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Abstract (Eng)
Volcanic eruptions are complex events that can have significant impacts on human

populations and infrastructure. In this thesis, I investigate stresses induced by gravity
in volcanic edifices. In particular, I study the orientation of principal stress axes, as

these control the direction of magma propagation by diking. I construct simple
axisymmetric volcano topographies inspired by volcanoes in nature and then I test

widely used assumptions on the state of stress, to discuss which of these assumptions
might be more appropriate for volcano edifices. I also use a simple, recently developed,

dike propagation model (Simplified Analytical model, or SAM) to predict dike
trajectories in a progressively more realistic edifice stress field. The results of this study
provide new insights into the factors that influence dike propagation and vent opening,

highlighting the importance of considering the topographic loading and other
stress-modifying processes in the modelling of volcanic eruptions. The study also
demonstrates the potential of the SAM model for investigating dike propagation

behaviour in volcanic areas.
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Abstract (Ita)
Le eruzioni vulcaniche sono eventi complessi che possono avere un impatto significativo
sulla popolazione e sulle infrastrutture. In questa tesi analizzo gli sforzi elastici generati

dalla gravità negli edifici vulcanici. In particolare, studio l’orientamento degli assi
principali di sforzo, i quali controllano la direzione di propagazione dei dicchi.

Costruendo semplici topografie di vulcani assisimmetrici ispirati ai vulcani in natura,
metto alla prova le principali ipotesi utilizzate nella modellaizone dello stato di sforzo,
per discutere quale, tra esse, potrebbe essere più appropriata per rappresentare lo stato

di sforzo di edifici vulcanici. Utilizzo inoltre un semplice modello di propagazione di
dicchi (Simplified Analytical model, o SAM), sviluppato recentemente, per simulare le
traiettorie dei dicchi in un campo di sforzo dell’edificio via via più realistico. I risultati
di questo studio forniscono nuove conoscenze sui fattori che influenzano la propagazione

dei dicchi e l’apertura dei vent, evidenziando l’importanza di considerare il carico
topografico e altri processi che modificano lo sforzo nella modellazione delle eruzioni
vulcaniche. Lo studio dimostra inoltre il potenziale del modello SAM per studiare il

comportamento della propagazione dei dicchi nelle aree vulcaniche.
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Introduction

Volcanic eruptions are complex processes involving the opening of an eruptive vent and
the effusive or explosive ejection of magma along with gas and rock fragments. Some
eruptions occur from already established vents; others, perhaps counterintuitively, occur
from newly opened vents at the summit, on the flanks of the volcano or even far from
the volcanic edifice. Examples are the 2018 eruption at Kilauea (Hawaii), the 2014-2015
eruption at Bardarbunga (Iceland) and the 1669 historical eruption at Etna. In all these
cases the eruptive vent opened at tens of km distance from the volcano summit. These
complex scenarios illustrates why a better understanding of magma transport in the
volcano edifice is necessary. In particular, we need to study the mechanisms controlling
the location where magma will breach the Earth’s surface to erupt, in order to develop
effective long-term land planning and emergency response.

In the elastic brittle crust, magma is transported by diking, which is a mechanism
similar to hydraulic fracturing: dikes are sheet-like magma intrusions which break the
rock ahead of their tip to propagate. We know from both field and theoretical studies
that the trajectories of propagating dikes are rarely perfectly vertical: they can tilt when
crossing interfaces between rock layers with different densities, be attracted towards to-
pographic loading, or change their direction when encountering faults or other intrusions
in their path. This happens because the orientation of dikes is controlled by the prin-
cipal axes of the stress field: In particular, dikes will tend to orient perpendicularly to
the axis of minimum compressive stress (σ3 in the convention of this thesis). Numerous
studies have addressed the stress field at volcanoes. This has helped establishing that
the dominant influence comes from topographic loads and regional stresses, and in mi-
nor amount by the pressurization of a magma reservoir. However, the state of stress of
volcanoes is not static, and is continuously modified by a range of processes, such as the
injection of new intrusions, which tend to homogenize the underground stress; by new
eruptions, which impose new stress on the preexisting layers; by flank slides or collapses.
The complexity and diversity of these processes makes it a challenge to quantify their
influence on the stress state of a volcanic area.

In this thesis, I lay the groundwork to clarify the role of topographic loading, to-
gether with other causes of stress changing, in influencing dike propagation and new
vent opening. I calculate the stress according to different assumptions proposed by pre-
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vious studies and test the outcome in terms of dike propagation trajectories through a
recently published dike propagation simulator, the Simplified Analytical Model for dike
propagation (Mantiloni, Eleonora Rivalta, and Davis, 2023). In Chapter 1, I introduce
some observations of dike propagation in volcanic edifices; this will clarify the motivation
and ultimate goals of the study, as well as the main sources of constraints for my models.

In Chapter 2, I analyze the main factors that modify underground stress, and illus-
trate the state of the art in terms of modelling techniques, with particular focus on the
techniques that I will use in the following chapters.

In Chapter 3, I present my modelling results in terms of volcanic topography ap-
proximation and underground stress computing, and show the results obtained with the
SAM model for the propagation of dikes.

In Chapter 4, I discuss the results obtained, analyzing the potential and limitations
of my work.

In Chapter 5, I present a conclusion to my work, expanding to future research direc-
tions.
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Chapter 1

Dikes, volcanoes, vent opening: an
overview

1.1 Magma transport through diking
Dikes are sheet-like, low-viscosity magma intrusions, which force their way into the crust
by fracturing the rock they propagate into. They generally have a thickness of around
1-10 m and a lateral extent of about 1-100 km, and are acknowledged as the principal
mean of magma transport in the elastic brittle crust, and possibly in the lithosphere.
Dikes propagate with a velocity in the order of meters per second, which allows them
to cover large distances without significant solidification due to cooling (Gonnermann
and Taisne, 2015). They are modelled in different ways depending on the need: 2D
dislocations with constant opening, 2D cracks, 3D rectangular dislocations, penny-shaped
cracks, etc, whereby most of these models consider purely tensile, or mixed mode (tensile
+ shear), dislocations.

Dike tend to orient perpendicularly to the direction of the least compressive principal
stress axis (σ3), and to propagate, as theorized by Griffith (1921) for all types of cracks,
only if the released strain energy, combined with the potential energy, is large enough to
match or overcome the surface energy needed for the creation of the two new increments
of crack surfaces. The surface energy increases linearly with crack length; on the other
hand, the mechanical energy decreases quadratically with length. This leads to the
existence of a critical crack length: once the crack reaches that length, it will propagate
unstably. In practice, the crack will propagate when the released energy is sufficient
to overcome the resistance of the material, because other factors act to stabilize the
propagation. Indeed, dikes are fluid-filled cracks. As such, dikes will never achieve
unstable propagation, first because this would require an infinite supply of injectable
fluid, and second because the fluid itself requires time to flow, according to its rheology.
Therefore, fluid-filled cracks, like dikes, will achieve their own typical propagation speed
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(determined by the fluid viscosity, density and by the properties of the encasing rock)
rather than propagating unsteadily.

The stress in a region near the crack tip for a crack subject to uniform stress decrease,
in an r-coordinate system with origin at the crack tip, is given by:

σij(r, θ) =
K√
2πr

fij(θ) + higher order terms (1.1)

where σij is the elastic stress tensor, K is the Stress Intensity Factor, and fij(θ) are
functions of the angular distance from the crack plane; there is a different fij(θ) for any
crack mode. Crack mode I corresponds to opening; crack mode 2 is in-plane shear; crack
mode 3 is anti-plane shear. For the purpose of modelling dikes, we will only consider
mode I (opening).

Equation 1.1 defines the Stress Intensity Factor, K. We can say that the crack will
propagate when K at the crack tip overcomes the Rock Fracture Toughness, Kc, which
is defined as the capacity of the material to resist fracturing when stressed (Gonnermann
and Taisne, 2015).

As mentioned above, likewise to other predominantly tensile fractures, dikes tend to
propagate perpendicularly to the plane of the least compressive stress. Dike trajectories,
however, can be far more complex. The shape of tensile fractures is altered by stress
gradients (Pollard and O. H. Muller, 1976). Even in purely compressional conditions,
like those in the lithosphere, tensile crack propagation may occur, as long as the magma
is buoyant or stress gradients are present. Among other studies, this was demonstrated
by Dahm (2000) through a numerical method developed to compute trajectories for
fluid-filled fractures. A tear-drop-shaped fracture results from the equilibrium of elastic
stresses and internal pressure. To better explain the concept, in fig. 1.1 a dike is rep-
resented as an opening fracture, undergoing a pressurization exerted by the intruding
magma on its walls. In this scenario, magma is provided by a pressurized magma cham-
ber. If the overpressure (sum of the external stress and magma pressure) on the dike
plane is uniform, the dike opening is elliptical. If, on the other hand, the overpressure is
not uniform, e.g. because of a stress gradient in the rock, the crack will pinch closed at
the tip undergoing the strongest compression, and the stress intensity factor at the other
end will be larger. The dike is now enabled to break the rock at one tip, propagating
toward the direction of decreasing compression. As shown in the last panel, the dike can
become detahced from the fluid-injecting magma chamber, maintaining a nearly con-
stant length and fluid volume while propagating even for large distances. Strictly, this
can only occur if all the magma is extracted from the tail and flows into the mose region
of the dike, which happens if magma viscosity is comparatively low.

If the rock density is different from the fluid density, an apparent stress gradient
can occur along the vertical extent of the fracture. This is the so-called Buoyancy
effect (See fig. 1.2). Specifically, when the rock density is larger than the fluid density
(ρRock > ρFluid), there is a larger overpressure at the top of a vertical fracture, because
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Figure 1.1: Stress gradient effect on dike propagation. (1): Magma chamber feeding a
dike. If the overpressure (sum of external stress and magma pressure) on the dike plane
is uniform, the dike opening is elliptical. (The opening is exaggerated in the figure) (2):
The dike may undergo a pressure gradient due to external factors. (3): The dike seals
at the end undergoing the greater stress. (4): The stress intensity factor at the dike tip
overcomes the fracture toughness; the dike begins to propagate autonomously, without
further injection of magma from the magma chamber. (Modified from a figure by E.
Rivalta)

9



Figure 1.2: Buoyancy effect. (1): For a vertical dike, when rock density is greater
than magma density, magma pressure increases more slowly than rock pressure as depth
increases. (2): A pressure gradient results along the intrusion vertical line. (3): The
dike seals at the bottom and rises at the top, breaking the rock above it (Modified from
a figure by Eleonora Rivalta).

the lithostatic stress decrease in the rock moving towards the surface is greater than
the hydrostatic stress decrease in the fluid. This leads the fracture to propagate upward
(Weertman, 1971; Pollard and O. H. Muller, 1976; Dahm, 2000).

Furthermore, dikes do not undergo sudden, abrupt turns along their path: they bend
over a finite distance, comparable to the dimension of the crack itself. All things con-
sidered, the dike will not be strictly perpendicular to the plane of minimum compressive
stress at each point in its trajectory (Rivalta et al., 2015).

The orientation of the principal stress axes is strongly influenced by surface topog-
raphy, which, thus, affects the fluid-filled crack propagation pathways even on a large
scale. Through a boundary-element approach, Dahm (2000) found dikes to be attracted
to gravitational loads such as those due to volcano edifice sources. Maccaferri, Bonafede,
and Eleonora Rivalta (2011) computed dike trajectories for various initial angles and
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Figure 1.3: Effect on dike propagation induced by a triangular load applied on the
surface. In panel C2 the volume of the intrusion is double than in panel C1. In panel C3
the starting point of the intrusions is shifted horizontally by 6 km and in C4 by 12 km
(in this last configuration the initial dip angles of the dikes are opposite with respect to
the previous configurations.) Here σ is plotted in background (the horizontal component
of the deviatoric stress tensor induced by the load), the short grey lines indicate the
direction of the maximum compressive axis. From: Maccaferri, Bonafede, and Eleonora
Rivalta (2011)

different starting position with respect to the volcanic edifice. They observed that the
majority of the paths flow into the volcanic structure’s base, but on rare occasions a dike
may escape and erupt at a significant distance from it. The dikes will get arrested just
below the base of the load if the buoyancy is insufficient (when their volume is not big
enough), expanding laterally and erupting, or creating/feeding a shallow crustal magma
reservoir (fig. 1.3)

1.2 The shape of volcanoes
The shape of volcanoes is a key factor in determining dike emplacement. In fact, gravity
deforms and stresses volcanic edifices and exerts a load onto the underlying rocks. Dikes
will be affected by this and so will be the location of the eruptive vents. Due to the
everchanging stresses in a volcano edifice, eruptions do not always occur from the same
fissure. In contrast, magma propagating below the surface usually break the volcano
flanks along a new pathway and create new vents. This creates a feedback effect between
dikes and the effect of eruptions, with new loading by deposition of eruptive products
affecting areas where dikes breach the surface. In turn, deposition affect stresses and
drives future dikes along new pathways.
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Volcanoes have different morphologies depending on the magma composition and
eruptive style. First, we distinguish between polygenetic and monogenetic volcanoes.

Monogenetic volcanoes are formed in just one eruption. Monogenetic volcanic
fields develop in regions where magma production is scarce or eruptions are rare. At
shallow depth there is no common volcanic plumbing system among the individual vol-
canoes in these fields. In order to reach the surface, each consecutive batch of magma
from the source location creates its own conduit. With long time intervals between erup-
tions, monogenetic volcanic fields can contain hundreds of individual volcanoes. They
can be divided into:

• Cinder cones: also known as scoria cones, they are built out of pieces of magma
that are released into the air. They are extremely vesicular (with bubble-shaped
holes), and are normally solid when they fall. They are the most prevalent kind of
volcano on Earth, with the appearance of an idealized volcano, having the shape
of a steep, conical hill with a prominent crater at its top.

• Maars: volcanic craters surrounded by low pyroclastic cones. It lays below the
surrounding ground level. Maars often have lakes in their craters because they are
topographic lows.

• Tuff rings: pyroclastic cones with craters that are elevated above the surrounding
terrain. Unlike maars, their craters are often dry.

