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ABSTRACT

This master thesis project explores cosmological aspects of beyond the Standard
Model physics, and aims at addressing the baryon asymmetry of the Universe (BAU)
and how it could be affected by axion-like particles (ALPs). It intends to provide an
alternative path to the standard thermal leptogenesis mainly studied in the literature,
focusing on the possibility to source non-thermal leptogenesis via decays of ALPs.

ALPs are weakly-interacting pseudo Nambu-Goldstone bosons of spontaneously bro-
ken global symmetries, predicted by many high-energy extensions of the Standard Model
and they are natural targets to discover new physics. We study the evolution of ALPs
in the Early Universe, probing their thermal production and decay, considering their
couplings with gluons, top quarks and, in addition, Majorana right-handed neutrinos,
Ns. In particular, we investigate the decay a → NN and its implications, notably the
non-thermal production of Ns.
In this thesis, the contribution of this non-thermal ALP leptogenesis is estimated and
computed by solving the associated Boltzmann Equations. Moreover, we explore the
region of viable parameter space for ALP leptogenesis where the ALP induces a matter-
dominated phase, diluting significantly the pre-existing relics.

Results favour values for the ALP decay constant fa such that fa > 1011 GeV and
for the Majorana neutrino mass MN such that MN > 1 TeV. The advantages of this al-
ternative approach are that, while standard leptogenesis would undergo strong washout
regime, the non-thermal leptogenesis via ALP decays avoids this, and the secondary non-
thermal population of Ns, produced via ALP decays, fuels leptogenesis and enhances the
resulting baryon asymmetry.
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Chapter 1

Introduction

The current theory of particle physics, the Standard Model (SM), is consistent and ex-
tremely successful: it describes the properties of known matter and forces with remark-
able accuracy, predicting experimental measurements with an outstanding precision. For
instance, we enumerate among the SM triumphs the theoretical predictions of: the Higgs
boson, detected in 2012 [1, 2], the anomalous magnetic dipole moment of the electron,
g − 2, that matches the experimentally measured value to twelve digit precision [3, 4],
the masses of W and Z bosons, which agree with experimental data [4].
Nevertheless, the SM cannot be considered as a complete and fundamental theory, be-
cause it suffers from both theoretical and phenomenological striking shortcomings. On
top of the theoretical ones (notably the lack of a theory of quantum gravity), the most
relevant phenomenological evidence that cannot be explained within the SM framework
are the following: the observed neutrino flavour oscillations [5, 6], which imply that
neutrinos are massive (see Sect. 2.1.1), while the SM predicts them to be massless,
the nature of dark matter, which constitutes approximately the 25% of the total en-
ergy content of the Universe [7], the generating mechanism of the Baryon Asymmetry of
the Universe (BAU), i.e. the observed ratio of matter to radiation (see [8, 9] for reviews).

This master thesis aims at exploring the cosmological aspects of beyond the Stan-
dard Model physics, focusing on the BAU. Indeed, even though the SM contains all the
necessary ingredients to produce it, this is not enough to generate the observed amount
of BAU, as we will review in the next section. Among the various solutions proposed in
the literature (see Sect. 1.1), leptogenesis [10] plays a relevant role: it creates a lepton
asymmetry, which is partially converted into a baryon asymmetry through sphaleron
processes, which are only active before the Electroweak Phase Transition, i.e. for the
temperature range 102GeV ≲ T ≲ 1012GeV (see Chapt. 2). Leptogenesis actually ad-
dresses two shortcomings of the SM: it uses neutrino mass models (see Sect. 2.1.1) to
generate the BAU. The core of leptogenesis relies on the out-of-equilibrium decays of
Majorana right-handed neutrinos Ns into leptons and Higgs bosons, namely N → ℓ ϕ.
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CHAPTER 1. INTRODUCTION

These decays are both lepton-number violating, because Majorana particles do not carry
lepton number, and CP -violating, because of the complex phases in the Yukawa matrix.
This thesis intends to provide an alternative path to the standard thermal leptogene-
sis mainly studied in the literature [9–12], in which the right-handed neutrinos (RHNs)
are thermally produced in the primordial plasma through scatterings and inverse de-
cays involving SM particles. Instead, we focus on the possibility to source leptogenesis
non-thermally via decays of axion-like particles (ALPs): a → NN , where the ALP, a,
is coupled to N via the interaction term MN

fa
aNRNR, with fa the ALP decay constant

and MN the Majorana mass of the RHNs. We rely on ALPs (see e.g. axion/ALP re-
views [13, 14]), which are light, weakly-interacting pseudo Nambu-Goldstone bosons,
because their existence is motivated in any ultraviolet extension of the Standard Model
which includes the spontaneous breaking of an approximated global symmetry [13].
Thus, the main body of this thesis explores first the thermal production of ALPs in the
Early Universe due to its couplings with top quarks and gluons, then the decay a→ NN
and the resulting non-thermal ALP leptogenesis, estimating its contribution to the BAU
and, finally, numerically computing it by solving the associated Boltzmann Equations
(BEs) [11, 12, 15]. We first study the case of hierarchical Majorana neutrino masses and
then we address the resonant case. In addition, in part of the viable parameter space
the ALP induces a matter-dominated epoch, diluting significantly any pre-existing relics,
and we study its effect on the ALP leptogenesis mechanism.

Therefore, we investigate the new mechanism of ALP leptogenesis, which evaluates
how the BAU could be affected by ALPs. The advantages of this alternative approach
are that the strong washout regime can be evaded, while standard leptogenesis would
go through it [9, 11], and that the secondary non-thermal population of Ns, produced
via ALP decays, fuels leptogenesis and enhances the resulting baryon asymmetry. Then,
we discuss the possible gain in the final baryon asymmetry generated through this ALP
leptogenesis. Our results favour fa > 1011 GeV and MN > 1 TeV for successful ALP
leptogenesis.

In the remainder of this Chapter, the problem regarding the BAU is reviewed as well
as the theoretical motivations for the ALPs.

1.1 Baryon Asymmetry of the Universe

Observational evidence, such as measurements of the Cosmic Microwave Background
(CMB) radiation [7, 16], of the baryon density during the Big Bang Nucleosynthesis
(BBN) [17, 18] and of the Alpha Magnetic Spectrometer (AMS) [19, 20], indicate that
there is more matter than antimatter in the Universe: the number of baryons is not
equal to the number of antibaryons. Structures like stars, galaxies, clusters, consist pre-
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CHAPTER 1. INTRODUCTION

dominantly of matter, while antimatter is present in negligible quantities [21–23]. The
direct determinations of the fraction of antiprotons and positrons in cosmic ray observa-
tions [24], which can be explained by pair production in astrophysical processes [25], is
consistent with the milky way made up of only matter. Moreover, evidence from other
galaxies shows that the existence of antimatter in the Universe is excluded by the diffuse
γ-ray background [26]. Indeed, considering the Universe as a patchwork consisting of
distinct regions of matter and antimatter, annihilations near regional boundaries must
occur, providing a contribution to the cosmic diffuse γ-ray background. The signal would
exceed observational limits unless the matter domain is virtually the entire visible Uni-
verse.

The BAU can be defined through the parameters [8, 9]

ηB ≡ nB − nB

nγ

∣∣∣∣
0

, (1.1)

Y∆B ≡ nB − nB

s

∣∣∣∣
0

, (1.2)

where nB, nB, nγ and s are, respectively, the number densities of baryons, antibaryons,
photons and entropy density at present time (see App. A for definitions of these quanti-
ties). ηB and YB are expected to be constant from the production of the BAU onwards [8].
Indeed, the photon number density today, nγ|0, is fixed by the CMB’s temperature
T0 ≈ 2.7K at present time [7, 16] and s|0 does not get modified during an adiabatic
evolution of the Universe. Then ηB is constant in absence of baryon number chang-
ing processes as well as Y∆B. Moreover, the definitions (1.1) and (1.2) can be related
via the calculable relation between the entropy density and the photon number density,
s|0 ≈ 7.04nγ|0 (for details see App. A), as

Y∆B =
ηB
7.04

. (1.3)

There are two main independent measurements of the primordial baryon asymmetry
which rely on BBN and CMB, respectively. The former allows to measure the relic
abundance of light elements and therefore to determine Y∆B, which is the only free pa-
rameter in that computation [27]. The latter detects the baryon density of the Universe,
because it affects the relative size of the peaks in the CMB power spectrum. Thus, the
experimental values

ηB = (6.12± 0.04) · 10−10 , (1.4)

Y∆B = (8.69± 0.22) · 10−11 , (1.5)

have been obtained by the latest CMB measurements [7], and they are consistent with
the most recent analysis of primordial nucleosynthesis [28].
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CHAPTER 1. INTRODUCTION

The measured value of Y∆B significantly differs from the baryon number density deter-
mined by freeze-out mechanism in a symmetric Universe, which corresponds to nB

s
=

nB

s
≈ 7 · 10−20 [21]. These observations lead us to conclude that a matter-antimatter

symmetric Universe is empirically excluded and some mechanism explaining the Baryon
Asymmetry of the Universe is needed.

The BAU cannot be an initial condition of any Universe including an inflationary
phase [8]: indeed any primordial baryon asymmetry would have been exponentially di-
luted away by inflaton’s decay, leading to the consequence that today we would have
ηB = 0 due to the entropy injection at reheating. Therefore, the baryon asymmetry
must have been dynamically generated between the inflationary phase and the BBN: a
scenario which is known as baryogenesis.
The necessary conditions required to achieve a successful baryogenesis in any CPT con-
serving theory were formulated by Sakharov in Ref. [29] in 1967: the matter/antimatter
asymmetry is related to the baryon-number violation in the fundamental theory and to
CP -violation, the product of charge conjugation (C) and parity (P ), and the processes
leading to the production of the BAU have to occur out-of-equilibrium. Thus, the three
Sakharov’s conditions are the following [9, 11, 29]:

1. Baryon-number violation
Associating the number of baryons with the quantum number B, e.g. B = +1
for one baryon, and the number of antibaryons with B, e.g. B = −1 for one
antibaryon, the number densities nB and nB are defined as usual in cosmology (see
App. A). As we know, B cannot be different from zero after an inflationary phase.
Then, baryon number cannot be conserved if the Universe has to evolve from an
initial state with Y∆B = 0 to a state with Y∆B ̸= 0;

2. C- and CP- violation
If the fundamental interactions were invariant under C and CP transformations,
then

Γ(X → Y +B) = Γ(Xc → Y c +Bc) , (1.6)

i.e. the reaction rate for the two processes, where one involves baryons and the
other one their antiparticles, i.e. the antibaryons, would be precisely the same.
Therefore, even in presence of baryon number violation, these two processes would
produce the same asymmetry with opposite sign and the overall effect would be
that no net baryon asymmetry would be generated. Hence, the Universe can be
neither C- nor CP -symmetric in order to get a non zero net baryon asymmetry [25];

3. Departure from thermal equilibrium
Thermal equilibrium means that the system is time translationally invariant, i.e.,
a reaction proceeds at precisely the same rate as the inverse reaction:

Γ(X → Y +B) = Γ(Y +B → X) (1.7)
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CHAPTER 1. INTRODUCTION

Then, an initially vanishing baryon number would always be zero.

Even though the three Sakharov’s conditions can be considered excellent guidelines
while attempting to generate the BAU, they are not sufficient conditions and finding
models that accomodate them in a way that produces a non-zero BAU compatible with
the observed one (1.4) is by far non trivial. In principle, all the three Sakharov’s condi-
tions are qualitatively satisfied in the SM [11]:

1. Baryon number is an accidental symmetry in the SM [30–32]: it is conserved
by the Lagrangian but it is violated at quantum level by the triangle anomaly.
These baryon number violating processes are non-perturbative interactions called
sphalerons [33–35]: they preserve B − L number, where L is the lepton number,
while they violate B + L number [9, 11, 36]. Sphaleron effects are treated more in
detail in Sect. 2.1.3;

2. The weak interactions of the SM violate CP : the CP -violating source can be
found in the non-vanishing complex phase in the CKM matrix (see Ref. [37] and
textbooks [31, 32]). However, this amount of CP -violation turns out to be too
small [11, 38, 39] and, consequently, baryogenesis implies that there must exist
new sources of CP violation beyond the CKM phase of the SM;

3. The expansion of the Universe drives processes out-of-equilibrium. Within the
SM, one departure from equilibrium occurs at the Electroweak Phase Transition
(EWPT) [11, 36, 40]. However, a successful baryogenesis requires a strongly first
order phase transition [9] and the EWPT is second order [41, 42]. Thus, a different
kind of mechanism of departure from thermal equilibrium needs to be taken into
account. For instance, it may arise from new physics that modifies the EWPT.

As seen, the BAU poses a puzzle in particle physics, requiring new physics to extend
the SM theory. During the past decades, many possible new physics mechanisms for
baryogenesis have been proposed. They include:

• GUT baryogenesis
Grand Unified Theories (GUTs) have played an important role in the development
of realistic models of baryogenesis (see Refs. [8, 9, 43, 44]). GUT baryogenesis gen-
erates the baryon asymmetry via the out-of-equilibrium decays of heavy bosonic
leptoquarks, that violate both baryon and lepton number. However, in the simplest
GUT models based on SU(5), these decays can only produce a B + L asymme-
try with a vanishing asymmetry for B − L, because B − L number is conserved.
Consequently, the B + L violating SM sphalerons would destroy this asymmetry
[9, 45];

• Electroweak baryogenesis
It is a process far from thermal equilibrium where the departure is provided by
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CHAPTER 1. INTRODUCTION

a strongly first order phase transition (see Refs. [12, 45] and Refs. [8, 9, 21] for
reviews). Viable models of electroweak baryogenesis (EWB) need a modification of
the scalar potential and new sources of CP -violation [11], imposing constraints on
masses and couplings of Higgs bosons. EWB involves nucleation and propagation of
bubbles, CP -violating interactions on the wall separating the broken and unbroken
phases and a crucial change of sphaleron rate across the wall [9];

• Leptogenesis
It was proposed by Fukugida and Yanagida in Ref. [10] as an attractive mechanism
which is able to generate a lepton asymmetry through lepton-number violating
processes (see reviews [9, 11] and, for calculational methods, Refs [12, 15, 46]).
It extends the SM by adding right-handed neutrinos, which also explain neutrino
oscillations via the see-saw mechanism [11, 47, 48]. Then, their Yukawa couplings
provide the necessary new source of CP -violation. The rate of these Yukawa inter-
actions can be slow enough that the departure from thermal equilibrium occurs.
Lepton number violation comes from the Majorana masses of these new parti-
cles. Finally, the SM sphaleron processes partially convert the generated lepton
asymmetry into a baryon asymmetry [9, 49].

This thesis explores the problem regarding the BAU, focusing on leptogenesis as tool
to achieve a successful baryogenesis.

1.2 What is an ALP?

Generally, new light, pseudo-scalar particles with derivative couplings to the SM appear
in any theory with a spontaneously broken global symmetry: the so-called axion-like
particles (ALPs) (see Refs. [13] and reviews [14, 50, 51]).
ALPs are pseudo Nambu-Goldstone bosons, a, arising at energies below their symmetry
breaking scale v, as massless excitations of the angular part of the SM singlet complex
scalar field ϕ [13, 14]:

ϕ(x) =
(v + σ(x))√

2
eia/v , (1.8)

with < ϕ >= v√
2
the vacuum expectation value (vev) of ϕ and σ its propagating ’radial

mode’. Since ALPs are massless excitations of the angular part of ϕ, they features a
shift symmetry a → a + θ, indeed the vacuum is degenerate. In general, small explicit
breakings of global symmetries are expected such that the ALP acquires a small mass,
i.e. ma ≪ v. The name ALP is inspired by the QCD axion, which is the pseudo Nambu-
Goldstone boson associated with the breaking of the U(1)PQ Peccei-Quinn symmetry,
proposed to address the strong CP problem [52–54].
Possible ALP masses and couplings to SM particles range over many orders of magnitude.
In general, ALPs are weakly-interacting. Indeed, their interactions with SM particles,
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CHAPTER 1. INTRODUCTION

e.g., with gluons (described by the gluonic field strength Gµν), photons (described by
the electromagnetic field strength Fµν) and fermions (described by the Dirac spinor f),
are suppressed by inverse powers of the supposedly large symmetry breaking scales,
fa = v ≫ vEW , where vEW = 246 GeV is the electroweak Higgs vev and fa the so-called
axion decay constant. Then, the low-energy effective Lagrangian including the leading
operators in the 1/fa expansion that couple the ALP to SM particles reads [55, 56]

L =
1

2
∂µa∂

µa−1

2
m2

aa
2−αs

8π
Cg

a

fa
Gb

µνG̃
b,µν− α

8π
Cγ

a

fa
FµνF̃

µν+
∑
f

1

2
Cff

∂µa

fa
fγµγ5f (1.9)

where the couplings constants Cg and Cγ arise from integrating out fermions with chi-
rally anomalous U(1) charge assignments, and the couplings to fermions Cff we consider
in this thesis will be the ones with the top and with the RHN. The ALP Lagrangian re-
spects the shift symmetry mentioned above, which is only softly broken by a mass term.
Its leading interactions with the SM particles are described by dimension-5 operators.

Now, we briefly review two particularly well-motivated examples for ALPs:

• Axion
Peccei and Quinn introduced a U(1)PQ symmetry in order to solve the strong CP
problem [52–54]. Indeed, in the QCD Lagrangian a term such as

θ
g2s

32π2
Gb

µνG̃
b,µν (1.10)

is allowed. This θ-term is the theoretical source of CP -violation in QCD. Thus, the
CP -symmetry is known to be broken in the weak sector of the SM and it is expected
to be broken through strong interactions, which instead has not been observed in
the experiments [51, 57]. Hence, the axion coming from the spontaneous breaking
of symmetry U(1)PQ can replace this θ-parameter by a dynamical quantity, θ(x) =
a(x)/fa, which spontaneously relaxes to < θ >= 0. Finally, introducing this axion
a, which experiences a shift symmetry, explains the non-observation of strong CP -
violation, solving the CP problem in QCD [14, 51].
In this case, the topologically induced potential gives the axion a small mass,
rendering the axion a pseudo Nambu-Goldstone boson, in particular [58, 59]

ma ∝
mπfπ
fa

(1.11)

where mπ and fπ are the mass and the decay constant of the pion.

• R-axion
Most of the generic, calculable models of dynamical supersymmetry breaking have

7



CHAPTER 1. INTRODUCTION

a spontaneously broken U(1)R R-symmetry [60–62], implying the existence of a
Nambu-Goldstone boson, the so-called R-axion.
Supersymmetry (SUSY) (see reviews [63–65] and textbooks [66, 67]) has to be
dynamically broken in order to solve the hierarchy problem, i.e. to have SUSY
breaking scale much lower than the Planck scale. [68, 69]. It was proved that
for a class of known models, where dynamical SUSY breaking is realized in a
calculable way, a spontaneously broken R-symmetry is necessary and sufficient for
dynamical SUSY breaking (the so-called Nelson-Seiberg theorem) [60, 61, 70]. The
generators of this R-symmetry are the only ones that do not commute with the

spinorial generators of SUSY, namely Qα and Q
α̇
, i.e.,

[Qα, R] = Qα , [Qα̇, R] = −Qα̇ (1.12)

where R is the generator U(1)R transformations{
Qα → eiλQα

Qα̇ → e−iλQα̇

. (1.13)

In spontaneous R-symmetry breaking models, the SUSY-breaking field with a finite
R-charge acquires nonvanishing vacuum expectation value. The phase of the SUSY-
breaking field is almost massless and identified as the pseudo Nambu-Goldstone
boson, the R-axion. It acquires a small mass from gravitational coupling with
explicit R-symmetry breaking constant W0 term in the superpotential

Weff = Λ2
effX +W0 (1.14)

where Λeff gives the nonvanishing F -term for the R-charged SUSY-breaking field
X [71]. Other sources of small explicit R-symmetry breaking may well exist (see
e.g. [72]), making the R-axion mass effectively a free parameter.
Hence the existence of an R-axion is a generic prediction of SUSY ultraviolet
completion of the SM. Even if a precise embedding of the studied scenario in SUSY
is beyond the scope of this work, the ALP in this thesis could be for instance the
R-axion.

Finally, ALPs are fascinating new particles and natural targets of new physics, be-
cause they occur in many theoretically appealing UV completions of the SM, most no-
tably in string theory [13, 14]. Indeed, many theories that aim at extending the SM
feature one or several broken global symmetries. Moreover, in certain regions of param-
eter space where ALPs are long-lived, they can be non-thermal candidates for cold Dark
Matter [73]. Instead, in other regions where they decay, they can play the role of media-
tors to a dark sector [14, 50, 51]. For large symmetry breaking scales, the ALP can be a
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CHAPTER 1. INTRODUCTION

harbinger of a new physics sector at a scale fa which would otherwise be experimentally
inaccessible. These features make the ALP a prime target for future experiments aiming
at discovering new physics which addresses some of the open questions of the SM: the
discovery of such ALPs at colliders, laboratories or from astrophysical sources [4] could
be the first sign of a whole sector of new physics.
Of course, these ALPs would also affect the cosmological history of the Universe (for a
review see Ref. [50]). In this thesis, we study in particular the cosmological effects of the
ALPs, addressing their influence on the leptogenesis mechanism.

1.3 Reading this thesis

This thesis is organized as follows. In Chapter 2, we present a review of the standard
thermal leptogenesis mechanism, providing in Section 2.1 a basic introduction to the
neutrino mass models, CP -violation in the right-handed Majorana neutrino decays and
sphaleron processes. In particular, we focus on the hierarchical Majorana masses case in
Sect. 2.2 and in Sect. 2.3 the set of coupled Boltzmann Equations for thermal leptogen-
esis is solved. Finally, we address the case of resonant leptogenesis, focusing on its main
outlines and providing numerical estimates in Sect. 2.4.
In Chapt. 3, we study the evolution of an ALP in the Early Universe, starting from its
production mechanism in Sect. 3.1 to the decay channels in Sect. 3.2. The innovative
contribution consists in taking into account its coupling with Majorana neutrinos Ns.
Chapt. 4 contains only original material worked out for this thesis, indeed our alterna-
tive leptogenesis is presented: a non-thermal leptogenesis in which Ns are also produced
through the ALP’s decays. First of all, a suitable parameter space for this ALP leptoge-
nesis is identified in Sect. 4.1 and then, a modified set of Boltzmann Equations is derived
and implemented, obtaining the produced baryon asymmetry in Sect. 4.2. In Sect. 4.3,
the region of the viable parameter space in which the ALP dominates the energy content
of the Universe for a certain period of time is taken into account and its effects on the
BAU are probed.
The Chapt. 5 shows the conclusion of this thesis and possible future directions.
Eventually, in Appendix A some useful conventions and definitions of cosmological pa-
rameters can be found, in App. B a detailed derivation of the Boltzmann Equations is
shown and in App. C the ALP production due to its coupling to Majorana neutrinos is
computed.

9



Chapter 2

Thermal leptogenesis

In this Chapter, the mechanism of leptogenesis is reviewed [9, 11, 12, 15, 74]. In partic-
ular, thermal leptogenesis is presented as possible explanation for the BAU. In Sect. 2.2
the case of hierarchical heavy neutrino masses is discussed. The integrated Boltzmann
Equations for the Yields of the involved species are solved and the solutions are shown
in Sect. 2.3. Finally, resonant leptogenesis is addressed, providing a numerical example
in Sect. 2.4.

2.1 Basic set-up

Leptogenesis was proposed by Fukugida and Yanagida [10] as an elegant mechanism able
to generate a lepton asymmetry through lepton-number violating processes. It consists
of few simple ingredients and it addresses two of the most puzzling open questions in
the Standard Model: the nature of neutrino masses and the present matter-antimatter
asymmetry.
It is based on the out-of-equilibrium and CP-violating decay of a heavy Majorana neu-
trino N into a lepton ℓ and a Higgs boson ϕ, which produces a lepton asymmetry that is
then converted in a baryon asymmetry through sphaleron processes [33–35, 49]. There-
fore, leptogenesis can satisfy all the three Sakharov’s conditions for baryogenesis stated
in Sect. 1.1 and thus, it can be understood as a tool to achieve successful baryogenesis.

2.1.1 Heavy Majorana neutrino mass models: see-saw type I

Neutrino oscillations [5, 6] show evidence for nonzero neutrino masses, challenging the
SM theoretical predictions. Measurements of fluxes of solar, atmospheric, reactor and
accelerator neutrinos provide the following two neutrino mass-squared differences [6]

∆m2
21 = (7.39± 0.20) · 10−5eV2 , ∆m2

31 = (2.523± 0.030) · 10−3eV2 (2.1)

10



CHAPTER 2. THERMAL LEPTOGENESIS

Then new particles, right-handed sterile neutrinos Ns, can be added to the SM in order
to account for neutrino masses via a see-saw mechanism [11, 47, 48]. See-saw models
are high energy models [75] that induce an effective model-independent 5-dimensional
operator, named Weinberg operator [76]

L5 = −c5
2

(ℓ
c · ϕ̃∗)(ϕ̃† · ℓ)

Λ
+ h.c. , (2.2)

where c5 is its Wilson coefficient, Λ is the scale at which the new exchanged particle
becomes dynamical degrees of freedom, ℓT = (νL, lL) is the left-handed lepton SU(2)-
doublet, ϕT = (ϕ+, ϕ0) is the SU(2) Higgs doublet, with ϕ0 = h/

√
2 such that the vev

vEW =
√
2 < ϕ0 >=< h >≈ 246 GeV [77] generates the quantity [75]

mν =
c5v

2
EW

2Λ
, (2.3)

ϕ̃ = iσ2ϕ
∗, with Pauli matrix σ2, ℓ

c = Cℓ
T
, with C the charge conjugation matrix. The

operator (2.2) is both Lorentz and SU(2) invariant. There are three types of see-saw
models, which differ by the properties of the exchanged heavy particle: the neutrino
mass model considered in this thesis is the see-saw type I [47, 48, 75], which is very
well motivated by various extensions of the SM [11]. This see-saw is characterized by
SU(3)× SU(2)× U(1)- singlet fermion Ns.
See-saw models are fascinating because they explain naturally the smallness of the ob-
served neutrino masses [47]. Indeed, in the see-saw type I, a right-handed neutrino N
is introduced and coupled to the Higgs and the left-handed neutrino via the complex
Yukawa coupling yν (for just one generation, yν is a coupling, while, considering all the
three generations, it is a 3 × 3 matrix with complex couplings [10]). Then, the UV
Lagrangian reads [9, 48]

Lsee-saw = −yνℓ · ϕ̃N − 1

2
MNN

c
N + h.c. (2.4)

where MN is the Majorana heavy mass of the right-handed neutrino. Dirac mass terms
for the charged leptons and, in particular, for the neutrinos are generated through the
electroweak symmetry breaking: mD = yν√

2
vEW . Taking into account all the generations,

Eq. (2.4) can be written as

Lsee-saw = −1

2
ψ

c

LMψL + h.c. , (2.5)

with Dirac spinor and full mass matrix respectively [48]

ψL ≡
(
νL
N c

)
, M =

(
0 mT

D

mD MN

)
. (2.6)

11
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Diagonalizing the matrix in (2.6) through a unitary transformation, the massive states
turn out to be Majorana states [9, 48]: one remains very heavy, i.e., withMN mass, while
the light neutrino masses acquire a tiny mass, i.e., mν = −mDM

−1
N mT

D. Thus, using the
relation that links the Dirac mass term to the coupling yν and the vev vEW , we have

mν =
y2νv

2
EW

2MN

, (2.7)

where for simplicity we have just considered one generation for neutrinos. Hence, the
see-saw type I is an UV completion of the effective Weinberg operator (see Eq. (2.3)).
Moreover, we find that Ns are usually very heavy, e.g. MN ≃ 1010 GeV, and their
coupling yν is e.g. yν ≃ 10−2. Indeed, those values of coupling and mass for the N
reproduce the experimental bound for the light neutrino mass [6]

mν ≃ 0.1 eV . (2.8)

These heavy Majorana neutrinos Ns are the source of leptogenesis. Indeed, the first
term of see-saw Lagrangian (2.4) introduces the coupling of N with ℓ and ϕ. Then, the
Majorana neutrino’s decay

N → ℓ ϕ (2.9)

and its complex conjugate
N → ℓ ϕ (2.10)

feed the leptogenesis mechanism [10]. Let us highlight that Ns are Majorana particles,
i.e., N = N , and their mass term

LmM = −1

2
MNN

c
N + h.c. =

1

2
MNN

TC−1N + h.c. (2.11)

break the lepton-number L [48], indeed under a U(1)Lepton transformation such as N →
eiαN ,

LmM → ei2α LmM . (2.12)

Then these processes, (2.9) and (2.10), violate L conservation, fulfilling the first Sakharov’s
condition [10, 29] thanks to sphalerons (see Sect. 2.1.3).

2.1.2 CP-violation

In order to perform a successful baryogenesis, leptogenesis mechanism has also to meet
the second Sakharov’s condition [29]: the N ’s decays need to be CP-violating to generate
a lepton asymmetry, i.e.,

Γ(N → ℓ ϕ) ̸= Γ(N → ℓ ϕ) . (2.13)

Let us consider the basic thermal leptogenesis scenario [10] that extends the SM by
adding three right-handed neutrinos N1, N2, N3, with hierarchical masses such that only

12
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the decay of N1 contributes significantly to the production of lepton asymmetry (see
Sect. 2.2). Then, we can define the parameter ϵαα as the CP -asymmetry in the lepton
flavour α [10]:

ϵαα =
Γ(N1 → ℓα ϕ)− Γ(N1 → ℓα ϕ)

Γ(N1 → ℓ ϕ) + Γ(N1 → ℓ ϕ)
. (2.14)

If just the tree-level decay is considered (see Fig. 2.1), no CP -asymmetry would be
created, indeed the tree-level amplitude squared of the scattering matrix |M0|2 for the
decay (2.9) is equal to |M0|2 for the complex conjugate decay (2.10): [11]

|M0|2 = |yα1A0|2 = |M0|2 = |y∗α1A0|2 , (2.15)

with A0(N → ℓ ϕ) = uℓ
(1+γ5)

2
uN and |A0|2 = |A0|2. The Yukawa matrix is indicated by

y. Then, a CP -asymmetry ϵαα arises from the interference of the tree-level and one-loop
amplitudes. As noted in Ref. [78], all the one-loop diagrams, including wavefunction
corrections, have to be included.

Figure 2.1: Tree-level, one-loop vertex and one-loop self-energy Feynman diagrams contribut-
ing to heavy neutrino decays [9].

The tree-level decay width of the heavy Majorana neutrino N1 reads [10, 74]

ΓD =
∑
α

Γ0(N1 → ℓα ϕ) + Γ0(N1 → ℓα ϕ) =
(y†y)11
8π

M1 . (2.16)

Computing the contributions coming from the tree-level, the vertex and the self-energy
Feynman diagrams (Fig. 2.1), the CP -asymmetry parameter (2.14) becomes [11]

ϵαα =
1

8π

1

(y†y)11

∑
j ̸=1

[
Im

{
(y∗α1)(y

†y)1jyαj
}
F

(
M2

j

M2
1

)
+ Im

{
(y∗α1)(y

†y)j1yαj
} 1

1− M2
j

M2
1

]
,

(2.17)
where j = 2, 3 and

F (x) =
√
x

[
1

1− x
+ 1− (1 + x) log

(
1 + x

x

)]
x≫1−−→ − 3

2
√
x
− 5

6x3/2
+ ... (2.18)

Summing over the lepton flavours α, the second term of Eq. (2.17) vanishes because it
violates the single lepton flavours but it conserves the total lepton number [11, 79, 80].
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Therefore, we have [11, 74]

ϵ =
∑
α

ϵαα =
1

8π

1

(y†y)11

∑
j ̸=1

[
Im

{
(y†y)21j

}
F

(
M2

j

M2
1

)]
. (2.19)

2.1.3 Anomalous B + L violation: sphaleron processes

Before studying the details of leptogenesis, let us focus on how the lepton asymmetry
is converted into a baryon asymmetry via non-perturbative interactions, i.e., sphalerons
(see Refs. [33–36, 49, 81, 82]). In the context of leptogenesis, we are looking for an
anomaly in the B + L current, which, within the four-dimensional SM, arises due to
SU(2) gauge interactions, which are chiral and non-Abelian [11].

In the SM, both baryon and lepton number are accidental symmetries: they are
conserved according to classical equations of motions, but they are not preserved at
quantum level due to the chiral anomaly (see for instance Ref. [83]), giving rise to the
current [30]

∂µJ
µ
B =

nf

32π2
g2wF

a
µνF̃

a,µν . (2.20)

where F a
µν is the weak SU(2) field strength, its dual F̃ a,µν ≡ 1

2
ϵµνρσF a

ρσ, gw is the weak
coupling constant and nf = 3 is the number of families. An equation identical to (2.20)
for the lepton-number current Jµ

L can also be obtained. Therefore, B − L is conserved
in the SM.
Then, the change of baryon number B is linked to the following dynamics of gauge
fields [9]:

B(t)−B(0) = nfQ(t) , (2.21)

with

Q(t) ≡
∫ t

0

dt′
∫
d3x

g2w
32π2

F a
µνF̃

a,µν . (2.22)

In four dimensions, the spacetime integral of Eq. (2.22) vanishes for an Abelian
gauge field, but can be non-zero for non-Abelian fields, e.g. SU(2) fields [11]. When
Q(t) is a non-zero integral, baryons will be created, even though there is no perturbative
interaction in the Lagrangian that generates them. Thus, these baryon number changing
processes are intrinsecally non-perturbative. Moreover, the right-hand side of (2.20) can
be written as a total derivative involving gauge fields, ∂µK

µ, where [9]

Kµ =
ϵµνρσg2w
32π2

(
F a
νρA

a
σ −

1

3
gwϵ

abcAa
νA

b
ρA

c
σ

)
. (2.23)

with 4-potential Aν . Hence, we can define the ”winding number”, or Chern-Simons
number NCS, of the field configuration such that [84]

NCS =

∫
d3xK0 . (2.24)
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Then, we can write
Q(t) = NCS(t)−NCS(0) . (2.25)

In order to change NCS (which is an integer) by ±1 one has to overcome an energy bar-
rier [82]. In Fig. 2.2, the minimal static energy of the gauge fields is sketched as a function
of NCS. All the minima of the energy describe the vacuum state and differ by large gauge
transformations [9]. The barrier is given by a static solution to the equations of motion,
the so-called sphaleron [33], which has half integer NCS. At zero temperature, gauge field
configurations that give non-zero Q(t) correspond to tunneling configurations, but the
amplitude of such a process is negligible and has no observable consequences [9, 11, 85].
However, at finite temperature, there can be thermal fluctuations of the field that climb
over the energy barrier. These are the sphaleron processes and they correspond to a
vacuum-to-vacuum transition which changes the baryon number by multiples of nf [33].
This means that sphalerons are source for three leptons (all generations) and nine quarks
(all colours and generations), because they induce ∆B = ∆L = ±3 for a change of the
Chern-Simons number of NCS(t)−NCS(0) = ±1 [11](see Eq. (2.21)).

Figure 2.2: A sketch of the minimal field energy for a given value of the Chern-Simons number
NCS [82].

Now, returning to our discussion, leptogenesis is able to provide

B − L ̸= 0 , (2.26)

which means that a lepton asymmetry has been created, as we shall see in the next
sections. Then, knowing that the B − L number is conserved in the SM and that
those sphaleron processes are (B+L)-violating, we conclude that any non-zero (B+L)-
asymmetry is washed out [9]: thus leptons are converted into baryons through these
non-perturbative effects, obtaining a baryon asymmetry from an initial asymmetry of
leptons only. Introducing the parameter csph, which corresponds to the fraction of B−L
asymmetry turned into B asymmetry, the baryon asymmetry today reads as a function
of the B − L asymmetry at time tf when the leptogenesis process is completed [9, 49]

B(t0) = csph(B − L)(tf ) . (2.27)
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In the SM, csph can be computed by considering the constraints among various chemical
potentials induced by the spectator processes [11]

csph =
8nf + 4

22nf + 13
=

28

79
. (2.28)

Furthermore, another element has to be considered: the temperature range at which
the sphalerons are in thermal equilibrium with the primordial plasma, i.e. they are
efficient (see App. A for a discussion about thermal equilibrium in the Early Universe).
Indeed, the number of transitions per unit time and unit volume, Γsph, can be defined
as the sphaleron rate. It is Boltzmann suppressed:

Γsph ∝ e−Esph/T , (2.29)

where Esph is the height of the barrier at T = 0 [11]. Comparing Γsph with the Hubble
parameter, H, the sphaleron processes turn out to be in thermal equilibrium for [11, 36,
86, 87]

102GeV ≲ T ≲ 1012GeV . (2.30)

This means that the generated lepton asymmetry can be converted into the baryon
asymmetry only for this range of temperature.

2.2 Hierarchical heavy neutrino masses

In this Section, we proceed describing the key points of thermal leptogenesis and we study
the scenario of hierarchical heavy neutrino masses. A precise numerical computation
of the B − L asymmetry produced is presented in Section 2.3, where the Boltzmann
Equations in their integrated form are solved.
Here, the following simplifying assumptions hold:

• three right-handed neutrinos, namely N1, N2 and N3, are considered in the basic
scenario of hierarchical Majorana masses, i. e. M1 ≪M2,3;

• heavy Majorana neutrino population is produced thermally thanks to inverse de-
cays and scatterings occurring in the thermal plasma. In particular, let the thermal
production of N2, N3 be negligible with respect to the thermal production of N1;

• we assume the one-flavour approximation: all lepton flavours are treated on the
same footing in the interactions where they are involved.

The case in which the first assumption does not hold, i.e. no hierarchical masses for
RHNs, is addressed in Sect. 2.4.
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The aforementioned assumptions imply an effective theory of a propagating N1 and
effective 5-dimensional operators induced by N2 and N3. Then, integrating out N2, N3,
the following effective Lagrangian is obtained [9, 11]

L =
1

2
N1/∂N1 − y1ℓ · ϕ̃N1 −

1

2
MN1N1

c
N1 −

y22
2

(ℓ
c
ϕ̃∗)(ϕ̃†ℓ)

M2

− y23
2

(ℓ
c
ϕ̃∗)(ϕ̃†ℓ)

M3

+ h.c. . (2.31)

In this scenario, the decays of the two heavier neutrinos N2 and N3 are negligible, so
that the B − L asymmetry that they generate does not affect the final value of B − L.
Thus leptogenesis is dominated by the CP -violating interactions of the lightest of the
heavy Majorana neutrinos [88]:

• at T > M1,
right-handed neutrinos N1 are in thermal equilibrium with the plasma

N1 ↔ ℓ ϕ (2.32)

N1 ↔ ℓ ϕ (2.33)

• at T ≲M1,
the initial thermal N1 population decays away because the equilibrium number
density is exponentially suppressed ∝ e−M1/T [11]. If the N1 interactions are CP-
violating, i.e. (2.13), asymmetries in all the lepton flavours can be produced. If the
N1 decay occours out-of-equilibrium for a certain period of time, the asymmetry
will survive. Finally, the B − L asymmetry can be converted into a baryon asym-
metry by the SM B + L-violating processes in the range of temperature of (2.30).

The Yield of the baryon asymmetry Y∆B produced by thermal leptogenesis can be
parametrized as [11]

Y∆B ≃ Y eq
N csph ϵ κf , (2.34)

where

• Y eq
N ≡ neq

N /s is the equilibrium Yield of RHN N1, i.e., at T ≫ M1. Considering
the number of relativistic degrees of freedom as in the SM i.e. g∗s = g∗ ≃ 106 (see
App. A), we have

Y eq
N =

3

4

nγ

s
=

135ζ(3)

4π4g∗
≃ 4 · 10−3 , (2.35)

with the factor 3/4 accounting for the fermionic nature of the neutrinos;

• csph is the sphaleron conversion factor of Eq. (2.28) and in the SM [11]

csph ≃ 0.35 ; (2.36)
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• ϵ is the CP -asymmetry parameter and, in general, is defined as in Eq. (2.19). In
the case of hierarchical Majorana masses, the expansion (2.18) holds and

F

(
M2

k

M2
1

)
≃ −3

2

M1

Mk

. (2.37)

Therefore the CP -asymmetry can be written as

ϵ =
3

16π

M1

v2EW (y†y)11
Im(y†mνy

∗)11 . (2.38)

Here, y is the Yukawa matrix, containing the CP -violating phases. Since the exact
values inside this Yukawa matrix are unknown [11], the imaginary part factor of
Eq. (2.38) is estimated, providing an upper bound for the CP -asymmetry in N ’s
decays [9]

ϵ < ϵmax =
3

16π

mmax
ν M1

v2EW

≃ 10−6

(
M1

1010 GeV

)
, (2.39)

where mmax
ν =

√
|∆m2

31| (2.1);

• κf is the efficiency factor [88], accounting for washout effects, i.e. processes that
erase the created lepton asymmetry, competing with the decay source term. Thus,
washout processes reduce the efficiency of leptogenesis and we always have κf ≲ 1.

A relevant quantity which is useful to compute the value of the efficiency factor κf
is the parameter K: in the following we will provide an expression of κf via K.
The parameter K is defined as the ratio [9, 88]

K =
Γ(N1 → ℓϕ, ℓ ϕ)

H(T =M1)
=
m̃1

m∗
≃ (y†y)11MPl

13.28π
√
g∗

1

M1

, (2.40)

where we have introduced the effective light-neutrino mass m̃1 [89]

m̃1 =
∑
α

y∗α1yα1v
2
EW

M1

=
(y†y)11v

2
EW

M1

, (2.41)

and the equilibrium neutrino mass m∗ [88]

m∗ =
8πv2EW

M2
1

H(T =M1) =
16π5/2√g∗

3
√
5

v2EW

MPl

≃ 1.08 · 10−3eV . (2.42)
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This K parameter controls whether or not N1’s decays are in equilibrium when
T =M1. Therefore, the following two regimes can be identified:

− if m̃1 > m∗ → strong washout → κf ≪ 1 , (2.43)

− if m̃1 < m∗ → weak washout → κf ≃ 1 . (2.44)

Thus, K > 1 implies strong washout regime, while K < 1 weak washout regime.
Then, given the experimental values of ∆m2

21 and ∆m2
31 (2.1), the washout is typ-

ically K ≃ (30÷ 50) [88], i.e. strong washout regime. Actually, the weak washout
regime can be achieved by tuning the unknown dimensionless matrix that can
parametrize the lepton sector of the see-saw extension of the SM [11, 90]. In such
a way, the value of K can be lowered, realizing the condition K < 1.
However, even though the weak washout regime is always desirable and achievable
by tuning the parametrization matrix, the strong washout regime is the preferred
natural one [88].

Now, we review the features of these two different regimes. In the weak washout
regime, the washout processes are out-of-equilibrium whenN1 becomes non-relativistic
[11] and, under these conditions, leptogenesis becomes very efficient. In this regime,
κf strongly depends on the initial conditions [9, 88]: either thermal initial abun-
dance forN1 or zero initial abundance [9]. On the other hand, in the strong washout
regime, the departure from thermal equilibrium is reduced and leptogenesis is less
efficient. Notably, there is a period in which the washout processes are in thermal
equilibrium [11] and κf does not depend on the initial conditions [9, 88]. In this
case, κf is universal and can be approximated, within the theoretical uncertainties,
by the simple power law [9, 88, 91]

κf ≃
(

1

2K

)1.1

≃ (2± 1) · 10−2

(
0.01eV

m̃1

)(1.1±0.1)

. (2.45)

Thus, numerical calculations typically imply κf ≃ 5 · 10−3 [88].

Finally, let us note that the leptogenesis process strongly depends on the neutrino
mass parameters [88]: indeed, ϵ is determined by the mass of the heavy neutrino M1,
while, in the strong washout regime, κf is determined by m̃1 (2.41).

2.3 Integrated Boltzmann Equations

Actually, we can go beyond the approximation of expression (2.34) and carry out a more
refined computation of the amount of lepton asymmetry generated by the N1’s decays.
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Indeed, this is usually computed by integrating the appropriate Boltzmann Equations
(BEs) [89, 92–94]. These describe the out-of-equilibrium dynamics of processes involv-
ing the heavy singlet fermions. The aim of this Section is to present the fundamental
assumptions and the key steps that lead to the basic Boltzmann Equations in the case of
one-flavour thermal leptogenesis, considering just the lightest neutrino N1 involved, and
to show their numerical solutions. See App. B for details about the derivation of the BEs.

As one’s of Sakharov’s conditions, departure from thermal equilibrium is crucial for
the dynamic creation of a baryon asymmetry [29]. In the leptogenesis scenario, out-of-
equilibrium conditions are achieved when interactions are no longer able to maintain the
momentum distribution function of the right-handed neutrino at its equilibrium value
as the Universe expands [46]. To simplify the calculation, this non-equilibrium process
is traditionally studied by means of the integrated BEs [93, 95], whereby the equations
of motion for the distribution functions of all particle species involved are integrated
over momentum such that only the evolution of the number densities, specifically nN1

and nB−L, is tracked. In order for the integrated equations to be in a closed form, the
following assumptions are made:

• all particles are in kinetic equilibrium, including the RHN, i.e. elastic scatterings do
occur at higher rate than inelastic scatterings. Then, the phase-space distribution
can be approximated as fi ≈ f eq

i ni/n
eq
i , where f eq

i is the equilibrium one [46];

• all quantum statistical factors due to either Fermi-Dirac distribution for fermions
and to Bose-Einstein for bosons (Pauli blocking effects/stimulated boson emissions)
are neglected, i.e. 1 + fi ≈ 1 [95], and their phase-space distribution in thermal
equilibrium f eq

i follows the classical Maxwell-Boltzmann distribution, f eq
i = e−Ei/T .

While these assumptions seem justifiable for particle species with gauge interactions,
their validity is not immediately obvious for the RHN. However, they produce a typical
magnitude of error of 20% in the asymptotic value of the lepton asymmetry produced in
the weak washout regime, while ≲ 5% in the strong washout [46].

Thus, in the following, we shall assume the aforementioned assumptions and, thanks
to them, notably the one of kinetic equilibrium, the integrated BEs are obtained, i.e.
involving number densities of the RHN, nN1 , and of B −L number, nB−L (see App. B.1
for detailed derivation): first the BEs are derived with respect to the phase-space dis-
tributions fN and fB−L, then integration over the momentum phase space is performed,
deriving the integrated form [46]. Eventually, a set of coupled BEs tracks the evolution
of the RH neutrino Yield and B − L Yield, respectively YN1 and YB−L.
In the variety of processes occurring in the hot plasma in the Early Universe, which
involve the Majorana neutrinos, the simplest scenario of processes with O(y2ν) and O(y4ν)
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terms is considered, where yν is the neutrino Yukawa coupling (2.4). Therefore the
following reactions are taken into account:

• decays: N1 → ℓ ϕ , contributing at O(y2ν);

• inverse decays: ℓ ϕ→ N1, contributing at O(y2ν) ;

• 2 ↔ 2 scatterings mediated by N1 exchange: ℓ ϕ ↔ ℓ ϕ, ℓ ϕ ↔ ℓ ϕ, ϕϕ ↔ ℓ ℓ,
ϕϕ ↔ ℓ ℓ . These ∆L = 2 scattering proccesses need to be considered in the
computation, otherwise decays and inverse decays would lead to generation of lep-
ton asymmetry even in thermal equilibrium, contradicting Sakharov’s conditions.
However, the real intermediate states (RIS) have to be subtracted in the first two
aforementioned processes in order to avoid double-counting. Indeed, the on-shell
s-channel N1 contributions are already accounted for by decays and inverse decays.
The subtraction of RIS from the 2 → 2 is a crucial and delicate point in setting
up the BEs. For a detailed discussion, see e.g. Refs. [9, 11, 88]. Let us stress
that the resonant part of 2 → 2 scatterings contributes at order O(y2ν), while the
non-resonant one at order O(y4ν) [11].

The 2 → 2 scatterings involving gauge bosons/top quarks are not considered, e.g.
N t → ℓ t which contributes at order O(y2νy

2
t ) and would lead to additional washout in

the lepton asymmetry. Indeed, for thermal leptogenesis their effects are negligible in
the strong washout regime (≲ 5% of error), because they are subleading with respect
to decays and inverse decays (see Refs. [46, 96] for detailed treatment). Therefore, in
the remainder of this Chapter we will solve the BEs considering only decays and inverse
decays without including the aforementioned ∆L = 1 processes.

Within this framework, the Boltzmann Equations valid at O(y2ν) can be derived (see
App. B.1 for details) and read [11, 88]

dYN1

dz
= − γD

Hsz

(
YN1

Y eq
N1

− 1

)
dYB−L

dz
= γDϵ

Hsz

(
YN1

Y eq
N1

− 1

)
− γD

Hsz

YB−L

2Y eq
l

(2.46)

where z = M1/T , H = H(z) is the Hubble parameter at temperature T in a radiation-
dominated Universe, Y eq

N1
and Y eq

l the equilibrium Yields of RHNs and leptons considering
the Maxwell-Boltzmann statistics, γD is the reaction density of the RHN decay N1 → ℓ ϕ
defined as [9, 46, 89]

γD ≡ γeq(N1 → ℓϕ) ≡
∫
dΠN1dΠℓdΠϕf

eq
N1
(2π)4δ4(pN1 − pℓ − pϕ)|MN1→ℓϕ|2 , (2.47)
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where dΠi ≡ d3pi
2Ei(2π)3

.

The first equation in (2.46) tracks the evolution of YN1 and the term on the right-hand
side accounts for decays and inverse decays. On the other hand, the second equation
defines the evolution of the asymmetry YB−L. Let us highlight that the decays yield the
source term for the generation of the asymmetry, while the second term γDYB−L

2Y eq
l Hsz

quantifies

the strength of the washout due to inverse decays. Finally, the second equation makes
transparent that the CP -asymmetry parameter ϵ as well as the departure from thermal
equilibrium of the RHN trigger the creation of the B − L asymmetry.
The set of coupled Boltzmann Equations (2.46) is implemented and numerically solved,
given that [11, 89]

γD = sY eq
N1

K1(z)

K2(z)
ΓD =

T 3

π2
z2K1(z)ΓD (2.48)

Y eq
N1

=
neq
N1

s
=

45

2π4g∗
z2K2(z) , (2.49)

and

Y eq
l =

neq
l

s
=

45

π4g∗
=

2Y eq
N

z2K2(z)
, (2.50)

where ΓD is the decay width in the rest system of N1 (see Eq. (2.16)), K1(z) and K2(z)
are the modified Bessel functions of the second kind of first and second order. We nu-
merically solve the BEs in the hierarchical case for z ∈ [zi, 100], with zi = 10−3 ≪ 1.
Two different initial conditions for the RHN abundance are considered: zero initial Yield,
i.e. YN1(zi) = 0, and thermal initial Yield, i.e. YN1(zi) = Y eq

N1
, represented respectively

by blue and red lines in Figs. 2.3 and 2.4. We have also plotted the RHN equilibrium
Yield Y eq

N1
for reference. Moreover, both weak and strong washout regime are taken into

account, with parameters K = 0.1 (realized by e.g. MN = 1010 GeV and yν = 1.88 ·10−4)
in Fig. 2.3 and K = 10 (realized by e.g. MN = 1010 GeV and yν = 1.88 ·10−3) in Fig. 2.4.
The parameter K depends on the mass and coupling of RHN through Eq. (2.40).
Eventually, in order to obtain the final baryon asymmetry, Y∆B, we consider the asymp-
totic value of YB−L and then multiply it by the sphaleron conversion parameter csph (2.28):

Y∆B =
28

79
YB−L . (2.51)
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Figure 2.3: Evolution of the N1 (left panel) and B−L (right panel) Yields as function of z, in
the thermal leptogenesis with one RH neutrino. Weak washout with K = 0.1, realized by e.g.
MN = 1010 GeV and yν = 1.88 · 10−4. Comparison zero initial abundance vs thermal initial
abundance.

Figure 2.4: Evolution of the N1 (left panel) and B−L (right panel) Yields as function of z, in
the thermal leptogenesis with one RH neutrino. Strong washout with K = 10, realized by e.g.
MN = 1010 GeV and yν = 1.88 · 10−3. Comparison zero initial abundance vs thermal initial
abundance.

Now, let us comment the time evolution of the Majorana neutrino’s Yield YN1 : com-
paring the left panels of Figs. 2.3 and 2.4, a stronger departure from the thermal equi-
librium occurs in weak washout regime with respect to the strong washout. This is
explained by the fact that, in this scenario, the production of N1 at high temperatures,
i.e. z < 1, is only due to inverse decays. Then, in the strong washout regime, the RHN
abundance is brought to its equilibrium faster than in the weak washout case, due to
the stronger coupling. A B − L asymmetry is generated in the heavy neutrinos decays,
since their Yield exceeds the equilibrium Yield. In both regimes, once equilibrium has
been achieved, the RHN abundance falls off exponentially for z ≳ 4, as expected for all
non-relativistic particle species in thermal equilibrium [46].
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For what concerns the B − L asymmetry, we have plotted its absolute value: indeed, a
negative lepton asymmetry is produced at high temperatures by RHN production from
inverse decays (in the case of zero initial RHN abundance), until the decays come to
dominate over inverse decays, thus reversing the direction of the asymmetry production,
and eventually flipping the sign of the asymmetry to positive. This happens at z ∼ 7
for weak washout (see Fig. 2.3) and at z ∼ 1 for strong washout (Fig. 2.4). As long
as the washout processes are in equilibrium, the asymmetry is partly washed out again.
Finally, at z > 1, N1’s production is kinematically suppressed, i.e. the RHN abundance
begins to fall off exponentially, the washout processes eventually get out of equilibrium
at some zw in the strong washout regime and the B−L asymmetry is frozen in, asymp-
toting to a final constant value. When K > 1, the washout rate plays a dominant role in
determining the final asymmetry, as can be seen comparing the right panels of Figs. 2.3
and 2.4.
Now we compare the results obtained with zero (blue lines) and thermal (red lines) initial
abundance for the RHNs. For thermal initial abundance, at high temperatures, z < 1,
the RHN abundance is in equilibrium and when it approaches z ∼ 1, it gets out-of-
equilibrium (this is more evident in the weak washout regime). Moreover, for thermal
initial abundance, the asymmetry |YB−L| does not flip its sign and it continuously in-
creases toward its final value [9]. In addition, we conclude that the initial conditions are
significantly relevant only in the case of weak washout, while the strong washout scenario
is independent of them. This is reasonable, because in the strong washout case, the RHN
abundance is quickly brought to its equilibrium value, thus it is not particularly affected
by the initial conditions (either zero or thermal abundance). As motivated in Sect. 2.2,
the strong washout regime is the most natural and, in the following, we will assume zero
abundance of N1 as initial condition.

In order to gain a comprehensive understanding of the non-equilibrium process of
thermal leptogenesis, it is useful to compare the reaction rates per particles [9],

Γ̃D =
γD
Y eq
N1
s

(2.52)

for decays, and

Γ̃W =
γD

2Y eq
ℓ s

(2.53)

for washout processes. The latters are due to inverse decays and they partially destroy
the B − L asymmetry produced, as can be explicitly seen from the second term in
the right-hand side of the BE (2.46) describing YB−L. Plotting the ratio Γ̃/H shows
when those processes are in equilibrium, i.e. Γ̃/H > 1, and when they are not, i.e.
Γ̃/H < 1 (see Fig. 2.5). The main difference between the weak and strong washout
regime is that in the former, the washout processes are always out-of-equilibrium and
the asymmetry produced is not washed out. On the other hand in the latter, both decay
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and washout processes are out-of-equilibrium for z < 0.15, while at z ∼ 0.15 the decay
comes into equilibrium and, right after (i.e. at larger z), the washout processes come
into equilibrium, too. For 1 ≲ z ≲ 10, we have Γ̃W > H: washout processes affect the
production of the B − L asymmetry. Eventually, at z ∼ 10 the washout processes go
out-of-equilibrium and the asymmetry is frozen in.

Figure 2.5: Left panel: weak washout with K = 0.1, the washout processes are always out-
of-equilibrium. Right panel: strong washout with K = 10, the washout processes are in
equilibrium for 1 ≲ z ≲ 10.

2.4 Resonant leptogenesis

In the simplest leptogenesis scenario, the right-handed Majorana neutrinos are really
heavy particles, having hierarchical masses, i.e., M1 ≳ 109 GeV and M2,3 ≫ M1. Then,
the effects of N2 and N3 are neglected, because either TRH < M2,3 or N2, N3 decouple
when N1 is still in thermal equilibrium [11]. This case was treated previously in the
Sect. 2.2. Instead, in this Section we consider the case of resonant RHN masses: the
mass difference between two heavy RHN is small (quasi-degeneracy) and comparable to
the heavy neutrino decay width ΓD (see e.g. [94, 97] for reviews). This condition leads to
an enhancement of the CP -asymmetry ϵ and, consequently, leptogenesis temperatures
of order of TeV are possible [94].
It is useful to analyze the resonant leptogenesis mechanism because we will consider
relatively small masses for Majorana neutrinos in the scenario of ALP leptogenesis in
Chapt. 4.

