
ALMAMATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Natural Language Processing

NEURAL CLUSTERING ON TREE
STRUCTURED DATA: A CASE STUDY ON

ARGUMENT MINING

CANDIDATE SUPERVISOR

Andrea Proia Prof. Paolo Torroni

CO-SUPERVISOR

Dott. Federico Ruggeri

Academic year 2022-2023

Session 1st

ii

Contents

Abstract 1

1 Introduction 2

1.1 Motivation and Context . 2

1.2 Contribution . 3

1.3 Structure of the thesis . 5

2 Background 6

2.1 Argument Mining . 6

2.1.1 Argumentative sentence detection 7

2.1.2 Argument component detection 8

2.2 Graph Neural Networks . 9

2.2.1 Parse trees . 9

2.2.2 Graph Convolutional Networks 11

2.2.3 Mathematical Formulation 12

2.3 Differentiable Pooling . 13

2.3.1 Gumbel Softmax . 14

2.4 Triplet Loss . 15

2.4.1 Mathematical Formulation 16

2.4.2 Variants . 17

2.4.3 Triplet Mining: Offline vs. Online 18

3 Experimental Setup 20

iii

3.1 Data . 20

3.2 Baseline Classification . 21

3.3 Metric Learning . 22

3.4 Prototype Learning . 23

4 Discussion of results 26

4.1 USElecDeb60To16 . 26

4.2 Persuasive Essays Corpus . 27

4.3 Analysis . 27

Conclusion 35

Acknowledgements 37

Bibliography 38

iv

List of Figures

2.1 Automatic argument extraction pipeline [10] 7

2.2 Dependency tree vs Constituency tree [1] 10

2.3 GCN architecture [2] . 12

2.4 DiffPool [25] representation 14

2.5 Learning goal of the triplet loss [15] 16

2.6 Visual representation of possible negatives [3] 18

3.1 CLF-GCN architecture . 22

3.2 Proto-GCN architecture . 25

4.1 Comparison between CLF-GCN embeddings (F=2, USElec) . 29

4.2 Comparison between CLF-GCN embeddings (F=8, USElec) . 30

4.3 Comparison between ML-GCN embeddings (F=2, USElec) . 30

4.4 Comparison between ML-GCN embeddings (F=8, USElec) . 30

4.5 Comparison between Proto-GCNembeddings (F=1,P=2, US-

Elec) . 31

4.6 Comparison between Proto-GCNembeddings (F=1,P=8, US-

Elec) . 31

4.7 Comparison between CLF-GCN embeddings (F=2, PE) 32

4.8 Comparison between CLF-GCN embeddings (F=8, PE) 32

4.9 Comparison between ML-GCN embeddings (F=2, PE) 33

4.10 Comparison between ML-GCN embeddings (F=8, PE) 33

4.11 Comparison between Proto-GCN embeddings (F=1, P=2, PE) 33

4.12 Comparison between Proto-GCN embeddings (F=1, P=8, PE) 34

v

List of Tables

4.1 Parameter configuration for UsElecDeb60to16 26

4.2 Classification performance on USElecDeb60To16 27

4.3 Parameter configuration for PersuasiveEssays 27

4.4 Classification performance on PersuasiveEssays 28

vi

Abstract

This thesis explores the application of Graph Neural Networks based models

to investigate the effectiveness in capturing and utilizing tree substructures,

named fragments, to improve sentence classification in argument mining.

The analysis focuses on two sub-tasks: Argumentative sentence detection,

which involves identifying sentences that contain arguments, and Argument

component detection, which consists of identifying and classifying the differ-

ent components within an argumentative text.

The dissertation presents a comprehensive study of three architecture vari-

ations for both sub-tasks: a classification baseline, a metric learning approach

and a prototype network approach, evaluated on two separate datasets.

Experimental results reveal that the proposed models achieve satisfactory

performance in terms of F1 score: amean score of 88.35 forUSElecDeb60To16

and 63.19 for Persuasive Essays Corpus. However, an analysis of the models’

embeddings sparsity highlights that the performance of few models might not

be entirely satisfactory and they require further refinement.

Chapter 1

Introduction

1.1 Motivation and Context

In recent years, the field of machine learning has witnessed significant ad-

vancements concerning models able to manage graph-structured inputs.

These architectures emerged as a powerful tool to manage data with com-

plex relationships and have been widely studied and extended with numer-

ous variants which have the capability to learn embedding representations of

generic graphs. This is accomplished by leveraging aggregation layers that

are usually stacked within deep neural networks, and the resulting embeddings

can be effectively utilized in various high-level tasks.

Focusing on the application domain of this project, namely Natural Lan-

guage Processing (NLP), this work explores some approaches to perform clus-

tering of tree fragments applied to the field of Argument Mining that has

emerged as a crucial area of study, focusing on the extraction and analysis

of arguments from textual data. By understanding and analyzing arguments,

valuable insights can be gained into the underlying structures and reasoning

within a text, leading to improved information retrieval and text comprehen-

sion.

The classification of sentences as argumentative plays an important role

in automating the analysis of textual data, allowing for the identification of

1.2 Contribution 3

argumentative fragments that contribute to the overall argumentative struc-

ture of a sentence. However, accurately determining the argumentative nature

of a sentence is a complex challenge, primarily due to the diverse and often

ambiguous nature of language.

Motivated by the need to automate the identification of argumentative

fragments within textual data, this thesis proposes a novel approach that lever-

ages GNNs and Pooling layers for clustering of tree fragments. To gain in-

sights into the underlying structures of argumentative sentences, this work

explores the application of graph neural networks (GNNs) to analyze the pars-

ing trees of input sentences. By modeling the sentence structure as a graph

and utilizing GNNs, we aim to capture the relationships and dependencies be-

tween different tree fragments. This approach enables us to uncover common

substructures that may provide valuable insights for the classification task.

The research is driven by the growing demand for automated argument

mining tools in various domains, such as legal analysis, political discourse

analysis, and online debate monitoring. Extracting and analyzing arguments

from large volumes of textual data is a labor-intensive and time-consuming

task, often requiring the expertise of subject matter experts.

Moreover, while themost common used supervised learningmethods have

been extensively explored, there is a limited field of research focusing on the

use of GNNs for argument mining and the identification of common substruc-

tures within argumentative sentences. This thesis aims to contribute to the

existing knowledge by investigating the effectiveness of GNN-based models

in capturing and utilizing these substructures for improved sentence classifi-

cation in argument mining.

1.2 Contribution

This work is contextualized within the field of argument mining. Argument

mining [19] aims to automatically extract arguments from collections of text:

1.2 Contribution 4

one crucial aspect of this task involves identifying argument components, such

as claims or premises, within sentences. In particular, we will focus on two

sub-tasks: argumentative sentence detection with USElecDeb60To16 dataset

and argument component detection with Persuasive Essays Corpus. More de-

tails regarding the datasets and approaches will be given in the following chap-

ters.

Overall, the problem is defined as a binary classification task, and we pro-

pose three different approaches:

• a baseline classification network which serves as a reference and start-

ing point for the other models’ architectures. The network takes tree-

structured input and processes it through GCN and pooling layers to

learn meaningful representations which are then used to make a predic-

tion about the sentence’s classification. The baseline model provides a

benchmark for evaluating the performance of other models and serves

as a baseline comparison for their effectiveness.

• a metric learning approach that aims to improve the classification re-

sults by leveraging the triplet loss function. Instead of predicting only

the label, this approach focuses on learning a distance metric in a latent

space. The network is trained using triplets of sentences: an anchor sen-

tence, a positive sentence (same anchor class), and a negative sentence

(different from anchor class). The network learns to map the anchor

and positive sentences closer together in the latent space while push-

ing the negative sentence farther away. By optimizing the triplet loss

function, the model aims to improve the separation between different

class sentences in the learned latent space, leading ideally to enhanced

classification performance.

• a prototype network which is an instance-based learning model built on

the concept of prototypes. The idea is to represent each class by a set of

prototype instances. In this approach, the network is trained to identify

1.3 Structure of the thesis 5

the prototypes that best represent the characteristics of the different class

sentences. During training, the network learns to update and refine these

prototypes based on the encountered instances. When classifying a new

sentence, the network compares it with the prototypes and assigns the

class label based on the closest prototype. By leveraging prototypes,

the network can capture the essential characteristics and substructures,

potentially improving the classification performance.

1.3 Structure of the thesis

To provide a clear understanding of the topic discussed, a general overview of

the dissertation is given. The structure foresees 3 chapters.

The first chapter has an introductory scope and focuses on the problem

statement, introducing the proposed research questions, in order to give a clear

explanation of context and motivations.

Chapter two provides an overview of the task with a specific focus on

the background. In this section, we discuss the technical details of the set

of technologies employed to implement the solutions, also with an in-depth

analysis of the technical details related to the metric used in the metric learning

approach.

Finally, in Chapter three, the experimental setup is covered, introducing

the datasets that have been selected to perform the experiments and the base-

line classification architecture. Then, a specific description of the Metric

Learning and the Prototype Learning approaches is given and the results of

the experiments are provided. Lastly, the results are compared to evaluate

and discuss the key aspects.

Chapter 2

Background

This chapter provides a comprehensive overview of the technologies and con-

cepts that form the foundation of the models and approaches presented in this

dissertation, giving a thorough understanding of the tools and techniques will

be used throughout the research.

Initially, we describe argument mining. Next, we focus on the technical

details related to the Graph Neural Networks and to the concept of Differ-

entiable Pooling. Finally, we explore more deeply the technical component

related to the triplet loss that is used in the approach related to metric learning.

2.1 Argument Mining

First of all, let’s focus on the application domain of the project.

Argument Mining in Natural Language Processing (NLP) refers to the

process of automatically identifying and extracting arguments from textual

sources. It involves applying computational techniques and algorithms to un-

derstand the structure, content, and relationships between different elements

of an argument.

An argument is a unit of discourse that consists of a claim (i.e. main

proposition) supported by one or more evidences, and potentially counter-

arguments. The goal is to understand the relationships between claims and

2.1 Argument Mining 7

evidence to gain insights into the underlying reasoning employed in the text.

This is achieved through an argument detection step, which employs a wide

range of conventional machine learning techniques, followed by an argument

structure prediction step [1]. The latter is needed to predict the connections

between the previously detected argument components.

Figure 2.1: Automatic argument extraction pipeline [10]

Wewill now proceed giving an insight on the two sub-tasks relatedwith the

two datasets employed to perform the experiments: Argumentative sentence

detection and Argument component detection.

2.1.1 Argumentative sentence detection

ASD is a NLP task that involves identifying sentences or text segments that

contain arguments. The goal is to automatically classify sentences as either

argumentative or non-argumentative based on their content and structure. The

task of argumentative sentence detection plays a crucial role in argument min-

ing: by identifying argumentative sentences, users can gain insights into the

2.1 Argument Mining 8

persuasive elements within a text and understand the structure of an argumen-

tative discourse.

The detection process typically involves training a classifier using labeled

data, where sentences are annotated as argumentative or non-argumentative.

Features such as sentence structure, linguistic patterns, sentiment, and contex-

tual information are often used to distinguish argumentative sentences from

non-argumentative ones.

Applications of argumentative sentence detection can be found in various

domains. For instance, in political debates or legal contexts [13], identify-

ing argumentative sentences can help in understanding the key points of con-

tention and the strategies employed by speakers or writers to persuade their

audience.

For the ASD task, it is used the USElecDeb60To16 dataset.

2.1.2 Argument component detection

Argument component detection is a sub-task within the argument mining field

that involves identifying and classifying the different components within an

argumentative text or discourse [12].

The goal of argument component detection is to understand the structure

and organization of arguments, enabling users to analyze the relationships be-

tween different elements and assess the strength or weakness of an argument.

The classification of argument components can vary depending on the spe-

cific task and annotation scheme. For example, claims represent the main

assertions or conclusions of an argument, while premises provide supporting

evidence or reasons.

Argument component detection can be employed in analyzing persuasive

essays, online discussions, and many other forms of text where arguments are

present.

For the ACD task, it is used the PersuasiveEssays dataset.

2.2 Graph Neural Networks 9

2.2 Graph Neural Networks

In this section we will dive into Graph Neural Networks (GNNs), which are a

key component employed inside our models to handle tree-structured inputs.

GNNs have emerged as a powerful framework for analyzing and modeling

structured data that can be represented as graphs [20] [24].

Unlike traditional neural networks designed for grid-like data, such as im-

ages or sequences, GNNs operate directly on graph-structured data, making

them well-suited for applications where the relationships between entities are

critical.

The ability of GNNs to capture and leverage the structural dependencies

between entities in graphs has led to significant advancements in various do-

mains, including natural language processing.

Thanks to their ability to handle graphs of varying sizes and structures,

they can adapt to graphs with different numbers of nodes and varying connec-

tivity patterns, making them highly flexible and applicable to a wide range of

real-world scenarios. Moreover, they can incorporate additional components,

such as attention mechanisms or graph pooling layers, to further enhance their

expressiveness and performance.

2.2.1 Parse trees

There are different methods to convert textual data into a tree representation.

Two standard methods [21], that differ in the type of information they focus

on, are:

• Dependency tree: represents the grammatical structure of a sentence

by establishing dependencies between words. Each word is considered

a node in the tree, and the dependencies are represented by directed

edges which represent the grammatical relationships (e.g subject, con-

junction, etc.). The root of the tree typically represents the main verb

2.2 Graph Neural Networks 10

or the main clause in the sentence. Overall, dependency trees provide

a more fine-grained analysis of the grammatical relationships and the

syntactic dependencies between words.

• Constituency tree: represents the hierarchical structure of a sentence

by grouping words into constituents. It aims to capture the hierarchical

organization of a sentence by dividing it into smaller sub-phrases (e.g.

noun phrases, verb phrases, etc.). Each node in the tree represents a

constituent, which can be a word or a group of words, and the branches

represent the relationships between the constituents. The root of the

tree represents the entire sentence. Constituency tree focuses more on

the hierarchical organization of the sentence.

Figure 2.2: Dependency tree vs Constituency tree [1]

The experiments in Chapter 4 are performed using dependency tree as in-

put. The motivation is that dependency trees tend to have a simpler and more

straightforward structure compared to constituency trees. They also usually

have fewer nodes and edges compared to constituency trees, resulting in more

compact representations, and so leading to a more efficient training and faster

processing times, especially when working with large-scale datasets.

2.2 Graph Neural Networks 11

Our models will consider tree fragments, i.e. smaller substructures or por-

tions of a larger tree. In the context of tree-based models or algorithms, tree

fragments are subsets of nodes and edges that capture local structures or pat-

terns within a tree.

When working with tree-based data, such as constituency trees or depen-

dency trees, analyzing the entire tree as a single entity might not be feasible

or optimal for certain tasks. Instead, breaking down the tree into smaller frag-

ments can provide more focused insights or facilitate specific operations.

Tree fragments can be defined based on various criteria, such as the depth

of the nodes, the presence of specific types of nodes or edges, or the occurrence

of certain patterns.

By extracting and analyzing tree fragments, our models can gain a better

understanding of the local structures and relationships within a tree.

2.2.2 Graph Convolutional Networks

Among the different architectures within the GNN framework, Graph Convo-

lutional Networks (GCNs) have gained considerable attention for their effec-

tiveness in modeling graph data.

GCNs [8] extend the concept of convolutional layers from grid-like struc-

tures to graph structures, enabling them to exploit the connectivity patterns and

local neighborhood information of nodes in a graph, making them particularly

suitable for tasks that involve node classification, link prediction, etc.

The key idea behind GCNs is to aggregate information from a node’s

neighboring nodes and use it to update the node’s own representation. This

process recalls the message passing scheme of graph theory, where nodes ex-

change information iteratively. By propagating and aggregating information

across the graph, GCNs capture both local and global patterns, enabling them

to learn rich representations that encode the graph’s structural information.

In a typical GCN architecture, each layer performs a graph convolution

2.2 Graph Neural Networks 12

operation, which involves a weighted aggregation of the features from neigh-

boring nodes, followed by a non-linear activation function. The resulting node

representations are then passed to the next layer, allowing the network to refine

the representations through multiple iterations. By stacking multiple graph

convolutional layers, the model can capture increasingly complex relation-

ships and dependencies.

In this thesis, we will explore the application of GNNs with a specific

focus on GCNs to test different network architectures.

Figure 2.3: GCN architecture [2]

2.2.3 Mathematical Formulation

In order to introduce the theory underlying the GNNs, we first have give a

preliminary explanation regarding graph components.

From the definition in [14], given a graph G = (V, E) with:

• V = v1, ..., vn set of vertices

• E = e1, ..., em set of edges

aGNNgenerally employs the followingmessage-passing aggregation func-

tion:

2.3 Differentiable Pooling 13

H t+1 = f(A, H t; θt+1) (2.1)

where H t = {ht
1, ..., ht

n} is the node representation matrix n × d at time t,

where d is the embedding dimensionality. Each node ht
i is the node embedding

vector and A is the binary adjacency matrix given (V, E) and θt are model

parameters at time t.

This work employs the GCN architecture whose aggregation function can

be expressed as follows:

H t+1 = ReLU(ÃH tW t) (2.2)

where D is the degree matrix, Ã = D− 1
2 AD− 1

2 is the degree normalized

adjacency matrix, W t is a trainable weight matrix.

2.3 Differentiable Pooling

To accomplish specific tasks like graph classification, a hierarchical repre-

sentation of the input graph is utilized, where nodes are grouped together

through node clustering. This process, referred to as node clustering, re-

sembles message-passing and is applied iteratively to determine the building

blocks of the graph.