• Eruptive Fissures.

Polygenetic volcanoes, in contrast, experience multiple eruptions. They can be
divided into:

• Composite volcanoes (or Stratocones);

• Shield volcanoes;

• Calderas, which are collapse landforms that form after large-scale volcanic erup-
tions and are created when the earth above a magma chamber partially empties
and sinks into it. There are two basic types of calderas, which may develop in both
mafic and silicic volcanic systems. These calderas are distinguished not only by
the kind of magma that was erupted but also by whether or not the eruptions that
created them were effusive or explosive.

(National Park Service, 2023).
We often find monogenetic cones on stratocones or shield volcanoes, they represent

the evolution of fissure eruptions into discrete outlets for the magma.
In order to distinguish between Stratocones and shield volcanoes, magma viscosity

plays a key role. High viscous magma eruptions typically result in steep-sided volcanoes
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with 30-35° slopes. This is due to the fact that the viscous volcanic material does not
flow very far once it is erupted; instead, it accumulates in layers to create a stratovolcano.
In contrast, shield volcanoes have mild slopes of less than 10° and produce low-viscosity
basaltic lavas during eruptions. An eruption from a shield volcano can cause the basalt to
flow far from the vent, creating broad, gentle slopes. (British Geological Survey, 2023).

1.2.1 Stratocones, shield and shield-like volcanoes

Polygenetic shield volcanoes are generally defined as very large structures, with broad
flanks primarily composed by lava flows, producing effusive eruptions of low-viscosity
lavas. However, when it comes to analyze in details the actual shape of many differ-
ent shield volcanoes, they significantly differ from one another. Grosse and Matthieu
Kervyn (2018), identify two threshold values to distinguish a shield volcano from a stra-
tovolcano:

• Height
Basal width

< 0.1

• Mean slope < 12°

Several edifices, commonly classified as stratovolcanoes, lie within this threshold, and
are considered shield-like for the purpose of their study: Etna (Italy) and Fuji (Japan),
analyzed in this thesis, are two of these special cases.

Three factors contribute in determining the shield volcanoes shapes (Grosse and
Matthieu Kervyn, 2018):

1. Proportion of lava versus pyroclasts and length versus thickness of lava flows, con-
trolled by:

• Magma composition;

• Rheology;

• Effusion rate.

2. Vent spatial distribution and their magma output, caused by the magmatic feeding
system, in its turn controlled by:

• The initial regional tectonic stress field;

• Loading-induced stress field.

3. Summit caldera formation, shaping the edifice as truncated (and occurring at lower
shield volumes in continental rift zones)
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Figure 1.4: Erta Ale, Ethiopia. Example of elongated volcano edifice, with the bigger
axis oriented perpendicularly to the least compressive regional stress. Dikes are shown
orienting accordingly. From: (Valerio Acocella, 2006).

The shape and size of a volcano can provide insight about local stress and dike
emplacement. For instance, Acocella and Neri (2009) observed that regional stress field
control fades for taller edifices. Higher volcanoes promote the emplacement of radially
distributed dikes, rather than intrusions aligned with the far field stress, because of the
stress field generated by loading (more at 1.4). Acocella and Neri (2009) also observed
a direct correlation between the maximum length of an eruptive fissure or dike and the
total height of the volcano, suggesting a strong topographic control on dike propagation.

Moreover, the whole shape of a volcanic edifice can give clues about the preferential
direction of emplacement of dikes. Acocella and Neri (2009) remark that a volcano with
an elongated shape will always have its longest axis aligned perpendicular to the axis
of minimum regional compressive stress, thereby also revealing the favored direction of
propagation for its dikes. A striking example is provided in fig. 1.4, where the Erta Ale
volcanic edifice is shown. The edifice is elongated in the same direction in which the
dikes propagate, confirming the above.
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1.3 New vent opening in a volcano edifice
Lava flow models are commonly used to understand lava pathways, and prevent catas-
trophes in heavily populated areas. Lava, however, starts flowing from volcanic vents:
this is why a crucial, although understudied, factor in volcanic risk, is the location of
new vent opening.

Vents can open throughout the whole volcano edifice, but there are areas where they
tend to cluster. Up to now, in order to forecast the opening locations of future vents,
maps of pre-existing vents have been used. E. Rivalta et al. (2019) and Mantiloni,
Eleonora Rivalta, and Davis (2023), however, proposed that we can improve the quality
of spatial forecasts of eruptive vent location by exploiting our understanding of the
physical mechanisms ontrolling the trajectories of dike propagation. In practice, this
requires constraining the state of stress of volcanoes.

Kervyn et al. (2009) highlighted that eruptive vents tend to cluster within a specific
area, called "Break-In-Slope" (BIS). The area is centered where the flank slope abruptly
changes from more than 15° to less than 10°, and extends for about one km from the base
of steep upper flanks. At the BIS, not only there is a concentration of vent outbreaks,
but the existing vents tend to be larger than the ones located at steeper heights. Besides,
eruptions at the BIS tend to erupt larger volumes of lava. In fig. 1.5, the vent positions
identifying the BIS are clearly visible for the example of Conception volcano (Nicaragua).

In fig. 2.2 is shown a simplified stress pattern under the influence of a topographic
loading, created in Kervyn et al. (2009) after the works by James H Dieterich (1988),
Wyk (1995), Vries and Matela (1998). This conceptual representation aims to show,
through the orientation of the most compressive stress axis σ1 in the subsurface and
within a volcanic cone, how the dikes would orient in this configuration, and why they
not always tend to erupt inside the volcanic cone, but migrate laterally. However, the
diagram is not very effective in clarifying where the BIS is located and how dikes tend
to breach in their proximity, since this model is really simplified.

The location and alignment of vents and fissures on the flanks of a volcanic edifice can
help understand the history of dike emplacement. Chadwick Jr and J. Dieterich (1995),
highlighted the simultaneous presence of circumferential (emplaced along circumferences
around the volcano summit), and radial (radiating outward from the center of a volcano)
dikes at all the six active Galapagos volcanoes on Fernandina and Isabela islands, the
former arranged around the main eruptive vent, the latter arranged below its flanks at
lower elevations. Despite their very different pattern, they emplaced at contemporary
periods, and appear to have different orientations due to the different stress field present
at distinct elevations on the edifice (See fig. 1.7, panel c). Modelling of InSAR observa-
tions of the trajectories of dikes at Fernandina by Bagnardi, Amelung, and Poland (2013)
also confirmed that these two different types of intrusion, represented in 1.8, have all oc-
curred in the last two decades. Dikes started as horizontal fractures below the caldera,
propagated with circumferential orientation and gradually curved downslope transition-
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Figure 1.5: Vent distribution at Concepcion volcano, Nicaragua. (a) Shaded relief and
structural features; (b) slope angle; (c) north–south topographic profile along dashed line
in Figure 1b. Arrows indicate the location of vents, including several at the cone base.
Old domes (circles) and Holocene cones (triangles) along a pronounced north–south rift
zone are all located on the lower volcano slopes. From Kervyn et al. (2009), adapted
from the works of Borgia and Wyk de Vries (2003)a and Wyk (1995).
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Figure 1.6: Figure showing a simple representation of the σ1 orientation (the most com-
pressive stress) and of the isobar lines in the substratum and in a volcanic cone based,
from Kervyn et al. (2009), based on James H Dieterich (1988), Wyk (1995), Vries and
Matela (1998). Dikes tend to propagate perpendicularly to the least principal stress and
parallel to orientations of σ1 and σ2. The stress distribution within the conical edifice
will focus dikes toward the central axis. On the other hand, the pressure gradient below
the volcano load can favor lateral dike propagation toward lower confining pressure, so
that dikes would tend to migrate out from under the volcano, and then erupt away from
the center of the cone.

ing to radial. The state of stress causing this pattern is maintained, because the fissure
pattern is continuously regenerated (it would be otherwise erased after new eruptions).

Chadwick Jr and J. Dieterich (1995) conclude that circumferential intrusions are sen-
sitive to changes in stress at the caldera floor, that is why caldera unloading is addressed
as the main cause of their presence. In addition, they concluded that the magma reser-
voir shape favouring most the presence of both circumferential and radial intrusion is
the flat-topped and diapiric-shaped shown in the panel b of fig. 1.7. They conclude
that, however, magma pressure alone is however not sufficient to create this pattern, and
volcano growth through eruptions must play an important role in maintaining the stress
pattern and allowing new dikes to intrude.

1.4 Observations on dike emplacement patterns
According to Acocella and Neri (2009), dikes tend to have three main distinctive config-
urations on a volcano edifice scale:

• regional dikes;

• circumferential dikes;
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Figure 1.7: a: Geographic reference: Galapagos Islands, Ecuador (from GeomapApp
Ryan (2009)) b: Idealized cross-section of a Galapagos volcano suggesting the different
areas where circumferential and radial dikes should be favored in the numerical models
in order to form the pattern of eruptive fissures observed at the surface. c: Maps of
eruptive vents, including eruptive fissures (lines) and cones (outlines) on Fernandina. b
and c from: Chadwick Jr and J. Dieterich (1995).
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Figure 1.8: Three-dimensional representation of circumferential (a) and radial (b) intru-
sions; in purple the 1-km-depth magma reservoir, in yellow the intrusions feeding fissure
eruptions. From Bagnardi, Amelung, and Poland (2013).

• radial dikes.

Regional dikes are defined as dikes that are oriented according to regional tectonic
stress, arranging themselves perpendicular to the plane where the tensile tectonic stress
is greatest. This condition is strongly present in the absence of relief; the presence of a
volcanic edifice complicates this simple dependence, bringing significant deviations from
expected patterns.

Circumferential dikes form arcuate patterns concentrically with the volcanic edi-
fice, and are particularly clustered at summit craters and calderas, where they may also
be connected with pre-existing faults or fractures (Acocella and Neri, 2009). An example
is shown in fig. 1.7, c.

Radial dikes are vertical to subvertical dikes which radiate from a central volcanic
plug (McCarthy and Rankey, 2020). This pattern might be either isotropic (as for the
case of Fernandina: fig. 1.7, c) or cluster along preferred directions (as for Etna (Italy):
Fig 1.9). Acocella and Neri (2009) claim that regional dikes result from the influence of a
far-field (regional) stress, while circumferential and radial result from a near-field stress,
due to a local factor such as a pressurized magma reservoir or the volcano load itself.
The same authors point out radial dikes as the most common emplacement pattern in
volcanoes at surface; circumferential dikes seem, on the other hand, more unusual. A
further interesting observation is that the higher the volcano (and thus the greater the
loading), the more dikes will tend to orient radially, even with the presence of tectonic
stress.

The radial and circumferential patterns have in the past been attributed to the pres-
ence of a pressurized magmatic reservoir (Odé, 1957; Chadwick Jr and J. Dieterich, 1995),
to caldera unloading (Corbi et al., 2015) or simply to the presence of loading; Roman
and Jaupart (2014) demonstrated that stresses caused by a topographic loading dominate
over stresses caused by a magma reservoir.

Topographic irregularities also play a role in dike radial emplacement. An example
is dike aligned with ‘Valle del Bove’at Etna (See fig. 1.9). In this case, the collapse
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Figure 1.9: Example of radial, non-isotropic eruptive fissures. (a): Etna (Italy), period:
1900-2005. (b): Fissure orientation. Also noticeable is the peculiar arrangement of the
dikes even with the "Valle del Bove," a scarp that leads the dikes to align with it. (c):
inset showing the three main rift zones. From: Acocella and Neri (2009).
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modified the stress field in such a way that dikes result mostly aligned with the collapse
borders.

1.5 Examples of well-monitored dike intrusion and em-
placement

In this section I analyse two different cases of study involving geophysical monitoring
of dike emplacement, in order to showcase the geometry of magma transport within
volcanic edifices, short and long-term dike emplacement behaviour in relation with local
topography.

1.5.1 The May, 2021 dike propagation and eruption at Nyi-
ragongo (DR Congo)

Nyiragongo is a volcano producing very dangerous effusive eruptions. It is located in
the Congolese area of the Virunga volcanic province, on the western branch of the east
African rift, and it is one of the most active volcanoes in the world, along with its
neighbour Nyamuragira (fig. 1.10). Intrusions occurring at Nyiragongo tend mainly to
align perpendicularly to the least regional tectonic stress, which is due to rifting (Acocella
and Neri, 2009).

The May 2021 eruptive event, studied by Smittarello et al. (2022), produced no
geophysical precursors, causing a heated debate on the lack of a timely alert to the
population. The eruption was due to the propagation of a dike that, starting from
the central lava lake on the summit of Nyiragongo, propagated laterally in a NW-SE
direction for 7 km, of which 4 km to NW (towards Nyamuragira) and 3 km to SE. The
dike erupted at 4 locations on the edifice, opening new vents, from where lava begun
to flow, destroying buildings, infrastructures, and harming the population (See fig.1.11
for more details). The SE dike part, after partially erupting, continued to propagate
underground, deviating in a southerly direction. After passing under the city of Goma,
the dike headed towards the Lake Kivu stopping below the lake in the vicinity of the
Nyabihu Fault, keeping to a shallow depth of about 450 m. The total volume of the dike
amounts to 240 Mm3. Though the effusive activity lasted for about 6 hours, the seismic
crises due to the dike propagation lasted for about 10 days.

The fact that the dike did not erupt on its way to the lake, either in Goma or within
Lake Kivu itself, is an indication that the magma was likely degassed, as analyses of
the presence and dimensions of lava gas bubbles later confirmed (Delphine Smittarello
et al., 2019). This is probably due to the fact that magma was sourced from a lava lake,
and was therefore degassed. This resulted in a subsurface propagation of the dike, as
shown in fig. 1.12.
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Figure 1.10: Nyiragongo and Nyamuragira, Democratic Republic of Congo. Edit of a
figure made with GeomapApp (Ryan, 2009).
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Figure 1.11: Co-eruptive geodetic signals and seismicity. a, Situation map. b,c, Sentinel-
1 (S1) 19 May 2021 to 31 May 2021 ascending (A) interferogram overlaid with automatic
earthquake locations and GNSS displacements (disp.) over time (blue to black colours
with time from the onset of the eruption), eruptive fissures (yellow lines 1 to 6, from
north to south), ground fissures detected from interferogram discontinuities (grey lines),
lava flows (red area) and seismic and GNSS stations from KivuSNet18 and KivuGNet25
available during the crisis (black and green triangles, respectively). DRC, Democratic
Republic of the Congo; Nyam., Nyamulagira; Rw., Rwanda; Ug., Uganda. Panel c shows
a magnification of the central box in b. d, North–south transect of hypocentral depth
(same symbols as in b and c). Coordinates are given in kilometres in the WGS 1984
UTM (Zone 35S) system. From: Smittarello et al. (2022).
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Figure 1.12: Best results of dike geometry inverted from four interferograms spanning
the eruption overlaid with seismicity between 22 and 31 May in a map view (a) and
along a north–south cross section (b). Colours represent the dike opening (0–2.5 m).
Sha: Shaheru Crater. Nyabihu Fault is marked in red. Its 72.5°dip is estimated from
seismic profiles45. Coordinates are given in kilometres in the WGS 1984 UTM (Zone
35S) system. From: Smittarello et al. (2022).

The fact that the dike propagated to such a shallow depth, however, suggests that
an eruption in the city of Goma or in the lake Kivu may not be such a remote possibil-
ity. In similar circumstances, the possible consequences of a sublacustrine eruption are
unknown, which is one more reason why this area needs to be studied and monitored.

This is a powerful example of how dike trajectory and vent opening predicting tools
would be useful, especially if combined with lava flow models, to provide an extra pre-
vention tool to alert the population in critical cases.

1.5.2 Long-term architecture of dike emplacement at Piton de
la Fournaise (La Réunion)

Piton de la Fournaise (Réunion Island) is a shield volcano located on a hot-spot, and is
one of the most active volcanoes on Earth (fig. 1.13). It stands on an intrusive gabbroic
complex, formed maybe from Les Alizes, a now extint older edifice, which lies to the east
of Piton de la Fournaise.

Observations highlighted an average of several intrusions per year; the fissure erup-
tions resulting from these magma intrusions build, on the surface, a rift system articu-
lated in different branches (fig. 1.14 ). The most active one is the NE-SE one, with an
arcuate shape, cutting the edges of the caldera and reaching to the shore, passing through
the volcanic cone. Dumont et al. (2022) studied the deformation induced by 57 intru-
sions at Piton De La Fournaise, recorded by satellite interferometry. They modelled the
deformation induced by dozens of these intrusions retrieving the source parameters for
the dikes (location, shape, volume). Over the years, the magmatic intrusions have pieced
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Figure 1.13: Piton de la Fournaise, Réunion Island. Figure made with GeomapApp
(Ryan, 2009).
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Figure 1.14: Map and structural features of Piton De La Fournaise edifice. From: Du-
mont et al. (2022)

together a spoon-shaped structure around the main crater (Dolomieu crater) (fig. 1.15).
From fig. 1.15, it is evident that the Dolomieu crater is the turning point for magma

in its propagation. The intrusions start as sills beneath the summit, propagate laterally
before turning in the vertical direction to reach the vent. At depth, the dikes meet the
main NE-SE intrusion zone, extending the spoon-shaped structure to the east. The dip
angles are vertical to the west of the crater, decreasing towards the east, where they
follow the flank topography.

This is a unique picture of the long-term arrangement of dikes, and must reflect the
stress within the edifice as produced by the edifice loading, the slow sliding to the coast
of the eastern flank, and the recent 2007 caldera collapse event at the Dolomieu crater.
In turn, repeating intrusions in the volcano according to such a spoon-shaped geometry
may threaten the stability of the whole volcanic edifice. The scarps visible in Fig 1.13
show that huge collapse events have occurred in the past there.

Flank or sector collapse are common for many volcanic islands, due to the uncon-
solidated character of the fragmented eruptive products of submarine eruptions, called
hyaloclastite. The major hazard at Piton de la Fournaise is the collapse of the eastern
flank. Besides the apparent hazard represented by a possible slip of the whole edifice
over the spoon-shaped surface delineated by the dikes, it would be important to under-
stand the mechanisms controlling the long-term arrangement of the intrusions, as these
might reveal fundamental information on the state of stress of the volcano and how such
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Figure 1.15: Best fit models for the 29 intrusions emplaced in the major NE-SE and sill
intrusion zones. The colors show the opening of the modeled intrusions (normalized)
Magenta vectors indicate displacemet of the sheared sills. From: Dumont et al. (2022).
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stress has evolved over the history of the volcano and may evolve in the future, thereby
controlling other processes.

1.6 Scientific questions
The aim of this work is studying the relations intercurring between topography of vol-
canic edifices, as sources of gravitational loadings, and dike propagation pathways; in
particular:

• What arrangement do we expect within a volcanic edifice of simple shape?

• When do we observe circumferential, and when radial dikes?

• How can we understand and fairly represent the true state of local stress for volcanic
areas?

• What factors related to topography affect the different propagation of dikes? (As-
pect ratio of the volcano, presence of caldera, etc.).
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Chapter 2

The state of stress of volcanic areas
and dike propagation modelling

The state of stress underground often presents complex patterns, because it depends on a
range of factors including rheological rock behaviour, topography peculiarities, geological
history of the considered area. (Jaeger, Cook, and Zimmerman, 2007). Unfortunately,
stress is not directly measurable and hard to infer. For these reasons, rock-disturbing
techniques are often used to obtain values of local stress states. These techniques, how-
ever, such as hydraulic fracturing, are highly expensive: relying on different techniques,
such as geodetic observation or earthquake features, can be preferred. The orientation of
magmatic dikes, for example, is one of the main indirect indicators of near-surface stress
field orientation, since they tend to propagate perpendicular to the plane of minimum
compressive stress (Anderson, 1936; Chadwick Jr and J. Dieterich, 1995).

2.1 Understanding stress orientation
The local stress orientation is crucial in understanding and forecasting dike trajectories:
though dikes and sills do not usually align instantly with the stress field, the alignment
can still occur on a volcano-edifice spatial scale (Rivalta et al., 2015).

At volcanoes, the in situ state of stress is influenced by a plethora of causes, such
as tectonic stress, surface loading, rock behaviour, magma chamber inflation/deflation,
anthropogenic factors, and dike and sill intrusions themselves. In addition to that, all
these factors are spatially heterogeneous and vary with time. Hence, the three principal
stress values and directions are not easily predictable.
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2.2 The state of stress of volcano edifices
Chadwick Jr and J. Dieterich (1995) investigated the stress state of Fernandina by nu-
merical modelling. Their aim was to explain the peculiar pattern of eruptive fissures
observed there: circumferential around the caldera rim and radial on the volcano flanks
(fig. 1.7), as explained above. They identified five main causes that can alter the stress
state:

1. geometry and pressure changes in a near-surface magma reservoir;

2. gravitational stresses;

3. loading by lava flows;

4. dike emplacement;

5. faulting or bulk yielding of the volcano edifice in response to stress changes due to
processes 1-5

According to Chadwick Jr and J. Dieterich (1995), the shape of a magmatic reservoir
can influence the trajectories of intrusions. With a spherical or oblate magma chamber,
the stress pattern around the reservoir favours circumferential intrusions. With a prolate
magma chamber, on the other hand, radial intrusions are favoured. The preferred shape
for generating both types of intrusions simultaneously is a diapiric shape, with a flattened
top (as the one shown in fig. 1.7, panel b). They conclude, however, that a simple change
in magma pressure would not be sufficient to generate a stress field capable of generating
a pattern of intrusions as complex as that seen in Galapagos volcanoes. A new point of
view was introduced by Roman and Jaupart (2014), who argued that edifice loading is
the main cause of the generation of a central stress pattern. Moreover, they demonstrated
that edifice loading generally dominates over the stress induced by pressurized magma
reservoirs, and decays spatially with a gentler slopes compared to the quadratical decay
of the reservoir-induced stress (as shown in fig. 2.1). Mantiloni, Eleonora Rivalta, and
Davis (2023) compared, on the basis of a numerical model, the stress field generated by
a pressurized reservoir at a caldera with the stress generated by the caldera formation
alone, confirming the results by Roman and Jaupart (2014).

Modelling the stress induced by topographic loading is not straightforward. Stress
due to a real volcanic edifice is very different from that due to an instantly-imposed
experimental load: the rheological response of the lithosphere below the volcanic load will
be different than that obtained for the imposition of a whole instantaneous load. Volcanic
edifices grow gradually, due to eruptive deposits that, layer by layer, build both the
structure and shape of the volcanoes from which they erupt, and the underground stress.
Every new layer is stress-free when added, and loads with an additional stress increment
the layers underneath. The stress due to the new layers becomes available to drive further
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Figure 2.1: Radial stresses induced by an edifice (solid line) and a reservoir (dashed line).
Edifice radius = 10 km; edifice height = 2.2 km. The reservoir radius has been set to 2
km. Results for two different values of reservoir overpressure are shown. From: Roman
and Jaupart (2014)

dike emplacements. Besides dike emplacements, stresses are continuously modified by
many factors, such as earthquakes and fluid transport, and this is the reason why properly
including gravitational stresses in volcano modelling is a challenging problem (Chadwick
Jr and J. Dieterich, 1995).

Dike and sill intrusions are known to occur perpendicular to the plane of minimum
compressive stress. The same intrusions can also be the cause of the change in the
orientation of that plane. Magmatic intrusions, in fact, generate an opening crack,
the opening direction of which lies on the plane of minimum compressive stress. The
dilatation along such plane results in an increase of compressive stress in the opening
direction (lying on the least compressive stress plane), and thus in a reduction of the
differential stress. After several intrusions, the value of the stress in the plane of minimum
stress will get closer and closer to the value of the stress in the plane of maximum
stress. Eventually, the stress pattern will change enough to stop further dike incursion,
or dramatically change their orientation. This ‘homogenization’ effect is particularly
significant for Galapagos volcanoes, which present frequent dike intrusions (Chadwick Jr
and J. Dieterich, 1995).

To summarise, magma intrusions and eruptions act in competition: the firsts leading
to a homogenization of stress below the edifice, and the seconds, on the other hand,
contributing to an increase in differential stress, through the loading due to the deposition
of eruptive products.

Several studies have quantified the stress generated by loading and inferred the sub-
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sequent propagation of dikes. One of the pioneering works in this area was done by
Dahm (2000); he simulated a two-dimensional topographic loading through the use of
stress-free segments to which normal compressive stress was then applied. This stress was
added to the lithostatic background stress (uniform and increasing with depth). Dikes
were observed to bend towards the load as they ascended, in response to the stress filed
imposed by the load. J. R. Muller, Ito, and S. J. Martel (2001) found similar results by
using both numerical models and laboratory experiments with fluid injections in gelatin.
Dahm (2000) observed that dikes were affected by loading up to a distance of four times
the radius of the volcano, while J. R. Muller, Ito, and S. J. Martel (2001), through lab-
oratory experiments, derived a scaling law to describe the maximum distance influenced
by the loading they found, as:

xc = 0.86
Pload

∆Pm

+ 1 (2.1)

with xc being the maximum distance where dike undergo loading stress normalized by
the load half width, Pload being the average load stress and ∆Pm being the dike driving
pressure at the midpoint of the dike head. The equation shows how increasing surface
loads will attract dikes from greater lateral distances.

These two works paved the way for new studies, such as Maccaferri, Bonafede, and
Eleonora Rivalta (2011); Maccaferri, Eleonora Rivalta, Keir, et al. (2014); Maccaferri,
Eleonora Rivalta, Passarelli, et al. (2016), concerning the pathways of dikes in complex
scenarios, stress due to unloading in rifts, and the mechanisms causing the arrest of dikes;
as Corbi et al. (2015), dealing with the unloading caused by the caldera formation, and
as Maccaferri, Richter, and Walter (2017), aiming to shed light on the reasons leading
to the formation of volcanic edifice cones in new areas after partial edifice collapse, and
finding out that unloading due to collapse drives dike trajectories to different pathways,
leading to the formation of a new area favored for eruptions, eventually resulting in
establishing a new proper erupting cone.

The simulation of 3D dike propagation has only become possible recently, thanks to
innovative computational models (Davis, Eleonora Rivalta, and Dahm, 2020; Mantiloni,
Eleonora Rivalta, and Davis, 2023). Previously, the only way to understand dike tra-
jectories in three dimensions was to work with stress fields resulting from loading and,
obtaining the orientation of the principal stress axes, considering that dikes would prop-
agate perpendicularly to the plane of minimum compressive stress. Many studies have
investigated the stress underground in three dimensions, using Finite Element Modelling,
as James H Dieterich (1988) and Chadwick Jr and J. Dieterich (1995), focusing on load-
ing, Chestler and Grosfils (2013), dealing mainly with stress due to magma chambers,
or Corbi et al. (2015), studying caldera unloading and its influence on the underground
stress. Some works also focused on the interaction between different stress factors. For
instance, Zhan et al. (2022) investigated, through Finite Element Modeling, the influ-
ence of various stress factors in the case of volcanic unrest at Augustine (Alaska). They
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compared the influence of dike opening, tectonic stress, and edifice loading, as functions
of internal dike pressure and of the intensity of the tectonic stress. It should be noted
that Finite Element Modelling is a complex process requiring careful preparation of the
model and with generally more complex inversion matrices than those used in boundary
element modelling, which is instead used in my work.

The current understanding of stress features in the presence of edifice loading re-
mains a topic of intense debate, as there are still uncertainties regarding the choice of
background stress and the homogenization of stress due to multiple intrusions. This
calls for further research to improve our understanding of these complex phenomena. To
the best of our knowledge, no previous study has analyzed and compared the different
factors influencing the stress. My thesis aims to lay the groundwork for future studies
by providing new insights on the topic through the use of innovative 3D computational
models for dike propagation. By doing so, my work contributes to the ongoing efforts
to advance our understanding of the mechanics of dike propagation, and provide a more
robust basis for future research in this field.

2.3 Breaking down the state of stress into separate
contributions

E. Rivalta et al. (2019) expressed the stress field as the superposition of different contri-
butions, as follows:

σtot = σLoading + σTectonic + σUnloading + σMagma Chamber+

σPrevious intrusions + σPrevious large earthquakes
(2.2)

where σLoading is the stress perturbation due to edifice load; σTectonic is the regional
tectonic stress tensor; σUnloading is the stress perturbation due to unloading due to
mass redistribution (such as flank collapse or slide, caldera collapse, icecap melting);
σMagma Chamber is the stress perturbation owing to magma pressurization; σPrevious intrusions

is the stress tensor caused by previous intrusions; σPrevious large earthquakes is the term due
to previous large earthquakes or slow slip events. Among these terms, the dominant
ones are σLoading, σTectonic and +σUnloading. The stress generated by a pressurized magma
chamber (σMagma Chamber) has been considered to be decisive in yielding dike orientations
(Chadwick Jr and J. Dieterich, 1995), but other studies refute this theory, satisfactorily
describing the arrangement of dikes in volcanic zones only by using tectonic stress, and
that due to loading and unloading (Roman and Jaupart, 2014).

All these terms are in fact superposed to a so-called background stress (σBackground)
(Mantiloni, Eleonora Rivalta, and Davis, 2023), which will be discussed in more detail
in the following section.
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2.4 The background stress
Two simple ideal assumptions for the state of stress, often used as background states,
and then overlapped by other factors, are (Jaeger, Cook, and Zimmerman, 2007):

1. Lithostatic stress (or Heim’s rule);

2. Laterally constrained rock.

In the former assumption all the three principal components take the same value:

τxx = τyy = τzz = ρgz (2.3)

where ρ is the rock density (considered uniform through the whole depth), g is the
gravitational acceleration and z is the depth. This assumption is based on the thesis
that if the rock behaves viscoelastically, then the stress state, after a proper amount
of time, will meet a lithostatic condition. This assumption has its limitations: waiting
a proper amount of time for the rock to meet a lithostatic stress state, for instance,
neglects that tectonic force may vary over shorter timescales than the relaxation time of
the rock; moreover, viscoelasticity may not be a proper description for near-surface rocks
(closer to an elastic-brittle behaviour). The Heim’s rule is usually considered valid for a
flat or nearly flat topography; I will later question this statement, assuming that a state
of stress similar to the lithostatic can be a valid stress model even in the presence of a
topography loading. In the second assumption, the rock is constrained to have vanishing
lateral deformation as gravity (due to the rock weight) is ‘turned on’. The principal
stresses are:

τzz = ρgz;

τxx = τyy =
ν

1− ν
ρgz;

(2.4)

This assumption is often justified by the fact that, being the Earth spherical, a rock layer
is not free to extend at infinity once, for example, a load from a large topography is ap-
plied. The laterally-constrained assumption is widely used when modelling topographic
loads (Savage, Swolfs, and Powers, 1985; D. F. Mc Tigue, 1987).

In general, the state of stress may be something in between lithostatic and laterally
confined, so that a more general state is easily described by using a k factor:

τzz = ρgz;

τxx = τyy =

[
k + (1− k)

(
ν

1− ν

)]
ρgz;

τxy = τzy = τxz = 0;

(2.5)
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In this way, both the two basic assumptions in eq. 2.5, and all the intermediate states,
can be described by varying k:

• k = 1 : Lithostatic assumption;

• k = 0 : Laterally confined assumption;

• 0 < k < 1 : Intermediate stress state;

Guessing or estimating a proper value for k to be applied in 2.5, in order to obtain
a realistic state of stress for a not-flat topography, is not trivial. I now discuss in more
detail the processes affecting the state of stress of volcanoes.

2.5 Stress computing

2.5.1 Stress computing: Analytical approaches

Savage, Swolfs, and Powers (1985) provided one of the first analytical solution for gravity
induced stress, using isolated symmetric ridges or valleys as topographic features. This
method, however, will not be used in this thesis, as it assumes a plane-strain condition,
which means that it is only valid for 2D problems where there is no strain variation
perpendicular to the plane of analysis.

The McTigue and Mei method (D. F. Mc Tigue, 1987) uses Hankel transforms to
compute stresses due to an axisymmetric Gaussian topography loading. This method
requires a topography of small slope, with an Aspect Ratio (the ratio between height
and half with) of a value between 0.1 and 0.2. This value may be on the small side for
real volcanoes.

The stresses, in cylindrical coordinates, are then computed for a Gaussian topography
of the form:

h = e−Ax2

(2.6)

The authors provide a general solution, which is valid at any depth, and an approximated
near-surface one, valid up to a maximum depth corresponding to the height of the max
topographic relief. This analytical solution was calculated with the assumption of the
laterally confined background stress state (See sec. 2.4). This method can be problematic
for steeper edifices shapes, preventing then to properly analyze the case of a shield-like
edifice, as the ones included in the study of Grosse and Matthieu Kervyn (2018), and
specifically as Fuji and Etna, included in this study. Additionally, a single Gaussian
topography may be a bad approximation of some complex flank slopes, and can lead to
a misrepresentation of peculiar areas of interests, such as the Break-In-Slope, found to
be areas hosting vents clusters.
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2.5.2 Stress computing: Boundary element numerical methods

A class of problems, known as boundary value problems, tackle applications to many
significant practical issues in science and engineering. In these problems a partial dif-
ferential equation models the physics of the problem in an area of interest. The area is
bounded by a border, whose constraints are important for solving the partial differential
equation for the whole area. Boundary Element Methods (BEM) consist in discretizing
the boundary into N smaller pieces (the so called Boundary Elements), taking advantage
of analytical solutions previously derived for those individual elements. For example, if
we know the analytical solution for the displacements and stresses induced in the whole
medium by dislocations with uniform displacement, we can find a numerical solution
to the whole problem by summing the effects of all N boundary elements, appropriately
scaled in such a way that our boundary conditions are satisfied. In other words, if the dis-
placement discontinuities on the elements are unknown, we can retrieve them if stresses
are given as boundary conditions at the midpoint of each element. Given the combined
effect of N singularities at one element, we can write a system of N linear algebraic
equations in which the unknowns are the strengths of the displacement discontinuities.

A specific case amongst the BEMs, of central importance for my study, is the Displace-
ment Discontinuity Method (DDM). In the DDM, the boundary elements correspond to
discrete approximations to a continuous distribution of displacement along a crack. Ev-
ery crack has two opposing surfaces, which displace with respect to one another, with
an arbitrary distribution of relative displacements along them. As shown in fig. 2.2, the
two faces of the crack undergo displacements in each dimension; for a two-dimensional
crack, result (Crouch and Starfield, 1983):

Dx = ux(x, 0−)− ux(x, 0+)

Dy = uy(y, 0−)− uy(y, 0+)
(2.7)

This procedure is described in details for the S. Martel and J. Muller (2000) model
(See paragraph 2.5.2).

The analytical solutions for individual dislocation elements are singular at their edges,
so that computed displacements and stresses become less and less reliable the more we
get close to the boundaries of the considered elements. The far-field solutions computed
this way are then accurate, but huge oscillation are observed close to the boundary
element surface. In order to obtain reliable results in applications, then, solutions must be
computed at least at a distance equal to the half-length of the edge of the boundaries. The
displacement discontinuity method has been extensively applied to problems of modelling
faults and dikes. Some examples are Dahm (2000), S. Martel and J. Muller (2000),
Maccaferri, Bonafede, and Eleonora Rivalta (2010), Maccaferri, Bonafede, and Eleonora
Rivalta (2011). The DDM is now also used for 3D models, as for Xiao and Yue (2011),
Davis, Eleonora Rivalta, and Dahm (2020), Davis, Bagnardi, et al. (2021)
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Figure 2.2: in this figure by Crouch and Starfield (1983), is shown a crack inside an
elastic solid. Displacements are continuous everywhere inside the solid, except for the
crack line.

Martel & Muller’s numerical method for 2D stress computing

S. Martel and J. Muller (2000) proposed a method that uses displacement discontinuities
to compute elastic stresses due to gravitational load. The method is built using a laterally
confined elastic body, but can be adapted to a lithostatic stress state too. The elastic
body undergoes the effect of gravity, under a plain strain condition. Therefore, the
following stresses arise in the body as:

σyy = ρgy

σxx =
ν

1− ν
ρgy

σxy = σyx = 0

(2.8)

At this point, the body is divided in two parts thanks to a crack simulating the
topography, as shown in fig. 2.3. The upper part, called ‘overburden’, is then subtracted
from the whole body, simulating an instant-erosion. The crack is then divided in small
boundary elements in the form of line segments, with specific boundary conditions and
constant discontinuity in displacement allowed across each segment, in order to eliminate
the tractions on the boundary dislocations. In fact, we want the line crack to be free of
stress to simulate a stress-free topography.

As shown in fig. 2.4, as the load is imposed on the ridge, a tensile gravitational stress
will emerge. This condition, apparently meaningless in physical terms, is derived from
the brute application of lithostatic stress. The vertical coordinate equation, in Eq. 2.8, is
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Figure 2.3: Model by S. Martel and J. Muller (2000) for an elastic body undergoing
gravitational body forces. The body is separated into two pieces by a crack representing
the desired topography. The upper part can be considered as an overburden: if it is
subtracted from the body (like in a sudden ideal erosion episode). The segments of
the dashed line are the considered boundary elements, with boundary condition and a
specific reference frame for each of them. (from S. Martel and J. Muller (2000))

Figure 2.4: Diagram from S. Martel and J. Muller (2000) to show their construction
of a boundary element solution, imposing a ridge over a flat topography with laterally
constrained far-field stress. The stress undergone by the area subtended by the crack
that lies above the value of z=0, is tensile. This is why pressure acting on the crack must
be applied in order to nullify the value of the tensile stress on the crack and obtain a
stress-free surface.

negative at depth (for z < 0), and positive for any z > 0. Hence, imposing a topography
above the z=0 level, implies imposing a tensile stress within the same topography. In
order for the tensile stress to be nullified on the surface of the crack, so as to obtain a
free surface, the boundary elements of the crack will have to displace. The stress applied
to the midpoints of each boundary element, due to the combined contribution of the
displacements made by all the other boundary elements, nullifies the tensile stress on the
crack, making the surface free from normal stresses.

As a consequence of the displacement discontinuity allowed on the line segments,
stress is induced in the surrounding material: this effect is determined by the influence
coefficient Aij. Thanks to the superimposition method, we can compute the displacement
discontinuity Xi as:

AijXi = Bj, (2.9)

where Bj are the boundary conditions to meet. Once the Xi are known, they can be
used to compute new influence coefficients for new observation points, useful in turn to
compute stresses on observation points as follows:

Aobs
ij Xi = σobs

ij (2.10)
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This method can be applied to any free surface loading of any tilt, thanks to the definition
of a specific reference system for each boundary element, and proper transformation
equations between the main reference system and the element ones.

This method can also, with some care, be extended to 3D. One example, described in
detail in the section 2.6.1, is proposed by Mantiloni, Eleonora Rivalta, and Davis (2023).

2.6 Dike propagation modelling through boundary el-
ements

Dikes can be modeled with different techniques, depending on the need. Dahm (2000),
J. R. Muller, Ito, and S. J. Martel (2001) and Maccaferri, Bonafede, and Eleonora
Rivalta (2011) modeled dikes as 2D Boundary Element cracks (fig. 2.5). The crack is
made up of N connected dislocation elements that interact with one another, opening
in a brittle elastic medium. A set of stress conditions are met at the center of each
dislocation element: the combined stress produced by all the N elements calculated at
the centre of each dislocation must balance the overpressure ∆P and shear stress τ (set
to 0 to simulate a fluid-filled crack). The model takes into consideration density layers,
weak interfaces, and any external stress field (tectonic or topographic).

The dike propagation is modeled by adding an elementary dislocation at the top of
the boundary element crack and removing one or more dislocations at the bottom. The
pressure profile is re-evaluated and the new equilibrium configuration is computed for
each iteration. The direction of the new dislocation is the one that maximises the amount
of the total energy release, given as the sum of the strain energy and the gravitational
energy. The propagation is allowed if the energy overcomes a threshold value required
to break the new surface.

Davis, Bagnardi, et al. (2021) extended this approach to three dimensions. As shown
in fig. 2.6, they discretized the modelled intrusion into triangular elements (Nikkhoo and
Walter, 2015). For every triangular dislocation element on the tip-line of the crack, K/Kc

is calculated (see section 1.1). At each iteration, the tip-line is advanced in proportion to
the ratio K

Kc
(Paris law). Dependency on magma buoyancy is also considered, following

the expression:

(ρrocks − ρmagma)g sin(β), (2.11)

ρrocks and ρmagma being the density of rocks and magma respectively, and β being the
angle between the crack line and the plumb line: if β is zero (and therefore the intrusion
is flat), the sill cannot be buoyant. The propagation direction of the crack results from
the competition between external and internal pressure gradients (∆γ).
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Figure 2.5: Fluid-filled crack modelling by Maccaferri, Bonafede, and Eleonora Ri-
valta (2011).

Figure 2.6: Numerical simulation of crack propagation (from left to right), looking at
the fractures’ face (left) and cross section (right). Grey points are edges that closed in
the previous iteration. From: Davis, Eleonora Rivalta, and Dahm (2020).

2.6.1 SAM: Simplified Analytical Model

SAM, which stands for Simplified Analytical Model (Mantiloni, Eleonora Rivalta, and
Davis, 2023), is a simple 3-D dike propagation model providing streamlines perpendicular
to σ3. Dikes are modeled as propagating tensile penny-shaped cracks, with fixed radius
c, defined by the coordinates of the central point and a dip angle, which identifies the
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plane where the penny lies. The penny inclination is given by the direction perpendicular
to σ3. In order to find the direction of advance and simulate propagation, the penny
border are dotted with Observation Points, where the stress intensity factor K is
computed, as:

K =
4

3π
(∆γc

√
πc) (2.12)

In 2.12, ∆γ is the pressure gradient, accounting for the buoyancy force, and, in its
turn, computed as:

∆γi =
(σi

3 − σj
3)

2c
− ρmg

(ziO − zjO)

2c
(2.13)

where ρm is magma density and ziO, zjO are the vertical components of antipodal obser-
vation points along the penny’s border.

Given these quantities, the penny propagates towards the direction given by the
biggest Ki. The Observation point providing that direction is established as the center
of the new penny. The procedure is then repeated for the next pennies, until a penny
reaches the free surface or the maximum-proximity point to free surface (in case of
boundary-element usage). fig. 2.7 shows the selection of observation points on the
penny and the propagation of SAM in the direction perpendicular to σ3.

Figure 2.7: Representation of the penny shaped crack of the SAM code. The observation
points will be evaluated according to the stress intensity factor. The candidate point for
propagation is the one with the largest value of KI

Kc
(Modified from a figure by Eleonora

Rivalta).
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Chapter 3

Computing the state of stress of a
volcano edifice

As mentioned earlier (see section 2.1), calculating subsurface stress in the neighbourhood
of a volcanic edifice involves not only considering the loading of the edifice itself, but a
variety of other factors.

In this chapter, I will first describe how I created an optimal axisymmetric edifice
approximation to simulate volcanic edifices, and how I calculated the stress due to this
loading. Subsequently, I will modify this simple model by varying the topography and by
adding a tectonic stress according to different assumptions. Furthermore, I will propose
a simple model for stress homogenization below the edifice.

3.1 Edifice approximation
For my research, I choose to use axisymmetric topographies approximated by Gaussian
or double-Gaussian functions. This choice is justified by the shapes of real shield and
shield-like volcano topographies around the world. In figure 3.1 I show some examples
of volcano profiles (acquired with GeomapApp, by Ryan (2009)) and how they can be
optimally approximated through a Gaussian function.

As shown in picture 3.1, a Gaussian shape is a good approximation for many shield
volcanoes; Gaussian approximation of volcano edifices, however, is not always appropri-
ate, especially for steeper flanks (as shown for instance for Mount Fuji). Some volcanoes
are better approximated by a “double” Gaussian function:

y = A1e
A2x2

+B1e
B2x2

, (3.1)

where A1, A2, B1, B2 are constants determined through fitting the shape of the considered
volcano.
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Figure 3.1: In this figure various edifice profiles, together with their Gaussian approxi-
mations, are shown. In contrast to the NyiraSE model and the approximations shown
in 3.5, these topography profiles are not symmetrized.
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I obtained volcano topography profiles through the GeomapApp profile tool (Ryan, 2009).
An example is given in fig. 3.2, where the acquisition of the NW-SE profile of Nyiragongo
is shown.

To trim the edges of the volcano profile while avoiding excluding part of the edifice,
I implemented a code with a user interface: the code shows a plot of the volcano profile
(fig. 3.3), and asks the user to click on the points that they consider as the endpoints of
the left plateau and the beginning of the right plateau (indicated by the magenta dots
in the figure). Points that fall outside the two margins provided as input are discarded,
and the highland is subtracted, assigning the plateau height to zero.

The code then either provides the summit of the volcano (if it does not have a caldera)
or the midpoint of the caldera, which will be considered the summit. An important note
is that in my model the presence of a caldera and the resulting unloading is not included
in the final approximation, but it would be a relevant addition to the model in the future.
The residual topography is then split along the line identified by the apex point, and
then symmetrized in two new topographies for each profile, mirroring the left and right
flanks.

I approximated the new obtained symmetric topographies by minimizing the distance
between the double (or single) Gaussian and the symmetric topography, using the fmin-
search Matlab function. The full code for the procedure is given in Appendix A. As
shown in fig. 3.5, some volcano edifices are better fit by a double Gaussian, especially
when having steep flanks (like Mount Fuji or Etna) while other edifices are well-fitted by
a single Gaussian (like Nyiragongo). Some other edifice I tested (like Nyamuragira) show
a mixed shape, depending on the considered flank. All things considered, a symmetrical
representation by means of a double Gaussian function is preferable to a single Gaussian,
since it can be very helpful both in representing steeper volcanoes and in highlighting the
Break-In-Slope area, which, as pointed out by Kervyn et al. (2009) and already discussed
in sec. 1.3, is a significant hotbed for the opening of new eruptive vents. The values of
the coefficients used for the approximation of axisymmetric edifice shown here are shown
in table 3.1 for the A factor of the single Gaussian approximation functions, and in table
3.2 for the four factors of the double-Gaussian approximation functions.

As covered in sec. 2.5.1, the A parameter is fixed at the value of 1 by D. F. Mc
Tigue (1987), but I have obtained greater A values with my topography approximation
functions for a Gaussian-like topography. Even for a double Gaussian, the values for A2

and B2 (see 3.1) were greater than 1, especially for very steep flanks, which is a source
of problems for the general solution of stresses. I underline that, though not specified by
D. F. Mc Tigue (1987), the factor A and the aspect ratio are correlated variables.

The symmetrized S-E profile of Nyiragongo will be taken as a reference model to
show further plots of subsequent analysis. For brevity, we will conventionally call this
model ‘NyiraSE’. The choice of this profile as a template is justified by two factors:

• Its gentle topography and the absence of irregularities along the flank, which allows
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Figure 3.2: Nyiragongo NW-SE topography profile acquired with GeomapApp, Map
view with the profile tool line and corresponding profile data (Ryan, 2009).
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Gaussian factor A
Nyiragongo NW 3.4
Nyiragongo SE 4.2
Fuji N 5.51
Fuji S 9.64
Etna NW 11.4
Etna SE 6.1

Table 3.1: Table summarizing the A factors for the single Gaussian approximation ob-
tained for three case studies.

Double Gaussian factors A1 B1 A2 B2

Nyiragongo NW 0.43 0.57 3.4 3.4
NyiraSE 0.26 0.74 11.9 3.1
Fuji N 0.21 0.79 38.7 4.05
Fuji S 0.51 0.49 55.7 2.92
Etna NW 0.57 0.43 56.13 2.6
Etna SE 0.40 0.60 86.6 2.6

Table 3.2: Table summarizing the four factors required for the double-Gaussian approxi-
mation obtained for three case studies. The symmetrized SE flank profile of Nyiragongo
is chosen as reference model, and called NyiraSE.
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Figure 3.3: NW-SE topographic profile of Nyiragongo (DR Congo). Data obtained
through the GeomapApp profile tool (Ryan, 2009). As a first step in constructing an
axisymmetric topography, the user is asked to identify the start and end points of the
edifice, i.e., where the plateau begins. In the figure, these points are highlighted in
magenta, as is the apex of the volcano: the apex is identified as the point of maximum
topographic height when the volcano does not have a caldera, while it is calculated as
the midpoint between the two apexes if the volcano has a caldera.

for a good representation with a symmetrized double Gaussian;

• The special interest in the stress state below the S-E flank, in light of the eruptive
events occurred in 2021 (See section 1.5.1)

3.2 Stress computing and dike propagation

3.2.1 Mesh generation

Numerical methods are achievable thanks to mesh building methods, which allow the
creation and mapping of boundary elements. The meshing method used in this work is
the Persson’s meshing generation for implicit geometries (Persson, 2005). The code is
open source and user-friendly, and based on the concept of the truss structure. Iteration
after iteration, forces act on the points (nodes of the truss) while the topology (the edges
of the truss) is adjusted by the Delaunay triangulation algorithm. A configuration is
sought that balances a set of forces between the nodes of the mesh. This guarantees that
the triangles building the mesh are as equilateral as possibile.

The shape of the mesh can be defined and modified thanks to a distance function
d(x, y); if, after the iterations, any node falls outside the desired geometry, it is removed.
The remaining nodes will be the vertices of the mesh triangles. Corresponding edges,
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Figure 3.4: Nyiragongo (DR Congo) edifice, NW and SE symmetrized profiles, with
Gaussian (blue) and double Gaussian (purple) approximation. Though the double Gaus-
sian approximation seems to better fit the topography, even the single-Gaussian is accept-
able for both flanks. We choose the second symmetrized and approximated topography
in the figure as the reference model for further plots, naming it NyiraSE.
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Figure 3.5: Etna (Italy) edifice, N-W and S-E symmetrized flanks, and Fuji (Japan)
edifice, North and South symmetrized flanks. Approximations are Gaussian (blue) and
double Gaussian (purple). For both the edifices, the single Gaussian function fails in
approximating the symmetrized topography. This is probably due to Etna and Fuji
great steepness. The double Gaussian approximations are though more accurate.
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Figure 3.6: An example of one of the meshes used to compute stresses for NyiraSE,
obtained thanks to the Davis (2021) Matlab package ‘Cut and Displace’. The side of
the triangles covering the central part of the volcano measure 300 m approximately. In
the first panel, I show the appearance of the mesh at the beginning of the calculation,
during triangle adjustment.

represented by couples of nodes, are stored; duplicates are removed. One of the used
mesh for the NyiraSE model is represented in fig. 3.6.

3.2.2 Numerical stress solution

The numerical stress solution was obtained through the Cut & Displace Matlab package
(Davis, 2017). This code is based on the analytical solutions for triangular dislocations by
Nikkhoo and Walter (2015); it uses the Boundary Element Method (BEM), specifically
the Displacement Discontinuity Method (DDM), and assumes the material is isotropic,
linear elastic and that infinitesimal deformation applies. The half-space formulation is
based on S. Martel and J. Muller (2000) (discussed in section 2.5.2). The 2D boundary
element segments of that method become here the triangles of a 3D truss structure,
constructed through Persson’s mesh method. The stress due to loading is imposed, and
displacements of the mesh elements (the triangular dislocations) are calculated in order
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Figure 3.7: Isometric view of the three displacements directions for the NyiraSE model,
obtained thanks to the Cut and Displace Matlab package (Davis, 2017), through the im-
plementation of the meshing method by Persson (2005). In order to impose topographic
loading while maintaining the free surface condition, the boundary elements by which the
mesh is formed must displace to impose, on the crack, a stress that nullifies the tensile
stress in the edifice. Here the three components of displacement are shown, respectively:
dip-slip, strike-slip, opening (normal displacement with respect to the single boundary
element plane).

to nullify the value of the stress on the free surface. An example of displacement of
the mesh elements is shown in fig. 3.7. Each panel shows a displacement direction
resulting from the application of the free surface boundary condition, respectively: Dip-
Slip, Strike-Slip, and Normal to the boundary element surfaces.

3.2.3 Numerical solution validation

First, I compared my solution to the McTigue and Mei’s solution, in order to validate
the stress values obtained through the numerical method. The numerical solution for
the stresses can be computed with both stress states:

• Completely lithostatic stress;

• Laterally confined stress.

The McTigue and Mei model, however, is defined just for the laterally confined case.
(see eq. 2.5). The validation, achieved with the following standard values:

• a = 1 (exponent value in Eq. 2.6);
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Magma density 2300 kg/m3

Rock density 2850 kg/m3

Poisson Ratio (ν) 0.25
Shear modulus (µ) 6x109 Pa

Table 3.3: Magma and encasing rock parameters.

• ϵ = h
r
= 0.1;

• k = 0 (Laterally confined case).

is shown in section components in fig. 3.9.
Oscillation near the free surface are due to the proximity of the observation points

to the edges of the triangles which are my boundary elements. (see section 2.5.2 )

3.3 SAM dike orientation and propagation
In this section I show how different imposed conditions for the stress field affects the
propagation of SAM dikes.

SAM takes as input the stress and the topography shape, assuming homogeneous
elastic parameters, and provides the trajectories of the dikes as output. The rock and
magma parameters are summarised in table 3.3. I used SAM to create two types of
plots: snapshots that show the starting configurations of a grid of pennies distributed
within the edifice, and entire propagation trajectories of a few pennies. The first type of
plot is a simple way to show the orientation of principal stress axes in the edifice: the
pennies always lie, by definition, on the plane perpendicular to σ3. The second type of
plot adds information regarding the gradients of σ3, which is what ‘pushes’the pennies
in one direction or another, together with the buoyancy effect. In this type of plot, by
convention, I consider to be erupted all the dikes that reach a depth below the surface
equal to or less than the sides of the triangles that make up the mesh. In the case of the
meshes used in the following plots, this size is about 300 m.

3.3.1 Loading

As the simplest case of study, I present a state of lithostatic stress disturbed by a loading
due to volcano topography. To do so I built an axisymmetric volcano shaped as the SE
flank of Niyragongo: NyiraSE.

In fig. 3.10, I show the stress values for this case with the lithostatic stress contribu-
tion removed. The top of the volcano has the most intense stress because what is shown
is only the stress exerted by the boundary elements on the edifice below. This stress is
what holds the edifice together by compensating for the tensile stress resulting from the
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Figure 3.8: x-z plane sections showing values for the σxx and the σyy stress components.
McTigue and Mei method gives two outputs: one for the Analytical solution (a), and an-
other one for the near-surface approximation (b). The third output shows the numerical
solution (c). In (c), values at depth match the values at depth in (a). The oscillations
near the free surface can be then replaced with near surface values given by (b).
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Figure 3.9: x-z plane sections showing values for σzz and σxz stress components. McTigue
and Mei method gives two outputs: one for the Analytical solution (a), and another one
for the near-surface approximation (b). The third output shows the numerical solution
(c). In (c), values at depth match the values at depth in (a). The oscillations near the
free surface can be then replaced with near surface values given by (b).
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Figure 3.10: NyiraSE model, σxx, σyy, σzz components due to a topographic loading,
plotted for NyiraSE. Note: The the stresses shown are without the contribution of litho-
static stress. The last panel is a representation of the directions of σ3.

(not shown) lithostatic stress (see section 2.5.2 for more details on the method). The
orientation of σ3 is unchanged if lithostatic stresses are removed. In fact, the lithostatic
stress is isotropic, so its removal results in an isotropic variation of σ3, not affecting its
orientation.

In figure 3.11 I show the orientation of the SAM pennies, which reveal the orientation
of σ3. From the figure, it is evident that these dikes are arranged circumferentially
around the edifice, and not radially, as we would expect from other studies (Valerio
Acocella (2006), Chadwick Jr and J. Dieterich (1995)). I would like to point out that
σxx and σyy are similar in intensity. This means that the displayed dike orientation may
be changed easily if an additional contribution to stress becomes active.

