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Introduction

The Nevalinna Pick problem is a complex analysis problem, named after

the Finnish mathematician Rolf Nevanlinna and the Austrian mathematician

Georg Pick.

The question is the following: given initial data consisting of n points

λ1, . . . , λn in the complex unit disc D and target data consisting of n points

z1, . . . , zn in D, can we find an analytic function from the disk into itself that

interpolates the data?

The problem was independently solved independently by Pick in 1916

and by Nevalinna in 1919. Over the years, further generalizations have been

studied and solved and lots of applications in several fields have been found.

In particular, among reproducing kernel Hilbert spaces (RKHS), the ones

which satisfy an analog of the property above are called Pick spaces. There

are many well-known examples of such spaces. Some of their properties fall

within general Pick theory, while other important ones have to be proved

case by case.

From this comes the idea of focusing on the study of a really simple and

concrete space, that will be introduced in Chapter 3. All the results and

proofs about this space which are presented here, are new.

Chapter 1 of this thesis provides an overview of the general theory: we

begin by introducing the fundamental concepts of RKHS and some key ex-

amples. Furthermore, we will present all the notions needed in the other

chapters of this work. The main reference for this chapter is [AgMcC2002].

Chapter 2 introduces the tree model: it is a relatively simple example
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ii INTRODUCTION

of RKHS with complete Pick property constructed on a tree. The main

reference for this chapter is [Ro2019]. As said before, the main results of this

thesis concern the space presented in Chapter 3. It comes as a generalization

of the tree example, taking the tree given by the integers and passing to the

continuous case.

So, in Chapter 3, we present this complete Pick space of functions defined

on the real line. This space is examined in details: many proofs of the

Pick property are presented; interpolating sequences, multipliers, Carleson

measures are characterized; the Corona problem is solved. Lastly, in Chapter

3 we study invariant subspaces in the Pick space under examination.

Finally, Chapter 4 provides additional information about the previous

space, showing some connections with Brownian motion and the Volterra

integral operator.

Some of the results from Chapter 3 where proved in collaboration with

Nikolaos Chalmoukis (Università di Milano-Bicocca), my co-advisor. Some

questions were posed by Michael Hartz (Universität des Saarlandes), my

other co-advisor.
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Chapter 1

General theory

In this first chapter we will discuss some basic notions and results that

will be used later.

1.1 Reproducing kernel Hilbert spaces

Definition 1.1.1. Let X be a set and H be a Hilbert space of functions on

X. H is called a reproducing kernel Hilbert space (RKHS) on X if for

every z ∈ X the linear functional ”evaluation at z” ηz:

H
ηz−−→ C

ηz(f) = f(z)

is bounded on H.

In this thesis all Hilbert spaces under consideration are assumed to be

separable.

Remark 1.1.1. As an application of the Riesz representation theorem, if H

is a RKHS on X, for each z ∈ X, there exists a unique kz ∈ H such that for

every f ∈ H, f(z) = ηz(f) = ⟨f, kz⟩.
Viceversa, if for all z ∈ X it exists kz ∈ H such that for every f ∈ H,

f(z) = ⟨f, kz⟩, then H has the bounded point evaluation property: in fact,

|ηz(f)| = |f(z)| = |⟨f, kz⟩| ≤ ∥f∥H∥kz∥H ,

1



2 1. General theory

i.e. ∥ηz∥H∗ ≤ ∥kz∥H .
Furthermore, ∥kz∥2 = k(z, z) = kz(z) = ηz(kz), which implies ∥ηz∥H∗ ≥

∥kz∥H . We conclude that

∥ηz∥H∗ = ∥kz∥H .

Definition 1.1.2. The function kz is called the reproducing kernel for

the point z. The function

k : X ×X 7→ C

k(z, w) = kw(z)

is called the reproducing kernel for H.

Proposition 1.1.1. Let H be a RKHS with reproducing kernel k. The fol-

lowing properties hold:

1. k(z, w) = k(w, z);

2. k(z, z) = ∥kz∥2;

3. ∥ηz∥H∗ = ∥kz∥H ;

4. if {en}n is any orthonormal basis for H, then for all z, w ∈ X

k(z, w) =
∑
n

en(w)en(z);

5. k is positive semi-definite, i.e. for any choice of z1, . . . , zn ∈ X and

c1, . . . , cn ∈ C,
n∑

i,j=1

cicjk(zi, zj) ≥ 0.

Proof. 1. k(z, w) = kw(z) = ⟨kw, kz⟩ = ⟨kz, kw⟩ = kz(w) = k(w, z).

2. k(z, z) = ⟨kz, kz⟩ = ∥kz∥2.
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3.

∥ηz∥H∗ = sup
f∈H
f ̸=0

|ηz(f)|
∥f∥H

= sup
f∈H
f ̸=0

|f(z)|
∥f∥H

= sup
f∈H
f ̸=0

|⟨f, kz⟩|
∥f∥H

=
∥kz∥2H
∥kz∥H

= ∥kz∥H .

4. As a consequence of the Perseval’s identity,

k(z, w) = ⟨kw, kz⟩

=
∑
n

⟨kw, en⟩⟨en, kz⟩

=
∑
n

en(w)en(z).

5.
n∑

i,j=1

cicjk(zi, zj) =
n∑

i,j=1

cicj⟨kzj , kzi⟩

=

〈
n∑

j=1

cjkzj ,
n∑

i=1

cikzi

〉

=

∥∥∥∥∥
n∑

i=1

cikzi

∥∥∥∥∥
2

≥ 0.

Also the viceversa of property 5 above holds, as stated in the following

theorem.

Theorem 1.1.1. If k : X × X → C is a positive semi-definite and self-

adjoint function, that is not zero on the diagonal, then there exists a unique

Hilbert space of functions on X with k as reproducing kernel.

Proof. Let kz : X → C, kz(·) = k(·, z).
Define H̃ = span{kz : z ∈ X} to be the pre-Hilbert space with the

following inner product:

⟨kx, ky⟩ = k(y, x).

Therefore,

∥
∑

aikzi∥2 =
∑
i,j

aiajk(zj, zi) ≥ 0.



4 1. General theory

We claim that, for some a1, . . . , an ∈ C and z1, . . . zn ∈ X,

∥
∑

aikzi∥ = 0 =⇒
∑

aikzi(z) = 0 ∀z ∈ X.

In fact, wlog let z ∈ {z1, . . . , zn} and consider the following matrix

K =
[
⟨k(zi, zj)⟩

]n
i,j=1

K can be diagonalized because k is linear and self-adjoint. So,

K = R∗∆R,

for some R unitary and ∆ diagonal matrix given by the eigenvalues λ1, . . . , λn

of k.

Since k is positive semi-definite, λi ≥ 0 for every i = 1, . . . , n.

Suppose wlog that λ1, . . . , λm > 0 and λm+1, . . . , λn = 0, for some m ≤ n.

Hence, calling a =


a1
...

an

 and b = Ra,

0 = a∗Ka = a∗R∗∆Ra

= b∗∆b

= λ1|b1|2 + · · ·+ λn|bn|2

= λ1|b1|2 + · · ·+ λm|bm|2.

It follows that b1 = · · · = bm = 0. In particular, we have

0 = ∆b =⇒ 0 = R∗∆b = Ka.

We conclude that

∥
∑

aikzi∥ = 0 =⇒
∑

aikzi(z) = 0 ∀z ∈ X.

Now, it suffices to take H as the completion of H̃ in order to prove the

existence of the Hilbert space.
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To prove the uniqueness of H, let H ′ be another Hilbert space of function

with the same reproducing kernel k. Then the map

U : H → H ′∑
aikzi 7→

∑
aikzi

is an isometry on a dense set. Therefore, it extends to a unitary U : H → H ′

such that (Uf)(z) = f(z), and hence H and H ′ are equal.

Definition 1.1.3. A kernel k : X ×X −→ C is said to be normalized at

z0 ∈ X if k(z, z0) = 1 ∀ z ∈ X.

Remark 1.1.2. Any non-vanishing kernel can be normalized at a point z0 ∈
X in the following way:

k(z, w) =
k(z, w)k(z0, z0)

k(z, z0)k(z0, w)
.

k : X ×X → C is again a reproducing kernel because of Theorem 1.1.1.

The RKHS with normalized kernel is equivalent to the non-normalized

one.

Now, we will present some remarkable examples of RKHS.

1.1.1 The Hardy space

Definition 1.1.4. The Hardy space H2(D) is the space of f on D, with

square summable coefficients, i.e. if f(z) =
∞∑
n=0

anz
n,

H2(D) :=

{
f : D → C : ∥f∥2H2 :=

∞∑
n=0

|an|2 <∞

}
.

Theorem 1.1.2. H2(D) is a RKHS, with the following kernel:

k(z, w) :=
1

1− zw
∀z, w ∈ D,

called Szegö kernel.
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Proof. Let f(z) =
∞∑
n=0

anz
n.

Let’s prove that the evaluation functional ηz is bounded:

|ηz(f)| =

∣∣∣∣∣
∞∑
n=0

anz
n

∣∣∣∣∣
≤

∞∑
n=0

|an||z|n

≤

(
∞∑
n=0

|an|2
) 1

2
(

∞∑
n=0

|z|2n
) 1

2

= ∥f∥H2

1√
1− |z|2

.

So, ηz is bounded, with ∥ηz∥(H2)∗ ≤ 1√
1−|z|2

.

It remains to prove that k(z, w) := 1
1−zw

is the reproducing kernel.

f(z) =
∞∑
n=0

anz
n = ⟨f, kz⟩,

with

kz(w) =
∞∑
n=0

znwn =
1

1− wz
.

1.1.2 The Dirichlet space

Definition 1.1.5. The Dirichlet space D is the space of holomorphic func-

tions f on D, for which the semi-norm

∥f∥2∗ :=
∫
D
|f ′|2 dA

is finite.

With dA we denote the integration with respect to the normalized area

measure, dA = dxdy
π

(if z = x+ iy).

We equip D with the norm

∥f∥2D = ∥f∥2H2 + ∥f∥2∗



1.1 Reproducing kernel Hilbert spaces 7

The inner product is:

⟨f, g⟩D := ⟨f, g⟩H2 +

∫
D
f ′ g′dA.

Theorem 1.1.3. D is a RKHS, with the following kernel:

k(z, w) =
1

zw
log

(
1

1− zw

)
∀z, w ∈ D.

Proof. Let f(z) =
∞∑
n=0

anz
n.

Note that k(z, w) =
1

zw
log

(
1

1− zw

)
=

∞∑
n=0

znwn

1 + n
.

Let’s prove that the evaluation functional ηz is bounded. As in the proof

of Theorem 1.1.2,

|ηz(f)| ≤ ∥f∥H2

1√
1− |z|2

≤ ∥f∥D
1√

1− |z|2
.

So, ηz is bounded, with ∥ηz∥D∗ ≤ 1√
1−|z|2

.

It remains to prove that k(z, w) := 1
zw

log
(

1
1−zw

)
is the reproducing ker-

nel:

⟨f, kz⟩D = ⟨f, kz⟩H2 + ⟨f, kz⟩∗

=
∞∑
n=0

anz
n 1

1 + n
+

∞∑
n=1

anz
n n

1 + n

= a0z
0 +

∞∑
n=1

anz
n 1

1 + n
(1 + n)

=
∞∑
n=0

anz
n = f(z).
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Remark 1.1.3. The estimate ∥ηz∥D∗ ≤ 1√
1−|z|2

obtained in the previous

proof is very rough. We can easily obtain a better one, using the Remark

1.1.1:

∥ηz∥2D∗ = ∥kz∥2D =
1

|z|2
log

1

1− |z|2
.

1.2 Pick property

Among reproducing kernel Hilbert spaces, there are some with an addi-

tional property, called (complete) Pick property.

Definition 1.2.1. The multiplier algebra of a RKHS H of functions on

X is

Mult(H) = {ϕ : X → C s.t. ϕ · f ∈ H ∀ f ∈ H}.

Elements of Mult(H) are called multipliers.

The multiplier norm of a multiplier ϕ is

∥ϕ∥Mult(H) = ∥Mϕ : f 7→ ϕf∥B(H).

Remark 1.2.1. We don’t know a priori if the multiplier norm of a multiplier

is finite. In fact, it is: since point evaluations are bounded, each multiplica-

tion operator Mϕ has closed graph:

let fn → f , fnϕ→ g. Therefore, ∀ z,

fn(z) = ⟨fn, kz⟩ → ⟨f, kz⟩ = f(z)

(fnϕ)(z) = ⟨fnϕ, kz⟩ → ⟨g, kz⟩ = g(z).

So, (fnϕ)(z) → g(z), (fnϕ)(z) → f(z)ϕ(z), which implies that g ≡ fϕ.

Hence each multiplication operator Mϕ is bounded by the closed graph

theorem. Thus, ∥ϕ∥Mult(H) <∞ for all ϕ ∈Mult(H).

Theorem 1.2.1. Let H be a reproducing kernel Hilbert space of functions

on X. Then Mult(H) ⊂ L∞(X).
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Proof. It holds that, ∀ z,
M∗

ϕkz = ϕ(z)kz. (1.1)

In fact, for every f ∈ H,

⟨f,M∗
ϕkz⟩ = ⟨ϕf, kz⟩

= ϕ(z)f(z)

= ϕ(z)⟨f, kz⟩

= ⟨f, ϕ(z)kz⟩.

Then,

|ϕ(z)| ≤ ∥ϕ∥Mult.

Definition 1.2.2. A RKHS H of functions on X with kernel k is said to be

a Pick space if whenever z1, . . . , zn ∈ X and λ1, . . . , λn ∈ D with

[
k(zi, zj)(1− λiλj)

]n
i,j=1

≥ 0,

then there exists Φ ∈Mult(H) with Φ(zi) = λi for 1 ≤ i ≤ n and ∥Φ∥Mult(H) ≤
1.

We will also say that the reproducing kernel k is a Pick kernel.

The matrix above is usually called Pick matrix.

Remark 1.2.2. Note that the positivity of the Pick matrix is a necessary

condition for the interpolation, i.e. if exists Φ ∈ Mult(H) with Φ(zi) = λi

for 1 ≤ i ≤ n and ∥Φ∥Mult(H) ≤ 1, then

[
k(zi, zj)(1− λiλj)

]n
i,j=1

≥ 0.

In fact, if such Φ exists, and we denote by MΦ the multiplication by Φ, then

MΦ is a contraction, i.e. its operator norm is less or equal then 1. Therefore

I −MΦM
∗
Φ ≥ 0.
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In particular, taking v =
n∑
i=i

aikzi , we have

〈
(I −MΦM

∗
Φ)

n∑
j=i

ajkzj ,
n∑
i=i

aikzi

〉
≥ 0.

It holds (1.1):

M∗
Φkzj = Φ(zj)kzj .

Using the previous fact, we obtain〈
(I −MΦM

∗
Φ)

n∑
j=i

ajkzj ,
n∑
i=i

aikzi

〉
=

=

〈
n∑

j=i

ajkzj ,
n∑
i=i

aikzi

〉
−

〈
M∗

Φ

n∑
j=i

ajkzj ,M
∗
Φ

n∑
i=i

aikzi

〉

=
n∑

i,j=i

ajai
〈
kzj , kzi

〉
−

n∑
i,j=i

ajaiwiwj

〈
kzj , kzi

〉
=

n∑
i,j=i

ajai(1− wiwj)
〈
kzj , kzi

〉
≥ 0.

The argument in the previous remark can be generalized if one wants to

do matrix interpolation. Let Cs and Ct be respectively a s-dimensional and

a t-dimesional Hilbert space with a fixed basis, where t and s can be finite

or countably infinite. Let Ms×t denote the s-by-t matrices (if s = t we write

simply Ms).

For the interpolation problem, instead of choosing values λ1, . . . , λn ∈ D,
one can choose operators Λ1, . . . ,Λn ∈ B(Cs,Ct).

We will need the definition of tensor product between Hilbert spaces:

Definition 1.2.3. Let (H1, ⟨·, ·⟩H1), (H2, ⟨·, ·⟩H2) be two Hilbert spaces. Set-

ting

⟨f1 ⊗ f2, g1 ⊗ g2⟩ = ⟨f1, g1⟩H1⟨f2, g2⟩H2 ,

and extending to sums, we obtain an inner product on the tensor product

H1 ⊗ H2. By taking its completion, we obtain a new Hilbert space, still

denoted by H1 ⊗H2 and called Hilbert space tensor product.
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In particular, we will consider the Hilbert space tensor product H ⊗ Cn,

for some n ∈ N.
Moreover, we have the following definition for multidimensional multipli-

ers:

Definition 1.2.4. Let H be a Hilbert space of functions on X, Φ ∈Mult(H⊗
Ct, H ⊗ Cs) is a function

Φ : X → B(Ct,Cs)

with the property that

ΦF ∈ H ⊗ Cs ∀ F ∈ H ⊗ Ct.

The norm of this multiplier is

∥Φ∥Mult = sup
F∈B1(H⊗Ct)

∥ΦF∥H⊗Ct ,

where B1(H ⊗ Ct) is the unitary ball of the space.

In the following we will write also Φ ∈ Mt,s(Mult(H)), instead of Φ ∈
Mult(H ⊗ Ct, H ⊗ Cs).

Definition 1.2.5. A RKHS H of functions on X with kernel k is said to

have the Ms×t Pick property if, for every z1, . . . , zn ∈ X and Λ1, . . . ,ΛN ∈
Ms×t(C) with [

k(zi, zj)(I − ΛiΛ
∗
j)
]n
i,j=1

≥ 0,

then there exists Φ ∈ Mult(H ⊗ Ct, H ⊗ Cs) with Φ(zi) = Λi for 1 ≤ i ≤ n

and ∥Φ∥Mult ≤ 1.

Definition 1.2.6. A RKHS H of functions on X with kernel k is said to

be a complete Pick space if has the Ms×t Pick property for all positive

integers s and t.

We will also say that the reproducing kernel k is a complete Pick ker-

nel.
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1.3 Complete Pick spaces characterization

There are some useful criteria to establish if a reproducing kernel Hilbert

space has the complete Pick property or not.

Definition 1.3.1. A kernel k on a set X is called irreducible if

1. kx and ky are linearly independent for every x ̸= y;

2. k(x, y) ̸= 0 for all x, y ∈ X.

The following theorem by McCullough and Quiggin (see Theorem 7.6 in

[AgMcC2002]), gives us a necessary and sufficient condition for our space to

be Pick complete.

To prove it we will need the following Kurosh’s theorem (see [Ae90]),

Parrott’s lemma (see [Par78]) and Schur’s product theorem (see [Sch18]).

Theorem 1.3.1. The limit of an inverse spectrum S = {Xα, π
α
β , A} of non-

empty compacta is a non-empty compactum.

In plain words, what does the statement tell us? An inverse spectrum

S = {Xα, π
α
β , A} is given by a directed set A such that for each element

α ∈ A there is a compact set Xα and for all β ⪯ α there exists πα
β : Xα → Xβ

continuous map with the following addictional property: if γ ⪯ β ⪯ α, then

πβ
γ ◦ πα

β = πα
γ .

The limit of an inverse spectrum is the subset of the direct product con-

sisting of those elements xα satysfing πα
β (xα) = xβ ∀ β ⪯ α.

The theorem tells us that this limit is non empty.

Proof. Let X =
∏
{Xα : α ∈ A} and pα : X → Xα be the projection. Set

Xβα = {Y ∈ X : pβ(Y ) = πα
βpα(Y )}

and ∏
α

=
⋂
β≺α

Xβα.
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This set is closed inX. Furthermore, the set is not empty because it coincides

with the product (∏
β⪯α

πα
β (Xα)

)
×
∏
β ̸⪯α

Xβ.

Thus,

{∏
α

}
is a centered system of non-empty closed subsets of the com-

pactum X, i.e. it has the finite intersection property. By definition,

limS =
⋂
α

{Xβα, α, β ∈ A, β ⪯ α},

so we obtain that limS =
⋂
α

∏
α

̸= ∅.

Lemma 1.3.1. Let H1, K1, H2, K2 be Hilbert spaces and A ∈ B(H1, K1), B ∈
B(H2, K2), C ∈ B(H1, K2) be given operators. Then

inf

∥W∥ : W =

H1 H2

K1

K2

(
A B

C D

)
, D ∈ B(H2, K2)


is the maximum of ∥∥∥(A B

)∥∥∥
and ∥∥∥∥∥

(
A

C

)∥∥∥∥∥ .
Proof. Let ρ be the infimum of the norms of W ’s. The norm D → ∥W∥ is a

continuous function of D, so there is a choice of D for which ρ is attained.

Let’s consider

W =

(
A B

C D

)
such that ∥W∥ = ρ.

Let P : H1⊕H2 → H1, Q : K1⊕K2 → K1 be the orthogonal projections.

We wish to prove

ρ = max{∥QW∥, ∥WP∥}.
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Wlog suppose max{∥QW∥, ∥WP∥} =1. Suppose by contradiction that

ρ > 1, but max{∥QW∥, ∥WP∥} ≤ 1. We divide three cases according to the

size of the spaces:

1. Assume H1, H2, K1, K2 are all finite dimensional and dim(H2) = 1.

Choose v unit vector in the kernel of ρ2 −W ∗W . Let u be any vector

in H2. For any complex number c and any t ∈ K2,

∥W + c[t⊗ u]∥ ≥ ρ, (1.2)

by minimality of W .

The space on which W attains its norm is {Cv}, because

ρ = ∥W∥ = sup
∥y∥=1

∥Wy∥ = sup
∥y∥=1

⟨y,W ∗Wy⟩1/2

if and only if (ρ2 −W ∗W )(y) = 0.

Therefore, looking again at (1.2),

ρ2 ≤ ∥W + c[t⊗ u]∥2

= ∥W∥+ |c|2∥t∥2∥u∥2 + 2ℜ(⟨W, c[t⊗ u]⟩)

which could be false for c small unless

[t⊗ u]v ⊥ Wv.

This means that

0 = ⟨[t⊗ u]v,Wv⟩

= ⟨⟨v, u⟩t,Wv⟩

= ⟨v, u⟩⟨t,Wv⟩,

which implies that ⟨v, u⟩ = 0 or ⟨t,Wv⟩ = 0.

If ⟨t,Wv⟩ = 0 for all t, then Wv would be orthogonal to K2, and hence

ρ = ∥Wv∥ = ∥QWv∥ ≤ 1,
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which is a contradiction.

It follows that it must exists a t such that ⟨v, u⟩ = 0. Remember that

u was an arbitrary vector of H2, and this forces v to be a vector of H1,

and hence

ρ = ∥Wv∥ = ∥WPv∥ ≤ 1,

which is again a contradiction.

2. Assume now H1, H2, K1, K2 all finite dimensional. Let’s consider an

increasing sequence of subspaces of H2

L1 ⊆ L2 ⊆ . . . LN = H2

such that dim(Li) = i for all i = 1, . . . N . Inductively, choose Di ∈
B(Li, K2) so that∥∥∥∥∥

(
A B|Li

C Di

)∥∥∥∥∥ = max

{∥∥∥(A B|Li

)∥∥∥ ,∥∥∥∥∥
(
A B|Li−1

C Di−1

)∥∥∥∥∥
}
.

3. None of the spaces need to be finite dimensional. Choose increasing

finite dimensional subspaces H i
1, H

i
2, K

i
1, K

i
2 whose union is dense in the

whole space. Define Di inductively at each stage as before, and then

take the weak∗ limit.

Theorem 1.3.2. If A and B are both positive semi-definite N-by-N matri-

ces, then so is A ·B.

Here A ·B is the Schur product of A and B, i.e. (A ·B)ij = AijBij.

Proof. By decomposing A and B as sums of dyads, whose existence is guar-

anteed by the spectral theorem, assume A =
∑
i

aiuiu
∗
i and B =

∑
i

biviv
∗
i .

Then

A ·B =
∑
ij

aibj(uiu
∗
i ) · (vjv∗j ) =

∑
ij

aibj(ui · vj)(ui · vj)∗

Each (ui · vj)(ui · vj)∗ is a positive semi-definite matrix. Also aibj > 0, and

we conclude that A ·B is positive semi-definite.
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Theorem 1.3.3. A necessary and sufficient condition for an irreducible ker-

nel k to be a complete Pick kernel is that, for any finite set {λ1, . . . , λN} of

N distinct elements of X, the (N − 1)-by-(N − 1) matrix

FN =

(
1− kiNkNj

kijkNN

)N−1

i,j=1

is positive semi-definite.

Proof. Assume λ1, . . . , λN−1 are given points in X and W1, . . . ,WN−1 are

s× t matrices chosen so that[
k(λi, λj)(Is×s −WiW

∗
j )
]N−1

i,j=1
≥ 0. (1.3)

By definition, k is Pick complete if and only if there exists a Φ ∈Ms,t(Mult(H))

with Φ(λi) = Wi for i = 1, . . . , N − 1 and (∗) ∥Φ∥Mult ≤ 1 .

Condition (∗) holds if and only if

[k(ζ, λ)(Is×s − Φ(ζ)Φ(λ)∗)] (1.4)

is a positive definite function on X ×X.

In fact, given T an arbitrary operator,

∥T∥ ≤ 1 ⇔ sup
∥x∥=1

∥T (x)∥2 ≤ 1

⇔ sup
∥x∥=1

∥T ∗(x)∥2 ≤ 1

⇔ sup
∥x∥=1

⟨T ∗x, T ∗x⟩ ≤ 1

⇔ sup
∥x∥=1

⟨TT ∗x, x⟩ ≤ 1

⇔ sup
∥x∥=1

(⟨x, x⟩ − ⟨TT ∗x, x⟩) ≥ 0

⇔ I − TT ∗ ≥ 0.

If, given (1.3), and any distinct node λN , one could always find a matrix

WN so that [
k(λi, λj)(Is×s −WiW

∗
j )
]N
i,j=1

≥ 0, (1.5)
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then (1.4) could be satisfied on any finite set, and hence, by Theorem 1.3.1,

one could find a Φ satisfying (1.4) on all of X ×X.

In fact, let A be the directed set of all finite subsets ofX, partially ordered

by inclusion. For each α ∈ A let Yα be the set of all maps Φ from α to H

that satisfy (1.4). Therefore Yα is a compact set with respect to the weak

topology, because for any λ ∈ X, Φ(λ) is in the closed ball of radius 1, which

is weakly compact.

Finally, if β ⪯ α, let πα
β be the restriction map.

Applying Theorem 1.3.1, we get that the inverse limit of this system is

not empty. This means that exists a Φ satisfying (1.4) on all X ×X.

Let’s find out which conditions garantee that for any λN exists WN so

that (1.4) holds.

Let {uα}sα=1 be a basis of Cs and

MN−1 := ∨{ki ⊗ uα : 1 ≤ i ≤ N − 1, 1 ≤ α ≤ s}.

Define

R : MN−1 → MN−1

ki ⊗ uα 7→ ki ⊗W ∗
i u

α

and extend it by linearity.