In the field of neural networks, Differentiable Pooling (DiffPool) [25] rep-

resents a notable method for performing node clustering in a differentiable

manner. DiffPool approaches node clustering as a soft node assignment prob-

lem [14], where n input nodes are associated with k node clusters. Given the

input node embeddings H in matrix form (n × d), the pooling layer is defined

as follows:

P = softmax(HWP) (2.3)

2.3 Differentiable Pooling 14

where WP (d × k) represents a trainable weight matrix, and P (n × k) de-

notes the pooling soft assignment matrix. Lastly, the node cluster embeddings

H̃ (k × d) are determined using the following equation:

H̃ = P T H (2.4)

Similarly, the adjacency matrix for the new node clusters, denoted as Ã

(k × k), is constructed based on the previous node adjacency matrix A as

follows:

Ã = P T AP (2.5)

Figure 2.4: DiffPool [25] representation

2.3.1 Gumbel Softmax

As explained in the previous section, DiffPool views node clustering as a soft

assignment task, where nodes are associated with clusters based on their prob-

abilities.

On the other hand, Gumbel Softmax [7] is a method used for differentiable

sampling from a categorical distribution. It introduces Gumbel noise and ap-

plies the softmax function to obtain a continuous relaxation of the discrete

sampling process. Gumbel-Softmax allows for stochasticity in the sampling

process while ensuring differentiability, which is crucial for end-to-end train-

ing in neural networks.

2.4 Triplet Loss 15

The idea is that we want to obtain a discretized network to facilitate the

interpretation of fragments: a node is either clustered in a group or not at

all, instead of having a soft assignment (e.g. 0.30 intensity), but at the same

time we ensure that the entire model, including the pooling operation, can be

trained jointly with other components since the gradients can flow through the

Gumbel Softmax relaxation.

In section 4 we can find results of experiments performedwith pooling soft

clustering compared with the same performed using the Gumbel Softmax, in

order to verify whether it can modify the learning process during training.

2.4 Triplet Loss

Since one of the approaches deals with metric learning, in this last section of

the chapter, we need to introduce the concept in order to have a clear overview

of the process and particularly on the metric used to optimize the model.

Metric learning [22] [17] focuses on learning a similarity or distancemetric

between data points. The objective of metric learning is to optimize a model

such that it can measure the similarity or dissimilarity between data samples

in a way that aligns with the proposed task.

Therefore, it becomes crucial to have an appropriate notion of similarity

between data points, which should be specifically tailored to the task.

To address this need, we employ a loss function originally proposed in

[15]: the triplet loss, which is a popular loss function used in several deep

learning application scenarios to learn effective representations of data in an

embedding space [23]. It is commonly used in tasks related to the Computer

Vision (CV), such as face recognition [15], but it can be exploited for different

kinds of similarity learning tasks.

The goal of the triplet loss is to encourage the network to map similar

instances closer together while pushing dissimilar instances apart.

2.4 Triplet Loss 16

Figure 2.5: Learning goal of the triplet loss [15]

2.4.1 Mathematical Formulation

The theory behind the triplet loss formulation is quite simple, since it relies on

a few elements.

The triplet loss operates on triplets of data points: an anchor (A), a positive

example (P), and a negative example (N). The anchor and positive example

belong to the same class (having ideally similar attributes), while the negative

example is from a different class (having ideally dissimilar attributes). The

loss is computed based on the distances between these points in the embedding

space. Let:

• d(A, P) represent the distance between the anchor (A) and positive ex-

ample (P) in the embedding space

• d(A, N) represent the distance between the anchor (A) and negative ex-

ample (N) in the embedding space

The triplet loss (L) is defined as:

L = max(d(A, P) − d(A, N) + margin, 0) (2.6)

The margin is a hyper-parameter that specifies the minimum desired dif-

ference between the distances d(A, P) and d(A, N). This encourages the net-

work to learn embeddings where similar instances are close together, while

dissimilar instances are separated by a distance larger than the margin.

Concerning the distance d between data points, we have different options

such as Euclidean distance, squared Euclidean distance or cosine similarity.

2.4 Triplet Loss 17

We decided to use the latter since it is computationally efficient to calculate,

especially when working with large-scale datasets or high-dimensional feature

spaces.

2.4.2 Variants

In the standard triplet loss, triplets are randomly selected during training, which

may not provide the most informative examples for learning. For this reason,

several variants have been developed to address its limitations and improve its

effectiveness in different scenarios. The following list provides some of the

commonly used variants:

• Batch Hard Triplet Loss: selects the hardest positive example (clos-

est to the anchor) and the hardest negative example (farthest from the

anchor) for each anchor within the same mini-batch. By focusing on

the hardest examples, this variant encourages the network to learn more

distinguished embeddings.

• Semi-Hard Triplet Loss: by considering that, in some cases, it can be

challenging to find triplets that satisfy the condition

d(A, P) < d(A, N) + margin (2.7)

(especially with large margins), the semi-hard variant addresses this is-

sue by selecting a negative example that is harder than the positive ex-

ample but still has a positive distance with the anchor. As result, it

allows for a more relaxed constraint and avoids trivial solutions while

maintaining training stability.

The image 2.6 shows a visual representation to give an insight of how we

classify Hard, Semi-hard and Easy negatives in this context.

2.4 Triplet Loss 18

Figure 2.6: Visual representation of possible negatives [3]

Results in section 4 related to the ML_GCN model are relative to tests

performed using the Batch Hard version.

2.4.3 Triplet Mining: Offline vs. Online

Understanding the usage of triplet loss means also to analyze the aspect of

computational complexity in forming the triplets to be used for training. For

this reason, it is important to explain the difference between offline and online

triplet mining because they represent two distinct approaches for constructing

triplets:

• Offline triplet mining: at the beginning of each epoch, we compute all

the embeddings on the training set, and then only select hard or semi-

hard triplets to train one epoch. Concretely, starting from a list of triplets

(i,j,k), we create batches of size B, meaning that we have to compute 3B

embeddings to compute the loss and backpropagate into the network.

Overall, this technique is not particularly efficient since a full pass on the

2.4 Triplet Loss 19

training set is needed to generate triplets and it also requires to update

the offline mined triplets regularly.

• Online triplet mining: selecting informative triplets can be computa-

tionally expensive, especially in large-scale datasets with a large num-

ber of potential triplets. Online triplet mining dynamically selects hard

positive and negative examples during training. It starts with an easy

triplet, where the negative example is the closest one to the anchor, and

iteratively selects harder triplets as the network learns. This approach

reduces the computational burden by focusing on the most informative

examples, leading to more efficient training.

Chapter 3

Experimental Setup

This chapter provides a comprehensive overview of the dataset used, themethod-

ologies adopted, and the results obtained from the experiments. Furthermore,

it includes a comparative analysis of the different approaches to gain insights

into their effectiveness and performance.

3.1 Data

Concerning the aspect related to the data, different datasets have been em-

ployed to perform the experimental evaluation:

• USElecDeb60To16 [5]: political debates gathered from the Commis-

sion of Presidential Debates. It includes 39 different transcriptions for

a total of approximately 6000 speech turns. (size: 29,621 sentences)

• Persuasive Essays Corpus (PE) [16]: set of 402 documents extracted

from an online community regarding essays discussion and advise. Doc-

uments are annotated at token-level following an argument annotation

schema that distinguishes 3 argumentative components: major claim,

claim, and premise. (size: 6,089 sentences)

3.2 Baseline Classification 21

3.2 Baseline Classification

Starting with the baseline, the proposed basic approach is a classification net-

work whose first layer encodes the input, which includes the set of tree nodes

and adjacency information. This layer (EMB) processes the input data and

prepares it for subsequent operations.

Next, a GCN layer provides graph-specific operations to extract meaning-

ful features from the input. The GCN layer leverages the graph structure and

performs aggregation and transformation operations on the node features and

their neighboring nodes.

Following the GCN layer, a re-implementation of a pooling layer based

on DiffPool [25], that employs a softmax function for sparse input extraction,

is provided. This layer selectively extracts small fragments from the input,

enhancing interpretability. The result of this pooling layer is an embedding

representation of these fragments (F).

To further refine the extracted fragment embeddings, a layer for comput-

ing the average of the fragment embeddings is used. This layer aggregates

the fragment representations employing a mean pooling operation to obtain a

more compact and comprehensive representation of the fragments.

Finally, a dense layer is employed for the final classification task (CLF),

which aims to classify the input into two classes. The dense layer takes the

aggregated fragment embeddings and performs the classification task, making

predictions based on the learned representations.

In this case the loss is straightforward:

L = CE (3.1)

where L represents the total loss which is directly equal to CE, i.e.the standard

Cross-Entropy for penalizing the misclassification.

Figure 3.1 provides a simple visual representation of the classification

3.3 Metric Learning 22

baseline (CLF-GCN) architecture described in this section.

Figure 3.1: CLF-GCN architecture

3.3 Metric Learning

The second approach provides amodified version of the baseline classification

model. In addition to the baseline architecture described above, this version of

the neural network model incorporates a metric learning component that com-

putes the triplet loss (see Section 2.4) and combines it with the classification

result. This enhancement aims to further improve the network’s performance

in learning discriminative embeddings.

In addition to the dense layer used for classification, the triplet loss is com-

puted to promote better class separation and to enhance the discriminative

power of the learned representations. The triplet loss adjusts the embedding

space by minimizing the distance between the anchor and positive examples

while maximizing the distance between the anchor and negative examples.

By combining the classification output with the computed triplet loss, this

version of the model should benefit from both the discriminative power of the

embeddings learned through metric learning and the classification capability

of the dense layer. This allows the network to not only classify the input into

two classes but also generate embeddings that capture meaningful relation-

ships between fragments, improving the overall performance of the task.

Technically, the triplet loss is computed using the angular distance (cosine

3.4 Prototype Learning 23

similarity) between data points of the triplets with a margin parameter of 0.1.

Moreover, the total loss is computed as:

L = CE + λtl · TL (3.2)

where L represents the total loss, CE is the standard Cross-Entropy for

penalizing the misclassification, and TL is the Triplet Loss computed as in

2.6, with λtl = 0.1 as a real-valued hyperparameter.

3.4 Prototype Learning

The third approach is based on Prototype learning an foresees a quite different

structure with respect to the previous, both from a conceptual and architectural

point of view.

A Prototype neural network (PNN) [9] is a type of model that operates

based on the concept of prototypes. It belongs to the family of instance-based

learning algorithms, where the model stores a set of representative examples

(prototypes) and uses them for classification or regression tasks.

In a PNN, each prototype represents a specific class or category in the

dataset. During training, the model learns to associate the prototypes with

their corresponding class labels. The prototypes can be thought of as reference

points or representatives of each class in the input space.

The process of training a PNN usually involves twomain steps: first a Pro-

totype Selection step is required to let the model select a subset of prototypes

from the training data that best represent the underlying classes. This can be

done using various methods, such as random selection, clustering algorithms,

or distance-based approaches.

This is followed by a Prototype Assignment step: once the prototypes are

selected, the model assigns class labels to them based on their nearest neigh-

bors in the training data, so when presented with a new input, the model com-

pares it to the prototypes and assigns the class label of the nearest prototype

3.4 Prototype Learning 24

as the predicted class for the input.

The distance metric used for prototype assignment can vary depending

on the problem and data characteristics. Commonly used distance measures

include Euclidean distance, Manhattan distance, or cosine similarity.

Prototype neural networks have the advantage of interpretability, as the

prototypes can provide insights into the characteristics of each class.

However, PNNs may struggle with certain scenarios since they are sensi-

tive to noise in the training data, as noisy prototypes can lead to misclassifi-

cations.

