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Abstract

Hi-C matrices are milestones for the qualitative and at the same time quanti-

tative study of genome folding, its organization into chromosomal territories,

compartments and topological domains. Here we introduce and discuss the

synHi-C, a method for synthetic Hi-C data production. It arises from the

possibility of characterizing the signal-to-noise ratio starting from a spectral

analysis on different types of Hi-C data at different resolutions (1 Mb and 100

kb). Through the spectral analysis, the signal component has been identified,

consisting of isolated and scattered eigenvalues even at a great distance from

the origin, and the noise component, which follows the Wigner’s semicircle

law centered in zero, identified through the simulation of random symmetric

matrices. By adding the essential matrix (essHi-C) consisting of the sum of

the projectors associated to the signal component, with the one reconstructed

starting from the projectors of the random component after an eigenvalues

reshuffling, it is possible to obtain a potentially vast amount of synthetic

matrices. After testing the spectral analysis on the gold standard cell line

GM12878, this innovative method has been applied to a real case study con-

sisting of two cases (235 and 295) of a rare prion disease and two controls (LM

and MB), demonstrating how not only the intrinsic biological properties of

the Hi-C maps, given by the essHi-C component, are enhanced, but also that

the statistical properties of the introduced fluctuations are unbiased, reflecting

the non-specific component. The validation of these results has been obtained

through different methods including the use of scatter plots between synHi-C

and original matrices to identify their correlation, the ShRec3D algorithm to

verify the coherence between the spatial folding structures of the chromatin

after a proper Procrustes analysis and finally through their visualization in

Blender and the Virtual Reality (VR) 3D simulated environment inspection.

1



Contents

1 Introduction 4

2 Exploring the 3D organization of genomes 5

2.1 DNA and chromatin fiber . . . . . . . . . . . . . . . . . . . . . 5

2.2 3C-based methods . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Hi-C method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Hi-C contact maps . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Genome compartments and TADs . . . . . . . . . . . . . 12

3 Materials and methods 16

3.1 Graphs and adjacency matrices . . . . . . . . . . . . . . . . . . 17

3.2 Spectral properties of symmetric random matrices . . . . . . . . 19

3.3 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Essential and synthetic Hi-C maps . . . . . . . . . . . . . . . . 24

3.6 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6.1 Dinamic range reduction . . . . . . . . . . . . . . . . . . 26

3.6.2 Hi-C data normalization methods . . . . . . . . . . . . . 26

3.7 ShRec3D algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7.1 Floyd-Warshall algorithm: shortest path

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7.2 Gram matrix . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7.3 Coordinate matrix and 3D structure . . . . . . . . . . . 35

3.8 Procrustes Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Results and discussion 42

4.1 Preliminary analysis: GM12878 . . . . . . . . . . . . . . . . . . 42

4.1.1 Spectral analysis for single chromosomes . . . . . . . . . 52

2



CONTENTS 3

4.1.2 Chromosomes 1 and 17 inspection . . . . . . . . . . . . . 56

4.1.3 3D chromosome reconstruction . . . . . . . . . . . . . . 61

4.2 Case study: case vs control . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Essential Hi-C maps: a novel approach . . . . . . . . . . 73

4.2.2 ShRec3D reconstruction . . . . . . . . . . . . . . . . . . 81

4.2.3 Case-control comparative study . . . . . . . . . . . . . . 86

4.2.4 SynHi-C: synthetic component analysis . . . . . . . . . . 90

4.3 Blender and Virtual Reality . . . . . . . . . . . . . . . . . . . . 101

4.3.1 GM12878 cell line 3D visualization results . . . . . . . . 105

4.3.2 Case study 3D visualization results . . . . . . . . . . . . 108

5 Conclusions 110

A Whole GM12878 spectral analysis 113

B Scatter plots 120

C ShRec3D Python code 126

D Gram matrix eigenvalue spectra 128

E Contact probability graphs 132

Bibliography 136



Chapter 1

Introduction

Our understanding of the three-dimensional structure of chromosome fold-

ing has been significantly shaped by chromosome conformation capture-based

methods (3C). Among these, a main role is played by the Hi-C experiments,

which are able to capture the nearby interaction fragments in the whole genome.

The experiments generate Hi-C maps enclosing the spatial distances between

all possible pairs of loci in the genome. The analysis of the Hi-C maps also al-

lows to characterize the interaction patterns, showing the existence of different

levels of spatial organization of the genome: the chromosome territories, the

chromatin compartments and the topologically associated domains (TADs).

These maps have also been studied with spectral analysis methods, which

allow to highlight the biological features that emerge from otherwise hidden

patterns. In this thesis we want to probe a more in-depth analysis through

the use of spectral analysis methods to explore the different components of the

characteristic spectrum of Hi-C matrices. We will examine both the GM12878

cell line, a gold standard for the study of Hi-C maps, and a real case study

consisting of two cases (235 and 295) of a rare prion disease and two controls

(LM and MB). The main objective will be to generate synthetic data that

faithfully reproduce both the biological and statistical properties of the Hi-C

data considered. To validate these analyses, known tools such as scatter plots

will be used, but also novel algorithms such as ShRec3D capable of providing

the spatial coordinates relating to the three-dimensional conformation of the

chromosomes, as well as the use of software such as Blender and visualization

in a Virtual Reality (VR) environment.
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Chapter 2

Exploring the 3D organization

of genomes

2.1 DNA and chromatin fiber

The deoxyribonucleic acid or DNA is the macromolecule whose most impor-

tant function lies in the ability to carry genes, the information that specifies

all the proteins that make up an organism, including information about when,

in which cell types and in what quantities each protein should be produced. In

eukaryotes, the DNA in the nucleus is broken down into a set of different chro-

mosomes. For example, the human genome is distributed across 24 different

chromosomes. Each of them consists of a single very long linear DNA molecule

associated with proteins that fold and pack the thin DNA thread into a more

compact structure. To get an idea of the dimensions involved, just think that

each human cell contains about 2 meters of DNA if stretched from one end to

the other; however, the nucleus of a human cell, which contains the DNA, is

only 6 µm in diameter. This is geometrically equivalent to packing 40 km of

extremely fine wire into a tennis ball! The complex task of DNA packaging is

performed by specialized proteins that bind to and fold it, generating a series

of loop and ring-like structures that provide ever higher levels of organization,

preventing the DNA from becoming an unmanageable tangle. Unexpectedly,

although DNA is folded very tightly, it is packed in a way that allows it to

become readily available to the many enzymes in the cell that replicate it,

repair it, and use its genes to make proteins. In fact it is important to keep in

mind that the chromosome structure is dynamic. Not only do chromosomes
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CHAPTER 2. EXPLORING THE 3D ORGANIZATION OF GENOMES 6

globally condense in accordance with the cell cycle, but different regions of

chromosomes in interphase (cell cycle phase) condense and decondense as cells

gain access to specific DNA sequences for gene expression, DNA repair and

replication. The packaging of chromosomes must therefore be done in a way

that allows rapid, localized and on-demand access to DNA. The complex of

DNA and proteins is called chromatin (from the Greek chroma, i.e. colour,

due to its staining properties).

Figure 2.1: The hierarchical structure of DNA folding into chromatin: from the
double helix to the chromosome scale [11].

From a chemical point of view, the DNA is a complementary, oriented, spi-

ralized and informational double polynucleotide chain. The genetic informa-

tion resides in the order of the sequential arrangement of the nucleotides,

monomeric units of the nucleic acid polymers, i.e. DNA and RNA, which

is translated into the corresponding amino acids (building blocks of protein)

exploiting the genetic code. During the cell division process, the genetic in-

formation is duplicated (DNA replication), in order to transmit the genetic

information to the following cellular generations. A gene is defined as a seg-

ment of the DNA containing instructions for a specific protein production.

On each chromosome they are arranged in a particular sequence, each hav-

ing a specific location on the chromosome (called locus). The human genome

contains approximately 20000− 25000 genes.



CHAPTER 2. EXPLORING THE 3D ORGANIZATION OF GENOMES 7

2.2 3C-based methods

The spatial organization of DNA within the cell is a much studied problem

in biology and bioinformatics. Understanding the three-dimensional structure

of the chromatin strand in which DNA is organized is very important for ex-

ploring the structure of chromosomes, their interactions and functionality. In

fact, chromosomes are some of the most complex structures in the cell: the

molecular composition of the chromatin fiber is highly varied along its length,

and the fiber is intricately tangled in three dimensions. In order to map the

local structure of chromatin, momentous efforts are being made to analyze the

complex of DNA-associated proteins (histones) and their modifications along

the chromosomes. Such studies have led to obtain the genomic locations of

genes and regulatory elements that are active in a given cell type and have be-

gun to discover complete sets of functional elements of the human genome and

of several model organisms. Only over the last decade, a number of molecular

and genomic approaches have been developed to study the three-dimensional

chromosome folding at increasing resolution and throughput. They are all

based on Chromosome Conformation Capture (3C, henceforth). These meth-

ods make it possible to determine how frequently any pair of loci in the genome

are in sufficient physical proximity (probably in the range of 10-100 nm) to be-

come cross-linked. Chromosome Conformation Capture is a high-throughput

methodology which can be used to analyze the overall spatial organization of

chromosomes and to investigate their physical properties at high resolution. In

3C-based methods, cells are crosslinked with formaldehyde to covalently link

chromatin segments that are in close spatial proximity. Afterwards, chromatin

is fragmented by restriction digestion or sonication. Crosslinked fragments are

then ligated to form a unique hybrid DNA molecules. Finally, the DNA is

purified and analyzed (figure 2.2).

Figure 2.2: Schematic representation of the Chromosome Conformation Capture
methodology. From left to right: formaldehyde cross-linking, fragmentation through
digestion, intramolecular ligation, and DNA purification [7].
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The different 3C-based methods only differ in the way hybrid DNA molecules,

each corresponding to an interaction event of a pair of loci, are detected and

quantified. In classical 3C experiments single ligation products are detected

by the polymerase chain reaction (PCR) one at the time using a pair of locus-

specific primers to direct DNA elongation toward each other at opposite ends

of the sequence being amplified. Given that 3C is a one-by-one interaction,

it is necessary to check one pair of the chromatin region at a time. Thus, it

becomes challenging to explore all the genome and most of the 3C analysis

usually cover only tens to several hundred kb. To actually see whether far

away chromatin regions are interacting with each other the 4C (Circularized

Chromosome Conformation Capture) technique has been developed. It uses

inverse PCR to generate genome-wide interaction profiles for single loci, so as

to be able to understand how one particular chromatin region interacts with

all the nearby regions. Another 3C-based approach is the 5C (Carbon Copy

Chromosome Conformation Capture), which combines 3C with hybrid capture

approaches to identify up to millions of interactions in parallel between two

large sets of loci (figure 2.3). Unlike 4C approaches, genome-wide but anchored

on a single locus, 5C analysis typically involve Mbs regions in which all the

possible pairwise interactions are inspected. Therefore, the 5C methodology

is considered as a many-by-many interaction approach thanks to which it al-

lows to explore two sets of hundreds to thousands of restriction fragments to

interrogate up to millions of long-range interactions. The latters can cover up

tens Mb that can be contiguous or scattered over loci of interest throughout

the genome.
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Figure 2.3: Different ligation product detection analysis for the 3C-based methods.
Left: traditional 3C method quantifies interactions between a single pair of genomic
loci (one-by-one) and their ligated fragments are detected using PCR with known
primers, that is why this technique requires the prior knowledge of the interacting
regions. Middle: 4C method captures interactions between one locus and all other
genomic loci (one-by-all). It involves a second ligation step, to create self-circularized
DNA fragments, which are used to perform inverse PCR. Inverse PCR allows the
known sequence to be used to amplify the unknown sequence ligated to it. In
contrast to 3C and 5C, the 4C technique does not require the prior knowledge
of both interacting chromosomal regions. Right: 5C method detects interactions
between all restriction fragments within a given region (many-by-many), with this
region’s size typically no greater than a Mb. This is done by ligating universal
primers to all fragments and by using the ligation-mediated amplification (LMA)
for amplifying selected DNA sequences [7].

2.3 Hi-C method

The amount of genome-wide 3C-based data is rapidly growing and presents

great and exciting opportunities in the field of computational modeling and 3D

genome interpretation. In particular, there has been a surprising development

in recent times for the production of high-resolution Hi-C (High-throughput

Chromosome Conformation Capture) data. Hi-C is a method that adapts the

3C-based approach to probe the three-dimensional architecture of the whole

genomes by coupling proximity-based ligation and enabling purification of their

products followed by massively parallel sequencing. Knowledge of Hi-C data

analysis methods and of the ways available to carry out each analysis step

is assuming increasingly importance, as the number and variety of Hi-C data

sets increase. Unlike the 3C-based techniques, that require the choice of a set

of target loci and do not admit unbiased genome-wide analysis, Hi-C allows
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unbiased identification of chromatin interactions across an entire genome. To

sum up, the traditional Hi-C experimental procedure consists of six steps:

1. crosslinking of cells by formaldehyde;

2. digestion of DNA with a restriction enzyme, e.g. HindIII, that leaves

the ends free;

3. labeling of the ends with biotin;

4. ligation of the cross-linked (chimeric) fragments at very low DNA con-

centration. Under such conditions, ligation of chimeric fragments, which

is intramolecular, is strongly favored over ligation of random fragments,

which is intermolecular;

5. shearing and purification of the resulting DNA, streptavidin pull-

down of biotinylated ligation products;

6. paired-end read sequencing of the extracted fragments.

Figure 2.4: Synthetic scheme of the traditional Hi-C experimental technique. From
left to right: cells undergo crosslinking with formaldehyde, which produces covalent
bonds between spatially adjacent chromatin segments (DNA fragments are repre-
sented in blue and red; proteins that mediate these interactions are colored light
blue and cyan). Chromatin undergoes digestion by a restriction enzyme (HindIII).
Restriction sites are highlighted with dashed lines. The resulting free-ends are bound
by biotin-labeled nucleotides (purple dots) and the ligation is performed under dilute
conditions to create chimeric molecules. The Nhel restriction site is then created
(see insert). DNA purification takes place and the biotinylated junctions are isolated
with streptavidin and identified by paired-end sequencing [32].
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Formaldehyde is an organic compound that allows DNA crosslinking, i.e. the

covalent bond between segments of chromatin next to each other in the 3D

structure. In the process called restriction digestion, a restriction enzyme

breaks down the DNA structure at a specific sequence of bases (usually 4-6

bases), called the restriction site. Biotin is a water-soluble vitamin that is

linked to nitrogenous bases to mark them and streptavidin is a protein with a

very high affinity for biotin, thus allowing the selection of the molecules that

contain it. In general, sequencing can be performed starting from a single

end of the DNA strand to be sequenced (single-end reads) or starting from

both ends and continuing in opposite directions (paired-end reads). The re-

sulting DNA sample contains ligation products consisting of fragments that

were originally in close spatial proximity in the nucleus, marked with biotin

at the junction. Thus, the Hi-C method is really able to capture the nearby

interaction fragments in the whole genome (all-by-all), of course depending

on the depth of sequencing. A Hi-C library is created by shearing the DNA

and selecting the biotin-containing fragments with streptavidin beads. The

library is then analyzed using massively parallel DNA sequencing, producing

an archive of interacting fragments.

2.3.1 Hi-C contact maps

In general, the Hi-C procedure generates a Hi-C map, i.e. a genome-scale se-

quencing library that allows the measurement of 3D distances between all pos-

sible pairs of loci in the genome. The Hi-C map consists of a contact list among

chimeric DNA fragments produced by the Hi-C experiment. By segmenting

the linear genome into loci of a fixed size, i.e. a sequence of non-overlapping

windows of equal sizes, the Hi-C map can be represented as a genome-wide

contact matrix M , where the entries Mij are the number of contacts observed

between loci i and j. A contact is defined as a pairing between reads (short

sequences of synthetic DNA that are produced during the sequencing reaction)

which is not excluded by the elimination of duplicate reads (which correspond

to unligated fragments) or which do not align uniquely to the genome. The

contact map can be visualized as a heatmap (figure 2.5), whose inputs are

called pixels. An interval refers to a set of consecutive loci and the contacts

between two intervals therefore shape a rectangle or a square (block) in M .

The window size is also referred to as the resolution of the Hi-C matrix and
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it is defined as the size of the loci used to construct the contact matrix. To

increase the resolution by a factor of n, one must increase the number of reads

by a factor of n2. The most common resolutions are 1 Mb and 100 kb.

2.3.2 Genome compartments and TADs

Using the genome-wide Hi-C technique, which map all the interactions in a ge-

nomic region of interest or in complete genomes, the genome has been shown

to be partitioned into several organizational levels: chromosome territories,

compartments and domains. The result of the first chromosome folding were

obtained by analyzing the trend of the average intrachromosomal contact prob-

ability for pairs of loci and different chromosomes separated by a certain ge-

nomic distance (distance in base pairs along the nucleotide sequence). It has

been seen that the function of contact probability decreases monotonically with

genomic distance on every chromosome, suggesting polymer-like behavior in

which the three-dimensional distance between loci increases with increasing

genomic distance. Even at distances greater than 200 Mb, it is always much

greater than the average contact probability between different chromosomes,

which implies the existence of chromosome territories.

Figure 2.6: The presence and organization of chromosome territories. Probability
of contact decreases as a function of genomic distance on chromosome 1, eventually
reaching a plateau around 90 Mb (continuous blue line). The level of interchromo-
somal contact (black dashes line) differs for different pairs of chromosomes; loci on
chromosome 1 are most likely to interact with loci on chromosome 10 (green dashes
line) and least likely to interact with loci on chromosome 21 (red dashes line). In-
terchromosomal interactions are depleted relative to intrachromosomal interactions.
Adapted from [32].
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Figure 2.5: Contact map for the chromosome 7 of the lymphoblastoid cell line
GM06990. From top to bottom: increasing zoom. Adapted from [32].
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Moreover, inter- and intra-chromosomal contact maps for mammalian genomes

have revealed a plaid pattern of interactions that can be approximated by

two distinct compartments A (active) and B (inactive) that alternate along

chromosomes with a characteristic size of about 5 Mb each.

Figure 2.7: Relation between DNA three-dimensional structures with Hi-C con-
tact maps at different scales. Top: Schematic view of chromosome folding inside
the nucleus. The finest layer of chromatin folding is at the DNA-histone association
level, forming nucleosomes organized into the chromatin fiber (10 nm). Chromatin
is packed at different nucleosome densities depending on gene regulation and folds
into higher-order domains (200 nm) of preferential internal interactions (TADs). At
the chromosomal scale (1 µm), chromatin is segregated into A and B compartments
of interactions. Individual chromosomes occupy their own space within the nucleus,
forming chromosome territories (2 µm).
Bottom: Schematic representation of Hi-C maps at different genomic scales, reflect-
ing the different layers of higher-order chromosome folding. Genomic coordinates
are indicated on both axes, and the contact frequency between regions is repre-
sented by a red scale. Left: TADs appear as squares along the diagonal enriched
in interactions, separated by contact depletion zones delimited by TAD boundaries.
Middle: At the chromosomal scale, chromatin long-range interactions form a char-
acteristic plaid pattern of two mutually excluded A and B compartments. Right:
Intrachromosomal interactions are dominant compared to interchromosomal con-
tacts, consistent with the formation of individual chromosome territories [47].
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The A and B compartments preferentially interact with the corresponding one

throughout the genome. Thus, the Hi-C map imply that regions tend to be

closer in space if they belong to the same compartment than if they do not.

Taken together, these pieces of observations confirm the spatial compartmen-

talization of the genome inferred from Hi-C. As the resolution of the data

increased, domains of smaller dimensions were found, from which it was as-

sumed that the compartments are divided into condensed structures hundreds

of kb in size referred to as Topologically Associating Domains (TADs). They

can be active or inactive, and adjacent TADs are not necessarily of opposite

chromatin status. Loci located within these TADs tend to frequently inter-

act with each other, but much less frequently with loci located outside their

domain. This feature enabled researchers to identify TADs throughout the

human genome by analyzing lower resolution, but genome-wide, Hi-C interac-

tion maps. These analysis showed that TADs are universal building blocks of

chromosomes and that the human and mouse genomes are each composed of

over 2000 TADs covering over 90% of the genome.



Chapter 3

Materials and methods

The Hi-C data are allocated into a square symmetric matrix M , where each

entries Mij stands for the total number of read pairs sequenced (contacts) be-

tween loci i and j. Moreover, it corresponds to a matrix which is non-negative

and with the dominant values located along the main diagonal. In fact, con-

sidering two loci belonging to the same chromosome, the maximum possible

distance between them is equal to the length of the DNA that separates them.

Therefore, two loci i and j that are close along the 1D chromatin chain tend

to have a high Mij count, regardless of the 3D conformation of the chromo-

some. Furthermore, segments from chromosome centrometric regions cannot

be uniquely mapped due to the presence of repeated sequences along the chro-

mosomal strand. Thus within each Hi-C matrix there are zero-valued default

lines. The latters are usually removed since they are non-informative. Finally,

it is always true that Mij ≥ 0 since the entries encoded the contact counts

between pairs of loci. A Hi-C matrix can therefore be naturally associated to

the genome through a graph, where vertices are defined by binned loci in the

genome, and the edge weight between a pair of loci is proportional to their

contact frequency. The case Mij = 0 implies that the nodes are not connected.

For example the TADs are strongly connected graph components having strong

intra-connections and weak inter-connections (figure 3.1).

16
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Figure 3.1: Illustration of topologically associated domains represented in differ-
ent modalities. From left to right: physical structures of locally compact regions,
diagonal blocks in a Hi-C map and graph model of the contact architectures [2].

Quantitatively studying the properties related to the spatial conformation of

chromosomes in the cell nucleus is possible thanks to the spectral graph theory

applied to the Hi-C matrix. The most relevant concepts of graph theory and

the spectral decomposition of the associated matrices are reviewed below.

3.1 Graphs and adjacency matrices

We define a undirected graph as the ordered pairs of sets G (V,E), where

V = {v1, v2, ..., vN} is a finite set of vertices (or nodes) with cardinality N

and E is an edge set consisting of paired vertices of the form {vi, vj}, with
i ̸= j to avoid loops. The order of a graph coincide with its number of vertices

|V |, while the size is its number of edges |E|. Moreover, the degree of a given

vertex d (vi) is the number of edges that are connect to it. The edges (or links)

of a graph define a symmetric relation on the vertices, called the adjacency

relation. Specifically, two vertices vi and vj are adjacent if {vi, vj} is an edge.

A graph may be fully specified by its adjacency matrix A (G) (or simply A

for notation convenience), which is an N × N square matrix encoding the

adjacency relationships in the graph G, where the entries Aij specifying the

number of connections from vertex i to vertex j. In particular, for a undirected

graph, the adjacency matrix A (G) is defined as

Aij =

{
1 {vi, vj} ∈ E

0 otherwise

Therefore A (G) in this special case of undirected graph, is a binary matrix

with zeros on its diagonal, because an edge in this kind of graph cannot start

and end at the same vertex. The adjacency matrix is also symmetric, meaning
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that Aij = Aji, in fact all of its edges are bidirectional. In this context it is

possible to express the degree of a vertex as

d (vi) =
∑
j∈N

Aij

More generally, instead of considering binary connections between pairs, weights

can be assigned to each edge such that

Aij =

{
wij {vi, vj} ∈ E

0 otherwise

where wij are real numbers used to characterize the connection strengths.

A weighted graph is therefore a special type of labeled graph in which the

labels are numbers. The following figure 3.2 shows an example of a weighted

undirected graph.

Figure 3.2: Example of a weighted undirected graph with 5 nodes and 7 edges.
Each edge has a weight. For example, the edge {0, 3} has the weight 7 and the edge
{1, 2} has the weight 1 [21].

Therefore the adjacency matrix encoding the graph structure G is

A (G) =


0 3 0 7 8

3 0 1 4 0

0 1 0 2 0

7 4 2 0 3

8 0 0 3 0


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3.2 Spectral properties of symmetric random

matrices

The Hi-C matrix can be interpreted as a weighted adjacency matrix for a undi-

rected graph. As we have seen, such a matrix is symmetric, so all the spectral

properties relating to symmetric matrices are satisfied. In particular, symmet-

ric matrices have purely real eigenvalues. This can be easily demonstrated

recalling the hermitian scalar product in Cn to be

⟨x,y⟩ = x̄Ty =
n∑

i=1

x̄iyi

where the overline is the complex conjugate and the vectors x and y are thought

of as columns with n components. Then, if Ax = λx, the following equations

hold

λ̄ ⟨x,x⟩ = ⟨λx,x⟩ = ⟨Ax,x⟩ = ⟨x, Ax⟩ = ⟨x, λx⟩ = λ ⟨x,x⟩

from which λ = λ̄ since ⟨x,x⟩ is always a real positive number for each array

x ̸= 0. Now we considered the so-called Gaussian orthogonal ensemble (GOE),

whose elements are symmetric matrices with entries drawn from a Gaussian

distribution with zero mean and variance ρ2. On average, the salient spectral

properties of the elements belonging to the GOE are related to the distribu-

tions follow by their eigenvectors and eigenvalues. Precisely, the orthonormal

eigenvectors sample uniformly the surface of a unit (N − 1)-sphere, where N

is the linear size of the matrices. The generic component x of any eigenvector

follows the same Gaussian distribution

p (x) =

√
N

2π
e−

Nx2

2

with zero mean and variance equal to N
2
. The largest eigenvalue is a real

random variable, and the vector of all eigenvalues ordered by size is an RN -

valued random variable. In some ways, the theory of eigenvalues of random

matrices mimics that of real random variables, and the following distribution

plays the role of the Gaussian

p (λ) =

{
2

πΛ2

√
Λ2 − λ2 −Λ < λ < Λ

0 otherwise
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Figure 3.3: Wigner’s semicircle law for different values of the parameter Λ ranging
from 0.25 to 3 [50].

which depends on the parameter Λ defining the support of λ to be the inter-

val [−Λ,Λ]. The distribution p (λ) is referred to as the Wigner’s semicircle

law (figure 3.3), even though strictly speaking is a scaled semicircle, i.e. a

semi-ellipse. Wigner showed that as N approaches to infinite, the eigenvalues

distribution of the GOE converges to the semicircle law (figure 3.4). The idea

is that if you sample a random matrix from the GOE and then pick one of

its eigenvalues at random, the resulting distribution will depend on N and

converge to the semicircle as N −→ ∞. It was quickly recognized that random

matrices exhibit universality, i.e. ensembles with differently distributed entries

have same limiting eigenvalue distribution.

Figure 3.4: A histogram plot of the normalized eigenvalues for 500 matrices, each
400× 400. The entries are chosen independently from the standard normal p (x) =
1√
2π
e−

x2

2 [16].
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3.3 Synthetic data

Synthetic data are artificially produced information rather than generated by

real-world events. They are created through algorithms and are used as a

stand-in for production test datasets to validate mathematical models and

to train machine learning (ML) models that captures the patterns in a real

dataset. While collecting high-quality data from the real world is difficult, ex-

pensive, and time-consuming, synthetic data technology allows users to quickly,

easily, and digitally generate data in the amount they want, customized to their

needs.

Figure 3.5: Forecast of use of synthetic data for which by 2030 they will completely
overshadow real data in AI models becoming the main form of data used in AI [18].

The use of synthetic data is gaining wide acceptance because it can provide

several benefits over real-world data. Synthetic data can be artificially gener-

ated to mimic the behavior of real-world data, enabling to create a diverse and

large amount of training data without spending a lot of time for doing real

experiments. This approach can be used to create synthetic data sets that are

similar to real data sets in terms of their distribution and variability. Another

process for creating synthetic data is to use a random number generator to

generate uniform data. As can be seen from figure 3.6, the synthetic data

retains the inner structure of the original data, but they are not the same.
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Figure 3.6: Comparison between original (on the left) and synthetic (on the right)
set of data in which the structural similarity is well visible [46].

The synthetic data generation has several benefits which we list below.

• Full user control: a synthetic data simulation enables complete control

over every aspect, satisfying every need. In particular, it is possible to

control event frequency, item distribution and many other factors, tai-

loring the data to certain conditions that can’t be obtained with original

data. Some examples include controlling the degree of class separations,

sampling size and noise level of the considered data set;

• Cost-effective: synthetic data can be an inexpensive alternative to real-

world data. Of course, synthetic data creation is not free. The main cost

of synthetic data is an upfront investment in building the simulation.

However, real data enforce timely and financial costs every time a new

data set is required or an existing one is revised;

• Faster production: synthetic data are not gathered from experimental

results, thus it’s possible to create a data set more quickly with the right

software and simulation. As a result, a great amount of synthetic data

can be created in a shorter amount of time.

• Data privacy: synthetic data can resemble all important statistical

properties of real data without containing any information that could be

used to identify the real data. Consequently, this characteristic makes

the synthetic data anonymous, eliminating any concern about privacy

regulations.

• Data labeling: regarding supervised learning tasks, manually labeling

a multitude of instances can be time-consuming and error-prone. Syn-
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thetically labeled data can be created to improve the model development

process increasing labeling accuracy.

3.4 Datasets

The Hi-C data used in this thesis work comes from two distinct datasets. A

first analysis concerns the human cell line GM12878 [36]. It is a lymphoblas-

toid cell line commonly used as surrogates for peripheral blood lymphocytes.

It belongs to the numerous set of immortalized cell lines, i.e. continuously

growing cells derived from biological samples. The lymphoblastoid cell lines

present a low somatic mutation rate in continuous culture, making them the

preferred choice of storage for individuals’ genetic material. As one of the most

reliable, inexpensive, and convenient sources of cells, they have been used by

several large-scale genomic DNA sequencing efforts [10] [40]. Particularly, the

cell line GM12878 is a popular sample that has been widely used in genomic

studies. For example, it is one of three Tier 1 cell lines of the Encyclopedia of

DNA Elements (ENCODE) project, which aim is to aid in the integration and

comparison of data produced using different technologies and platforms, des-

ignating cell types that will be used by all investigators [48] [55]. Apart from

this standard reference cell line, we will focus our inspection on very specific

primary cells, which are freshly isolated cells from organ tissue and maintained

for growth in vitro, without genetic modifications as happens with immortal-

ized cell lines. Primary cell cultures more closely mimic the physiological state

of cells in vivo and generate the most biologically relevant data. In particular

we used 4 different samples, divided into 2 controls (LM and MB) and 2 cases

(235 and 295) which refer to prion disease.
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3.5 Essential and synthetic Hi-C maps

The Hi-C experiments, as seen in section 2.3.2, were able to increase our un-

derstanding of the structural-functional interplay among chromosomes in the

genome. Particularly, Hi-C maps investigation demonstrated that interchro-

mosome interactions are suppressed compared to intrachromosome ones, giv-

ing quantitative support to the earlier notion of chromosome territories [5].

Moreover, by examining the dominant eigenvectors of the interaction matri-

ces, it has been revealed the existence of chromatin compartments [32] and

TADs, which may form complex nested structures [9],[35]. Relevant observa-

tion arise also from comparative Hi-C analysis for data cross-validation with

different protocols or resolution, which identify common and statistically sig-

nificant features of the Hi-C maps [15],[44],[52]. Starting from these obser-

vations, spectral analysis methods have been applied to save the robust and

significant interactions within the Hi-C maps, enhancing the capability to find

out meaningful differences and affinities across matrices. The spectral anal-

ysis exploits the information encoded by the eigenvectors and corresponding

eigenvalues. However, spectral methods are so far focused only on the first

one or two eigenvectors of the Hi-C matrices, which are informative for the

chromatin compartmentalization or the first ten as in [17]. Specifically, they

shows that most of the Hi-C maps spectrum is compatible with that of random

matrices (except for a limited set of eigenvectors with atypically large eigenval-

ues in modulus), and thus represents a non-specific component shared across

chromosomes from different samples. Discounting this part of the spectrum,

and retaining only what they term the essential component, it is possible to

enhance the definition of chromosomes’ architectural features, such as TADs

as well as the similarities of replicates and dissimilarities of different cell lines.

Finally, they show that essential matrices are stable against variations of the

resolution. Starting from the entire Hi-C matrix M , the essential matrix (or

essHi-C, for brevity) M ess is defined by the entries

M ess
ij =

n∗∑
n=1

λnx
(i)
n x(j)

n =
n∗∑
n=1

λnP
ij
n

where x
(i)
n is the i-th component of the n-th eigenvector of M and the asso-

ciated eigenvalue λn. With P ij
n = x

(i)
n x

(j)
n we indicate the projector related

to the eigenvector xn. Therefore, the term λnP
ij
n describe the contribution of
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eigenspace xn to the overall Hi-C matrix pattern. The eigenspaces are ranked

for decreasing modulus of the eigenvalues and the summation is restricted to

the top n∗ essential spaces. In the present thesis we want to extend the con-

cept of essential matrix by retaining not only the (arbitrarily chosen) ten larger

eigenvalues in modulus (as in [17]), but all the eigenvalues belonging to the sig-

nal component. The latter is composed by all the eigenvalues that are outside

the non-specific random component, which follows the semicircle Wigner’s law.

Furthermore, here we introduce a new Hi-C map that we term synthetic Hi-C

matrix, or synHi-C, which represents a random copy of the original Hi-C map,

even though it maintains all the relevant original features as for the essential

one. We define the synHi-C matrix as

M syn
ij =

n∗∑
n=1

λnx
(i)
n x(j)

n +
N∑

n=n∗+1

λ̃nx
(i)
n x(j)

n = M ess
ij +

N∑
n=n∗+1

λ̃nx
(i)
n x(j)

n

where λ̃n denotes a random reshuffling of the eigenvalues λn, related to the

corresponding eigenvectors xn, selected from the random component of the

spectrum. The reshuffling of the eigenvalues corresponds to a permutation

of the weights given to each eigenvector and so to each projector which sum

make up the entire Hi-C map. In this way it is possible to generate as large

as desired numbers of Hi-C matrices, making sure of not loosing any intrinsic

feature encoded by the essHi-C matrix. In our case in which the Hi-C data

relate to a genetic disease that is very rare and hardly studied at the Hi-C

level, the possibility of producing synthetic data capable of enriching the few

available data samples will prove to be very useful and therefore be able to

make statistics.
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3.6 Preprocessing

The Hi-C matrices are therefore seen as adjacency matrices encoding an undi-

rected weighted graph whose nodes correspond to the loci into which the

genome is divided and whose links are characterized by a weight given by

the value of the entries Mij ≥ 0. These matrices are called raw and contain

the frequencies of contact observed between two distinct loci of the genome.

However, to obtain easily viewable and interpretable Hi-C maps, it is useful to

perform a preprocessing of the raw matrices acquired directly in the laboratory.

3.6.1 Dinamic range reduction

After the removal of the null-value bands present in the raw matrix as taken

in the laboratory, which correspond to uniquely non-mappable regions in the

reference genome and therefore to isolated nodes in the view of the Hi-C ma-

trix as an adjacency matrix of a undirected graph, we proceed with a further

preprocessing step. Let M be the observed Hi-C matrix of a given chromosome

of length L (with unmappable regions removed), and let M̄ be a transformed

Hi-C matrix with reduced dynamic range

M̄ij =

{
log (Mij) Mij ̸= 0

0 otherwise

where the logarithmic function is introduced to reduce the large dispersion of

the raw Hi-C matrix data due to the intrinsic drop of counts with increasing

genomic distances between pairs of loci along the DNA.

3.6.2 Hi-C data normalization methods

In Hi-C maps, normalization is performed to correct systematic biases, making

them more comparable and downstream analysis reliable. In fact, the inter-

action frequencies of contact matrix contain many unwanted biases that are

derived from different systematic deviation in experimental procedures and

driven by DNA sequence and different technical variations, such as fragment

length, sequence mappability, copy number variations and other unknown fac-

tors. It is believed that these biases lead to anomalous variability among Hi-C

raw data. In Hi-C analysis workflow, the normalization methods attempt to re-

move these biases as far as possible in order to preserve the interaction frequen-
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cies reflecting the underlying architecture. A large number of these methods

are available. Our datasets undergo different types of normalizations: Itera-

tive Correction and Eigenvectors decomposition (ICE), Vanilla-Coverage (VC)

and Sequential Component Normalization (SCN). In particular, ICE normal-

ization [24] is an implicit individual-sample approach which attempts to make

all bins of contact matrix equally visible using a matrix-balancing strategy. An

implicit approach assumes that the cumulative effect of bias is fully captured

in the sequencing coverage of each bin. The ICE normalization considers the

systematic biases between two bins to be the product of their individual biases

and the maximum likelihood solution is obtained by iterative correction pro-

cedures for determining the individual biases. Specifically, it seeks iteratively

for systematic biases that equalize the sum of counts per bin in the matrix.

At each iteration, a new matrix is generated by dividing each cell by the prod-

uct of the sum of counts in its row times the sum of counts in its column.

The process converges to a matrix in which all bins have identical sum. For

a raw matrix M of linear size N , the normalized matrix W of entries Wij is

iteratively computed for each step n as

Wij =
Mij√∑N

n=0 Win ×
∑N

n=0Wnj

This normalization has usually a quite strong effect, and visually the matrices

look very smooth and regular as can be seen in figure 3.7.

Figure 3.7: Hi-C data comparison between raw and ICE normalization matrices.
The sample data set comes from the Python package iced which includes the first 5
chromosomes of the budding yeast S. cerevisiae [43].
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The Vanilla-Coverage normalization is just a variation of the ICE where a

single iteration is performed. The Sequential Component Normalization [4] is

an implicit approach which can be applied to any genomic contact map and

independently from the protocol that was used to generate it. Firstly, SCN

normalization will give an equal weight to each restriction fragment in the

contact map. Therefore, the fragments with very low number of reads, corre-

sponding to ones that could not be properly detected, are likely to introduce

noise in the normalized contact map and have to be removed. A way to iden-

tify these fragments is to compute the distribution of reads in the contact map

which is roughly gaussian, with a long tail corresponding to low interaction

fragments as shown in figure 3.8.

Figure 3.8: Distribution of the norms for each fragment for the interchromosomal
interactions in the experiment HindIII-MspI-Conditions AB. It remains low inter-
acting fragments that are removed. [4].

Once low interacting fragments are removed, the second step is to normalize

all rows and columns of the contact map to one so that the matrix remains

symmetric. This is done through the following procedure. Firstly, each column

vector is normalized to one, using the euclidian norm. Then each line vector of

the resulting matrix is again normalized to one. The whole process is repeated

sequentially until the matrix is symmetric once again, now with each row and

each column normalized to one. Usually, two or three iterations are sufficient

to insure convergence. This normalization can be viewed as a sequence of

extensions and shrinking of interaction vectors so that they tend to reach the

sphere of radius one in the interactions space. An example of SCN normalized

Hi-C matrix starting from the raw and by filtering its interaction fragments is

shown in figure 3.9.
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(a) Raw Hi-C data (b) Filtering

(c) SCN Hi-C data

Figure 3.9: Inter-chromosomal contact maps for S. cerevisiae at diffent steps of
the normalization procedure. The fisrt contact map represents interchromosomal
interactions from raw data (a). In the second matrix (b), low interacting fragments
have been removed. Finally, the last contact map (c) is the matrice obtained after
processing with the SCN. The colorbar indicates the number of reads. [4].

A different type of normalization very often used for Hi-C maps, independent

from those mentioned so far, is the Observed-over-Expected (OoE) normaliza-

tion. It is carried out for discounting the overall dependence of the entries an

Hi-C matrix Mij on genomic distance s = |i− j| (as seen in figure 2.6). The

entries of the OoE normalized matrix Wij are defined as

Wij =
Mij × s∑

{(m,n)|s=|m−n|}Mmn

which corresponds to normalize the entries through the average values of Mij

at a genomic distance s. In figure 3.10 are shown the raw and OoE Hi-C

maps in the case of chromosome 14. This kind of normalization is particularly

convenient to enhance the interchromosomal interaction patterns, which are

otherwise suppressed by the chromosome blocks along the main diagonal.



CHAPTER 3. MATERIALS AND METHODS 30

(a) Raw Hi-C data (b) OoE Hi-C data

Figure 3.10: (a): Map of chromosome 14 at a resolution of 1 Mb (1 tick mark = 10
Mb) exhibits substructure in the form of an intense diagonal and a constellation of
large blocks (three experiments combined, range: 0−200 reads).(b): The Observed-
over-Expected matrix shows loci with either more (red) or less (blue) interactions
than would be expected given their genomic distance (range: 0.2–5 reads) [32].
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3.7 ShRec3D algorithm

The shortest-path reconstruction in 3D (ShRec3D, henceforth) is a two-step

alternative algorithm adapted from network analysis for translating contact

maps into distances, followed by a 3D reconstruction. The main goal is to

derive three-dimensional chromosomal structures from Hi-C contact maps by

combining the shortest-path distance, i.e. the length of the shortest path re-

lating any two nodes on the graph, with classical multidimensional scaling

(MDS). The latter find the solution to the mathematical problem of recon-

structing a spatial structure from the distances between its elements involving

the computation of the first three eigenvectors from an intermediary matrix,

the Gram matrix. An essential step in MDS-based methods of chromosome

reconstruction is therefore the derivation of a complete set of distances from

a contact map. The steps used by the ShRec3D algorithm are summarized in

figure 3.11.

Figure 3.11: ShRec3D algorithm flowchart. From the contact map to the spatial
coordinates. Adapted from [30].

Before to describe each single step of the ShRec3D algorithm it is necessary

to define the framework in which it works. It deals with matrices which can

be associated with a structure comprising N distinct points Pi (i = 1, ..., N)

in an n-dimensional space. In our case we consider experimental structures in

the 3D space (n = 3). The origin O of the coordinate system describing the

3D points is taken to be their barycentre, because they are more suitable for

structure visualization from a geometrical point of view.
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3.7.1 Floyd-Warshall algorithm: shortest path

analysis

The first step of the ShRec3D algorithm consists in deriving the full set of

distances encoded in the distance matrix from the contact Hi-C map, using

the concept of shortest path in graph theory. The distance matrix D is defined

as an N ×N matrix whose elements Dij correspond to the Euclidean distance

between the points Pi and Pj. In the case of Hi-C experiments, we considered

the graph of nodes Pi (i = 1, ..., N) defined by the Hi-C contact map seen

as its weighted adjacency matrix M , where the link (i, j) between nodes i

and j is endowed with a length equal to the inverse of the normalized contact

frequency fij. The graph has to be connected, as it would not be possible to

assign a distance between points belonging to two distinct components. The

connectivity assumption means that for any pair of points Pi and Pj of the

graph, it is always possible to find a path (i0, i1, ..., ik) with i = i0 and j = ik,

such that Mk
ij > 0 for a strictly positive integer k. From a mathematical point

of view, this condition coincides with the request for M to be irreducible,

which is satisfied in our case of Hi-C experimental situation considered. Now,

the ShRec3D algorithm defines the distance between two points by the length

of the shortest path relating them. The latter is a path between the points

Pi and Pj whose path length is minimal over all the paths relating them.