Then R is a contraction if and only if, for every sequence {aαi } of scalars,

0 ≤

〈
(I −R∗R)

∑
j,β

aβj kj ⊗ uβ,
∑
i,α

aαi ki ⊗ uα

〉
=

=
∑
i,j,α,β

aβj a
α
i kij(⟨uβ, uα⟩ − ⟨WiW

∗
j u

β, uα⟩)

(that is (1.3)).

For each choice of W = WN we get an extension RW of R on MN such

that

RW : kN ⊗ uα 7→ kN ⊗W ∗uα.

We have to determine whether there is some W for which RW is a con-

traction.
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On MN , consider P the orthogonal projection onto MN−1. Define Q in

∨{ki ⊗ Ct : 1 ≤ i ≤ N} to be the orthogonal projection onto the orthogonal

complement of CkN ⊗ Ct.

Decompose RW as

P P⊥

Q

Q⊥

(
QRWP QRWP

⊥

RWP Q⊥RWP
⊥

)
(1.6)

To calculate Q⊥RWP
⊥, let ξi be a dual basis to ki, so

⟨ki, ξj⟩ = δij, ∀ i, j = 1, . . . , N.

(A dual basis exists because k is an irreducible kernel). Write

ξN =
N∑
i=1

ciki.

Then

RWP
⊥ξN ⊗ uα =

N−1∑
i=1

ciki ⊗W ∗
i u

α + cNkN ⊗W ∗uα,

so

Q⊥RWP
⊥ξN ⊗ uα = kN ⊗

[
N−1∑
n=1

ci
kNi

kNN

W ∗
i + cNW

∗

]
uα.

As we are free to choose W (and cN ̸= 0 again because k is an irreducible

kernel), the (2,2) entry of the matrix (1.6) can be chosen arbitrarily.

The other 3 entries do not depend on the choice of W . In fact, using the

computation above,

QRWP
⊥ξN ⊗ uα = Q

[
N−1∑
i=1

ciki ⊗W ∗
i u

α + cNkN ⊗W ∗uα

]

= Q

N−1∑
i=1

ciki ⊗W ∗
i u

α,

so QRWP
⊥ does not depend on W .

Therefore, the smallest norm of (1.6) is the same as the smallest norm of

a matrix completion of
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P P⊥

Q

Q⊥

(
QRWP QRWP

⊥

RWP ∗

)
(1.7)

Using Lemma 1.3.1, we obtain that

inf
W∈Ms×t

∥RW∥ = max(∥RWP∥, ∥QRW∥)

= max(∥R∥, ∥QRW Q̃∥),

where Q̃ is the analogous operator to Q in MN , i.e. the projection onto the

orthogonal complement of CkN ⊗ Cs. In fact,

RWQ
⊥ = Q⊥RW Q̃

⊥, Q⊥ = I −Q, Q̃⊥ = I − Q̃

implies that

QRW = Rw −RwQ
⊥ = RW −Q⊥RW Q̃

⊥ = QRW Q̃.

We initially wanted to determine whether RW is a contraction. Hav-

ing assumed that R is a contraction, using the last equality we are left to

determine whether QRW Q̃ is, i.e.

Q− Q̃R∗
WQQRW Q̃ ≥ 0.
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This is a (N − 1)s× (N − 1)s matrix which entries are:

⟨[Q− Q̃R∗
WQQRW Q̃]kj ⊗ uβ, ki ⊗ uα⟩ =

=⟨Qkj ⊗ uβ, ki ⊗ uα⟩ − ⟨Q̃R∗
WQQRW Q̃kj ⊗ uβ, ki ⊗ uα⟩

=⟨Qkj ⊗ uβ, ki ⊗ uα⟩ − ⟨QRW Q̃kj ⊗ uβ, QRW Q̃ki ⊗ uα⟩

=

〈(
kj −

⟨kj, kN⟩
∥kN∥2

kN

)
⊗ uβ, ki ⊗ uα

〉
−
〈
QRW

(
kj −

⟨kj, kN⟩
∥kN∥2

kN

)
⊗ uβ, QRW

(
ki −

⟨ki, kN⟩
∥kN∥2

kN

)
⊗ uα

〉
=

〈
kj −

⟨kj, kN⟩
∥kN∥2

kN , ki

〉
⟨uβ, uα⟩ −

〈
QRWkj ⊗ uβ, QRWki ⊗ uα

〉
=

(
kij −

kiNkNj

kNN

)
⟨uβ, uα⟩ − ⟨Qkj, Qki⟩⟨W ∗

j u
β,W ∗

i u
α⟩

=

(
kij −

kiNkNj

kNN

)
⟨uβ, uα⟩ −

〈
kj −

kNj

kNN

kN , ki −
kiN
kNN

kN

〉
⟨WiW

∗
j u

β, uα⟩

=

(
kij −

kiNkNj

kNN

)
⟨uβ, uα⟩ −

(
kij +

kNjkiN
k2NN

kNN

)
⟨WiW

∗
j u

β, uα⟩

=kij(⟨uβ, uα⟩ − ⟨WiW
∗
j u

β, uα⟩)− kiNkNj

kNN

(⟨uβ, uα⟩ − ⟨WiW
∗
j u

β, uα⟩)

=[⟨(I −WiW
∗
j )u

β, uα⟩kij]
[
1− kiNkNj

kNNkij

]
where we have used the fact that Q̃kN ⊗ v = 0 for any v.

So, we have obtained that

Q− Q̃R∗
WQQRW Q̃ = [(Is×s −WiW

∗
j )k(λi, λj)] · [FN ⊗ J ], (1.8)

where J is the s-by-s matrix all of whose entries are 1 (with respect to

{uα} and · denotes the Schur product between the two matrices, that is the

entrywise product.

Hence, if FN is positive, then FN ⊗ J is positive and by Theorem 1.3.2,

(1.8) is positive whenever (1.3) holds. In this case QRW Q̃ is a contraction.

Therefore positivity of FN is a sufficient condition for k to be a complete

Pick kernel.

It remains to prove that it is also a necessary condition to conclude the

proof.
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Let’s do it by induction on N .

If N = 2 ,

F2 = 1− k12k21
k11k22

and k12k21 ≤ k11k22 by Cauchy Schwarz.

Let’s assume now that FN−1 is positive and let’s prove that FN is positive

too.

Let G be any positive (N−1)-by-(N−1) matrix. Let s = 1 and t = N−1.

Choose vectors vi ∈ Ct so that

Gij = ⟨vj, vi⟩,

and let W ∗
i ∈ B(C,Ct) be the matrix that sends 1 to vi.

Then (1.3) is

kij(1−Gij).

If K is the matrix (kij), from the discussion above it followsG ≥ 0

[K · (J −G)] ≥ 0
⇒ FN · [K · (J −G)] ≥ 0.

Let H be the (N − 1)-by-(N − 1) matrix whose entries are

Hij =
ki(N−1)k(N−1)j

k(N−1)(N−1)

Note that H has rank one because the j-th row can be obtained by the i-th

one by multiplication for
kj(N−1)

ki(N−1)
, given the fact that ki(N−1) ̸= 0 because of

the irriducibility of k.

Let G be the (N − 1)-by-(N − 1) matrix whose entries are

Gij = 1− Hij

kij
.

Therefore,

G =


FN−1

0

0
...

0 0 . . . 0


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that is positive by induction hypothesis. Moreover,

K · (J −G) = H ≥ 0.

Therefore FN ·H is positive.

But H has rank one, and no entries are 0, so the matrix 1
H

is also positive

and again using the Theorem (1.3.2) with

FN = FN ·H · 1

H
,

we conclude that FN is positive.

Another necessary and sufficient condition is given by the following the-

orem:

Theorem 1.3.4. An irriducible kernel k on X has the complete Pick property

if and only if, for any finite set of distinct points λ1, . . . , λN , the matrix

LN :=

(
1

kij

)N

i,j=1

has exactly one positive eigenvalue.

Proof. The matrix LN is congruent to(
1
kij

− kNN

kiNkNj
0

0 1
kNN

)
.

In fact,
IN−1

−kNN

k1N
...

− kNN

kN−1N

0 . . . 0 1

 LN


IN−1

0
...

0

−kNN

kN1
. . .− kNN

kNN−1
1

 =

=


IN−1

−kNN

k1N
...

− kNN

kN−1N

0 . . . 0 1




1
kij

1
k1N
...
1

kN−1N

1
kN1

. . . 1
kNN−1

1
kNN




IN−1

0
...

0

−kNN

kN1
. . .− kNN

kNN−1
1


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=



1
k11

− kNN

k1NkN1
. . . 1

k1N−1
− kNN

k1NkNN−1
0

1
k21

− kNN

k2NkN1
. . . 1

k2N−1
− kNN

k2NkNN−1
0

... . . .
...

...
1

kN−11
− kNN

kN−1NkN1
. . . 1

kN−1N−1
− kNN

kN−1NkNN−1
0

1
kN1

. . . 1
kNN−1

1
kNN




IN−1

0
...

0

−kNN

kN1
. . .− kNN

kNN−1
1



=


1

k11
− kNN

k1NkN1
. . . 1

k1N−1
− kNN

k1NkNN−1
0

... . . .
...

...
1

kN−11
− kNN

kN−1NkN1
. . . 1

kN−1N−1
− kNN

kN−1NkNN−1
0

0 . . . 0 1
kNN


The top left entry is the Shur product of FN with the rank one negative

matrix

− kNN

kiNkNj

.

In fact, (FN)ij = 1− kiNkNj

kijkNN
and(

1− kiNkNj

kijkNN

)
·
(
− kNN

kiNkNj

)
=

1

kij
− kNN

kiNkNj

.

We conclude that LN has one positive eigenvalue (1/kNN) if and only if FN

is positive semi-definite.

There is another characterization of complete Pick spaces given by the

following Theorem (see for example [AgMcC2002]).

Theorem 1.3.5. Suppose k is an irreducible kernel on the set X. Then k has

the complete Pick property if and only if there exists a positive semi-definite

function G : X×X → D and a nowhere vanishing function δ on X such that

k(ζ, λ) =
δ(ζ)δ(λ)

1−G(ζ, λ)
. (1.9)

Proof. ⇐) If k(ζ, λ) = δ(ζ)δ(λ)
1−G(ζ,λ)

, then

1

k(ζ, λ)
=

1

δ(ζ)δ(λ)
− G(ζ, λ)

δ(ζ)δ(λ)
.

So 1
k
is a rank one matrix minus a positive semi-definite matrix, and

by Theorem (1.3.4) k has the complete Pick property.
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⇒) Suppose now that k has the complete Pick property. Fix any point λ0

in X. Then

G(ζ, λ) := 1− k(ζ, λ0)k(λ0, λ)

k(ζ, λ)k(λ0, λ0)

is positive semi-definite by Theorem 1.3.3. Let

δ(λ) :=
k(λ0, λ)√
k(λ0, λ0)

.

Then (1.9) holds by construction.

By Cauchy-Schwarz |k(ζ, λ0)|2 ≤ k(ζ, ζ)k(λ0, λ0), so it follows that

G(ζ, ζ) is in the interval [0, 1) for all ζ (it cannot attain the value 1

because k is irreducible). Therefore, as G is positive semi-definite, we

have |G(ζ, λ)| < 1 for all ζ and λ.

Now we are going to prove that the previous examples of RKHS have the

complete Pick property. To do that, we are going to need some theorems.

Theorem 1.3.6. Suppose H is a holomorphic reproducing kernel Hilbert

space on D with

k(ζ, λ) =
∞∑
n=0

anλ
n
ζn.

Let the Taylor coefficients of 1
k
at zero be

1∑∞
n=0 ant

n
=

∞∑
n=0

cnt
n.

Then H has the complete Pick property if and only if

cn ≤ 0 ∀ n ≥ 1.

Proof. ⇐) Let’s assume that a0 = 1 = c0, and cn ≤ 0 for all n ≥ 1. Then

1− 1

k(ζ, λ)
=

∞∑
n=1

(−cn)λ
n
ζn,
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so

k(ζ, λ) =
1

1−
∑∞

n=1(−cn)λ
n
ζn

and we conclude that the kernel has the complete Pick property by

Theorem 1.3.5 with δ = 1 and G(ζ, λ) =
∑∞

n=1(−cn)ζnλ
n
.

⇒) Again we assume that a0 = 1 = c0.

Suppose that exists N s.t. cN > 0 and c1, . . . , cN−1 ≤ 0. Choose ϵ > 0

enough small so that
∞∑

N+1

|cn|ϵ2n < ϵ2NcN (1.10)

Let

ω = e
2πi
N

be a root of unity.

Select points λj by

λj = ϵωj, 1 ≤ j ≤ N

λN+1 = 0.

Then

(FN+1)ij = 1−
ki(N+1)k(N+1)j

kijk(N+1)(N+1)

= 1− ki(N+1)k(N+1)j

(
∞∑
n=0

cnλj
n
λni

)(
∞∑
n=0

cnλ(N+1)
n
λn(N+1)

)

= 1− a20c0

(
∞∑
n=0

cnλj
n
λni

)

= −

(
N−1∑
n=1

cnϵ
nω−njϵnωni + cNϵ

Nω−NjϵNωNi +
∞∑

n=N+1

cnϵ
nω−njϵnωni

)

=
N−1∑
n=1

(−cn)ϵ2nωn(i−j) − cNϵ
2N −

∞∑
n=N+1

(cn)ϵ
2nωn(i−j).
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Now note that (FN+1)ij is given by the sum for n = 1, . . . , N − 1 of

−(cn)ϵ
2n



1

ωn

ω2n

...

ω(N−1)n


⊗



1

ω−n

ω−2n

...

ω−(N−1)n


plus

−(cN)ϵ
2N



1

1

1
...

1


⊗



1

1

1
...