We study, for simplicity, the case where only N2 is quasi-degenerate with N1. For
small mass differences |M1 − M2| ≪ 1

2
(M1 + M2), the CP -asymmetry is dominated

by the self-energy contribution [94]. Specifically, the resonant effect is related to the
propagator of N2 in the third Feynman diagram of Fig. 2.1. A resummation of self-
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energy effects is necessary to solve the singularity in the last term of Eq. (2.17). Then,
considering the approach based on an expansion of full resummed propagators around
their poles developed in the literature [9, 11, 94, 97], the CP -asymmetry parameter ϵ1
can be expressed as [11, 94]

ϵ1 =
Im[(y†νyν)

2
12]

(y†νyν)11(y
†
νyν)22

(M2
1 −M2

2 )M1ΓN2

(M2
1 −M2

2 )
2 +M2

1Γ
2
N2

, (2.54)

where

ΓN2 =
(y†νyν)22

8π
M2 (2.55)

is the decay width of N2 at tree-level. Besides the CP -violating parameter due to the
decay of N1, a second CP -asymmetry ϵ2 coming from the decay of N2 also contributes
to generate the final B − L asymmetry. This ϵ2 is determined by an expression similar
to Eq. (2.54), where the subscripts ’1’ and ’2’ are exchanged.
The term M2

1Γ
2
N2

in the denominator on the right-hand side of (2.54) can be considered
as a regulator, that arises from the fact that Majorana neutrinos are not strictly on-
shell because of their finite lifetime [97]. Indeed, in finite-order perturbation theory, this
absorptive term M2

1Γ
2
N2

is absent, thereby leading to a singular behaviour for ϵ1 in the
mass degenerate limit M1 →M2. However, the appearance of this regulating absorptive
term due to the finite width of the heavy Majorana neutrinos should be expected on
physical grounds and emerges naturally within the resummation approach [94, 98].
Thus, the CP -violating parameter (2.54) depends on the mass splitting between the two
RHNs and a resonant enhancement of ϵ1 (as well as ϵ2) occurs when the mass difference
between N1 and N2 is of the order of their decay widths. In particular, the resonance
condition reads [97]

M2
1 −M2

2 ≃M1ΓN2 , (2.56)

and hence,

ϵ1 ≃
1

2

|Im[(y†νyν)
2
12]|

(y†νyν)11(y
†
νyν)22

. (2.57)

Since the following relation holds [98]

|Im[(y†νyν)
2
12]|

(y†νyν)11(y
†
νyν)22

≤ 1 , (2.58)

if the maximal case of CP -violation was considered, i.e.

|Im[(y†νyν)
2
12]|

(y†νyν)11(y
†
νyν)22

≃ 1 , (2.59)

the CP -asymmetry would be of the order of unity, specifically [11]

ϵ1 ≃
1

2
. (2.60)
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Actually, some rather generic scenarios minimally satisfying (2.56) and (2.59), and
still having sufficient freedom to describe the light neutrino data (2.1), have been studied
in the literature [9, 94]. Thus, it has been proved that an efficient thermal leptogenesis
can be achieved at low-scale, e.g. TeV-scale, in presence of a resonance amplification [94].
For instance, if we consider a TeV-scale Majorana neutrino, such low-scale leptogenesis
would produce an amount of baryon asymmetry of order

Y∆B ≃ 10−19 , (2.61)

estimated as in Eq. (2.34), with ϵ ≃ 10−13. Nevertheless, if we apply resonant leptogenesis
with two quasi-degenerate RHN masses,

M1 ≃M2 ≃ 103GeV , (2.62)

eventually we obtain a value of Y∆B which reproduces the experimental value (1.5) with
mass degeneracy [94]

M2 −M1

M1

= 8 · 10−10 , (2.63)

thereby satisfying the resonance condition (2.56).
Let us stress that, in the framework of resonant leptogenesis, we are able for instance to
increase the value of the CP -asymmetry ϵ1 up to the order of unity (2.60) by tuning the
mass degeneracy between Majorana neutrino masses. Therefore, resonant leptogenesis
allows to obtain a sizable amount of baryon asymmetry, even considering small Majorana
masses. The price of this mechanism is to require a considerable fine-tuning of the RHN
masses.
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Chapter 3

ALP in the Early Universe

In this Chapter, the cosmology of the ALP is investigated. The ALP is considered to be
coupled to gluons, top quarks and, in addition, Majorana heavy neutrinos Ns. First, we
discuss the ALP production in the Early Universe in Sect. 3.1, focusing in particular on
its thermal production in 3.1.1, taking into account the coupling to Majorana neutrinos
in 3.1.2 and eventually computing the cosmological ALP Yield coming from either freeze-
in or freeze-out is evaluated in Sect. 3.1.3. In Sect. 3.2 the ALP’s decay channels are
studied.
This Chapter is mainly based on Refs. [99, 100], to which we add the phenomenology
due to the ALP couplings to Ns.

3.1 ALP production in the Early Universe

In the Early Universe a generic ALP can be produced either thermally, i.e. from scat-
terings with particles in the thermal bath, or non-thermally [50, 101]. In particular,
the non-thermal production can be due to global cosmic strings [102], i.e. closed string
loops shrinking with emitting ALP (spontaneous breaking of approximate U(1) symme-
try produces cosmic strings by the Kibble-Zurek mechanism [103, 104]), and string-wall
systems, whose stored energy turns into ALP particles [105, 106].
In the following, the non-thermally production is assumed to be negligible with respect
to the thermal one, by considering the ALP decay constant greater than the reheating
temperature of the Universe after inflation ends: fa > TRH . This condition allows to
neglect the ALP production from cosmic strings and domain walls, because topological
defects are not produced [50, 101].
Thus, in the following, the thermal production of ALPs is evaluated in order to compute
the ALP relic abundance.
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3.1.1 Thermal ALP production

We consider the following effective Lagrangian that describes the ALP’s couplings at
first order in the ALP field a [99]

La =
1

2
∂µa∂

µa− 1

2
m2

aa
2 − αs

8π
Cg

a

fa
Gb

µνG̃
b,µν +

∂µa

fa
CttRγ

µtR+

+
∂µa

fa
CQ3Q3γ

µQ3 +
∂µa

fa
NRγ

µNR

(3.1)

where Gb
µν is the gluon field strength with its dual G̃µν = 1

2
ϵµναβGαβ, Q3 is the Weyl

spinor of left-handed doublet of the third quark generation, αs = g2s/(4π), tR and NR

are the right-handed top quark and neutrino, the coupling constants Cg, CQ3 and Ct are
dimensionless coefficients.
Therefore, thermal scatterings with gluons and top quarks in the primordial plasma
unavoidably produce a population of hot ALP. The thermal ALP production rate will be
computed in terms of strong interactions and top Yukawa coupling. In order to clarify
the top Yukawa coupling, it is convenient to perform a phase redefinition of the SM fields

tR → ei
Cta
fa tR , Q3 → ei

CQ3
a

fa Q3 . (3.2)

This redefinition removes the derivative couplings to quarks but it implies a shifting of
the gluon coupling Cg → C ′

g = Cg + Ct − 2CQ3 , as well as the generation of couplings
with electroweak gauge bosons that we will neglect in the following (see Ref. [99] for the
detailed expressions). In addition, this transformation induces an ALP phase in the top
Yukawa coupling

yt → yte
iC′

t
a
fa (3.3)

with coupling C ′
t = CQ3 − Ct. Then, the Lagrangian interaction

iC ′
tyt

a

fa
Q̄3 ϕ tR + h.c. (3.4)

is generated, which will control the ALP production in the Early Universe.

In order to evaluate the thermal ALP production rate [107], we will follow Ref. [99],
which provides an improved computation with respect to previous works.
Let us first discuss the ALP production due to the coupling with gluons. ALPs are
produced in the plasma through scatterings involving gluons: gg → ag, qq → ag and
qg → aq. The results obtained for these processes point to potential infrared divergences
associated with exchange of soft (massless) gluons in the t and u channels. Actually,
in the Early Universe the screening effects of the plasma become relevant and, in order
to account for such effects, a thermal mass for gluons is introduced [107]. Previous
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computations rely on the Hard Thermal Loop (HTL) [108, 109] approximation to treat
the thermal gluons [110]: in this method a momentum scale κcut is introduced such that
gsT ≪ κcut ≪ T , in order to separate soft gluons with momentum transfer of order gsT
from hard gluons with momentum transfer of order T . Therefore, in the region κ < κcut
the leading order soft contribution is the imaginary part of the thermal axion self-energy
with ultraviolet cutoff κcut, where only one effective HTL-resummed gluon propagator is
needed (see Ref. [110]). On the other hand, in the region κ > κcut, bare gluon propagators
can be used since κcut provides an IR cutoff. Actually, the HTL approximation suffers
from limitations: it is only valid in the weak coupling limit gs ≪ 1.
This computation made by using the HTL approximation was improved in Ref. [99] by
employing the thermal field theory formalism [111]. In this framework, there is no need
to introduce the arbitrary splitting scale κcut. In the general formalism of thermal field
theory, the thermal production rate γprod of a weakly interacting scalar a is equivalently
computed from the imaginary part of its propagator πa as

γprod =
dNa

dV dt
= −2

∫
d
−→
ΠfB(E)Imπa (3.5)

with
−→
Π = d3p

2E(2π)3
. Thermal field theory cutting rules allow to see that, at leading order

in strong coupling, Eq. (3.5) is equivalent to the usual summing of all rates for the
various tree-level processes that lead to axion production, i.e. S, T , U , X processes
in Fig. 3.1 [99]. Thus, instead of computing |S + T + U + X|2, we can calculate the
production rate as

γprod = γA + γB + γC + γD . (3.6)

Since this computation still gives IR divergent results, the thermal effects are resummed
by substituting the two-loop thermal diagram D with the one-loop ’Decay’ diagram in
Fig. 3.2, where the tree-level gluon propagator is replaced by the full thermal gluon
propagator at leading order in the strong coupling. This ’Decay’ diagram physically
describes the decay process of the thermal gluon gT : gT → gTa.
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Figure 3.1: The g g → g a scattering rate at leading order in the thermal plasma can be
obtained either by summing the Feynman diagrams, S,T ,U ,X, in the upper row, or, equiva-
lently, by summing the imaginary parts of the two-loop thermal diagrams in the lower row. In
both cases, the result is infrared divergent, such that proper inclusion of higher order effects is
needed [99].

Figure 3.2: Thermal diagram ’Decay’ is equivalent to diagram D plus the resummation of
higher order diagrams with corrections to gluon propagator. Thick lines denote propagator of
the thermal gluon gT [99].

Going beyond the anomalous ALP coupling to gluons, the interaction in (3.1) also
generates a top Yukawa contribution to the ALP thermal production, with processes like
ϕ t→ a t. Following the computation in [99], the total axion production rate becomes

γprod =
T 6ζ(3)

(2π)5f 2
a

[
37C ′

t
2y2t + 8C ′

g
2α2

sF3

(
mg

T

)]
, (3.7)

where F3(mg/T ) is a function that parameterizes the axion production rate due to gauge
interactions. We conventionally consider C ′

t = C ′
g = 1 and 1-loop approximation for the

running of the strong and Yukawa couplings, gs and yt.
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Finally, we conclude that the top Yukawa ALP production rate dominates the ALP
production with respect to the gluon contribution, because it arises at tree-level, while
the anomalous ALP couplings arise at loop level [99].

3.1.2 ALP production via coupling to Majorana neutrinos

In Sect. 3.1.1, we have only considered the production of ALP due to the gluon coupling
and the top Yukawa coupling. In this Section, we show that the ALP production via
coupling to Majorana neutrinos Ns is a subdominant contribution to the total produc-
tion. The rough estimates of this Section are refined by computing the corresponding
ALP Yields in App. C.

Let us consider the last interaction term of the Lagrangian (3.1), which after inte-
grating by parts can be written as MN

fa
aNRNR: thus, the ALP could be frozen in via

interactions with Majorana neutrinos Ns. In particular, the ALP can be produced by
the following processes:

1. NN → aa t-channel:

|M1|2 ∝
(
MN

fa

)4

(3.8)

2. NN → aa s-channel with ALP trilinear vertex:

|M2|2 ∝
(
MN

fa

)2(
T

fa

)2

(3.9)

3. ϕN → ℓa t-channel:

|M3|2 ∝
(
MN

fa

)2

y2ν (3.10)

4. NN → a inverse N decays:

ΓN ∝
(
MN

fa

)2
T

8π
(3.11)

where we have estimated their matrix elements squared and the decay width of the inverse
decay. We can evaluate the relevance of these processes by comparing their production
of the ALP with the production coming from the top quark interaction. Then, we have
to consider the process ϕ t→ t a with matrix element squared

|Mt|2 ∝
(
T

fa

)2

y2t (3.12)
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and

Γt ∝
T 3

8π

(
yt
fa

)2

. (3.13)

As will be explained in Sect. 4.1, only a portion of the parameter space yields results
which are suitable for successful ALP leptogenesis. Let us then consider the following
benchmark of parameters belonging to the viable parameter space: yν ≃ 10−5 GeV,
MN ≃ 104 GeV, fa ≃ 1012 GeV, ma ≃ 105 GeV, TR ≃ 108 GeV (this choice will be
motivated in 4.1). In that point, ALP production through processes 1, 2, 3, listed above
can be estimated as subdominant with respect to the one via top Yukawa coupling:

(|M1|2 ≃ 10−32, |M2|2 ≃ 10−24, |M3|2 ≃ 10−26) ≪ |Mt|2 ≃ 10−8 . (3.14)

Actually, we can also consider the gluon production of the ALP. We can estimate the
matrix element as

|Mg|2 ∝ g6s

(
T

fa

)2

(3.15)

which at T = TRH turns out to be |Mg|2 ≃ 10−9. Thus, the squared matrix elements of
the processes we are considering are also subdominant with respect to the gluon produc-
tion of the ALP. It will turn out that ALP production via processes 1, 2, 3 is subdominant
with respect to ALP production via top and gluon in the entire parameter space of in-
terest.

Now, we examine the process 4: the inverse decay N N → a. We have

Γt

ΓN

∝ y2t

(
T

MN

)2

≫ 1 (3.16)

at T = TRH , since TRH > MN . Thereby, we conclude that the top Yukawa coupling
freeze-in dominates over the freeze-in coming from the inverse decay at high temper-
atures, and becomes of the same order when T ≃ MN . Overall, we can then expect
that the production of the ALP from the N N → a decays is negligible with respect to
the one from the top quark interaction. Therefore, the major contribution to the ALP
production comes from the top Yukawa coupling, while the others coming from processes
1, 2, 3, 4 are subdominant and their ALP production is negligible.

Furthermore, we can show that the inverse decays do not re-equilibrate the ALP a,
because ΓN

H
> 1 implies T < MN . Indeed, the ratio ΓN

H
is IR dominated and we have

ΓN

H
≃ 1

8π

(
MN

fa

)2
MPl

T
< 1 for T >

1

8π

(
MN

fa

)2

MPl ≃
(

MN

10−9fa

)2

GeV (3.17)

and for our parameter choice we get ΓN/H < 1 for T > 102 GeV. Then, when the
inverse decays N N → a come into equilibrium with the thermal bath, Ns are already
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non-relativistic and the inverse decays are kinematically forbidden: inverse decays cannot
bring the ALP in equilibrium with the primordial plasma.

3.1.3 Cosmological ALP Yield

Once we have computed the thermal production rate γprod (3.7), we need to evaluate
the relic abundance of ALP, i.e. cosmological ALP Yield Ya, which will be crucial for
the following discussion about ALP leptogenesis. We consider the usual scenario of
reheating after inflation, where Φ is the inflaton with energy density ρΦ and decay width
ΓΦ. Defining the reheating temperature TRH as the temperature at which ΓΦ equals
HRH , we obtain

TRH =

(
45

4π3g∗
Γ2
ΦM

2
Pl

)1/4

, (3.18)

whereMPl = 1.22·1019 GeV is the Planck mass and g∗ is the number of relativistic degrees
of freedom as defined in (A.3). Let us note that TRH is the starting temperature of the
radiation-dominated epoch and effectively the maximal temperature of the Universe,
even though Tmax > TRH . Indeed, while higher temperatures exist, particles produced
at T > TRH are diluted by the entropy released by inflaton decays, as described by the
term (Z − 1) = − ΓΦρΦ

4HρR
in the Boltzmann Equations for the evolution of the inflaton

energy density ρΦ and the ALP Yield Ya [99]{
HZz dρΦ

dz
= −3HρΦ − ΓΦρΦ

sHZz dYa

dz
= 3sH(Z − 1)Ya + γprod

(
1− Ya

Yeq

) (3.19)

with in this case z = TRH/T , Ya = na

s
, Y ′

a
eq = n′

a
eq

s
≃ 0.00258, n′

a
eq = ζ(3)T 3/π2 which

accounts for the bosonic nature of the ALP. Actually, in the following we will ignore
the statistical quantum factors, approximating the ALP momentum distribution with
the classical Maxwell-Boltzmann one. Thus, we will consider the following value for the
equilibrium Yield of the ALP: Y eq

a = Y ′
a
eq

ζ(3)
≃ 2.15 · 10−3. The solution to the BEs (3.19)

for the ALP abundance at T ≪ TRH is [99]

Ya
Y eq
a

=

(
1 + r−3/2

)−2/3

≃

{
r for r ≪ 1

1 for r ≫ 1
(3.20)

with

r =
2.4

Y eq
a

γprod
Hs

∣∣∣∣
T=TRH

= 1.7
TRH

107GeV

(
1011GeV

fa

)2
γprod

T 6ζ(3)/((2π)5f 2
a )

∣∣∣∣
T=TRH

. (3.21)

This means that the ALP, once it is produced, either can be in thermal equilibrium
with the plasma (r ≫ 1) and later it is frozen out at Td, with relic abundance given by
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Ya = Y eq
a ≃ 2.15 · 10−3 (relativistic freeze-out), or it can be produced out of equilibrium

with abundance Ya = rY eq
a (r ≪ 1), i.e. the ALP is frozen in. In the case of freeze-

out, the decoupling temperature can be derived by equaling r = 1. In Fig. 3.3, the
parameter space of fa and TRH for ALP’s freeze-out and freeze-in is plotted, where
the white area corresponds to the freeze-in, with different Yields Ya depending on the
parameters, and the blue one to the freeze-out, with constant Yield Ya = Y eq

a . Fig. 3.4
shows the decoupling temperature Td in the freeze-out case (dashed lines), which only
depends on the value of fa. Let us note that when the interaction strength increases,
i.e. fa decreases, the freeze-out happens later in time and the decoupling temperature is
lower.

Figure 3.3: Cosmological ALP Yield. Blue area: freeze-out with Ya = Y eq
a ≃ 2.15·10−3. White

area: freeze-in with Ya = rY eq
a , represented by the dashed lines. Left panel: ALP coupled to

both top and gluon. Right panel: ALP coupled to gluon only.
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Figure 3.4: Dashed lines represent different values of decoupling (i.e. freeze-out) temperature
Td in the freeze-out case. Blue area: freeze-out with Ya = Y eq

a ≃ 2.15 · 10−3. White area:
freeze-in with Ya = rY eq

a . Left panel: ALP coupled to both top and gluon. Right panel: ALP
coupled to gluon only.

3.2 ALP’s decay

In Sect. 3.1, the ALP production in the Early Universe has been investigated. Now,
we study the possible decay channels for the ALP. Due to the interaction terms we are
considering (see Eq. (3.1)), it can decay via different channels, see e.g. [72, 100]:

• a→ g g:

Γ(a→ gg) = C ′
g
2 α2

s

32π3

m3
a

f 2
a

; (3.22)

• a→ NN :

Γ(a→ N N) =
maM

2
N

8πf 2
a

√
1− 4

M2
N

m2
a

; (3.23)

• a→ t t:

Γ(a→ t t) = C ′
t
2mam

2
t

8πf 2
a

√
1− 4

m2
t

m2
a

. (3.24)

We consider as benchmark MN = ma/3. We have computed the branching ratios of the
decay channels

Brg =
Γ(a→ gg)

Γa

, (3.25)

BrN =
Γ(a→ NN)

Γa

, (3.26)
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Brt =
Γ(a→ t t)

Γa

, (3.27)

with
Γa = Γ(a→ g g) + Γ(a→ NN) + Γ(a→ t t) . (3.28)

The results are plotted in Fig. 3.5. The dominant channel is a → N N .

Figure 3.5: Branching ratios of ALP decay channels. Benchmark: MN = ma/3.
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Chapter 4

Non-thermal leptogenesis via ALP

In this Chapter, we investigate how the ALP could affect leptogenesis. Indeed, besides
the standard leptogenesis sourced by a thermal population of Majorana neutrinos Ns,
non-thermal leptogenesis takes place thanks to Ns produced via ALP decays. Therefore,
two different populations of heavy neutrinos are involved in the generating process of the
B − L asymmetry.
This Chapter mainly contains the original results of this thesis: in Sect. 4.1 the suitable
parameter space for ALP leptogenesis is identified, in Sect. 4.2 the ALP leptogenesis is
studied by means of Boltzmann Equations, providing numerical solutions, and in Sect. 4.3
the case of matter-dominating ALP is addressed.

4.1 Parameter space for ALP leptogenesis

We consider the scenario in which the interactions of right-handed neutrinos N1s are
described by the usual Lagrangian (2.31) and the interactions of the ALP by (3.1).
Here, we are considering hierarchical Majorana masses (in the following we will denote
N1 ≡ N to simplify the notation), while at the end of Sect. 4.2.3 the resonant case will
be taken into account. Let us stress that, after integrating by parts the last term of the
ALP Lagrangian (3.1), the interaction term becomes MN

fa
aNRNR.

Before computing the processes that contribute to generate the B − L asymmetry, we
identify the parameter space (ma, fa) available for a successful ALP leptogenesis:

1. the first constraint is

T a
d <

MN

20
, (4.1)

where T a
d is defined as the freeze-out temperature of the decay a→ NN

T a
d =

MN

fa

√√√√ma

8π

MPl

1.66
√
g∗

√
1− 4

M2
N

m2
a

(4.2)
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and it is computed by imposing Γ(a→ NN) = H(T = T d
a ).

We require that (4.1) is satisfied in order to have Ns out-of-equilibrium, once they
are produced via ALP decay, because this implies that the washout processes are
out-of-equilibrium when the ALPs begin to produce the RHNs;

2. the second condition is
ma > 2MN , (4.3)

in order to realize the decay a → NN . In the following computations, we take
MN = ma/3 as a benchmark;

3. the last constraint is
T a
d > vEW ≃ 246GeV , (4.4)

because the decay of neutrinos has to happen mostly before the electroweak phase
transition, when the sphaleron processes are in thermal equilibrium and so induce
a baryon asymmetry from the lepton asymmetry generated in our model.

These constraints can be seen in Figs. 4.1 and 4.2, where the available parameter space
is the white area. In the case of ALP freeze-in, we have also indicated in the plots the
values of TRH , corresponding for instance to Ya ≃ 10−4 (dashed lines). Eventually, let
us remind that TRH > ma in order to produce thermally the ALPs. Then, including the
top Yukawa coupling contribution to the ALP production (Fig. (4.1)), we deduce that a
favourable range of parameters can be for instance:

• fa = (1012 ÷ 1013) GeV

• ma = (105 ÷ 106) GeV

• TR > 106 GeV

• MN = (104 ÷ 105) GeV

and, consequently, yν = (10−5 ÷ 10−5.5) (see Eq. (2.7)).
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Figure 4.1: Parameter space for ALP leptogenesis: the area where ALP leptogenesis is possible
is the white one. Below the orange line (T a

d = vEW ), sphalerons are active. Above the blue line
(T a

d = MN/20), the washout processes are estimated to be out-of-equilibrium when the ALP
decay a → N N becomes efficient. The dashed lines represent values of reheating temperature
such that Ya ≃ 10−4 in the freeze-in case.

Figure 4.2: Parameter space without considering the top Yukawa coupling for ALP production:
the area where ALP leptogenesis is possible is the white one. The dashed lines represent values
of reheating temperature TRH such that Ya ≃ 10−4 in the freeze-in case. Other lines as in
Fig. 4.1.
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4.1.1 Dilution factor

Until now, we have not considered the scenario in which the ALP induces a matter-
dominated period in the Universe: indeed, if they are sufficiently heavy and their lifetime
is long enough, the ALPs after becoming non-relativistic may temporarily dominate the
energy density of the Universe. Usually, when a cold relic decays into SM particles, its
energy density is transferred to the SM bath and the non-relativistic degrees of freedom
of the decaying particle are converted into relativistic degrees of freedom of the SM.
That may inject significant entropy in the SM bath and dilute any pre-existing relic.
Let us stress that this changes the behaviour of the scale factor a with respect to the
temperature T of the thermal bath. Indeed, the standard scaling

a ∝ T−1 (4.5)

is only valid under that assumption that entropy is conserved [112]. Instead, in presence
of large entropy injection into the plasma, there can be an epoch during which a grows
faster than the standard scaling, i.e. a ∝ T−α with α > 1.
The evolution of Yields and energy densities of radiation, ALPs and Ns, and the scaling
of bath temperature will be studied in Sect. 4.3 by means of BEs. Now let us estimate for
which values of the parameter space the ALP may dominate. We consider the dilution
factor [113]

DSM ≡ Saft
SM

Sbef
SM

, (4.6)

where S refers to the comoving entropy, related to the entropy density s through S =
sa3. The superscripts ’bef’ and ’aft’ denote the times before and after the ALP decay
a → N N . Thus, for instance the Yield YN of the RHN after the decay can be related
to the one before via this dilution factor:

Y aft
N =

naft
N

saft
=
Naft

N

Saft
SM

=
1

DSM

N bef
N

Sbef
SM

=
1

DSM

nbef
N

sbef
=
Y bef
N

DSM

, (4.7)

where N is the comoving number density (N = na3) and Naft
N = N bef

N because the
RHNs are decoupled from the bath when the ALP decays. The dilution factor can be
also written as [113]

DSM =

[
1 +

(
0.23

Ya
Y FO
a

(gSM)1/4
ga
gSM

ma(8π)
1/4

√
ΓaMPl

)4/3]3/4
(4.8)

where ga = 1, gSM = 106.75, Ya is the ALP yield and Y FO
a is the freeze-out abundance

of the ALP.
We now employ the expression in Eq. (4.8) to estimate the region of the parameter space
where the dilution induced by the matter-dominated period will be significant in the final
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abundance of RHNs (and hence of the B − L asymmetry). We consider as threshold a
representative value for the dilution factor, chosen to be DSM = 1.2. We then estimate
that:

• if
DSM ≪ 1.2 , (4.9)

the ALP does not dominate the energy content of the Universe and the resulting
abundance for the Majorana neutrinos produced via ALP decays is YN = 2Ya at
T = T a

d ;

• if
DSM > 1.2 (4.10)

the ALP dominates and YN ̸= 2Ya. In particular YN gets significantly diluted by

the factor DSM , obtaining that Y aft
N =

Y bef
N

DSM
.

Then, we can constrain the parameter space by using the dilution factor. Thus, Figs. 4.3, 4.4
and 4.5 show that the parameter space gets divided into two regions: above the green
line, matter-domination induced by ALP occurs, below the green line, the ALP does not
dominate.

Figure 4.3: The area between the orange and the green lines denotes where dilution signifi-
cantly occurs (matter-dominated phase). Other lines as in Fig. 4.1. ALP is mainly produced
via the top Yukawa coupling and it is frozen out with Ya = 2.15 · 10−3.
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Figure 4.4: The area between the orange and the green lines denotes where dilution signif-
icantly occurs (matter-dominated phase). The dashed lines show the reheating temperature
values for which the ALP is frozen-in with Ya = 10−4. The ALP is coupled to both top quarks
and gluons. Other lines as in Fig. 4.1.

Figure 4.5: Parameter space without considering the top Yukawa coupling for ALP produc-
tion.The area between the orange and the blue lines denotes where dilution significantly occurs
(matter-dominated phase). The dashed lines show the reheating temperature values for which
the ALP is frozen-in with Ya = 10−4. Other lines as in Fig. 4.1.
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4.2 Boltzmann Equations

Once we have identified the parameter space for the ALP to possibly realize this non-
thermal leptogenesis, we need to study this process more in detail and investigate its
features. Thus, let us enlighten the differences with respect to thermal leptogenesis:

• the initial Yield of N is not provided by the thermal number density, but by ALP
decays such that

Y in
N = 2Ya , (4.11)

knowing that each ALP dominantly decays to two RHNs;1

• in some regions of the parameter space, strong washout effects can be avoided:
that happens if, when the ALP decays into two RHNs, the washout processes are
already out-of-equilibrium. This can be estimated as first approximation with the
condition T d

a < MN/20. Thus, we can consider

κf ≃ 1 . (4.12)

Therefore, we first estimate the amount of baryon asymmetry generated in this case via
Eq. (2.34) and later evaluate the kinetic equations. Taking into account that the ALP
can be frozen out with a Yield (see Sect. 3.1.3)

Ya ≃ 10−3 , (4.13)

and since csph and ϵ have the same value as in the thermal leptogenesis, we can gain the
washout factor with respect to standard case. Indeed, we have in ALP leptogenesis

Y∆B ≃ 2 · 10−3csphϵmax , (4.14)

while in thermal leptogenesis usually

Y∆B ≃ 2 · 10−5csphϵmax . (4.15)

Thus, overall we can gain a factor ∼ 100 with ALP leptogenesis.

Before moving to the precise analysis of ALP leptogenesis by solving numerically
the BEs (Sect. 4.2.3), we discuss now some relevant aspects of the dynamics of ALP
leptogenesis, such as whether the ALP and the RHN are in kinetic equilibrium with the
plasma (Sect. 4.2.1) and whether there is an enhancement of the washout due to boosted
Ns (Sect. 4.2.2). The resulting implications will be fundamental in constructing the BEs
(see App. B.2 for a detailed derivation).

1 Note we will have Y in
N > 2Ya if e.g. one has flavour violating ALP couplings and mass splittings so

that processes like a → N1N2(→ 2N1a
∗ → 4N1) are allowed. For simplicity, we will not consider this

possibility in this thesis.
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4.2.1 Kinetic equilibrium

Let us start to evaluate the kinetic equations in the scenario of ALP leptogenesis. One
crucial assumption in the derivation of the integrated form of the BEs in thermal lep-
togenesis case is that all the particles are in kinetic equilibrium with the plasma (see
App. B.1). Indeed, if this condition is verified, the relation for their phase-space distri-
bution

f(k) ≈ n

neq
f eq(k) , (4.16)

can be used [21] and, consequently, the BEs for the total number density can be solved.
In the scenario we are considering, the ALP decouples from the plasma and, afterwards,
it decays into the Ns. The ALP can undergo either freeze-in or relativistic freeze-out.
In both cases, the shape of the phase-space momentum distribution f(k, t) remains
untouched after the freeze-in/freeze-out of the particles [21]. This ensures that the ALP
momentum distribution has the same shape of the kinetic equilibrium distribution and
Eq. (4.16) can be applied.
For what concerns the N ’s population, their momentum distribution is due to the ALP
decay and, in principle, it will be different from the equilibrium kinetic distribution:
since T a

d < ma (satisfied by requiring T d
a < MN/20), the kinetic distribution of Ns is

expected to be peaked around ma/2, i.e. all the particles have the same energy

EN ≃ ma

2
, (4.17)

and so Eq. (4.16) cannot be used. We now discuss some implications of the non-thermal
energy of the Ns.

4.2.2 Extra washout due to boosted Ns

In the scenario of ALP leptogenesis, the second population of Ns produced via ALP
decays is boosted, i.e. with EN ≫ T (in particular, let us assume that (4.17) holds).
This boost could in principle enhance the following ∆L = 1 washout process

N + t→ ℓ+ t , (4.18)

that proceeds via a ϕ in t-channel. This scattering depletes the population of Ns. Its
matrix element squared goes as

|M|2 ∼ y2νy
2
t

ENT

m2
ϕ,th

∼ y2νy
2
t

EN

g2wT
, (4.19)

where the Mandelstam variable s is s = ENT , gw is the weak coupling and mϕ,th is
the thermal mass of the Higgs boson. This washout process is usually subleading with
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respect to the N ’s decay in standard leptogenesis [11, 46, 96], i.e. assuming that the Ns
have EN ∼ T . Its cross section can be estimated as

σ ∼ |M|2

ENT
∼ y2νy

2
t

4πm2
ϕ,th

∼ y2νy
2
t

4πg2wT
2
. (4.20)

Then, the interaction rate is

ΓNt→ℓt ∼ ntσ ∼ y2νy
2
t

16π2αw

T , (4.21)

with nt ∼ T 3. Now, we need to verify whether the process (4.18) dominates over the
RHN decay. Comparing Eq. (4.21) with the decay width of N ’s decay

ΓN→ℓ ϕ =
y2νMN

8π

2MN

ma

, (4.22)

where 2MN

ma
is the Lorentz-boost factor due to the ALP’s decay, one obtains

ΓNt→ℓt

ΓN→ℓϕ

∼ y2t Tma

4παwM2
N

, (4.23)

with the temperature T of the decay Nt → ℓt. Being conservative, let us assume T to
be at most the temperature of the decay a→ NN , therefore we arrive at the estimate

ΓNt→ℓt

ΓN→ℓϕ

≲
y2t

4παw

ma

20MN

. (4.24)

We conclude that the processN t→ ℓ t is not dominating over the RHN decay considering
the benchmark MN = ma/3, for which

ΓNt→ℓt

ΓN→ℓϕ

≲ 0.3 , (4.25)

and it can be neglected in the kinetic equations.

4.2.3 Numerical solution of Boltzmann Equations and compu-
tation of baryon asymmetry

In the previous sections, we have discussed the kinetic equilibrium of ALPs and RHNs
and estimated the relevance of ∆L = 1 washout processes (4.18) involving boosted RHNs,
concluding that the momentum distribution of the Majorana neutrinos cannot be ap-
proximated as the equilibrium one and that we can ignore the process (4.18) because
its washout effect is negligible with respect to N ’s decays. Now, we can move on and
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implement numerically the derived BEs in order to obtain a more precise computation
of the asymptotic value of the B − L asymmetry.

We first consider the simplest case of ALP leptogenesis: we take into account hierar-
chical heavy neutrino masses and a region of the parameter space corresponding to the
case when the ALP does not dominate the energy content of the Universe (leptogenesis
from matter-dominating ALP will be treated in 4.3). Therefore, the following set of
coupled BEs, for the Yields of the ALP, RHN and B − L asymmetry, can be obtained
(we refer the reader to App. B.2 for a complete computation):

dYa

dz
= −BrN γa

Hsz
Ya

Y eq
a

−Brg
γa
Hsz

(
Ya

Y eq
a

− 1
)
−Brt

γa
Hsz

(
Ya

Y eq
a

− 1
)

dYN

dz
= − γD

Hsz

(
2MN

ma

YN

Y eq
N

− 1
)
+ BrNγa

Hsz
Ya

Y eq
a

dYB−L

dz
= γDϵ

Hsz

(
2MN

ma

YN

Y eq
N

− 1
)
− γD

Hsz

YB−L

2Y eq
l

(4.26)

where z =MN/T , s is the entropy density, Bri are the branching ratios defined in (3.25), (3.26)
and (3.27), the reaction density γa is

γa = sY eq
a

K1

(
ma

T

)
K2

(
ma

T

)Γa =
T 3

2π2

(
ma

T

)2

K1

(
ma

T

)
Γa =

m2
aMNK1

(
z ma

MN

)
Γa

2π2z
(4.27)

with Γa the total decay width of the ALP defined in (3.28) and

Y eq
a =

neq
a

s
=

45

4π4g∗

(
ma

T

)2

K2

(
ma

T

)
=

45m2
az

2K2

(
zma

T

)
4π4M2

Ng∗
. (4.28)

In this set of BEs (4.26), the equation for the ALP Yield Ya has been added on top of the
BEs (2.46) describing the thermal leptogenesis. We consider as initial condition for Ya
its freeze-out/freeze-in value so that, in the right-hand side of the differential equation,
only the decay processes of the ALP into RHNs, gluons and top-quarks, have been taken
into account. Moreover, we have a new source term for YN due to ALP decays in the
right-hand side.
The factor 2MN/ma that multiplies the decay interaction rate γD is the Lorentz boost
factor: it captures the effects of the fact that the momentum distribution of the Majo-
rana neutrinos Ns is not the equilibrium one, but it is peaked around ma/2. Indeed, in
the RHN population generated via the ALP decays, the Ns are boosted by the afore-
mentioned factor, which means that they decay later in time and thus, they can generate
more B−L asymmetry, being further away from thermal equilibrium and thus less prone
to washout effects.
Let us point out that in (4.26), we have not considered the terms due to the inverse
reaction N N → a, because they are negligible with respect to the Ns decays for our
benchmark parameters. Indeed, estimating the rates, we obtain

ΓN N→a

ΓN→ℓ ϕ

≃ v2EWma

f 2
amν

≃ 10−4 . (4.29)
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In order to properly compute the final B − L asymmetry by means of kinetic equa-
tions, we need to consider that the first thermal population of Ns undergoes the standard
thermal leptogenesis, while a second non-thermal population, consisting of boosted Ns,
is created by the ALP’s decay and it is the source for ALP leptogenesis. Thus, in order
to account for the different evolution of these two population of RHNs, it is convenient
to use two different sets of BEs.
We implement the BEs (2.46) describing thermal leptogenesis (i.e. with thermal pop-
ulation of Ns) for z ∈ [10−3, 13], with initial conditions YN(10

−3) = Y th
B−L(10

−3) = 0,
and the BEs (4.26) describing ALP leptogenesis (i.e. with boosted population of Ns) for
z ∈ [13, 150], with initial conditions Ya(13) = Y eq

a (ALP is relativistically frozen out),
YN(13) = Y eq

N and YB−L(13) = Y th
B−L(13). Then, gluing these different solutions, we find

the behaviour of YN and YB−L with respect to z.
We checked that the juncture point can be chosen in the range z ∈ [10, 14], without
affecting the results. It is important to stress that it cannot be considered a value of
z greater than the one corresponding to the moment when the ALP decay comes into
equilibrium (i.e. z ∼ 14), becoming efficient (see Fig. 4.9). In addition, it is convenient
not to choose z < 10, because at that time the ALP leptogenesis BEs (4.26) do not
properly model the production of thermal population of Ns coming from inverse decays:
indeed, we would have a greater abundance of Ns due to the boost factor. Thus, we
have chosen a value lying in the aforementioned range, e.g. z = 13, as juncture point
and we have verified that the final asymptotic value of YB−L does not depend on the
choice of the juncture point. Eventually, at z = 13, the thermal population of Ns can
be considered as negligible, i.e. YN ≃ 10−7.
In Fig. 4.6, the ALP Yield Ya has been plotted, starting from z = 10−3, where we see
that after z ≃ 20 it is exponentially suppressed, i.e. it decays as non-relativistic matter.
Fig. 4.7 shows the evolution of the RHNs, where the bump due to the ALP decay is
visible at z ≃ 20. In Fig. 4.8, the solution tracking the B−L asymmetry is plotted: the
gain with respect to thermal leptogenesis for the same choice of parameters is manifest.
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Figure 4.6: ALP Yield as function of z. It is frozen out with initial abundance Ya = Y eq
a =

2.15 · 10−3.

Figure 4.7: ALP leptogenesis: Majorana neutrino Yield as function of z. Comparison between
thermal and ALP leptogenesis with same parameters.
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Figure 4.8: ALP leptogenesis: B−L Yield as function of z. Comparison between thermal and
ALP leptogenesis: one sees that ALP leptogenesis avoids the strong washout effects of standard
thermal leptogenesis, and thus allows to obtain a baryon asymmetry larger than more than
two orders of magnitude for the same values of parameters.

To understand better the physical origin of the difference between our proposed ALP
leptogenesis and the standard one, in Fig. 4.9 the ratios Γ̃/H are plotted as functions of
z = MN

T
, with:

Γ̃N→ℓϕ =
γD
sY eq

N

, (4.30)

Γ̃a→NN =
γa→NN

sY eq
a

, (4.31)

Γ̃W =
γD

2sY eq
l

=
γD

4sY eq
N

z2K2(z) . (4.32)

As long as washout processes are in equilibrium (Γ̃W > H), the B − L asymmetry is
partially washed out again. The crucial point of ALP leptogenesis is that, for some
regions of parameter space, the washout processes go out of equilibrium (Γ̃W < H)
before the ALP decay comes into equilibrium (Γ̃a→N N > H). This means that, when the
ALP decay starts producing RHNs, the washout processes are already ineffective. This
explains the gain that ALP leptogenesis mechanism can achieve.
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Figure 4.9: ALP leptogenesis: the rates Γ̃ of N ’s decay (red line), ALP’s decay (orange line)
and washout processes,i.e. inverse decay of N(green line), are compared to Hubble parameter
H. The dashed black line corresponds to Γ̃/H = 1. Above that line, processes are in thermal
equilibrium with the plasma. Below that line, processes are out-of-equilibrium. The advantage
of ALP leptogenesis is that we can avoid washout effects for some regions of parameter space.
This is explicated by this plot: washout processes are out-of-equilibrium when the ALP’s decay
comes into equilibrium.

From Fig. 4.8, we see that, despite the gain of a factor ∼ 100 with respect to thermal
leptogenesis, the amount of B − L asymmetry produced, YB−L ≃ 2 · 10−15, is still not
enough to reproduce the observed value of baryon asymmetry (1.5). We can apply to
ALP leptogenesis the resonant formalism, addressed in Sect. 2.4, in order to generate the
observed value of Y∆B. Indeed, in this case we are dealing with the benchmark param-
eter MN ≃ 104 GeV, and successful resonant leptogenesis allows to consider Majorana
neutrino masses down to O(100) GeV-scale (see e.g. Refs. [9, 94, 114]). This ensures
that, if we consider in our scenario of ALP leptogenesis two RHNs, N1 and N2, supposing
that the ALP democratically couples to them, i.e. same coupling strength2 ,

Γ(a→ N1N1) ≃ Γ(a→ N2N2) , (4.33)

there exist a parameter space where N1 and N2 have quasi-degenerate masses, i.e.
|M1 − M2| ≪ 1

2
(M1 + M2), and thereby that produces a resonantly enhancement of

the CP -violating parameter e.g. ϵ1, for a certain value of mass splitting comparable

2 This is motivated e.g. in scenario of supersymmetry breaking and gauge-mediation, where the
couplings of the R-axion are flavour-diagonal, since gauge interactions are flavour-blind.
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with their decay widths. Thus, the value of Y∆B ≃ 10−10 can be obtained, reproducing
the experimental data (1.5), and ALP resonant leptogenesis turns out to be successful.
A proper treatment of ALP resonant leptogenesis would imply to keep track in the BEs of
the evolution of the two RHNs, N1 and N2, whose decays produce a total CP -asymmetry
ϵ = ϵ1 + ϵ2. However, the detailed study of resonant aspects of ALP leptogenesis is be-
yond the scope of this thesis and it is left for future works. Nevertheless, we can provide
a rough estimate making some simplifying assumptions. Indeed, the resulting YB−L

asymmetry in resonant leptogenesis can be analytically approximated to depend only
on one CP -asymmetry parameter in case of strong washout regime (see Ref. [115] for
the precise analytic approximation). Thus, we assume to simplify the picture and solve
the BEs (4.26) considering effectively only one RHN with CP -violating parameter ϵeff .
Hence, as first approximation, we can estimate that a value of

ϵeff ≃ 10−7 (4.34)

can produce the observed BAU. Numerical results of ALP resonant leptogenesis are
plotted in Figs. 4.10 and 4.11.

Figure 4.10: Resonant ALP leptogenesis with M1,2 ≃ 104 GeV. RHN Yield as function of z,
with zero initial abundance for RHNs, YN (10−3) = 0, as initial condition.
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Figure 4.11: Resonant ALP leptogenesis with M1,2 ≃ 104GeV. B − L Yield as function of z,
with zero initial abundance for RHNs, YN (10−3) = 0, as initial condition. The advantages of
ALP resonant leptogenesis are manifest: one sees that this mechanism can avoid the strong
washout effects of standard thermal leptogenesis, and thus allows to obtain a baryon asymmetry
larger than more than two orders of magnitude for the same values of parameters. Therefore,
we expect that a smaller resonant enhancement is needed with respect to thermal leptogenesis
with same parameter values. Eventually, the asymptotic value of the B − L asymmetry, for
the ALP resonant leptogenesis (blue solid line), reproduces successfully the experimental data
of the BAU (1.5).

4.3 Leptogenesis from a matter-dominating ALP

In the previous Section, we have considered a region of parameter space corresponding
to a non-dominating ALP. Instead, in this Section, we explore the region of parameter
space where the ALP, once it becomes non-relativistic, induces an early epoch of matter-
domination and investigate how it could affect the ALP leptogenesis. Intuitively, we
expect that the B − L asymmetry will get diluted as well as the population of Ns
coming from the ALP’s decay.
We assume that the total energy density of the Universe consists of three components

ρtot = ρR + ρa + ρN , (4.35)

where the relativistic component is ρR, containing all the SM relativistic particles, while
the non-relativistic one is made up of ρa and ρN . We consider that, initially, the Universe
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is radiation-dominated (ρR ≫ ρa,N), i.e. T ∝ a−1 [112]. Let us highlight here that
the Hubble parameter H(t), with cosmic time t, depends on the energy content of the
Universe via the first Friedmann equation [21]

H(t) =
ȧ(t)

a(t)
=

1

MPl

√
8πρtot
3

(4.36)

with MPl = 1.2 · 1019 GeV. In order to follow the evolution of the energy densities ρi of
the different components, we have to solve the following set of BEs

ρ̇a = −3ρa − Γa

H
ρa

ρ̇N = −3ρN + BrNΓa

H
ρa − ΓD

H
ρN

ρ̇R = −4ρR + (Brg+Brt)Γa

H
ρa +

ΓD

H
ρN

(4.37)

where the derivatives are computed with respect to the natural logarithm of the scale
factor a, ρ̇ = dρ

d(lna)
, and the factor −4ρR (−3ρa,N) accounts for the scaling behaviour

of radiation (matter). This set of equations (4.37) is modelled in a similar way as the
simplest case of BEs mostly studied in the literature (e.g. Ref. [112]), in which dark
matter (non-relativistic component) directly decays into radiation (relativistic compo-
nent). In this basic case, during the matter-dominated phase induced by dark matter,
the temperature of the thermal bath scales as [112]

T ∝ a−3/8 . (4.38)

However, our case of interest has some peculiar characteristics: indeed, the ALP can
decay into radiation both directly, via the term

(Brg +Brt)Γa

H
ρa , (4.39)

and indirectly, decaying first into RHNs through

BrNΓa

H
ρa , (4.40)

and then, the RHNs decay into radiation via the term

ΓD

H
ρN . (4.41)

In order to solve the system (4.37), the energy densities are expressed as functions of the
ratio a

a0
, where a0 corresponds to the temperature value T0 of the plasma at which the

ALP is deeply non-relativistic, i.e. T0 = ma/10. Thus, the following initial conditions
are considered

• ρa(a0/a0) = ρa(1) = maYas = maYa
2π2

45
g∗s(T0)T

3
0 ;

• ρN(1) = 0 ;

• ρR(1) =
π2

30
g∗(T0)T

4
0 .
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4.3.1 Temperature scaling

We first study the scaling behaviour of the temperature during the early matter-dominated
epoch in this scenario. In order to highlight the possible differences with respect to the
standard case in which the ALP (e.g. dark matter) decays directly into radiation, we con-
sider a long matter-dominated phase with high values for fa, ma and Ya, e.g. fa = 1016

GeV, ma = 107 GeV and Ya = 10−1. Thus, we numerically solve the BEs (4.37) and plot
the temperature of the plasma

T =

(
30

π2g∗
ρR

)1/4

, (4.42)

in Fig. 4.12, with g∗ = gSM∗ = 106.75. For comparison, we also plot the results coming
from the case most often considered in the literature (see e.g. Ref. [112])

ρ̇a = −3ρa − Γa

H
ρa

ρ̇N = 0

ρ̇R = −4ρR + Γa

H
ρa

(4.43)

In Fig. 4.12 we compare the two cases, Eqs. (4.43) and (4.37) with initial conditions as
specified in the text. One sees that the matter-dominated epoch induces a change of the
slope of temperature T . In particular, we see that the two cases provide same results:
the temperature of the bath goes as T ∼ a−3/8 during the matter-dominated epoch, while
it scales as T ∼ a−1 during the radiation-dominated period.
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Figure 4.12: Bath temperature scaling with respect to scale factor in scenarios of early matter-
domination induced by the ALP. The gray line denotes the standard case, in which the ALP
only decays directly into radiation, while the dashed red one the case in which it also decays into
non-relativistic matter, i.e. RHNs (dominant channel), that is relevant for ALP leptogenesis.
The gray line and the dashed red line actually overlap.

Since the ALP mostly decays into RHNs, in order to explore its matter-domination
phase in a more general way, we can also take into account the case in which the dominant
channel is Γa→SM (ALP decays into top/antitop and gluons), e.g.

Γa→SM = 20Γa→NN . (4.44)

Thus, the ALP mostly decays into radiation. As shown in Fig. 4.13, in this case the
ALP decays earlier and, hence, the slope of the temperature T changes from T ∝ a−1

to T ∝ a−3/8 earlier with respect to the case in which the ALP mostly decays into
non-relativistic RHNs. However, the slope of T turns out to be the same as the basic
case. For completeness, the energy densities are shown in Fig. 4.14, where the results
in the case defined by Eq. (4.44) are represented by dashed lines. Let us stress that the
matter-dominated period occurs when

ρa > ρR . (4.45)

Having understood how early matter-domination by the ALP affects the evolution
of the various cosmological quantities in a benchmark case that made this task easy to
visualize, we now turn to study its impact on the parameter space relevant for ALP
leptogenesis.
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Figure 4.13: Temperature as a function of scale factor a/a0 in scenarios of early matter-
domination induced by the ALP. The cases in which the dominant channel is either Γa→NN

(relevant for ALP leptogenesis) or Γa→SM are plotted respectively as dashed red and orange
lines.

Figure 4.14: Energy densities of radiation, Majorana neutrinos and ALP as functions of a/a0 in
scenarios of early matter-domination induced by the ALP. Solid and dashed lines refers to cases
Γa→SM < 0.1Γa→NN (relevant for ALP leptogenesis) and Γa→SM = 20Γa→NN , respectively.
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4.3.2 Dilution in ALP leptogenesis

We now explore how the period of matter-domination induced by the ALP may affect
the ALP leptogenesis. In order to achieve this goal, we can consider to plot the Yields
Yi = ni/s of a, N and radiation, with number densities

na =
ρa
ma

, nN =
ρN
mN

, nR =
ζ(3)g∗
π2

T 3 (4.46)

and entropy density

s =
2π2

45
g∗sT

3 , (4.47)

where the radiation temperature T is defined by Eq. (4.42). It is also enlightening to
compute the total comoving entropy S = sa3, before and after the matter-dominated
period, in order to evaluate the entropy injection and identify the exact value of the
dilution factor DSM , which is proportional to the ratios of entropies before and after the
period of matter-domination (see Eq. (4.6)) and was previously estimated via Eq. (4.8) in
Sect. 4.1.1. For instance, we choose a region of parameter space where matter-domination
is expected: fa = 1015 GeV, ma = 107 GeV and Ya = 2.15 · 10−3. Thus, after imple-
menting the set of equations (4.37), the energy densities, the Yields and the comoving
entropy S can be plotted as functions of a/a0, as shown in Figs. 4.15, 4.16 and 4.17. In
particular, Fig. 4.15 shows the period of matter-domination induced by the ALP using
the aforementioned parameters. From Fig. 4.16, we can see that the ALP’s decay dilutes
the Ns Yield as well as its Yield when a/a0 ∈ [5 ·102, 2 ·103]. Then, we conclude that the
diluter not only dilutes its decay products, but also dilutes itself. The dilution factor in
this case is DSM ≃ 102. Furthermore, as shown in Fig. 4.17, this damping factor can be
computed looking at the increment of the total entropy after that the ALP decays away.
Eventually, comparing this value with the estimate of Sect. 4.1.1, we find that DSM is
well calculated by Eq. (4.8), with an error which is less than 5%.
Let us stress that the total entropy injection can be seen as a consequence of the different
scaling of the temperature during a matter-dominated epoch. On the other hand, in a
radiation-dominated phase, the total entropy is constant because T ∝ a−1 leads to

S = sa3 ∝ constant , (4.48)

where s ∼ T 3.
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Figure 4.15: Energy density of ALP, RHN and radiation for a benchmark choice of parameters
where early matter-domination is realised. The ALP dominates the energy content of the
Universe for a/a0 ∈ [26, 2 · 103]. The temperature slope is affected by matter-dominated phase
for a/a0 ∈ [5 · 102, 2 · 103].

Figure 4.16: Yields of ALP, RHN and radiation for a benchmark choice of parameters where
early matter-domination induced by the ALP is realized. Ya and YN get diluted for a/a0 ∈
[5 · 102, 2 · 103] by a factor ∼ 102. The dashed lines represent the constant initial values of the
Yields and they are plotted as a reference to enlighten the dilution. The exponential drop of
Ya and YN for a/a0 ≳ 2 · 103 is due to their decay.
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Figure 4.17: Comoving entropy S = sa3 as function of a/a0 for a benchmark choice of param-
eters where early matter-domination induced by the ALP is realized. During the radiation-
domination its value is constant, while in matter-domination one finds a huge increase, corre-
sponding to a significant entropy injection due to the ALP’s decay.

Thus, in the simplest scenario and as first estimate, we expect that the B −L asym-
metry gets diluted by the factor DSM ≃ 102 as well as the ALP’s Yield and RHN’s Yield
in Fig. 4.16. Then, the dilution induced by the decay of the matter-dominating ALP
should also be taking into account when considering ALP leptogenesis, since it works
against the generation of the baryon asymmetry. In particular, we can estimate that
above the red line in Fig. 4.18,

DSM ≳ 102 . (4.49)

Thus the amount of YB−L that can be gained by the mechanism of ALP leptogenesis, i.e.
a factor of ∼ 102, is lost because of dilution, indeed the resulting B − L asymmetry is

Y aft
B−L =

Y bef
B−L

DSM

. (4.50)
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Figure 4.18: Parameter space of ALP leptogenesis, where the red line corresponds to a dilution
factor DSM = 102. Thus, above the red line, the factor 102 in baryon asymmetry, gained by
ALP leptogenesis with respect to standard leptogenesis, is diluted away due to the ALP matter-
domination. Meanwhile, below the red line, ALP leptogenesis allows to gain some factors with
respect to thermal leptogenesis.
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Conclusion

This thesis dealt with one of the most striking shortcomings of the Standard Model:
the lack of a proper explanation to the Baryon Asymmetry of the Universe, whose ex-
perimental value measured by CMB is Y∆B = (8.69 ± 0.22) · 10−11 [7]. In particular,
this work explored how baryogenesis could be affected by a new pseudo-scalar particle,
the axion-like particle (ALP), predicted by many UV extensions of the SM and thus a
natural target to search for new physics.
The main goal of this project was to study ALP leptogenesis: a non-thermal leptogenesis
sourced via axion-like particle’s decay into right-handed Majorana neutrinos, which can
be considered as alternative to the standard thermal leptogenesis.

In Chapt. 2, we provided an overview of thermal leptogenesis, which is one of the so-
lutions to the Baryon Asymmetry of the Universe proposed in the literature [10], focusing
on the implementation of the Boltzmann Equations (2.46) describing the dynamics of the
process in the case of hierarchical Majorana neutrino masses, i.e. M1 ≪ M2,3. Usually,
this standard leptogenesis features heavy right-handed neutrinos, where the lightest one
satisfies the so-called Davidson-Ibarra bound M1 ≥ 109 GeV [116] in a weak washout
regime, while for strong washout M1 ≥ 1011 GeV holds. Generally, thermal leptoge-
nesis is considered to undergo the strong washout regime, which is achievable without
a tuning of parameters and, thus, is the natural preferred one: in this regime, the ini-
tially produced B −L asymmetry is reduced by the following cosmic thermal evolution.
Furthermore, in Sect. 2.4, we reviewed the mechanism of resonant leptogenesis, which
allows to perform a successful low-scale leptogenesis with Majorana neutrino masses
down to O(100) GeV-scale [9, 94, 114]. Indeed, the CP -asymmetry parameter affecting
the computation of the resulting YB−L can be resonantly enhanced by considering quasi-
degenerate masses of the two lightest Majorana neutrinos, i.e. |M1−M2| ≪ 1

2
(M1+M2),

where the mass splitting is comparable with the Majorana neutrino decay widths.
Then, we turned to investigate the ALP cosmology in Chapt. 3, including its thermal
production in the Early Universe and its decay. On top of its couplings to gluons and top
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quarks, already treated in the literature [99], we also considered its interaction with the
Majorana neutrinos via the term ∂µa

fa
NRγ

µNR. Hence, the ALP production is mainly due
to the top Yukawa coupling and the ALP abundance via relativistic freeze-out turned out
to be Ya = 2.15 · 10−3, while smaller values can be achieved via freeze-in, e.g. Ya = 10−4.
The dominant decay channel of the ALP is found to be a → N N , with benchmark
MN = ma/3.

Chapt. 4 exposed the main novelty of this thesis: we presented the mechanism of ALP
leptogenesis, where a non-thermal population of Ns is generated via ALP decays thanks
to its coupling to the Majorana neutrinos. First, the parameter space (fa,ma) has been
constrained in order to achieve successful ALP leptogenesis (Sect. 4.1). Thus, results
favour values of fa > 1011 GeV, ma > 104 GeV and MN > 1 TeV. After estimating the
viable parameter space, we derived the Boltzmann Equations (4.26) for ALP leptogenesis
and implement them numerically. The solutions of the Boltzmann Equations are shown
in Figs. 4.7 and 4.8, where we have considered e.g. fa = 1012 GeV, ma = 105 GeV and
MN = ma/3 as benchmarks.
In particular the main advantage of ALP leptogenesis is visible in Fig. 4.8: a factor
∼ 102 can be gained in the final B − L asymmetry with respect to the standard ther-
mal leptogenesis. The physical reason behind this increment in the resulting abundance
YB−L is that, when the ALP decays into two right-handed neutrinos, a → N N , the
washout processes are already out-of-equilibrium and thus, they cannot affect the ALP
leptogenesis process anymore. Thereby, the secondary non-thermal population of Ma-
jorana neutrinos produced via the ALP decays is able to fuel the generating process of
the B−L asymmetry. Thus, for some regions of parameter space, ALP leptogenesis can
successfully avoid strong washout effects.
Eventually, the value of YB−L resulting from ALP leptogenesis can reproduce the ob-
served one if we consider to deal with two Majorana neutrinos N1 and N2 with a small
Majorana mass splitting, able to satisfy the resonance condition (2.56). The resonant
enhancement in the CP -asymmetry parameter, due to a quasi-degeneracy of Majorana
masses comparable with their decay widths, allows to successfully perform low-scale lep-
togenesis. Indeed, resonant leptogenesis procedure ensures that there exist a parameter
space for Majorana neutrino masses M1 ≃M2 ≃ 104 GeV, where the amount of baryon
asymmetry produced is comparable with the experimental data (1.5). Moreover, thanks
to the factor ∼ 102 that can be gained in ALP leptogenesis by avoiding the strong
washout regime, we expect that our ALP leptogenesis does not require a tuning of the
Majorana masses as severe as the one in thermal leptogenesis, for the same choice of
parameter values. Even though a detailed study of numerical results of the resonant
leptogenesis formalism applied to our proposed ALP leptogenesis is beyond the scope of
this thesis, we can roughly estimate the final YB−L, solving the BEs for the simplified
scenario in which we assume that the baryon asymmetry in ALP resonant leptogenesis
only depends on an effective CP -asymmetry parameter ϵeff and we keep track of only
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one effective heavy Majorana neutrino. The solutions to BEs, which for simplicity have
been parametrized in the aforementioned way, are shown in Figs. 4.10 and 4.11.
In the previous computations, we have chosen to work in a region of parameter space
where the ALP does not induce a matter-dominated period. In other regions of the ALP
parameter space suitable for ALP leptogenesis, a period of matter-domination from the
ALP inevitably occurs: we have analysed it in Sect. 4.3. First of all, we have investi-
gated how the temperature of the primordial bath scales with respect to the scale factor
a during the matter-domination, in the case in which the ALP can decay both directly
into radiation (antitops, tops and gluons) and into Ns, which in turn decay in radia-
tion. Thus, solving the differential equations (4.37) for the energy densities of radiation,
ALPs and Majorana neutrinos, we found that in this scenario the temperature scales
as T ∝ a−3/8 during the decays of the ALP and RHNs, to be compared with the more
standard T ∝ a−1 cosmological evolution. T ∝ a−3/8 is the same scaling as the basic
matter-dominating case studied in literature [112], where matter (e.g. ALP) only decays
directly into radiation. Moreover, in Figs. 4.16 and 4.17 we have shown the evolution
of the Yields Yi and the comoving entropy S = sa3. Thus, we have discovered that
the diluter (i.e. ALP) dilutes itself as well as its decay products (i.e. Ns) and we have
computed the dilution factor DSM due to the entropy injection, which turns out to be
the same as the one (4.8) used to constrain the parameter space in 4.1.1. We have es-
timated that this dilution factor also affects the abundance YB−L, reducing in this way
the efficiency of ALP leptogenesis. Thus, we have identified the region of parameter
space where the dilution completely cancels the gain obtained via introducing the decay
a → N N into the leptogenesis mechanism: this happens for values fa ≳ 1015 GeV and
ma ≳ 107 GeV, as shown in Fig. 4.18.

5.1 Outlook

Now, we address some possible future developments that could expand and improve the
work that has been done in this thesis.
A possible outlook is to consider values for the masses of Majorana neutrinos and ALPs
different from MN = ma/3, to gain a more complete understanding of the parameter
space. In this case, we could study in depth the topic about the kinetic equilibrium of
the Majorana neutrinos and the resulting Lorentz boost factor, which should be applied
to this population of Ns generated from the ALP’s decay. Thus, one future direction
can be to improve the computation of the N and B − L Yields in ALP leptogenesis
by solving the Boltzmann Equations with respect to the phase-space distributions f(k),
since Ns are not in kinetic equilibrium and, if MN ̸= ma/3, the approximations we have
done in App. B.2 to derive (4.26) are not valid anymore. Furthermore, in this scenario,
scattering processes e.g. N t → t ℓ, which contribute to deplete the N ’s population,
could become relevant and even dominate over Majorana neutrino’s decays. Hence, the
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effects of these processes should be implemented into the BEs, in order to compute the
final asymmetry.

Another possible future direction consists of rigorously applying the resonant lepto-
genesis formalism to our proposed scenario of ALP leptogenesis, and thereby improving
the rough estimate made by assuming to solve the BEs taking into account only one
Majorana neutrino which produces an effective CP -asymmetry parameter ϵeff .

Another interesting framework to be explored is the one where the ALP dominates
the energy content of the Universe, inducing a significant dilution of the other species
relics. Indeed, we have simply estimated its effect on the B−L asymmetry in Sect. 4.3.2
by applying the dilution factor DSM to YB−L (4.50). However, the picture could be more
complicated than that, because the Majorana neutrinos Ns have been diluting while
they are performing the usual leptogenesis. Therefore, we could solve numerically a set
of BEs that implement both the ALP matter-domination (4.37) and the ALP leptoge-
nesis (4.26), in order to better compute the resulting B − L asymmetry in the case in
which the ALP induces an early matter-dominated epoch.

In addition, a future direction could be to specify a possible model realizing the
scenario of ALP leptogenesis. Indeed, in this thesis, we studied generically model-
independent axion-like particles. Thus, we could refer to a particular ALP, e.g. R-axion,
whose existence is motivated in a supersymmetric theory with an R-symmetry breaking.

Finally, the phenomenology of ALP leptogenesis could be explored. In this thesis,
we have shown that the viable parameter space for ALP leptogenesis can include lighter
Majorana neutrinos, MN ≃ (10 ÷ 100) TeV, with respect to the ones used in standard
thermal leptogenesis. Thus, from a phenomenological point of view, ALP leptogenesis
is favorable because its Majorana neutrinos could be testable. In particular, one could
search for N ’s signatures in lepton flavour violating observables [117] and at future
facilities such as high-energy muon colliders [118–120].
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Appendix A

Cosmology

We summarize in this Appendix some features, conventions and definitions about the
cosmological history of the Universe, used throughout this thesis. This appendix is
mainly based on the textbook [21].

In the standard cosmological model the Universe expands from an initially hot and
dense state. The expanding Universe is described by the Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric, where the physical length scales are proportional to the scale
factor a(t). The expansion rate is quantified via the Hubble parameter H(t), which is
defined by the energy content of the Universe through the first Friedmann equation

H(t) ≡ ȧ(t)

a(t)
=

√
8πρtot
3

1

MPl

, (A.1)

with the Planck mass MPl = 1.22 · 1019 GeV and ρtot is the total energy density. The
various species composing the Universe at different times are considered as perfect fluids,
characterized by the energy density ρ and the pressure p.
We consider the usual scenario of reheating after an initial inflationary phase of the Uni-
verse: the inflaton Φ, with energy density ρΦ, decays with width ΓΦ into SM particles.
Defining the reheating temperature TRH as the temperature at which ΓΦ equals H, TRH

becomes effectively the maximal temperature of the Universe. Indeed, while higher tem-
peratures exist, particles produced at T > TRH are diluted by the entropy released by
inflaton decays. Then, TRH is the starting temperature of the primordial thermal bath of
relativistic particles dominating the energy content of the Early Universe. Indeed, after
inflation, the Universe contains a plasma of particles in thermal equilibrium with tem-
perature T . This initially coincides with a period of radiation-domination. In particular,
during a radiation-dominated epoch, the Hubble parameter can be approximated as

H(t) ≃ 1.66
√
g∗(T )

T 2

MPl

, (A.2)

68



APPENDIX A. COSMOLOGY

where g∗(T ) accounts for the effective number of relativistic degrees of freedom in
the primordial plasma at the temperature T , including both bosons and fermions. The
general expression for g∗(T ) reads

g∗(T ) =
7

8

∑
F

gFi

(
T F
i

Tγ

)4

+
∑
B

gBi

(
TB
i

Tγ

)4

, (A.3)

where Tγ is the photon temperature and T
F (B)
i , g

F (B)
i are the temperature and the number

of degrees of freedom of each fermionic (bosonic) particle i. The Eq. (A.3) is applicable
for both relativistic species in themal equlibrium with the photons, i.e. Ti = Tγ ≫ mi,
and decoupled relativistic species, i.e. Tγ ̸= Ti ≫ mi. g∗(T ) remains roughly constant
away from paricle mass thresholds T ∼ mi and, for temperatures much higher than the
electroweak scale, T ≳ 1 TeV, all the SM particles are relativistic and in equilibrium,
resulting in gSM∗ = 106.75.

A.1 Thermal history of the Universe

In the very Early Universe most particles were in thermal equilibrium with photons,
forming the primordial plasma. Therefore, the notion of thermal equilibrium is extremely
important in determining how temperature, energy density and entropy density of the
Universe evolve with the Hubble expansion. Thus, in this Section some basic aspects
of systems of both relativistic and non-relativistic particles in thermal equilibrium are
reviewed.

Local thermal equilibrium is achieved for species which are both in kinetic and chem-
ical equilibrium. In order to study the evolution of particles in the primordial Universe,
it is convenient to use the phase-space distribution function f(k, t), which depends on
the momentum k and time t. In kinetic equilibrium, f is given by either the Fermi-Dirac
(+) or Bose-Einstein (−) distributions at temperature T :

f eq(k, t) =
(
e

E−µ
T ± 1

)−1
, (A.4)

with particle energy E and chemical potential µ. Moreover, in a process of the form

A+B ↔ C +D , (A.5)

the chemical equilibrium implies µA + µB = µC + µD.
Other associated quantities for a dilute and weakly-interacting gas of particles, such as
the number density n and the energy density ρ, can be computed thanks to the phase-
space distribution:

n =
g

(2π)3

∫
d3kf(k, t) , (A.6)
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ρ =
g

(2π)3

∫
d3kE(k)f(k, t) , (A.7)

with internal degrees of freedom g.
Let us now show the above expressions in two asymptotic limits, assuming |µ| ≪ T [21]:

• Relativistic species
For T ≫ m, we can approximate for bosons

nB =
g

π2
ζ(3)T 3 , ρB =

π2

30
gT 4 (A.8)

while for fermions,

nF =
3

4
nB , ρF =

7

8
ρB ; (A.9)

• Non-relativistic species
For T ≪ m, the bosonic and fermionic nature of particles becomes indistinguishable
because the exponential factor dominates the denominator in Eq. (A.4), and

n ≃ g

(
mT

2π

)3/2

e−m/T , ρ = mn (A.10)

Denoting Tγ as the temperature of the photon bath in the Early Universe, the total
energy density of radiation in presence of other relativistic species is given by:

ρr =
π2

30
g∗(T )T

4 (A.11)

with g∗(T ) defined in Eq. (A.3).

Other useful quantities can be defined, such as the comoving entropy of the Universe

S =
E + pV

T
, (A.12)

where p and V indicate pressure and volume, and the entropy density s = S/V , which
is thus given by

s =
ρ+ p

T
. (A.13)

The total entropy density of radiation in the Early Universe is given by the sum over all
relativistic species:

s =
2π2

45
g∗s(T )T

3 , (A.14)
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where g∗s is the effective number of relativistic degrees of freedom contributing to the
entropy. If the species are in thermal equilibrium, g∗ = g∗s, but for decoupled species we
have

g∗s(T ) =
7

8

∑
F

gFi

(
T F
i

Tγ

)3

+
∑
B

gBi

(
TB
i

Tγ

)3

, (A.15)

which differs from the expression of g∗(T ) in Eq. (A.3). Therefore, at high temperature we
can assume g∗ = g∗s, while at low temperatures, after the neutrino decoupling, g∗ ̸= g∗s.
Thus, at leptogenesis temperatures, we have g∗ = g∗s.
Note that entropy conservation implies that S = a3s = g∗sa

3T 3 = const. Thus, far away
from particle mass thresholds, g∗s is approximately constant and the temperature scales
as

T ∝ a−1 . (A.16)

Finally, let us notice that g∗s accounts for particles becoming non-relativistic and expo-
nentially decaying away. Thus, their entropy is transferred into the species that remain
in the plasma, the so-called entropy injection, which makes the radiation temperature
decreases more slowly than T ∝ a−1.
Another useful cosmological parameter to denote the abundance of a species i is the
Yield, defined as

Yi =
ni

s
, (A.17)

which remains constant if no particles are being created or destroyed.
Before proceeding in the discussion of the equilibrium thermodynamics, we explain the
relation between the entropy density and the photon number density at present time T0,
stated in Sect. 1.1. Using Eq. (A.8), we obtain

nγ,0 =
gγζ(3)

π2
T 3
0 (A.18)

with gγ = 2 degrees of freedom for photons, while using (A.14),

s0 =
2π2

45
g∗s(T0)T

3
0 . (A.19)

At T0, the only relativistic species are photons and neutrinos and the latter are decoupled.
Thus, the contribution to the present entropy density s0 comes from the photons at Tγ
and from the neutrinos at Tν = 4

11
T 3
γ . From Eq. (A.15) we derive

g∗s(T0) = gγ +
7

8
gν

(
Tν
T0

)3

= 2 +
7

8
· 6 · 4

11
= 3.91 . (A.20)

Then, combining Eqs. (A.18) and (A.19), the relation

s(T0) = 7.04nγ(T0) (A.21)
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is obtained.

Now, we focus on the mechanism that makes particles decouple from the thermal
bath. The Universe is expanding and getting colder and colder over time. The departure
from thermal equilibrium allows species to acquire a significant cosmological abundance
and different particle species decouple at different epochs. In particular, the condition to
be satisfied by a species to get out-of-equilibrium compares its interaction rate, Γ, with
expansion rate H of the Universe. As long as

Γ > H , (A.22)

a species i is kept in thermal equilibrium with the plasma, for instance via annihilation
processes like A+A↔ i+ i. In this case, the particles are being created and destroyed
within a Hubble time and the equilibrium is maintained. But, when

Γ < H , (A.23)

the system departs from thermal equilibrium because the interactions can no longer
keep up with the Hubble expansion: for instance, the process i + i → A + A becomes
inefficient, the species cannot be produced back by the bath and decouples, i.e., the
particle is frozen out. Thus, the abundance of the species i will remain constant after
the decoupling. This mechanism is called freeze-out and the decoupling temperature TD
is computed by equalling Γ to H. Furthermore, the freeze-out can be either relativistic,
if m≪ T with m the particle’s mass, or non-relativistic, if m ≳ T , resulting in a certain
abundance, expressed by the Yield Yi, for that species i. In both cases the phase-space
distribution f(k, t) remains untouched after decoupling, while the scaling behaviour of
the temperature for relativistic and non-relativistic species after freeze-out is different:

T (t) = TD
a(tD)

a(t)
for m≪ T (A.24)

where the energy of the particle is simply redshifted by expansion, E(t) = E(tD)
a(tD)
a(t)

,

and in particular E/T = const, and

T (t) = TD

(
a(tD)

a(t)

)2

for m ≳ T (A.25)

where the momentum of the particle redshifts and consequently its kinetic energy scales
as E ∝ |k|2 ∝ a−2, and in particular (E − µ)/T = const.
An alternative mechanism with respect to the freeze-out is the so-called freeze-in (see
Ref. [121] for a review). First studied as possible mechanism of dark matter genesis,
it assumes that a certain species has a negligible initial abundance and it interacts so
feebly with the thermal bath that it never attains thermal equilibrium. The particle is
said to be frozen in through decays and two-to-two scatterings and its Yield is infrared
dominated by low temperatures near its mass.
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Boltzmann Equations

The Boltzmann Equations are kinetic equations treating out-of-equilibrium processes.
For instance, the non-equilibrium process of baryogenesis is usually studied by means of
Boltzmann Equations [95, 122]. In the same way, leptogenesis has been studied in the
last decades [11, 12, 46, 74, 89, 92, 94].
In this Appendix, the steps of the derivation of the BEs relevant for standard leptogen-
esis are reviewed in B.1and the new set of BEs for ALP leptogenesis is derived in B.2.

Generally, the Boltzmann Equation for the phase-space distribution fi = f(t,pi) of
the particles species i can be written as [15, 46]

∂fi
∂t

− |pi|H
∂fi
∂|pi|

= C[fi] (B.1)

where the left-hand side corresponds to the Liouville operator with momentum pi. On
the right-hand side, the collision integral C[fi] encodes the interactions of the particle i,

C[fi] =
1

2Ei

∑
i→XY

∫
dΠXdΠY (2π)

4δ4(pi − pX − pY )·

·
[
fXfY (1± fi)|MXY→i|2 − fi(1± fX)(1± fY )|Mi→XY |2

] (B.2)

with dΠn = d3pn
2En(2π)3

, En and pn respectively the energy and the 4-momenta of the
particles species n, MA the matrix element for the process A. The sign + accounts for
bosons, while − for fermions.
The left-hand side of Eq. (B.1) is usually expressed as a derivative with respect to the
dimensionless coordinate z = Mi/T . Thus, using the relation dT/dt = −HT [46], the
differential operator becomes

∂

∂t
− |pi|H

∂

∂|pi|
= zH(z)

∂

∂z
. (B.3)
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Therefore, (B.1) assumes the simpler form

∂fi(z , y)

∂z
=

1

H(z)z
C[fi(z, y)] (B.4)

with yi = |pi|/T .