Although the shortest path is not necessarily unique, its length takes a unique

value. For computing the shortest paths and their length it is used the Floyd-

Warshall algorithm. This algorithm is able to compare the shortest distances

between every pair of vertices in the input graph. It does so by incrementally

improving an estimate on the shortest path between two vertices, until the

estimate is optimal. Consider the graph defined by the adjacency matrix M

as described before. Further consider a function Dk
ij which returns the length

of the shortest path from i to j such that the intermediate vertices are only

from the set V k = {1, 2, ..., k}. Our goal is to find the length of the shortest

path from each i to each j considering any vertices from V = {1, 2, ..., N}.
This is what we define as DN

ij , which we will find recursively. Firstly, it is

important to note that the inequality Dk
ij ≤ Dk−1

ij holds for any choice of k.

In fact there is more chance of finding a shortest path if the graph allowed

to use an additional vertex k, while the equality holds only when k is not an

intermediate vertex on the shortest path Dk−1
ij = Dk

ij. However, if the vertex
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k is such that Dk
ij < Dk−1

ij , then there must be a path from i to j using the

vertices V k that is shorter than any other path that does not make use of the

vertex k. This path (see figure 3.12) can be break down into two different

(shorter, otherwise we could further decrease the length) paths:

• a path Dk−1
ik from i to k using the vertices V k−1;

• a path Dk−1
kj from k to j using again the vertices V k−1.

Interestingly, in either case, the subpaths contain merely nodes from V k−1.

Figure 3.12: Graph showing the shortest path decomposition from node i to node
j in {1, 2, ..., N} into the sum of two paths passing through the node k with all the
intermediate vertices in {1, 2, ..., k − 1} [14].

Therefore, from all of these observations we derive the following formula:

Dk
ij = min

(
Dk−1

ij , Dk−1
ik +Dk−1

kj

)
This equation represents the core of the Floyd-Warshall algorithm. It allows

us to found the shortest path for all (i, j) pairs using any intermediate vertices.

The algorithm proceeds by computing the shortest path Dk
ij for k = 0, which is

basically D0
ij = wij, where wij denotes the weight of the edge from i to j if exits

or inf otherwise. Then the algorithm works for k = 1, k = 2 and so on by using

the formula above. The process continues until k = N , where the shortest path

DN
ij is found as required. Therefore we have obtained the distance matrix D,

whose entries are defined by Dij = DN
ij . Usefully, weak or vanishing contact
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frequencies do not contribute to the distances, as the shortest paths will over-

step the corresponding links (of large or infinite lengths) by construction. This

method thus makes it possible to both reconstruct the whole set of distances

and filter some of the experimental noise (low contact frequencies that may

correspond to noise are rejected). Of great importance, this method defines

a true distance. In fact, on one hand it is certainly symmetrical Dij = Dji

and vanishes only if the points are identical Dij = 0 ⇐⇒ i = j. On the

other hand, by construction, the minimal path length from node i to node j is

always smaller or equal to the sum of the minimal path length from node i to

some node k with the minimal path length from such node k to node j. Thus,

the shortest-path distance satisfies the triangular inequality Dij ≤ Dik +Dkj

(with equality when a shortest path from i to j passes through k). Finally, the

distance between neighboring nodes along the genome will be very small as de-

sired (see figure 3.13), in fact the closer the loci are along the genome, the more

they establish contacts; this distance is thus consistent with the polymer-like

connectedness of each chromosome.

Figure 3.13: Polymer connectivity in ShRec3D reconstruction. Normalized his-
togram of the reconstructed distances Di,i+1 between neighbors along the genome
(light blue peaked curves), for genome-wide real Hi-C data, compared to the normal-
ized histogram of all distances taken as a reference (dark blue broad curves) [30][27].
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3.7.2 Gram matrix

In the first step we were therefore able to obtain the distance matrix D starting

from the Hi-C contact matrix. Now we need to pass from the distances to the

Gram matrix, following the flowchart in figure 3.11. The Gram matrix G is an

N×N positive semidefinite matrix whose elements Gij are defined as the scalar

product of the coordinate vectors associated with points Pi and Pj. From a

mathematical point of view it is possible to derive the Gram matrix from the

knowledge of distances as demonstrated in Theorems 3.1 and 3.3 of [20] and a

more tractable form for our purposes are shown in [30]. Firstly, we can express

the distance d0i between the barycenter O and the point Pi for any i = 1, ...N

as

d0i
2 =

1

N

N∑
j=1

Dij
2 − 1

N2

N∑
j=1

N∑
k>j

Djk
2

Moreover, we have use for an auxiliary matrix M , the metric matrix. It is

defined by the elements

Mij =
1

2

[
d0i

2 + d0j
2 −Dij

2
]

In [41] it is shown that to ensure M to be positive semidefinite of rank n, the

condition that D is a distance matrix associated with an Euclidean structure

of N point in a space of dimension n has to be assured. Satisfactorily, this

is exactly the definition of distance matrix, then M coincides with the Gram

matrix G of the N points.

3.7.3 Coordinate matrix and 3D structure

The problem of reconstructing the coordinates from the sole knowledge of dis-

tances has been faced by the distance geometry. Multidimensional scaling

(MDS) reconstruction, which brings in the notion of dimensional reduction, is

able to find the n-dimensional structure (n = 3 in our case) to approximate as

much as possible a given distance matrix. It is based on analytical formulas

which can be found in [29] and [49], in which the purpose of MDS is extended

beyond distance matrices with application to chromosome reconstruction. One

of the most important theorems of distance geometry states that, given the

Gram matrix to be positive semidefinite, the coordinates of N points Pi with
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i = 1, ..., N in a space of dimension n can be recovered from the first n eigen-

vectors Eα with α = 1, ..., n of the Gram matrix suitably normalized to 1 and

rescaled by the square root of the corresponding eigenvalues λα, in formula

V (i)
α = E(i)

α ×
√

λα with

N∑
i=1

E(i)
α

2
= 1

where E
(i)
α is the i-th component of the eigenvector Eα and V

(i)
α is the co-

ordinate of the point Pi along the α-axis. This equation is presented and

demonstrated in a part of the Theorem 3.1 of [41]. Finally, we are able to

reconstruct the n×N coordinate matrix V comprising the Euclidean coordi-

nates of the points V
(i)
α . By supplementing the Floyd-Warshall algorithm to

find the shortest path for the distance matrix, the Gram matrix and the coor-

dinate matrix, we end up with the constructive algorithm ShRec3D. It allows

us to display a 3D structure starting from any contact map, included the Hi-C

contact maps.

Figure 3.14: Visualization of human autosomal chromosomes using ShRec3D.
Color labeling of the different chromosomes: 1: blue, 2: red, 3: grey, 4: orange,
5: yellow, 6: gold, 7: silver, 8: green, 9: pink, 10: cyan, 11: purple, 12: lime,
13: mauve, 14: ochre, 15: ice blue, 16: black, 17: light green,18: light cyan, 19:
violet,20: magenta, 21: dark red, 22: light orange. (Hi-C data in lymphoblastoid
cells) [30].

The reconstructed 3D coordinates are defined up to an arbitrary dilation, ro-

tation, and possibly mirror symmetry and we will face this problem in the

next chapter. Moreover, MDS truncates the metric matrix M into the posi-
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tive semidefinite Gram matrix G of rank-3. Therefore the coordinates recon-

struction takes into consideration only the dominant n = 3 (i.e., α = 1, 2, 3)

eigenvalues and associated eigenvectors of the metric matrix M , as if the other

were vanishing. The validity of this dimensional reduction (from M to G) and

subsequent step of coordinate reconstruction (from G to V ) is assessed by ex-

amining the spectrum of M and ensuring that the largest three eigenvalues are

separated by a large spectral gap from the remaining spectrum concentrated

near 0, as seen in figure 3.15.

Figure 3.15: Spectrum (eigenvalue histogram) of the metric matrix derived from
simulated contact maps using the shortest-path distance using the ShRec3D ap-
proach (both distances are dimensionless: the units on the abscissa axis depend on
the chosen normalization for the contact frequencies). The three rightmost black
arrows underline the first three eigenvalues and the leftmost red arrow underlines
the fourth one, demonstrating the presence of a significant spectral gap [30].

All the steps carried out to get to the coordinates for the nodes of the chromo-

somes starting from a contact Hi-C map have been implemented in a Python

code which, for convenience, is reported in the appendix C.
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3.8 Procrustes Analysis

In the previous chapter we have seen how to generate a coordinate matrix

which can be visualized as a series of points in the 3D space. A tool that

will prove useful in the next analysis of the thesis is to be able to compare the

shapes generated by the coordinate points provided by the ShRec3D algorithm

in space. Firstly, is necessary to give some definitions regarding the concept of

shape and landmark. With shape it is denoted all the geometrical information

that remains when location, scale and rotational effects are filtered out from an

object. Thus, it can be considered as a member of an equivalence class formed

by removing the translational, rotational and uniform scaling components,

which are called Euclidean similarity transforms (see figure 3.16).

Figure 3.16: Four copies of the same shape, but under different Euclidean trans-
formations [45].

One way to describe a shape is by locating a finite number of points along the

outline of the shape. These points are called landmarks (see figure 3.17). They

are divided into three groups (according to [23]): (1) anatomical landmarks,

points assigned by an expert that corresponds between organisms in some

biologically meaningful way; (2) mathematical landmarks, points located on

an object according to some mathematical or geometrical property, i.e. high

curvature or an extremum point and (3) pseudo-landmarks, constructed points

on an object either on the outline or between landmarks.
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Figure 3.17: Example of how landmarks (red points) are used to represent a shape.
Adapted from [1].

A mathematical representation of an N -point shape in n dimensions could be

to concatenate each dimension into a n×N -vector. The vector representation

for three-dimensional shapes (i.e. n = 3) would then be

x = (x, y, z)T = (x1, x2, ..., xN , y1, y2, ..., yN , z1, z2, ..., zN)
T

Now, according to the definition stated above, we need to perform the filter-

ing of translation, rotation and uniform scaling transforms from the original

shape, e.g. the one generated from ShRec3D coordinates, to obtain a true

shape representation. This is carried out by introducing a coordinate refer-

ence to which all shapes are aligned, commonly known as pose. The procedure

for finding such a coordinate reference is referred to as Procrustes analysis

(from the Greek mythology, is the bandit who made his victims fit his bed ei-

ther by stretching their limbs or cutting them off). It brings the shape set into

shape space. The latter is defined as the set of all possible shapes of the object

considered. Formally, the shape space σN
n of dimension K is the orbit shape

of the non-coincident N point set configurations in the Rn under the action of

the Euclidean similarity transformations [45]. In particular, the shape space

is affected by a loss of dimensionality, due to the alignment procedure, with

respect to that of a space of N points and dimension n. The latter is equal

to nN , instead the shape space dimensionality is K = nN − n − 1 − n(n−1)
2

.

The peeling of dimensionality is easily explained by the translation, which re-

moves n dimensions, the uniform scaling, which removes 1 dimension and the

rotation, which removes n(n−1)
2

dimensions. In case it is possible to establish a

relationship between the distance in this new shape space and the Euclidean

distance in the original space, thus the set of shapes forms a Riemannian man-
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ifold containing the object class in question, e.g. the hands or the ShRec3D

reconstructions from Hi-C data. Specifically, this space is also denoted as

Kendall shape space [12] and this relationship is known as shape metric. An

example of shape metric is the Procrustes distance, which compare shapes

with an equal amount of points N , as it will be useful in the further analysis.

It corresponds to a least-squares type shape metric that requires two aligned

shapes with one-to-one point correspondence. The alignment process involves

three steps: translation, uniform scaling and rotation. The translational com-

ponents can be removed by translating the object so that its centroid (x̄, ȳ, z̄)

lies on the origin, formally

(x, y, z) −→

(
x− 1

N

N∑
j=1

xj, y −
1

N

N∑
j=1

yj, z −
1

N

N∑
j=1

zj

)
Likewise, the scale component can be cut out by scaling the object so that

the root mean square distance (RMSD) between the points to the translated

origin is normalized to one. The RMSD is defined as

S =

√√√√ 1

N

N∑
j=1

[
(xj − x̄)2 + (yj − ȳ)2 + (zj − z̄)2

]
where S is a statistical measure of the object’s scale or size. It turns out to be

1 when the point coordinates are divided by the object’s initial scale, so when

the following coordinate transformation is applied

(x, y, z) −→
(
x− x̄

S
,
y − ȳ

S
,
z − z̄

S

)
The last step consists in removing the rotation component, which is represented

by a 3 × 3 rotation matrix R. To find the optimum value for R the singular

value decomposition (SVD) can be used [12]. We will not analyze the SVD as

it is beyond the scope of this thesis, but what is important to know is that

one of the object is used to provide a reference orientation while the other

is rotated around the origin until an optimum angle θ such that the sum of

the squared distances (SSD) between the corresponding point is minimised is

found. Finally, we are left with a new set of coordinates (x, y, z) −→ (u, v, w)

which is optimally superimposed to the other one (see figure 3.18).
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Figure 3.18: Example of Procrustes superimposition. Three transformation steps
of an ordinary Procrustes fit for two configurations of landmarks. (a) Scaling of both
configurations to the same size; (b) Transposition to the same centroid position; (c)
Rotation to the orientation that provides the minimum sum of squared distances
between corresponding landmarks [37].

Now, it is of relevant importance for us to be able to evaluate the difference

between the shape of two objects by translating, scaling and optimally rotating

them as illustrated above. As a statistical measure of the shape difference we

take the square root of the aformentioned SSD between the corresponding

points. Mathematically,

Pd =

√
(u− x′)2 + (v − y′)2 + (w − z′)2

where
(
x

′
, y

′
, z

′)
is the vector representation for the 3D shape to which (u, v, w)

is superimposed, as a result of the alignment procedure. This measure Pd is

referred to as Procrustes distance.



Chapter 4

Results and discussion

In this chapter we present the results obtained from the spectral analysis start-

ing from different types of Hi-C data at different resolutions. This analysis

consists in identifying the eigenvalue spectrum of the considered Hi-C matri-

ces and in extracting the essential matrices starting from the projectors related

to the signal component. Ultimately we dealt with the production of synthetic

images working instead with the noise component and leaving the signal com-

ponent intact. All these Hi-C matrices mentioned above were then analyzed

from different points of view and compared both with the aid of scatter plots

and the ShRec3D algorithm to reconstruct their spatial coordinates.

4.1 Preliminary analysis: GM12878

Before going into the spectral analysis on single chromosomes, we want to

verify and characterize the type of Hi-C data starting from one of the most

common case studies in the literature: the GM12878 cell line. We therefore

started from the complete cell line which includes all 23 chromosomes charac-

terizing the human karyotype at 1Mb resolution. The data available to us on

GM12878 were of two types: raw and ICE normalized Hi-C data. The former

correspond to real contact counting of neighbouring loci matrices, while the

latter are data processed through the normalization of the Iterative Correction

and Eigenvectors decomposition (ICE) as described in paragraph 3.6.2. In or-

der to be able to visualize the Hi-C maps, some preliminary operations on the

data have been performed for the cell line considered. Firstly, the data have

been imported in Python, then the logarithmic function to base 10 has been

42
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applied to the whole data set. This has been necessary to visualize properly

the contact frequencies and all the hidden patterns of the data due to the great

difference between the main diagonal’s values and those corresponding to the

contact regions outside it. By exploiting seaborn, a Python data visualization

library, we are able to visualize the heatmaps, i.e. color-encoded matrix plot,

of the healthy cell line both for the raw and the ICE normalized data as shown

in figure 4.1.

(a) Raw Hi-C data (b) ICE normalized Hi-C data

Figure 4.1: Raw and ICE normalized Hi-C maps for the whole GM12878 cell line
matrices after taking the logarithmic function to base 10.

The metadata, in particular the intervals of coordinates within the matrices in

figure 4.1, which indicate the beginning and the end of each chromosome, are

the same both for the raw and ICE normalized Hi-C contact maps and they

are listed in table 4.1.

Chromosome Start End Chromosome Start End

1 1 250 12 2116 2249

2 251 494 13 2250 2365

3 495 693 14 2366 2473

4 694 885 15 2474 2576

5 886 1066 16 2577 2667

6 1067 1238 17 2668 2749

7 1239 1398 18 2750 2828

X 1399 1554 20 2829 2892

8 1555 1701 Y 2893 2952

9 1702 1843 19 2953 3012

10 1844 1979 22 3013 3064

11 1980 2115 21 3065 3113

Table 4.1: Metadata regarding the coordinate intervals for each chromosome of
the GM12878 cell line.
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The black lines visible in figure 4.1 are indicators of no contact and/or very

little contact among the different chromosomes. These lines are due to default

holes (usually) present in the middle and end of the reference genome. To

delete the superfluous black lines we used a python code capable of identify-

ing the corresponding indexes of the rows and therefore of the columns of the

(symmetric) matrix which add up to zero and removes them from the display.

Moreover we have also removed the block and the corresponding coordinates of

the Y chromosome since we are facing a female cell line, therefore the Y chro-

mosome is not present, even if by default the Hi-C data taking procedure also

includes its sequencing. After these preliminary procedures the Hi-C contact

maps are shown as in figure 4.2).

(a) Raw Hi-C data (b) ICE normalized Hi-C data

Figure 4.2: Raw and ICE normalized whole Hi-C maps for the whole GM12878
cell line matrices after taking the logarithmic function to base 10, removing the Y
chromosome and the rows and columns that sum up to zero.

Before moving on to the spectral analysis of the entire matrix, we want to make

sure that the properties and characteristics of the Hi-C data can actually be

traced back to those that have been observed so far by experts and that have

been discussed in paragraph 2.3.2. Specifically, we want to see how the average

value of the contacts within the individual chromosomes (contact probability)

scales as a function of the genomic distance, i.e. distance in base pairs along

the nucleotide sequence. To do this we first need to extract the submatrices

relating to the single chromosomes from the Hi-C contact maps. In figures 4.3

and 4.4 we present all the chromosomes for the raw Hi-C contact maps, which

are arranged in order of size, as in the original whole matrix in the arrangement

as blocks along the main diagonal.
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(a) Chromosome 1 (b) Chromosome 2

(c) Chromosome 3 (d) Chromosome 4 (e) Chromosome 5

(f) Chromosome 6 (g) Chromosome 7 (h) Chromosome X

(i) Chromosome 8 (j) Chromosome 9 (k) Chromosome 10

(l) Chromosome 11 (m) Chromosome 12 (n) Chromosome 13

(o) Chromosome 14 (p) Chromosome 15 (q) Chromosome 16

Figure 4.3: Single chromosomes extracted from the whole raw Hi-C contact matrix.
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(a) Chromosome 17 (b) Chromosome 18 (c) Chromosome 20

(d) Chromosome 19 (e) Chromosome 22 (f) Chromosome 21

Figure 4.4: Single chromosomes extracted from the whole raw Hi-C contact matrix.

To test whether our data are consistent with known features of genome orga-

nization, such as chromosome territories (the tendency of distant loci on the

same chromosome to be near one another in space), we compute the average

intrachromosomal contact probability for pairs of loci separated by a certain

genomic distance on that chromosome. We therefore calculated the average

value of contact frequency starting from the matrices corresponding to each

single chromosomes in figures 4.3 and 4.4 by varying the genomic distance.

To achieve this goal, a Python code has been implemented to compute the

average values of the entries for the single chromosome matrix considered and

for each diagonal, which corresponds to a difference of 1 Mb in the genomic

distance. The graphs of the contact probability as a function of the genomic

distance for both the raw and the ICE normalized Hi-C maps are shown in

figure 4.5, in which for convenience of displaying just the chromosome 1 and

17 are shown. The graphs related to the other chromosomes are presented in

the appendix E.

From the plots we can notice that the contact frequency approximately de-

creases monotonically on every chromosome, suggesting polymer-like behavior

in which the three-dimensional distance between loci increases with increas-

ing genomic distance (diagonal in the Hi-C matrices). These findings are in

agreement with the chromosome conformation capture results as described in

paragraph 2.3.2. However in the final part of the graph it can be noticed that

there are greater fluctuations. These are due to the fact that for diagonals
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(a) Chromosome 1 (raw) (b) Chromosome 17 (raw)

(c) Chromosome 1 (ICE) (d) Chromosome 17 (ICE)

Figure 4.5: Contact probability graph as a function of the genomic distance (matrix
diagonal) in Mb in case of single chromosomes 1 and 17 for both raw (top line) and
ICE normalized (bottom line) Hi-C data.

very far from the main one, there is a limited number of data from which we

extract the average value, so the contact probability value may have significant

differences, especially in case of smaller chromosomes such as 17, 21 and 22.

Once we have ascertained the correspondence between the intra-chromosomal

interactions with the expectancy, we want to verify the trend for the inter-

chromosomal ones. Just as an example we have taken the submatrices related

to the interaction between chromosome 1 with chromosome 2 and chromosome

22 with chromosome 21. The choice has been made in order to compare both

chromosomes with a large number of coordinates and those with smaller ones.

The corresponding submatrices extracted from the whole Hi-C map both in

case of raw and ICE normalized data are shown in figure 4.6.

