Del Prete, Beatrice Rosa
(2023)
Multiparametric analysis of the early osteogenic differentiation process in MC3T3 cells.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Biomedical engineering [LM-DM270] - Cesena, Documento ad accesso riservato.
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Full-text non accessibile fino al 1 Gennaio 2025.
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (24MB)
| Contatta l'autore
|
Abstract
Trauma, injury, disease, or aging occurring in skeletal tissue can lead to considerable health problems and various socio-economic challenges. Existing methods, for replacing or restoring bone tissue have significant limitations and inherent disadvantages. To overcome these issues regenerative medicine and tissue engineering are offering new approaches for de novo skeletal tissue formation, in an attempt to address the unmet needs for bone augmentation and skeletal repair. In this respect, the employment of cells, 3D scaffolds and bioreactor system seems to be a promising alternative. Despite this, conventional methods to assess extracellular matrix mineralization, during the osteogenic differentiation process, have shown some limitations concerning the interpretation of the data. This work aims to evaluate osteogenic differentiation through different lenses, performing a multiparametric analysis useful to understand which method of analysis could be the most cost-effective one. Starting from this specific parameters have been extracted and exploited in order to define an algorithm able to predict in future whether and when extracellular matrix mineralization has occurred.
Abstract
Trauma, injury, disease, or aging occurring in skeletal tissue can lead to considerable health problems and various socio-economic challenges. Existing methods, for replacing or restoring bone tissue have significant limitations and inherent disadvantages. To overcome these issues regenerative medicine and tissue engineering are offering new approaches for de novo skeletal tissue formation, in an attempt to address the unmet needs for bone augmentation and skeletal repair. In this respect, the employment of cells, 3D scaffolds and bioreactor system seems to be a promising alternative. Despite this, conventional methods to assess extracellular matrix mineralization, during the osteogenic differentiation process, have shown some limitations concerning the interpretation of the data. This work aims to evaluate osteogenic differentiation through different lenses, performing a multiparametric analysis useful to understand which method of analysis could be the most cost-effective one. Starting from this specific parameters have been extracted and exploited in order to define an algorithm able to predict in future whether and when extracellular matrix mineralization has occurred.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Del Prete, Beatrice Rosa
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM INNOVATIVE TECHNOLOGIES IN DIAGNOSTICS AND THERAPY
Ordinamento Cds
DM270
Parole chiave
Osteogenic differentiation,3D scaffold,Bioreactor system,Histochemical assay,Metabolomics,Metabolic analysis,Extracellular matrix mineralization,MC3T3-E1,Classification algorithm
Data di discussione della Tesi
15 Giugno 2023
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Del Prete, Beatrice Rosa
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM INNOVATIVE TECHNOLOGIES IN DIAGNOSTICS AND THERAPY
Ordinamento Cds
DM270
Parole chiave
Osteogenic differentiation,3D scaffold,Bioreactor system,Histochemical assay,Metabolomics,Metabolic analysis,Extracellular matrix mineralization,MC3T3-E1,Classification algorithm
Data di discussione della Tesi
15 Giugno 2023
URI
Gestione del documento: