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Abstract

The aim of this thesis is to introduce the reader to the study of black holes,
starting from Einstein equations and concluding with the information paradox,
along with an overview of the Holographic Principle. The main mathematical and
physical properties will be shown by means of the theory of general relativity and
quantum field theory. Spherically symmetric space-time and Rindler coordinates
will be widely used. Great attention will be paid to thermodynamics and BHs’
evaporation process.

The first three chapters are mainly concerned with basic material, which will
be later used in chapter four and five for a thermodynamic dissertation.





Sommario

Questa tesi ha l’obiettivo di introdurre il lettore allo studio dei buchi neri, par-
tendo dalle equazioni di campo di Einstein fino ad arrivare a discutere il paradosso
dell’informazione di Hawking ed il Principio Olografico. Le principali caratteri-
stiche matematiche e fisiche verrano esposte sulla base delle teorie della relatività
generale e dei campi quantistici, facendo ampio uso di uno spazio-tempo a simme-
tria sferica e delle coordinate di Rindler. Particolare importanza verrà data alle
proprietà termodinamiche dei buchi neri ed al loro processo di evaporazione.

I primi tre capitoli contengono materiale di base, che verrà poi utilizzato per
esporre la trattazione termodinamica a partire dal quarto capitolo.
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Introduction

The idea of bodies so massive and dense that even light could not escape them was
first introduced in the XVIII century relying on Newtonian gravity. Later on, with the
general theory of gravity these objects gained more relevance and importance, until they
have recently been detected in astronomical observations (see Fig. 1).

Figure 1: The first photo of superheated material surrounding the supermassive black
hole in the Milky Way, Sagittarius A* [4].

Black holes (BHs) are nowadays considered fundamental to understand the history
and evolution of the universe; furthermore they appear to be a valid tool for the devel-
opment of a new theory that combines both gravity and quantum mechanics. Therefore,
studying the physics of these peculiar objects is essential, as they seem to be a great
opportunity to better understand physics itself.
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A BH can be physically defined as an object with a mass and a density for which
its escape velocity is greater than c, where c = 299792458 ms−1 indicates the speed of
light. Special relativity states that the latter is the velocity limit; in order to accelerate
an object at a speed v = c an infinite amount of energy is required. Therefore from this
basic definition of a BH it follows that nothing that gets close enough to its centre (light
included) can escape it. However it is known that BHs can loose mass when virtual
particles generate at the horizon; this mechanism is called Hawking radiation and it is
responsible for BHs’ temperature. This process will eventually lead to the evaporation
of every BH in the Universe. All of these concepts will be better defined and explained
during the various sections of this thesis.

The so-called ”no hair theorem” tells us that all (stationary) BH are characterised
by three independent parameters only: mass, charge and angular momentum. However,
for a complete picture of BHs, advanced mathematical tools, like differential geometry,
are required to get a complete understanding of their physical properties. Space-time is
then considered as a differentiable manifold with a curvature described by the Einstein
field equations, which will be introduced in Chapter 1.

Gravitation laws play a crucial role in the derivation of the various metrics which
represent different geometries of BHs (see Chapter 2), however, quantum effects must
be included to explain their thermodynamic behaviour. The necessary topics regarding
quantum fields are presented in Chapter 3, while in Chapter 4 the focus is more on
thermodynamics. Lastly, Chapter 5 covers the information conservation laws and the
apparent problem of information loss due to BH evaporation. At the end are also in-
troduced the principle of BH complementarity, which is believed to be a valid solution
to the information paradox, and a relatively recent theory related with the latter: the
Holographic theory.

In the whole thesis the signature of the metric will be (1,−1,−1,−1).
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Chapter 1

Useful concepts of general relativity

The principle of general relativity (GR) states that the laws of physics are the same
in all reference frames (for all observers), thus the theory does not rely on the concept of
inertial observers, unlike special relativity (SR) does, and no preferred reference frames
shall exist [3]. However, all equations known in SR can be extended to curved space–time
by replacing all partial derivatives with covariant derivatives; this is the so-calledminimal
coupling principle [2].

1.1 Equivalence principle

An important consideration is that gravitational interaction between two bodies can-
not be made to vanish, even though gravitational effects can be eliminated by considering
a free falling frame of reference.

“Motion in a uniform gravitational field cannot be distinguished from free
fall [3].”

Regarding this, when trying to describe a static BH it is useful to imagine space
to be filled with static observers, called fiducial observers (or by abbreviation Fidos)
[7]. Each Fido carries a clock which always record the proper time τ . If we consider a
particle falling into a BH we can define another type of observers: freely falling observers
(or Frefos) who follow the particle as it falls. When a classical particle falls into the
BH, according to Fidos’ viewpoint, the particle asymptotically approaches the horizon
without ever crossing it. On the other hand, according to Frefos, they and the particle
cross the horizon after a finite time. However this is not a violation of any GR principle
as, once the horizon is crossed, their observations cannot be communicated to any Fido.

We will see more on this later in Chapter 2, Section 2.2.1.
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1 – Useful concepts of general relativity

1.2 Einstein’s equations

In GR, the gravitational field is characterised by the metric tensor components gµν .
Einstein field equations are dynamic equations which can be derived from Hilbert’s vari-
ation principle [2]

δS = 0, S = Sm +

∫
R− 2Λ

2κ
√
−gd4x (1.1)

where Sm =
∫
Lm

√
−gd4x is the action of matter; R ≡ Rk

k is called curvature scalar and
is the trace of the Ricci tensor Rij, in turn related to the Riemann tensor Ri

ljk by Rij =
Rk

ikj; Λ is the cosmological constant (negligible when considering local configurations);
κ ≡ 8πG

c4
(G is the gravitational constant); g ≡ det (gµν) and d

4x ≡ dx1dx2dx3dx4. The
second term is the action for the field (also called Hilbert action), its variation is

δSH =
1

2κ

∫ [√
−gδR +Rδ

(√
−g
)
− 2Λδ

(√
−g
)]
d4x

=
1

2κ

∫ [√
−gδR +

R

2

√
−ggµνδgµν − Λ

√
−ggµνδgµν

]
d4x

the Jacobi’s formula δ det(M) = det(M) Tr (M−1δM) has been used to evaluate the vari-
ation of the determinant of the metric (for its derivation see appendix A). The variation
of gµν follows from the variation of the identity gµαgαν = δµν . In fact we have

δgµαgαν + gµαδgαν = δ(δµν ) = 0

⇒ δgµαδβα = −gµαδgανgνβ ⇒ δgµν = −gµαδgαβgβν

Now we need to evaluate the variation of the curvature scalar

δR = δ(gµνRµν) = δgµνRµν + gµνδRµν = −gµαδ(gαβ)gβνRµν + gµνδ(Rk
µkν) (1.2)

The Ricci tensor can be expressed in terms of Christoffel symbols as

Rk
αkβ = ∂βΓ

k
αk − ∂kΓ

k
αβ + Γσ

βkΓ
k
σα − Γk

kσΓ
σ
αβ (1.3)

its variation is then

δRk
αkβ = ∂βδΓ

k
αk − ∂kδΓ

k
αβ + δΓσ

βkΓ
k
σα +Γσ

βkδΓ
k
σα − δΓk

kσΓ
σ
αβ − Γk

kσδΓ
σ
αβ (1.4)

in turn, (using the notation gµν,α ≡ ∂αgµν) the variation of the Christoffel symbols can
be written as

δΓµ
αβ = δ

[
1

2
gµν (gνα,β + gνβ,α − gαβ,ν)

]
=

1

2
gµν (δgνα,β + δgνβ,α − δgαβ,ν)− gµρδgρσΓ

σ
αβ

2



1 – Useful concepts of general relativity

Partial derivatives can be replaced by covariant derivatives using

∇αδgµν = ∂αδgµν − Γβ
αµδgβν − Γβ

ανδgµβ

⇒ δΓµ
αβ =

1

2
gµν (∇αδgβν +∇βδgαν −∇νδgαβ) (1.5)

Therefore, inserting (1.5) in (1.4), we find

δRαβ ≡ δRk
αkβ = ∇βΓ

µ
αµ −∇µδΓ

µ
αβ

Using this result in (1.2), we obtain

δR = −gµαδ(gαβ)gβνRµν − gµν
(
∇kδΓ

k
µν −∇νδΓ

k
µk

)
= −Rαβδ(gαβ)− gαβgµν (∇α∇µδgβν −∇α∇βδgµν)

We can finally write the variation of the Hilbert action as

δSH =
1

2κ

∫ [
−
√
−gRαβδ(gαβ) +

√
−gR

2
gµνδgµν −

√
−gΛgµνδgµν

]
d4x

− 1

2κ

∫ √
−ggαβgµν (∇α∇µδgβν −∇α∇βδgµν) d

4x

The second term forms a total covariant derivative as the metric (and thus also
√
−g) is

covariantly conserved.

δSH =
1

2κ

∫ [
(−Gµν − gµνΛ)

√
−gδgµν −∇α

(√
−gV α

)]
d4x (1.6)

where Gµν ≡ Rµν − 1
2
Rgµν is the Einstein tensor and gαβgµν (∇µδgβν −∇βδgµν) forms a

contravariant vector that was named V α. Notice that

∇α(
√
−gV α) =

√
−g∇αV

α =
√
−g∂αV α +

√
−gΓα

αβV
β

=
√
−g∂αV α +

1

2

√
−ggαν∂βgανV β = ∂α(

√
−gV α)

The last term in (1.6) integrates to a boundary term, which can be canceled by placing
appropriate boundary conditions. It then follows

δSH =
1

2κ

∫ [
(−Gµν − gµνΛ)

√
−gδgµν

]
dx4

⇒ δSH

δgµν
=

(−Gµν − gµνΛ)
√
−g

2κ

3



1 – Useful concepts of general relativity

Considering Sm we have
δSm

δgµν
≡ −1

2
Tµν

√
−g

where Tµν is the stress energy tensor (SET).
Now, from (1.1), we set δSH = −δSm, which results in Einstein’s equations

Rµν −
1

2
Rgµν + Λgµν = −κTµν (1.7)

In the weak field limit the local curvature is small and we find the Newtonian potential.
An important feature of the SET is that it is covariantly conserved

∇µT
µν = 0

For the electromagnetic field the SET reads

T µ
ν e−m = − 1

µ0

[
FµαF

να +
1

4
δνµFαβF

αβ

]
(1.8)

where Fµν is the Maxwell tensor, related to the electromagnetic potential Aµ as it follows

Fµν ≡ ∂νAµ − ∂µAν

Before considering the spherically symmetric solution to Einstein’s equations, we
shall recall that three types of maximally symmetric spaces are possible in a four-
dimensional pseudo-Riemannian space–time. The space of zero constant curvature,
Λ = 0, is Minkowski space. The space of constant positive curvature, Λ > 0, is de
Sitter (dS) space. Lastly, the space of constant negative curvature, Λ < 0, is anti de
Sitter (AdS) space [2].
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Chapter 2

Spherically symmetric space-time

The simplest solutions to Einstein’s equation are in a static, spherically symmetric
form, characterizing the gravitational fields in vacuum or in the presence of an elec-
tromagnetic field (without charges) and a cosmological constant. With the static as-
sumption we can require the existence of a time-like Killing vector 1, in addition to three
space-like Killing vectors corresponding to rotations around axes with origin at the centre
of the source of the field

K⃗t =
∂

∂t
and K⃗i =

d

dθi
, i = 1, 2, 3

Spatial vectors must be conserved in time so they commute with K⃗t:
[

∂
∂t
, d
dθi

]
= 0. We

may therefore assume the metric is such that rotations are orthogonal to K⃗t and that we
can use the analogue of polar coordinates on surfaces of constant r. Furthermore, in the
planes where only the angular components can vary, the metric is the same as the one
of a 2-sphere (see appendix B for a derivation of this metric) [3].

In general, we can write a spherically symmetric metric with exponential coefficients
in the form

ds2 = e2γc2dt2 − e2αdu2 − e2βdΩ2, dΩ2 = dθ2 + sin2 θdϕ2 (2.1)

where α, β, γ are functions of the radial coordinate u and the time coordinate t. θ and
ϕ are, respectively, the usual polar and azimuthal angles. We will use eβ ≡ r; identifying
with r the radius of a coordinate sphere u = const, t = const. Notice that it does not
measure proper spatial distance from the origin, but it is defined so that the area of the
2-sphere at r is 4πr2. It is important to stress that in curved space the spherical radius
r has nothing to do with the distance from the center, as in many spherically symmetric
space–times there is no center at all.

1A Killing vector V⃗ is defined as LV⃗ g = 0 (g is the metric), where L is the Lie derivative [3].
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2 – Spherically symmetric space-time

To fix the choice of the radial coordinate we can postulate a relation between the
functions α, β, γ or simply choose one of them (or a function of one of them) as the
coordinate. In solving different problems, different variants of such coordinate conditions
can be convenient.

2.1 Reissner-Nordström-de Sitter solution

In the first place we will look for a static, spherically symmetric solution, considering
the gravitational fields in the presence of an electromagnetic field and a cosmological
constant; this solution is called Reissner-Nordström-de Sitter solution (if one considers
Λ > 0) [2]. In this configuration T µ

ν matter = 0, while T µ
ν e−m is defined as in (1.8).

Therefore (1.7) takes the form

Rν
µ −

1

2
Rδνµ + Λ = −κT ν

µ e−m
(2.2)

where the low indices have been contracted once and δνµ is the Kronecker delta. In
general, the nonzero components of the Ricci tensor are

R0
0 = e−2γ

[
2β̈ + α̈ + 2β̇2 + α̇2 − γ̇

(
2β̇ + α̇

)]
− e−2α [γ′′ + γ′ (2β′ + γ′ − α′)] (2.3)

R1
1 = e−2γ

[
α̈ + α̇

(
2β̇ − γ̇ + α̇

)]
− e−2α

[
2β′′ + γ′′ + 2β′2 + γ′

2 − α′ (2β′ + γ′)
]

(2.4)

R2
2 = e−2β + e−2γ

[
β̈ + β̇

(
2β̇ − γ̇ + α̇

)]
− e−2α [β′′ + β′ (2β′ + γ′ − α′)] = R3

3 (2.5)

R01 = 2
[
β̇′ + β̇β′ − α̇β′ − β̇γ′

]
(2.6)

where dots and primes stand for ∂
∂t

and ∂
∂r
, respectively. For the derivations see appendix

B. We can then write the curvature scalar for a static metric (time derivatives vanish)

R = R0
0 +R1

1 +R2
2 +R3

3 =
2

r2
− e−2α

[
γ′′ + γ′ (2β′ + γ′ − α′) 2β′′+

γ′′ + 2β′2 + γ′
2 − α′ (2β′ + γ′) + 2β′′ + 2β′ (2β′ + γ′ − α′)

]
=

2

r2
− e−2α

(
2γ′′ + 2γ′

2
+

4γ′

r
− 2γ′α′ − 4α′

r
+

2

r2

)
where e−2β has been written as 1

r2
. Note that eβ ≡ r ⇒ β = ln r ⇒ β′ = 1

r
, β′′ = − 1

r2
.