1


plus the other terms.

Each of the firstN−1 matrices has only one (non zero) positive eigenvalue,

that is −cnϵ2nN , whose eigenvector is



ω(N−1)n

ω(N−2)n

ω(N−3)n

...

1


.

TheN -th matrix has only one (non zero) negative eigenvalue, that is−cNϵ2NN ,

whose eigenvector is 

1

1

1
...

1


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That eigenvectors are orthogonal. In fact,

〈


ω(N−1)n

ω(N−2)n

ω(N−3)n

...

1


,



ω(N−1)m

ω(N−2)m

ω(N−3)m

...

1


〉

= ωN(n+m)

N∑
k=1

w−k

=
1− ω−(N+1)

1− w−1
− 1

=
ω−N + 1

ω − 1
= 0.

Hence, it follows that the matrix given by the sum of the first N matrices

has one negative eigenvalue.

By inequality (1.10), the sum of the other terms (from the (N+1)-st one)

has norm less than cNϵ
2NN , so adding these terms cannot eliminate the

negative eigenvalue.

We conclude that FN+1 is not positive definite and therefore the kernel

cannot have the complete Pick property.

Corollary 1.3.6.1. The Hardy space H2 has the complete Pick property.

Proof. The reciprocal of the Szegö kernel is

1

k(ζ, λ)
= 1− λζ.

To prove that the Dirichlet space has the complete Pick property we are

going to use the following Lemma, due to Kaluza (see [AgMcC2002] for a

proof).

Lemma 1.3.2. Suppose a0 = 1 and an are strictly positive numbers satisfying

an
an−1

≤ an+1

an
∀ n ≥ 1.

Then cn < 0 for all n ≥ 1, where cn is defined by

1∑∞
n=0 ant

n
=

∞∑
n=0

cnt
n.
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Proof. Consider

∞∑
n=0

cnt
n

∞∑
n=0

ant
n =

∞∑
n=0

n∑
k=0

ckt
kan−kt

n−k

=
∞∑
n=0

n∑
k=0

ckan−kt
n.

For m ≥ 1, the coefficients of tm and tm+1 are

m∑
k=0

ckam−k = c0am + c1am−1 + · · ·+ cma0 = 0 (1.11)

and
m+1∑
k=0

ckam+1−k = c0am+1 + c1am + · · ·+ cm+1a0 = 0. (1.12)

Multiplying (1.11) by am+1

am
and subtract from (1.12), we get

0 = c0am+1 + c1am + · · ·+ cm+1a0 − c0am+1 − c1
am+1am−1

am
− cm

am+1a0
am

= c1

(
am − am+1am−1

am

)
+ · · ·+ cm

(
a1 −

am+1a0
am

)
+ cm+1.

It follows that

cm+1 = cm

(
am+1a0
am

− a1

)
+ · · ·+ c1

(
am+1am−1

am
− am

)
= cma0

(
am+1

am
− a1
a0

)
+ · · ·+ c1am−1

(
am+1

am
− am
am−1

)
.

As c1 = −a1 < 0, and all the term in the parentheses are non-negative, it

follows by induction that cm < 0 for all m ≤ 1.

Corollary 1.3.6.2. The Dirichlet space D has the complete Pick property.

Proof. Recall that the Dirichlet kernel is

k(z, w) =
1

zw
log

(
1

1− zw

)
=

∞∑
n=0

znwn

1 + n

Therefore, an = 1
1+n

.

an
an−1

=
n

1 + n
≤ n+ 1

n+ 2
=
an+1

an
,
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and by applying Lemma 1.3.2 and Theorem 1.3.6 we conclude that D has

the complete Pick property.

We are now going to introduce the Drury-Arveson space, which in many

ways generalizes the classical Hardy space H2.

Definition 1.3.2. Let Bd = {z ∈ Cd : ∥z∥2 < 1}.
The Drury-Arveson space is the RKHS on Bd with reproducing kernel

h(z, w) =
1

1− w · z
.

Remark 1.3.1. The Drury-Arveson space has the complete Pick property.

In fact, we can apply Theorem 1.3.5, with b ≡ 1, G(z, w) = w · z.

The Drury-Arveson space is ”universal” among those Pick spaces, in the

sense of the following Theorem, due to Agler and McCarthy (see for example

[AgMcC2002]).

Theorem 1.3.7. A RKHS H on a set X with irreducible kernel k is a

complete Pick space if and only if, for some 1 ≤ d ≤ ∞, there is an injection

F : X → Bd and a nowhere-vanishing function δ on X such that

k(ζ, λ) = δ(ζ)δ(λ)h(F (ζ), F (λ)). (1.13)

Moreover, the map

kλ 7→ δ(λ)[h]F (λ)

extends to an isometric linear embedding of H into δH2
d .

Proof. ⇐) It follows by Theorem 1.3.5.

⇒) Represent k as in Theorem 1.3.5,

k(ζ, λ) =
δ(ζ)δ(λ)

1−G(ζ, λ)
.

Let d ≥ rank(G). Then, there is a map F from X into a d-dimensional

Hilbert space M so that

G(ζ, λ) = ⟨F (ζ), F (λ)⟩. (1.14)



30 1. General theory

In fact, define F̃ : X →M by F̃ (λ) = Gλ. Fix some orthonormal basis

{eα} for M . Define the conjugate linear operator C by

C
(∑

cαe
α
)
=
∑

cαe
α.

Now define F (λ) = CF̃ (λ). Therefore we obtain (1.14).

As G takes values in D, it follows that the range of F is contained in

the unit ball Bd. Therefore (1.13) holds.

It says that the map

kλ(·) 7→
δ(λ)

1− ⟨F (λ), F (·)⟩
extends linearly to an isometry on the span of {kλ : λ ∈ X}, and hence

gives an isometric embedding of H into δH2
d .

It remains to prove that F is injective: suppose that F (λ1) = F (λ2).

Then, kλ1 and kλ2 are linearly dependent. As complete Pick kernels are

positive definite functions, it follows that λ1 = λ2.

Corollary 1.3.7.1. A RKHS H on a set X with normalized kernel k is a

complete Pick space if and only if, for some 1 ≤ d ≤ ∞, there is an injection

F : X → Bd such that

k(ζ, λ) = h(F (ζ), F (λ)). (1.15)

Moreover, the map

kλ 7→ [h]F (λ)

extends to an isometric linear embedding of H into H2
d .

1.4 Interpolating sequences

In this section we are going to talk about interpolating sequences, that

are sequences for which one can choose functions values independently in

every point. We will first give some definitions and then some characterizing

theorems.
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Definition 1.4.1. Let k be a kernel on a set X, {λi} be a sequence of dis-

tinct points in X. Let gi = ki
∥ki∥ be the normalized kernel functions. The

Grammian associated to the sequence {λi} is the infinite matrix

Gij = ⟨gj, gi⟩ =
kij

∥ki∥∥kj∥
.

Definition 1.4.2. Given X a space and k a kernel on X, define

d(λ1, λ2) =

√
1− |k(λ1, λ2|2

k(λ1, λ1)k(λ2, λ2)
,

which is a pseudo-metric on X, called Gleason distance.

Definition 1.4.3. Let H be a RKHS of function on X. A sequence {λn}n
in X is ϵ-weakly separated if there exists a constant ϵ > 0 such that,

whenever i ̸= j, there exists a function Φij in Mult(H), with ∥Φij∥Mult ≤ 1,

that satisfies Φij(λi) = ϵ,Φij(λj) = 0.

The sequence is d-separated if there exists a constant ϵ > 0 such that,

whenever i ̸= j, d(λi, λj) > ϵ, where d is the Gleason distance.

The sequence is strongly separated if there exists a constant ϵ > 0 such

that, for every i there is a function Φi in Mult(H), with ∥Φi∥Mult ≤ 1, that

satisfies Φi(λi) = ϵ,Φi(λj) = 0 for all j ̸= i.

Remark 1.4.1. If H is a Pick space, {λn}n is a weakly separated sequence

if and only if is a d-separated sequence.

Definition 1.4.4. Let H be a RKHS on X. A sequence {λi}i ⊂ X is an

interpolating sequence for Mult(H) if the map

Mult(H) → l∞

ϕ 7→ (ϕ(λn)),

is surjective.

Definition 1.4.5. Let H be a RKHS on X. A sequence {λi}i ⊂ X is a

simply interpolating sequence for H if the range of the following map

H → l2

f 7→ f(λi)

∥kλi
∥
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contains l2.

The sequence {λi}i ⊂ X is a universally interpolating sequence for

H if the range of the same map is equal to l2. It is equivalent to have the

Grammian matrix bounded above and below.

Remark 1.4.2. Of course, a universally interpolating sequence is simply

interpolating too, but the viceversa in general is not true.

Moreover, in a Pick space the set of universally interpolating sequences

and the set of multiplier interpolating sequences coincides.

Definition 1.4.6. Let H be a RKHS of functions on X. A measure µ on X

is a Carleson measure for H if there exists a constant M > 0 such that∫
|f |2dµ ≤M2∥f∥2 ∀ f ∈ H.

The least M is called Carleson constant of µ.

Definition 1.4.7. Let H be a RKHS of functions on X, with kernel k. A

sequence {λn}n in X is said to be a Carleson sequence if∑
n

δλn

∥kn∥2

is a Carleson measure for H.

Proposition 1.4.1. Let {λi} be a sequence in X. The following are equiva-

lent:

1. The associated Grammian is bounded;

2. {λi} satisfies the Carleson measure condition.

Proof. Note that

∥G∥ ≤M2 ⇔ ∥
∑

aigi∥2 ≤M2
∑

|ai|2

for any sequence {ai} of scalars.
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1.⇒ 2. Let f ∈ H and

ai =
f(λi)

∥ki∥
.

Then,

∑
|ai|2 =

∑ |f(λi)|2

∥ki∥2

= ⟨f,
∑

aigi⟩

≤ ∥f∥∥
∑

aigi∥

≤M∥f∥
[∑

|ai|2
]1/2

.

2.⇒ 1. ∥∥∥∑ aigi

∥∥∥2 = sup
∥f∥=1

|⟨f,
∑

aigi⟩|

= sup
∥f∥=1

∣∣∣∣∑ f(λi)ai
∥ki∥

∣∣∣∣
≤ sup

∥f∥=1

[∑ |f(λi)|2

∥ki∥2

] 1
2 [∑

|ai|2
] 1

2

≤M
[∑

|ai|2
] 1

2
.

The following theorem gives an important characterization of interpo-

lating sequences. The proof is quite complicated, so here is omitted (see

[AHMCR17] for it).

Theorem 1.4.1. In any normalized complete Pick space, {λn}n is a univer-

sally interpolating sequence if and only if is weakly separated and Carleson.

Corollary 1.4.1.1. In a normalized complete Pick space, if {λi} is a weakly

separated sequence whose Grammian is bounded above, then its Grammian is

also bounded below.



34 1. General theory

1.5 Invariant subspaces

By a subspace of a Hilbert space, we mean a closed linear subspace.

Definition 1.5.1. Let H be a Hilbert space and T an operator on H. M ⊆ H

is an invariant subspace of T if TM ⊆M .

There is a characterization of the invariant subspaces of the Hardy space

under the multiplication by the unilateral shift, due to Beurling ([Beu49],

[Hel64])

Theorem 1.5.1. Let S be the unilateral shift on H2, i.e.

(Sf)(z) = zf(z).

Let M be a non-zero closed subspace of H2, invariant under S. Then there

is a function ψ in H2 of modulus 1 a.e., such that M = ψH2.

Proof. Let M be a non-zero S-invariant subspace. Hence, SM ⊆ M and

the containment is proper: in fact, if not, M would be invariant also by the

multiplication by z and, taking any non-zero function in M and multiplying

it by z a sufficient number of times, will give a function with a non-zero

negative Fourier coefficient, violating the hypothesis.

Let ψ be any function of norm 1 in M ⊖ SM , ψ =
∞∑

m=0

amz
m. We have

⟨Snψ, ψ⟩ =
∞∑

m=n

amam−n = 0, n > 0,

that is ∫ 2π

0

|ψ|2e−inθ dθ

2π
, n > 0

and, by taking complex conjugates we get

⟨Snψ, ψ⟩ = 0, ∀ n ̸= 0.

By Fourier analysis,

|ψ|2 ∼
∞∑

n=−∞

|̂ψ|2(n)einθ = |̂ψ|2(0).
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Therefore, |ψ| is constant a.e., and as ψ has norm one, we get |ψ| = 1 a.e.

Therefore, multiplication by ψ is isometric, and so

∨{Snψ : n ≥ 0} = ψ(∨{Sn1 : n ≥ 0}) = ψH2.

Therefore, ψH2 ⊆M .

Now, suppose g ∈M ⊖ ψH2. Then,

⟨g, Snψ⟩ = 0 ∀ n ≥ 0,

and also

⟨ψ, Sng⟩ = 0 ∀ n > 0.

Therefore gψ = 0 a.e., and hence g = 0. Consequently M = ψH2.

For a general RKHS with the complete Pick property there is a theorem

due to McCullough and Trent which characterizes the invariant subspaces

with respect to the multipliers. We skip the proof, which is quite technical

(see Theorem 0.7 of [McCTr00]).

Given a Hilbert space H, with the multiplier algebra Mult(H), for all

ϕ ∈Mult(H), denote by Mϕ the operator ”multiplication by ϕ”.

Given H a RKHS with normalized Pick kernel k, let F(·)(·) be the em-

bedding of H into the Drury Arveson space defined as in Corollary 1.3.7.1.

Theorem 1.5.2. If k is a Pick kernel, with corresponding Hilbert space H,

and if M ⊆ H is a subspace, then the following are equivalent:

1. M is invariant for each MFx;

2. there exist Φ ∈ Mult(H ⊗ L2, H) s.t. MΦ is a partial isometry (i.e.

MΦ|Ker(MΦ)⊥ is an isometry) and M = Φ · (H ⊗ L2);

3. M is invariant for Mϕ for each ϕ ∈Mult(H).





Chapter 2

The tree model

Our aim at this point is to construct a reproducing kernel Hilbert space

on a tree. There are several construction: we are going to adopt the [Ro2019]

one. Our Hilbert space will be Pick complete.

Let T be a rooted binary tree, assume finite for simplicity. Let E(T ) be

the set of its edges, V (T ) be the set of its vertices, let o be its root.

For us a path will be a set (sequence) of vertices.

Given x ∈ V (T ), let [o, x] be the unique geodesic joining o and x. Accord-

ing with the usual definitions, with the term geodesic we denote the shortest

path from o to x.The existence and uniqueness of the geodesics follows from

the fact that T is a simple connected graph.

Given x, y ∈ V (T ), we say y < x if [o, y] ⊊ [o, x]. Moreover let x ∧ y be

the unique vertex so that [o, x] ∩ [o, y] = [o, x ∧ y]. Finally let y− denote the

immediate predecessor of y, that is y− < y and [y−, y] be an edge of T .

Let ω : V (T ) → R+ such that

ω(o) = 1, ω(y) < ω(x) if y < x. (2.1)

37
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We will construct a Hilbert space of functions on V (T ) and we will prove

that it is a RKHS. To do it we will need the following summation by parts

formula (see [ArRoSa10]).

For a function f : V (T ) → C, define:

If(x) =
∑
y≤x

f(y)

I∗f(x) =
∑
y≥x

f(y)

∆f(x) = f(x)− f(x−), ∆f(o) = 0.

Lemma 2.0.1. Let h, f : V (T ) → C. Then,∑
x,y∈V (T )

h(x ∧ y)f(x)f(y) = h(o) |I∗f(o)|2 +
∑

z∈V (T )\o

∆h(z) |I∗f(z)|2 .

Proof. ∑
x,y∈V (T )

h(x ∧ y)f(x)f(y) =

=
∑

z∈V (T )

h(z)
∑

x∧y=z

f(x)f(y)

=
∑

z∈V (T )

h(z)

[
|f(z)|2 + f(z)

(
I∗f(z)− f(z)

)
+

+ f(z) (I∗f(z)− f(z)) +
∑

t̸=s,t−,s−=z

I∗f(t)I∗f(s)

]

=
∑

z∈V (T )

h(z)

[
|I∗f(z)|2 −

∑
t−=z

|I∗f(t)|2
]
.

Theorem 2.0.1. The Hilbert space of functions {f : V (T ) → C}, with norm

as in the following Proposition (2.0.1), is a reproducing kernel Hilbert space

with reproducing kernel

k : V (T )× V (T ) → R+, k(x, y) = ω(x ∧ y).

Moreover, H has the complete Pick property.
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Proof. Apply Lemma 2.0.1, with h = ω, i.e.∑
x,y∈V (T )

ω(x ∧ y)f(x)f(y) = |I∗f(o)|2 +
∑

z∈V (T )

∆ω(z) |I∗f(z)|2 .

The r.h.s. is a positive semi-definite function, because ω is increasing. There-

fore, ∑
x,y∈V (T )

k(x, y)f(x)f(y) ≥ 0

and k is the reproducing kernel of a Hilbert space H by Theorem 1.1.1.

Finally, H has the complete Pick property by applying Theorem 1.3.5:

in fact, the function 1 − 1
kxy

is positive semi-definite again by Lemma 2.0.1

with h = 1− 1/ω.

There is another proof of the previous theorem that construct the em-

bedding in the Drury Arveson space.

Theorem 2.0.2. The reproducing kernel Hilbert space of functions {f :

V (T ) → C}, with norm as in the following Proposition (2.0.1), with re-

producing kernel

k : V (T )× V (T ) → R+, k(x, y) = ω(x ∧ y).

is a complete Pick space.

Moreover,

k(x, y) = h(F (x), F (y)), (2.2)

where h is the Drury-Arveson kernel, where F : V (T ) → Bd, for some

1 ≤ d ≤ ∞,

F (z) =
∑

z∈[o,y]

√
1

ω(z−)
− 1

ω(z)
ez.

Proof. Note that the kernel defined in the statement is normalized at the

root o. In fact, k(x, o) = 1 for all x ∈ V (T ).

In order to apply theorem 1.3.7.1, let’s construct F : V (T ) → Bd, for

some 1 ≤ d ≤ ∞, such that

k(x, y) = h(F (x), F (y)), (2.3)
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where h is the Drury-Arveson kernel.

We associate to V (T ) an orthonormal system in Bd in this way:

V (T ) −→ {en}n ⊆ Bd

y 7−→ ey.

Consider weights {c(y)}y∈V (T ) and define

F (y) :=
∑

x∈[o,y]

c(x)ex.

Let’s choose the appropriate cofficients {c(y)} by induction on n(y), that

is the number of edges in the path [o, y]. If n(y) = 0, then y = o and we

define c(o) = 0.

Suppose now to have defined c(y) for every y such that n(y) ≤ N .

Let z ∈ V (T ) be such that n(z) = N + 1. Then n(z−) = N , and hence

F (z−) is defined.

Define

F (z) = F (z−) + c(z)ez,

where c(z) is still undefined.

From (2.3), it follows in particular that

ω(z−) = k(z−, z−) = h(F (z−), F (z−)) =
1

1− |F (z−)|2
,

which implies

ω(z) = k(z, z)

= h(F (z), F (z))

=
1

1− |F (z)|2

=
1

1− |F (z−)|2 − |c(z)|2

=
1

1
ω(z−)

− |c(z)|2
.
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Therefore,

|c(z)|2 = 1

ω(z−)
− 1

ω(z)
≥ 0

because ω is increasing. Hence,

c(z) =

√
1

ω(z−)
− 1

ω(z)

and

F (z) =
∑

y∈[o,z]

√
1

ω(y−)
− 1

ω(y)
ey.

Now, for any x, y ∈ V (T ), is

⟨F (x), F (y)⟩ = 1− 1

ω(x ∧ y)
?

⟨F (x), F (y)⟩ =

〈 ∑
z∈[o,x]

√
1

ω(z−)
− 1

ω(z)
ez,

∑
ζ∈[o,y]

√
1

ω(ζ−)
− 1

ω(ζ)
eζ

〉

=
∑

z∈[o,x∧y]

1

ω(z−)
− 1

ω(z)

=
1

ω(o)
− 1

ω(x ∧ y)
= 1− 1

ω(x ∧ y)
.

In conclusion, we have proved that the space of functions defined on V (T ) is

a RKHS with the complete Pick property and complete Pick kernel k.

Corollary 2.0.2.1. If k(x, y) is defined in terms of ω as before and if Λ is

any strictly increasing function, then kΛ(x, y) = Λ(k(x, y)), associated with

ωΛ = Λ(ω), is the kernel function of a RKHS with the complete Pick property.

Proof. An analogous of the condition (2.1) holds and the proof of the theorem

is the same.

Remark 2.0.1. This corollary is false in general for a RKHS H with the

complete Pick property, even if Λ is just the product with a scalar λ. Is it

true for 0 < λ ≤ 1 (see [AgMcC2002], Remark 8.10).
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We would like now to give an expression for the norm in H as before. We

will do it using again the Lemma 2.0.1.

Let’s compute the Gleason distance for two arbitrary vertices:

d(x, y)2 = 1− |k(x, y)|2

k(x, x)k(y, y)

= 1− ω(x ∧ y)2

ω(x)ω(y)

In the case x = y−,

d(y, y−)2 = 1− ω(y−)

ω(y)

=
ω(y)− ω(y−)

ω(y)

=
∆ω(y)

ω(y)
.

Using the fact that ω(y) =
∑

x∈(o,y] ∆ω(x), we can see the Gleason dis-

tance between the endpoints of an edge as the ratio between the weighted

length of the edge and the weighted length of the entire path [0, y].

Since the span of kernel functions is H, a function f ∈ H can be written

as a finite linear combination of them:

f(y) =
∑

Γ(x)kx(y). (2.4)

Proposition 2.0.1. Given f ∈ H as in (2.4), we have

∥f∥2 = |I∗Γ(o)|2 +
∑
z>0

∆ω(z)|(I∗Γ)(z)|2

= |I∗Γ(o)|2 +
∑
z>0

∆ω(z)−1|(∆f)(z)|2.

Proof. The first expression is a reformulation of the summation by part for-

mula given by Lemma 2.0.1.
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In fact,

∥f∥2 =

〈∑
x

Γ(x)kx(y),
∑
z

Γ(z)kz(y)

〉
=
∑
x,z

Γ(x)Γ(z)⟨kx(y), kz(y)⟩

=
∑
x,z

Γ(x)Γ(z)ω(x ∧ z)

= |I∗Γ(o)|2 +
∑
z>o

∆ω(z)|I∗Γ(z)|2

The second follows from the fact that (∆f)(z) = ∆ω(z)(I∗Γ)(z).

In fact, since both sides are linear functions of f , it suffices to prove it

for f = kx.

Select x and z. If x < z or x is not comparable to z then kx(z) = kx(z
−)

and hence, with Γ(y) = δxy, we have Dkx(z) = 0 = (I∗Γ)(z).

If z < x,

(Dkx)(z) = −kx(z−) + kx(z)

= −ω(z−) + ω(z)

= ∆ω(z)

= ω(z)(I∗Γ)(z).





Chapter 3

A complete Pick space of

functions on the real line

In this chapter we present another example of complete Pick space of

functions on the real line, together with its main structural properties.

3.1 The space

We define the following Hilbert space of functions on R:

H :=

{
f ∈ ACloc(R) : lim

x→−∞
f(x) = 0, ∥f∥2 :=

∫
R
e−x|f ′(x)|2dx <∞

}
,

with the inner product

⟨f, g⟩ :=
∫
R
e−xf ′(x)g′(x)dx.

Lemma 3.1.1. Norm convergence in H implies pointwise convergence.

Proof. Let {fn}n ⊂ H be a sequence converging to f ∈ H. Therefore,

|f(x)− fn(x)|2 =
∣∣∣∣∫ x

−∞
(f ′(t)− f ′

n(t)) dt

∣∣∣∣2
≤
∫ x

−∞
e−t|f ′(t)− f ′

n(t)|2 dt ·
∫ x

−∞
et dt

≤ ∥f − fn∥2 · ex −→ 0 as n→ +∞.

45
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Hence f(x) = lim
n
fn(x) ∀ x.

Proposition 3.1.1. H is a RKHS with kernel k : R× R → R+,

k(x, y) = ex∧y,

where x ∧ y denotes the minimum between x and y.

Proof. We are going to prove first of all that the evaluation functional

ηx : f 7→ f(x) ∀f ∈ H

is continuous in H.

Let {fn}n ⊂ H be a sequence of functions converging to f ∈ H. This

implies that {fn}n converges also pointwise to f by Lemma 3.1.1, i.e.

lim
n→∞

fn(x) = f(x) for all x.

Therefore,

lim
n→∞

ηx(fn) = lim
n→∞

fn(x) = f(x) = ηx(f)

and ηx is continuous.

Now, let’s prove that kx(y) = k(x, y) = ex∧y is the reproducing kernel,

i.e.

f(x) = ηx(f) = ⟨f, kx⟩ ∀f ∈ H.

Let f be a function in H. Then,

f(x) = ⟨f, kx⟩ =
∫
R
e−yf ′(y)∂ykx(y)dy.

In fact, ∫
R
e−yf ′(y) ∂ye

x∧y dy =

∫ x

−∞
f ′(y) dy = f(x).

Let x ∈ R be an arbitrary point.

kx : R → R+ is a function in H:
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kx ∈ ACloc(R), lim
y→−∞

kx(y) = lim
y→−∞

ex∧y = 0 and

∥kx∥2 =
∫
R
e−y|∂yex∧y|2dy

=

∫ x

−∞
e−y|ey|2dy

=

∫ x

−∞
eydy = ex.

The kernel normalized at zero is

L(x, y) =
k(x, y)k(0, 0)

k(x, 0)k(0, y)

=
ex∧y

ex∧0ey∧0

3.2 Pick property

Now, we are going to show that k is a (complete) Pick kernel and H is a

(complete) Pick space.

We are going to use the following technical lemma about positive defi-

niteness of some kind of matrices (see [BrHa1965], Theorem 3, pg. 131).

Definition 3.2.1. A n × n matrix is said to be L-shaped if it has the

following form:

A =



a1 a2 a3 · · · an

a2 a2 a3 · · · an

a3 a3 a3 · · · an
...

...
...

...

an an an · · · an


The sequence {an}n is called determining sequence of A.

Lemma 3.2.1. Any finite L-shaped matrix is positive definite if and only if

its determining sequence is positive and decreasing.
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Theorem 3.2.1. k : R×R → R+, k(x, y) = ex∧y is a complete Pick kernel.

Therefore the RKHS H satisfies the complete Pick property.

Proof. Let’s construct the following matrix, for N ∈ N,

FN =
(
1− kiNkNj

kijkNN

)N−1

i,j=1
,

where x1, . . . , xN ∈ R are such that xi < xj for i < j.

Note that is not restrictive to assume that xN is the biggest element. In

fact, if it exists j s.t. xN < xj,

1− kiNkNj

kijkNN

= 1− exiexN

exiexN
= 0.

Therefore, if M = #{j : N < j} the matrix will be of the form

FN =

(
FN−M 0

0 0

)
that is positive semidefinite if and only if FN−M is.