As in the case of single chromosomes, we can make a graph showing the relation

between contact probability and genomic distance. In figure 4.7 we can see a

unique graph comprising both the single chromosomes and their corresponding

interactions both for the raw and ICE normalized Hi-C data.
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(a) Chr1-Chr2 (raw) (b) Chr22-Chr21 (raw)

(c) Chr1-Chr2 (ICE) (d) Chr22-Chr21 (ICE)

Figure 4.6: Inter-chromosomal interactions matrices extracted from the whole
raw (top line) and ICE normalized (bottom line) Hi-C contact matrices for the
interaction between chromosome 1 with chromosome 2 (a,c) and chromosome 22
with chromosome 21 (b,d).

(a) Chr1-Chr2 (raw) (b) Chr22-Chr21 (raw)

(c) Chr1-Chr2 (ICE) (d) Chr22-Chr21 (ICE)

Figure 4.7: Contact probability graphs as a function of the genomic distance
(diagonal) in Mb for both single chromosomes and their interaction for the whole
raw (top line) and ICE normalized (bottom line) Hi-C contact matrices.
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The graphs in figure 4.7 show a comparison between the contact probability

trend for the individual chromosomes and the interaction between them. From

the latter it can be seen that regarding the interactions between chromosomes,

unlike those within the same chromosome in which we can observe the contact

probability decay, the trend remains almost constant regardless of the genomic

distance considered. Moreover, even at distances greater than 200 Mb, as seen

for the longer chromosomes 1 and 2, the contact probability is always greater

than the average contact probability between different chromosomes. This im-

plies the existence of chromosome territories. Regarding the chromosomes 22

and 21, it can be seen that the fluctuations are more intensified than those of

chromosomes 1 and 2. This is due to the fact that they are smaller and there-

fore, in particular for diagonals far from the main one, the contact probability

values can undergo significant variations. Anyhow, it can be seen that, apart

from values very far from the main diagonal in which fluctuations are noted,

the values of contact probability relating to intrachromosomal interactions is

always greater than that of interchromosomal interactions, regardless of the

particular pair of chromosomes and the raw or ICE normalized Hi-C data con-

sidered.

Now we want to extend this procedure trying to visualize the trend of contact

probability also for the whole matrix, both for ICE and raw Hi-C maps. In

particular we are interested in characterizing interchromosomal interactions

as a whole, as a function of their genomic distance and independently of the

particular pair of chromosomes whose interaction is considered. To do this

it is necessary to exclude from the analysis the single chromosomes organized

in blocks along the diagonal. We have therefore implemented a Python code

capable of creating a mask (see figure 4.8(c)) to select only the blocks along

the diagonal, which are related to the single chromosomes. From the latter,

boolean variables were then assigned to the single entries of the whole matrix

in order to be able to select only the part of interaction external to the main

blocks (see figure 4.8(d,e)). Once the desired matrix is obtained, it is therefore

possible to calculate the average value of the contact probability of the k-th

diagonal relating only to the interchromosomal interactions (see figure 4.9).
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(a) Original raw Hi-C data (b) Original ICE Hi-C data

(c) Mask

(d) Filtered raw Hi-C data (e) Filtered ICE Hi-C data

Figure 4.8: Comparison among original raw and ICE normalized Hi-C data (a,b)
with the corresponding filtered ones (d,e) by using the mask (c).

As can be seen from the figure 4.9, the trend that follows the contact prob-

ability in case of whole matrix, both raw and ICE normalized, is similar to

that relating to interchromosomal interactions, rather than intrachromosomal

ones. This is an expected result, given that we are analyzing interchromosomal

interactions, albeit related to different chromosomes pairs. A constant trend

can therefore be seen for almost all genomic distances (main diagonals of the

whole matrix). However, a significant difference can be noted in the contact

probability values of the initial and terminal part of the graph, i.e. at very
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(a) Raw Hi-C data (b) ICE normalized Hi-C data

Figure 4.9: Contact probability graph as a function of the genomic distance (di-
agonal) in Mb for both the whole raw and ICE normalized filtered Hi-C contact
matrices.

small or very large genomic distances. These large fluctuations, as in case of

contact probability graphs observed so far (see figures 4.5 and 4.7), are due to

the lack of data with which the average intensity of each entry is calculated

along a given diagonal k of the matrix. The terminal part of the graph has

fluctuations which can be explained (as in the case of individual chromosomes)

by the fact that the whole Hi-C matrix, as the distance of the diagonal consid-

ered with respect to the main diagonal increases, contains less data. However,

here we are dealing with the filtered total matrix, then it should be considered

that even for diagonals very close to the main one, corresponding to small ge-

nomic distances, there is a very significant lack of data. This is due to the fact

that in the filtered matrix all the blocks relating to the single chromosomes

are excluded, which are placed along the main diagonal, as seen in figure 4.8.

A further confirmation is given by the fact that just after a distance k in Mb

equal to about the size of chromosome 2 (it is the largest, containing about

240 Mb as shown in table 4.1) the contact probability trend starts to become

constant, meaning that from that genomic distance forward we are effectively

taking all the average contact values between chromosomes. By adding up

these two effects it is therefore possible to explain the trend displayed in the

figure 4.9, which characterizes the interchromosomal interactions as a whole.

We have then validated the fact that we are dealing with a Hi-C map that

reflects the contact probability characteristics both in case of single chromo-

somes and their interactions, both for the raw and ICE normalized matrices,

which so far do not exhibit any significant differences.
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4.1.1 Spectral analysis for single chromosomes

In the first place, it is important to check whether our spectral analysis on the

Hi-C data related to the cell line GM12878 at 1 Mb resolution both in case of

raw and ICE normalized data provide compatible results. Currently, for the

sake of simplicity we restrict the analysis to the chromosome 17 (for the analysis

of the whole matrix see the appendix A). After extracting the submatrix related

to the chromosome 17 from the entire Hi-C matrix containing all the human

genome, we take the Observed-over-Expected normalization, which discounts

genomic-distance biases and thus puts on equal footing interactions at different

sequence separations, for both the raw (see figure 4.10(a)) and ICE normalized

data (see figure 4.10(b)), after taking the base 10 logarithm in order to compare

them in the following spectral analysis.

(a) Raw Hi-C data (b) ICE Hi-C data

Figure 4.10: Raw (a) and ICE normalized (b) Hi-C data matrices of the chromo-
some 17 after the OoE normalization and taking also the base 10 logarithm.

Now we make the spectral decomposition of the OoE normalized matrices

(after taking the base 10 logarithm) by computing the eigenvectors and the

corresponding eigenvalues. In figure 4.11 histograms of the eigenvalues spec-

trum are shown for each Hi-C data type (raw and ICE normalized). The latters

are accompanied by the relative zoom around zero to highlight the trend of

the peak. In this way it is possible to better distinguish the shape of the his-

togram trend in the region where we expect, based on what we have seen in

paragraph 3.2, a symmetric function that follows that of Wigner’s semicircle.

As regards instead the eigenvalues outside the peak around zero, we expect

them to be distributed in an isolated and sparse manner. From the eigenvalue

distributions in figure 4.11 we can recognise that all of them shared a spectrum

different from a symmetric distribution around zero as we expected for a
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(a) Raw Hi-C data (b) Raw Hi-C data

(c) ICE Hi-C data (d) ICE Hi-C data

Figure 4.11: Histograms of the eigenvalue probability distribution p (λ) obtained
from the raw (a) and ICE normalized (c) Hi-C data matrices of the chromosome 17
after the OoE normalization and taking the base 10 logarithm with the corresponding
zoom around zero (b,d).

symmetric random matrix. It can still be appreciated that there is a distri-

bution of eigenvalues concentrated in the proximity of zero, while the others

eigenvalues are dispersed far from it. In the first place we follow the approach

seen in [17], whereby we can determine the essential Hi-C matrix (essHi-C),

from the spectral summation of the n∗ = 10 projectors formed by the eigenvec-

tors related to the eigenvalues of greater absolute value (see figure 4.12(c,d)).

It must be said that from the spectrum of the eigenvalues we do not notice

the distribution given by the Wigner’s semicircle law and just by seeing at

the histograms in figure 4.11 it is visible that part of the first ten largest (in

module) eigenvalues fall into the peak, then the essential matrix will plausibly

also contain some projectors relating to the noise and not only to the signal

component. However for the purposes of this analysis we will follow the same

procedure. Furthermore, in this preliminary analysis it is also useful to verify

if the matrix reconstructed starting from all the projectors associated to the

all set of eigenvectors gives back the original matrix as expected (see figure

4.12(a,b)).
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(a) Raw Hi-C data (b) ICE Hi-C data

(c) Raw Hi-C data (d) ICE Hi-C data

Figure 4.12: Raw and ICE normalized Hi-C data matrices of the chromosome 17
reconstructed starting from all (a,b) and the only first 10 (c,d) projectors associated
to the corresponding eigenvectors after the OoE normalization and taking the base
10 logarithm.

Looking at the essential Hi-C matrices reconstructed using only the first 10

projectors in figures 4.12(c,d), it is possible to notice how all the main pat-

terns that characterize the interchromosomal interactions of chromosome 17

are preserved and enhanced, for both raw and ICE normalized Hi-C maps. In

fact we can see how the interaction patterns are more marked than in the orig-

inal matrices, this is due to the fact that many of the projectors that refer to

the noise component have been eliminated from the reconstruction. To check

whether the reconstructed matrices are really compatible with that of the orig-

inal matrices, we make the scatter plots and compute the Pearson correlation

coefficient ρ. Since the Hi-C matrices are symmetrical, to avoid double count-

ing of the points within the graph we extracted the upper triangular matrix

and compared their values with a scatter plot. The graphs are shown in figure

4.13 with the regression line in red and the Pearson correlation coefficients

listed in the table 4.2.
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(a) Raw Hi-C data (b) ICE Hi-C data

(c) Raw Hi-C data (d) ICE Hi-C data

Figure 4.13: Scatter plots for raw and ICE normalized Hi-C data matrices of
chromosome 17 reconstructed starting from all (a,b) and the only first 10 (c,d)
projectors associated to the corresponding eigenvectors after the OoE normalization
and taking the base 10 logarithm.

Figure 4.13 ρ
(a) 0.9999999999999998
(b) 0.9999999999999998
(c) 0.9995
(d) 0.9994

Table 4.2: Pearson correlation coefficient values related to each scatter plot in
figure 4.13.

As we can see from the Pearson correlation coefficient values listed in table 4.2,

regarding the matrices reconstructed by using all the projectors, related to the

entire set of eigenvectors, they are almost one as expected for a linear correla-

tion. However for the matrices reconstructed from the projectors associated to

the corresponding eigenvectors related only to the greater 10 eigenvalues, the

values of correlation coefficients decrease, even though they remain highly close

to one. This is caused by the fact that the latters are reconstructed from not

all the projectors or components, so they should not be identical to the original
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matrices, but still close. All the considerations done so far remain valid both

for the raw and ICE normalized Hi-C matrices. Therefore this analysis shows

how both the matrices are equivalent in relation to the spectral properties of

the reconstructed matrices. In this way in the following analysis we can choose

between raw and ICE normalized matrices indifferently. Furthermore, in this

paragraph we have performed the Observed-over-Expected normalization on

the contact Hi-C matrix of the chromosome, which tries to dampen the depen-

dence on the genomic distance of the contact value between the chromosome

loci by normalizing the intensity with the average value of all the intensities

found at that specific genomic distance. The latter therefore attempts to get

rid of the decay of the contact value as the genomic distance increases, trying

to uniform the entire matrix by bringing out the interchromosomal patterns

regardless of whether the pairs of loci are far or close in the genomic sequence.

This normalization is particularly useful when one wishes to observe the chro-

mosome compartmentalization in the outermost corners of the Hi-C matrix

which are otherwise challenging to bring out clearly. However, for the pur-

poses of the present thesis work, whose ultimate goal is to produce synthetic

data, it is necessary to start from a matrix that is as faithful as possible to the

real data, trying to maintain all of its properties, including the characteristic

decay which is intrinsic to the physics of chromatin folding within the nucleus.

Moreover the Hi-C matrices with and without OoE normalization are strongly

correlated (ρ = 0.817). For these reason, both statistical and biological, from

now on we will deal with Hi-C matrices without an Observed-over-Expected

normalization.

4.1.2 Chromosomes 1 and 17 inspection

Now we present a more in-depth spectral analysis on single chromosomes 1

and 17 taking the base 10 logarithm of the corresponding raw Hi-C maps. The

choice fell on these two chromosomes since they present a variability both in

biological terms and in terms simply of size. In fact, looking at the figures

4.14 of the single chromosomes, it can be seen that the chromosome 1, one of

the largest, has different properties from chromosome 17. For example, within

the Hi-C matrix relating to chromosome 1, we can distinctly identify the two

blocks (square submatrices) along the diagonal which are related to the arms

of the chromosome itself and the related interactions within the antidiagonal
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ones. All these properties are not found instead in chromosome 17, which is

one of the smallest and which appears in its characteristic pattern structure

of interaction between the loci. It was therefore avoided to consider even

smaller chromosomes with respect to 17 since in that case it would not have

been possible to capture well all those properties of the Hi-C matrix as such.

The latter was also taken as a model in [17]. In this way we can have two

proxies for the two extreme situations that can occur within the variability of

chromosomes.

(a) Chromosome 17 (b) Chromosome 1

Figure 4.14: Chromosomes 17 (a) and 1 (b) extracted from the whole raw Hi-C
matrix.

In particular, from the analysis of the eigenvalues spectrum, we should try to

establish a threshold for which it is possible to separate the random part from

the signal one which characterizes the Hi-C matrix spectrum as in figures 4.15

and 4.16.

(a) Chromosome 17 (b) Chromosome 17

Figure 4.15: Histograms of the eigenvalues probability distribution p (λ) for the
chromosome 17 (a) with a zoom on the corresponding random component (b).
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(a) Chromosome 1 (b) Chromosome 1

Figure 4.16: Histograms of the eigenvalues probability distribution p (λ) for the
chromosome 1 (a) with a zoom on the corresponding random component (b).

As can be seen from the histograms in figures 4.15 and 4.16, they are not

at all symmetric as it should be for a random matrix, both for chromosome

1 and 17. This is probably due to the lower fluctuation of the data which

are therefore more precise making the distribution asymmetric with respect to

zero. Despite this we have selected the threshold taking as reference the value

of the negative eigenvalue at the end of the peak of the distribution close to

zero and we have chosen the modulus of that value as threshold. It follows

that for chromosome 17 we selected as eigenvalues relating to the essential

part of the matrix those such that |λ| > 5, while for chromosome 1 we chose

|λ| > 7. We have therefore reconstructed the essential matrices starting from

the maximum number of eigenvalues that are outside what we currently define

as random component of the spectrum and gradually lowering their number

n∗ = 4 for chromosome 17 and n∗ = 8 for chromosome 1. In fact, in this

case study analysis we would try to establish how the essential Hi-C matrices

change as the number of projectors used to reconstruct them decreases. The

resulting EssHi-C matrices with the corresponding scatter plots with respect to

the original ones for both the chromosomes 17 and 1 are shown in figures 4.17

and 4.18 respectively. In the next analysis, since there is not much difference

in terms of reconstruction of chromosome 1 between the cases n∗ = 8 and

n∗ = 4, we will use the latter to compare the two chromosomes.
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(a) EssHi-C with n∗ = 4 (b) Scatter plot (ρ = 0.575)

(c) EssHi-C with n∗ = 3 (d) Scatter plot (ρ = 0.567)

(e) EssHi-C with n∗ = 2 (f) Scatter plot (ρ = 0.516)

(g) EssHi-C with n∗ = 1 (h) Scatter plot (ρ = 0.418)

Figure 4.17: First column: essential matrices from the Hi-C data of the chro-
mosome 17 reconstructed starting from different n∗ highest-ranking projectors.
Second column: the corresponding scatter plots between the original raw Hi-C
map and the reconstructed one with the Pearson correlation coefficient ρ in brack-
ets.
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(a) EssHi-C with n∗ = 8 (b) Scatter plot (ρ = 0.835)

(c) EssHi-C with n∗ = 4 (d) Scatter plot (ρ = 0.825)

(e) EssHi-C with n∗ = 3 (f) Scatter plot (ρ = 0.802)

(g) EssHi-C with n∗ = 2 (h) Scatter plot (ρ = 0.691)

(i) EssHi-C with n∗ = 1 (j) Scatter plot (ρ = 0.435)

Figure 4.18: First column: essential matrices from the Hi-C data of the chro-
mosome 1 reconstructed starting from different n∗ highest-ranking projectors.
Second column: the corresponding scatter plots between the original raw Hi-C
map and the reconstructed one with the Pearson correlation coefficient ρ in brack-
ets.
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From the essential Hi-C matrices both in case of chromosome 1 and 17 we

can notice that as the number of projectors used to reconstruct the matrix de-

creases, the distinctive contact patterns fade out, up to the case in which only

one or two projectors are exerted, which are informative just for the chromatin

compartmentalization. This is demonstrated by the fact that the correspond-

ing scatter plots values worsen in correlation, deviating more from the straight

line y = x, as shown by the decrease in the Pearson correlation coefficient’s

values. In fact when the number of projectors decrease and consequently the

number of eigenvectors and related eigenvalues n∗ used for the Hi-C maps re-

construction, the difference in the reconstructed data increases, up to the case

of n∗ = 1 in which the scatter plot is distributed almost along a straight line

with null angular coefficient, index of highly uncorrelated values (ρ = 0.435).

In addition, by looking at the shape of the scatter plots, it can be seen that

the values are on average well reconstructed in the central area, but tend to

deviate from the bisector for higher values. The latter correspond precisely

to the values along the main diagonal of the Hi-C map, typically more high-

lighted, which are reconstructed worse than the external ones, enhancing the

characteristic patterns of normally concealed interactions among distant loci.

4.1.3 3D chromosome reconstruction

The last step of the analysis regarding the GM12878 consists in visualizing the

chromosomes 1 and 17 by means of the ShRec3D algorithm as described in 3.7.

Using this algorithm it is possible to obtain the 3D coordinates for the single

chromosomes, starting from appropriately normalized matrices according to

the SCN normalization described in 3.6.2. Furthermore it is necessary, as

for the Hi-C matrices, to remove all rows and columns that add up to zero

and, in this case, to replace each isolated zero in the matrix with a non-zero

constant suitably adjusted according to each SCN normalized Hi-C matrix.

This procedure was done by using a MATLAB code able to identify each zero

and replace it with different non-zero numbers equal to half of the minimum

non-zero value of each Hi-C map. In this way we ascertain that the Hi-C map,

seen as adjacency matrix, described a graph with no isolated nodes, which in

the MATLAB code, when we take the inverse of the entries to determine the

inverse contact frequencies, corresponding to the edge weights between any

pair of nodes, causes the value to diverge infinitely. Once the preprocessing
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was performed, it was therefore possible to execute the ShRec3D algorithm

to obtain the spatial coordinates for each single locus of the chromosomes.

However, for the assumptions on which the algorithm is based, it is necessary

to ensure that the spectrum of the eigenvalues of the Gram matrix obtained

after the preprocessing is characterized by a peak around zero with positive

eigenvalues at a large distance from it. Histograms of eigenvalues for single

chromosomes 17 and 1 are shown respectively in figures 4.19 and 4.20.

(a) Original Hi-C map (b) EssHi-C with n∗ = 4 (c) EssHi-C with n∗ = 3

(d) EssHi-C with n∗ = 2 (e) EssHi-C with n∗ = 1

Figure 4.19: Histograms of the eigenvalues from the essential matrices for the
chromosome 17 reconstructed starting from different n∗ highest-ranking projectors.

As it can be seen from the histograms in figures 4.19(a) and 4.20(a), both

chromosomes 17 and 1 have the characteristics required by the SchRec3D al-

gorithm. In particular, in the distributions it is possible to notice how the

spectrum of the eigenvalues has a peak around zero and that a certain num-

ber of isolated (positive) eigenvalues are present at a great distance from it.

This number should be equal to 3, like the number of spatial coordinates to

be obtained from the rank-3 Gram matrix. However we can notice that in the

case of essential matrices reconstructed starting from a low number of projec-

tors, there are fewer (see figures 4.19(c-d) and 4.20(c-d)) or even none (see

figures 4.19(e) and 4.20(e)) of the (positive) eigenvalues far from the main

peak, in which the 3 largest eigenvalues are all concentrated within the peak

around zero. Starting from the spatial coordinates generated by the ShRec3D
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(a) Original Hi-C map (b) EssHi-C with n∗ = 4

(c) EssHi-C with n∗ = 3 (d) EssHi-C with n∗ = 2 (e) EssHi-C with n∗ = 1

Figure 4.20: Histograms of the eigenvalues from the essential matrices for the
chromosome 1 reconstructed starting from different n∗ highest-ranking projectors.

algorithm we then used a MATLAB code to visualize the individual nodes

and join them in pairs via a color-coded line. The different color for each

pair of points identifies the position along the genome where the nodes are

located, so that regions that correspond to nearby points along the genome

can be better viewed with similar colors. The 3D images obtained from the

spatial coordinates provided by the algorithm are shown in figures 4.21 and

4.22. From the images reconstructed with a different number of projectors it

is easy to distinguish the different levels of organization of the chromosome in

space. Specifically, it can be noted that the essential matrices reconstructed

starting from a large number of projectors (n∗ = 4) thoroughly reproduce the

spatial configuration of the corresponding original chromosome, while as the

employed projectors decrease only certain shapes are enhanced. For example,

in the case of chromosome 1, the image reconstructed with n∗ = 3 projectors

evidently shows a division of the chromosome into two arms, which correspond

to the two arcs marked with different colors (see figure 4.22(c)). In this case

it is evident how the use of a colorbar, which refers to the different points in

space according to the location of the loci along the chromosome, is extremely

useful in characterizing the various elements that are present in the recon-

struction from the point of view of the correspondence between network, Hi-C
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matrix and spatial configuration. As regards the reconstructions starting from

a low number of projectors, it can be seen how the spatial configuration differs

greatly from the original one, up to the extreme case of a single projector in

which it is not possible to distinguish any chromosomal structure that can

provide significant biological information (see figures 4.21(c) and 4.22(c)).

(a) Original Hi-C map

(b) EssHi-C with n∗ = 4 (c) EssHi-C with n∗ = 3

(d) EssHi-C with n∗ = 2 (e) EssHi-C with n∗ = 1

Figure 4.21: 3D images reconstructed by using the SchRec3D algorithm starting
from the original and the essential Hi-C matrices for the chromosome 17 with differ-
ent levels of reconstructions by varying the number of n∗ highest-ranking projectors.
The colorbar indicates the coordinates position along the genome.

Therefore, we can appreciate that the ShRec3D algorithm provides with even
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more evidence how the Hi-C maps that should be produced at different levels

of reconstruction are different from each other. In fact, the success of the

reconstruction of the essential matrix can be clearly seen, just as the differences

can be clearly appreciated when the number of projectors is reduced, unlike

what can be appreciated with a scatter plot or with a simple value of data

comparison.

(a) Original Hi-C map

(b) EssHi-C with n∗ = 4 (c) EssHi-C with n∗ = 3

(d) EssHi-C with n∗ = 2 (e) EssHi-C with n∗ = 1

Figure 4.22: 3D images reconstructed by using the SchRec3D algorithm starting
from the original and the essential Hi-C matrices for the chromosome 1 with different
levels of reconstructions by varying the number of n∗ highest-ranking projectors. The
colorbar indicates the coordinates position along the genome.
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To clearly visualize the goodness of the reconstruction we performed a pro-

crustes analysis (following the steps described in paragraph 3.8) between the

reconstruction of the original chromosome using ShRec3D and the one made

starting from the essential matrices reconstructed starting from a number of

projectors n∗ = 4 (figure 4.23(a,c)) and n∗ = 3 (figure 4.23(a,c)). The cases

with a lower number of projectors were rejected from this analysis because it

is evident how the reconstruction did not work well and therefore returns a

very different spatial conformation from the original one. It is also interesting

to note how the superimposition highlights the goodness of the reconstruc-

tion starting from a different number of projectors. In particular, for both

the chromosomes it can be seen that the reconstructions are particularly well

superimposed for n∗ = 4, while for n∗ = 3 it gets worse.

(a) Original vs EssHi-C with n∗ = 4 (b) Original vs EssHi-C with n∗ = 3

(c) Original vs EssHi-C with n∗ = 4 (d) Original vs EssHi-C with n∗ = 3

Figure 4.23: 3D images reconstructed by using the SchRec3D algorithm from the
essential matrices of the chromosome 1 (top line) and 17 (bottom line) starting from
n∗ = 4 (a,c) and n∗ = 3 (b,d) highest-ranking projectors (red line) together with
the corresponding original chromosome reconstruction (blue line).

The procrustes distance is used to evaluate the similarity between the different

structures reconstructed using ShRec3D and superimposed using procrustes

analysis both for the original and essential Hi-C maps of the chromosomes 1

and 17. The procrustes distance Pd is a measure of dissimilarity between two
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shapes by computing the point-wise distance as the sum of squared differences

between the corresponding points in the two shapes. It is then normalized to

the scale S of the original reconstruction which is not affected by procrustes

analysis. The procrustes distance then returns a numerical scalar in the range

[0, 1], where 0 indicates a perfect alignment between the two shapes and 1

means that the dissimilarity is maximum. The values of procrustes distance for

each reconstruction, even for the ones related to a lower number of projectors,

are listed in table 4.3.

Chromosome n∗ Pd

1 4 0.012
1 3 0.162
1 2 0.419
1 1 0.995
17 4 0.011
17 3 0.155
17 2 0.472
17 1 0.965

Table 4.3: Procrustes distance values for the 3D shapes reconstructed by using the
ShRec3D algorithm starting from the original Hi-C matrices and the essential ones
at different reconstruction levels both for chromosome 1 and chromosome 17.

From the procrustes distance values in table 4.3, we have a corroboration of

the excellent goodness of reconstruction in the case of chromosome 17 starting

from n∗ = 4 (Pd = 0.011) projectors and a worsening at n∗ = 3 (Pd = 0.155).

Both for chromosome 1 and for chromosome 17 it can also be seen that for

reconstructions starting from a lower number of projectors, there is a notable

worsening of the reconstruction, which if it is still good for n∗ = 3 (Pd =

0.155 − 0.162), it gets considerably worse for n∗ = 2 (Pd = 0.419 − 0.472)

and even almost collapses to 1 for n∗ = 1 (Pd = 0.995 − 0.965), indicating

an absolute dissimilarity between the recostructions starting from the original

Hi-C maps and the essential ones.

4.2 Case study: case vs control

So far we have done training on the method we want to use to verify the

goodness of the reconstruction of the Hi-C matrices, i.e. through the use of

scatter plots and correlation coefficients, up to the more refined method which
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is provided by using the ShRec3D algorithm, which combines the properties of

networks and the three-dimensional structure of chromosomes. We have there-

fore so far verified the whole methodological framework, the intrinsic properties

of the Hi-C data and the ability to reconstruct the signal and distinguish the

noise component by performing a spectral analysis. Now we want to apply this

strategy to a medical application case study for which we have two cases (235

and 295) and two controls (LM and MB), for a total of four different samples

of which we have four Hi-C maps of the chromosome 1. The Hi-C matrices

that we are going to use at this time are both at 1 Mb resolution, as in the

previous case of GM12878, but also at an higher resolution of 100 kb. The

request for an higher Hi-C map resolution is suitable for our purpose, because

it will help us to understand if the trend of the noise component, which differs

from the expected Wigner’s semicircle law, is actually due to the fact that with

a too low resolution the data might suffers from a loss of noise which changes

the spectral characteristics.

(a) control LM (1 Mb) (b) control MB (1 Mb)

(c) case 235 (1 Mb) (d) case 295(1 Mb)

Figure 4.24: Heamaps of the Hi-C matrices for the chromosome 1 of the two
controls: LM and MB (top line) and the two cases: 235 and 295 (bottom line) at 1
Mb resolution and after taking the base 10 logarithm.
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(a) control LM (100 kb) (b) control MB (100 kb)

(c) case 235 (100 kb) (d) case 295 (100 kb)

Figure 4.25: Heamaps of the Hi-C matrices for the chromosome 1 of the two
controls: LM and MB (top line) and the two cases: 235 and 295 (bottom line) at
100 kb resolution and after taking the base 10 logarithm.

The Vanilla-Coverage normalization was applied to the Hi-C data and the lines

which add up to zero has been removed and the base 10 logarithm has been

taken as well. The results, both at 1 Mb and 100 kb resolution are shown

as heatmaps respectively in figures 4.24 and 4.25. Already starting from a

visualization as a heatmap we can see some, albeit minimal, pattern differences

between cases and controls, however we do not expect large differences in

terms of 3D rearrangement of the genome for the type of rare disease from

which the cases are affected. The latter will be explored with the ShRec3D

analysis in the next paragraphs. Subsequently we produced the eigenvalue

spectrum relating to both the 1 Mb resolution Hi-C maps and those with a

higher resolution of 100 kb. They are shown in figure 4.26. As can be seen, the

histograms show how, both at 1 Mb and at 100 kb resolution, the spectrum

is composed of a main peak around the origin and of a series of dispersed

eigenvalues, even at large distances from the peak. However, already at this

level we note an asymmetry of the peak around zero which is more evident in
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the histograms that refer to lower resolution Hi-C matrices (1 Mb) than in those

with a resolution of 100 kb, which instead appear much more symmetrical.

(a) control LM (1 Mb) (b) control MB (1 Mb)

(c) case 235 (1 Mb) (d) case 295 (1 Mb)

(e) control LM (100 kb) (f) control MB (100 kb)

(g) case 235 (100 kb) (h) case 295 (100 kb)

Figure 4.26: Spectra of the eigenvalues probability distribution p (λ) related to
the Hi-C matrices for the chromosome 1 of the two controls (LM and MB) and cases
(235 and 295) at different resolutions (1 Mb and 100 kb).
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Subsequently, we want to verify that the trend related to the noise component

follows at least approximately the one expected, given by Wigner’s semicircle

function. The latter, as described by the theory of random matrices and dis-

cussed in the paragraph 3.2, corresponds to the distribution of the modulus of

the eigenvalues extracted starting from a symmetric random matrix. For this

purpose, we decided to generate a symmetric random matrix, for each of the

four Hi-C matrices examined, with entries distributed according to a Gaussian

distribution with mean equal to that of the corresponding original data and

standard deviation suitably adjusted. The latter is tuned in such a way as

to maximize the correlation value that resulted by comparing the spectrum

of the original data with the simulated ones. Specifically, we calculated the

Pearson correlation coefficient, which is less sensible to the punctual differences

among the simulated data, between the original data and the simulated ones,

by varying a multiplicative constant k to be added to the standard deviation

relating to the original data. Furthermore, having noticed a parabolic trend

of the correlation coefficient as a function of k, we decided to proceed with a

parabolic fit of the data. Finally the constant k was estimated as the value cor-

responding to the abscissa of the vertex of the fitting parabola. As an example

of interpolation, the trend of the correlation coefficient is shown in figure 4.27

as a function of the multiplicative constant k in the case of control MB at 1

Mb resolution. The spectra of the eigenvalues for the original Hi-C matrices

and those of the corresponding simulated matrices are shown in figure 4.28.

Figure 4.27: Pearson correlation coefficient data (green dots) as a function of the
constant k for adjusting the standard deviation of the simulated random matrix with
a parabolic fit (blue line) for the control MB at 1 Mb resolution Hi-C map. The
correlation between the data and the parabolic fit is ρ = 0.973 (p-value < 10−3).



CHAPTER 4. RESULTS AND DISCUSSION 72

(a) control LM (1 Mb) (b) control MB (1 Mb)

(c) case 235 (1 Mb) (d) case 295 (1 Mb)

(e) control LM (100 kb) (f) control MB (100 kb)

(g) case 235 (100 kb) (h) case 295 (100 kb)

Figure 4.28: Zoom for the spectra of the module of the eigenvalues p (|λ|) (blue) in
the range 0 < |λ| < 80 related to the Hi-C matrices for the chromosome 1 of the two
controls (LM and MB) and cases (235 and 295) at different resolutions (1 Mb and
100 kb) with the superimposition of the corresponding symmetric random matrix
distribution with Gaussian distributed entries with mean equal to the original one
and suitably adjusted standard deviation (red).
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The overlapping of the spectrum of the simulated random matrices with the

original ones, seen in figure 4.28, confirms the fact that the 100 kb Hi-C ma-

trices actually have a spectrum of the eigenvalue module of the random com-

ponent more similar to that of a real random matrix than it happens for Hi-C

matrices with lower resolution of 1 Mb. In the latter case, in fact, the trend

is much peaked around zero with a large tail-like drop. The latter are instead

much less marked at resolutions of 100 kb, both in controls (LM and MB)

and cases (235 and 295), and the shape better reflects the expected Wigner’s

semicircle function.

4.2.1 Essential Hi-C maps: a novel approach

Now we want to reconstruct the essential matrices for the four original Hi-C

matrices, both for the controls and for the cases at the two different resolu-

tions. To extract these matrices we need to distinguish the signal component

from the noise component, thus setting a threshold that varies in order to

satisfy this request. It follows that the eigenvalues with modulus greater than

this threshold have been counted in the reconstruction of the essential matrix,

while the others have been discarded since they are labeled as belonging to the

random component of the spectrum. The signal part consists of the eigenvalues

scattered along the entire spectrum, while those relating to the random com-

ponent are distributed according to Wigner’s semicircle law. However, from

the spectra of the eigenvalue modulus there is no clear separation between the

two components, so we tested different methods for estimating the threshold

and therefore the number of projectors n∗ to be used for the reconstruction

of the essential Hi-C matrices. In the first place we considered the spectra of

the eigenvalues and estimated the absolute value of the minimum eigenvalue

of the distribution as the threshold value. In this case, however, it was nec-

essary to look at each spectrum to see if there were any outlier eigenvalues of

particularly negative value and therefore detached from the semicircle distri-

bution centered around zero. So as a second alternative we have considered

the eigenvalue distributions generated by the random symmetric matrices as

seen in the previous paragraph. In this case the threshold has been estimated

as the absolute value of the minimum eigenvalue this time of the simulated

distribution. In this way it was possible to implement a recursive Python

code for estimating the threshold, since the random distribution follows that
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of Wigner’s semicircle function, as per the theory of random matrices, without

the necessity to discount outliers or to make customized modifications on the

choice of the threshold. Both of these methods provide a compatible threshold

value result and consequently a compatible number of projectors n∗ employed

for the reconstruction of each essential matrix. Particularly, passing from the

first method to the second one results in a percentage change of the number of

projectors n∗ related to the signal component ∆% < 0.5% for 100 kb resolution

and ∆% < 1.5% for 1 Mb resolution for any Hi-C matrices. The greater, albeit

slight, difference for the lower resolution of 1 Mb is due to the marked asym-

metry present in the spectrum of the eigenvalues around zero. This makes it

more difficult for both methods to correctly measure the separation threshold

between the peak around zero, which has large tails whose slight threshold

variation involves a variation, albeit small, in the number of eigenvalues and

therefore of projectors to be associated with the signal component. However,

these subtle differences between the two methods do not correspond to any

substantial deviation in the essential matrices reconstructed starting from a

number of projectors that differ by such a small percentage. This is confirmed

by the graph shown in figure 4.29, which shows the Pearson correlation co-

efficients between the entries of the reconstructed essential matrix and the

corresponding original Hi-C matrices for the control MB (1 Mb resolution) as

the number n∗ of projectors used to reconstruct the essHi-C increases.

Figure 4.29: Pearson correlation coefficient as a function of the number of pro-
jectors n∗ used to reconstruct the essential Hi-C matrix control MB with a 1 Mb
resolution.

From the graph in figure 4.29, it can be seen that as the number n∗ of pro-

jectors used to reconstruct the essential matrix varies, the Pearson correlation
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coefficient calculated between the upper triangular matrices of the essHi-C and

the corresponding original matrix has a large variation up to certain n∗ value,

which in general depends on the particular Hi-C matrix considered, and then

remains almost constant, until it reaches a value close to 1 when the number

of projectors n∗ coincides with the linear size of the matrix considered. This

trend is found for all the four samples analyzed and confirms how, once a cer-

tain minimum threshold has been verified to be exceeded, small percentage

variations of n∗ do not significantly affect the reconstruction’s goodness of the

essential matrix. Having verified the equivalence of the methods, we chose to

use the second one, which uses the distribution of eigenvalues starting from the

simulated matrix, given its ability to be used recursively and to be as conser-

vative as possible on the number n∗ of projectors to use for the reconstruction

of the essHi-C. The latters, obtained starting from the four samples of cases

and controls, are shown in figure 4.30 for those at 1 Mb resolution and in figure

4.31 for those at 100 kb resolution.

(a) control LM (1 Mb) with n∗ = 23 (b) control MB (1 Mb) with n∗ = 45

(c) case 235 (1 Mb) with n∗ = 25 (d) case 295 (1 Mb) with n∗ = 43

Figure 4.30: Essential Hi-C matrices from the corresponding original Hi-C maps
of the chromosome 1 for the two controls (LM and MB) and cases (235 and 295) at
1 Mb resolution.
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(a) control LM (100 kb) with n∗ = 87 (b) control MB (100 kb) with n∗ = 77

(c) case 235 (100 kb) with n∗ = 116 (d) case 295 (100 kb) with n∗ = 71

Figure 4.31: Essential Hi-C matrices from the corresponding original Hi-C maps
of the chromosome 1 for the two controls (LM and MB) and cases (235 and 295) at
100 kb resolution.

Even just looking at the images as heatmaps in figures 4.30 and 4.31 we can

see how they are very similar to the original ones. It is therefore apparent

that the reconstruction was successful. Furthermore, it can be seen how the

intrachromosomal interaction patterns are enhanced and the images therefore

appear smoother, i.e. without that characteristic noise of the original Hi-C

maps. This change, although slight if you look just at the heatmaps, is due

precisely to the way the essential matrices are reconstructed using an alterna-

tive and novel method based on finding a threshold capable of distinguishing

the signal region and isolating it from the noise component. Furthermore, with

this method all those eigenvalues and therefore the corresponding eigenvectors

that make up the n∗ projectors used for the reconstruction are considered, no

longer making an arbitrary choice on their number. This assures that none of

the intrinsic properties and characteristics of the original Hi-C data are lost

in the transition to its essential form. A corroboration of the valid choice for

the threshold and therefore for the number of projectors n∗ to be used in the



CHAPTER 4. RESULTS AND DISCUSSION 77

reconstruction of each essential matrix can also be found in the form of the

distribution for the components of the n∗-th eigenvector. Specifically, from

random matrix theory we have seen that the distribution of the eigenvector

components is a Gaussian with zero mean and variance equal to N
2
, where N

is the linear size of the matrix considered. Therefore we want to verify the

Gaussianity condition for the components of the eigenvectors related to the

eigenvalues in decreasing module. The images of probability distributions for

the n-th highest-ranking eigenvector components are shown in figure 4.32.

(a) 1st eigenvector (b) 2nd eigenvector

(c) 3rd eigenvector (d) 10th eigenvector

(e) 77th eigenvector (f) 100th eigenvector

Figure 4.32: Probability distributions p (x) for the components of Hi-C matrix
eigenvectors of different ranks (1, 2, 3, 10, 77, 100) for the control MB at 100 kb
resolution; in green the same distribution from the simulated random matrix.
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What can be seen in the example in figure 4.32 for the control MB at 100 kb

resolution is that in the first highest-ranking eigenvectors 4.32(a) the trend

of the probability distribution of its components differs completely from the

Gaussian one of a random matrix. As the ranking of the eigenvectors decreases,

and therefore as the modulus of the associated eigenvalue decreases too, we

see how the trend tends to become Gaussian 4.32(b-e), up to the 100-th

4.32(f) highest-ranking eigenvector in which the Gaussianity is much more

accurate. The result is that starting from the n∗-th eigenvector we begin to

see the typical Gaussian of the simulated random matrix. Furthermore the

choice of the threshold placed in correspondence with a number of projectors

n∗, and therefore of eigenvectors associated with the eigenvalues of greater

modulus, turns out to be a good choice also from the point of view of the

expected trend of the probability distribution of the components for the n∗-

th eigenvector. In fact, this confirms that up to a certain highest-ranking

eigenvector n∗, compatible with that obtained from the threshold using the

methods described previously, the probability distribution begins to assume

an almost Gaussian behaviour. This implies that we are passing from the

signal component, for which we do not expect a Gaussian trend, to the noise

component, for which we expect the Gaussian trend of the random matrix.

Now that we have validated through various methods the goodness of the choice

of the threshold and therefore of the number of projectors n∗ to reconstruct

the essential matrix, we want to verify if the essHi-C maps are compatible and

in what manner with the original matrices from which they are obtained. To

make these checks two different tools will be used: the scatter plots and the

ShRec3D algorithm. In this paragraph we deal with the first method, while

for the second we refer to the next paragraph. As already seen in the case

of the preliminary operations carried out on the GM12878 in paragraph 4.1.2,

it is possible to compare the individual values for each entry of the original

Hi-C matrices and of the corresponding essHi-C by constructing scatter plots.

In addition, by using the scatter plots it is possible to certify the correlation

between the two matrices, and through the correlation value it is also possible

to quantify it. The scatter plots obtained in this way for the four samples at

the different resolutions are shown in figure 4.33.
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(a) control LM (ρ = 0.967) (b) control MB (ρ = 0.981)

(c) case 235 (ρ = 0.954) (d) case 295 (ρ = 0.972)

(e) control LM (ρ = 0.850) (f) control MB (ρ = 0.866)

(g) case 235 (ρ = 0.827) (h) case 295 (ρ = 0.786)

Figure 4.33: Scatter plots between the original Hi-C matrices for the chromosome
1 of the two controls (LM and MB) and cases (235 and 295) at different resolutions of
1 Mb (a-d) and 100 kb (e-h) with the corresponding reconstructed Hi-C matrices;
in red the regression line. The Pearson correlation coefficient value ρ is listed for
each plot.
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From the scatter plots in figure 4.33 it can be seen how the essential matrices

are significantly well reconstructed in comparison with the corresponding orig-

inal ones, confirmed by with very high correlation values both in the case of

Hi-C matrices with high resolution of 100 kb and even more for low resolution

of 1 Mb. The latter difference is due in part to the use of a higher percentage

number of projectors in the case of low resolution Hi-C data, since the spec-

trum of the eigenvalues is more asymmetric, thus making it more difficult to

estimate the noise component and to separate it from that of signal. However

this is not the only reason, in fact the difference in the correlation between

the original and reconstructed Hi-C data is also due to the intrinsic proper-

ties of the higher resolution Hi-C maps, which turn out to be much noisier

than the lower resolution ones, returning hence a worse point-wise correlation.

Furthermore, what can be seen from the use of scatter plots is precisely the

possibility of looking at the different points and at the way in which they are

distributed in space with respect to the linear trend expected for a maximum

correlation equal to 1. In particular, the values of the reconstructed matri-

ces are linearly distributed along the expected bisector y = x, apart from the

highest values in which a cloud of points can clearly be seen detaching from

the linear trend. This means that the points with higher contact values are the

worst reconstructed from the essential matrix, which correspond to the values

close to the main diagonal in the original Hi-C matrices displayed as heatmaps.

Therefore, in these last points, the reconstruction of the essential matrix is no

longer reliable, resulting in an objective limit to the reconstruction. Despite

that, it must be emphasized that the overall reconstruction is excellent, and

in particular it helps us to highlight the characteristics of the Hi-C matrices

otherwise hidden by the fluctuations due to the intrinsic noise. This will be

even more evident from the next analysis.
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4.2.2 ShRec3D reconstruction

In this section we use another approach to study the goodness of reconstruction

of the essential matrices from the point of view of the chromosome conforma-

tion in space. This was done taking into consideration the ShRec3D algorithm

for the description of which we refer to the section 3.7. At first, the algorithm

has been applied to both the original Hi-C matrix samples of 1 Mb and 100

kb resolution and the 3D plots of the obtained coordinates are reported in

figures 4.34 and 4.35 respectively. Each graph is accompanied by a colorbar

which indicates different points in space with different colors, following the

linearity of the genome. It is important to note that the Hi-C matrices used

by the algorithm have previously been normalized via the SCN and processed

by removing the rows that add up to zero and replacing the isolated zeros

with a value equal to half of the non-zero minimum of the matrix entries, in

accordance with what was done for GM12878 in paragraph 4.1.3.

(a) control LM (1 Mb) (b) control MB (1 Mb)

(c) case 235 (1 Mb) (d) case 295 (1 Mb)

Figure 4.34: Three-dimensional images reconstructed starting from the spatial
coordinates for the chromosome 1 of the two controls (LM and MB) and cases (235
and 295) at 1 Mb resolution obtained from the ShRec3D algorithm. The colorbar
indicates the coordinates position along the genome.
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(a) control LM (100 kb) (b) control MB (100 kb)

(c) case 235 (100 kb) (d) case 295 (100 kb)

Figure 4.35: Three-dimensional images reconstructed starting from the spatial
coordinates for the chromosome 1 of the two controls (LM and MB) and cases (235
and 295) at 100 kb resolution obtained from the ShRec3D algorithm. The colorbar
indicates the coordinates position along the genome.

We also recall that, as for GM12878, also in this case the hypotheses of a large

gap between the three largest positive eigenvalues with respect to the peak

concentrated close to zero were verified for the distribution of the eigenvalues

of the matrices after preprocessing. To make the reading easier, we put the

histograms of the eigenvalues for each Hi-C matrix that we will analyze with

ShRec3D from now on in the appendix D. From the figures 4.34 and 4.35, we

can notice a significant difference in terms of Hi-C data noise, in fact while

the chromosomes for the cases and controls at 1 Mb of resolution present a

DNA filament that can be distinguished very clearly, in the case at 100 kb of

resolution the chromatin presents a very pronounced tangling, in which char-

acteristic patterns cannot be clearly distinguished. In particular, as regards

the 100 kb cases, a strong noise is well notable which makes it almost im-

possible to identify any internal pattern, while for the controls, although still

noisy, the structure appears more defined and patterns emerge in which the



CHAPTER 4. RESULTS AND DISCUSSION 83

dot density is greater than in other regions of space. This appearance could

be a symptom of the disease to which the cases are linked. Without going into

details, the disease from which the cases are affected is a prion disease, a neu-

rological disease caused by prions, proteins that break down and accumulate

and which can cause brain disorder [22]. However the samples analyzed are

taken from peripheral blood, in which one would not expect to see huge differ-

ences between cases and controls. With a reconstruction analysis of ShRec3D,

a difference emerges in the compactness of the spatial conformation of the

chromatin. Through the ShRec3D algorithm we have also reconstructed the

three-dimensional coordinates starting from the essential matrices, which are

listed in figures 4.36 and 4.37.

(a) control LM (1 Mb) (b) control MB (1 Mb)

(c) case 235 (1 Mb) (d) case 295 (1 Mb)

Figure 4.36: Three-dimensional images reconstructed starting from the spatial
coordinates for the essential matrices for chromosome 1 of the two controls (LM
and MB) and cases (235 and 295) at 1 Mb resolution obtained from the ShRec3D
algorithm. The colorbar indicates the coordinates position along the genome.
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(a) control LM (100 kb) (b) control MB (100 kb)

(c) case 235 (100 kb) (d) case 295 (100 kb)

Figure 4.37: Three-dimensional images reconstructed starting from the spatial
coordinates for the essential matrices for chromosome 1 of the two controls (LM
and MB) and cases (235 and 295) at 100 kb resolution obtained from the ShRec3D
algorithm. The colorbar indicates the coordinates position along the genome.

In the original matrices 3D reconstruction in figures 4.34 and 4.35, it is im-

mediately striking that while at 1 Mb the orange and blue lines are more or

less close in space, at 100 kb the orange lines are all concentrated in the centre

and the blue lines have a much wider range, which in all probability distin-

guish the noise component of the Hi-C data. However in the reconstruction

made starting from the essential matrices this is no longer true, in fact in

both resolutions we can see how the filaments are very distinct and colored

without particular regions easily attributable to noise. This further confirms

the goodness of the reconstruction of the essential matrices as essHi-C and

can be seen even better by superimposing the two reconstructions, original

and essential, after having performed an appropriate procrustes analysis as

described in the paragraph 3.8. The images relating to the superimposition

between the different reconstructions for original matrices with the respective

reconstructed essential matrices are shown in figure 4.38, in which are listed

also the procrustes distance Pd values for each reconstructed pair.
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(a) control LM (Pd = 0.143) (b) control MB (Pd = 0.124)

(c) case 235 (Pd = 0.134) (d) case 295 (Pd = 0.073)

(e) control LM (Pd = 0.801) (f) control MB (Pd = 0.701)

(g) case 235 (Pd = 0.780) (h) case 295 (Pd = 0.735)

Figure 4.38: Three-dimensional plots starting from the spatial coordinates for the
chromosome 1 both of the original (blue line) and reconstructed (red line) essHi-C
maps of the two controls (LM and MB) and cases (235 and 295) at 1 Mb (a-d)
and 100 kb (e-h) resolution obtained from the ShRec3D algorithm. The procrustes
distance value is listed for each reconstructed pair.
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From the superimposition between the original and the essential Hi-C maps

three-dimensional reconstruction it can be seen how in case of the Hi-C ma-

trices at 1 Mb resolution it results to be excellent, confirmed by values of

procrustes distance Pd < 0.15 for any sample. On the contrary, regarding the

100 kb resolution matrices, the overlap doesn’t match at all, in fact the pro-

crustes distance values are Pd > 0.7 for any of them. This analysis confirms

how the noise level of the high resolution data is predominant in comparison

with the essential matrix with which it is superimposed.

4.2.3 Case-control comparative study

In this section we carry out a comparative study between the two cases (235

and 295) and the two controls (LM and MB) to highlight differences in both

the original matrix and the corresponding reconstructed essential matrix. In

particular, we create scatter plots between each pair of original matrices, for

a total of six combinations including the pairs of cases, controls and the four

possible mixes between them (see appendix B). For each scatter plot, the

correlation between the entries of the matrix pairs was then calculated.

Figure 4.39: Pearson correlation coefficient values for the different combinations
of pairs between the two cases (235 and 295) with the two controls (LM and MB) for
the original Hi-C matrices (green line) and the corresponding essential Hi-C matrices
(blue line) at 1 Mb resolution.
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Figure 4.40: Pearson correlation coefficient values for the different combinations
of pairs between the two cases (235 and 295) with the two controls (LM and MB) for
the original Hi-C matrices (green line) and the corresponding essential Hi-C matrices
(blue line) at 100 kb resolution.

What we would expect to find is that the pairs formed by the two cases and

the two controls are more correlated than the mixes. However, as shown in

the green line of figure 4.40 which refers to the original Hi-C maps for the

samples with high resolution of 100 kb, this is not the case at all. We can

in fact see that the first two points of the green line, referring to the original

matrices, are not the highest at all, but that these are lower than some of the

mix of cases and controls. Even more surprisingly, this is also the case when

considering the corresponding pairs of essential matrices. In fact, even in case

of the blue line in figure 4.40, it is once again noticeable that the expectation

of having cases and controls with higher correlation values between the mixes

is not fulfilled. This is surely due to an intrinsic noisiness of the Hi-C data

at a high resolution of 100 kb, which therefore does not meet those conditions

that we would normally expect in a case-control comparative study. However,

these are fulfilled when switching to higher resolutions of 1 Mb. In fact, in

figure 4.39, the correlation coefficients between the two cases (235 and 295)

and between the two controls (LM and MB) are indeed the highest, both

when comparing the original matrices (green line), but even more so when
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considering the respective essential matrices (blue line). In the latter case, we

can see how the essential matrices not only lower the noise but also capture

those properties characteristic of each matrix, thus enhancing the correlation

between pairs where there is a profound similarity. The high noise present

in the case of 100 kb resolution is also reflected in the large difference in

correlation values between the original (0.572 < ρ < 0.644) and essential

matrix (0.787 < ρ < 0.905) pairs, which tend to eliminate noise. In the 1Mb

case, this difference is not so great precisely because the correlation is already

very high for the original data pairs (0.854 < ρ < 0.958), but it does improve

in case of the essential matrices (0.918 < ρ < 0.963) in particular in detecting

those expected differences between pairs formed by only cases or only controls

and the mixed ones. Ultimately, to confirm what the correlation indicated, we

used the ShRec3D algorithm to obtain the coordinates of each sample at 1 Mb

resolution. These were then paired and, by means of a procrustes analysis,

appropriately compared. The results obtained are shown in figures 4.41 and

4.42.

(a) ctrl MB vs ctrl LM (Pd = 0.163) (b) case 235 vs case 295 (Pd = 0.055)

(c) ctrl MB vs case 235 (Pd = 0.217) (d) ctrl MB vs case 295 (Pd = 0.254)

Figure 4.41: Three-dimensional plots starting from the spatial coordinates for the
chromosome 1 of the pairs of original Hi-C maps of the two controls (LM and MB)
and cases (235 and 295) at 1 Mb resolution obtained from the ShRec3D algorithm.
The procrustes distance value is listed for each reconstructed pair.
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(a) ctrl LM vs case 235 (Pd = 0.158) (b) ctrl LM vs case 295 (Pd = 0.188)

Figure 4.42: Three-dimensional plots starting from the spatial coordinates for the
chromosome 1 of the pairs of original Hi-C maps of the two controls (LM and MB)
and cases (235 and 295) at 1 Mb resolution obtained from the ShRec3D algorithm.
The procrustes distance value is listed for each reconstructed pair.

In the 3D reconstructions of the pairs of the different samples of chromosome

1, it is confirmed that at 1 Mb the pairs of the same group (controls and

cases) are more similar to each other than the mixed ones. This is indicated

by the procrustes distance value, which is strongly close to zero for the pairs

of controls (Pd = 0.163) and cases (Pd = 0.055), while it deviates more from

zero in almost all the mixes (P̄d = 0.204). This analysis, together with those

of correlation between the original matrices and the essential ones, confirms a

greater reliability of the data at a resolution of 1 Mb than those at a higher

resolution of 100 kb.
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4.2.4 SynHi-C: synthetic component analysis

In the analysis carried out so far we have verified the goodness of the essential

matrices reconstructed through a number of projectors estimated starting from

the eigenvalues related to the signal component, and thus eliminating those re-

lating to the noise component characterized by Wigner’s semicircle curve. The

inspections were carried out on different levels, both by considering the corre-

lation from the scatter plots between the original Hi-C maps and the essential

ones, and by using the ShRec3D algorithm which allowed us to represent in

the three-dimensional space the arrangement and folding of the chromatin.

Finally, we tested the quality of the Hi-C data at the two different resolutions

and we realized that those with an higher resolution of 100 kb are not very

reliable in the light of the case-control comparative study. This therefore leads

us to use for the following analysis the lower resolution Hi-C data equal to 1

Mb in which, although at the beginning there were uncertainties related to

the number of projectors estimation for reconstructing the essential matrices,

they proved to be less noisy and more reliable for the purposes of this thesis

work. Now we want to illustrate an innovative method to generate synthetic

Hi-C data starting from the instruments obtained so far. As described in sec-

tion 3.5, the idea to build synthetic matrices starts from the spectral analysis

of Hi-C matrices, considering both signal and noise components. In particu-

lar, we identify the specific characteristics of each single original Hi-C matrix

with those of the corresponding essential matrix, which is built starting from

the projectors formed by the eigenvectors and the corresponding eigenvalues

which constitute the signal component. We have already discussed how to de-

rive these essential matrices in section 4.2.1. Now, however, we intend to deal

with the noise part, which up to now has always been discarded, but which

is instead important for obtaining the variability in the synthetic Hi-C data.

Here we have to reconstruct a Hi-C matrix starting from the projectors relat-

ing to those eigenvectors whose eigenvalues are part of the noise component.

In this case, to create a variability of the Hi-C data, we made a permutation of

the eigenvalues related to the noise component and then coupled them to the

eigenvectors after the reshuffling to obtain the projectors with which an error

matrix was reconstructed. The latter is then added to the essential matrix to

obtain the new synthetic Hi-C matrix or synHi-C matrix. The scheme of the

synthetic Hi-C maps production is depict in figure 4.43.
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Figure 4.43: Synthetic Hi-C maps production flowchart.

Basically, since each eigenvector corresponds to a weight given by the corre-

sponding eigenvalue, permuting the eigenvalues while keeping the eigenvectors

fixed leads to a reshuffling of the weights given to each projector which will

reconstruct the error matrix. This reshuffling process leads each time to a dif-

ferent result in terms of weight to be given to the individual projectors, thus

creating a variability in the error matrix and therefore in the synthetic matrix.

Now we want to apply the procedure described to generate synthetic matrices

starting from the Hi-C maps of the two controls (LM and MB) and the two

cases (235 and 295). Firsly, we generated a synthetic matrix for each of the

aformentioned matrices. The figure 4.44 shows the heatmaps relating both

to one of the error matrices obtained after the eigenvector reshuffling and to

the essential matrix reconstructed starting from the different components of

the spectrum, in addition to their sum which constitutes the synthetic matrix

itself. A feature that can already be seen in figure 4.44 is that the error matrix

has a marked line along the main diagonal in which the values are particularly

high. This confirms what was seen in the scatter plot between the essential

and original matrix (see figure 4.33) in which the worst reconstructed values

were precisely those along the tail, i.e. those along the main diagonal.
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(a) Original matrix

(b) Error matrix (c) Essential matrix

(d) Synthetic matrix

Figure 4.44: Heatmaps of the synthetic matrix construction (d) starting from the
sum between the error matrix (b) with the essential matrix (c) of the Hi-C original
matrix a of the control MB at 1 Mb resolution.

Now, as expected, these values instead correspond to those reconstructed bet-

ter by the error matrix which is complementary to the essential one, acting on

the noise component and not the signal one. As can be seen in figure 4.45, the

error matrices all have the same specific main diagonal highlighted, while the

synthetic matrices inherit their variability from the latter.
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(a) Error matrix for control LM (b) Synthetic matrix for control LM

(c) Error matrix for control MB (d) Synthetic matrix for control MB

(e) Error matrix for case 235 (f) Synthetic matrix for case 235

(g) Error matrix for case 295 (h) Synthetic matrix for case 295

Figure 4.45: Heatmaps for the chromosome 1 both of the error matrix (first col-
umn) and the synHi-C matrix (second column) for the two controls (LM and MB)
and cases (235 and 295) at 1 Mb resolution.



CHAPTER 4. RESULTS AND DISCUSSION 94

To compare the synthetic matrices with the original ones and therefore un-

derstand the level of similarity of the first ones, we first made the scatter

plots between the values of the entries extracted from the upper semidiago-

nal (remember that the matrices are symmetrical, so we avoid useless double

counting) for both matrices. They are shown in figure 4.46.

(a) control LM (ρ = 0.958) (b) control MB (ρ = 0.979)

(c) case 235 (ρ = 0.974) (d) case 295 (ρ = 0.962)

Figure 4.46: Scatter plots between the original Hi-C matrices for the chromosome
1 of the two controls (LM and MB) and cases (235 and 295) at 1 Mb resolution with
the corresponding synthetic Hi-C matrices; in red the regression line. The Pearson
correlation coefficient value ρ is listed for each plot.

As previously observed by looking at the error matrices, also the scatter plots

confirm a very strong goodness of reconstruction and similarity of the synthetic

matrices, where thw Pearson correlation values are ρ > 0.958 for any sample.

In fact we can see how even that cloud of points detached from the rest of

the points, which in case of the essential matrices was underestimated, is now

in line with the best correlation trend y = x. Moreover, using the ShRec3D

algorithm we reconstructed a three-dimensional graph of the chromosome 1

starting from the synHi-C maps of the four different samples (for the eigenvalue

histograms see the appendix D). The latters are shown in figure 4.47, where

the colorbar indicates the coordinates position along the genome.
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(a) control LM (1 Mb) (b) control MB (1 Mb)

(c) case 235 (1 Mb) (d) case 295 (1 Mb)

Figure 4.47: Three-dimensional images reconstructed starting from the spatial
coordinates for the synthetic matrices for chromosome 1 of the two controls (LM
and MB) and cases (235 and 295) at 1 Mb resolution obtained from the ShRec3D
algorithm. The colorbar indicates the coordinates position along the genome.

Now we want to verify the similarity between the reconstructions, in particular

between the original ones presented in figure 4.34, with the synthetic ones that

we have generated and which are presented in figure 4.47. Also in this case, to

quantify the distance between the two forms we use the procrustes distance,

not before having carried out a procrustes analysis on the synthetic matrix, so

as to align it as much as possible with the original reference one. The pairs of

chromosomes are shown in figure 4.48 and marked with different colors, with

the value of procrustes distance Pd listed for each pair of original chromosomes

and the ones reconstructed starting from the corresponding synHi-C. Thanks

to the comparison between the two reconstructed Hi-C matrices, it is possible

to better delineate the points of contact from those more distant from each

other. Furthermore, the procrustes distance parameter is very close to 1 for

any couple (P̄d = 0.164) confirming an excellent similarity in terms of 3D

configuration between the synthetically reconstructed chromosomes and the
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(a) control LM (Pd = 0.202) (b) control MB (Pd = 0.174)

(c) case 235 (Pd = 0.171) (d) case 295 (Pd = 0.109)

Figure 4.48: Three-dimensional plots reconstructed starting from the spatial co-
ordinates for the chromosome 1 of the pairs formed of the original (blue line) and
the corresponding synthetic (red line) Hi-C maps for the two controls (LM and MB)
and cases (235 and 295) at 1 Mb resolution obtained from the ShRec3D algorithm.
The procrustes distance value is listed for each reconstructed pair.

original ones. The values of procrustes distance are less close to 1 than the

ones obtained from the comparison with the essential matrices (P̄d = 0.119)

as seen in figure 4.38, due to the re-introduction of noise which, on the other

hand, is not present in the essential matrices. This could cause a misleading

in thinking that essential matrices are more suitable as synthetic matrices,

effectively resulting in a chromosome configuration more similar to the original

one. However, it is important to note that in the essential matrices one of

the fundamental and characteristic components of the Hi-C matrices is not

present, i.e. the typical noise component, which is due to the reshuffling of the

eigenvalues and therefore of the weights to be assigned to each reconstructing

projector. To verify if the properties of the original Hi-C data are preserved

also for the synthetic matrices, we compared the pairs of samples both between

cases and controls and the mixes of both. The comparison, as in the case seen

in figure 4.39, was made by building scatter plots between the input values

of each pair of Hi-C matrices and from there we then extracted the Pearson

correlation value, as an indicator of the similarity between the two matrices.

The graph showing the correlation values for all six possible pairs of samples
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both for the original matrices and the corresponding synthetc ones is shown

in figure 4.49.

Figure 4.49: Pearson correlation coefficient values for the different combinations
of pairs between the two cases (235 and 295) with the two controls (LM and MB)
for the original Hi-C matrices (green line) and the corresponding synthetic Hi-C
matrices (blue line) at 1 Mb resolution.

In this case it can be seen that the pairs consisting of only cases (235 and

295) or only controls (LM and MB) have correlation coefficients with a larger

gap with the mixed pairs than it happens for the corresponding original Hi-C

matrices. Furthermore, on average, the correlation is higher in the case of

synthetic matrices than in the originals. Both these characteristics are due to

the presence of the signal component given by the essential Hi-C matrix. This

can be seen even better in figure 4.50, which includes the correlation trends

between the possible pairs in the three cases of original, essential and synthetic

matrix. In fact, in this case it is distinctly perceived how, compared to the

pairs of original samples, the essentials and the synthetics are both better from

the point of view of highlighting the expected characteristics between pairs

of cases and controls compared to the mixed ones, having higher correlation

between samples of the same type than mixed pairs. However, above all it can

be seen that between the pairs of essential and synthetic matrices there is an

agreement in terms of correlation trend and this is due precisely to the way of
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Figure 4.50: Pearson correlation coefficient values for the different combinations
of pairs between the two cases (235 and 295) with the two controls (LM and MB) for
the original Hi-C matrices (green line) and the corresponding essential Hi-C matrices
(blue line) and the synthetic ones (red line) at 1 Mb resolution.

constructing the synthetic matrices starting from the essential ones. The ad-

dition of noise in the synthetic matrices causes the Pearson correlation coef-

ficients to be on average lower than those relating to the essential matrices,

but in any case higher than the original correspondents. Ultimately, instead of

concentrating as we have done so far on verifying that the synthetic matrices

actually reproduce those characteristic properties of the Hi-C matrices of the

starting samples, now we want to focus our attention on a specific matrix, e.g.

the control MB at 1 Mb resolution, and produce a large quantity of synthetic

Hi-C matrices. Remarkably, the latter corresponds precisely the main purpose

of using synthetic matrices, and that is to be able to produce large quantities

of a Hi-C matrices. For our samples it is of crucial importance given that

they derive from rare diseases which are already hardly studied at the Hi-C

level and for which very few samples are available. For these reasons, it is

particularly useful to increase the number of samples and so to have a wider

statistics. We have applied the scheme already shown in figure 4.43 to generate

a total of 100 synthetic matrices, each time recombining the weights, given by

the eigenvalues, of the projectors used for the reconstruction process.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 4.51: Examples of 18 different synthetic Hi-C matrices generated starting
from the original Hi-C matrix related to the control MB at 1 Mb resolution.
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In figure 4.51 we have reported 18 examples of synHi-C maps among the 100

synthetically generated. They are very similar, at least from the point of

view of visualization via heatmap, even if the differences between the values of

the entries can be appreciated if you look at the colorbar in which the values

corresponding to each color are marked. Obviously the differences are given by

the noise component which is introduced according to the technique illustrated

previously in figure 4.43. Furthermore, to explore the generated synthetic data,

we computed for each of the 100 synthetic matrices the Pearson correlation

coefficient between the entries of the synthetically reconstructed matrix with

the original ones. These correlation values are then reported in the histogram

in figure 4.52, in such a way as to understand the distribution followed by the

correlation for a large number of synthetic matrices.

Figure 4.52: Histogram for the Pearson correlation coefficient ρ (grey) for 100
pairs of synthetic Hi-C matrices with the original control MB at 1 Mb resolution.
In green the Gaussian best fit (p-value < 10−3).

As can be seen from the histogram in figure 4.52 there is excellent compatibility

between the Gaussian and the histogram of the correlation coefficients (p-

value < 10−3). This confirms that indeed the correlation coefficients of each

synthetic matrices are distributed as a random variable with real values which

tend to concentrate around a single average value. Therefore, the fluctuations

introduced starting from the expected configuration are not unbalanced but

truly random, confirming the unbiased synthetic matrix generation process.

The best fit parameters of mean with its standard deviation turns out to be

equal to ρ = (0.980± 0.001).
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4.3 Blender and Virtual Reality

In this paragraph we present the results obtained from the three-dimensional

visualization both starting from the total matrix GM12878 and from the pairs

of samples of cases and controls. To obtain these graphic visualizations, we

started from the same coordinate files as obtained through the use of the

ShRec3D algorithm and we imported and processed them through the Blender

software. Blender is the free and open source 3D creation suite. It supports the

entirety of the 3D pipeline: modeling, rigging, animation, simulation, render-

ing, compositing and motion tracking, even video editing and game creation.

It has a flexible Python controlled interface (API). Advanced users employ

Blender’s API for Python scripting to customize the application and write

specialized tools; often these are included in Blender’s future releases. Blender

has a wide variety of tools making it suitable for almost any sort of informatics

and media production. As its key features it enumerates:

• Being a fully integrated 3D content creation suite, offering a broad range

of essential tools, including Modeling, Rendering, Animation and Rig-

ging, Video Editing, VFX, Compositing, Texturing, and many types of

Simulations.

• It is a cross platform, with an OpenGL GUI that is uniform on all major

platforms (and customizable with Python scripts).

• It has a high-quality 3D architecture, enabling fast and efficient creation

workflow.

• It boasts active community support.

• It has a small executable, which is optionally portable.

Blender has several workspaces, the default startup shows the “Layout” work-

space in the main area which is where our results are graphically visualized.

Among other workspaces, for our purposes we exploited the scripting one

(for interacting with Blender’s Python API and writing scripts). Once the

ShRec3D algorithm has produced the spatial coordinates of the chromosomes

in the cell line GM12878 and of the chromosome 1 of both the two cases (235

and 295) and the two controls (LM and MB), we proceeded with writing a

python code exploiting Blender API to visualize edges connecting each cou-

ple of coordinated consecutively. Our first attempt aimed at creating Blender
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edges connecting coordinates interpreted as vertices of a mesh. In Blender a

mesh is a collection of vertices, edges, and faces that describe the shape of

a 3D object: a vertex is a single point; an edge is a straight line segment

connecting two vertices; a face is a flat surface enclosed by edges. However,

after successfully creating desired edges we discarded this approach since it

did not allow to color edges, a necessary step to better do visual comparisons

between different cases and to better recognize each single chromosome’s lo-

cation in space in the cell line GM12878 analysis. Therefore, we proceeded

with the following method: instead of creating edges to connect consecutively

all vertices we define a function able to create cylinders between each cou-

ple of vertices. The key of this method is the size of the cylinder: as the

radius of the cylinder gets smaller, the cylinder’s dimension resembles a sim-

ple line (i.e. edges). Also, cylinders (as well as other mesh with surfaces)

can be assigned with a material and, as a consequence, with a color. The

function able to do what above mentioned is called cylinder between and is

shown in figure 4.53. The function takes as input parameters six spatial co-

Figure 4.53: Function definition of cylinder between code.

ordinates corresponding to the couple of vertices that need to be connected

and the cylinder’s radius dimension. First, the distance between the pair of
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coordinates under consideration is computed, the obtained value represents

the depth of the built cylinder. The cylinder is built using the pyhton library

bpy, specifically the function bpy.ops.mesh.primitive cylinder add(). Bpy.ops

provides python access to calling operators, this includes operators written in

C, Python or macros. In this function a mesh operator is used in order to con-

struct a cylinder (“primitive cylinder add”) giving as parameters the radius,

the depth (“dist” computed before) and location (corresponding to the centre

location) of the cylinder. After that, taking into considerations all possible

configurations of the cylinders in the 3D space, the azimuthal and polar an-

gle have been defined through the function bpy.context.object.rotation euler.

Bpy.context.object function has access to the information regarding the cur-

rently active object, in our case the cylinder, setting rotations to be equal to the

azimuthal and polar angle previously defined. Once the definition of the cylin-

der between function has been completed, we proceeded with importing the

cell line GM12878 and the chromosomes 1 of the two cases and of the two con-

trols. Each filename is defined storing its path in the variable “filename” and is

then opened and organized in list of tuples of floats, corresponding to the ver-

tices coordinates, in the variable “lines”. Finally, to call the cylinder between

function, we access the six coordinates corresponding to the couple of implied

vertices with a for loop working on each of the three elements of tuples’ list

stored in “lines”. Thereafter we continued with the second section of the code

shows in figures 4.54 and 4.55. The second part of the Blender code aims at

specifically selecting only a portion of all the constructed cylinders in order to

assign different materials hence different colors to each portion of cylinders.

It uses bpy.context.view layer.objects to have access to all active objects of

the type “mesh” (such as all the previously constructed cylinders with the

function) and the operator select all to deselect all the automatically selected

cylinder. This is done to enable a preferred manual selection of portions of

cylinders. Computationally, this specific selection is performed by a for loop

on the cylinders’ names: in obj.active all objects with a specific name (e.g.,

Cylinder.001 and Cylinder.002) chosen by the user are selected. At this point,

selected portions of active objects of the type ”mesh”, in our case cylinders,

are assigned with a previously created material. Cell line GM12878 contains

information about 23 chromosome, thus a material for each of them needs to

be created. To do so, the function bpy.data.materials.new() has been used. It

is also possible to assign a color to each material through diffuse color by
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Figure 4.54: First part of the code: materials creation.

setting the RGB code and the desired intensity as parameters, as it can be

seen in figure 4.55.

Figure 4.55: Second part of the code: assigning materials to each cylinder.
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4.3.1 GM12878 cell line 3D visualization results

The following materials have been created for each chromosome of the whole

GM12878 cell line: matg (green) for Chromosome 1, matb (blue) for chro-

mosome 2, matr (red) for chromosome 3, matp (orchid) for chromosome 4,

mata (light blue) for chromosome 5, matgiallo (yellow) for chromosome 6,

matvs (viridian) for chromosome 7, matfux (fuxia) for chromosome 8, ma-

tocra (ochre) for chromosome 9, matmar (brown) for chromosome X, matrosa

(pink) for chromosome 10, mataran (orange) for chromosome 11, matvvs (for-

est green) for chromosome 12, matva (cyan) for chromosome 13, matprug

(mauve) for chromosome 14, matviola (purple) for chromosome 15, matind

(indigo) for chromosome 16, matcil (cherry) for chromosome 17, matfr (straw-

berry) for chromosome 18, matbl (frost blue) for chromosome 19, matstep

(golden brown) for chromosome 20, matrss (dark red) for chromosome 21,

matgr (grey) for chromosome 22. In figures 4.56 and 4.57 we reported the

images for the raw Hi-C map generated with Blender which have been also

visualized by using the Virtual Reality (VR). To visualize the single chromo-

somes, all the cylinders connecting two nodes belonging to different chromo-

somes have been eliminated. The same has been done for the essential matrix,

varying the cylinder radius, whose images are presented in figures 4.59, 4.58

and 4.60.

Figure 4.56: ShRec3D reconstruction starting from the original matrix of the whole
raw Hi-C data by using Blender. Each material (and the corresponding colour) is
referred to a different chromosome.
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In this case, by using Blender and even more by observing the 3D image using

the Virtual Reality, it is possible to better notice the individual chromosomes

and their folding within the genome.

Figure 4.57: Different perspective for the ShRec3D reconstruction starting from
the original matrix of the whole raw Hi-C data by using Blender. Each material
(and the corresponding colour) is referred to a different chromosome.

Unlike the case of the original matrix, in the synthetic one the divisions be-

tween the chromosomes are even better appreciated, in fact the noise has been

completely removed from the latter, giving a clearer view of the individual

chromosomes. In particular, it can be noticed that the larger chromosomes

tend to position themselves in the external regions, such as chromosomes 1

and 2, while the smaller ones tend to compact themselves in the central re-

gions.



CHAPTER 4. RESULTS AND DISCUSSION 107

Figure 4.58: ShRec3D reconstruction starting from the essential matrix of the
whole raw Hi-C data by using Blender. Each material (and the corresponding colour)
is referred to a different chromosome.

Figure 4.59: Different perspective for the ShRec3D reconstruction starting from
the essential matrix of the whole raw Hi-C data by using Blender. Each material
(and the corresponding colour) is referred to a different chromosome.
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Figure 4.60: Different perspective for the ShRec3D reconstruction starting from
the essential matrix of the whole raw Hi-C data by using Blender. Each material
(and the corresponding colour) is referred to a different chromosome.

4.3.2 Case study 3D visualization results

Regarding the medical application case study, we worked with the chromo-

some 1 of two cases (case 235 and case 295) and two controls (LM and MB).

To make better comparisons, we assigned to each a different material: matva

(cyan) to MB, matfux (fuxia) to LM, matrss (dark red) to case 295 and mat-

giallo (yellow) to case 235. The six possible pairs between cases and controls

built in Blender are shown in figure 4.61. Also in this case it is possible to

better distinguish the points of contact and those of detachment between the

individual nodes of each pair of chromosomes.
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(a) Control LM vs Control MB (b) Case 235 vs Case 295

(c) Control LM vs Case 235 (d) Control LM vs Case 295

(e) Control MB vs Case 235 (f) Control MB vs Case 295

Figure 4.61: ShRec3D reconstruction starting from the original Hi-C matrices of
the four samples (two cases: 235 and 295; and two controls: LM and MB) by using
Blender. Each sample has a different colour. Control MB: cyan; Control LM: fuxia;
Case 235: yellow; Case 295: dark red.



Chapter 5

Conclusions

Hi-C matrices are milestones for the qualitative and at the same time quanti-

tative study of genome folding, its organization into chromosomal territories,

compartments and topological domains. In this type of data we have seen

how it was possible to characterize the signal-to-noise ratio starting from a

spectral analysis on different types of Hi-C data at different resolutions (1 Mb

and 100 kb). Through the spectral analysis of the Hi-C matrices, under an

appropriate preprocessing, one of the main characteristics of these data has

been highlighted: the distinction between the signal component, linked to the

intrinsic biological properties, and the noise component, linked to the statis-

tical fluctuations. We have seen how the latter follow the distribution known

as Wigner’s semicircle function, which describes the distribution of eigenval-

ues for a symmetric random matrix. On the other hand, the signal part is

characterized by a small percentage of isolated eigenvalues in the spectrum,

even at large distances from the noise semicircle centered at zero. Starting

from these considerations, the part of the signal spectrum was therefore iso-

lated in order to be able to reconstruct, through the projectors corresponding

to the signal component, the essential matrix (essHi-C), which contains all

the significant biological information on the chromatin structure. To compute

the number of signal projectors, simulated random matrices were generated,

whose distribution of eigenvalues coincides precisely with Wigner’s semicircle

function, in such a way as to estimate the demarcation threshold between the

two distinct components. The possibility of splitting the two components that

characterize the Hi-C matrices was first tested on a standard case, that of cell

line GM12878, and was then applied to a case study consisting of four samples,

110



CHAPTER 5. CONCLUSIONS 111

two controls (LM and MB) and two cases (235 and 295), the latter related to a

rare prion disease. To validate the goodness of reconstruction of the essential

matrices with respect to the original ones, various tools were used including

scatter plots, ShRec3D algorithm and virtual reality (VR). The former made

it possible to directly verify the correlation between the essential and the orig-

inal matrices, providing positive results for the analyzed case study, whose

samples resulted to be reconstructed significantly well, both for controls and

for cases at 1 Mb (ρ̄ = 0.969) and 100 kb resolution (ρ̄ = 0.832). With par-

ticular reference to the case study, a further check was performed concerning

the comparison between the different cases and controls, both for the original

and for the essential matrices, which highlighted how, in particular for the less

noisy matrices at lower resolution of 1 Mb and even more for the essential

matrices, as expected there is a greater correlation between the pairs consist-

ing of only cases or only controls (ρ̄ = 0.962) compared to the mixed pairs

which contain both (ρ̄ = 0.930). Both from the analysis of the case study and

the preliminary analysis on the GM12878 cell line, further confirmation of this

is found by obtaining the three-dimensional conformations of the individual

chromosomes. In fact we have seen how, after having performed an appropri-

ate prorustes analysis, the similarity between the three-dimensional shapes of

chromatin folding are very similar both between essential and original matrices

of GM12878 (P̄d = 0.012) and the cases (P̄d = 0.104) and controls (P̄d = 0.134)

at 1 Mb resolution. Spatial visualization was further deepened by a Virtual Re-

ality analysis, able to show even more in detail those regions of space in which

the chromosomes are more similar in terms of spatial configuration from those

that are more distant. Finally, having verified the robustness of the experi-

mental design used to extract the signal and noise components, we focused on

the generation of synthetic Hi-C (synHi-C) matrices. The innovative method

developed in this thesis consists in considering not only the signal component,

given by the essential matrix, but also the noise component, through an ap-

propriate reshuffling of the eigenvalues with respect to the eigenvectors related

to the Wigner’s semicircle. By adding the two matrices reconstructed starting

from the signal projectors with the noise-related ones, a synHi-C is obtained

with the same average properties of the original matrix, but with an intrin-

sic variability that respects the noise pattern of the Hi-C data type. To test

the good reconstruction of synthetic matrices, the tools described above were

used, which once again confirm that not only the spatial reconstruction using
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ShRec3D and VR is faithful to a large extent to the original one (P̄d = 0.164),

but that it is even more significant from a biological point of view, the cases

and controls being more similar to each other (ρ̄ = 0.945) than to the mixed

pairs (ρ̄ = 0.916). Indeed the case study analysis shows how the expected prop-

erties of greater correlation between only cases and only controls is highlighted

even more when the essential matrices are considered, and since the synthetic

matrices are built starting from the latter, it is also reflected in the synHi-C

artificially generated. Finally, the statistical properties were also tested, gener-

ating a significant number of synthetic matrices of a given sample and verifying

how the distribution of the Pearson correlation coefficient, calculated for each

pair of synthetic matrix with the original one, follows a Gaussian distribution

(p-value < 10−3). This confirms that the synthetic matrix generation process

is unbiased. The generation of synthetic data is useful due to the fact that it

allows us to overcome the laboratory experimental phase, which is often diffi-

cult and expensive, but in particular in the case of Hi-C data it is even more

fundamental as the data analyzed in the case study are little studied at the

Hi-C level and there are just few samples to work with. Moreover, with the

production of synHi-C it is therefore possible to have greater control over the

type of data being studied, to understand its properties related to the different

signal and noise components and to characterize all those methodological and

variability issues of the experiment, tuning the parameters. Starting from this

new way of generating synthetic data of Hi-C maps, a huge amount of future

scenarios open up. Among these certainly there is the possibility of carrying

out unsupervised clustering of synthetically generated cases and controls or in

different cell lines. Even from the biological point of view many future direc-

tions open up, in fact, given the possibility of directly controlling the essential

matrices and the number of associated projectors, it is possible to satisfy re-

quests for the study of customized biological characteristics. Especially, the

possibility of studying the intrinsic variability of a sample at different levels of

organization, for example at the level of topological domains, which are con-

figured starting from a different number of projectors used to reconstruct the

essential matrix and therefore the corresponding synthetic matrix.



Appendix A

Whole GM12878 spectral

analysis

In this appendix we want to probe the spectral properties of the entire healthy

cell line GM12878. In particular we computed the probability distribution of

the eigenvalues (just for the raw Hi-C data) and of their modulus (for both

raw and ICE normalized Hi-C data) of the Hi-C matrix related to the cell line

just mentioned. Figures A.1 and A.2 show this distribution as an histogram in

which in dashed line it is superimposed the same distribution but calculated

for a symmetric random matrix of equal linear size with entries distributed as

a Gaussian with mean equal to that of the Hi-C matrix and a suitably adjusted

variance.

(a) Raw Hi-C data (b) ICE normalized Hi-C data

Figure A.1: Histograms of the eigenvalues’ absolute values distribution for |λ| <
100 obtained from the whole raw (a) and ICE normalized (b) Hi-C data matrices
(blue) and from the corresponding randommatrices with the same mean and suitably
adjusted standard deviation (dashed red line).
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(a) Raw Hi-C data

Figure A.2: Histogram of the eigenvalues distribution for −50 < λ < 50 (blue)
obtained from the whole raw Hi-C data matrix with the corresponding spectrum
from a random matrix with same mean and suitably adjusted standard deviation
(dashed red line).

From the eigenvalue distributions in figure A.2 we can recognise that both for

the raw and the ICE normalized data the spectrum that extends up to |λ| ≈ 20

is largely consistent with that of random matrices, even though the spectrum

is not absolutely symmetric with respect to zero, and except for a set of eigen-

vectors with atypically large eigenvalues in modulus. For ease of display, the

histogram is limited to the first |λ| < 100 eigenvalues, even though it extends

with isolated eigenvalues up to |λ| ≈ 3809 for the raw Hi-C data and up to

|λ| ≈ 2647 for the ICE nomalized one. We discounted the non-specific random

component from the matrices so to isolate their essential component. The

essHi-C matrices are obtained from the spectral summation of the projectors

formed by the eigenvectors related to the higher eigenvalues’ modulus. The

essential matrix has been reconstructed starting from all the projectors, with

the exception of those relating to the eigenvectors whose modulus of the cor-

responding eigenvectors is lower than a certain threshold. The latter is chosen

considering the spectrum of the modulus of the eigenvalues that form the ran-

dom component, which coincides with the semicircle identified by those same

eigenvalues generated starting from the random matrix. We have therefore re-

constructed the essential matrices, both in the case of raw and ICE normalized

matrices, starting from a number of projectors n∗ = 46, which is equal to the

number of eigenvalues outside the random component identified by |λ| < 20.

The essHi-C matrices are shown in figure A.3.
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(a) Raw Hi-C data (b) ICE normalized Hi-C data

Figure A.3: Essential raw and ICE normalized Hi-C matrices.

From the essential matrices obtained in figure A.3 it can be seen how they are

much less noisy and more clearly defined both as regards the blocks of the sin-

gle chromosomes and for the interaction domain in which distinctive contact

patterns emerge. We have therefore reconstructed the essential matrices grad-

ually lowering the number of projectors n∗. The results are shown in figures

A.4 and A.5, which are placed side by side with those related to the scatter

plots between the entries of the upper triangular matrix (so to avoid double

counting, since the matrix is symmetric) of the original Hi-C maps and the

corresponding essential ones.

(a) EssHi-C with n∗ = 46 (b) Scatter plot (ρ = 0.935)

Figure A.4: (a): essential matrix from the whole Hi-C data reconstructed starting
from n∗ = 46 highest-ranking projectors. (b): the corresponding scatter plot and
Pearson correlation coefficient ρ.
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(a) EssHi-C with n∗ = 36 (b) Scatter plot (ρ = 0.932)

(c) EssHi-C with n∗ = 26 (d) Scatter plot (ρ = 0.925)

(e) EssHi-C with n∗ = 16 (f) Scatter plot (ρ = 0.899)

(g) EssHi-C with n∗ = 6 (h) Scatter plot (ρ = 0.794)

Figure A.5: First column: essential matrices from the whole Hi-C data recon-
structed starting from different n∗ highest-ranking projectors. Second column:
the corresponding scatter plots and Pearson correlation coefficient ρ.



