [12], to start and stop Executors on other nodes,
allowing the system to handle high demands which go beyond the handling
capabilities of a single physical machine. Furthermore, the distributed archi-
tecture of JFN strengthens the reliability of the system, allowing some services
(i.e., Executors) to go down without impacting the overall uptime.

This flexibility is possible thanks to a service embedded inside the Provisioner,
called the spawner. As the name suggests, its purpose is to create, start, and
stop new containers on the Docker daemon when required. This interaction
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is made possible by Jocker (see Section 2.3.5), which exposes a Jolie-friendly
version of the Docker API. The spawner service provides two methods on its
single internal output port:

• spwn: this method is used to create and launch a new Executor container
using the provided image (to support multiple Executor kinds). The job
of this task is to construct the container according to the platform’s
requirements. These include all the environment variables required to
enable cross-communication between the new Executor and the Provi-
sioner are set, the container is attached to the provided docker network,
and its hostname is appropriately set so that the Provisioner can con-
tact the new instance using Docker’s internal DNS resolution. All the
relevant data required to construct such an object is provided in the
method’s request with the following shape:

type SpwnRequest {
name: string // the container name and hostname
image: string // the container's image

provisionerLocation: string // the Provisioner's
location in the docker network

functionCatalogLocation: string // same for the
function catalog

function?: string // (optional: Singleton) the function
to load

…
}

The result of this method is always a string containing the identifier of
the newly created docker container. This is used by the Provisioner to
stop the container, as described in the following point.

• del: deletes a docker container based on the supplied identifier. Before
the deletion, the container has to be stopped, meaning the Jolie process
running inside of it has to quit. To gracefully terminate any functions
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the Executor may still be computing, the stop operation (see Item 2)
is invoked and a successful response is awaited. Once the Executor has
been stopped the container can be safely removed without any service
disruption.

3.3.4 Scaling

The Provisioner periodically decides when to increase or lower the available
Executors. Before describing the current implementation, note that this is one
of the areas where most future improvements can take place. The current
approach was chosen as a good trade-off between simplicity and performance,
and is therefore not the ideal solution. This is a general problem of serverless
scheduling, to which no one-size-fits-all solution exists, and research is still
being carried out on other serverless platforms, such as OpenWhisk, to assess
what approaches work best in which circumstances. Ideas that could be applied
to JFN to further improve performance are described in Section 4.5. We can
achieve even further improvements if we can specify an optimal via appropriate
DSLs like APP [2], or when we take into account topological constraints [1].

In the current implementation, the pressure exerted by function calls on the
system is checked every minute, after which the appropriate measures to scale
the number of Executors are taken. The time frame of one minute has been
chosen to strike a good balance between the desired swift response to load
changes and the expense of repeatedly starting and stopping Executors. Every
call received in the past minute is traced, in order to acquire the data necessary
for the scaling algorithm:

1. number of calls handled by the Runners: as the load is spread evenly
across all Runners, only the total number of calls sent to them is neces-
sary to compute how many calls each Runner has been handling in the
past minute.
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2. number of calls by function: a counter is kept for every called function, so
that the pressure on the system can be measured on a per-function basis.
Later, this shall be used to compute the number of required Singletons.

Start

Compute the needed
amount of runners

Too few
runners?

Spawn some
new runners

Too many
runners?

Kill some
runners

Stop

no

yes

no

yes

Figure 3.5: Flowchart of the scaling logic employed by the Provisioner

The flowchart found in Figure 3.5 shows the logic behind the scaling routine,
focusing on the example of scaling Runners. The same flow is followed when
accounting for the scaling of Singletons. In detail, the routine follows the
following steps:

1. Compute the number of expected Runners and Singletons: the Singletons
are computed first, based on the number of calls for each function. If
a function is called enough times to be deemed worthy of promotion
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and it is decided that it shall have one or more dedicated Singletons,
the number of calls that shall later be handled by these Singletons is
subtracted from the total calls count. It is important to account for the
load that shall be bore by the Singletons, in order not to overshoot the
number of necessary Runners.

2. Kill or spawn Runners and Singletons as needed: the difference between
the amount of expected Executors and the amount of currently available
instances is filled by either spawning new instances or stopping running
ones.