In figure 3.12 and 3.13 I show the propagation of SAM dikes for the case of stress
due to loading, for the model NyiraSE, respectively starting from a depth z = 500 m and
z = -5000 m. The dikes are arranged circumferentially, as already shown through the
orientation of the SAM pennies within the edifice. Dike starting inside the edifice and
then propagating downward stop propagating at a z absolute value comparable to the
volcano height. Dike propagating upward from below the edifice tend to be attracted by
the edifice, as previously found by J. R. Muller, Ito, and S. J. Martel (2001) and then
confirmed by Maccaferri, Bonafede, and Eleonora Rivalta (2011).
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Figure 3.11: SAM pennies oriented perpendicular to σ3, side view and view from above
of the NyiraSE model.
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Figure 3.12: NyiraSE model, propagation of SAM dikes starting inside the edifice at z
= +500 m. The final penny is coloured yellow. The dikes propagate downward driven
by the stress due to loading. They show a circumferential orientation.
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Figure 3.13: NyiraSE model, propagation of SAM dikes starting below the edifice at
at z = -5000 m. The final penny is coloured yellow. The dikes propagate towards the
edifice, attracted by the loading, but then halt about at z=-1000 m. The dikes show a
circumferential orientation.
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3.3.2 Adding the tectonic stress

In order to make the simulation more realistic, I added the tectonic stress factor to the
equation:

σTot = σBackground + σLoading + σTectonic (3.2)

Specifically, I worked with a tectonic stress of 5MPa, along the x direction. The
tectonic stress must be imposed together with the loading, imposing the tectonic stress
after the numerical model calculations would violate the free-surface condition below the
mesh.

In fig. 3.14, plots of the x component of the stress in the Y-Z plane, before and after
the application of a stress equal to 5MPa along the x axis, are compared for the NyiraSE
model. Upon application of tectonic stress, the reduction of the value of the compressive
stress in the x-direction is evident. Again, these plots are deprived of the background
lithostatic stress, to better show the influence of loading and of tectonic stress.

In fig. 3.15 are the SAM pennies. The strong influence of tectonic stress causes all
the pennies to align perpendicular to the x-axis, the direction on which tectonic stress is
applied.

In figures 3.17 and 3.16 I show the propagation of SAM dikes in the stress field
influenced by loading and tectonic stress, with propagation starting from z = 500 m and
z = -5 km, respectively. In both cases, the dikes head to the surface with a nearly vertical
dip angle. At a z absolute coordinate value comparable to the edifice height, they deflect
toward the base of the volcano. When dikes are propagated from inside the edifice, they
propagate downward, but then deviate to return to the surface again, and erupt at the
base of the volcano flanks. The deviation from their initial trajectory probably occurs
because, at a certain depth with respect to the origin (in our case about equal to the
height of the volcano), the influence of loading on the stress field becomes weaker, and
the dikes will therefore tend to sense regional stress, and their buoyancy will be more
efficient in leading them towards the surface. In both cases, the dike orientation is almost
exclusively determined by the orientation of the tensile tectonic stress.

3.3.3 Making stress isotropic

As already discussed, stress tends to become more and more homogeneous and isotropic
under volcanic edifices as intrusions repeatedly cut through the edifice and are emplaced.
To properly account for this, I used a function to make the stress closer to an isotropic
state. Since the vertical stress must be equal to the overburden, then the isotropic part of
the stress will be a diagonal tensor with the overburden on the diagonal elements. Thus,
given the total stress as eq. 3.2, I decompose the total stress tensor in two addends:
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Figure 3.14: NyiraSE model, σxx component shown without and with the application of
a tectonic stress acting along the x-axis, equal to 5 MPa. Note: The the stresses shown
are without the contribution of lithostatic stress to highlight the effect of loading and
tectonic stress.
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Figure 3.15: SAM pennies, side view and view from above of the NyiraSE model, with
a tectonic stress of 5 MPa applied along the x direction.
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Figure 3.16: NyiraSE model, propagation of SAM dikes starting inside the edifice at
z = +500 m. The final penny is coloured yellow. The dikes orient perpendicularly to
the tectonic stress tensile stress and propagate downward driven by the edifice loading.
Then they drift up again toward the less steep part of the flanks.
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Figure 3.17: NyiraSE model, propagation of SAM dikes starting below the edifice at z =
-5000 m. The final penny is coloured yellow. The dikes propagate upward and then drift
toward the less steep part of the flanks. In their whole path, they orient perpendicularly
to the tectonic tensile stress.
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σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 =

σzz 0 0
0 σzz 0
0 0 σzz

+

σxx − σzz σxy σxz

σxy σyy − σzz σyz

σzx σzy 0

 (3.3)

Where σxy = σyx , σxz = σzx and σyz = σzy. Multiplying the second addend by a
factor k2, the degree of isotropization can be controlled, obtaining a new, isotropized,
stress tensor σiso

ij :

σiso
xx σiso

xy σiso
xz

σiso
yx σiso

yy σiso
yz

σiso
zx σiso

zy σiso
zz

 =

σzz 0 0
0 σzz 0
0 0 σzz

+ k2

σxx − σzz σxy σxz

σxy σyy − σzz σyz

σzx σzy 0

 (3.4)

In this way:

• for k2 = 0, the stress is completely isotropic;

• for k2 = 1, the stress is laterally confined;

• for 0 < k2 < 1, the stress takes intermediate values between the two endpoints.

I apply the procedure just described to a case with tectonic stress, with k2 = 0.5.
Exactly as in the case of tectonic stress application, the dikes are oriented perpendicular
to the x-axis (axis of tectonic stress application). If propagated within the edifice (with
a starting point z > 0), they move downward, as shown in fig. 3.18, and upward if
propagated from depth (with a starting point z < 0), as in fig. 3.19. In both cases, they
deflect their trajectory to head toward the surface to erupt at the base of the volcano.
A slight difference lies in the turning point z coordinate, which is shallower in the case
of dikes propagated inside the edifice (see fig. 3.16), while the ascent seems gentler for
the case of dikes propagated from deeper levels.

3.4 The case of the elongated edifice
Subsequently, I investigate the case of an edifice with an elliptical base. The purpose
of creating such a case is to investigate whether the circumferential orientation of the
dikes found for an axisyemmtric edifice can be modified by this shape variation. For this
case I only show, in fig. 3.20, the plots for σ3, along with the propagations of the dikes
starting inside the edifice (z > 0) and at depth (z < 0). Indeed, we find that the edifice
shape influences the orientation of the SAM pennies. Although tectonic stress has not
been imposed, the pennies tend to orient perpendicularly to the major axis of the elliptic
edifice.
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Figure 3.18: SAM dike propagation for an isotropized state of stress including loading and
tensile tectonic stress, the latter applied along the x axis. When dikes are propagated
from inside the edifice (z=500m) they migrate downward and then turn to erupt at
the volcano base. The difference between this propagation and the one seen for non-
isotropized tectonic stress is that, in this case, dikes turn their path at a shallower
depth, inferior to the volcano height.
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Figure 3.19: SAM dike propagation for an isotropized state of stress including loading
and tensile tectonic stress, the latter applied along the x axis. When dikes are propagated
below the edifice (z = 500 m) they migrate perpendicularly to the surface, but then turn
to erupt at the volcano base. The difference between this propagation and the one
seen for non-isotropized tectonic stress is that, in this case, dikes present a less inclined
pathway.
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Figure 3.20: SAM pennies arranged in the y=0 and z=h/2 planes are shown in the figure.
For this oblate geometry, which is different from the axisymmetric case, the pennies are
oriented perpendicularly to the major axis of the ellipse.
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Figure 3.21: SAM dikes propagating from inside the oblate edifice. The dikes tend to
propagate downward, but then turn their trajectory to erupt at the base of the flanks.
The reached z level before the turning point is equal to the absolute value of the height
of the volcano.
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3.5 Changing the background state of stress
Next, I tested the behavior of SAM dikes in the presence of an intermediate background
stress, between lithostatic and laterally confined. I used a multiplicative factor for de-
termining the laterally confined and lithostatic conditions as in 2.5:

f = k + (1− k)
ν

1− ν
(3.5)

where f is the multiplicative factor to apply to my stress components. In this case, for
k=1 (lithostatic case), f will be equal to 1; for k=0, on the other hand (laterally confined
case), f takes a value equal to the quantity ν

1−nu
, where ν is the Poisson’s ratio. In this

work, the value of ν was set at 0.25, so the multiplicative factor would have a value of
0.33 (thus, 1

3
is the ratio between horizontal and vertical stress in a laterally confined

case).
I imposed a value of k equal to 0.34 (shown in fig. 3.22 and 3.23) to investigate

how an intermediate background state value would affect the dike propagation. When
propagating from z=500 m , SAM dikes are outward dipping near the top of the volcano
and show circumferential orientation, while they show radial orientation at depth. The
dikes propagate downward without stopping. If starting from below the edifice (z=-
5000 m in this case), they do not ascend, as in purely lithostatic cases, but propagate
downward. An important note is that the dikes would continue to propagate downward
indefinitely if they were not given the command to stop at a maximum depth (set at
z=-6000 m). Even with the application of tectonic stress, the dikes do not turn their
trajectory to erupt, as I observed for the purely lithostatic case: they continue to proceed
downward.

In fig. 3.24, I compare a fully laterally confined background stress state (k=0), and
two intermediate situations, for k=0.34 and k=0.85, respectively. In each of these cases,
dike start circumferential immediately after departure, but become radial thereafter. As
the value of k increases, the depth at which the dikes turn from circumferential to radial
also increases.

In fully laterally confined conditions, the horizontal stresses are 1/3 of the vertical
stress. At the same time, the magma remains in a condition of hydrostatic stress, making
the dikes extremely anti-buoyant. As highlighted in fig. 3.24, for the magma and rock
density values I used, dikes propagate as anti-buoyant even when applying intermediate
stress conditions between lithostatic and laterally confined.

3.6 A preliminary application to a DEM topography
In this section, I discuss a preliminary application of Digital Elevation Models (DEMS)
to propagate SAM dikes within real topographies. To do this, I have considered the
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Figure 3.22: SAM dikes with the application of an intermediate background stress be-
tween the totally lithostatic and the fully laterally confined case (k = 0.34). No tectonic
stress is applied. Dikes tend to orient circumferentially closer to the volcano summit and
to turn into radial getting closer to the volcano base.
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Figure 3.23: SAM dikes starting at at z=-5000 m, for an intermediate background condi-
tion between the totally lithostatic and the fully laterally confined case (k=0.34). Dikes
propagate downward in a radial orientation.

case of Nyiragongo (fig. 1.10). I obtained the DEM data through the U.S. Geological
Survey. The data were acquired by the Shuttle Radar Topography Mission (Farr and
Kobrick, 2000). I used these data to build the free-surface mesh in a way analogous to
the previous cases.(3.25). Nyiragongo is very interesting because it is near to another
volcano, Nyamuragira, and to Lake Kivu. The distribution of these loads could have an
impact on dike propagation.

I introduce only a simple case in which I did not subtract the highland from the
volcano topography.

In fig. 3.26 I show the orientation of the SAM pennies in order to understand the
structure of σ3. Pennies orient perpendicularly to the y axis, even though a regional
stress is not applied. This could be due to the shape of Nyiragongo, which overlaps
with other two craters of older volcanoes: Baruta in the north and Shaheru in the south
(Komorowski et al., 2002), as shown in fig. 1.10. The resulting shape may be due to
Nyiragongo having an appriximately elliptical edifice, with the major axis directed in
the N-S direction. Thus, the stress pattern may be similar to the one I observed for an
elliptical edifice.
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Figure 3.24: Comparison between dike propagation under NyiraSE model, respectively
undergoing fully laterally confined background stress and intermediate situation with
coefficient k=0.34, and k=0.85. I observed that dikes tend to change their orientation
from circumferential to radial at a depth that increases as the k factor increases. Dikes
propagate downward indefinitely (here they stop due to a condition I set).
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Figure 3.25: SRTM DEM (Farr and Kobrick, 2000) and Mesh obtained through by
method from the SRTM DEM for Nyiragongo. The highland was not subtracted from
the data.
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Figure 3.26: Penny SAM orienting perpendicularly to σ3, for a DEM topography, at a
height of z=2500 m and z=3000 m respectively. The stress applied is only due to loading.
The highland was not subtracted from the data.
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Chapter 4

Discussion

4.1 An overview on the whole project
My project has focused on on the state of stress within volcanic edifices, with the ultimate
purpose of clarifying the mechanisms controlling the location where magma will breach
the Earth’s surface during effusive volcanic eruptions. Observations show that eruptions
can occur from established vents, from newly opened vents at the summit, on the flanks
of the volcano, or even far from the volcanic edifice. To better understand these complex
scenarios, I created models that included stress due to loading (sec 3.3.1) and regional
tectonic stress (sec. 3.3.2), while also taking into account stress isotropisation effects due
to repeated intrusions into the edifice (sec. 3.3.3). Using the Simplified Analytical Model
for dike propagation (sec. 2.6.1), I simulated dike propagation at axisymmetric volcano
edifices (sec. 3.3). I also studied the stress in an edifice with an elliptical base (sec. 3.4),
the case of the background stress intermediate between lithostatic and laterally confined
(sec. 3.5), and a preliminary work with Digital Elevation Models (3.6).

4.2 Discussing the results
As shown by the examples in figure 3.1, real shield and shield-like volcano edifices can
often be well-represented through Gaussian or double-Gaussian shapes. For milder edifice
flanks, the single Gaussian function is a good approximation while a double-Gaussian
shape is a good choice to approximate steeper flanks, and better portrays edifice features
of interest such as the Break-In-Slope.

Through the Simplified Analytical model (Mantiloni, Eleonora Rivalta, and Davis, 2023)
I simulated dike propagation and observed how it is influenced by various factors, in-
cluding background stress, stress due to loading, tectonic stress and geometric factors,
and I proposed a method to simulate the stress isotropization observed in volcanic areas
due to repeated magma intrusions (sec. 3.3.3).