APPENDIX A. WHOLE GM12878 SPECTRAL ANALYSIS 117

In case of the essential matrices of the whole matrix seen in figures A.4 and

A.5, the correlation of the reconstructed images with respect to the original

one remains almost constant as the number of projectors decreases, up to a

certain value of n∗ ≈ 6 in which the correlation coefficient varies significantly

until it is no longer even possible to distinguish the blocks relating to the single

chromosomes, except in case of the larger ones such as chromosome 2, chro-

mosome 3 and the chromosome X. What is striking is precisely the presence of

the X chromosome, which is not among the largest chromosomes present, and

the absence of other larger chromosomes such as 1 and 4. In fact, one would

expect to observe that the smaller blocks disappear as the number of projectors

used for the reconstruction is reduced. This is due to the fact that the smaller

blocks are considered as noise and therefore they no longer appear along the

main diagonal. However, in this case the X chromosome stands out among

all the others, both larger and smaller, remaining clearly visible together with

two other chromosomes (2 and 3) and part of chromosome 4. This could be

the sign of some similarity in terms of structure between the aforementioned

chromosomes. Finally, it can be seen that with a number of projectors equal

to n∗ = 16 it returns to the situation in which all the largest chromosomes

are present except the smallest ones which blend into the noise and by further

increasing n∗ we get to reconstruct all the different chromosomes, including the

smaller ones. Regarding the scatter plots, it can be seen that as the number

of projectors decreases, they are increasingly scattered from the correlation

line y = x, meaning that the values are worse reconstructed. In particular, a

characteristic tail is also noted in all the scatter plots, meaning that for larger

values the reconstruction works worse and in particular there is an underesti-

mation of the latters. They correspond to the values along the main diagonal,

i.e. those around the blocks of the single chromosomes.

Also in the case of the whole matrix we applied the ShRec3D algorithm to

obtain images relating to the matrix as a whole of chromosomes. The spectra

of the corresponding Gram matrices, both for the raw and the essential cases,

are reported in figure A.6, where the arrows indicate the three greater eigen-

values, which as expected are separated from the main peak around zero. The

three-dimensional plots obtained starting from the original Hi-C matrix and

the essential one are displayed in figure A.7.
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(a) Original Hi-C matrix (b) Essential Hi-C matrix (n∗ = 46)

Figure A.6: (a): original matrix of the whole raw Hi-C data. (b): the correspond-
ing essential matrix reconstructed starting from n∗ = 46 highest-ranking projectors.

(a) Original Hi-C matrix (b) Essential Hi-C matrix (n∗ = 46)

Figure A.7: (a): ShRec3D reconstruction starting from the original matrix of the
whole raw Hi-C data. (b): ShRec3D reconstruction starting from the corresponding
essential matrix reconstructed by using n∗ = 46 highest-ranking projectors.

In the figure A.7 a colorbar has been used to indicate with different color

gradations the sequence of points that follow one another along the linear

chain of the entire genome. In this way it is possible to notice that there are

denser regions of space characterized by very similar colors. These correspond

precisely to the chromosome territories and therefore to the blocks of the Hi-C

whole matrix. To compare the two 3D configurations, original and essential,

we superimposed them by applying the procrustes analysis and then calculated

the procrustes distance Pd. The two superimposed images are shown in figure

A.8.
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Figure A.8: ShRec3D reconstructions starting from the original matrix of the
whole raw Hi-C data (blue line) together with the corresponding essential matrix
(red line) reconstructed by using n∗ = 46 highest-ranking projectors (Pd = 0.561).

From the figure representing the overlap between the two 3D configurations

it is not immediate to extract detailed information on single chromosomes.

This is due to the fact that most of the chromosomes are concentrated and

tangled in the center, overlapping each other. At least at this level, we can

limit ourselves to considering the value of procrustes distance, which turns out

to be equal to Pd = 0.561. This value tells us that the overlap is not optimal,

but not completely fallacious either. Surely, at least judging by the external

chromosomes, it can be seen that they are not properly superimposed. This is

probably due to noise present in the original Hi-C matrix. For a more detailed

analysis, see the paragraph 4.3.



Appendix B

Scatter plots

Here we show the scatter plots between each pair of samples for the two cases

(235 and 295) and the two controls (LM and MB) for the original Hi-C matrices

at 1 Mb (see figure B.1) and 100 kb (see figure B.2), the corresponding essential

matrices (1 Mb: see figure B.3 and 100 kb: see figure B.4) and the synthetic

Hi-C matrices generated starting from the original matrices at 1 Mb resolution

(see figure B.5). The corresponding Pearson correlation coefficient ρ is reported

for each graph.
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(a) ρ = 0.958 (1 Mb) (b) ρ = 0.854 (1 Mb)

(c) ρ = 0.932 (1 Mb) (d) ρ = 0.921 (1 Mb)

(e) ρ = 0.932 (1 Mb) (f) ρ = 0.875 (1 Mb)

Figure B.1: Scatter plots from the original matrices after the preprocessing step for
the two cases (235 and 295) and the two controls (LM and MB) at 1 Mb resolution.
The Pearson correlation coefficient ρ is listed for each plot.
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(a) ρ = 0.586 (100 kb) (b) ρ = 0.584 (100 kb)

(c) ρ = 0.644 (100 kb) (d) ρ = 0.623 (100 kb)

(e) ρ = 0.644 (100 kb) (f) ρ = 0.572 (100 kb)

Figure B.2: Scatter plots from the original matrices after the preprocessing step for
the two cases (235 and 295) and the two controls (LM and MB) at 100 kb resolution.
The Pearson correlation coefficient ρ is listed for each plot.
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(a) ρ = 0.960 (1 Mb) (b) ρ = 0.928 (1 Mb)

(c) ρ = 0.940 (1 Mb) (d) ρ = 0.963 (1 Mb)

(e) ρ = 0.932 (1 Mb) (f) ρ = 0.918 (1 Mb)

Figure B.3: Scatter plots from the essential matrices after the preprocessing step
for the two cases (235 and 295) and the two controls (LM and MB) at 1 Mb resolu-
tion. The Pearson correlation coefficient ρ is listed for each plot.
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(a) ρ = 0.853 (100 kb) (b) ρ = 0.787 (100 kb)

(c) ρ = 0.862 (100 kb) (d) ρ = 0.805 (100 kb)

(e) ρ = 0.905 (100 kb) (f) ρ = 0.807 (100 kb)

Figure B.4: Scatter plots from the essential matrices after the preprocessing step
for the two cases (235 and 295) and the two controls (LM and MB) at 100 kb
resolution. The Pearson correlation coefficient ρ is listed for each plot.
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(a) ρ = 0.946 (1 Mb) (b) ρ = 0.908 (1 Mb)

(c) ρ = 0.929 (1 Mb) (d) ρ = 0.944 (1 Mb)

(e) ρ = 0.923 (1 Mb) (f) ρ = 0.902 (1 Mb)

Figure B.5: Scatter plots from the synthetic matrices after the preprocessing step
for the two cases (235 and 295) and the two controls (LM and MB) at 1 Mb resolu-
tion. The Pearson correlation coefficient ρ is listed for each plot.
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ShRec3D Python code

To perform the ShRec3D algorithm as described in the paragraph 3.7 from a

computational point of view we wrote a code using the Python programming

language shown in figure C.1.

Figure C.1: ShRec3D Python code.

As a first step, we need to apply the Floyd-Warshall algorithm. To do this we

first modified the Hi-C matrix by replacing each input value with its inverse,

thus assigning a distance between the nodes of the graph described by the

Hi-C map seen as an adjacency matrix, equal to the inverse of the respective

frequency of normalized contact. We then wrote a for loop that allowed us to

compute the minimum distance between each pair of nodes i and j. The latter

was first implemented to calculate the single possible paths between node i

and node j in order for them to pass through a generic node k among all those

present. To calculate the distance between node i and the generic node k we

used the repmat function of the numpy matlib library. It allows to repeat a

given matrix (or array in our case) M × N times. In our case this distance

126



APPENDIX C. SHREC3D PYTHON CODE 127

has been calculated considering the k-th data vector of the transformed Hi-C

matrix, repeated n times along the columns (to go from i to k) or rows (to

go from k to j), where n is the linear size of the Hi-C matrix. The sum of

these two matrices, which represents the distance sought between nodes i and

j passing through a generic node k that was run in the for loop along n, was

then compared point-wise with the original one. The minimum of the two

was therefore taken to obtain, once the cycle was completed, the shortest path

matrix containing in each entry Dij the minimum distance between the two

nodes. At this point we have used the formulas seen in the paragraph 3.7.2

to first calculate the distance between each point i with the center of gravity,

which for convenience has been abbreviated as center. Starting from these

distance values calculated through two for loops as i and j vary over the entire

length n of the matrix, we have calculated the metric matrix by reconstruct-

ing the distance matrix once again using the repmat function. Finally, having

obtained in this way the Gram matrix (”distmat” in the code), we have ex-

tracted through the function of the scipy library eigsh, the eigenvalues and

eigenvectors of the found symmetric real square matrix. Finally, the latter

were used to obtain the XYZ coordinates, assigning to each of them the prod-

uct between the eigenvector and the root of the corresponding eigenvalue. The

coordinates have also been rescaled to get a better view that doesn’t affect the

newly calculated distances.



Appendix D

Gram matrix eigenvalue spectra

In this appendix we report the histograms of the spectrum of the eigenvalues

both for the original Gram matrices at 1Mb (figure D.1) and 100 kb (figure

D.2) resolution, and the essential ones (figure D.3) after carrying out the pre-

processing of removing the rows and columns that add to zero, the replacem-

(a) control LM (1 Mb) (b) control MB (1 Mb)

(c) case 235 (1 Mb) (d) case 295 (1 Mb)

Figure D.1: Histograms of the eigenvalues from the original matrices after the
preprocessing step and the SCN normalization for the two cases (235 and 295) and
the two controls (LM and MB) at 1 Mb resolution.
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ent of the isolated zeros with the half of the minimum non-zero value between

the matrix entries and the SCN normalization. These histograms actually

prove to meet the requirements for using the spectral gap ShRec3D algorithm

between the three largest eigenvalues and the central peak around zero.

(a) control LM (100 kb) (b) control MB (100 kb)

(c) case 235 (100 kb) (d) case 295 (100 kb)

Figure D.2: Histograms of the eigenvalues from the original matrices after the
preprocessing step and the SCN normalization for the two cases (235 and 295) and
the two controls (LM and MB) at 100 kb resolution.
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(a) control LM (1 Mb) (b) control MB (1 Mb)

(c) case 235 (1 Mb) (d) case 295 (1 Mb)

(e) control LM (100 kb) (f) control MB (100 kb)

(g) case 235 (100 kb) (h) case 295 (100 kb)

Figure D.3: Histograms of the eigenvalues from the essential matrices after the
preprocessing step and the SCN normalization for the two cases (235 and 295) and
the two controls (LM and MB) at 1 Mb (a-d) and 100 kb (e-h) resolution.
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The same histograms were also created for the synthetic matrices and are

reported in figure D.4. Also in this case we can appreciate that the three

largest values have a quite large spectral gap with respect to the main peak

around zero.

(a) control LM (1 Mb) (b) control MB (1 Mb)

(c) case 235 (1 Mb) (d) case 295 (1 Mb)

Figure D.4: Histograms of the eigenvalues from the synthetic matrices after the
preprocessing step and the SCN normalization for the two cases (235 and 295) and
the two controls (LM and MB) at 1 Mb resolution.



Appendix E

Contact probability graphs

In this appendix we listed the graphs of contact probability as a function of the

genomic distance for both the raw and the ICE normalized Hi-C maps related

to all the other chromosomes excluding the chromosome 1 and the chromosome

17 already shown in figure 4.5. For doing that we therefore computed the

average value of contact frequency starting from the matrices corresponding

to each single chromosomes in figures 4.3 and 4.4 by varying the genomic

distance. They are shown in figures E.1 and E.2 for the raw Hi-C matrix and

in figures E.3 and E.2 with regard to the ICE normalized ones.

(a) Chromosome 2 (b) Chromosome 3 (c) Chromosome 4

(d) Chromosome 5 (e) Chromosome 6 (f) Chromosome 7

Figure E.1: Contact probability graph as a function of the genomic distance (diag-
onal) in Mb in case of single chromosomes extracted from the whole raw GM12878
Hi-C matrix.
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(a) Chromosome X (b) Chromosome 8 (c) Chromosome 9

(d) Chromosome 10 (e) Chromosome 11 (f) Chromosome 12

(g) Chromosome 13 (h) Chromosome 14 (i) Chromosome 15

(j) Chromosome 16 (k) Chromosome 18 (l) Chromosome 20

(m) Chromosome 19 (n) Chromosome 22 (o) Chromosome 21

Figure E.2: Contact probability graph as a function of the genomic distance (diag-
onal) in Mb in case of single chromosomes extracted from the whole raw GM12878
Hi-C matrix.
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(a) Chromosome 2 (b) Chromosome 3 (c) Chromosome 4

(d) Chromosome 5 (e) Chromosome 6 (f) Chromosome 7

(g) Chromosome X (h) Chromosome 8 (i) Chromosome 9

(j) Chromosome 10 (k) Chromosome 11 (l) Chromosome 12

(m) Chromosome 13 (n) Chromosome 14 (o) Chromosome 15

Figure E.3: Contact probability graph as a function of the genomic distance (diag-
onal) in Mb in case of single chromosomes extracted from the whole ICE normalized
GM12878 Hi-C matrix.
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(a) Chromosome 16 (b) Chromosome 18 (c) Chromosome 20

(d) Chromosome 19 (e) Chromosome 22 (f) Chromosome 21

Figure E.4: Contact probability graph as a function of the genomic distance (diag-
onal) in Mb in case of single chromosomes extracted from the whole ICE normalized
GM12878 Hi-C matrix.

From the plots we can again appreciate that the contact frequency approx-

imately decreases monotonically on every chromosome, regardless the Hi-C

data type (raw or ICE normalized) suggesting polymer-like behavior in which

the three-dimensional distance between loci increases with increasing genomic

distance (diagonal in the Hi-C matrices). These findings are in agreement with

the chromosome conformation capture results as described in paragraph 2.3.2.

However, in the final part of the graph it can be notice that there are greater

fluctuations. These are due to the fact that for diagonals very far from the

main one, there is a limited number of data from which we extract the av-

erage value, so the contact probability value may have significant differences,

especially in case of smaller chromosomes such as 16, 22 and 21.



Bibliography

[1] Amy Ross, Procrustes Analysis, Department of Computer Science and

Engineering University of South Carolina, SC 29208;

[2] Chen J, Hero AO 3rd, Rajapakse I. Spectral identification of topological

domains. Bioinformatics. 2016 Jul 15;32(14):2151-8. doi: 10.1093/bioin-

formatics/btw221. Epub 2016 May 5. PMID: 27153657; PMCID:

PMC4937202;

[3] CMSE 890-001: Spectral Graph Theory and Related Topics, MSU, Spring

2021, Lecture 01: Introduction to Spectral Graph Theory January 19,

2021, Lecturer: Matthew Hirn;

[4] Cournac, A., Marie-Nelly, H., Marbouty, M. et al. Normalization

of a chromosomal contact map. BMC Genomics 13, 436 (2012).

https://doi.org/10.1186/1471-2164-13-436;

[5] Cremer T, Cremer C. Chromosome territories, nuclear architecture and

gene regulation in mammalian cells. Nat Rev Genet. 2001 Apr;2(4):292-

301. doi: 10.1038/35066075. PMID: 11283701;

[6] Dankar, F.K.; Ibrahim, M. Fake It Till You Make It: Guidelines

for Effective Synthetic Data Generation. Appl. Sci. 2021, 11, 2158.

https://doi.org/10.3390/app11052158;

[7] Dekker J, Marti-Renom MA, Mirny LA. Exploring the three-dimensional

organization of genomes: interpreting chromatin interaction data. Nat

Rev Genet. 2013 Jun;14(6):390-403. doi: 10.1038/nrg3454. Epub 2013

May 9. PMID: 23657480; PMCID: PMC3874835;

[8] Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromo-

some conformation. Science. 2002 Feb 15;295(5558):1306-11. doi:

10.1126/science.1067799. PMID: 11847345;

136



BIBLIOGRAPHY 137

[9] Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS,

Ren B. Topological domains in mammalian genomes identified by analy-

sis of chromatin interactions. Nature. 2012 Apr 11;485(7398):376-80. doi:

10.1038/nature11082. PMID: 22495300; PMCID: PMC3356448;

[10] Durbin, R. M. et al. A map of human genome variation from population-

scale sequencing. Nature 467, 1061–1073 (2010);

[11] EreborMountain/Shutterstock.com;

[12] F. L. Bookstein. Landmark methods for forms without landmarks: lo-

calizing group differences in outline shape. Medical Image Analysis,

1(3):225–244, 1997;

[13] Fan R. K. Chung, Lectures on Spectral Graph Theory, University of Penn-

sylvania, Philadelphia, Pennsylvania 19104, chung@math.upenn.edu;

[14] Floyd-Warshall Algorithm, Brilliant.org, from https://brilliant.org/wiki/

floyd-warshall-algorithm/;

[15] Fortin, JP., Hansen, K.D. Reconstructing A/B compartments as revealed

by Hi-C using long-range correlations in epigenetic data. Genome Biol 16,

180 (2015). https://doi.org/10.1186/s13059-015-0741-y;

[16] Frank Firk, & Steven Miller (2009). Nuclei, Primes and the Random Ma-

trix Connection. Symmetry, 1(1), 64–105;

[17] Franzini S, Di Stefano M, Micheletti C. essHi-C: essential component anal-

ysis of Hi-C matrices. Bioinformatics. 2021 Aug 9;37(15):2088-2094. doi:

10.1093/bioinformatics/btab062. PMID: 33523102;

[18] Gartner, “Maverick Research: Forget About Your Real Data – Synthetic

Data Is the Future of AI,” Leinar Ramos, Jitendra Subramanyam, 24 June

2021;

[19] Gower, John C. and Dijksterhuis, Garmt B.: Procrustes Problems, Oxford

University Press, 2004;

[20] Havel, T. F., Kuntz, I. & Crippen, G. M. (1983). The theory and practice

of distance geometry. Bulletin of Mathematical Biology, 45(5), 665–720.

doi:10.1007/bf02460044;



BIBLIOGRAPHY 138

[21] https://hyperskill.org/learn/step/5645;

[22] https://www.niaid.nih.gov/diseases-conditions/prion-diseases.

[23] I.L.Dryden, K.V. Mardia, Statistical Shape Analysis, Wiley, Chichester,

(1998);

[24] Imakaev, M., Fudenberg, G., McCord, R. et al. Iterative correction of

Hi-C data reveals hallmarks of chromosome organization. Nat Methods 9,

999–1003 (2012). https://doi.org/10.1038/nmeth.2148;

[25] Jaadi, Zakaria, A step-by-step explanation of principal component analy-

sis (PCA), Retrieved June (2021);

[26] Jean-Francois Rajotte, Robert Bergen, David L. Buckeridge, Khaled El

Emam, Raymond Ng, Elissa Strome, Synthetic data as an enabler for

machine learning applications in medicine, iScience, Volume 25, Issue 11,

2022, 105331, 2589-0042, https://doi.org/10.1016/j.isci.2022.105331;

[27] Kalhor R, Tjong H, Jayathilaka N, Alber F, Chen L. Genome archi-

tectures revealed by tethered chromosome conformation capture and

population-based modeling. Nat Biotechnol. 2011 Dec 25;30(1):90-8. doi:

10.1038/nbt.2057. PMID: 22198700; PMCID: PMC3782096;

[28] Kendall, D. G. (1989). A Survey of the Statistical Theory of Shape. Sta-

tistical Science, 4(2), 87–99. http://www.jstor.org/stable/2245331;

[29] Kruskal, J.B. and Wish, M. (1978) Multidimensional Scaling.

Sage University Paper Series on Quantitative Applications in the

Social Sciences, No. 07-011, Sage Publications, Newbury Park.

http://dx.doi.org/10.4135/9781412985130;

[30] Lesne, A., Riposo, J., Roger, P. et al. 3D genome reconstruc-

tion from chromosomal contacts. Nat Methods 11, 1141–1143 (2014).

https://doi.org/10.1038/nmeth.3104;

[31] Li, G., Cai, L., Chang, H. et al. Chromatin Interaction Analysis with

Paired-End Tag (ChIA-PET) sequencing technology and application.

BMC Genomics 15 (Suppl 12), S11 (2014). https://doi.org/10.1186/1471-

2164-15-S12-S11;



BIBLIOGRAPHY 139

[32] Lieberman-Aiden, Erez and Van Berkum, Nynke L and Williams, Louise

and Imakaev, Maxim and Ragoczy, Tobias and Telling, Agnes and Amit,

Ido and Lajoie, Bryan R and Sabo, Peter J and Dorschner, Michael O and

others, Comprehensive mapping of long-range interactions reveals folding

principles of the human genome, science, American Association for the

Advancement of Science (2009);

[33] Lyu H, Liu E, Wu Z. Comparison of normalization methods for Hi-C

data. Biotechniques. 2020 Feb;68(2):56-64. doi: 10.2144/btn-2019-0105.

Epub 2019 Oct 7. PMID: 31588782;

[34] Nambiar, Mridula and Kari, Vijayalakshmi and Raghavan, Sathees C.,

Chromosomal translocations in cancer, Biochimica et Biophysica Acta

(BBA)-Reviews on Cancer, Elsevier (2008);

[35] Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot

T, van Berkum NL, Meisig J, Sedat J, Gribnau J, Barillot E, Blüthgen
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