3. Clear the collected data: so the collection of data for the next time slice
can begin.

3.3.5 The common Executor interface

All the Executors (currently, the Runner and the Singleton) have to imple-
ment the following interface (see Listing 3.1) on a public port, which has to be
accessible by the Provisioner. This communication port is used by the Pro-
visioner to test the Executor’s health (via periodic pings , see Section 3.3.3)
and eventually to send a signal when the service shall be stopped. When an
Executor first starts up, it registers itself to the Provisioner, providing two
locations:

• commsLocation: the location where the ExecutorAPI interface is im-
plemented. This is used by the Provisioner to manage the Executor.

• invokeLocation: the location where either a run method is available or
where the function’s fn method is directly reachable, in order to request
function invocations.

interface ExecutorAPI {
RequestResponse:
ping(int)(int),
stop(void)(void)
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}

Listing 3.1: The Executor interface.

We describe what is the behaviour for each method:

1. ping: shall take a number in input and relay it back on the output. It
exists just as a dummy operation for the Provisioner to call in order to
verify that an appropriate communication channel exists with the Ex-
ecutor. It shall receive a call each second from the Provisioner, and the
service shall stop when no call is received for more than 10 seconds. No
side effects shall be added, besides what’s needed to handle the afore-
mentioned behavior, as this method can be called at any time, even more
than once per second, when multiple Provisioners support is added in
the future.

2. stop: is called by the Provisioner before the Docker container run-
ning the Executor is stopped and removed. This allows the Executor
to gracefully terminate, waiting for the currently executing functions to
terminate. This method may also be called by the Executor itself when
no ping is being received (see Item 1), in order to gracefully shutdown.

The implementation for these methods is identical across all the available Ex-
ecutors, with slight variations only found in the code to stop gracefully. Note
that, since all services are started by an ancillary Loader (see Section 3.3.8), us-
ing the language builtin instruction exit would not actually close the process,
which would remain hanging. Therefore, the stop signal is always forwarded
to the Loader’s stop method via a named local socket connection (see Sec-
tion 2.2.1).

3.3.6 The Runner Executor

The Runner is one of the two kinds of Executors available for the JFN platform.
It is an universal Executor, in that it can run any function. It uses dynamic
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embedding (see Section 2.2.10) to load JFN functions as services that receive
a single function call and then get stopped.

The Runner exposes an internal API that allows the Gateway to request func-
tion invocations. The only method available is run which gets called with an
input akin to the one that clients use to request a function invocation. The
Runner then follows the following procedure:

1. Fetches the checksum of the required function from the catalog (see Sec-
tion 3.3.1). The Runner uses the checksum to see if a file for a function
with the given name exists on its filesystem. If the code is already avail-
able and the checksums match, move on to step 3.

2. Obtain the code of the invoked function from the catalog, saving it to the
disk alongside its checksum. Currently, JFN supports only a single file
per function, but, in the future, more complex code structures may be
supported, which could make this step more involved (see Section 4.4).

3. Use the loadEmbeddedService@Runtime method to start an embedded
service based on the code of the invoked function. Currently, functions
are expected to be plain-text code using the Jolie syntax, therefore the
type parameter provided to the method is set to "jolie". In the fu-
ture, java services (see Section 2.2.5) could also be used as described in
Section 4.4.

4. Invoke the function with the provided payload as the data field.

5. Stop the function by calling callExit@Runtime, providing the location
for the embedded function service.

Throughout the process, error handling has been thoughtfully placed so that
meaningful errors can be reported to the calling client. Once the sequence has
been fully completed, or an error has been thrown, either a successful or failed
response is returned to the Gateway which will then relay it back to the caller.

The ideal execution modality (see Section 2.2.7) for functions spun up by the
Runner would be single. As described in Section 3.6, the execution mode for
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all functions has been fixed to concurrent; therefore it is the Runner’s job
to stop the embedded service once the call has completed. This requirement
comes from a limitation of the service parameters, which cannot specify the
execution mode (see Section 2.2.8). On the other hand, this design choice
can be used to further enhance the performance of the Runner by waiting a
cooldown period before stopping each embedded service. This tweak would
allow for calls arriving in quick succession to reuse the same embedded ser-
vice, improving response times and lowering the resource usage. However,
optimization have to be carefully considered; we address this issue, discussing
all the benefits and disadvantages in Section 4.3.

Gateway Runner Runtime Catalog 𝑓

invoke 𝑓(𝑥) on 1
hash(𝑓)
092fcfbb
get(𝑓)
𝑥 + 1

Embed 𝑓
local://..

𝑓(1)
2

Stop 𝑓

2

Figure 3.6: Sequence diagram of a function invocation, with a detailed Runner in-
teraction.

We repeat in Figure 3.6 the invocation of a function 𝑓 which returns the input
number incremented by 1. In this scenario, the function is not cached on the
Runner’s filesystem and the code has to be requested to the catalog. The
figure also details the calls to Jolie’s builtin Runtime service, which enables
the embedding and stopping of the function’s service. When subsequent calls
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to the same function reach the runners it finds the former’s source code cached,
skipping the get request to the Catalog.

3.3.7 The Singleton Executor

The Singleton is the second kind of Executor available to the JFN platform.
It is a highly specialized runtime, allowing the execution of just one single
function, albeit at the best achievable performance. Instead of dynamically
fetching and embedding the required function upon request, a Singleton keeps
just one always available, drastically lowering the response times. Having a
single function loaded also means that, provided with the same hardware, a
Singleton can handle more calls as there is less load on both the CPU and
memory.

The whole logic of the service is contained inside the init routine, as this Ex-
ecutor does not implement any run function. Instead, invocations are directly
sent to the embedded function using the language’s redirection mechanism (see
Section 2.2.6). The init routine has two steps:

1. Fetch the code of the required function from the catalog. As stated in
the analogous step of the Runner, the current, rather simple, logic may
be updated in order to support more features (see Item 2). For instance,
we could extract the common code in an auxiliary service, providing a
fetchCode(string)(string) method, which would take the name of
the function as an input, fetch the code or use a cached version when
appropriate, and finally return the path of the file to embed.

2. Embed the service and set the location of the forwarded output port to
the resulting location.

Once the service is up and running, the requested function shall be available
on the fn operation at the invocation location. The invoke location shall al-
ways include a redirection named Fn which sends all requests to the embedded
function.
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3.3.8 The Loader ancillary services

Each of the aforementioned services has been packaged in a Docker image, in
order to be executed on a scalable cluster infrasture. When using containers,
the standard way of providing a small set of configuration options to the pack-
aged software are environment variables. Jolie’s runtime service provides the
getenv method, which can read variables from the environment. The Loader
harnesses this function to build the parameters (see Section 2.2.8) required for
each service to start. The service is then dynamically embedded during the
init routine of the Loader.

This approach has a number of benefits, including:

• Allowing the specification of input port locations, which would not have
been possible were the environment variables read from a single service.
In Jolie, input ports are bound before the init procedure is called,
therefore in order to parameterize their location, service parameters are
the only available option.

• Keeping the service implementation clean, using the idiomatic service
parameters. All services can be migrated to a new managing platform,
like the proprietary Italiana Software’s Jung, without having to change
the actual business logic as it merely involves adapting the Loader would
suffice.

• The environment variables have to abide the type of the service pa-
rameter structure, lowering the amount of bugs possibly introduced by
disregarding these requirements.

Having an ancillary service, namely the Loader, embed the actual service means
that the embedded can no longer call exit to quit its execution. Doing that
would leave the parent Loader idle without ever closing. To overcome this
shortcoming, each Loader has to implement a simple interface consisting of
a single operation named stop, which, when called, runs exit on the par-
ent, properly ending the execution. The ancillary Loader is accessible to the
children embedded service via a local named socket (see Section 2.2.1).
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3.3.9 The docker integration

For the same reasons outlined in Section 3.3.8, each service has been packaged
in a Docker container image, together with its ancillay Loader. All Docker
operations are mediated by Jocker (see Section 2.3.5), which implements Jolie
operations for all the API methods provided by the Docker daemon. Jocker
itself is run in yet another container, and it requires access to the host’s Docker
control socket in order to perform its tasks. All these containers shall be
attached to the same Dokcer network, mainly for two reasons:

• This way containers are able to communicate via symbolic names, pro-
vided by Docker’s builtin DNS. This feature is used heavily. For ex-
ample, all new Runners and Singletons created by the Spawner (see
Section 3.3.3) advertise themselves to the Provisioner using their docker
container name as the hostname. This feature also empowers all com-
munications between the other components in the system. Having a
common DNS server allows all the services to share the same location
configuration variables (i.e., the Singleton and Runner receive the same
configuration value for FUNCTION_CATALOG_LOCATION).

• Communication is inherently safe as the network is often local, and can
use encryption when messages have to be sent from one physical host to
another via a non-secure channel (i.e., using Docker’s overlay network
driver). Furthermore, joining this network is not a matter of plugging
a cable somewhere. It requires access to the Docker daemon, meaning
elevated privileges on the host machine are required.

Another positive side-effect of using a Docker network is that all containers are
protected by a firewall by default, so no ports are mistakenly left open, causing
security risks. Of all the containers on the network, the only publicly-exposed
port shall be the Gateway’s input, where clients will send function invocation
requests.
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Figure 3.7: The whole JFN architecture inside a single Docker node. This example
shows two function calls: one computed as a function 𝑎(𝑝), one redirected
to its microservice 𝑗(𝑝).

The example shown in Figure 3.7 shows all the JFN components deployed in
containers on a single Docker host. The clients send function calls to the Gate-
way; for each function call, the Gateway asks the Provisioner which Executor
shall handle the request. In this example, 𝑎(𝑝) is routed to the Runner 𝑟1,
while 𝑗(𝑝) is sent to its dedicated Singleton 𝑗1. All of JFN’s services are able
to communicate thanks to a Docker network. Furthermore, the Provisioner
can increase or decrease the amount of Runners and Singletons on the same
Docker node based on demand, as described in Section 3.3.4.

In the future, Executors could be distributed across multiple Docker nodes
(i.e., physical machines). This would require support for either Docker Swarm
or Kubernetes in the Spawner.
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In order to configure JFN’s containers, the appropriate environment variables
must be set for each service, according to the data in Table 3.1 and in the
bullet list thereafter.

Variable Type Services

FUNCTION_CATALOG_LOCATION string
Function Catalog, Provisioner,

Runner, Singleton

PROVISIONER_LOCATION string
Provisioner, Gateway,

Runner, Singleton
GATEWAY_LOCATION string Gateway
RUNNER_LOCATION string Runner

SINGLETON_LOCATION string Singleton
ADVERTISE_LOCATION string Provisioner, Runner, Singleton

MIN_RUNNERS unsigned int Singleton
CALLS_PER_RUNNER unsigned int Provisioner

CALLS_FOR_PROMOTION unsigned int Provisioner
CALLS_PER_SINGLETON unsigned int Provisioner

DOCKER_NETWORK unsigned int Provisioner
VERBOSE bool All
DEBUG bool All

Table 3.1: List of environment variables applicable to the Docker images.

Following is a brief description of the usage for each environment variable,
based on the service they’re being applied to:

• FUNCTION_CATALOG_LOCATION specifies the location where the catalog
shall be reachable. It is used by Executors to send calls to the service,
or by the Function Catalog itself to set its input port location.

• PROVISIONER_LOCATION specifies the location where the Provisioner
shall be reachable. It is used by all Executors, along with the Gate-
way, to send calls to the service, whereas the Provisioner itself uses the
value to set its input port location.
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• GATEWAY_LOCATION, RUNNER_LOCATION and SINGLETON_LOCATION are
provided to the services themselves in order to set their input port loca-
tion.

• ADVERTISE_LOCATION is the location which all Executors send to the
Provisioner upon registration. It is the publicly accessible counterpart to
the RUNNER_LOCATION, SINGLETON_LOCATION and PROVISIONER_LOCATION
variables.

• CALLS_PER_RUNNER, CALLS_FOR_PROMOTION and CALLS_PER_SINGLETON
define when and how the scaling should take place. See how they influ-
ence the amount of running Executors in Section 3.3.4.