75



In the case where the applied stress was only that due to loading (along with back-
ground stress), for an axisymmetric edifice, the dikes are oriented circumferentially in-
stead of radially (see fig. 3.11). According to observations of real volcanoes where
regional stress is not dominant (Valerio Acocella, 2006), I would have expected a radial
pattern. A laterally confined background stress results in a radial pattern (fig 3.24).
The problem with the laterally confined configuration is that the dikes do not erupt,
but tend to move downward, as they are effectively anti-buoyant (see sec. 3.5). This
anti-buoyant behaviour persists when applying an intermediate situation between the
condition of pure lateral confinement and purely lithostatic stress state. In contrast,
purely lithostatic stress state before the application of the load leads dikes to erupt but
to circumferential arrangement of the dikes. To summarise, none of the background
stress conditions analysed are completely satisfying.

A possibility, not explored in this thesis, could be to increase the buoyancy of
the magma. However, we already use a comparatively low magma density of ρm =
2300 kg m−3, considering that for the encasing rock we have ρm = 2850 kg m−3. Thus,
I exclude this as the fundamental reason why the models are not fully consistent with
observations.

One more reason why dikes show a circumferential orientation could be the absence
of a magma reservoir. As analyzed in section 2.2, loading has been accounted as the main
reason for causing the stress pattern that leads to circumferential intrusions (Roman and
Jaupart, 2014), but other studies highlight the importance not only of the presence of a
magma chamber, but also of its shape (Chadwick Jr and J. Dieterich, 1995).

In order to simulate the isotropization due to repeated intrusions occurring in volcanic
areas, I created a function to homogenize the stress, subtracting σzz from the diagonal
of the stress tensor and multiplying that matrix for a factor k2 whose value I chose as
equal to 0.5 (see sec. 3.3.3). This is only one of the ways in which this effect can be
accounted for; another way might be, for example, to have many intrusions propagate,
one after the other, taking into account the effect of crack opening generated by them.
In fact, I did not consider the stress modifications imparted by the emplacement of the
dikes I propagated. In the future it would be worth investigating whether this procedure
would lead to a stress model closer to observations.

An additional way to homogenize stress inside an edifice is to make the regional stress
decay in proximity of the Earth’s surface. In fact, the shallowest rock layers are often
composed by sediments or poorly consolidated eruptive products and are unlikely to
store much stress. A tectonic stress decay function within the edifice could be applied,
such that it assumes the full value at the base of the volcano (or deeper) and decays,
with an arbitrary curve, to a zero value at the surface.

In my propagation models for axisymmetric edifices, I observed the occurrence of
eruptions at the base of the volcano only in the presence of tectonic stress; in my con-
vention, I consider the eruption to occur when the dike reaches a distance from the
surface equal to the size of the triangle sides that compose the mesh. In the absence

76



of tectonic stress, the circumferentially oriented dikes are attracted by the loading of
the edifice, but then they tend to get arrested below it and do not continue toward the
surface (fig. 3.13). This is in accordance with the results of Dahm (2000), J. R. Muller,
Ito, and S. J. Martel (2001) and Maccaferri, Bonafede, and Eleonora Rivalta (2011).
Similarly, when dikes are propagated from inside the edifice, they propagate downward
(fig. 3.12). When tectonic stress comes into play, on the other hand, the dikes, oriented
perpendicular to that stress, propagate toward the center of the edifice starting at z < 0,
and downward when starting from the inside of the edifice (z > 0). In both cases, how-
ever, they deflect to head toward the surface and erupt at the base of the volcano (fig.
3.17 and 3.17). The turning point is around z=-1000 m at depth, a distance similar
to the height of the reference topography NyiraSE. Here, I did not explore the effect
of increasing or decreasing the size of the volcano or change its aspect ratio. All these
factors deserve to be explored in the future.

A particular case amongst the others, highlighting the relevance of the edifice ge-
ometry in determining dike propagation, is the elongated edifice. The elliptical edifice
displays an interesting pattern of dikes: they are arranged perpendicular to the major
axis of the ellipse, even though no tectonic stress has been applied. This result reveals
the importance of the edifice shape in determining the dike orientation. The map in
fig. 1.4 of the Erta Ale volcano (from Valerio Acocella (2006)) shows that the dikes are
actually arranged perpendicular to the minor axis of the edifice. However, these two
cases cannot be compared directly, because Erta Ale is situated on a developing Mid
Ocean Ridge and subject to tectonic extension. From my cases with tectonic stress, I
see that this is able to overprint the circumferential arrangement and it is likely it would
work in this case too.

SAM dikes for an elongated edifice propagate with a pattern similar to that observed
for asymmetric edifices in the presence of tectonic stress: they propagate downwards
and then reverse their trajectory to erupt at the base of the volcano. The turning point
in their trajectory occurs, even in this case, at a comparable absolute value of z to the
height of the edifice.

To summarise, the geometry of the loading volcano evidently influences the prop-
agation of dikes, although an oblate case like the one I observed is difficult to find in
nature. In this simulation, in fact, only the stress due to loading was adopted, while real
elongated edifices tend to form predominantly in rift zones or where the tectonic stress
is dominating, and where even dikes tend to propagate parallel to the major axis of the
volcano because of regional stress dominance.

In the case of the preliminary study on Nyiragongo, the SAM pennies are arranged
perpendicular to the y axis, as in the case of the elliptical edifice. The shape of Nyi-
ragongo is not elliptical, but has two large craters located north and south of the main
crater, derived from old volcanoes (Komorowski et al., 2002). My hypotesis is that their
loading may have influenced the stress state in the edifice, making it similar to the case
of the oblate edifice, and influencing the dikes to orient perpendicularly to the axis pass-
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ing by the three craters. No tectonic stress has been applied here, and a more accurate
analysis of this case should take into account the Nyiragongo geographical location in the
East African Rift, and the influence of the resulting tectonic stress on the area. Other
aspects to be considered for this model are the neighbourhood of Nyiragongo to Nya-
muragira volcano (see fig. 1.10), which may influence Nyiragongo stress field through
the loading due to its weight or through its intrusions, and the proximity to Lake Kivu.

4.3 Limitations and perspectives
My models are very simple and neglect many factors present in real volcanoes.

A relevant factor in determining how dike propagate, turn their trajectories or halt, is
rock layering. Rock layering implies changes in rock density and/or rigidity, conditioning
dike pathways. Amongst others, Maccaferri, Bonafede, and Eleonora Rivalta (2010) used
a boundary element method coupled with analytical solutions to identify dike behaviours
in a rigidity layered material. They observed that when dikes are distant from the rigidity
transition, they propagate straight; when they reach the boundary between a stiff and
compliant layer, they deviate toward the vertical direction; when they approach a stiffer
medium, they deviate toward the horizontal direction. A stratified model was not used
in simulations in my thesis, but it could be an interesting starting point for a future
project.

One more important point not touched upon in this thesis, is the influence of unload-
ing due to caldera on the propagation of dikes. Corbi et al. (2015), studied stress field
for a volcano (specifically Fernandina, Galàpagos) undergoing a stress variation due to
caldera unloading. The presence of a caldera results in a strong influence for the stress
field, competing with tectonic stress and magma buoyancy forces in controlling the con-
ditions of dike orientation emplacement. By taking into account the decompression due
to the caldera formation, they developed two models: an isotropically-stressed volcano
and a gravitationally loaded volcano. In the former case, unloading due to the caldera
formation showed a complex rotation of the stress axes; in the latter, the edifice sagging
under its own weight is found to have a stronger influence on the stress field compared
to the unloading of the caldera. A correlation between the last intrusions at Fernandina
volcano and the unloading due to its caldera collapse is found.

For a case like Fernandina volcano, the stress due to caldera unloading cannot be
ignored, because of the large size of the caldera geometry (see fig. 3.1). Caldera unloading
could be an interesting feature to add to the presented models, and could provide the
missing piece for a more accurate representation of particular edifices with this peculiarity
(Mantiloni, Eleonora Rivalta, and Davis, 2023).

The layer-by-layer load growth, highlighted by Chadwick Jr and J. Dieterich (1995),
could be an important factor in determining load influence on stress underground. Un-
fortunately, it is not straightforward to take this factor into account, since, in my models,
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the whole volcanic edifice is treated as a single, gravitationally loaded unit. A significant
future challenge in dike propagation modelling would be to construct a comprehensive
volcano-growth model that consider the stress modification caused by incremental ad-
dition of lava layers upon the volcano edifice, eruption after eruption. Such a model
could quantify the homogenization of the underground stress caused by the repeated
intrusion emplacements, accompanying the eruptions. Developing such a model would
have important implications in the field of dike propagation modelling, deepening our
understanding on how the stress in a volcano is built up through time.

As already mentioned, the k value for the state of stress is still an issue in geophysics.
SAM could be an interesting tool to be used in trying to provide a constraining method
to find the best k value for the state of local stress in the proximity of a topographic
relief, such as the one originated by a volcano edifice. Here I would like to provide a po-
tential recipe for future works which aim seeking to constrain the k value through SAM
dike propagation, by means of an inversion procedure similar to the one employed by
Maccaferri, Richter, and Walter (2017). This requires the collection of specific data for
the targeted volcano, such as InSAR (Interferometric Synthetic Aperture Radar) data
for ground displacements to locate dike trajectories within the volcano, geological vent
location maps, or erupted dike maps. Next, the state of stress must be built up under
different assumptions based on the geological history of the volcano or on reasonable
hypotheses about its stress state. The SAM code can then be used to propagate dikes;
the results can then be compared to real emplaced dikes in the area of interest. The k
value and initial stress conditions can be adjusted until there is a correspondence between
SAM and the actual dike emplacements. This process must be iterated while considering
different hypotheses and different k values. It is worth noting that the model can only be
validated when a new intrusion occurs, at which point it could be updated accordingly.
This undertaking presents a significant challenge, as it requires a deep understanding
of the complex interplay between different factors influencing dike propagation. How-
ever, successfully addressing this challenge could have significant implications for our
understanding of magma migration through dikes and our ability to forecast future vent
openings.
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Chapter 5

Conclusions

In conclusion, my thesis aimed to improve our understanding of magma transport in vol-
canic edifices and the mechanisms controlling the location of new vent openings. Through
the use of the Simplified Analytical Model for dike propagation (Mantiloni, Eleonora Ri-
valta, and Davis, 2023), I have analyzed the influence of various factors on underground
stress and dike propagation, focusing particularly on the role of topographic loading.
The findings presented in this study open more questions than they answer about the
complex processes of volcanic eruptions, aiming to lay the groundwork for new scientific
challenges.

After presenting an in-depth analysis of magma propagation in axysimmetric volcanic
edifices, it is important to summarise the key findings and results of my study. This will
provide a concise overview of the research presented in the thesis, highlighting the main
contributions and implications for the field. The results of my research showed that
the orientation of dikes is influenced by tectonic stress (sec. 3.3.2), background stress
(3.5), and edifice geometry (sec. 3.4). In each configuration I observed that loading
acts as a point of attraction for propagating dikes starting at depth, except for cases
where the background stress was laterally confined or intermediate (in those cases the
dikes always tended to move downward, away from the edifice). At the same time,
dikes departing from inside the edifice always tend to propagate downward, driven by
the influence of loading. In my simulations, dikes could reach the surface only for cases
where tectonic stress was present (sec. 3.3.2), or for the case of a non-axisymmetric
edifice (sec. 3.4). In both cases, dikes erupt at the base of the volcano or away from the
summit, in agreement with Kervyn et al. (2009). In the case of tectonic stress, the dikes
tend to lie perpendicular to the axis of minimum stress, while in the case of the oblate
edifice, the dikes lie perpendicular to the major axis of that edifice. When this happens,
the turning points of the trajectories, which at first point downward, then toward the
surface, are at a depth comparable to the height of the edifice. In contrast, when the
tectonic stress is subjected to the isotropization process, the depth of the turning point
is smaller than the edifice height. In comparison with real-world scenarios, my results
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showed good agreement with maps of realistic vent locations. However, further research
is needed to account for the effect of crack opening generated by repeated intrusions and
to investigate the role of caldera unloading and pressurized magma chamber shape on
dike orientation.

I would like to emphasize the significant advancement on dike propagation modelling
of the recent years. Until a few years ago, propagating dikes with computational models
was only possible in 2 dimensions (Corbi et al., 2015), whereas now we have powerful
means such as the SAM, the Simplified Analytical model or TIM, the Three-dimensional
Intrusion Model (Mantiloni, Eleonora Rivalta, and Davis, 2023) for dike propagation in
3D. These advances in computational modelling may pave the way for new breakthroughs
in this field of study, leading to deepen our understanding on magma transport.

With all the limitations of a study as this one, my thesis remains a novel numerical
investigation of stresses in volcanic edifices, where several shapes and different assump-
tions on stress are studied and compared with each other. There are many points that
are still unclear, and a long and careful work would be required to better understand the
relation between all the contributing factors and the distribution of new vents. To con-
clude, I believe an interesting avenue for future research could lie in using the methods I
presented here to investigate how stress-modifying processes interact with one another,
and how their cumulative contribution affects the propagation of magma within volcanic
edifices.
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Appendix A

Matlab code for topography
approximation

Here I show my Matlab code I used to perform topography approximation as a double
Gaussian topography. In the following you will find:

1. The main code;

2. The functions to split the volcano profile in two halves and create two new sym-
metric profiles: aspect_ratio_left.m, aspect_ratio_right.m;

3. The functions performing a Gaussian and double Gaussian approximation mini-
mizing the difference with the symmetrical topographies: gauss_minsquare.m ,
double_gauss.m;

4. The functions providing a Gaussian and double-Gaussian function avaliable with
user parameters: ,app_topography.m, doublegauss_topography.m.