In addition, note that is not restrictive to assume xi < xj for i < j.

The reason will be clear in the following, once the elements of FN will be

determined.

Applying our definition of k,

FN =
(
1− kiNkNj

kijkNN

)N−1

i,j=1

=
(
1− exiexj

exi∧xj exN

)N−1

i,j=1
,

where

1− exiexj

exi∧xjexN
=

1− exj

exN
if i ≤ j

1− exi
exN

if i ≥ j
.

Hence,

FN =



α1 α2 α3 · · · αN−1

α2 α2 α3 · · · αN−1

α3 α3 α3 · · · αN−1

...
...

...
...

αN−1 αN−1 αN−1 · · · αN−1


,
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where αi = 1− exi
exN

.

This matrix is ”L-shaped” according to the definition 3.2.1. Our aim is

to apply Lemma 3.2.1 to conclude the proof.

The determining sequence {αi}i=1,...,N−1 is obviously positive and decreas-

ing (exi < exj if i < j).

We conclude that k(x, y) = ex∧y is a complete Pick kernel, by applying

the McCullough-Quigging Theorem 1.3.3.

There is an alternative proof of the complete Pick property, which uses

the Agler-McCarthy Theorem 1.3.7.1. In order to present it, it is necessary

to introduce a definition and make an observation.

Definition 3.2.2. Let B(R) be the Borel sets of R, P(Q) the projections on

Q Hilbert space. A map

Π : B(R) −→ P(Q)

is called projection valued measure on R (p.v.m.) if the following condi-

tions hold:

• Π(∅) = 0 and Π(R) = IdQ

• if Ej ∈ B(R) are pairwise disjoint, then

Π(∪j≥1Ej) =
∑
j≥1

Π(Ej)

where
∑
j≥1

Π(Ej) is the limit of
N∑
j=1

Π(Ej) in the strong operator

topology.

Remark 3.2.1. Let’s come back to our RKHS H of functions on R. We

would like to explicitly construct an embedding into the Drury Arveson space.

Let x ∈ R+. Note that ∀ y ≤ x, h ≥ 0,

L(x+ h, y) =
e(x+h)∧y

e(x+h)∧0ey∧0
= ey =

ex∧y

ex∧0ey∧0
= L(x, y). (3.1)
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Analogously, let x ∈ R−. Note that ∀ x ≤ y, h ≤ 0,

L(x+ h, y) = L(x, y). (3.2)

If L is a complete Pick kernel, using the Theorem 1.3.7.1, with F the

embedding of R into the unit complex ball,

⟨F (x), F (y)⟩ = 1− 1

L(x, y)
,

which implies that

⟨F (x+ h)− F (x), F (y)⟩ = ⟨F (x+ h), F (y)⟩ − ⟨F (x), F (y)⟩

=
1

L(x, y)
− 1

L(x+ h, y)
= 0 by (3.1), (3.2).

This means on one hand that the future increment is independent from

the past and on the other hand that the past decrement is independent from

the future. This suggests to define the embedding F using p.v.m.

Theorem 3.2.2. L : R × R → R+, L(x, y) = ex∧y

ex∧0ey∧0 is a complete Pick

kernel. Therefore the RKHS H satisfies the complete Pick property.

Moreover, L(x, y) = h(F (x), F (y)), for h Drury Arveson kernel, where

F : R −→ B∞

F (x) =

vχ(0,x] if x > 0

vχ(x,0] if x ≤ 0

for v(u) = e−
|u|
2 and by identifying B∞ with the unit ball of L2(R).

Proof. Starting from considerations in Remark 3.2.1, let’s choose v ∈ L2(R)
s.t. ∫

R+

|v(t)|2dt =
∫
R−

|v(t)|2dt = 1,

∫ 0∨x

0∧x
|v(t)|2dt < 1 ∀ x ∈ R.

Then, let’s define the following p.v.m:

Π : B(R) −→ P(L2(R))

Π(E)f := χEf
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Defining

F : R −→ B∞

F (x) =

vχ(0,x] if x > 0

vχ(x,0] if x ≤ 0

we have that

⟨F (x+ h)− F (x), F (y)⟩ = 0 ∀ x ∈ R+, y ≤ x, h ≥ 0,

⟨F (x+ h)− F (x), F (y)⟩ = 0 ∀ x ∈ R−, y ≥ x, h ≤ 0,

as desired.

Note that the embedding F must map R into B∞, because we need in-

finite L2-orthogonal directions in the range of F as shown in the previous

computation.

Moreover,

⟨F (x), F (y)⟩ =
∫ 0∨(x∧y)

0∧(x∨y)
|v(t)|2dt = 1− 1

L(x, y)
= 1− ex∧0ey∧0

ex∧y
.

Taking for example x ≤ y,

⟨F (x), F (y)⟩ = 1− ex∧0ey∧0

ex
.

From this it follows that, |v(u)|2 = e−u if u ≥ 0, |v(u)|2 = eu if u ≤ 0.

Choosing for instance v(u) = e−
|u|
2 , that condition is satisfied and the

embedding is found.

Finally, the proof of the complete Pick property for our space could be

obtained as an easy corollary of the following Theorem, due to Quiggin (see

[Qui93], Theorem 6.7), requiring local hypothesis. The proof is different from

the two above.

Theorem 3.2.3. Let ρ be any real, positive, continuous and integrable func-

tion on the interval (a, b). Then the reproducing kernel Hilbert space of ab-

solutely continuous, complex-valued functions on (a, b), which satisfy
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lim
x→a

f(x) = 0 and which are bounded with respect to the inner product

⟨f, g⟩ =
∫ b

a

f ′(x)g′(x)

ρ(x)
dx

has the complete Pick property.

Remark 3.2.2. In particular, we have chosen, (a, b) = R, ρ(x) = ex.

The theorem tells us that the complete Pick property holds also for differ-

ent weights.

In the following, we will see the case in which ρ ≡ 1.

3.3 Interpolating sequences

At this point the next goal is to characterize interpolating sequences for

our space.

Lemma 3.3.1. Let ϵ > 0. The sequence {xi}i ⊂ R is ϵ-weakly separated in

H if and only if, ∀ i ̸= j,

|xj − xi| > δ(ϵ),

where δ(ϵ) = log
(

1
1−ϵ2

)
.

Proof. To write the weak separation condition for this kernel, using the Re-

mark 1.4.1, we compute the Gleason distance

d(x, y) =

√
1− |k(x, y)|2

k(x, x)k(y, y)
.

Using our definition of L,

d(x, y) =

√
1− |ex∧y|2

exey

=


√

1− ex

ey
if x ≤ y√

1− ey

ex
if x > y
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Therefore, the sequence {xi}i ⊂ R is ϵ-weakly separated if and only if exixts

ϵ > 0 such that, ∀ i ̸= j, d(xi, xj) > ϵ. For example, if xi < xj,√
1− exi

exj
> ϵ⇔ 1− exi−xj > ϵ2

⇔ exi−xj < 1− ϵ2

⇔ xj − xi > log

(
1

1− ϵ2

)
.

Defining δ(ϵ) = log
(

1
1−ϵ2

)
, we conclude that {xi}i is ϵ-weakly separated

if and only if, ∀ i ̸= j,

|xj − xi| > δ(ϵ).

In the following proof, we are going to use the following Schur’s Lemma

(see for example [AgMcC2002]):

Lemma 3.3.2. Suppose

sup
j

∞∑
i=1

|Tij| ≤ c1

sup
i

∞∑
j=1

|Tij| ≤ c∞.

Then T : l2 → l2, and its norm on l2 is at most
√
c1c∞.

Theorem 3.3.1. Let ϵ > 0. If {xi}i ⊂ R is a ϵ-weakly separated sequence in

H, the Grammian is bounded above and below, i.e.

c1(ϵ)∥x∥2 ≤ ⟨Gx, x⟩ ≤ c2(ϵ)∥x∥2

for some constants c1(ϵ), c2(ϵ) > 0.

In particular, {xi}i is a universally interpolating sequence.

Proof. From Lemma 3.3.1, {xi}i is ϵ-weakly separated if, ∀ i ̸= j,

|xj − xi| > log

(
1

1− ϵ2

)
.
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We assume wlog that xi < xi+1 for all i.

Choosing 2δ := log
(

1
1−ϵ2

)
,∀ i ̸= j,

|xj − xi| > 2δ|i− j|.

Let’s consider the sum over rows and the sum over columns of the Grammian

matrix G.

G =

(
⟨kxi ,kxj⟩
∥kxi∥∥kxj ∥

)
i,j

=
(

exi∧xj

e
xi
2 e

xj
2

)
i,j

=
(

e−|xi−xj |

2

)
i,j

The sum over the i-th row is

∞∑
j=1

e−
|xi−xj |

2 .

Hence,

∞∑
j=1

e−
|xi−xj |

2 =
∞∑
j=1

1

e
|xi−xj |

2

≤
∞∑
j=1

1

eδ|i−j|

≤ 2
∞∑
n=0

e−nδ

=
2

1− e−δ
.

The matrix is symmetric, so also the sum over the j-th column is

∞∑
i=1

e−
|xi−xj |

2 ≤ 2

1− e−δ
.

Therefore,

sup
i

(
∞∑
j=1

e−
|xi−xj |

2

)
= sup

j

(
∞∑
i=1

e−
|xi−xj |

2

)
≤ 2

1− e−δ
.

By applying Shur’s lemma, G : l2 → l2 is bounded with ∥G∥ ≤ 2
1−e−δ .

To show that G is also bounded below we solve the following interpolation

problem:



3.3 Interpolating sequences 55

given {xi}i ⊂ R as before and {ai}i ⊂ R such that
∑
i

|ai|2

∥kxi
∥2

< ∞,

we look for a function B in H that interpolates those sequences, i.e. s.t.

B(xi) = ai for all i.

Let’s consider the following function:

Bi(x) =


ai
δ
(δ − x+ xi) x ∈ [xi, xi + δ]

ai
δ
(δ + x− xi) x ∈ [xi − δ, xi)

0 otherwise

B′
i(x) =


−ai

δ
x ∈ (xi, xi + δ)

ai
δ

x ∈ (xi − δ, xi)

0 x ̸∈ [xi − δ, xi + δ]

For all i, Bi ∈ H. In fact Bi ∈ ACloc(R), lim
x→−∞

Bi(x) = 0 and

∥Bi∥2 =
∫
R
e−x|B′

i(x)|2dx

=

∫ xi+δ

xi−δ

e−xa
2
i

δ2
dx

= −a
2
i

δ2
(e−(xi+δ) − e−(xi−δ))

= 2 sinh δ
a2i
δ2

e−xi <∞.

Now, we set

B(x) :=
∑
i

Bi(x),

where
∑
i

Bi(x) = lim
N

N∑
i=1

Bi(x).

Note that the definition of B is well posed because that series is absolutely

convergent and hence convergent also in H norm.

Note that the supports of Bi and of Bj are disjoint for all i ̸= j thanks

to the weak separation condition.

By construction, we obtain that B(xi) = ai for all i.



56 3. A complete Pick space of functions on the real line

We verify that ∥B∥ <∞:

∥B∥2 =
∑
i

∥Bi∥2 =
∑
i

2 sinh δ
a2i
δ2

e−xi

=
2 sinh δ

δ2

∑
i

a2i e
−xi

=
2 sinh δ

δ2

∑
i

|ai|2

∥kxi
∥2

<∞.

Let’s consider the following two operators:

R : H −→ l2

f 7→
{
f(xi)

∥kxi
∥

}
T : l2 −→ H{

ai
∥kxi

∥

}
7→ B,

where as above B(xi) = ai.

Note that RT = Idl2 .

Therefore, using the fact that G = RR∗,

∥x∥2 = ∥T ∗R∗x∥2

≤ ∥T ∗∥2∥R∗x∥2

= ∥T ∗∥2⟨Gx, x⟩

= ∥T∥2⟨Gx, x⟩

=
2 sinh δ

δ2
⟨Gx, x⟩.

In conclusion,

c1∥x∥2 ≤ ⟨Gx, x⟩ ≤ c2∥x∥2,

where c1(ϵ) =
δ2

2 sinh δ
, c2(ϵ) =

2
1−e−δ .

So, {xi}i ⊆ R is ϵ-weakly separated and Carleson, that implies {xi}i is
universally interpolating.

Remark 3.3.1. The constants c1(ϵ) and c2(ϵ) are approximately equal to ϵ2

as ϵ→ 0.

In fact, c1(δ) ≈ c2(δ) ≈ δ ≈ ϵ2.
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3.4 Multipliers and Carleson measures

Now we would like to characterize the multipliers of our complete Pick

space H.

The following theorem is a version of the weighted Hardy inequality, which

holds also in a more general situation (see [Muck1972]):

Theorem 3.4.1. If µ and ν are Borel measure, ν is absolutely continuous,

then there is a constant C > 0 for which∫
R

∣∣∣∣∫ x

−∞
f(t)dt

∣∣∣∣2 dµ(x) ≤ C

∫
R
|f(x)|2 dν(x)

if and only if

B = sup
r∈R

[µ([r,∞))]
1
2

[∫ r

−∞

(
dx

dν(x)

)
dx

] 1
2

<∞.

Theorem 3.4.2.

Mult(H) =

{
m ∈ ACloc(R) ∩ L∞(R) : sup

r∈R
er
∫ ∞

r

e−x|m′(x)|2dx <∞
}
.

Moreover, µ is a Carleson measure if and only if

sup
r∈R

er
∫ ∞

r

dµ(x) <∞.

Proof. It is known that m ∈Mult(H) implies m ∈ L∞ (see remark 1.2.1).

∥mf∥2 =
∫
R
e−x|(mf)′(x)|2dx

=

∫
R
e−x|(m′f)(x) + (mf ′)(x)|2dx

≤ 2

∫
R
e−x|(m′f)(x)|2dx+ 2

∫
R
e−x|(mf ′)(x)|2dx

≤ 2

∫
R
e−x|(m′f)(x)|2dx+ 2∥m∥2∞

∫
R
e−x|f ′(x)|2dx

≤ 2

∫
R
e−x|(m′f)(x)|2dx+ 2∥m∥2∞∥f∥2
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Now note that the second term is finite because m ∈ L∞(R) and f ∈ H.

To estimate the first one, we will use the Theorem 3.4.1.

Define dµ(x) := e−x|m′(x)|2dx, dν(x) = e−xdx and let f(x) =
∫ x

−∞ F (s)ds.

Then, ∫
R
e−x|(m′f)(x)|2dx =

∫
R
|f(x)|2dµ(x)

Using the Hardy inequality,∫
R
|f(x)|2dµ(x) ≤ C

∫
R
|F (x)|2dν(x)

= C

∫
R
e−x|F (x)|2dx

= C∥f∥2

for some constant C > 0, if and only if the following condition holds:

sup
r

(∫ ∞

r

dµ(x)

) 1
2
(∫ r

−∞
exdx

) 1
2

<∞

i.e.

sup
r

er
∫ ∞

r

e−x|m′(x)|2dx <∞.

We conclude that

Mult(H) =

{
m ∈ AC ∩ L∞(R) : sup

r∈R
er
∫ ∞

r

e−x|m′(x)|2dx <∞
}
.

Remark 3.4.1. One can ask ifMult(H) are strictly contained in H∩L∞(R).
The answer is yes. We can consider an absolutely continuous function f

as in the following figure constructed in such a way that it remains bounded,

it is in H and the derivatives, where exist, are

|f ′(x)|2 =

e
x
2 x > 0

0 x < 0



3.4 Multipliers and Carleson measures 59

Therefore,

er
∫ ∞

r

e−xe
x
2 dx = er

[
−1

2
e−

x
2

]∞
r

=
1

2
er/2 → ∞ as r → ∞.

So, we have constructed a function that is in H ∩ L∞(R) but not in

Mult(H).

Once Carleson measures have been characterized, we have another proof

of Theorem 3.3.1.

Theorem 3.4.3. If {xi}i is a ϵ-weakly separated sequence, then it is also a

Carleson sequence. Moreover, it is a universally interpolating sequence.

Proof. From Lemma 3.3.1, {xi}i is ϵ-weakly separated if, ∀ i ̸= j,

|xj − xi| > log

(
1

1− ϵ2

)
.

We assume wlog that xi < xi+1 for all i.

In addiction, {xi}i is a Carleson sequence if

µ =
∑
i

δxi

k(xi, xi)

is a Carleson measure.
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By applying the previous Theorem, ν is a Carleson measure if and only

if

sup
r
er
∫ ∞

r

dν(x) <∞.

With our µ,

er
∫ ∞

r

dµ(x) = er
∑
xi≥r

1

k(xi, xi)

= er
∑
xi≥r

1

exi

≤ er
∞∑
k=0

1

er( 1
1−ϵ2

)k

=
∞∑
k=0

(1− ϵ2)k < +∞ ∀ r > 0.

3.5 Corona problem

The corona problem for H is to decide, given functions f1, . . . , fn ∈
Mult(H), whether there exist functions Φ1, . . . ,Φn ∈ Mult(H) such that∑n

i=1 fiΦi = 1.

Let consider the following seminorm for Mult(H):

∥m∥2M := sup
r

er
∫ ∞

r

e−x|m′(x)|2dx,

which is finite for the multipliers.

Theorem 3.5.1. Let f1, . . . , fn ∈Mult(H) such that

n∑
i=1

|fi|2 ≥ ϵ > 0. (3.3)

Then exist Φ1, . . . ,Φn ∈Mult(H) such that for some C(ϵ, i) > 0

∥Φi∥M ≤ C(ϵ, i) and
n∑

i=1

fiΦi = 1.
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Proof. Let

Φi(x) :=
fi(x)∑
i |fi(x)|2

∀ i = i, . . . , n.

Clearly,
n∑

i=1

fi(x)Φi(x) ≡ 1.

Φi ∈ ACloc(R) because fi are and (3.4) holds.

Φi ∈ L∞(R):

|Φi(x)| =

∣∣∣∣∣ fi(x)∑
i |fi(x)|2

∣∣∣∣∣ ≤ |fj(x)|
ϵ

<
∥fj∥∞
ϵ

<∞.

∥Φi∥2M = sup
r
er
∫ ∞

r

e−x|Φ′
i(x)|2dx

= sup
r
er
∫ ∞

r

e−x

∣∣∣∣∣f ′
i(x)

∑n
k=1 |fk(x)|2 − 2fi(x)

∑n
k=1 fk(x)f

′
k(x)

(
∑n

k=1 |fk(x)|2)
2

∣∣∣∣∣
2

dx

≤ 2 sup
r
er
∫ ∞

r

e−x

∣∣∣∣∣f ′
i(x)

∑n
k=1 |fk(x)|2

(
∑n

k=1 |fk(x)|2)
2

∣∣∣∣∣
2

dx+

+ 8 sup
r
er
∫ ∞

r

e−x

∣∣∣∣∣fi(x)
∑n

k=1 fk(x)f
′
k(x)

(
∑n

k=1 |fk(x)|2)
2

∣∣∣∣∣
2

dx

= 2 sup
r
er
∫ ∞

r

e−x |f ′
i(x)|2

(
∑n

k=1 |fk(x)|2)
2dx+

+ 8 sup
r
er
∫ ∞

r

e−x|fi(x)|2
|
∑n

k=1 fk(x)f
′
k(x)|2

(
∑n

k=1 |fk(x)|2)
4 dx

≤ 2

ϵ2
∥fi∥2M +

8

ϵ4
sup
r
er
∫ ∞

r

e−xC4

∣∣∣∣∣
n∑

k=1

f ′
k(x)

∣∣∣∣∣
2

dx (C = max ∥fk∥∞)

=
2

ϵ2
∥fi∥2M +

8

ϵ4
C4

∥∥∥∥∥
n∑

k=1

fk

∥∥∥∥∥
2

M

≤ 2

ϵ2
∥fi∥2M +

8

ϵ4
C4

(
n∑

k=1

∥fk∥M

)2

=: C2(ϵ, i) <∞.
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The theorem holds also in the infinite case, both for bounded rows and

bounded columns. We are going to prove it for rows, then the columns version

follows as a consequence.

Theorem 3.5.2. Let {fi}i ∈Mult(H ⊗ l2(N), H) such that

∞∑
i=1

|fi|2 ≥ ϵ > 0. (3.4)

Then there exist {Φi}i ∈Mult(H ⊗ l2(N), H) such that for some C(ϵ, j) > 0

∥Φi∥M ≤ C(ϵ, i) and
∞∑
i=1

fiΦi = 1.

Proof. Construct the Φi as in the previous proof, i.e.

Φi(x) :=
fi(x)∑
i |fi(x)|2

∀ i ∈ N. (3.5)

Then, as before,
∑

i fiΦi ≡ 1,Φi ∈ ACloc(R) and Φi ∈ L∞(R).
Following the steps of the previous proof,

∥Φi∥2M =≤ 2

ϵ2
∥fi∥2M +

8

ϵ4
C4

(∑
k

∥fk∥M

)2

=: C2(ϵ, i) <∞.

where, C = sup ∥fk∥∞.

It remains to show that {Φi}i ∈Mult(H ⊗ l2(N), H), that is

∥
∑
k

Φkf∥2H ≤ D∥f∥2H ∀f ∈ H

for some D > 0.

Note the following fact:

sup
x

|
∑
k

fk(x)|2 <∞. (3.6)

In fact, using

∥
∑
k

fkf∥2H <∞ ∀ f ∈ H,
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with f = ky, it follows that∫ y

−∞
|
∑
k

fk(x)|2dx <∞ ∀ y

and therefore (3.6).

This in particular implies also that

sup
x

|
∑
k

Φk(x)|2 <∞. (3.7)

Moreover, since {fk}k are multipliers, we have:∫
R
e−x|

∑
k

f ′
k(x)|2|f(x)|2dx ≲

∫
R
e−x|f ′(x)|2dx. (3.8)

∥∥∥∥∑
k

Φkf

∥∥∥∥2
H

=

∫
R
e−x|

∑
k

(Φkf)
′(x)|2 dx

=

∫
R
e−x|

∑
k

Φ′
k(x)f(x) +

∑
k

Φk(x)f
′(x)|2 dx

≤ 2

∫
R
e−x|

∑
k

Φ′
k(x)|2|f(x)|2 dx+ (3.9)

+ 2

∫
R
e−x|

∑
k

Φk(x)|2|f ′(x)|2 dx

≤ 2

∫
R
e−x|

∑
k

Φ′
k(x)|2|f(x)|2 dx+ (3.10)

+ 2 sup
x

|
∑
k

Φk(x)|2
∫
R
e−x|f ′(x)|2 dx

≲
∫
R
e−x|

∑
k

Φ′
k(x)|2|f(x)|2 dx+ ∥f∥2 (3.11)

Consider now only the term∫
R
e−x|

∑
k

Φ′
k(x)|2|f(x)|2 dx.

Using (3.5), it is



64 3. A complete Pick space of functions on the real line

∫
R
e−x

∣∣∣∣∣∑
k

f ′
k(
∑

n |fn|2)− fk(2
∑

n fnf
′
n)

(
∑

n |fn|2)2

∣∣∣∣∣
2

|f |2dx

=

∫
R
e−x

∣∣∣∣∣∑
k

f ′
k∑

n |fn|2
−
∑
k

fk(2
∑

n fnf
′
n)

(
∑

n |fn|2)2

∣∣∣∣∣
2

|f |2dx

≤ 2

∫
R
e−x

∣∣∣∣∣
∑

k f
′
k∑

n |fn|2

∣∣∣∣∣
2

|f |2dx+ 2

∫
R
e−x

∣∣∣∣∑k fk
∑

n fnf
′
n

(
∑

n |fn|2)2

∣∣∣∣2 |f |2dx
≤ 2

ϵ2

∫
R
e−x

∣∣∣∣∣∑
k

f ′
k

∣∣∣∣∣
2

|f |2dx+ 2

ϵ4

∫
R
e−x

∣∣∣∣∣∑
k

fk
∑
n

fnf
′
n

∣∣∣∣∣
2

|f |2dx

(3.8)

≲ ∥f∥2 + (sup
x

|
∑
k

fk(x)|2)2
∫
R
e−x|

∑
n f

′
n|2|f |2dx

≲ ∥f∥2 +
∫
R
e−x|

∑
n f

′
n|2|f |2dx

(3.8)

≲ ∥f∥2.

Coming back in (3.11),

∥
∑
k

Φkf∥2 ≲ ∥f∥2,

as desired.

Corollary 3.5.2.1. Let {fi}i ∈Mult(H,H ⊗ l2(N)) such that

∞∑
i=1

|fi|2 ≥ ϵ > 0. (3.12)

Then there exist {Φi}i ∈Mult(H,H ⊗ l2(N)) such that for some C(ϵ, j) > 0

∥Φi∥M ≤ C(ϵ, i) and
∞∑
i=1

fiΦi = 1.

3.6 Equivalent norm

This space is a weighted Sobolev space. Actually H and W 1,2([0, 1]) are

not equivalent. One reason is that the multipliers are different. However, as

W 1,2([0, 1]), H has an equivalent norm, as stated in the following theorem.
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Theorem 3.6.1. The norm ∥ · ∥ is equivalent to ∥| · |∥, where

∥f∥2 =
∫
R
e−x|f ′(x)|2dx

and

∥|f |∥2 =
∫
R
e−x[|f(x)|2 + |f ′(x)|2]dx.

Proof 1. Of course ∥f∥2 ≤ ∥|f |∥2 for all f ∈ H. Consider now
∫
R e

−x|f(x)|2dx.
Set dµ(x) = e−xdx.

dµ is a Carleson measure:

er
∫ ∞

r

dµ = er
∫ ∞

r

e−x dx = 1 ∀ r ≥ 0.

Therefore, ∫
R
e−x|f(x)|2dx =

∫
R
|f(x)|2dµ(x) ≤ C∥f∥2

for some C > 0.

In conclusion,

∥|f |∥2 ≤ (C + 1)∥f∥2.

Proof 2. Of course ∥f∥2 ≤ ∥|f |∥2 for all f ∈ H.

Consider now
∫
R e

−x|f(x)|2dx:∫
R
e−x|f(x)|2dx = −e−x|f(x)|2

∣∣∣∣+∞

−∞
+ 2

∫
R
e−xf(x)f ′(x)dx

If the first term of the r.h.s. is zero and the two other terms of the equation

are finite we can conclude by applying Hölder inequality.

The lim
x→±∞

e−x|f(x)|2 is zero:

|f(x)| = O(∥kx∥
1
2 ) because |f(x)| = |⟨f, kx⟩| ≤ ∥f∥∥kx∥.

But we can pass from big o to little o, because the latter holds on a dense

subspace D of H:

D = span{kx(y) : x ∈ R}.
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On D,

lim
x→−∞

|f(x)|2

ex
= lim

x→−∞

|
∑

i aie
x∧yi |2

ex

= lim
x→−∞

|
∑

i aie
x∧yi |2

ex

= lim
x→−∞

|
∑

i aie
x|2

ex
= 0,

lim
x→+∞

|f(x)|2

ex
= lim

x→+∞

|
∑

i aie
yi|2

ex
= 0.

Therefore, ∫
R
e−x|f(x)|2dx = 2

∫
R
e−xf(x)f ′(x)dx

and
∫
R e

−x|f(x)|2dx < +∞. In fact, again on D dense subspace of H,∫
R
e−x|f(x)|2dx =

∫
R
e−x|

∑
i

aie
x∧yi |2dx

≤ 2

∫
R
e−x

∑
i

|ai|2e2(x∧yi)dx

= 2
∑
i

|ai|2
∫ yi

−∞
exdx+ 2

∑
i

|ai|2eyi
∫ +∞

yi

e−ydx

= 2
∑
i

|ai|2(eyi + eyie−yi)

= 2
∑
i

|ai|2(eyi + 1) <∞.

It follows that

∥f∥2 ≤ ∥|f |∥2 ≤ 5∥f∥2

and the two norms are equivalent on all H.

3.7 Invariant subspaces

We are going to study invariant subspaces for H. In order to do so, let’s

consider the equivalent space F obtained by the following change of variables:

ϕ : R → [0,+∞)

x 7→ log x
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Therefore, defining

∥f∥2F :=

∫ ∞

0

|f ′(t)|2dt

it follows that, if f(x) = g(ϕ(x))

∥g∥2H =

∫ +∞

−∞
e−x|g′(x)|2dx

=

∫ +∞

0

1

y
|g′(log y)|2 1

y
dy

=

∫ +∞

0

∣∣∣∣ ddy (g ◦ ϕ)(y)
∣∣∣∣2 dy

=

∫ +∞

0

∣∣∣∣ ddy (f)(y)
∣∣∣∣2 dy = ∥f∥2F .

Therefore, the space H is equivalent to the space

F =

{
f ∈ ACloc([0,+∞)) : f(0) = 0, ∥f∥2 =

∫ ∞

0

|f ′(x)|2dx <∞
}
.

Theorem 3.7.1. Every linear closed invariant subspace of F is of the form

FA = {f ∈ F : f |A = 0}, where A ⊆ [0,+∞), A closed.

Proof. FA is invariant: for any m ∈ Mult(F ), for all f ∈ FA , we have

mf ∈ FA.

Let f ∈ F . Define:

N(f) := {x ∈ [0,+∞) : f(x) = 0}.

Let now M ⊆ F be an invariant subspace and define:

N(M) :=
⋂
f∈M

N(f).

Note that N(M) is closed because f is continuous.

By definition, M ⊆ FN(M).

Let f ∈ F and define

f1(x) :=

f(x) in N(M)

linear completion of f in [0,+∞) \N(M)
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where the linear completion of f is defined in the following way: if (a, b) is

a bounded component of [0,+∞) \N(M), then f1(x) = f(a) + f(b)−f(a)
b−a

x; if

(a,+∞) is a component, f1(x) = f(a).

Let f2 = f − f1.

Then: f1 ∈ F ⊖ FN(M) = F⊥
N(M) and f2 ∈ FN(M).

In fact, on each component (a, b) of [0,+∞) \N(M),∫ b

a

|f ′
1(x)|2dx =

∫ b

a

[f(b)− f(a)]2

(b− a)2
dx

=
[f(b)− f(a)]2

b− a

=
1

b− a

∣∣∣∣∫ b

a

f ′(x)dx

∣∣∣∣2
≤
∫ b

a

|f ′(x)|2dx < +∞.

If g ∈ FN(f), then, being N(M) ⊆ N(f),

⟨f1, g⟩F =

∫
[0+∞)\N(M)

f ′
1(x)g

′(x)dx

=
∑
n

∫ bn

an

f ′
1(x)g

′(x)dx

=
∑
n

f(bn)− f(an)

bn − an
[g(bn)− g(an)] = 0

where (an, bn) are the bounded components of [0,+∞) \N(M).

So, f1 ∈ F⊥
N(f), and using the fact that F⊥

N(f) ⊆ F⊥
N(M), we conclude that

f1 ∈ F⊥
N(M).
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On the other hand, f2(x) = f(x) − f1(x) = 0 if x ∈ N(M). Thus,

f2 ∈ FN(M).

We now show that M⊥ ⊆ F⊥
N(M).

Let g ∈M⊥. Then:

0 =

∫
[0,+∞)\N(f)

(mf)′(x)g′(x) dx =
∑
i

∫ βi

αi

(mf)′(x)g′(x) dx

for all f ∈M , m ∈Mult(F ) and [0,+∞) \N(f) =
⊔
i

(αi, βi).

Consider m with support in (αi, βi). Then, we can distinguish two cases:

• If βi < +∞, wlog let (αi, βi) = (0, 1). Therefore,∫ 1

0

(mf)′(x)g′(x) dx = 0 (3.13)

for all f ∈ M s.t. f(0) = f(1) = 0 and f(x) ̸= 0 in (0, 1) and

∀ m ∈Mult(F ) with supp(m) ⊆ [0, 1].

We want to show that g is linear on [0, 1].

Now, from (3.13), it follows

0 =

∫ 1

0

m(x)f ′(x)g′(x) dx+

∫ 1

0

m′(x)f(x)g′(x) dx. (3.14)

Let m be as in the picture:

Then,∫ 1

0

mf ′g′ dt =

∫ x

0

f ′g′ dt+

∫ x+ϵ

x

mf ′g′ dt
ϵ→0−−→

∫ x

0

f ′g′ dt,
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by using Dominated Convergence Theorem, since f ′g′ ∈ L1. Moreover,∫ 1

0

m′fg′dt = −1

ϵ

∫ x+ϵ

x

fg′dt
ϵ→0−−→ −f(x)g′(x) a.e. x.

Then, using (3.14),∫ x

0

f ′(t)g′(t)dt = f(x)g′(x) a.e. x. (3.15)

The l.h.s. is AC (f ′g′ ∈ L1) and f is AC and non zero. Therefore, the

r.h.s is also AC and, in particular, g′(x) is AC, after modifying it on a

null set.

By differentiating (3.15), we obtain

f ′(x)g′(x) = f ′(x)g′(x) + f(x)g′′(x).

Since f ̸= 0 in (0, 1), we have that g′′(x) = 0 a.e. in (0, 1). Hence g′ is

a.e. constant in (0, 1) and so g is linear and they are all AC.

• If βi = +∞, wlog (αi, βi) = (1,+∞). Therefore,∫ +∞

1

(mf)′(x)g′(x) dx = 0

for all f ∈ F s.t. f(1) = 0 and f(x) ̸= 0 ∀ x > 1, for all m ∈Mult(F ).

We want to show that g is constant on [1,+∞).

One could argue as in the previous case and find that g is linear on

[1,+∞). But |g′|2 is integrable, hence g is constant.

We conclude that g is linear on each connected component of [0,+∞) \
N(M). Hence, as proved before, g ∈ F⊥

N(M) and therefore M = FN(M).

Corollary 3.7.1.1. Every linear closed invariant subspace of H is of the

form HA = {f ∈ H : f |A = 0}, where A ⊆ R, A closed.

Corollary 3.7.1.2. A necessary and sufficient condition for a function f to

be cyclic, i.e. span{f,mf,m2f,m3f, . . . } = H, is to be nowhere vanishing.



3.7 Invariant subspaces 71

Finally, we want to characterize invariant subspaces in terms of the The-

orem 1.5.2. Firstly, we look for functions Gx (x ∈ R+) so that the invariance

with respect to the multipliers is the same as the invariance with respect to

Gx for all x; secondly, we look for a Φ ∈ Mult(F ⊗ L2, F ) such that, given

M ⊆ F invariant, M = Φ · (F ⊗ L2(R+)).

Theorem 3.7.2. Let FA, where

A =
N⋃

n=1

[an, bn],

be an invariant subspace of F .

For all y ∈ [0,+∞), let

Gx(y) =



1√
a1
χ[x,a1)(y) x < a1

1√
an−bn−1

χ[x−bn−1,an−bn−1)(y) bn−1 ≤ x ≤ an (∀ n = 2, . . . , N)
√
bN
y
χ[bN ,x)(y) x ≥ bN

0 otherwise

Set

ΦA : F ⊗ L2(R+) −→ F

ΦA(f ⊗ g)(x) = f⟨g,Gx⟩

Then, the following are equivalent:

1. FA is invariant for each MGx;

2. MΦA
is a partial isometry and FA = ΦA · (F ⊗ L2);

3. FA is invariant for Mϕ for each ϕ ∈Mult(F ).

Proof. To find Gx we study the kernel kA, which is the reproducing kernel

of FA.
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From the previous proof we know that every function f ∈ F can be

written as f = f1 + f2, where f1 ∈ F⊥
A and f2 ∈ FA,

f1(x) :=

f(x) in A

linear completion of f in [0,+∞) \ A

f2 := f − f1

Therefore, kA = k2.

The following pictures consider the most simple case A = [a, b]. They can

be easily generalized to A =
N⋃

n=1

[an, bn].

Consider now

⟨Gx, Gy⟩L2 =
kA

k
(x, y) =


1− x∨y

a
x, y < a

0 otherwise

1− b
x∧y x, y ≥ b
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Therefore,

Gx(u) =


1√
a
χ[x,a)(u) x < a

√
b

u
χ[b,x)(u) x ≥ b

0 otherwise

Generalizing to A =
N⋃

n=1

[an, bn],

Gx(u) =



1√
a1
χ[x,a1)(u) x < a1

1√
an−bn−1

χ[x−bn−1,an−bn−1)(u) bn−1 ≤ x ≤ an (∀ n = 2, . . . , N)
√
bN
u
χ[bN ,x)(u) x ≥ bN

0 otherwise

Finally, considering

ΦA : F ⊗ L2(R+) −→ F

ΦA(f ⊗ g)(x) = f⟨g,Gx⟩

we have that

Φ∗
A : F −→ F ⊗ L2(R+)

Φ∗
A(f)(x) = f ⊗Gx

Therefore,

⟨Gx, Gy⟩L2 = ΦA(x)Φ
∗
A(y).
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More about F

Recall that

F =

{
f ∈ ACloc([0,+∞)) : f(0) = 0, ∥f∥2 =

∫ ∞

0

|f ′(x)|2dx <∞
}
.

It is immediate to see that the reproducing kernel of F is

m : R+ × R+ → R+

m(x, y) = x ∧ y

It has an interesting connection with the Brownian motion. A reference

is [Ka014].

Definition 4.0.1. The Brownian motion is the process B = {Bt, t ≥ 0}
such that

1. B0 = 0;

2. B has independent increments: for every t ≥ 0, h ≥ 0, the future

increments Bt+h −Bt are independent from the past Bs, s < t;

3. B has Gaussian increments: Bt+h −Bt ∼ N (0, h);

4. B has continuous paths: t 7→ Bt is continuous.

Proposition 4.0.1. If B = {Bt}t is the Brownian motion, then the covari-

ance between Bt and Bs is given by the kernel m(s, t) for all s, t ≥ 0.

75
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Proof. If s ≤ t, Bt = Bs + (Bt −Bs) =⇒ E[Bt] = 0.

cov(Bs, Bt) = E[BsBt]

= E[B2
s ] + E[Bs(Bt −Bs)]

= E[B2
s ]

= s = s ∧ t = m(s, t).

Corollary 4.0.0.1. Among centered Gaussian processes, the covariance is

given by the minimum if and only if there is Brownian motion.

In general the following theorem holds:

Theorem 4.0.1. Let X be a stochastic process. The covariance function of

X is a kernel function on T (time).

Proof. LetX1, . . . , Xn be a sample of random variables. The matrix (Cov(Xi, Xj))

is positive semidefinite: assuming wlog that E[Xi] = 0 for all i, the matrix is

(Cov(Xi, Xj)) = ⟨Xi, Xj⟩L2 ≥ 0, because it is a Grammian matrix.

Remark 4.0.1. Although there is a connection between stochastic processes

and RKHS, in general the properties of functions in H are not reflected in

the sample paths of the process. For example, the Brownian motion has paths

of unbounded variation, while F contains absolutely continuous and hence of

bounded variation functions.

Another interesting connection of the min kernel is the one with Volterra

integral operator. A reference is [GMR23].

Definition 4.0.2. The Volterra integral operator is V : L2(R+) → C

(V g)(x) =

∫ x

0

g(y)dy.
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If S : R+ × R+ → C

S(x, y) =

1 0 ≤ y ≤ x

0 x < y

then V is the integral operator with integral kernel S, i.e.

(V g)(x) =

∫ ∞

0

S(x, y)g(y)dy.

Definition 4.0.3. Given X,Z and (Y, µ) a measure space, if S1 : X×Y → C,
S2 : Y × Z → C are square-integrable functions in Y , we define the box

product of S1 and S2 as

S12S2 : X × Z → C

S12S2(x, z) =

∫
Y

S1(x, y)S2(y, z)dµ(y).

Moreover, we define the adjoint as

S∗
1(y, x) = S1(x, y).

Coming back to the Volterra integral kernel, we have that

S2S∗(x, t) =

∫ ∞

0

S(x, y)S(t, y)dy = x ∧ t.

In general it holds the following theorem:

Theorem 4.0.2. Let X be a set, let (Y, µ) be a measure space. If

S : X × Y → C is square integrable in Y , then S2S∗ : X × X → C is a

kernel function.

Proof. Set K = S2S∗. Fix points x1, . . . , xn ∈ X and scalars λ1, . . . , λn ∈ C.

Let g(y) =
n∑

i=1

λiS(xi, y) ∈ L2(Y, µ). Then,

n∑
i,j=1

K(xi, xj)λiλj =

∫
Y

|g(y)|2dµ(y) ≥ 0.
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