• DOCKER_NETWORK is provided to the Provisioner in order to create new
containers for the Executors in the appropriate Docker network so that
container can reach one another.

• VERBOSE and DEBUG control the logging output for each service.

3.4 Deployment

Deploying the JFN architecture requires a Docker daemon to run the various
containers providing all the required Jolie services. For a production envi-
ronment, a highly available cluster connected via Docker Swarm, similar to
the example of Figure 3.7, is recommended. To test or develop JFN, a single
Docker daemon running locally machine will suffice.
Simplifying the workflow even further, we show the usage of a simple docker-
compose.yaml (see Section 2.3.4) file with the following sections:
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networks:
jfn:
name: jfn

In Section 3.3.9 we explained why all
service containers must be connected
to the same Docker network. The fol-
lowing lines instruct Docker Compose
to create the necessary network infras-
tructure. The jfn network is created
using the default driver, but it is im-
portant that its name is fixed, as it will
be used by the Provisioner service.

services:
provisioner:
image: jfn/provisioner
environment:
ADVERTISE_LOCATION: "socket://

provisioner:8001"
PROVISIONER_LOCATION: "socket

://0.0.0.0:8001"
FUNCTION_CATALOG_LOCATION: "

socket://catalog:8002"
DOCKER_NETWORK: "jfn"
VERBOSE: true
DEBUG: false
MIN_RUNNERS: 1
CALLS_PER_RUNNER: 2
CALLS_FOR_PROMOTION: 3
CALLS_PER_SINGLETON: 12

depends_on:
- jocker

networks:
- jfn

The Provisioner container be-
longs to the same network as
all other services, and has a de-
pendency on the Jocker con-
tainer, which it uses to scale
the infrastructure. The AD-
VERTISE_LOCATION variable is
set to its public address on
the docker network, in order
for other containers to reach
it. The last variables define its
scaling behaviour, as explained
in Section 3.3.4.
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jocker:
image: jolielang/jocker
volumes:
- /var/run:/var/run

ulimits:
nofile:
soft: 65536
hard: 65536

networks:
- jfn

A Jocker container is neces-
sary for JFN to talk with
the underlying Docker dae-
mon. This container needs ac-
cess to Docker’s communica-
tion socket, hence the folder
bind, found under volumes.

gateway:
image: jfn/gateway
ports:
- 8000:8000

environment:
GATEWAY_LOCATION: "socket

://0.0.0.0:8000"
PROVISIONER_LOCATION: "socket://

provisioner:8001"
VERBOSE: false

depends_on:
- provisioner

networks:
- jfn

The Gateway is the final service
which makes the infrastructure
accessible to clients. It is, as
all other containers, inside the
jfn Docker network, but it also
maps its port (8000 in the pro-
vided snippet) to the hosts’ re-
spective. This is necessary for
clients to reach the Gateway
securely. The other option,
that is, having all clients inside
the jfn Docker network, would
pose a serious security risk.
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catalog:
image: jfn/function_catalog
environment:
FUNCTION_CATALOG_LOCATION: "

socket://0.0.0.0:8002"
VERBOSE: true

volumes:
- ./path/to/functions:/app/

functions
networks:
- jfn

The Function Catalog is one
of the simplest services to con-
figure, requiring a single envi-
ronment variable to specify its
listening address. Note that
either a directory on the lo-
cal system or a Docker vol-
ume must be mounted mounted
in /app/functions. This is
where the Catalog searches for
the available functions. For ex-
ample, putting the source code
for a valid Jolie service (see Sec-
tion 3.5) in /app/function-
s/hello.ol makes the hello
function available.

Creating a docker-compose.yaml file out of all the previous snippets yields
a working environment where a user can locally test the JFN infrastructure
and deploy functions for it. When developing JFN, images can be built from
a number of local Dockerfile files, so that we can quickly test changes in an
environment akin the one found in production.

3.5 The Function interface
All functions deployed on JFN must follow the shared function interface, in
order to be properly called by an Executor and receive input data accordingly.