Using the so-called curvature coordinates u = r, γ = γ(r), α = α(r), we can write these
two components of the Einstein tensor as functions of r

G0
0 = R0

0 −
1

2
δ00R = −e−2α

[
γ′′ + γ′

(
2

r
+ γ′ − α′

)]
− 1

r2

+ e−2α

(
γ′′ + γ′

2
+

2γ′

r
− γ′α′ − 2α′

r
+

1

r2

)
= e−2α

(
1

r2
− 2α′

r

)
− 1

r2
(2.7)
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2 – Spherically symmetric space-time

G1
1 = R1

1 −
1

2
δ11R = −e−2α

[
− 2

r2
+ γ′′ +

2

r2
+ γ′

2 − α′
(
2

r
+ γ′

)]
− 1

r2

+ e−2α

(
γ′′ + γ′

2
+

2γ′

r
− γ′α′ − 2α′

r
+

1

r2

)
= e−2α

(
1

r2
+

2γ′

r

)
− 1

r2
(2.8)

Using (2.7) and (2.8), equation (2.2) gives

G0
0 + Λ = e−2α

(
1

r2
− 2α′

r

)
− 1

r2
+ Λ = −κT 0

0 (2.9)

G1
1 + Λ = e−2α

(
1

r2
+

2γ′

r

)
− 1

r2
+ Λ = −κT 1

1 (2.10)

We shall now write the first two Maxwell equations ∇αF
αβ = −Jβ = 0 (Fαβ and Jβ

are respectively the Maxwell tensor and the four-current) for the spherically symmetric
case. If we look at the components of Fµν , only the ones describing a radial electric field
F01 = −F10 = −Er and a radial magnetic field F23 = −F32 = Br can be nonzero. For
simplicity we will restrict ourselves to an electric field only, hence Maxwell equations
become (only the nonzero terms are displayed)

∇αF
αβ = ∂αF

αβ + Γα
αµF

µβ + Γα
βµF

αµ = ∂1F
10 + Γ0

01F
10 + Γ0

01F
01 + Γ1

11F
10

= −∂rF 01 − ∂r
(
ln
√
−g
)
F 01 = −∂rF 01 − ∂r (

√
−g)√

−g
F 01

where the formula Γa
ba = ∂b (ln

√
−g) has been used to replace Christoffel symbols. Now

setting the above expression to zero and recognising the composite derivative leads to

∂r
(√

−gF 01
)
= 0 (2.11)

The determinant of the metric (2.1) reduces to the product of its diagonal elements:

gij =


e2γ 0 0 0
0 −e2α 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ

⇒ det gij = −e2γ+2αr4 sin2 θ

Inserting this result in (2.11) we obtain

∂r
[
eγ+αr2 sin (θ)F 01

]
= 0 ⇒ F 01 =

√
µ0Qe

−γ−α

4π
√
ϵ0r2

, F10 = g00g11F
01 =

√
µ0Qe

γ+α

4π
√
ϵ0r2

where the constant Q is interpreted as an electric charge and
(
4π

√
ϵ0
)−1√

µ0 is a nor-
malization constant. Using (1.8) we can then write the fist two components of the SET

T 0
0 =

1

4µ0

[
−4
(
F01F

01
)
+ F10F

10 + F01F
01
]
=

Q2

32π2ϵ0r4
(2.12)

T 1
1 =

1

4µ0

[
−4
(
F10F

10
)
+ F10F

10 + F01F
01
]
=

Q2

32π2ϵ0r4
(2.13)
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2 – Spherically symmetric space-time

As T 0
0 = T 1

1 , if we now subtract (2.10) and (2.9) we get

e−2α

(
2γ′

r
+

2α′

r

)
= 0 ⇒ γ′ + α′ = 0 ⇒ eα+γ = const = 1 (2.14)

We set the arbitrary constant to 1 so that we asymptotically obtain the Minkowski metric
when r → ∞. Now let A(r) = e−2α, which plugged in (2.9) gives

A

(
1

r2
− 2α′

r

)
− 1

r2
= −

(
Λ + κT 0

0

)
⇒ [r (A− 1)]′ = −

(
Λ + κT 0

0

)
r2

⇒ r (A− 1) = −Λr3

3
− κ

∫
T 0
0 r

2dr ⇒ A = 1− Λr2

3
− 2GM

c2
1

r
+

GQ2

4πϵ0c4
1

r2

where M in the integration constant is interpreted as the active gravitational mass of
the gravitational field source. Note that (2.14) implies e2γ = A(r).

We can finally write the expression of the Reissner-Nordström-de Sitter metric

ds2 = A (r) c2dt2 − dr2

A(r)
− r2dΩ2, A(r) = 1− Λr2

3
− 2GM

c2
1

r
+

GQ2

4πϵ0c4
1

r2
(2.15)

For Q = Λ = 0, A(r) = 1− 2GM
c2

1
r
, and the Schwarzschild metric is obtained.

ds2 =

(
1− 2GM

c2
1

r

)
c2dt2 −

(
1− 2GM

c2
1

r

)−1

dr2 − r2dΩ2 (2.16)

If M = 0 as well, then A(r) = 1 and the Minkowski metric is reproduced.
Equation (2.16) reduces to Newton’s law of gravity if we consider the geodesic equa-

tion
d2xi

ds2
+ Γi

µνu
µuν = 0 (2.17)

where ui ≡ dxi

ds
(for its derivation see appendix B). For the case of a test particle instan-

taneously at rest, at a large radius r (if compared to 2GM/c2) we have ds = g00cdt and
2GM
c2r

≈ 0, so that

0 =
1

g00c2
d2xi

dt2
+ Γi

00

(
u0
)2 ≈ a⃗

c2
+

1

c

d2t

dt2
+

1

2
giα (∂0gα0 + ∂0gα0 − ∂αg00)

⇒ 0 = a⃗− c2

2
g11 (∂1g00) r̂ ≈ a⃗− c2

2

(
−2GM

c2r2

)
= a⃗+

GM

r2
r̂

Therefore the particle experiences the acceleration −GM
r2

in the direction of smaller radii,

in agreement with Newton’s law of gravity F⃗ = GM1M2

r2
r̂.
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2 – Spherically symmetric space-time

To better describe the Reissner–Nordström space-time is useful to introduce “ge-
ometrized” mass and charge, having both the dimension of a length

m =
GM

c2
, q =

√
GQ√

4πϵ0c2

Then, setting Λ = 0

A = 1− 2m

r
+
q2

r2
⇒ A = 0 ⇔ r± = m±

√
m2 − q2

The values for which g00 = A = 0 are called horizons [2]. The outer horizon (a sphere
with r = r+) is also called event horizon, while the inner one (a sphere with r = r−) is
the Cauchy horizon. At r− < r < r+ ⇒ A < 0, the coordinates r and t exchange their
roles: the quantity r now becomes a temporal coordinate and t a spatial coordinate.
Such a region is called T-region. On the other hand at r < r−∨ r > r+ ⇒ A > 0 and the
region is called an R-region. Under the condition m2 = q2, so that r2A(r) = (r −m)2,
the two horizons merge into a single one, r = rh = m = |q|; which is called a double, or
extremal horizon, and the region r ≤ m (or sometimes the whole configuration) is called
an extremal Reissner–Nordström black hole. Lastly, for “large charges,” q2 > m2, the
whole space r > 0 is occupied by a single R-region and no horizons are present.

At r → ∞, the contribution of the charge can be neglected, and the metric approxi-
mately coincides with the Schwarzschild metric. In contrast, at small radii, r → 0, the
metric is dominated by the charge.

At Λ ̸= 0, the basic properties of the metric (2.15) are again determined by the
function A(r) and, in particular, by the number and the disposition of its zeros, each of
them corresponding to a horizon that separates R- and T-regions.

The quasiglobal coordinate u = x (and γ = −α) is suitable for describing BHs and
other similar metrics on both sides of horizons. We can then redefine the static metric
(2.1) as

ds2 = A (x) c2dt2 − dx2

A(x)
− r2(x)dΩ2 (2.18)

where A(x) ≡ e2γ. Note that when we introduced the notion of horizon for the Reissner-
Nordström metric, the coordinate r = x was simultaneously a curvature and a quasiglobal
coordinate.

It is now possible to define a horizon in any space–time with the metric (2.18) as a
regular sphere x = xh, near which

A(x) ∼ (x− xh)
n

where n ∈ N is the order of the horizon. Since A(x) is equal to the norm ξαξα of the
Killing vector ξα = (1, 0, 0, 0), regular surfaces where A = 0 are Killing horizons (surfaces
where the timelike or spacelike Killing vector becomes null).

9



2 – Spherically symmetric space-time

2.1.1 Rindler approximation

The proper distance from the horizon is measured by the coordinate ρ:

ρ =

∫ r

2m

√
grr(r′)dr

′ =

∫ r

2m

(
1− 2m

r′

)− 1
2

dr′

=
√
r(r − 2m) + 2m sinh−1

(√
r

2m− 1

)
We can use this coordinate to describe the region near the horizon of a Schwarzschild
BH, replacing r in (2.16) with ρ [7].

In terms of ρ and t the metric (2.16) takes the form

ds2 =

(
1− 2m

r(ρ)

)
c2dt2 − dρ2 − r(ρ)2dΩ2

Near the horizon,

ρ ≈ 2
√

2m(r − 2m)

⇒ ds2 ∼= ρ2
(
cdt

4m

)2

− dρ2 − r(ρ)2dΩ2

Furthermore, in order to study a small angular region of the horizon arbitrarily centred
at θ = 0, we can use Cartesian coordinates

X = 2m θ cosϕ =
2GM

c2
θ cosϕ

(2.19)

Y = 2m θ sinϕ =
2GM

c2
θ sinϕ

Finally, introducing ω

ω =
t

4m
=

tc2

4GM
the metric then takes the form

ds2 = ρ2c2dω2 − dρ2 − dX2 − dY 2

Clearly, ρ and ω are the radial and hyperbolic angle variables for an ordinary Minkowski
space. Lastly, Minkowski coordinates cT , Z can be defined by

cT = ρ sinh (ωc)

(2.20)

Z = ρ cosh (ωc)

10



2 – Spherically symmetric space-time

to get (only near r = 2m, and only for a small angular region) the familiar Minkowski
metric

ds2 = c2dT 2 − dZ2 − dX2 − dY 2

Therefore, by means of a change of coordinates, we have demonstrated that the
horizon is locally nonsingular, and, for a large BH, is almost indistinguishable from flat
space-time. This approximation of the near-horizon region by Minkowski space is called
the Rindler approximation.

We can now study the case of a particle falling into a BH introduced in Section 1.1
using the concepts of Fidos and Frefos. At different r values Fidos’ clocks run at different
proper rates. If we take a fixed r, the relation between Schwarzschild time t and the
Fidos proper time τ = s

c
is given by

dτ

dt
=

√
g00 =

(
1− 2m

r

) 1
2

Thus, the Fido near the horizon (where r = 2m) sees the Schwarzschild clock running
at a very rapid rate. The acceleration of a Fido at proper distance ρ is given by c2

ρ
for

ρ≪ m.
The motion of the infalling particle near the horizon can be described by the Minkowski

coordinates (cT, Z,X, Y ) defined in equations (2.19) and (2.20). The dynamic of the par-
ticle is free, hence it will have a geodesic motion following a straight line

dZ

dτ
=
pZ

M
= −pZ

M
and

cdT

dτ
=
pT
M

M is the mass of the particle, while pZ and pT are the Z and T components of momentum.
As the particle goes through the horizon, its momentum can be considered as constant
or slowly varying. pZ and pT are the components seen by Frefos. The ones seen by Fidos
are pρ and pτ which, using (2.20), are given by

pρ = pZ cosh (ωc) + pT sinh (ωc)

pτ = pZ sinh (ωc) + pT cosh (ωc)

For t≫ 1 we have
pρ ≈ pτ ≈ 2pZe

ωc = 2pZe
t

4m
c

Therefore a Fido registers an exponential growth for the momentum of the infalling
particle. We can also say that the proper distance of the particle from the horizon
exponentially decreases with time

ρt ≈ ρ0e
− t

4m
c

Locally, a time dependent boost along the radial direction links the coordinates of
Frefos and Fidos. It follows that Fidos see all matter affacted by Lorentz contraction,

11



2 – Spherically symmetric space-time

appearing arbitrarily thin as the distance from the horizon reduces. More specifically
classical physics would describe this as if the particles were stored in “sedimentary”
layers of diminishing thickness as they eternally sink toward the horizon. However, in
the quantum world we must expect this picture to break down by the time the infalling
objects reach a Planck distance from the horizon.

On the other hand for Frefos matter does not show any of this peculiar behaviours.

2.2 General form of geodesic equations

It is now appropriate to have a closer look to the motion of free particles in spherically
symmetric Riemannian space-times . Their equation of motion are the geodesic equations
(2.17), which have the meaning of trajectory equations, describing the extremum of the
world line length between two given points [2]. It is important to remark that s is
the interval which coincides either with the proper time of a Frefos, if it is timelike, or
with the proper length along the geodesic, if it is spacelike. Geodesics can be spacelike,
timelike and null, according to the sign of vµv

µ, and their nature cannot change along
their path because ∂α(vµv

µ) = 0.
Consider the geodesic equations (2.17) as equations relative to the unknowns func-

tions of the canonical parameter λ: x0 = t(λ), x1 = u(λ), x2 = θ(λ), x3 = ϕ(λ); which
are coordinates of a point along the trajectory. Thanks to the symmetry of spherical
space time, we can assume that the geodesic is located in the equatorial plane θ = π/2.
Derivatives with respect to λ will be denoted by a dot, whereas the ones with respect to
u will be denoted by a prime. For the metric (2.1) the geodesic equations for x0 = t(λ)
read

0 =
d2x0

dλ2
+ Γ0

µν
dxµ

dλ

dxν

dλ
= cẗ+ cΓ0

01ṫu̇+ cΓ0
10u̇ṫ+ 0 + · · ·+ 0

= cẗ+ 2c

(
1

2
e−2γ∂ue

2γ

)
ṫu̇ = cẗ+ 2cγ′ṫu̇

⇒ ẗ

ṫ
= −2γ′u̇ = −2γ̇ ⇒ ṫ = Ee−2γ (2.21)

Analogues calculations for x1 = u(λ) and x3 = ϕ(λ) lead to

ü+ γ′e2γ−2αcṫ2 + α′u̇2 − β′e2β−2αϕ̇2 = 0 (2.22)

ϕ̈+ 2β′ϕ̇u̇ = 0 ⇒ |ϕ̇|= Le−2β (2.23)

E and L are integration constants.
Equations (2.21) and (2.23) are not independent due to the constraint vαv

α = k,
where vµ = dxµ

dλ
; k = +1 for timelike geodesics (in this case vµ is the 4-velocity and the

parameter λ corresponds to the proper time), k = 0 for null geodesics, and k = −1 for

12



2 – Spherically symmetric space-time

spacelike ones. Starting from (2.1) it is possible to write this constraint in its explicit
form, which represents an integral of (2.22)

1

dλ2
ds2 =

1

dλ2
(
e2γc2dt2 − e2αdu2 − e2βdΩ2

)
⇒ k = e2γc2ṫ2 − e2αu̇2 − e2βϕ̇2

Now we can substitute the integrals (2.21) and (2.23). After multiplying the resulting
relation by e2γ we obtain

e2γ+2αu̇2 + ke2γ + e2γ−2βL2 = c2E2 ≡ E (2.24)

The latter reminds to an energy conservation law for a particle moving in a potential
field along the u axis: the quantity E2 ≥ 0 coincides with the total energy per unit mass,
the first term is an analogue of the particle’s kinetic energy while the sum of the second
and third terms plays the role of a potential energy; moreover, the effective potential

V (u) = e2γ
(
k + L2e−2β

)
(2.25)

in geodesic motion has a similar behaviour as the potential in classical mechanics for one-
dimensional motion of a point like particle. Motion is only possible in a region where
E2 ≥ V (u), while the values of u at which E2 = V are turning points. The constant L,
related to changes in the azimuthal angle ϕ, can be interpreted as the particle’s conserved
angular momentum per unit mass.

If we now consider the metric (2.18), remembering the relation A ≡ e2γ = e−2α, from
(2.24) and (2.25) we get

u̇2 = E2 − V (u) (2.26)

We can then study geodesics of the metric (2.18) in the proximity of horizons. From
(2.26), in the notation of the metric (where u ≡ x),

±dλ
dx

=

[
E2 − A

(
L2

r2
+ k

)]− 1
2

(2.27)

In particular, as x → xh such that A(xh) = 0 at r ̸= 0 (a possible horizon), where the
quantity xh may be finite or infinite, we have

dλ ≈ dx

E

If E is finite, then near a possible horizon the coordinate x behaves like a canonical
parameter for any geodesic approaching it. We can say that timelike geodesics meet an
horizon in a finite proper time λ ≡ τ if and only if this horizon corresponds to a finite
value of the quasiglobal coordinate x.

13



2 – Spherically symmetric space-time

If A → 0 as x → ∞, such a surface may be called a remote horizon because it is
reached along a geodesic at infinite proper time. According to (2.27), if E = 0, then in
the limit A→ 0, if x→ ∞, then the canonical parameter λ along the geodesics tends to
infinity, just as for nonzero values of E. Thus, we obtain the following important result
for static, spherically symmetric space–time:
If x → ∞ on a surface where A → 0 (i.e., on a candidate horizon), then this surface
(called a remote horizon) is the boundary of the space-time under consideration, and it
cannot be reached by any geodesics at finite values of their canonical parameter [2].

So the space–time is complete at a remote horizon: no extension is needed beyond
it. The completeness of space-time may be rephrased saying that can follow any path in
any direction.

Lastly, we shall return to usual (not remote) horizons and study the time t (which
is also the time according to the clocks of a distant observer at rest in the case of an
asymptotically flat space–time 2) for timelike and null geodesics approaching the horizon.
Inserting (2.21) in (2.26) we get

u̇2 = c2ṫ2A2 − V ⇒ u̇2

ṫ2
= A2 − V

ṫ2
= A2 − A2V

E2

From which follows that
dx

dt
= ±A

√
1− V (x)

E2
(2.28)

Therefore at the horizon, where A = 0, the coordinate time t is infinite for all geodesics
that cross it. However, purely spatial geodesics are an exception to this, as for them
E = 0. In particular t is equal to +∞ for motion to the horizon and −∞ for motion
from the horizon; meaning that an horizon is in absolute past or absolute future for any
observer located in the static region.

Equation 2.28 for radially moving photons gives dx/dt = ±A, hence the coordinate
velocity of photons (and the same for massive particles), from the viewpoint of any static
observer, tends to zero as the photon approaches a horizon. It tends to zero so fast that
the time t at which a photon reaches or leaves an horizon is infinite (in according with
what we have seen in Section 2.1.1). A past horizon and the region beyond it can be
called a white hole, as their features are opposite to a the ones of a BH: photons or any
other particles can appear but in principle it seems to be impossible to get there from
the static region, because it is located in the absolute past.

The next question is how to obtain a complete description of space-time, joining the
regions separeted by horizons.

2As r → ∞, far from gravitational field sources, usually space–time geometry coincides with the
Minkowski geometry. Such space–times are called asymptotically flat.
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2 – Spherically symmetric space-time

2.3 Kruskal-Szekeres metric

In 1960, M. Kruskal and G. Szekeres independently formulated a transition from the
Schwarzschild metric to coordinates providing a complete description of the spherically
symmetric space–time [2].

The transformation must involve only the (r, t) subspace while the angular coordi-
nates θ, ϕ will remain the same, so that spherical symmetry is preserved. Let

r∗ =

∫ (
1− 2m

r

)−1

dr = r + 2m ln
∣∣∣ r
2m

− 1
∣∣∣

such that dr∗ =
(
1− 2m

r

)−1
dr and dr2 =

(
1− 2m

r

)2
dr2∗. Hence (2.16) becomes

ds2 =

(
1− 2m

r

)
(c2dt2 − dr2∗)− r2dΩ2 (2.29)

Next, it is convenient to pass on to the null coordinates V,W :

2ct = V +W, 2r∗ = V −W

such that cdt = 1
2
(dV + dW ) and dr∗ =

1
2
(dV − dW ), so c2dt2 − dr2∗ = dV dW .

Thus (2.29) can be rewritten as

ds2 =

(
1− 2m

r

)
dV dW − r2dΩ2 (2.30)

The last change of coordinates is

V = 4m ln|v|, W = −4m ln|w|

which has the following implications:

dV =
4m

v
dv, dW = −4m

w
dw ⇒ dV dW = −16m2

vw
dvdw

2r∗ = 4m ln|v|+4m ln|w|= 4m ln|vw| ⇒ vw = −e
r∗
2m

The sign of |vw| has been chosen to be negative in order to obtain a regular metric.

with e
r∗
2m = e

r
2m

∣∣∣ r
2m

− 1
∣∣∣ = e

r
2m

∣∣∣∣r − 2m

2m

∣∣∣∣ and

(
1− 2m

r

)
=
r − 2m

r

It is now easy to see that the metric (2.30) becomes

ds2 =
32m3

r
e−

r
2mdvdw − r2dΩ2

15



2 – Spherically symmetric space-time

We can also further transform the null coordinates into spatial (R) and temporal (T )
ones by assuming

m · v = cT +R , m · w = cT −R

which implies dvdw = c2dT 2 − dR2, whence

ds2 =
32m

r
e−

r
2m (c2dT 2 − dR2)− r2dΩ2 (2.31)

This is the Kruskal metric, which allows us to present Schwarzschild space-time in a
single, complete picture. Notice that now only one singularity in r = 0 has remained,
meaning the sphere-shaped singularity of the Schwarzschild metric was only dictated by
the choice of coordinates.

An important remark is that Kruskal metric can be misleading when applied to
describe observations made by distant observers who have stayed outside the horizon for
all the entire history of the BH. For these purposes, Schwarzschild coordinates, which
only cover the exterior of the horizon, are in many ways more reliable [7].

2.3.1 Kruskal diagrams

We are now able to represent the whole Schwarzschild space-time in a diagram [2].
Starting from this relations between r, v, w, T , R:

−e
r

2m
r − 2m

2m
= vw =

c2T 2 −R2

m2

we can plot every value of r (except r = ∞) in a RT plane. The initial region r > 2m
is mapped into the right quadrant v > 0, w < 0, or R > 0 , −R < cT < R (region I, see
Fig. 2.1 ). The horizon r = 2m is now depicted by the pair of intersecting axes v = 0
and w = 0, or, equivalently, cT = ±R. These axes (or these null hypersurfaces if we
recall that each point on the diagram corresponds to a 2-sphere) do not belong to any
of the R- or T -regions, and the same is true for their intersection point u = v = 0. The
singularity r = 0 is depicted by two hyperbolas: cT = −

√
1 +R2 (the past singularity)

and cT = +
√
1 +R2 (the future singularity). The future singularity is the place where

everything goes after crossing the future event horizon. Furthermore, there are two T -
regions T− and T+ (the first one is obtained by transition through the future horizon,
the second one through the past horizon), and one more R-region, R−.

For any signal is impossible to ever escape to region I. The only exception is for region
IV, whose points can communicate with region I, but the opposite is not allowed. No
observer who stays outside r = 2m can ever be influenced by events in region II. For this
reason the latter is said to be behind the horizon. These properties are usually described
by saying that regions II and III are behind the future horizon while regions III and IV
are behind the past horizon [7].
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cT

III I

II

IV

Figure 2.1: Kruskal diagram for a Schwarzschild BH (this plot has been realized based
upon the work of Izaak Neutelings on Kruskal diagrams of Schwarzschild BHs [9]). The
singularity is represented by a red zigzag line, while the green line in the right side of
the picture is a path of a light source falling into the (future) singularity. The future
singularity is the upper one, while the other is the past singularity. The yellow lines
are photons and the three cones are the light cones of the light source at three different
position in space-time. The four regions indicated by roman numbers represent: the
outside of the BH (I), the inside of the BH (II), the outside of the BH in a parallel
universe (III), the inside of a white hole (IV).

2.3.2 Carter Pensrose diagrams

For the purpose of studying the causal structure of space-time containing Killing
horizons, it is often helpful to use Kruskal-like coordinate transformations, providing
smooth transitions between horizons [2]. The results are diagrams that, if compared
with the usual Kruskal diagram, are more convenient, because each R- or T -region is
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2 – Spherically symmetric space-time

depicted by a square or triangle of fixed finite size.
We will use the coordinates ξ and η, specified on the segment (−π/2, π/2),

v = tan ξ, w = tan η

The following relation between the variables follows:

−e
r

2m
r − 2m

2m
= vw = tan ξ tan η

It is easily seen (Fig. 2.2) that the horizon is now represented by the two segments ξ = 0,
η = 0 (BE and CF), and the singularity r = 0 by other two segments where ξ+η = ±π/2
(BC and EF). The values ξ = ±π/2 and η = ±π/2 (the line strings FAB and CDE)
correspond to an infinite radius r. Therefore the whole two-dimensional (r, t) manifold
has been mapped into the interior of the hexagon ABCDEF.

2.4 An outline of rotating black holes

Until now, we have been discussing only spherically symmetric BHs, whose angular
momentum is zero. Now, we will very briefly describe the basic properties of rotating
BHs [2]. For simplicity we will assume them to be electrically neutral; which is reasonable
as in astrophysical conditions their charge may be neglected most of the times. Rotating
BHs form as a result of the gravitational collapse of rotating bodies (but practically all
celestial bodies are rotating) and at BHs mergers. Stationary rotating BHs in GR are
described by the Kerr metric

ds2 =

(
1− 2mr

ϱ2

)
c2dt2 +

4cmra2 sin2 θ

ϱ2
dϕdt− ϱ2

∆
dr2

− ϱ2dθ2 −
(
r2 + a2 +

2mra2

ϱ2

)
sin2 θdϕ2 (2.32)

where

a =
J

Mc
, ϱ2 = r2 + a2 cos2 θ, ∆ = r2 − 2mr + a2

Here, (t, r, θ, ϕ) are the so-called Boyer–Lindquist coordinates. The metric (2.32) rep-
resents an asymptotically flat (as r → ∞) stationary, axially symmetric solution to
the Einstein equations in vacuum (T µ

ν ≡ 0). Note that at J = 0 it reduces to the
Schwarzschild solution, as J is the angular momentum of the BH. A true curvature sin-
gularity occurs at ϱ = 0, r = 0, θ = π/2, and an inspection shows that this singularity
has the shape of a ring.

The surfaces where ∆ = 0, i.e.,

r± = m±
√
m2 − a2
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r = 0

r = 0

(a) Schematic Carter-Penrose diagram for the Schwarzschild metric.

III I

II

IV

(b) Carter-Penrose diagram for Schwarzschild BH with lines of constant time and
space (this plot has been realized based upon the work of Izaak Neutelings on Carter-
Penrose diagrams of Schwarzschild BHs [10]).

Figure 2.2: The Carter–Penrose diagram for the Schwarzschild metric [2]. The objects
in the two diagrams are analogous to the ones in Fig. 2.1.
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2 – Spherically symmetric space-time

are horizons. In the case of m ̸= a there are two simple horizons while for m = a there
is only one extremal (double) horizon.

Using (2.32) we can evaluate the norm of the killing vector ξµ ≡ (1, 0, 0, 0)

ξµξ
µ = g00 = 1− 2mr

ϱ2
=
r2 + a2 cos2 θ − 2mr

ϱ2
=

∆− a2 sin2 θ

ϱ2

and we see it vanishes on the surfaces where

∆ = a2 sin2 θ (2.33)

i.e., outside the horizon (with the surface ∆ = 0, i.e., the horizon r = r+, it has only two
common points: the poles θ = 0 and θ = π). The surface (2.33) is called the stationarity
limit because for any observer on or inside this surface is impossible to remain stationary.
Besides, it is a surface of infinite redshift for photons emitted from it to spatial infinity.
The region of space between the horizon r = r+ and the surface (2.33) is called ergosphere
(see Fig. 2.3).

This region contains orbits of massive particles with a negative total energy (the
absolute value of the binding energy exceeds the particle mass). Therefore when an
object is launched into the ergosphere, there it will emit particles with negative energy
and return to the usual spatial region with a larger energy than it initially had.

stationarity limit

ergosphere

horizon

J⃗

Figure 2.3: A representation of a Kerr BH [7]. The surface in orange is the stationarity
limit, while the red volume is the hergosphere. As usual the surface in blue corresponds
to the horizon. J⃗ is the angular momentum of the BH. Notice that the system has now
lost its spherical symmetry.
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Chapter 3

Quantum fields in Rindler space

According to the equivalence principle, the study of a phenomenon in a gravitational
field can be equivalently carried out in an accelerated coordinate system. As we have seen
in Section 2.1.2, a uniformly accelerated frame is relativistically analogue to a Rindler
space [7].