Our PNN implementation has the same architecture as the previousmodels

up to the pooling layer. Once the fragments F = {f1, ..., fn} are obtained,

the prototypes P = {p1, ..., pm} are defined. These are used to compute the

distances from fragments F to obtain the contributions R1 and R2 used to

determine the total loss.

Formally, the cost function, denoted by L, on train data D used to train our

network, is given by:

L = CE + λ1 · R1(p1, ..., pm, D) + λ2 · R2(p1, ..., pm, D) (3.3)

where λ1, λ2 are real-valued hyperparameters that adjust the ratios be-

tween terms, in this case set to λ1 = λ2 = 0.1 and CE the standard Cross-

Entropy for penalizing the misclassification.

The two interpretability regularization terms R1 and R2 are formulated as

follows:

R1(p1, ..., pm, D) = 1
m

m∑
j=1

min
i∈[1,n]

∥pj − f(xi)∥2
2 (3.4)

R2(p1, ..., pm, D) = 1
n

n∑
i=1

min
j∈[1,m]

∥f(xi) − pj∥2
2 (3.5)

3.4 Prototype Learning 25

Figure 3.2 provides a simple visual representation of the Prototype net-

work (Proto-GCN) architecture described in this section.

Figure 3.2: Proto-GCN architecture

Chapter 4

Discussion of results

The results found in the following tables are related to experiments performed

using an EarlyStopping callback with a patience parameter of 5. All models

were trained using a 10-fold cross-validation.

4.1 USElecDeb60To16

Table 4.1 presents the parameter configuration for the models tested on UsE-

lecDeb60to16.

Table 4.1: Parameter configuration for UsElecDeb60to16

Param Value

l2_regularization 1e-05
dropout_rate 0.4
input_dropout_rate 0.3

Table 4.2 reports the binary F1-score concerning the argumentative (arg)

class.

4.2 Persuasive Essays Corpus 27

Table 4.2: Classification performance on USElecDeb60To16

Model F1 Node selection ratio

Soft

CLF-GCN (F=2) 88.79±1.11 13.48±1.45
CLF-GCN (F=8) 88.96±1.09 10.50±2.80
ML-GCN (F=2) 88.77±0.98 15.49±1.24
ML-GCN (F=8) 88.83±1.18 11.46±3.32
Proto-GCN (F=1, P=2) 87.92±1.45 1.03±0.34
Proto-GCN (F=1, P=8) 87.19±1.20 0.67±0.16

Gumbel

CLF-GCN (F=2) 89.03±1.17 60.08±10.60
CLF-GCN (F=8) 88.81±1.19 31.76±8.00
ML-GCN (F=2) 88.70±1.39 100.00±0.01
ML-GCN (F=8) 88.53±1.35 100.00±0.00
Proto-GCN (F=1, P=2) 87.38±1.46 1.02±0.73
Proto-GCN (F=1, P=8) 87.33±0.92 48.03±6.03

4.2 Persuasive Essays Corpus

Table 4.3 presents the parameter configuration for the models tested on Per-

suasiveEssays:

Table 4.3: Parameter configuration for PersuasiveEssays

Param Value

l2_regularization 1e-05
dropout_rate 0.4
input_dropout_rate 0.3

Table 4.4 reports the macro F1-score average over 10 fold runs.

4.3 Analysis

The results obtained from the evaluation of the classification networks show-

case interesting findings.

Regarding the USElecDeb60To16, the F1 score indicates that all three

4.3 Analysis 28

Table 4.4: Classification performance on PersuasiveEssays

Model F1 Node selection ratio

Soft

CLF-GCN (F=2) 64.76±0.90 17.40±8.82
CLF-GCN (F=8) 64.36±0.91 21.25±7.23
ML-GCN (F=2) 65.41±1.10 30.97±5.29
ML-GCN (F=8) 65.72±1.23 34.04±4.34
Proto-GCN (F=1, P=2) 61.38±0.62 16.08±3.45
Proto-GCN (F=1, P=8) 64.75±0.74 25.67±0.78

Gumbel

CLF-GCN (F=2) 64.47±1.32 32.12±15.84
CLF-GCN (F=8) 65.33±0.95 21.84±6.33
ML-GCN (F=2) 61.13±11.27 100.00±0.00
ML-GCN (F=8) 55.50±12.03 99.94±0.17
Proto-GCN (F=1, P=2) 61.63±2.31 74.91±29.42
Proto-GCN (F=1, P=8) 63.89±1.35 100.00±0.00

tested models perform comparably well. The similarity in F1 scores across

the models suggests that they are quite equally effective in correctly classify-

ing the samples.

On one hand, this is a positive outcome, as it demonstrates the robustness

and consistency of the classification task across different model architectures.

On the other hand, it is an evidence of the fact that the additional contributions

from the triplet loss in the ML-GCN model and R1, R2 in the Proto-GCN

model do not represent a contribution of such importance as to cause a marked

improvement in performance.

Overall, from a strictly quantitative point of view, the best F1 performance

was achieved by the CLF-GCNmodel with a value of fragments F=2 and using

the Gumbel-softmax.

Regarding the latter, we can make an interesting consideration related to

the Node selection ratio. In fact, it is evident that almost all the experiments

performed using the Gumbel function instead of the Soft alternative show a

significantly higher node selection ratio. The biggest difference can be seen

4.3 Analysis 29

by taking into consideration the comparison between the results of the ML-

GCN models that, although showing an almost identical F1 value, differ con-

siderably in the node selection ratio (F=2: 15.49 → 100.00, F=8: 11.46 →

100.00).

The results of the experiments reveal significant variations in the node

selection ratio across the different models, indicating the need for an in-depth

analysis of the embeddings to gain insights into the underlying factors driving

these discrepancies.

In order to visualize the embeddings produced by each model, a dimen-

sionality reduction techniques is needed. In this case, UMAP [11, 4] is em-

ployed to project the high-dimensional embeddings into a lower-dimensional

space. The resulting visualizations enable a qualitative assessment of the em-

beddings’ distribution to understand the separability characteristics. We color

the embeddings based on their class labels to better identify patterns inside the

embedding projections of the model.