A function is a Jolie service which offers an inputPort without a defined lo-
cation. This input port must implement the Function interface, provided in
Listing 3.2:

type FunctionRequest { data?: undefined }
type FunctionResponse { data?: undefined }
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interface Function {
RequestResponse:
fn(FunctionRequest)(FunctionResponse)

}

Listing 3.2: The interface to implement a Jolie service as a JFN function.

Note that due to the type of FunctionRequest, the data field’s arity cannot
be changed. If your function takes an array as an input, you must specify it
as a child field of data (see Section 3.7 for an example).

3.6 The Execution Mode

In a classical serverless deployment, functions are stateless and one-shot. They
get loaded, executed once and then unloaded. As explained in Section 2.2.7,
in Jolie each service must specify an execution mode, so we had to decide an
execution mode that all functions must follow.
Intuitively, a function service should use the single execution mode. In JFN,
we instead decided to force the execution mode as concurrent for all our
functions, for a number of reasons:

1. First and foremost, since any function may be executed as a microservice
in a Singleton, we would have had to force the execution mode to con-
current. Since the execution mode cannot be configured via Jolie service
prameters (see Section 2.2.8), JFN would have to modify the function’s
source code.

2. By using the concurrent execution mode, the service associated to a
function remains active even after it has been called once, which enables
further optimizations, such as the one proposed in Section 4.3.
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3.7 An Example of a service conversion

In this section we provide an example of how we can convert a monolithic Jolie
service into a set of functions, which can be executed on the JFN platform (that
is, they will implement the interface outlined in Section 3.5).
We convert this example service which implements a sort and merge operation
from the merge sort algorithm. The actual implementation is not relevant, but
we show sort’s source code as it is the most affected by the migration.

The monolithic service we want to convert implements the following interface:

type Array {
data[0,*]: undefined
start: int
end: int

}
interface MergeSort {

RequestResponse:
sort(Array)(Array),
merge(Array)(Array)

}

Listing 3.3: The monolithic merge sort service’s main interface.

This service uses a combination of an input and output port to call itself re-
cursively over a local connection. In ?? we show the necessary port definitions
and the implementation of the sort operation.

service Sorter {
…

outputPort Self {
interfaces: MergeSort

}

inputPort Self {
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location: "local"
interfaces: MergeSort

}

main {
…

[sort(array)(sorted){
mid = (array.end - array.start) / 2
sort@Self({ data << array.data, start = data.start, end

= mid })(array.data)
sort@Self({ data << array.data, start = mid+1, end = end

})(array.data)
merge@Self(array)(sorted)

}]
}

}

Listing 3.4: Merge sort’s ports and sort operation.

In order to transform the Sorter service into functions for the JFN platform,
we are going to follow these generic steps, which can be applied to any con-
version:

1. Identify all operations which receive “many” calls. In this example, both
sort and merge receive “many” calls for large enough inputs.

2. Create a JFN function, as described in Section 3.5, for each operation
selected in the previous step. For any operation which has not selected,
its code shall be included in any function where it is needed.

3. Finally, in all functions, replace all calls to operations which have been
moved to a separate function as follows:

name@Self(input)(output)
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Becomes:

op@Gateway({ fn = "name", data << input })(response)
output << response.data

In any function that calls an operation on the Gateway, you must include
a definition for its output port, pointing to your JFN deployment.

Having applied all the steps outlined before, the Sorter service would be
converted as follows:

service Sort {
…

outputPort Gateway {
…

}

main {
…

[fn(request)(response){
mid = (request.data.end - request.data.start) / 2
op@Gateway({ op = "sort", data << {
data << request.data.data,
start = request.data.start,
end = mid

} })
op@Gateway({ op = "sort", data << {
data << request.data.data,
start = mid+1,
end = request.data.end

} })
op@Gateway({ op = "merge", data << { data << request.

data.data } })
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}]
}

}

Listing 3.5: Merge sort’s sort function after the conversion.

The merge function must be rewritten in an analogous way.
After this conversion, the sort and merge operations are now decoupled in
separate functions and can scale automatically and independently on a JFN
instance.
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As we have seen, microservices architectures can be hard to scale and manage,
putting extra burden on developers and system administrators. With more
moving pieces it is easy to run into issues. Serverless can resolve the burden
of deploying and scaling architectures by abstracting the underlying hardware
and giving facilities where the code can be executed on demand. It also forces
an even greater separation of programs, so that we can scale at function level,
rather than at service level.