Recalling equation (2.20) we can visualize the relation between Minkowski and (ρ, ω)
coordinates with the diagram shown in Fig. 3.1.

Z

cT

ω = 0

ω
=
∞

ω = 0.25

ω = 0.5

ω = −0.5

ω = −0.25

ω
=
−∞

ρ = 1
ρ = 2

r < 2m r > 2m

light cone

O

ρ = 0
horizon

Figure 3.1: Equal time (ω) and proper distance (ρ) surfaces in Rindler space.
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3 – Quantum fields in Rindler space

As a matter of fact it is easy to show that T = ±
√
Z2 − ρ2 and T = Z tanh (ωc).

To evolve between surfaces of constant ω we use the Rindler Hamiltonian. The gener-
ator of ω-translations is the usual Hamiltonian density corresponding to the Minkowski
observer, which is given by

HR =

∫ ∞

ρ=0

dρdXdY ρT 00(ρ,X, Y ) (3.1)

where T 00 is the (0, 0) component of the SET (an energy density). Note that the proper
time separation between the surfaces is

δτ = ρδω

Therefore a ρ-dependent time translation is needed in order to transform a ω-surface in
time. This why a factor ρ appears attached to T 00 in (3.1).

Placing ourselves in the viewpoint of the Fidos in Rindler space, we aim to obtain a
description of the usual physics of a quantum field in Minkowski space.

First recall that in the usual vacuum state, the correlation between fields at different
spatial points does not vanish. For example, in free massless scalar theory the equal time
correlator is given by

⟨0|χ(X, Y, Z)χ(X ′, Y ′, Z ′)|0⟩ ∼ 1

∆2
(3.2)

where ∆ is the space-like separation between the points (X, Y, Z) and (X ′, Y ′, Z ′)

∆2 = (X −X ′)2 + (Y − Y ′)2 + (Z − Z ′)2

When two subsystems become correlated, they are said to be quantum entangled, so that
neither can be described in terms of pure states. An appropriate study of pure states
and entangled subsystems is carried on by means of the density matrix.

3.1 The density matrix

Usually, a state of maximal information is called a pure state and is identified by the
coefficients cn of the expansion of its state vector ψ into eigenvectors un [5]:

ψ =
∑
n

cnun

For a system like this we can say that the mean value of the operator Q, identified by
the matrix Qnn, is

⟨Q⟩ =
∑
n′n

Qn′ncn′
∗cn
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3 – Quantum fields in Rindler space

Now suppose a nonpure state represented by an incoherent superposition of pure
states ψ(i), normalized by statistical weights p(i). In this state, the mean value for the
operator is given by the average between pure states:

⟨Q⟩ =
∑
i

p(i) ⟨Q⟩i =
∑
nn′

Qn′n

∑
i

p(i)c
(i)
n′

∗c(i)n

It is now intuitive to define a matrix, called the density matrix, as

ρnn′ ≡
∑
i

p(i)c
(i)
n′

∗c(i)n , → ⟨Q⟩ =
∑
n′n

Qn′nρnn′ =
∑
n′

(Qρ)n′n′ = TrQρ (3.3)

Therefore, the density matrix represents a minimum set of input data which serves to
calculate the mean value of any operator Q for a system [5].

We can now study a system composed by two subsystems, A and B, which have
previously been in contact but are no longer interacting. In these conditions the combined
system is described by a wavefunction [7]

Ψ = Ψ(α, β)

where α and β are appropriate commuting variables for the subsystems A and B.
We can then use the density matrix ρA(α, α

′) to describe the measurements of A.

ρA(α, α
′) =

∑
β

Ψ∗(α, β)Ψ(α′, β)

Similarly, a complete description of experiments performed on B is provided by ρB(β, β
′).

ρB(β, β
′) =

∑
α

Ψ∗(α, β)Ψ(α, β′)

Density matrices have the following properties:

• 1) Tr ρ = 1

• 2) ρ = ρ†

• 3) ρj ≥ 0 (all eigenvalues are positive or zero)

In according with (3.3), the expectation value of an operator Q composed of Q degrees
of freedom (dof) is given by the formula

⟨Q⟩ = TrQρA

Property 1) can be interpreted as the request that the total probability equals one and
it can be demonstrated requiring that the unit operator �1 has the mean value 1

Tr �1ρ = Tr ρ = 1
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3 – Quantum fields in Rindler space

Hence the eigenvalues ρj can be considered to be the probabilities that the system is
in the jth state. It is important to focus on the case in which only one eigenvalue ρj is
nonzero. For this situation to take place we need an uncorrelated product wave function
of the form

Ψ(α, β) = ψA(α)ψB(β) (3.4)

This is a special case in which the density matrix describes a pure state. (The eigenvalues
of the matrix are invariant under unitary transformations [5]).

An expression for the departure from a pure state is provided by the Von Neumann
entropy

S = −Tr ρ log ρ = −
∑
j

ρj log ρj

For S to be zero all the eigenvalues but one must be zero; the opposite is also true.
Furthermore, the only nonzero eigenvalue must be equal to 1 due to condition 1). This
entropy is also called the entropy of entanglement (or entanglement entropy, as we will
see in Chapter 5) because it measures the degree of entanglement between A and B.

S has its minimum for a completely incoherent density matrix in which all the eigen-
values are equal to 1

N
, where N is the dimensionality of the Hilbert space. Physically,

this matrix describes the opposite of a pure state. In that case

Smax = −
∑
j

1

N
log

1

N
= logN

In general, when ρ is a projection operator onto a subspace of dimension n, we find

S = log n

An example of this is presented at page 46. We therefore identify the Von Neumann
entropy (which is profoundly different from the thermal entropy of the second law of
thermodynamics) with a measure of the number of states which have an appreciable
probability in the statistical ensemble.

From statistical mechanics we know that the state of a system at a temperature T
is represented by the incoherent superposition of eigenstates of energy Em with weights

proportional to e
− Em

kBT (kB is the Boltzmann constant) [5]. To be sure that the sum of the

weights for all eigenstates equals 1, the weight of each state must equal e
− Em

kBT divided

by the ”sum of states” Z(T ) =
∑

m e
− Em

kBT (the Maxwell-Boltzmann partition function).
Therefore, a system with Hamiltonian H held in thermal equilibrium at temperature

T = 1
kBβ

it is described by a Maxwell–Boltzmann density matrix diagonal in the scheme
of energy eigenstates:

ρM.B. =
e−βH

Tr e−βH
(3.5)

In this case the thermal entropy is given by

Sthermal = −Tr ρM.B log ρM.B (3.6)
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3.1.1 The Unruh density matrix

Our aim is to find the density matrix describing the Fidos in Region I of Fig. 2.2 [7].
The surface T = 0 of Minkowski space can be divided into two halves, one in Region

I (Z > 0) and one in Region III(Z < 0). Now consider a scalar field χ, at each point of
space a complete set of commuting operators is formed by the fields. These latter may be
decomposed into two subsets associated with regions I and III, χR and χL respectively:

χ(X, Y, Z) = χR(X, Y, Z) for Z > 0

χ(X, Y, Z) = χL(X, Y, Z) for Z < 0

The wave function associated with the system is a functional of χL and χR

Ψ = Ψ(χL, χR)

Knowing this, we want to compute the density matrix ρR, as it represents the usual
Minkowski vacuum to Fidos in Region I.

The state Ψ is invariant for translations with Minkowski coordinates. Therefore for
Fidos vacuum must appear to be invariant under translations along the X and Y axes.
The Z axis does not enjoy this property due to the act of singling out the origin Z = 0
for special consideration. Using this considerations we can conclude that ρR commutes
with the components of momentum in these directions

[pX , ρR] = [pY , ρR] = 0 (3.7)

A very important property of ρR is its invariance under Rindler time translations
ω → ω + constant. This follows from the Lorentz boost invariance of Ψ. Thus

[HR, ρR] = 0 (3.8)

We can proceed further only using the fact that Ψ = Ψ(χL, χR) is the ground state of
the Minkowski Hamiltonian. In order for the latter to be computed, we may realy on
general path integral methods. The calculation (for the full derivation see [7] page 37)
was first carried out by William Unruh in 1976, leading to the following result:

ρR =
1

Z
e−2π(h̄c)−1HR (3.9)

Therefore for Fidos the vacuum is a thermal ensemble with a density matrix of the
Maxwell–Boltzmann type. From (3.9) we can extract the temperature of the ensemble,
which is called Rindler temperature:

TR =
h̄c

2πkB
(3.10)
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3.2 Proper temperature

Note that in (3.10) TR has dimensions of energy multiplied by a length (while ordi-
narily, temperature has units of energy). However, this should not alarm us because it is
due to the dimensionality of ω (time over length), which in turn reflects on the dimen-
sions of HR as we have already discussed at the beginning of this chapter. Nevertheless
we should be able to assign to each Fido a standard temperature that would be recorded
by its own standard thermometer [7].

We can consider the thermometer as a system which, when at rest, is characterised
by a set of proper energy levels ϵi. The interaction between the thermometer and the
quantum fields is assumed to be negligible, so that the former will eventually come to
thermal equilibrium with the latter. Without loss of generality, we can suppose that
the thermometer is at rest with respect to the Fido at position ρ, which means it has a
proper acceleration c2

ρ
. The Rindler energy in (3.1) is then modified by the thermometer

in such a way

HR(thermometer) =
∑
i

ρ |i⟩ ⟨i| ϵi

Hence we can say that the Rindler energy level of the ith state of the thermometer is ρϵi.
When equilibrium is reached between the quantum field at Rindler temperature h̄c

2πkB

and the thermometer, the probability to find the latter excited in the ith level is given
by the Boltzmann factor

Pi =
e−2π(h̄c)−1ρϵi∑
j e

−2π(h̄c)−1ρϵi

Accordingly, the thermometer registers a proper temperature (sometimes called Unruh
Temperature)

T (ρ) =
h̄c

2πkBρ
=

1

ρ
TR (3.11)

Therefore each Fido experiences a thermal environment distinguished by a temper-
ature which increases as it moves towards the horizon at ρ = 0. It is noteworthy that
now the correct energy dimensionality has been recovered.

3.2.1 Virtual vacuum fluctuations

We now want to investigate the origin of these thermal fluctuations felt by the Fidos,
which may look ambiguous considering that we are studying the Minkowski space vac-
uum. This phenomenon is in fact caused by the well known virtual vacuum fluctuations,
experienced by accelerated systems.

Fig. 3.2 shows ordinary vacuum fluctuations in a Rindler coordinate frame of refer-
ence. The virtual loop (a) in Region I can be thought of as a conventional fluctuation
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3 – Quantum fields in Rindler space

described by the quantum Hamiltonian HR. The loop (b) contained in Region III ob-
viously has no physical meaning for the Fidos in Region I. Finally, the most interesting
are the fluctuations like (c), because they are partially contained both in Region I and
III, leading to nontrivial entanglements between the dof χL and χR, which in turn are
responsible for the mixed state of the density matrix in region I.

Z

cT

ω = 0

ω = ∞

ω = −∞

IIII (a)

(b) (c)

χRχL

Figure 3.2: Vacuum pair fluctuations near the horizon [7].

Virtual fluctuations usually last for a very short period of time, as they are in some
way violating the principle of energy conservation. For instance, a virtual fluctuation
that uses an amount E of energy to produce a pair of particles will have a lifetime ∼ E−1.

Finally, consider the portion of the loop (c) which is found in Region I (highlighted in
green in the diagram). Fidos see a particle appearing at ω = −∞, ρ = 0 and then, after
travelling inside Region I, they see it disappearing at ρ = 0 and ω = +∞. Therefore
Fidos experience a (non) virtual fluctuation that lasts for an infinite amount of time, as
if the horizon was a hot membrane radiating and reabsorbing thermal energy.

This being said, we have to underline that a thermometer in the Minkowski vacuum
will record zero temperature if held at rest in an inertial frame of reference. We can
conclude that every physical phenomena Fidos will ever experience it will be associated
with a local proper temperature T (ρ) = h̄c

2πkBρ
. On the other hand, Frefos will see only

the zero temperature vacuum state.
The nature of this apparent paradox will be further discussed in the following section.
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3.3 Entropy of a Free Quantum Field in Rindler

Space

Consider now the region near a horizon described by a Fido. In this background we
want to study all the physical phenomena which occur in the range from 0 K to Planck
temperature. For the sake of brevity and simplicity, we will limit ourselves to the case
in which only a single free field is present in a fixed space-time framework (beware that
by doing this we will encounter paradoxes and contradictions regarding BHs, quantum
mechanics, and statistical thermodynamics, as a consequence of such simplification) [7].

As we have seen in Section 2.2.1, near the horizon the Rindler metric furnishes a
good description of the exterior of a BH

ds2 = ρ2c2dω2 − dρ2 − dX2 − dY 2

For later convenience we will replace ρ by a tortoise-like coordinate which goes to
−∞ at the horizon: u = m log ρ

m
, so that dρ = du ρ

m
, and the metric becomes

ds2 = m2e
2u
m

[
c2dω2 − 1

m2
du2
]
− dX2 − dY 2

Consider a conventional massless free Klein–Gordon field χ in the Schwarzschild back-
ground, the action for χ is

I =
1

2

∫ √
−ggµν∂µχ∂νχd4x

g ≡ det gµν is just e2u · (−e2u) · (−1) · (−1) = −e4u, while g00 = −g11 = e−2u and
g22 = g33 = −1. From now on the constants c and m have been tacitly included inside
ω and u (this notation will be adopted until the end of the current chapter). Therefore
we obtain

I =
1

2

∫
dXdY dudω

[(
∂χ

∂ω

)2

−
(
∂χ

∂u

)2

− e2u (∂⊥χ)
2

]
where ∂⊥χ = (∂X , ∂Y ).

Near the horizon χ can be decomposed into transverse plane waves with transverse
wave vector k⊥

χ =

∫
d2k⊥e

ik⊥x⊥χ(k⊥, u, ω)

the action for a given wave number k is

I =
1

2

∫
dudω

[
(∂ωχ)

2 − (∂uχ)
2 − k2e2uχ2

]
(3.12)
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Thus the potential is
V (k, u) = k2e2u (3.13)

Using the principle of least action, from (3.13) we obtain the equation of motion

∂2χ

∂ω2
− ∂2χ

∂u2
+ k2e2uχ = 0

A solution which behaves like eiνt in Schwarzschild time has the form

eiν(4MGω) = eiλω

We can then evaluate ∂2χ
∂ω2 = −λ2eiλω = −λ2χ, hence the time independent form of the

equation of motion is

−∂
2χ

∂u2
+ k2e2uχ = λ2χ

From this equation we see the remarkable fact that, unless k = 0, quantum particles
experience a potential confining them in a neighbourhood of the horizon. However, for
the BH background, the potential barrier is cut off when ρ = meu is greater than m. On
the other hand, in the Rindler approximation V increases as eu without bound.

In order to quantize the field χ it is necessary to provide a boundary condition when
ρ→ 0 and consequently u→ −∞. One immediate solution relays on the introduction of
a cutoff at uo = log ϵ, at which point the field (or its first derivative) is made to vanish.
The parameter ϵ can be identified with the proper distance of the cutoff point to the
horizon.

It is helpful to think of each transverse Fourier mode χk as a free 1+1 dimensional
quantum field confined to a box. With this picture in mind, one can imagine one end
of the box placed at u = u0 = log ϵ, where the reflecting boundary is. The opposite
wall of the box is at at u = u1 = − log k, provided by the repulsive potential (3.13),
which becomes large when u > − log k. The total length of the box depends on k and ϵ
according to

L(k) = − log(ϵk) (3.14)

For each value of k the field χk can be expanded in mode functions and creation and
annihilation operators according to

χk =
∑
n

[
a+(n, k)fn,k(u) + a−(n, k)f

∗
n,k(u)

]
where λ(n, k) is the frequency of the mode (n, k). The Rindler Hamiltonian is given by

HR =

∫
d2k

∑
n

λ(n, k)a†(n, k)a(n, k) =
∑
n

λ(n, k)N(n, k)
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where N(n, k) ≡ a†(n, k)a(n, k) is defined as the usual number operator.
Recalling what has been said in Section 3.1.1, we do not identify the vacuum with the

state annihilated by a(n, k) (which is not invariant under translations of the Minkowski
coordinates), but rather with the thermal density matrix

ρR =
∏
n,k

ρR(n, k)

with
ρR(n, k) ∼ e−2πλ(n,k)a†(n,k)a(n,k)

Thus the average occupation number of each mode is

⟨N(n, k)⟩ = 1

e2πλ(n,k) − 1

These particles constitute the thermal atmosphere.
Since the relevant density matrix has the Maxwell–Boltzmann form, we can use equa-

tions (3.5) and (3.6) to obtain the entropy. Defining

Tr e−βH ≡ Z(β) and ρ log ρ ≡ ∂

∂N
ρN
∣∣∣∣
N=1

we obtain

S =− Tr
∂

∂N

e−NβH

Z(β)N

∣∣∣∣
N=1

=Tr βH
e−βH

Z
+ lnZ (3.15)

=β ⟨H⟩+ lnZ

Defining E = ⟨H⟩ and F = − 1
β
logZ we find the usual thermodynamic identity

S = β(E − F ) (3.16)

Another identity follows from using E = −∂ logZ
∂β

:

S = −β2∂ logZ/β

∂β
(3.17)

The entropy S in equations (3.16) and (3.17) can be identified both with entanglement
and thermal entropy in the special case of the Rindler space density matrix.

To compute the total entropy we replace the infinite transverse X, Y plane by a finite
torus with periodic boundary conditions. In this way we are allowing k to assume only
discrete values. Thus

kX =
2nXπ

B
, kY =

2nY π

B
(3.18)
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where B is the size of the torus.
The entropy stored in the field χk can be estimated from the entropy density of a

1+1 dimensional massless free boson at temperature T . A standard calculation shows
that the entropy density S

L
is given by

S

L
∝ π

3
T

Substituting the Rindler temperature and (3.14) for the length L gives the entropy of χk

S(k) ∝ 1

6
|log kϵ|

To sum over the values of k we use (3.17) and let B → ∞

STotal ∝
B2

24π2

∫
d2k|log kϵ| (3.19)

When k = 1
ϵ
the potential is already large at u = uo so that the entire contribution of

χk is suppressed. Therefore in order to evaluate (3.19) the integral must be cut off when
k > 1

ϵ
. S is then found to be proportional to

STotal ∝
1

96π2

B2

ϵ2
(3.20)

We immediately notice the remarkable fact that the entropy of Rindler space is pro-
portional to the transverse area of the horizon, B2. This may come as a surprise as
usually someone expects it to diverge as the volume of space. However, in this case
the entropy is entirely stored in the proximity of the stretched horizon (because there
is where the temperature gets large) and therefore grows proportionally to the area. A
second unexpected feature is the 1

ϵ2
divergence of the entropy per unit area. As we will

soon delve into, the entropy density of the horizon is a physical quantity whose exact
value is known. Nevertheless the divergence in S indicates that its value is sensitive to
the ultraviolet physics at very small length scales [7].

We can analyse further the form of S by recalling that the entropy density of a 3+1
dimensional free scalar field is given by

S(T ) ∝ V
2

π2
ζ(4)kB

(
kBT

h̄c

)3

∝ V
2π2

45
T 3

Now consider the entropy stored in a layer of thickness δρ and area B2 at a distance ρ
from the horizon and substitute (3.11) for the proper temperature

δS(ρ) ∝ 2π2

45
T 3(ρ)δρB2 ∝ 2π2

45

1

(2πρ)3
δρB2

To find the full entropy we integrate with respect to ρ

S ∝ B2

(2π)3
2π2

45

∫ ∞

ϵ

dρ

ρ3
∝ B2

(2π)3
2π2

45
· 1

2ϵ2
∝ B2

360πϵ2
(3.21)
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Chapter 4

Black hole thermodynamics

In our study of the Rindler space we have enriched the equivalence principle discov-
ering the existence of a temperature experienced by accelerated fiducial observers. It
is then natural to expect analogues thermal effects to take place in the vicinity of the
horizon of a BH. However, for BHs a new phenomenon must be taken into account:
evaporation. Unlike the Rindler case, the thermal atmosphere is not absolutely confined
by a centrifugal potential, hence the particles of the thermal atmosphere will gradually
leak through the barrier and carry off energy in the form of thermal radiation [7].

Firstly, we shall derive an equation for the temperature T of the BH seen by a distant
observer. Recalling the relationship between Rindler time ω and Schwarzschild time t:
ω = t

4m
= c2t

4GM
, we can say that a quantum field with Rindler frequency νR is seen by

the distant Schwarzschild observer to have a red shifted frequency ν

ν =
c2νR
4MG

This means that the red shift affects the temperature of the thermal atmosphere as well,
giving the following result

T =
h̄c

2πkB
· c2

4MG
=

h̄c3

8πkBMG
(4.1)

4.1 Four laws of black hole thermodynamics

The Zeroth Law

The surface gravity of a BH does not change from point to point of the event
horizon.

The surface gravity is, by definition, the value of the free-fall acceleration, calculated at
the event horizon in terms of the particle acceleration [2]. For a Schwarzschild BH, the
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surface gravity ς is (using m ≡ GMc−2)

ς =
1

4m
=

c2

4GM

while for a Kerr BH, its expression has been found to be

ς =
r+ −m

2mr+
=

√
m2 − a2

2m(m+
√
m2 − a2)

This equations obey the Zeroth Law as no angular term is present.

The First Law

ΩdJ is the work executed over the BH by adding the angular momentum dJ :

dM =
c2ς

8πG
dA+ ΩdJ (4.2)

where A is the horizon area and Ω is the angular velocity at the horizon, respectively

A = 4π(r2+ + a2) and Ω =
a

r2+ + a2

At a = 0 we obtain the expression for the Schwarzschild BH (which can also be obtained
integrating (4.2) with the condition Ω = a = 0):

A = 4πr2+ = 16πm2 (4.3)

It is important to notice that (4.2) is similar to the first law of conventional thermo-
dynamics: dU = TdS + dW . U , the BH energy, is replaced by M , while dS is replaced
by dA and T is its coefficient. Recalling (4.1), for a Schwarzschild BH we have

TBH =
h̄c3

8πMGkB
(4.4)

this means that the additional factor ckB
4h̄G

lays in the entropy:

SBH =
c3kBA

4h̄G
(4.5)

Note that to recover the first law of traditional thermodynamics we must remember that
in replacing E with M inside (4.2) we lost the proportionality factor c2, which has to
come back in the expression of SBH .

34



4 – Black hole thermodynamics

The Second Law

There is no physical process that could decrease the horizon area of a BH.

This is similar to the statement that the entropy cannot decrease. However, as we shall
in the next section, the quantum process of BH evaporation due to Hawking radiation
violates this classical law.

An interesting consequence of the Second Law concerns BHs collisions [6]. The merg-
ing between two or more BHs is considered one of the main processes that leads to the
formation of supermassive BHs and produces significant gravitational waves (GW). In
Fig. 4.1 we can see an example of this; in the simple case of two Schwarzschild BHs (1
and 2) in a head-on collision. Part of the mass of the initial system is converted in GW
radiation, implying M1 +M2 < M3. However, this do not imply that the entropy has
decreased, because, as we have already seen, the latter is stored in the area. Therefore,
accordingly with the Second Law, we can write

A1 + A2 ≤ A3

1 2 3

→

Figure 4.1: The merging of two Schwarzschild BHs (1,2) into a third Schwarzschild BH
(3) with the production of GW (which are represented in purple in the figure).

The Third Law

There is no procedure able to bring the BH temperature to zero by a finite
sequence of operations.

This law ensures that an absolute zero of temperature is not accessible, and, consequently,
asserts the nonexistence of negative temperatures.

If we imagine the BH as a single macroscopic state, then the entropy SBH found in
(4.5) is a measure of the number of microscopically distinct quantum states that are
“coarse grained” and form the macroscopic state.
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In particular, SBH is the famous Bekenstein–Hawking entropy [7]. As we expected
from the analysis carried out in Chapter 3, it is proportional to the area of the horizon.
This is in fact the place where all the infalling matter accumulates according to external
fiducial observers. We have seen with equation (3.20) that the matter fields in proximity
of the horizon creates an entropy, which is infinite as ϵ→ 0. This makes it difficult to link
this entropy with the total entropy of the BH. However, one way to solve this problem
could be to introduce a cut off for the modes which are very close to the horizon. To
guess where this cut off should occur we can require that the contribution in (3.20) does
not exceed the entropy of the BH SBH .

1

96π2ϵ2
≤ c3kBA

4h̄G

Strictly speaking, the cutoff cannot be much smaller than the Planck length, where

the latter is given in terms of the gravitational constant as lP =
√

h̄G
c3
. It is widely

believed that the nasty divergences of quantum gravity will somehow be cut off by some
mechanism when the distance scales become smaller than

√
G [7].

The direct proportionality between the area and the Bekenstein–Hawking entropy
makes the latter an extensive quantity, suggesting that we can study it considering a
limiting BH of infinite mass and area and then focus on its local properties. Clearly
entropy diverges, but the entropy per unit area remains finite. The local geometry of a
limiting BH horizon is of course the Rindler space.

Consider the Rindler energy of the horizon. By definition it is conjugate to the
Rindler time ω. Using the geometrized mass m ≡ MG

c2
, their commutator is equal to

[ER(M), ω] = i
c3m2

G

Here ER is the Rindler energy which corresponds to the eigenvalue of the Rindler Hamil-
tonian operator. We have then[

ER(M),
t

4m

]
= i

c3m2

G
→ [ER(M), t] = i

4c3m3

G
(4.6)

We will assume that for a large BH the Rindler energy is a function of the mass of the
BH only.

The mass and Schwarzschild time are also conjugate

[M, t] = i
m2c

G

It is now convenient to rewrite (4.6) in the following form

∂ER

∂M
= 4MG ⇒ ER = 2M2G
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Remarkably, Rindler energy is also an extensive quantity. For a Schwarzschild BH, the
area density of Rindler energy is

ER

A
=

c4

8πG

It is immediate to verify that Rindler energy and entropy satisfy the first law of BH
thermodynamics

dER =
h̄c

2πkB
dS

where h̄c
2πkB

is the Rindler temperature. We can then deduce that horizons have universal
local properties which resemble the ones of thermal membranes. This latter are also called
stretched horizons and will be further studied in Section 4.3.

In conclusion we identify the energy and the mass of the BH respectively with the
Rindler energy and the Schwarzschild mass. In particular the latter is the energy as
reckoned by observers at infinity using t-clocks, while the former is the energy (rescaled
by the proper distance ρ) as defined by observers near the horizon using ω-clocks [7].

4.2 Evaporation process

Until now we have treated Schwarzschild BHs as if they were systems in thermal
equilibrium, but of course they are not. They have long lifetimes, but eventually they
evaporate [7]. One may try to prevent this by placing them in a thermal heat bath
at their Hawking temperature, but the result will be unsuccessful because BHs have a
negative specific heat; meaning their temperature decreases as energy or mass is added
to the system. Any object with this property is thermodynamically unstable.

For instance, suppose the BH absorbs some energy from the surrounding heat bath
due to a fluctuation. If we were dealing with an ordinary system characterised by positive
specific heat, this would raise its temperature which in turn would cause it to radiate back
into the environment; leading to the conclusion that the fluctuations are self-regulating.
However, a system with negative specific heat will lower its temperature when it absorbs
energy and will become cooler than the bath. This will cause a chain effect for which
the bath conveys additional energy to the BH, making it grow indefinitely. Considering
instead the case in which the BH cedes some energy to the environment, it will become
hotter than the heath bath and by and by disappear 1.

The evaporation process of a BH will now be presented both with a qualitative and a
more quantitative approach. First one can imagine a physical picture of BH evaporation
starting with virtual particle-antiparticle pairs, constantly appearing and disappearing

1For purposes of completeness we must say that a well known way to make BH stable do exists. The
idea is to put it in a box in order to make the environmental heat finite, so that when the BH absorbs
some energy it cools but so does the finite heat bath. By choosing a box with the right size, we have
that the heat bath will cool more than the BH and the flow of heat will be back to the bath [7].
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4 – Black hole thermodynamics

according to quantum field theory, which are subject to a sufficiently strong gravitational
field in the neighbourhood of the horizon (see Fig. 3.2). Then, with a certain probability
(which is larger for larger space–time curvatures), the gravitational field can drag apart
such virtual pairs. As a result one of the particles falls back towards the horizon while
the other escapes to infinity. The BH ends up loosing a particle with nonzero energy,
meaning that some of its mass is lost as well [2].

To give a more detailed explanation of this process we can say that the centrifugal
barrier described in the Rindler theory by the potential k2e(2u) is modified at distances
r ≈ 3MGc−2. Any secondary wave (s-wave) quanta with sufficiently high frequencies
will easily escape the barrier. In particular, the average energies of massless particles in
thermal equilibrium at temperature T is of course of order T , which is enough for the
s-wave particles to escape to infinity. Therefore the BH must be kept in equilibrium by a
source of incoming radiation, otherwise it will lose energy to the surrounding environment
[7].

For particles characterised by an angular momenta higher than s-waves escaping the
potential barrier it’s harder, because the latter results higher than the thermal scale. The
majority of quantum particles in the thermal atmosphere have high angular momenta
and are then reflected back towards the horizon. Only a small fraction of quanta is
hence able to be radiated in the outer space. In this sense the BH resembles a slightly
leaky cavity filled with thermal radiation. Using this interpretation, for the particles
that escape the walls are semi-transparent and the cavity slowly radiates its internal
energy. This process was first discovered by Stephen Hawking and it is commonly called
Hawking radiation.

It is noteworthy that this description of Hawking radiation does not rely on the free
field approximation, as this only works if there are interactions capable to keep the
system in equilibrium during the course of its evaporation.

For the purpose of estimating the evaporation rate of the BH we will suppose that only
s-wave quanta are able to escape. Begin by considering the s-wave quantum particles in
terms of a 1+1 dimensional quantum field at Rindler temperature h̄c

2πkB
. If one compares

this temperature with the potential barrier energy, one obtains that approximately one
quantum particle per unit of Rindler time will leave the system. In Schwarzschild time
units, the flux of quanta is of order c

MG
. Each quantum will reach infinity with an

energy that is clearly of the same order of the Schwarzschild temperature h̄c3

8πkBMG
. This

results in a rate of energy loss ∼ h̄c4

8πM2G2 , which will be called L, the luminosity. For a
Schwarzschild BH, an exact value can be determined by means of Stephan-Boltzmann
radiation law:

L = A · σT 4 =
16πM2G2

c4
· π2k4B
60h̄3c4

(
h̄c3

8πkBMG

)4

=
h̄c4

15360πM2G2

Where A is the surface area and σ is the Stephan-Boltzmann constant. Using energy
conservation we can require the BH to lose mass precisely at the rate L [7] [8] (if we
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4 – Black hole thermodynamics

assume pure photon emission and we identify the horizon as the radiating surface):

dM

dt
= −L = − h̄c4C

15360πM2G2
(4.7)

where C is a constant of order unity which depends on the amount of species of particles
light enough to be thermally produced. Hence it is actually a variable whose value is
fixed case by case. However, if the mass of the BH is large and the temperature low, only
a few species of massless particles contribute and C can be traten as an actual constant.

If we neglect the mass dependence of C, (4.7) can be integrated to find the time it
takes for a BH to evaporate until it has reached zero mass [7].∫ 0

M

15360πM2G2

h̄c4
dM ≈ −

∫ t

0

dt ⇒ tevaporation ∼ 5120πM3G2

h̄c4

A substitution of the corresponding constants leads to the following expressions for
the temperature (in Kelvins) and evaporation time of a solar mass Schwarzschild BH:

TBH ≈ M⊙

M
· 10−7 K and tevaporation ≈

(
M

M⊙

)3

· 1067 years

where M⊙ is the solar mass. We can see that the temperatures of BHs of solar masses is
very small, and their evaporation occurs very slowly (for instance the Universe is 13.8 ·
109 years old): in a realistic scenario, they increase their masses much more rapidly due
to accretion of surrounding matter. The evaporation time is even larger for supermassive
BH, which are indeed thought to be the very last objects to populate the Universe when
everything else will have vanished.

These results also confirm us that BHs have negative heat capacity, as temperature
becomes smaller if mass is added. Furthermore they tell us that for small BHs (which
have a very large curvature of space near their horizon) the Hawking temperature is high,
while the lifetime is low, because they quickly radiate all their internal energy.

When the time instant tevaporation is reached, the evaporation terminates, but it is
so far unclear whether the BH must completely disappear or if an object with a mass
of Planckian order of magnitude, M ∼ 10−5g, is left as the end product of the process.
Anyway as the mass approaches its Planck value (meaning the horizon radius gets close
to the Planck length ∼ 10−33cm), the so far unknown laws of quantum gravity must
come into force [2].

Lastly, it is worthy noting that putting together (4.3) and (4.5) gives an expression
relating the entropy and mass for a Schwarzschild BH:

SBH =
4πkBG

h̄c
M2

Therefore the information paradox (which will be better discussed in Chapter 5) starts
to take shape, because we just found that as a BH looses mass through evaporation
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its entropy will decrease. This seems to be in sharp contrast with the second law of
conventional thermodynamics, which states that the entropy of an isolated system can
only increase over time [8].

4.3 The stretched horizon

At the end of Chapter 3 we noticed that the entropy per unit area of the horizon
diverges as the cutoff ϵ tends to zero (3.21). Furthermore, we later found that BH
thermodynamics requires the entropy to be as in (4.5). A contradiction seems to arise
because the entropy given by free quantum field theory is too much in the modes very
close to the horizon, where the local temperature diverges .

One hypothesis that would fix this is having overestimated the entropy by the as-
sumption of free field theory [7]. The correct entropy density for a general field theory
can always be parametrized by

S(T ) = γ(T )T 3

where γ(T ) represents the number of “effective” dof at temperature T .
We are searching for a different theory in which the effective number of dof goes to

zero in the proximity of the horizon. Let’s start by guessing that ordinary quantum field
theory is adequate down to distance scale ϵ. A restriction is needed to make sure that
the entropy at distances greater than ϵ does not exceed the Bekenstein–Hawking value:

ϵ2 ≲
h̄G

c3
= l2P

Clearly at less then one Plank length from the horizon the dof must be very sparse,
or even nonexistent. This is another hint concerning the mathematical horizon and its
replacement (when the proper length approaches zero) with a physical membrane, or
“stretched” horizon. One of the main feature of this different kind of horizon is that real
dynamics and evolution can take place there, because a system at the stretched horizon
is time-like. Furthermore, the stretched horizon has its own physical properties such as
viscosity and electrical conductivity.

To prove this we consider the metric

ds2 = ρ2c2dω2 − dρ2 − dx2⊥

The stretched horizon is then defined as the surface ρ = ρo, where ρo is a length of order
the Planck length.

The action for the electromagnetic field in Rindler space, using Heaviside units
(which, from now on, will be used in the whole section), is

W =

∫ [√
−g

16π
gµνgστFµσFντ + jµAµ

]
dω dρ d2x⊥
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or, substituting the form of the metric

W =

∫ [
1

8π

(
1

ρ

(
˙⃗
A+ ∇⃗ϕ

)2
− ρ

(
∇⃗ × A⃗

)2)
+ j⃗ · A⃗

]
dω dρ d2x⊥

where
˙⃗
A means ∂A⃗

∂ω
and ϕ = −A0, and j is a conserved current: ∂µj

µ = 0. As usual

E⃗ =− ∇⃗ϕ− ˙⃗
A

B⃗ =∇⃗ × A⃗

With these definitions, the action becomes

W =

∫ [
1

8π

(
1

ρ
|E⃗|2−ρ|B⃗|2

)
+ j⃗ · A⃗

]
dω dρ d2x⊥

and the Maxwell equations are

1

ρ
˙⃗
E − ∇⃗ × (ρB⃗) = −4πj⃗

˙⃗
B + ∇⃗ × E⃗ = 0

∇⃗ ·
(
1

ρ
E⃗

)
= 4πj0

∇⃗ · B⃗ = 0

(4.8)

First begin by using Rindler coordinates to consider an electrostatic configuration with
stationary or slowly moving charges hovering outside the horizon [7]. Since the charge
motion is assumed very slow, they are experiencing proper acceleration. In what follows,
is also assumed that all length scales related to the charges are much larger than ρo.

The surface charge density on the stretched horizon is just the component of the
electric field perpendicular to the stretched horizon

σ =
1

4πρ
Eρ

∣∣∣
ρ=ρo

= − 1

4πρ
∂ρϕ
∣∣∣
ρ=ρo

(4.9)

Working in the Coulomb gauge condition (expressed as ∇⃗ · A⃗ = 0), we have

∇⃗ · E⃗ = ∇⃗ ·
(
−∇⃗ϕ− ˙⃗

A
)
= ∇⃗ ·

(
−∇⃗ϕ

)
Therefore the third expression in equation (4.8) becomes

∇⃗ ·
(
1

ρ
E⃗

)
= −∇⃗ ·

(
1

ρ
∇⃗ϕ
)

= 0
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near the stretched horizon. Thus

∂2ρϕ− 1

ρ
∂ρϕ = −∇2

⊥ϕ (4.10)

We can attempt a solution for this equation near the horizon via the ansatz ϕ ∼ ρα,
neglecting the right hand side of (4.10) in virtue of the difference of two powers of ρ with
the left hand side.

∂2ρρ
α − 1

ρ
∂ρρ

α = −∇2
⊥ρ

α

→ α(α− 1)ρα−2 − α

ρ
ρα−1 = 0

→ α(α− 1)− α = 0

⇒ α = 0 ∨ α = 2

Thus we assume
ϕ = F (x⊥) + ρ2G(x⊥) +O(ρ3)

Inserting this equation into (4.10) and evaluating at ρ = ρo gives

∇2
⊥F + ρo∇2

⊥G = 0 (4.11)

If ρo is much smaller than all other length scales, then (4.11) is simplified to

∇2
⊥F = 0 (4.12)

An analogue equation can also be derived for the finite mass BH. Since the BH horizon
is compact, (4.12) proves that ϕ = const on the horizon. We have hence demonstrated
that the horizon behaves like an electrical conductor.

Let’s now try to find an expression for the surface current density. Taking the time
derivative of (4.9) and using Maxwell’s equations (4.8) we get

4πσ̇ =
1

ρo
Ėρ =

(
∇⃗ × ρB⃗

)
ρ

Evidently this is a continuity equation if we define

4πjx = −ρBy

4πjy = ρBx

(4.13)

Now consider an electromagnetic wave propagating towards the stretched horizon along
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the ρ axis. From Maxwell’s equations we obtain

Ḃx = ∂ρEy

Ḃy = −∂ρEx

1

ρ
Ėx = −∂ρ(ρBy)

1

ρ
Ėy = ∂ρ(ρBx)

(4.14)

To make the equation more familiar, we can use these substitutions:

ρB⃗ = β⃗ and u = log ρ

Equation (4.14) becomes

β̇x = ∂uEy

β̇y = −∂uEx

Ėx = −∂uβy

Ėy = ∂uβx

(4.15)

It is noteworthy that these mathematical equations allow solutions characterised by
waves propagating in either directions along the u-axis. However it is clear that physics
only allows waves propagating towards the horizon from outside the BH. For the latter
type of waves, the Maxwell equations (4.15) give

βx = Ey

βy = −Ex

(4.16)

using this in (4.13) we also get

jx =
1

4π
Ex

jy =
1

4π
Ey

(4.17)

Hence the horizon appears to be an ohmic conductor with a resistivity of 4π. That
is related to a surface resistance of 377 Ω/square (the resistance of a two-dimensional
resistor is scale invariant and only depends on the shape).

Therefore we conclude the horizon has all the traits of a conventional hot conducting
membrane. In addition to temperature, entropy, and energy, it exhibits dissipative effects
such as electrical resistivity and viscosity; although they are completely unnoticed by a
freely falling observer who falls through the horizon [7].
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Chapter 5

Information paradox

The idea of a potential loss of information in the process of creation and evaporation
of BHs dates back to 1976, when Stephen Hawking introduced it with an argument based
on local quantum field theory in the fixed background of a BH. Although Hawking drew
undoubtedly wrong conclusions, the questions he raised turned out to be pivotal in the
development of a brand new paradigm concerning the concept of locality [7].

As we have already discussed in Section 4.3, quantum field theory struggles in de-
scribing systems with horizons, because it leads to an infinite entropy density, instead
of the correct Bekenstein–Hawking value of c3kB

4Gh̄
. This serious problem suggests that a

different approach must be taken into account. Before presenting this new theory we
shall take a brief detour into information conservation laws.

5.1 Information conservation

Both classical and quantum mechanics agree that a closed isolated system must pre-
serve the information it contains. Classical physics establish this principle in Liouville’s
theorem: the conservation of phase space volume [7].

Imagine having some limited knowledge about the exact state a specific system is
prepared into. In the system’s phase space we confine the initial state inside a finite
region Γ(0). When the system evolves the region Γ(0) evolves into Γ(t) and the same is
for the respective volumes, VΓ(0) and VΓ(t). Liouville’s theorem states that

VΓ(0) = VΓ(t)

meaning that the amount of information is conserved.
However, in practice we have a loss of information as, for most cases of interest, the

region Γ becomes very complex and this leads to an increment of volume when measured.
Indeed if one surrounds every point in the phase space with solid spheres of fixed volume,
the union of those spheres is the coarse grained volume of phase space, which grows as
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5 – Information paradox

Γ becomes more complex (see Fig. 5.1). From this concept it originates the second law
of thermodynamics.

Γ(t0) Γ(t1) Γ(t2)

Figure 5.1: Evolution of a fixed volume in phase space (t0 < t1 < t2) [7].

In order to make a transition to the quantum realm, consider now a probability
density ρ(p, q) in phase space. The quantity which was the volume in the classical case
is now generalised by the exponential of the entropy VΓ → eS, where

S = −
∫
dpdqρ(p, q) log ρ(p, q)

Entropy may be interpreted as the maximum amount of information that can be
hidden in a system. In quantum mechanics information is conserved if and only if the
S-matrix is unitary [7]. This time, to study of a system with limited knowledge, we
should make use of a projection operator onto a subspace, P , instead of a definite state.
Proceeding this way, the phase space volume becomes the dimensionality of the subspace

N = TrP

As the time evolution operator is unitary, N is conserved with time.
The sharp projector P may be replaced by a density matrix ρ, providing the following

expression for the fine grained or Von Neumann entropy

S = −Tr ρ log ρ

In the special case ρ = P
TrP

the entropy reduces to logN (see appendix C for an explicit
derivation). We can then infer that the entropy is an estimate of the logarithm of the
number of quantum states that make up the initial ensemble. As far as isolated systems
are concerned, the equations of motion entail the exact conservation of S both in quantum
and classical mechanics.
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5.1.1 Entanglement entropy

In the quantum world different subsystems belonging to the same composite sys-
tem enjoy a property called entanglement. The word entanglement refers to quantum
correlations between the system under investigation and a second system [7].

For instance, imagine to study a system made of 2 subsystems A and B. Let α(β) be
a complete set of commuting observables describing the subsystem A(B). We will now
assume the composite system to be in a pure state with wave function Ψ(α, β). If one
considers A and B as separate systems, then all measurements performed on A(B) are
describable by means of a density matrix ρA(ρB).