The images reported show a Soft vs. Gumbel comparison between the

embeddings of the models. They refer to the first fold of the test set of USElec

dataset.

(a) CLF-GCN (F=2 , Soft) (b) CLF-GCN (F=2 , Gumbel)

Figure 4.1: Comparison between CLF-GCN embeddings (F=2, USElec)

4.3 Analysis 30

(a) CLF-GCN (F=8 , Soft) (b) CLF-GCN (F=8 , Gumbel)

Figure 4.2: Comparison between CLF-GCN embeddings (F=8, USElec)

(a) ML-GCN (F=2 , Soft) (b) ML-GCN (F=2 , Gumbel)

Figure 4.3: Comparison between ML-GCN embeddings (F=2, USElec)

(a) ML-GCN (F=8 , Soft) (b) ML-GCN (F=8 , Gumbel)

Figure 4.4: Comparison between ML-GCN embeddings (F=8, USElec)

4.3 Analysis 31

(a) Proto-GCN (F=1, P=2, Soft) (b) Proto-GCN (F=1, P=2, Gumbel)

Figure 4.5: Comparison between Proto-GCN embeddings (F=1, P=2, USE-
lec)

(a) Proto-GCN (F=1, P=8, Soft) (b) Proto-GCN (F=1, P=8, Gumbel)

Figure 4.6: Comparison between Proto-GCN embeddings (F=1, P=8, USE-
lec)

The results for Persuasive Essays instead show an F1 score that tends to be

stably lower with respect to USElecDeb60To16, although quite similar among

all models as in the previous case. This may be due to the intrinsic character-

istics of the dataset itself as well as the fact that it may be less suitable for this

kind of task performed with the specific models defined before.

In addition, the same consideration previously made regarding the node

selection ratio can also be made in this case: we find significantly higher val-

ues in the experiments carried out using the Gumbel. In this specific scenario,

an additional consideration must be made since, on average, the values of

node selection ratio are higher in comparison to those of USElecDeb60To16,

4.3 Analysis 32

particularly considering the ”Soft” section of the two tables. In fact, for US-

ElecDeb60To16, we find an average node selection ratio of 8.77 while for

PersuasiveEssays the same parameter has a value of 24.24.

The images reported show a Soft vs. Gumbel comparison between the

embeddings of the models. They refer to the first fold of the test set of PE

dataset.

(a) CLF-GCN (F=2 , Soft) (b) CLF-GCN (F=2 , Gumbel)

Figure 4.7: Comparison between CLF-GCN embeddings (F=2, PE)

(a) CLF-GCN (F=8 , Soft) (b) CLF-GCN (F=8 , Gumbel)

Figure 4.8: Comparison between CLF-GCN embeddings (F=8, PE)

4.3 Analysis 33

(a) ML-GCN (F=2 , Soft) (b) ML-GCN (F=2, Gumbel)

Figure 4.9: Comparison between ML-GCN embeddings (F=2, PE)

(a) ML-GCN (F=8 , Soft) (b) ML-GCN (F=8, Gumbel)

Figure 4.10: Comparison between ML-GCN embeddings (F=8, PE)

(a) Proto-GCN (F=1, P=2, Soft) (b) Proto-GCN (F=1, P=2, Gumbel)

Figure 4.11: Comparison between Proto-GCN embeddings (F=1, P=2, PE)

4.3 Analysis 34

(a) Proto-GCN (F=1, P=8, Soft) (b) Proto-GCN (F=1, P=8, Gumbel)

Figure 4.12: Comparison between Proto-GCN embeddings (F=1, P=8, PE)

Interestingly, when considering the sparsity of the embeddings, a notable

observation which is referable to the ML-GCN results of both datasets, is the

near-zero sparsity when using the Gumbel-Softmax trick. This indicates that

the approach with metric learning might not be entirely satisfactory and re-

quires further refinement. The lack of sparsity suggests that the embeddings

obtained through the metric learning framework are not effectively separating

the nodes into distinct clusters. This highlights the need to investigate alter-

native variations of the model architecture or loss functions to address this

limitation and enhance the discriminative power of the embeddings.

Conclusion

We presented different architectures based on GNNs and pooling layers: a

classification baseline, and two distinct variations with conceptual and archi-

tectural differences.

We considered two sub-tasks of argument mining to perform experiments

on two distinct datasets in order to explore the potentiality of our models.

This scenario came up as an interesting and challenging case study for our

approaches, showing that it is not easy to produce a remarkable enhancement

using the proposed architectures. In the future, it is feasible to extend the work

in several directions.

First of all, it is possible to modify the model using other variations of

GNNs such as Graph Attention Networks (GATs) [18] that allow to selectively

focus on relevant nodes during information aggregation assigning different

importance weights to different neighbors of a node. This could potentially

enable capturing more fine-grained and context-aware information from the

graph-structured input, allowing to better capture long-range dependencies.

Second, concerning themetric learningmethodology, we can use the Semi-

Hard triplet loss instead of the Hard variant, to see whether better results with

more significant embeddings can be achieved. In addition, other loss functions

can be explored. Investigate alternative loss functions, such as contrastive loss

[6], can be useful to compare their effectiveness in learning discriminative

embeddings, evaluating their impact on the model’s performance in order to

assess their suitability for this specific application domain.

Lastly, we can expand the scope of our approach by testing it on other

4.3 Analysis 36

domains or sub-tasks. Applying ourmodels to diverse contexts can help assess

their generalizability and potential for broader applicability.

By exploring these future directions, we aim to enhance the effective-

ness and versatility of our architectures while advancing the understanding

of graph-based models in different domains.

Acknowledgements

I would like to express my deepest gratitude to my esteemed supervisor, Prof.

Torroni, and my co-supervisor, Dott. Ruggeri, for their invaluable guidance

and support throughout the entire process of completing this thesis. Their

expertise and encouragement have been instrumental in the successful com-

pletion of this research.

The original idea behind this thesis emerged from Prof. Torroni and Dott.

Ruggeri’s projects, and I am honored to have had the chance to give a small

contribution to their research field.

I am grateful to Dott. Ruggeri for his invaluable contributions to this the-

sis. His extensive knowledge and ideas have been essential in expanding the

scope and enhancing the quality of this work. His valuable insights and con-

tinuous support in guiding me through the research process have been truly

significant.

I extend my deepest appreciation to Prof. Torroni for his profound impact

on my academic journey. His way of teaching has offered me a great deal

of knowledge and raised my interest in the subject matter to the extent that I

decided to expand my knowledge, exploring deeper into the concepts through

this research project.

Bibliography

[1] URL: https://virtuale.unibo.it/pluginfile.php/1060903/

mod_resource/content/1/NLP_course_slides_2021-09.pdf.

[2] URL: https : / / tkipf . github . io / graph - convolutional -

networks/.

[3] URL: https://omoindrot.github.io/triplet-loss.

[4] URL: https://github.com/lmcinnes/umap.

[5] S. Haddadan, E. Cabrio, and S. Villata. Yes, we can! mining arguments

in 50 years of US presidential campaign debates. In Proceedings of the

57th Annual Meeting of the Association for Computational Linguistics,

pages 4684–4690, Florence, Italy. Association for Computational Lin-

guistics, July 2019. DOI: 10.18653/v1/P19- 1463. URL: https:

//aclanthology.org/P19-1463.

[6] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by

learning an invariant mapping. In 2006 IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition (CVPR’06), vol-

ume 2, pages 1735–1742, 2006. DOI: 10.1109/CVPR.2006.100.

[7] E. Jang, S. Gu, andB. Poole. Categorical reparameterizationwith gumbel-

softmax, 2017. arXiv: 1611.01144 [stat.ML].

[8] T. N. Kipf and M. Welling. Semi-supervised classification with graph

convolutional networks, 2017. arXiv: 1609.02907 [cs.LG].

[9] O. Li, H. Liu, C. Chen, and C. Rudin. Deep learning for case-based

reasoning through prototypes: a neural network that explains its pre-

dictions, 2017. arXiv: 1710.04806 [cs.AI].

[10] M. Lippi and P. Torroni. Argumentation mining: state of the art and

emerging trends. ACM Trans. Internet Technol., 16(2), March 2016.

ISSN: 1533-5399. DOI: 10.1145/2850417. URL: https://doi.

org/10.1145/2850417.

[11] L. McInnes, J. Healy, and J. Melville. Umap: uniformmanifold approx-

imation and projection for dimension reduction, 2020. arXiv: 1802.

03426 [stat.ML].

[12] J.-C. Mensonides, S. Harispe, J. Montmain, and V. Thireau. Automatic

Detection and Classification of Argument Components using Multi-

task Deep Neural Network. In 3rd International Conference on Nat-

ural Language and Speech Processing, Trento, Italy, September 2019.

URL: https://hal.science/hal-02292945.

[13] M.-F. Moens, E. Boiy, R. Mochales, and C. Reed. Automatic detection

of arguments in legal texts. In pages 225–230, June 2007. DOI: 10.

1145/1276318.1276362.

[14] F. Ruggeri, M. Lippi, and P. Torroni. Tree-constrained graph neural

networks for argument mining. CoRR, abs/2110.00124, 2021. arXiv:

2110.00124. URL: https://arxiv.org/abs/2110.00124.

[15] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: a unified em-

bedding for face recognition and clustering. In 2015 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 815–823,

2015. DOI: 10.1109/CVPR.2015.7298682.

[16] C. Stab and I. Gurevych. Parsing argumentation structures in persuasive

essays. Computational Linguistics, 43(3):619–659, September 2017.

DOI: 10.1162/COLI_a_00295. URL: https://aclanthology.

org/J17-3005.

[17] J. L. Suárez-Díaz, S. García, and F. Herrera. A tutorial on distance met-

ric learning: mathematical foundations, algorithms, experimental anal-

ysis, prospects and challenges (with appendices on mathematical back-

ground and detailed algorithms explanation), 2020. arXiv: 1812.05944

[cs.LG].

[18] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y.

Bengio. Graph attention networks, 2018. arXiv: 1710.10903 [stat.ML].

[19] Wikipedia contributors. Argument mining—Wikipedia, the free ency-

clopedia, 2023. URL: https://en.wikipedia.org/w/index.php?

title=Argument_mining&oldid=1136432600. [Online; accessed

4-July-2023].

[20] Wikipedia contributors. Graph neural network — Wikipedia, the free

encyclopedia, 2023. URL: https://en.wikipedia.org/w/index.

php?title=Graph_neural_network&oldid=1153360761. [Online;

accessed 4-July-2023].

[21] Wikipedia contributors. Parse tree—Wikipedia, the free encyclopedia,

2023. URL: https://en.wikipedia.org/w/index.php?title=

Parse_tree&oldid=1159350944. [Online; accessed 4-July-2023].

[22] Wikipedia contributors. Similarity learning — Wikipedia, the free en-

cyclopedia, 2023. URL: https://en.wikipedia.org/w/index.

php?title=Similarity_learning&oldid=1160866705. [Online;

accessed 4-July-2023].

[23] Wikipedia contributors. Triplet loss — Wikipedia, the free encyclope-

dia, 2023. URL: https://en.wikipedia.org/w/index.php?

title = Triplet _ loss & oldid = 1159315260. [Online; accessed 4-

July-2023].

[24] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A compre-

hensive survey on graph neural networks. IEEE Transactions on Neu-

ral Networks and Learning Systems, 32(1):4–24, January 2021. DOI:

10.1109/tnnls.2020.2978386. URL: https://doi.org/10.

1109%2Ftnnls.2020.2978386.

[25] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec.

Hierarchical graph representation learning with differentiable pooling,

2019. arXiv: 1806.08804 [cs.LG].