With JFN we have constructed a robust platform to easily transition from a
Jolie-based microservice architecture to serverless. Furthermore, the platform
offers solid redundancy guarantees, which can be hardened even further with
the steps listed in the following sections. The transition from a microservice to
a series of serverless functions is both fast and lightweight, allowing developers
to benefit from the improved scaling and resilience provided by the platform.

In the following sections, we outline possible works for the future develop-
ment of JFN. They are aimed at increasing the performance or widening the
supported functionalities, in order to fully match what is currently possible
in a standard Jolie environment. Some other paths include possible applica-
tions of other research on serverless, in particular, the one centered around the
optimization of scaling and load balancing algorithms.

55



4 Conclusions

4.1 Making the Function Catalog
distributable

Currently, the Function Catalog (see Section 3.3.1) is not distributable, mean-
ing that only one instance can serve all the requests for the entire architecture.
This may become a bottleneck as the rest of the infrastructure scales and fo-
cuses all the load on a single node. What is currently preventing the Catalog
from being scalable is how it stores the function’s code. The current approach,
chosen for simplicity, is to store the functions on the filesystem where the
service is run.

A distributable service requires an external, shared storage for this data, so
that when multiple Catalogs are queried they all answer in the same way. By
doing this, an executor which needs a function’s code can query one of the
many Catalogs in the pool and the load shall be distributed across all of them.

Some compelling technologies to solve this task are either a shared filesystem,
such as NFS and Samba or a distributed data store. Distributed key-value
stores, such as etcd [6] have a number of advantages over classical networked
filesystems:

• Being distributable, they are far more reliable and can have lower latecy
compared to a single-node network filesystem.

• Since, for our use case, the tree structure of a conventional filesystem
is not needed (and in fact, it could even hinder the performance1), a
key-value store is a more conceptually adequate.

1Classical filesystems use one or several disk blocks to store the inode number for each file.
The lookup of a desired file in this list structure requires that, in the worst case, the
whole list is searched. On the other hand, in key-value stores the primary operation is
lookup, and hash table structures are often used to speedup queries.
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4.2 Making the Provisioner distributable

Similarly to the Function Catalog, the Provisioner is not currently scalable, for
the same reasons. Any solution would still involve the use of some distributed
and shared data storage, but in the case of the Provisioner, the challenge is
more nuanced.

The biggest difference between the Provisioner and the Function Catalog is
that, while the latter is mainly a passive service, the former is active. The
Catalog sole purpose is to receive and answer queries, whereas the Provisioner
does both query answering and management of the load across the cluster.
This is an issue because, if we had more than one Provisioner instance, while
they all could answer for queries, provided they share the data necessary to do
so, only one could take the decisions for scaling.

Provisioner Executor

𝑝0

…

𝑝𝑘−1

𝑒0 … 𝑒𝑛−1 𝑒(𝑘−1)𝑛 … 𝑒𝑘(𝑛−1)

Subgroup for 𝑝0 Subgroup for 𝑝𝑘−1

Figure 4.1: 𝑘 Provisioners, each healtchecking a distinct subset of the 𝑘⋅𝑛 Executors.

A similar challenge involves the distribution of the healthchecking requests,
described in Section 3.3.3. A subset of Executors shall be health-checked by
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a single Provisioner. This subdivision should also be even across the whole
ecosystem in order to equally split the load. A possible solution would be to
number incrementally all Provisioners, and define a deterministic way for each
provisioner to identify the Executors it is tasked to healthcheck, based on the
total number of provisioners and executors. This assumes a unified network
where any Provisioner can access any Executor, which is already in place, as
any Gateways must be able to access all Executors. An example of how a JFN
network with the suggested upgrades would look like is shown in Figure 4.1.

4.3 Make functions long-lived during burst
loads

The decision of using the concurrent executor mode for functions stems from
the points outlined in Section 3.6. This design decision opens up the possibil-
ity of further unorthodox performance optimizations which would break the
typical ephemerality of serverless functions.