(ρA)αα′ =
∑
β

Ψ∗(α, β)Ψ(α′, β)

(ρB)ββ′ =
∑
α

Ψ∗(α, β)Ψ(α, β′)

It is crucial to underline that subsystems are not described by pure states even if the
composite system is. This is not concerned with a possible lack of knowledge of the
state of the latter; in fact the reason for this regards the concept of entanglement and
consequently results in an “entanglement entropy” for the subsystems.

We have seen (p. 24) that if the subsystem A is in a pure state, then one of the
eigenvalues of ρA is equal to 1 and all the others must vanish (the same holds for B).
Furthermore, we can prove that the nonzero eigenvalues of ρA and ρB are equal if the
composite system is in a pure state. If ϕ is the eigenvector of ρA we have∑

βα′

Ψ∗(α, β)Ψ(α′, β)ϕ(α′) = λϕ(α)

Assume λ ̸= 0. Then suppose χ(β′) is an eigenvector of ρB

χ(β′) ≡
∑
α′

Ψ∗(α′, β′)ϕ∗(α′)

This allows us to write∑
β′

(ρB)ββ′ χ(β′) =
∑
αβ′

Ψ∗(α, β)Ψ(α, β′)χ(β′)

=
∑
αα′β′

Ψ∗(α, β)Ψ(α, β′)Ψ∗(α′, β′)ϕ∗(α′)

= λ
∑
α

Ψ∗(α, β)ϕ∗(α) = λχ(β)
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(A more rigorous poof is in appendix C). The equality between non-vanishing eigen-
values of ρA and ρB has an important repercussion:

SA = −Tr ρA log ρA = −
∑

ρAj log ρAj = −
∑

ρBj log ρBj = SB (5.1)

which holds if the combined state is pure (ρAj and ρBj are, respectively, the eigenvalues
of ρA and ρB). In this case the entropy of the composite system vanishes; meaning that
entropy, in general, is not additive. However from (5.1) we see that the entropy of the
subsystem does not vanish; we refer to this entanglement entropy as Sentanglement.

We now want to study a large system Σ, made of a large number of small similar
subsystems σi. Consider these latter to be weakly interacting and suppose further that
Σ is in a pure state with total energy E. Each subsystem will be characterised by an
average energy ϵ. A small subsystem which is part of a complex interacting structure
will have, in general, a thermal density matrix

ρi =
e−βHi

Zi

where Hi is the energy of the subsystem. ρi maximizes the entropy for a certain average
energy ϵ. We now assume the entire system Σ to be in a pure state, having as a con-
sequence zero entropy. The sum of the entropies of every small subsystem gives the so
called coarse grained or thermal entropy

Sthermal =
∑
i

Si

This kind of entropy is what we usually think of in the context of thermodynamics. By
definition is additive and we will now see that it is also not conserved.

Consider all the subsystems prepared in a product state with no correlations. The
entropy of each subsystem Si as well as the entropy σΣ of the whole system and the
coarse grained entropy of Σ all vanish. Now let the subsystems interact: the wave
function develops correlations, meaning that it cannot be factorized anymore. In this
situation, the entropies of the subsystems become nonzero

Si ̸= 0

Consequently, the coarse grained entropy also becomes nonzero

Sthermal =
∑
i

Si ̸= 0

However, the “fine grained” entropy of Σ is exactly conserved and therefore remains zero.
Usually the fine grained entropy of an arbitrary subsystem Σ1 of Σ is defined as the

entanglement entropy S(Σ1) of Σ1 with the remaining subsystem Σ − Σ1 (Σ1 may be
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composed by several subsystems of Σ, or even all of them). The coarse grained entropy
of Σ1 will always be greater than its fine grained entropy

Sthermal(Σ1) > S(Σ1)

It is clear that as Σ1 approaches Σ, the fine grained entropy S(Σ1) will tend to zero;
because S(Σ1) → S(Σ) = S(Σ− Σ) = 0.

We can now the define information as

I ≡ Sthermal − S

Commonly, the coarse grained entropy coincides with the thermal entropy of the system,
so that the information is the difference between coarse grained and fine grained entropy.
In this case, if one considers small subsystems, one finds the latter do not contain any
information at all.

Both entropy and information are measured in bits. A bit is the entropy of a two
state system if nothing is known. The numerical value of a bit is log 2 [7].

It is counterintuitive but the amount of information in a moderately sized subsystem
does not vary smoothly from zero (for the σi) to SCoarseGrained (for Σ). In fact, for
subsystems smaller than about 1

2
of the total system, the amount of information they

contain is smaller than 1 bit and therefore negligible.
The subsystem 1

2
Σ has about 1 bit of information. Thus for Σ1 <

1
2
Σ, using the

definition of bit, we can say

S(Σ1) ∼= Sthermal(Σ1) ⇒ I(Σ1) ≈ 0

Next consider the amount of information in a subsystem with Σ1 >
1
2
Σ. To compute

it, we use two facts:

S(Σ− Σ1) = S(Σ1) and S(Σ− Σ1) ∼= Sthermal(Σ− Σ1)

it then follows
S(Σ1) ∼= Sthermal(Σ− Σ1)

The coarse grained entropy of Σ− Σ1 will be of order (1− f)Sthermal(Σ), where f is
the fraction of the total dof contained in Σ1. Hence we obtain

I(Σ1) = Sthermal(Σ1)− S(Σ1)

= fSthermal(Σ)− (1− f)Sthermal(Σ) = (2f − 1)Sthermal(Σ)

Before applying these considerations to BHs, we shall first focus on a less exotic
system so that we can better understand the implications of the concepts we just derived.
Imagine an experiment in which a bomb explodes inside a box with perfectly reflecting
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walls [7]. The thermal radiation emitted inside slowly leaks out through a small hole. In
this case Σ consists of the whole subsystem B that includes everything in the box. On
the other hand, the subsystem A consists of everything outside of the box, in this case,
outgoing photons.

Initially the bomb is in its ground state, clearly both B and A have vanishing entropy.
When the explosion occurs, thermal radiation makes the thermal entropy of the box
increasing, but its fine grained entropy stays constant. This is because no photons have
yet escaped, so S(A) = 0.

Now the first photons start leaking out. As a result, the systems A and B become
entangled. The entanglement entropy, which is equal for the two subsystems, begins to
increase. Conversely, the thermal entropy in the box decreases:

Sentanglement ̸= 0, Sthermal(A) ̸= 0, Sthermal(B) ̸= 0

Eventually, all of the photons have left the box. The latter is now empty and the thermal
or coarse grained entropy as well as the fine grained entropy of B all tend to zero. The
box has came back in a pure state; its ground state. At this time, the thermal entropy
of A has reached its final value.

The evolution over time of the various entropies, along with the one of information,
are shown in Fig. 5.2.

T.E. B (Box)
T.E. A (External)

Entanglement entropy
Information

Information
retention time

t

Figure 5.2: Evolution of thermal entropy (T.E.) of box and exterior, entanglement en-
tropy and information [7].

Due to the second law of thermodynamics, Sthermal(A) must be larger than Sthermal(B)
just after the explosion. However, the fine grained entropy of A vanishes as the entan-
glement between the two subsystems has gone to zero. The actual entanglement entropy
must be less than the thermal entropy of A or B.

It is remarkable that when Sthermal(A) = Sthermal(B) we have the time at which the
information in the outside region begins to grow (see Fig. 5.2). Even if at that time
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a good deal of energy has already escaped, no information was carried along with it.
Roughly information appears outside of the box when half of the final entropy of the
photons has emerged. This time is called the information retention time and corresponds
to the amount of time needed to retrieve a single bit of information about the initial state
of the box [7].

From the analysis above, we can conclude that the final radiation field outside the
box must be in a pure state. However, locally, regions containing a small fraction of the
photons may be extremely thermal. The key point is that they usually carry negligible
information.

This is how information conservation works for a conventional quantum system. The
description of the evolution of different kinds of entropy has been derived from very
general principles. Therefore we expect BHs evaporation to obey this fundamental laws
of nature.

5.1.2 Quantum Xerox principle

Consider a machine (usually called Quantum Xerox Machine) having an input ter-
minal, which takes a generic system, and an output terminal, which will copy the input
system, producing the original and a duplicate. This principle, often called the no-cloning
principle, states the impossibility of creating such a machine [7].

A simple gedankenexperiment demonstrates this clearly. Imagine inserting a single
spin particle (such as an electron or a proton) in the input port of the machine (Fig.
5.3).

In Out

→
→

→

Figure 5.3: Schematic diagram of quantum Xerox machine [7].

If this is in the up state with respect to the z-axis then it duplicates

|↑⟩ → |↑⟩ |↑⟩ (5.2)

Similarly, if it is in the down state, it is duplicated

|↓⟩ → |↓⟩ |↓⟩ (5.3)
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Where |↑⟩ ≡ |1/2, 1/2⟩ and |↓⟩ ≡ |1/2,−1/2⟩.
Now suppose that the spin is inserted with its polarization along the x-axis, i.e.

1√
2
(|↑⟩+ |↓⟩) (5.4)

The general principles of quantum mechanics require the state to evolve linearly. Thus
from equations (5.2) and (5.3)

1√
2
(|↑⟩+ |↓⟩) → 1√

2
(|↑⟩ |↑⟩+ |↓⟩ |↓⟩) (5.5)

On the other hand, a true quantum Xerox machine is required to duplicate the spin in
(5.4)

1√
2
(|↑⟩+ |↓⟩) → 1√

2
(|↑⟩ |↑⟩+ |↓⟩ |↓⟩)

=
1

2
|↑⟩ |↑⟩+ 1

2
|↑⟩ |↓⟩+ 1

2
|↓⟩ |↑⟩+ 1

2
|↓⟩ |↓⟩

(5.6)

The two states in equations (5.5) and (5.6) are obviously not the same. Therefore quan-
tum Xerox machines cannot exist precisely due to the linearity principle. Furthermore,
if we were able to build Xeroxed quantum states, we would also be able to violate the
Heisenberg uncertainty principle by a set of measurements on those states [7].

5.2 The black hole information problem

We have now the tools in order to better understand the argument made by Hawking
about the loss of information during BHs creation and evaporation.

To start with, recall that an initial state |ψin⟩ evolves according to the S-matrix in a
final state given by [7]

|ψout⟩ = S |ψin⟩

Information conservation require S to be unitary, hence is possible to recover the initial
state from the final state

|ψin⟩ = S† |ψout⟩

Now consider two correlated particles falling towards a BH. Assume one is able to
escape to infinity while the other is captured and crosses the horizon. The Hilbert space
of the final state will be a tensor product between the state at spatial infinity and that
at the singularity:

Hout = H∞ ⊗HS
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In virtue of the entanglement between the two particles, the state of the one which
escaped to infinity becomes mixed. Indeed if an external observer (for whom the singu-
larity is clearly precluded) performs an experiment on the outgoing particle, this will be
described by

ρout = Trsingularity |ψout⟩ ⟨ψout|

where Trsingularity stands for a trace over the states on the singularity. The problem relies
in the fact that the purity of the initial state is not recovered if the BH evaporates. This
is a violation of the information conservation principle because S would not result to be
a unitary matrix. Therefore this reasoning leads to think that information is somewhere
lost during the process of BH formation and evaporation.

Applying the concepts presented in the previous section to BHs evaporation, we can
say that once a BH has lost more than a half of its original entropy, information must
begin to come out in the emitted radiation. When the majority of mass and entropy
has been lost, we expect the entanglement entropy of radiation to be smaller than the
remaining entropy of the BH (see Fig. 5.2). Thus, even if all information were emitted
at the very end of the evaporation process, a law of nature would be violated from
the viewpoint of the external observer. The situation is even worse if one hypotheses
information not being emitted at all.

Another possibility is that black holes never completely evaporate. Instead at the
end of their lives they remain a stable Planck-mass containing all the lost information.
However, such remnants should have an enormous, or even infinite entropy, making it
hard to imagine them as real physical systems.

Many theories have been proposed in order to solve the paradox, here we will focus
on two of them in particular. The first is based on the idea that the horizon is not
penetrable. If this holds, from the viewpoints of an infalling system, the horizon would
behave like an infinite potential barrier. This assumption was never seriously taken into
account, especially by relativists, because the near horizon region of a Schwarzschild BH
is essentially flat space-time, hence any violent disturbance to a freely falling system
would violate the equivalence principle.

Finally, quantum Xerox principle discards the other theory, which hypnotise all in-
formation to be returned to the outside in Hawking radiation. As we already discussed,
the equivalence principle requires information to freely pass through the horizon. On
account of Xerox principle, the horizon cannot duplicate information, so it results im-
possible for a particle inside the BH to escape via Hawking radiation. It is clear that
fundamental laws of nature seem to be defied, at least for some observers [7].

5.2.1 Black hole complementarity

Fortunately, BH complementarity comes into help telling us that no observer ever
witnesses a violation of a law of nature. For an external observer it can be formulated
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in the following way

“A BH is a complex system whose entropy is a measure of its capacity to
store information. Entropy is the logarithm of the number of microstates of
the dof that make up the BH. The micro-dof can absorb, thermalize, and
eventually re-emit all information in the form of Hawking radiation [7].”

The principle does not say what those micro-dof are, but one can estimate their number
to find it is about the area of the horizon in Planck units.

For Frefos, one can use the principle above to say that as long as the infalling sys-
tem is much smaller than the BH, the horizon is seen as flat featureless space-time, no
high temperatures or other anomalies are encountered and the equivalence principle is
satisfied.

All of this seems to be reassuring, but its validity may not be obvious in view of the
contradictions we met in the previous paragraph. To challenge BH complementarity, we
can perform the following theoretical experiment.

Consider system A which is freely falling inside a BH. We know that A, along with
the information it contains, will cross the horizon without incident. Next, consider an
observer B who hovers above the same BH detecting Hawking radiation. The comple-
mentarity principle implies that the information carried in by A will be contained in the
photons recorded by B. In this way B is able to collect some information about A from
outside the BH. Now if B decides to enter the BH a serious problem may occur. Indeed
if A sends a signal to B after it passed through the horizon, B would posses two exact
copies of the same information.

If this experiment was possible, then BH complementarity would not be self-consistent
as the quantum xerox principle would be broken.

However, the restriction to the time when information starts being emitted (half the
entropy of the BH must evaporate first) implies that the experiment cannot take place
in the real world. From what we have seen, half of the evaporation time t∗ is of order
M3G2. Assume that, at the beginning, the distance between B and the stretched horizon
is at least one the Planck length lP . As a consequence, observer B jumps into the BH
from a point in space-time defined by

ω∗ ≥ t∗c2

4MG
∼M2G

ρ∗ ≥ lP

Using the light cone coordinates x± = ρe±ωc we have

x+∗ x
−
∗ > l2P

x+∗ ⪆ lP e
ω∗c
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Singularity

x+x− =
(
MG
c2

)2

ho
riz
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B gathers
information
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Information
from A

Message
from A

lP
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x+

A

B
III I

II
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Figure 5.4: Kruskal diagram of a Schwarzschild BH showing the resolution of Xerox
paradox for observers within horizon [7].

As shown in Fig. 5.4, observer B hits the singularity before the arrival of the message.
The singularity is the surface given by

x+x− =

(
MG

c2

)2

Observer B will reach the singularity at a point with

x− ≲
MG

c2
e−ω∗c

Therefore if A sends a signal that B is able to receive, the collection must occur at
x− < MG

c2
e−ω∗c, meaning A has a time of order ∆t ∼ (MG)e−ω∗

to send the message.
Classical physics does not put any limit on how much information can be sent in

an arbitrarily small period of time. On the other hand, quantum mechanics require
at least one quantum in order to send a single bit. In our experiment we can assume
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the information A wants to send to B consists only of one bit. A quantum needed to
convey the message must be emitted between x− = 0 and x− = MG

c2
e−ω∗c, with an energy

bounded by the uncertainty principle, for which

E∆x− > h̄c ⇒ E >
eω

∗ch̄c3

MG
≫ eM

2G

MG

This analysis reveals that the quantum Xerox paradox takes place only if the energy
carried by A is many orders of magnitude larger than the BH mass. Obviously this is
impossible, otherwise the system A wouldn’t have fit inside the horizon.

This example, as many others, manifests how the constraints of quantum mechanics,
combined with those of relativity, forbid violations of the complementarity principle [7].

5.3 An overview of the Holographic theory

BH Complementarity had a great impact in the world of physics, leading to brand
new interpretations of the nature of space, time and locality. One of the key elements of
these new paradigms is the Holographic Principle [7].

As indicated by the divergent entropy density found in equation (3.20), quantum field
theory (QFT) possesses too many dof to consistently describe a gravitational theory. This
overabundance can be quantitatively measured by means of the Holographic Principle,
which can be summarised saying that there are vastly fewer dof in quantum gravity than
in any QFT.

To better understand the Holographic Principle we can consider a wide region of
space Γ. Assume it to be a sphere for the sake of simplicity. We aim to determine
the dimensionality of a specific state-space, the one made by all the states describing
arbitrary systems capable to fit into Γ in a way that the region outside is empty space.
When counting the states of a system it is helpful to define the concept of maximum
entropy as the logarithm of the total number of states. Clearly, it is an intrinsic property
of the system. The name comes from the fact that it can be viewed as the entropy given
that we know nothing about the state of the system.

To give an example, we can take a lattice of discrete spins. If the lattice spacing is a
and Γ has a volume V , then the number of spins is V a−3 and the number of orthogonal
states supported in Γ is

Nstates = 2V/a
3

In this case the maximum entropy is

Smax =
V

a3
log 2

Whenever the latter exists, it is proportional to the number of simple dof needed to get a
complete description of the system. Usually this means it is proportional to the volume
as in the example above. Note that a simple dof represents a single bit of information.
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Now we want to include gravity in our description. Consider the spherical region Γ
with a boundary ∂Γ of area A in a four-dimensional space-time. Suppose Γ contains
a thermodynamic system with entropy S. It is safe to say that the total mass of this
system cannot exceed the mass of a BH of area A. Now imagine a spherically symmetric
light-like shell of matter collapses and with the original mass it forms a BH. Using the
right amount of energy the area of the horizon of the BH will result equal to A. In this
way we known the entropy of the end product: S = c3kBA

4h̄G
. Next we use the second law

of thermodynamics to place an upper bound to the original entropy inside Γ, which has
to be ≤ S. In other words, this remarkable results is achieved

”The maximum entropy of a region of space is proportional to its area mea-
sured in Planck units [7].”

A fundamental property of gravitational systems has therefore emerged: they have the
maximum number of non-redundant dof proportional to their area.

For a large macroscopic region like a BH this is an enormous reduction in the required
dof. Indeed for a system with linear dimensions of order L, a factor 1

L
in Planck units

scales the number of dof per unit volume. Furthermore, the latter can be made arbitrarily
sparse in space by increasing the value of L. Nevertheless it is important to keep trace
of the microscopic processes happening anywhere in the region. In order to do this, we
can imagine that the dof of Γ belong to ∂Γ, with an area density of no more than ∼ 1
dof per Planck area.

We can then conclude with the statement of the Holographic Principle

”Three-dimensional space is described by a two-dimensional hologram at its
boundary [7].”

57





Appendix

Appendix A

Derivation of Jacobi’s formula

Starting from the definition of δ det(M):

δ det(M) ≡ det (M + δM)− det(M) = det
(
M
(
I +M−1

))
− det(M)

Using Binet’s theorem for the determinant of a product

det
(
M
(
I +M−1

))
= det(M) det

(
I +M−1

)
Therefore

δ det(M) = det(M) det
(
I +M−1

)
− det(M)

= det(M)
[
1 + Tr(M−1δM) + . . .

]
− det(M)

≈ det(M) Tr
(
M−1δM

)
2

Note that the formula holds only if δM becomes infinitesimally small.

59





5 – Information paradox

Appendix B

Metric of a 2-sphere

Start with the parametrization of a 2-sphere with a radius R and define the metric
ηij 

x = R sin (θ) cos (ϕ)

y = R sin (θ) sin (ϕ)

z = R cos (θ)

and ηij =

(
∂x⃗
∂θ

∂x⃗
∂θ

∂x⃗
∂θ

∂x⃗
∂ϕ

∂x⃗
∂ϕ

∂x⃗
∂θ

∂x⃗
∂ϕ

∂x⃗
∂ϕ

)

⇒ ηij =

(
R2 0
0 R2 sin2(θ)

)
where x⃗ = (x, y, z). Now we can write the metric as

dl2 = ηij
(
dui, duj

)
= R2 (dθ, dϕ)

(
1 0
0 sin2(θ)

)(
dθ
dϕ

)
= R2

(
dθ2 + sin2(θ)dϕ2

)
where u⃗ = (θ, ϕ). 2

Components of the Ricci tensor for a spherically sym-

metric metric

The explicit derivation will be shown only for the first component R0
0, as the procedure

is analogous for the others.
Starting from the definition of the Ricci tensor in terms of Christoffel symbols (1.3)

we have

Rk
αkβ = ∂βΓ

k
αk − ∂kΓ

k
αβ + Γσ

βkΓ
k
σα − Γk

kσΓ
σ
αβ

→ R00 ≡ Rk
0k0 = ∂0Γ

k
0k − ∂kΓ

k
00 + Γσ

0kΓ
k
σ0 − Γk

kσΓ
σ
00

In order to evaluate each Christoffel symbol for the metric (2.1) we can use these impor-
tant relationships between the two:

Γµ
αβ =

1

2
gµν (gνα,β + gνβ,α − gαβ,ν) and Γα

µα = Γα
αµ = ∂µ

(
ln
√
−g
)

We shall first evaluate the term ln
√
−g ≡ ln

√
− det gµν :

g = −e2γ+2α+4β sin2 θ
√
−g = eγ+α+2β sin θ

ln
√
−g = γ + α + 2β + ln sin θ
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The terms that define R00 are then expressed as

• Γk
0k =∂0(γ + α + 2β + ln sin θ) = γ̇ + α̇ + 2β̇

→ ∂0Γ
k
0k =∂0(γ̇ + α̇ + 2β̇) = γ̈ + α̈ + 2β̈ ;

• Γk
00 =

1

2
gkν (gν0,0 + gν0,0 − g00,ν) =

1

2
gkν (2gν0,0 − g00,ν)

=
1

2

[
gk0g00,0 + gk1(2g01,0 − g00,1)

]
=

1

2

[
gk0g00,0 − gk1g00,1

]
→ ∂kΓ

k
00 =∂0

1

2

(
e−2γ2γ̇e2γ

)
− ∂1

1

2

(
−e−2α2γ′e2γ

)
=γ̈ + e2γ−2α

(
γ′′ + 2γ′

2 − 2γ′α′
)
;

• Γσ
0k =

1

2
gσν (gν0,k + gνk,0 − g0k,ν)

=
1

2

[
gσ0 (g00,k + g0k,0 − g0k,0) + gσ1 (g10,k + g1k,0 − g0k,1)

]
Γk

σ0 =
1

2
gkν (gνσ,0 + gν0,σ − gσ0,ν)

=
1

2

[
gk0 (g0σ,0 + g00,σ +−gσ0,0) + gk1 (g01,σ + gσ1,0 − gσ0,1)

]
→ Γσ

0kΓ
k
σ0 =Γ0

00Γ
0
00 + Γ0

01Γ
1
00 +�����

Γ0
02Γ

2
00 +�����

Γ0
03Γ

3
00 + Γ1

00Γ
0
10 + Γ1

01Γ
1
10

+�����
Γ1

02Γ
2
10 +�����

Γ1
03Γ

3
10 +�����

Γ2
00Γ

0
20 +�����

Γ2
01Γ

1
20 + Γ2

02Γ
2
20 +�����

Γ2
03Γ

3
20

+�����
Γ3

00Γ
0
30 +�����

Γ3
01Γ

1
30 +�����

Γ3
02Γ

2
30 + Γ3

03Γ
3
30

=γ̇2 + γ′
2
e2γ−2α + γ′

2
e2γ−2α + α̇2 + β̇2 + β̇2

=γ̇2 + α̇2 + 2β̇2 + γ′
2
e2γ−2α ;

• Γσ
00 =

1

2
gσν(2gν0,0 − g00,ν) =

1

2

[
gσ0g00,0 − gσ1g00,1

]
Γk

kσ =∂σ(γ + α + 2β + ln sin θ)

→ Γk
kσΓ

σ
00 =

1

2
e−2γ

(
2γ̇e2γ

) (
γ̇ + α̇ + 2β̇

)
− 1

2
e−2α

(
−2γ′e2γ

)
(γ′ + α′ + 2β′)

=γ̇2 + γ̇α̇ + 2γ̇β̇ + e2γ−2α
(
γ′

2
+ γ′α′ + 2γ′β′

)
where dots and primes stand for ∂

∂t
and ∂

∂r
, respectively. In the evaluation of the second

to last term the sums containing Christoffel symbols equal to zero have been canceled
out.
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We are now able to write

R00 = γ̈ + α̈ + 2β̈ − γ̈ − e2γ−2α
(
γ′′ + 2γ′

2 − 2γ′α′
)
+ γ̇2 + α̇2 + 2β̇2 + γ′

2
e2γ−2α

−γ̇2 − γ̇α̇− 2γ̇β̇ − e2γ−2α
(
γ′

2
+ γ′α′ + 2γ′β′

)
= α̈ + 2β̈ + 2β̇2 − γ̇

(
α̇ + 2β̇

)
+ α̇2 − e2γ−2α

(
γ′′ − γ′α′ + γ′

2
+ 2γ′β′

)
To obtain R0

0 we use the relationship R0
0 = g00R00, where g

00 = e−2γ.

R0
0 = e−2γ

[
2β̈ + α̈ + 2β̇2 + α̇2 − γ̇

(
2β̇ + α̇

)]
− e−2α [γ′′ + γ′ (2β′ + γ′ − α′)]

2

Derivation of the geodesic equation

Starting from Euler-Lagrange equations of motion

d

ds

(
∂L

∂ẋµ

)
− ∂L

∂xµ
= 0

L(xi, ẋj) ≡ 1
2
gijẋ

iẋj is the Lagrangian function, hence

∂L

∂xµ
=

1

2

∂

∂xµ
(
gijẋ

iẋj
)
=

1

2
gij,µẋ

iẋj + 0 + 0

and
∂L

∂ẋµ
=

1

2

∂

∂ẋµ
(
gijẋ

iẋj
)
=

1

2

(
gµjẋ

i + gµν ẋ
j
)
= gµjẋ

j

Taking the derivative with respect to the canonical parameter s

d

ds

(
∂L

∂ẋµ

)
= gijẍ

j + gij,ν ẋ
jẋν = gijẍ

j +
1

2
(gµj,ν + gµν,j) ẋ

jẋν

Putting now the two parts together and multiplying by giµ we obtain

ẍi +
1

2
gil (glν,j + glj,ν − gjν,l) ẋ

jẋν = 0

Expressing the second term with a Christoffel symbol we find the geodesic equation

ẍi + Γi
jν ẋ

jẋν = 0

2
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Appendix C

Fine grained entropy

For ρ = P
TrP

, the entropy is

S = −Tr ρ log ρ = −Tr
P

TrP
log

(
P

TrP

)
= − 1

TrP
TrP (logP − log TrP )

The projection operator P has a diagonal form with N = TrP eigenvalues equal to 1
and all the remaining are zeros. Therefore we have that

TrP logP = 1 · log 1 + · · ·+ 1 · log 1 = 0

Using this result we obtain

S = − 1

TrP
(TrP logP − TrP log TrP ) = 0 +

N

N
logN = logN

2

Entanglement entropy

The choice of a composite system A+B leads to the expansion of its wavefunction
|Ψ⟩ over a chosen orthonormal complete basis |n⟩O in the Hilbert space of B:

|Ψ⟩ =
∑
n

|n⟩O |ϕn⟩S

where |ϕn⟩S = O ⟨n|Ψ⟩ are the states of the observable subsystem A relative to |n⟩O [1].
From the symmetry of subsystems, in the sense that no one is preferred, we can

choose both sets of basis vectors |n⟩A and their relative states |n⟩B to be orthonormal

A ⟨n|m⟩ A = δnm B ⟨n|m⟩ B = δnm

and the preferred-basis decomposition transforms into

|Ψ⟩ =
∑
n

cn |n⟩A |n⟩B

Now consider the density matrix of the system ρ = |ψ⟩ ⟨ψ| and the density matrix of
A, obtained by tracing out the dof of B: ρA = TrB |Ψ⟩ ⟨Ψ| (analogously ρB = TrA |Ψ⟩ ⟨Ψ|).
Substituting the expressions above we can rewrite ρA (and ρB) as

ρA =
∑
n

ρn |n⟩ A A ⟨n| , ρB =
∑
n

ρn |n⟩ B B ⟨n| ; with ρn ≡ |c|2

⇒ ρA |n⟩ A = ρn |n⟩ A and ρB |n⟩ B = ρn |n⟩ B

2
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