In the following, the spacetime densities γeq of decays in thermal equilibrium (e.g.
see (2.47)) will be used, then it is convenient to define them here. Generally for a decay,
the reaction density is defined as

γeq(a→ i+ j) =

∫
dΠadΠidΠjf

eq
a (2π)4δ4(pa − pi − pj)|M(a→ i+ j)|2 , (B.5)

where |M|2 is summed (not averaged) over the internal degrees of freedom of the initial
states. Eq. (2.47) can also take the following form [92]

γ := γeq(i→ j k) = neq
i

K1(zi)

K2(zi)
Γ , (B.6)

with zi = mi/T , Γ the usual decay width in the rest frame of the decaying particle,
K1(z), K2(z) the modified Bessel functions of second kind of first and second order and
the number density neq

i of particle i at equilibrium is approximated to follow the classical
Maxwell-Boltzmann distribution, [11]

neq
i,MB =

gi
2π3

∫
d3pf eq

i,MB =

{
giT

3

2π2 z
2
iK2(zi) for zi =

mi

T
̸= 0, µ = 0 ,

giT
3

π2 formi = 0 .
(B.7)

Then, inserting (B.7) into (B.6) in the case of massive particle, the reaction rate becomes

γ =
gim

3
i

2π2zi
K1(zi)Γ . (B.8)

B.1 Standard thermal leptogenesis

In standard leptogenesis, two coupled BEs for the RHN and for the B − L asymmetry
are derived. We consider that decays, N1 → ℓ ϕ, and inverse decays, ℓ ϕ→ N1, dominate
leptogenesis, as motivated in Sect. 2.3. Then, the kinetic equation for N1 is

∂fN1

∂t
− |pN1

|H ∂fN1

∂|pN1
|
= CD[fN1 ] (B.9)
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with

CD[fN1 ] =
1

2EN1

∫
dΠℓdΠϕ(2π)

4δ4(pN1 − pℓ − pϕ)
[
fϕfℓ(1− fN1)(|Mϕℓ→N1|2+

+ |Mϕ ℓ→N1
|2)− fN1(1− fℓ)(1 + fϕ)(|MN1→ϕℓ|2 + |MN1→ϕ ℓ|2)

] (B.10)

Using CPT invariance, the neutrino decay amplitudes can be written as

|MN1→ℓϕ|2 = |Mϕ ℓ→N1
|2 = (1 + ϵ)

2
|M0|2 , |MN1→ϕ ℓ|2 = |Mϕ ℓ→N1|2 =

(1− ϵ)

2
|M0|2

(B.11)

where |M0|2 =
m†

DmD

vEW
pℓ pN1 [46] is the (CP -conserving) squared matrix element at tree-

level, and ϵ is the CP -asymmetry parameter (2.19). We work in the approximation of
thermal equilibrium for all SM particles, i.e.

fℓ = f eq
ℓ , fϕ = f eq

ϕ , (B.12)

and we neglect quantum statistical factors due to Pauli blocking for fermions and induced
emission for bosons, i.e. [95]

1 + fi ≈ 1 , (B.13)

adopting the classical Maxwell-Boltzmann distribution function

f eq
i = e−Ei/T . (B.14)

Thus, using these assumptions and energy conservation, the following relation holds

fϕfℓ = e−
(Eϕ+Eℓ)

T = e−EN/T = f eq
N1
. (B.15)

Therefore, the collision operator (B.10) gets simplified as follows [46]

CD[fN1 ] =
MΓD

EN1pN1

∫ (EN1
+pN1

)/2

(EN1
−pN1

)/2

dpϕ(f
eq
N1

− fN1) , (B.16)

where ΓD has been defined in (2.16). Performing the integration over the momenta pϕ,
from Eq. (B.4) we obtain

∂fN1(z , y)

∂z
=

MNΓD

zH(Z)EN1

(f eq
N1

− fN1) . (B.17)

Assuming kinetic equilibrium for the RHN neutrinos, i.e. fN1 ≈ nN1

neq
N1

f eq
N1
, where the

number density is defined as (A.6) with gN1 = 2, and integrating Eq. (B.17) over the
RHN phase-space, we find

∂nN1(z , y)

∂z
= −

neq
N1

zH(z)
ΓD <

MN

EN1

>

(
nN1

neq
N1

− 1

)
, (B.18)
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where [46]

ΓD <
MN

EN1

>≡ ΓD

neq
N1

∫
d3pN1

2π3
f eq
N1

MN

EN

(B.19)

is the thermal average of the decay rate and [95]

<
M

EN1

>=
K1(z)

K2(z)
. (B.20)

Eq. (B.18) is the integrated form of the BE, i.e. the time evolution of number densities
ni are tracked in favour of the phase-space distributions fi. Therefore, in the integrated
approach, which is conventionally used in the literature, the BE (B.17) is integrated
over the momentum Majorana neutrino phase space.

Since Eq. (B.20) holds, Eq. (B.18) can be written in a handy way, making use of the
space time density γeq of decays in thermal equilibrium in the form of (B.6). Eventually,
the BE for the RHN evolution has the following form

∂YN1(z , y)

∂z
= − γD

H(z)sz

(
YN1

Y eq
N1

− 1

)
, (B.21)

where we have divided by the entropy density s to obtain the yield YN1 .

Now, we derive the BE for the B − L asymmetry’s evolution. The BE for leptons
(antileptons) with phase-space distribution fℓ (fℓ) is built similarly to (B.9). The collision
integral includes decays N1 → ℓ ϕ, inverse decays ℓ ϕ → N1 and ∆L = 2 scattering
processes, such as ℓ ϕ→ ℓ ϕ and ℓ ℓ→ ϕϕ. Since all the particles species are assumed to
be in kinetic equilibrium, the BE for the number density nℓ is obtained by integrating
over the lepton phase-space. Thus, using the reaction densities defined as (B.5), we have
the following expression

∂nℓ

∂t
+ 3Hnℓ =

nN1

neq
N1

γ(N1 → ℓϕ)− nℓ

neq
ℓ

γ(ℓ ϕ→ N1) +
nℓ

neq
ℓ

γsub(ℓ ϕ→ ℓ ϕ)+

− nℓ

neq
ℓ

γsub(ℓ ϕ→ ℓ ϕ) + γ(ϕϕ→ ℓ ℓ)

(
nℓ

neq
ℓ

)2

γ(ℓ ℓ→ ϕϕ) .

(B.22)

Here, the Higgs doublets ϕ are assumed to be in thermal equilibrium and γs are the
reaction densities in thermal equilibrium.
The ∆L = 2 scattering processes mediated by N1, e.g. ℓ ϕ → ℓ ϕ, have to be taken
into account, otherwise a lepton asymmetry would be generated even in thermal equi-
librium [88]. However, the real intermediate state (RIS) contribution from these 2 → 2
scatterings needs to be subtracted in order to avoid double counting [11, 95]. Thus,
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in (B.22) the subtracted reaction density are denoted as γsub. This procedure is a deli-
cate and crucial point in setting up the BEs for leptogenesis. The explicit calculation of
∆L = 2 processes, including one-loop self-energy and vertex corrections in the resonance
region is carried out in Ref.[88]. Therefore, the following expression holds

γsub(ϕ ℓ→ ℓ ϕ) = γ∆L=2,+ − ϵ

2
γN1 , (B.23)

γsub(ϕ ℓ→ ℓ ϕ) = γ∆L=2,+ +
ϵ

2
γN1 , (B.24)

γ(ϕϕ→ ℓ ℓ) = γ(ℓ ℓ→ ϕϕ) = γ∆L=2,t . (B.25)

where γ∆L=2,+ is the unsubtracted reaction density, which, contrary to the subtracted
one, preserves the CP symmetry [88]. Let us stress that, to leading order in the coupling,
γsub contributes only on-shell, at order O(y2ν).
Expressing the lepton-number densities in terms of the B−L number density as follows

nℓ = neq
ℓ − 1

2
nB−L , nℓ = neq

ℓ +
1

2
nB−L , (B.26)

assuming nB−L = nℓ − nℓ = O(ϵ) and keeping only O(ϵ) terms, the BE for B − L
asymmetry becomes [88]

∂nB−L

∂t
+ 3HnB−L = ϵγN1

(
nN1

neq
N1

− 1

)
− nB−L

neq
ℓ

(
γN1

2
+ γ∆L=2

)
, (B.27)

where
γ∆L=2 = 2γ∆L=2,+ + 2γ∆L=2,t . (B.28)

Let us highlight that the CP -violating part of γsub yields the term +ϵγN1 , which guaran-
tees that in thermal equilibrium, i.e. nN1 = neq

N1
, no B−L asymmetry is generated. The

off-shell contribution γ∆L=2 is subleading, indeed it is a O(y4ν)-term. Thus, by neglecting
all these non-resonant terms, BE valid at O(y2ν) is derived [11, 88]. Eventually, perform-
ing the coordinate transformation that leads to (B.4) and rewrite in terms of Yields, the
BE for the B − L asymmetry becomes:

∂YB−L

∂z
=

ϵγD
H(z)sz

(
YN1

Y eq
N1

− 1

)
− γDYB−L

2Y eq
ℓ Hsz

, (B.29)

with

Y eq
ℓ =

2Y eq
N1

z2K2(z)
. (B.30)

Thus, Eqs. (B.21) and (B.29) are the ultimate form of BEs for thermal leptogenesis,
which have been numerically implemented in Sect. 2.3.
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B.2 ALP leptogenesis

In this Appendix, the Boltzmann Equations describing the dynamics of ALP leptoge-
nesis are derived. Let us stress that this non-thermal leptogenesis takes place besides
the standard thermal one. Thus, two different populations of RHN are generated: the
first one due to inverse decays and scatterings occurring in the thermal bath, and the
second one due to the ALP’s decays a → N N . Then, looking at the ratios Γ̃/H of
Fig. 4.9, thermal leptogenesis is approximated to take place until z = MN/T ∼ 13, and
it is described by the usual BEs derived previously in App. B.1, Eqs. (B.21) and (B.29).
For higher values of z, the ALP’s decays begin to create the second non-thermal pop-
ulation of N1. Therefore, on top of the kinetic equations for the RHN and the B − L
asymmetry, the BE for the ALP needs to be computed.

For what concerns the ALP, its frozen-in/frozen-out Yield obtained in Sect. 3.1.3 is
taken as initial value for the abundance, and then the collision integral is modelled on
Eq. (B.2) considering only its decays into Majorana neutrinos, top quarks and gluons.
Therefore, we have

∂fa
∂z

=
1

H(z)z
C[fa] , (B.31)

with
C[fa] = Ca→N1 N1 [fa] + Ca→g g[fa] + Ca→t t[fa] . (B.32)

Neglecting statistical quantum numbers and assuming the same matrix element squared
for decay and inverse decay, the collision operator simplifies with

Ca→N1 N1 [fa] = − 1

2Ea

∫
dΠN1dΠN1(2π)

4δ4(pa − pN1 − pN1)|Ma→N1 N1|2fa , (B.33)

Ca→g g[fa] =
1

2Ea

∫
dΠgdΠg(2π)

4δ4(pa − pg − pg)|Ma→g g|2(f 2
g − fa) , (B.34)

Ca→t t[fa] =
1

2Ea

∫
dΠtdΠt(2π)

4δ4(pa − pt − pt)|Ma→t t|2(ftft − fa) , (B.35)

where, in the first collision integral, we have not considered the term concerning the
back reaction N1N1 → a. Since the SM particles are approximated to be in thermal
equilibrium, i.e. fg = f eq

g and ft(t) = f eq

t(t)
, and since

f eq
a = f 2

N1,eq
= f 2

g,eq = f eq
t f

eq

t
(B.36)

because of energy conservation, the collision operators can be rewritten as

Ca→N1 N1 [fa] = − 1

2Ea

∫
dΠN1dΠN1(2π)

4δ4(pa − pN1 − pN1)|Ma→N1 N1|2f eq
a

fa
f eq
a
, (B.37)
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Ca→g g[fa] =
1

2Ea

∫
dΠgdΠg(2π)

4δ4(pa − pg − pg)|Ma→g g|2f eq
a

(
1− fa

f eq
a

)
, (B.38)

Ca→t t[fa] =
1

2Ea

∫
dΠtdΠt(2π)

4δ4(pa − pt − pt)|Ma→t t|2f eq
a

(
1− fa

f eq
a

)
, (B.39)

where we have factored out f eq
a . Assuming that the ALP is in kinetic equilibrium, i.e.

fa/f
eq
a ≈ na/n

eq
a , as motivated in 4.2.1, and integrating over the ALP phase-space, the

BE becomes

dna

dz
= − 1

H(z)z

[
BrN1γa

na

neq
a

−Brgγa

(
na

neq
a

− 1

)
−Brtγa

(
na

neq
a

− 1

)]
, (B.40)

where Bri are the branching ratios of the ALP’s decay and γa the total decay density.
Furthermore, Eq. (B.40) can be rewritten by dividing for the entropy density s as

dYa
dz

= −BrN
γa
Hsz

Ya
Y eq
a

−Brg
γa
Hsz

(
Ya
Y eq
a

− 1

)
−Brt

γa
Hsz

(
Ya
Y eq
a

− 1

)
. (B.41)

Now, we derive the BE describing the time evolution of RHNs. Due to the ALP’s
decay acting as new source of N1 and to the fact that the Majorana neutrinos produced
via decay are not in kinetic equilibrium, Eqs. (B.21) gets modified. The first modification
appears as a new term in the right-hand side of the BE: it has the same expression of
the first term in (B.41) but opposite sign.
Then, we need to review the steps of the BE’s derivation, dropping the assumption of
kinetic equilibrium for the non-thermal population of N1. Integrate Eq. (B.17), we obtain

∂nN1

∂z
=
MNΓD

zH(z)

(∫
d3pN1

EN1(2π)
3
f eq
N1

−
∫

d3pN1

EN1(2π)
3
fN1

)
, (B.42)

where in the first integral, the RHN’s energy for the thermal population can be approx-
imated as

EN1 ≃MN , (B.43)

since the RHN are non-relativistic, while in the second integral

EN1 ≃
ma

2
(B.44)

is the energy of the Majorana neutrinos produced via ALP’s decays. Then, the integrals
in Eq. (B.42) are the number densities neq

N1
and nN1 , respectively, and

∂nN1

∂z
=

ΓD

zH(z)

(
neq
N1

− 2MN

ma

nN1

)
. (B.45)
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Factoring out neq
N1

and dividing by the entropy density, we obtain

∂YN1

∂z
= − γD

H(z)sz

(
2MN

ma

YN1

Y eq
N1

− 1

)
, (B.46)

where the ratio of Bessel functions is reasonably approximated as K1(z)/K2(z) ≃ 1.
Thus, the fact that the RHNs produced via ALP’s decays are not in kinetic equilibrium
can be modelled in the BEs by the boost factor 2MN/ma. The effect is that the RHNs
decay slower, due to the energy inherited from the ALP. Therefore, the BE for N1 can
be written as

dYN1

dz
= − γD

Hsz

(
2MN

ma

YN1

Y eq
N1

− 1

)
+
BrNγa
Hsz

Ya
Y eq
a
. (B.47)

Following the same reasoning as above, the BE for the B−L asymmetry is modified
by multiplying by the boost factor as follows

dYB−L

dz
=

γDϵ

Hsz

(
2MN

ma

YN1

Y eq
N1

− 1

)
− γD
Hsz

YB−L

2Y eq
l

. (B.48)

Eventually, the coupled system of Eqs. (B.41), (B.47) and (B.48) can be solved numeri-
cally with respect to z, with z ∈ [13, 200].
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ALP production via Majorana
neutrino coupling

In this Appendix, we improve the estimates of the ALP production due to the coupling
with the Majorana neutrinos Ns, which have been carried out in Sect. 3.1.2. Here, we
precisely check that those contributions are subdominant by computing the resulting
ALP Yields (see Ref. [121]).

We assume that the ALP abundance right after reheating is approximately zero, i.e.,
fa ≈ 0, that the bath particles are in thermal equilibrium and therefore are Maxwell-
Boltzmann distributed, i.e., fi ≈ e−Ei/T , and let us neglect Pauli blocking/stimulated
emission effects, i.e., (1 ± fi ≈ 1). Then, under these assumptions, the general form of
the BE for a 2 → 2 scattering becomes [121]

ṅa + 3Hna ≈
∫
dΠ1dΠ2dΠ3dΠa(2π)

4δ4(p1 + p2 − p3 − pa)|M12→3a|2f1f2 . (C.1)

Now, we consider the processes arising from the RHN’s coupling with the ALP, that
could contribute to the ALP production:

1. NN → aa t-channel:
This can be seen as a 2 → 2 scattering with an effective quartic interaction
term: λeffaaNN = MN

f2
a
aaNN . This is a non-renormalizable operator and, from

Eq. (C.1), we get

ṅa + 3Hna ≈
∫
dΠadΠNdΠNdΠa(2π)

4δ4(pN + pN − pa − pa)|M|2NN→aaf
2
N . (C.2)

Following the computation in Ref. [121], this equation can be manipulated, obtain-
ing

ṅa + 3Hna ≈
T

2048π6

∫
dsdΩ

√
s|M|2NN→aaK1(

√
s/T ) , (C.3)
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where s is the center of mass energy at temperature T, considering all the masses
negligible with respect to the temperature at which we are working. In this limit,

|M|2NN→aa =
M2

N

f4
a
s which means

ṅa + 3Hna ≈
TM2

N

512π5f 4
a

∫ ∞

0

dss3/2K1(
√
s/T ) . (C.4)

Using the definition of Y = n/s, switching variables from t to T and performing
the final integral

dYa
dT

≈ −1

sHT

T 6M2
N

16π5f 4
a

. (C.5)

Computing the integral from TRH to T0 ≃ 0

Ya ≈
0.4TRHMPlM

2
N

π7f 4
ag∗s

√
g∗

≈ 10−20 , (C.6)

with TRH ≃ 108GeV, MN ≃ 104GeV, fa = 1012GeV, g∗s = g∗ = 106.75 (here we
are inserting values of the parameters, based on considerations about the suitable
parameter space for ALP leptogenesis, see 4.1);

2. NN → aa s-channel with ALP trilinear vertex:
This case is similar to the previous one, but now the effective coupling is λeff =
MNT
f2
ama

. Following the same steps as above, we get |M|2NN→aa = (MNT
maf2

a
)2s and

ṅa + 3Hna ≈
T 3M2

N

512π5m2
af

4
a

∫ ∞

0

dss3/2K1(
√
s/T ) . (C.7)

Thus,
dYa
dT

≈ −1

sHT

T 8M2
N

16π5m2
af

4
a

. (C.8)

Computing the integral over the temperature and inserting the aforementioned
values of the parameters, we obtain

Ya ≈
0.4T 3

RHMPlM
2
N

3π7m2
af

4
ag∗s

√
g∗

≈ 10−14 , (C.9)

with ma = 105GeV;

3. ϕN → ℓ a t-channel:
It is the same as process 1, but now the effective coupling is λeff = yν

fa
. Then, we

obtain

Ya ≈
0.4TRHMPly

2
ν

π7f 2
ag∗s

√
g∗

≈ 10−14 ; (C.10)
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4. NN → a inverse N decays:
The interaction term is a renormalizable operator which means we are dealing with
an IR freeze-in production [121]. We have ma > MN +MN . At high temperatures
(T ≫ ma):

ṅa + 3Hna ≈
∫
dΠadΠNdΠN(2π)

4δ4(pa − PN − PN)|M|2NN→af
2
N . (C.11)

Assuming |M |2a→NN = |M |2NN→a, and energy conservation,

ṅa + 3Hna ≈
∫
dΠadΠNdΠN(2π)

4δ4(pa − PN − PN)|M|2a→NNf
eq
a . (C.12)

Then, after some manipulations (see Ref. [121]), converting the integral over mo-
mentum space into an integral over energy

ṅa + 3Hna ≈
gaΓNm

2
a

2π2
TK1(mB1/T ) . (C.13)

Writing Y = n
s
, x = ma

T
and using dT

dt
≈ −HT , we get

Ya ≈
45gaΓNMPl

1.664π4m2
ag∗s

√
g∗

∫ xmax

xmin

K1(x)x
3dx . (C.14)

Setting xmax = ∞ and xmin = 0, the integral results 3
2
π and the final result is

Ya ≈
135

8π3(1.66)gS∗
√
gρ∗

(
ΓNMPl

m2
a

)
≈ 10−6 , (C.15)

where we have inserted the chosen values for the parameters and computed ΓN at
T =MN .

Therefore, the generated ALP Yield due to the processes 1, 2, 3, 4, is negligible with
respect to the Yield coming from the top (and gluon) production, i.e. Ya ≃ (10−3÷10−4).
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