The bespoke performance improvement would come from changing the execu-
tion logic of the runner into the following:

1. When a function invocation is received, check if a service for that function
is already embedded:

• If that is the case, set the Embedded.location to the location of
that service and go to step 3.

• Otherwise, move to step 2.

2. Get the function’s code and embed it. Then, set Embedded.location
to the new service’s location.

3. Invoke fn@Embedded and return the result to the caller.

4. Set or delay a timer to later remove the embedded service for the re-
quested function.
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In this way, if a function is called often, but not often enough to get its dedi-
cated Singleton (see Section 3.3.4), the runner can keep the function’s service
running for some time, in order to avoid the embedding overhead for future
requests. For this to work, the Provisioner load-balancing logic also needs to
be more involved: when the target Runner is being selected, previous invoca-
tions should be taken into account to route the request to a runner which still
has the function’s service running. This could be achieved in two ways:

• Both the Runner and Provisioner keep a timer so that they both know
when a service is still available. With this approach, timings could easily
be skewed by latency issues leading to desynchronized states.

• The runner is responsible for notifying the Provisioner when a function
service is stopped. Using a RequestResponse call we are certain that,
after the request, both services are in the same state.

4.4 Advanced functions

Currently, functions consist of a single Jolie file. This makes them quite lim-
ited, compared to what standard Jolie services are capable of. In order to
fully match their expressiveness, we would need to change the function format
drastically, to allow functions to include additional Jolie or Java services and
Java libraries.
The Jolie team has developed jap, an archive format akin to Java’s jar, which
can include multiple services and Java libraries in one single file. While jap
would suffice, for completeness’ sake we also explore a purpose-built solution:

1. JFN functions should be distributed as an archive of files, so that multiple
files of different kinds are available at the function’s disposal at execution
time. For example, this would allow developers to build functions which
require access to a static dataset in order to operate (the dataset could
be included in the archive and read at runtime). A standard filename
for the function entrypoint would be defined have to be defined.
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2. As dynamic embedding allows Jolie services to directly embed a Java
service (see Section 2.2.10), functions could also be written in Java. To
implement this, metadata could be provided alongside the function’s
code so that Executors know if they are embedding a Java or Jolie service.
Building upon Item 1, we could check for the entrypoint file in the archive
with both the .ol and .java extension.

3. Building upon Item 1, Java libraries could also be provided in the archive,
when a service relies on functionality which is available neither in the
Jolie’s standard library nor in the jar files provided with the Executor’s
docker image. The loading of these libraries would follow this sequence:

• Identify all the .jar files, or have them specified in some form of
metadata along with the function archive.

• Move them in a folder where the Jolie interpeter will look for them
when the function is embedded.

• Compute the function.

• Once it is time to unload the function’s service, remove any jar
files associated with it.

Another option offered by the flexibility of Item 1 is to include multiple services
(written in both Jolie and Java) in the archive, which can then be embedded
by the function “main” service.

4.5 Improvements to the scaling logic
As already stated, a number of improvements can be applied to enhance the
scaling capabilities of the JFN platform. In this section, we go over all the
possible changes which will help the Provisioner better load balance and scale
the Executors:

• Route function calls which do not have a dedicated Singleton to a Runner
which still has the function “hot” as described in Section 4.3.
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• Currently, we use Jocker to orchestrate containers on a single Docker
node. In the future, it would be advisable to use Docker Swarm or Ku-
bernetes [12] to spread the load of the system across multiple physical
nodes. This would require some changes to the Spawner embedded ser-
vice (see Section 3.3.3), in order to increase or decrease the number of
replicas for each service group (namely, Executors and Runners). Using
Kubernetes would require similar changes but would allow for more flexi-
bility: for example, JFN could use different container runtimes and have
a much more granular control of over other parts of the system which
ease the distribution of services.

• Additionally, constraints could be specified by developers based on the
function’s code. Such constraints would then be taken into account when
picking the Executor for a function. For example, a function which
relies heavily on communication with a database should be executed in
a location geographically near to where the database is hosted. The
measurable performance impact of such optimizations has been proven
by De Palma et al. [1] [2].
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