A.1 Topography approximation - Main

clear;
close all;
clc;

%Uploading files and converting to arrays

volc = readtable(’profiloNW_SE.txt’);
%Fuji_N_S.txt Etna_NW_SE.txt profiloNW_SE.txt
volcano = table2array(volc);
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%Erase Lat and Lon (columns 1 and 2) and substitute with Distance
%(km) and Elevation (m)
volcano(:,1) = volcano(:,3);
volcano(:,2) = volcano(:,4);
volcano(:,4) = [];
volcano(:,3) = [];

%Converting distance from km to m
volcano(:,1) = volcano(:,1)*10^3;

%% Here I plot the volcano profile
fig_bareprofile = figure(1)

plot(volcano(:,1),volcano(:,2),"LineWidth",4,"Color", "#CCBB44")
axi = gca;
axi.FontSize = 16;
axis equal
hold on
title(’Bare profile with top point and plateau limits’,’FontSize’, 25);

xlabel(’width, km’,’FontSize’,16)
ylabel(’height, km’,’FontSize’,16)

% Activate the data cursor mode to identify the plateau by
%clicking on the image
dcm = datacursormode(fig_bareprofile);
dcm.Enable = ’on’;
dcm.DisplayStyle = ’window’;

% Wait until the user has clicked
disp(’Click on the volcano profile point you identify as the ...
plateau point of the left flank! Then press "Return", please.’)
pause
% Export cursor to workspace
pl_l=getCursorInfo(dcm);
plateau_left = pl_l.Position;
plateau_left(3) = pl_l.DataIndex;
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disp(’<Thanks! Now, do the same for the right flank, please! ...
Then press "Return".’)
pause
% Export cursor to workspace
pl_r=getCursorInfo(dcm);
plateau_right = pl_r.Position;
plateau_right(3) = pl_r.DataIndex;

%% Aspect ratio + Data normalization through my h and r values

%Here I compute the aspect ratio for the left part (output of this function)
caldera = 1; %Boolean variable: 1 = yes caldera. 0 = no caldera

[left_aspect,left_hr,left_res_volcano] = aspect_ratio_left(volcano(:,1),...
volcano(:,2),caldera,plateau_left);
plot(left_hr(1)+plateau_left(1),left_hr(2)+plateau_left(2),...
"o magenta","LineWidth",4);
%Here I compute the aspect ratio for the right part
%(output of this function)
[right_aspect,right_hr,right_res_volcano] = ...
aspect_ratio_right(volcano(:,1),volcano(:,2),...
caldera,plateau_right);%plat_imposto);%

%Here I plot the beginning and end of the plateau
plot(plateau_left(1),plateau_left(2),"o magenta","LineWidth",4)
plot(plateau_right(1),plateau_right(2),"o magenta","LineWidth",4)

hold off

%% Gaussian approximation

% Guess parameters
x(1) = 0.6; %A1
x(2) = 7; %A2
x(3) = 4; %B2
y = 7;

% Calling the Gaussian approximation functions
leftsingle_bestx = gauss_minsquare(left_res_volcano(:,1),...
left_res_volcano(:,2),y);
rightsingle_bestx = gauss_minsquare(right_res_volcano(:,1),...
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right_res_volcano(:,2),y);

% Calling the double-Gaussian approximation functions
left_bestx = double_gauss(left_res_volcano(:,1),...
left_res_volcano(:,2),x);
right_bestx = double_gauss(right_res_volcano(:,1),...
right_res_volcano(:,2),x);

%% Create a handle for the plot function
left_fit_func = @(arr) doublegauss_topography(arr,...
left_res_volcano(:,1));
right_fit_func = @(arr) doublegauss_topography(arr,...
right_res_volcano(:,1));

leftsingle_fit_func = @(sca) app_topography(sca,...
left_res_volcano(:,1));
rightsingle_fit_func = @(sca) app_topography(sca,...
right_res_volcano(:,1));

%% Rescaled topography and approximation plot with different coefficients.
figure(2)
%Plot of topography:
subplot(2,1,1)
hold on
axis equal
title("Nyiragongo, NW symmetrized flank","FontSize", 25);
%plot the rescaled and symmetrized topography
plot(left_hr(1)*left_res_volcano(:,1),...
left_hr(2)*left_res_volcano(:,2),"LineWidth",4,"Color", "#CCBB44")
ax1 = gca;
ax1.FontSize = 15;
%Plot of approximation functions
%plot(left_res_volcano(:,1),left_fit_func(x),...
"LineWidth",2,"Color", "#66CCEE") %plot guess fit, cyan

plot(left_hr(1)*left_res_volcano(:,1),...
left_hr(2)*leftsingle_fit_func(leftsingle_bestx),...
"LineWidth",2,"Color", "#4477AA")
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plot(left_hr(1)*left_res_volcano(:,1),...
left_hr(2)*left_fit_func(left_bestx),...
"LineWidth",2,"Color", "#AA3377")

lg1 = legend("Left side symmetrized topography","Single Gaussian...
approximation","Double Gaussian approximation")
lg1.FontSize = 16;
xlabel(’width (km)’,’FontSize’,16)
ylabel(’height (km)’,’FontSize’,16)
%Same but fot the right approximation

hold off

%Plot of topography:
subplot(2,1,2)
hold on
title("Nyiragongo, SE symmetrized flank","FontSize", 25);
axis equal
plot(right_hr(1)*right_res_volcano(:,1),...
right_hr(2)*right_res_volcano(:,2),"LineWidth",4,"Color","#CCBB44")
txt = ’NyiraSE model’;
%text(-5000,1000,txt,’FontSize’,16);

ax2 = gca;
ax2.FontSize = 15;
%Plot of approximation functions

plot(right_hr(1)*right_res_volcano(:,1),...
right_hr(2)*rightsingle_fit_func(rightsingle_bestx),...
"LineWidth",2,"Color", "#4477AA")

plot(right_hr(1)*right_res_volcano(:,1),...
right_hr(2)*right_fit_func(right_bestx),...
"LineWidth",2,"Color", "#AA3377")
%plot fit from "double_gauss" function

lg2 = legend("Right side symmetrized topography",...
"Single Gaussian approximation","Double Gaussian approximation")
lg2.FontSize = 16;
xlabel(’width (km)’,’FontSize’,16)
ylabel(’height (km)’,’FontSize’,16)
hold off
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A.2 aspect_ratio_left.m and aspect_ratio_right.m
The functions split the volcano profile in two halves and create two new symmetric
profiles.

A.2.1 aspect_ratio_left.m

%Function to calculate the aspect ratio of a volcano edifice: E = h/r.
%The function requires a boolean variable used as a switch: with 1,
%it provides aspect ratio for a volcano with a caldera, and without one with 0.

%For a caldera-equipped volcano, the function calculates the midpoint
%between the two maxima and assign it to r, and takes the height of the
%lower maximum as h.

%For a no-caldera volcano, r and h are just the peak x and y

function [aspect,values_hr,res_data] = ...
aspect_ratio_left(xdata,ydata,boolean,plat)

%Checking which function to use
switch boolean

case 1 %Edifice with a caldera

%Here I find the topography peaks and their locations in
%data tables
[peaks,peaks_where] = findpeaks(ydata);
%Here I spot the two maximum values within the peaks
[maxval,maxpos] = maxk(peaks,2);
%Here I locate all the data between the two max peaks
max_volcano = peaks_where(maxpos);
%Here I find the equidistant x point between them
middle = (xdata(max_volcano(2))+xdata(max_volcano(1)))/2;
discrepancy = abs(middle-xdata);
[x_center,x_center_pos] = min(discrepancy);
r = xdata(x_center_pos)-plat(1); %x value for the peak
r_pos = x_center_pos - plat(3);

%Here I find the plateau to my data
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%Here I locate the height of the approximation
h = (ydata(min(max_volcano)))-plat(2); %y value for the
%peak

%Here I compute the aspect ratio (output of this function)
aspect = h/r;

%With two variables for the output, the function will give
%r, h in a
%two-elements vector.
values_hr(1) = r;
values_hr(2) = h;

case 0 %Edifice without a caldera
[h,hpos] = max(ydata);
r = xdata(hpos)-plat(1);
h = h-plat(2);
aspect = h/r;
values_hr(1) = r;
values_hr(2) = h;
r_pos = hpos - plat(3);
x_center_pos = r_pos;

otherwise
display("aspect_ratio: Retry providing a third...
variable with value 1 if your topography shows a ...
caldera and 0 if not")

end

%Here I assign the new data
new_data(:,1) = xdata;
new_data(:,2) = ydata;

new_data(1:plat(3),:) = [];
new_data(:,1) = new_data(:,1)-plat(1);
new_data(:,2) = new_data(:,2)-plat(2);

%Here I assign the rescaled data

%First half
res_data1(:,1) = new_data(1:r_pos,1)/r;
res_data1(:,2) = new_data(1:r_pos,2)/h;
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%I create and concatenate arrays for the second half
%To obtain symmetric rescaled data

res_data2(:,1) = res_data1(:,1);
res_data1(:,1) = flip(res_data1(:,1));
res_data1(:,1) = -res_data1(:,1);

res_data2(:,2) = flip(res_data1(:,2));
res_data = [res_data1; res_data2];

A.2.2 aspect_ratio_right.m

%Function to calculate the aspect ratio of a volcano edifice: E = h/r.
%The function requires a boolean variable used as a switch: with 1,
%it provides aspect ratio for a volcano with a caldera, and without one with 0.

%For a volcano with a caldera, the function calculates the midpoint
%between the two maxima and assign it to r, and takes the height
%of the lower maximum as h.

%For a no-caldera volcano, r and h are just the peak x and y.

function [aspect,values_hr,res_data] = ...
aspect_ratio_right(xdata_,ydata_,boolean,plat)

%
% %assigning the data

ydata = ydata_;
xdata = xdata_;

%Checking which function to use
switch boolean

case 1 %Edifice with a caldera

%Here I find the topography peaks and their locations in data tables
[peaks,peaks_where] = findpeaks(ydata);
%Here I spot the two maximum values within the peaks
[maxval,maxpos] = maxk(peaks,2);
%Here I locate all the data between the two max peaks
max_volcano = peaks_where(maxpos);
%Here I find the equidistant x point between them

89



middle = (xdata(max_volcano(2))+xdata(max_volcano(1)))/2;
discrepancy = abs(middle-xdata);
[x_center,x_center_pos] = min(discrepancy);
r = -xdata(x_center_pos)+plat(1); %x value for the peak
r_pos = plat(3)-x_center_pos;

%Here I find the plateau to my data

%Here I locate the height of the approximation
h =((ydata(max(max_volcano)))-plat(2)); %y peak value

%Here I compute the aspect ratio (output of this function)
aspect = h/r;

%With two variables for the output, the function will give
%r, h in a
%two-elements vector.
values_hr(1) = r;
values_hr(2) = h;

case 0 %Edifice without a caldera
[h,hpos] = max(ydata);
r = -xdata(hpos)+plat(1);
h = (h-plat(2));
aspect = h/r;
values_hr(1) = r;
values_hr(2) = h;
r_pos = -hpos + plat(3);
x_center_pos = hpos;

otherwise
display("aspect_ratio: Retry providing a third...
variable with value 1 if your topography shows a ...
caldera and 0 if not")

end

%Here I flip and assign the new data

new_data(:,1) = xdata;
new_data(:,2) = ydata;

new_data(plat(3):end,:) = [];
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new_data(1:x_center_pos,:) = [];
new_data(:,1) = flip(-new_data(:,1)+plat(1));
new_data(:,2) = new_data(:,2)-plat(2);

%First half

res_data2(:,1) = new_data(:,1)./r;
res_data2(:,2) = new_data(:,2)./(h);

%I create and concatenate arrays for the second half
%To obtain symmetric rescaled data

res_data1(:,1) = flip(-res_data2(:,1));

res_data1(:,2) = flip(res_data2(:,2));
res_data = [res_data1; res_data2];

A.3 gauss_minsquare.m and double_gauss.m
These functions perform a Gaussian and double Gaussian approximation minimizing the
analytical functions difference to make them match with the symmetrical topographies.

A.3.1 gauss_minsquare.m

%Defining a function to use fminsearch as an optimizer.

% This function provides a Gaussian function to approximate a volcano
% edifice topography using fminsearch.
%
% -------------------------------------------------------------------
%
% INPUT:
%
% xdata_ -> for now rescaled between [-1,1]
% ydata_ -> topography normalized data
%
% -------------------------------------------------------------------
%
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% OUTPUT:
%
% best_x -> best value for double Gaussian parameters.
% Provide them to the "app_topography" function in order to plot the data
% approximation obtained.
%
% -------------------------------------------------------------------

function bestx = gauss_minsquare(xdata_, ydata_, param)

switch nargin
case 2

x = 5;
otherwise

x = param;

end

xdata = xdata_;
ydata = ydata_;

g = @(xdata,ydata,x) sum((ydata - (exp(-x*(xdata).^2))).^2);
one_val_g = @(x) g(xdata,ydata,x);

% x0(1) = 0.4;
% x0(2) = 7;
% x0(3) = 5;

x0 = x;
bestx = fminsearch(one_val_g,x0);

end

A.4 double_gauss.m
%Defining a function to use fminsearch as an optimizer.

% This function provides a Gaussian function to approximate a volcano
% edifice topography using fminsearch.
%
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% -------------------------------------------------------------------
%
% INPUT:
%
% xdata_ -> for now rescaled between [-1,1]
% ydata_ -> topography normalized data
%
% -------------------------------------------------------------------
%
% OUTPUT:
%
% best_x -> best value for double Gaussian parameters.
% Provide them to the "app_topography" function in order to plot the data
% approximation obtained.
%
% -------------------------------------------------------------------

function bestx = double_gauss(xdata_, ydata_, param)

switch nargin
case 2

x(1) = 0.6;
x(2) = 1;
x(3) = 9;
x(4) = 1-x(1);

otherwise
x = param;
x(4) = 1-x(1);

end

xdata = xdata_;
ydata = ydata_;

g = @(xdata,ydata,x) sum((ydata - ...
(x(1)*exp(-x(2)*(xdata).^2) + (1- ...
x(1))*exp(-x(3)*xdata).^2))).^2);
one_val_g = @(x) g(xdata,ydata,x);

x0 = x;
bestx = fminsearch(one_val_g,x0);
bestx(4) = 1-bestx(1);
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A.5 app_topography.m and doublegauss_topography.m
The functions providing a Gaussian and double-Gaussian function avaliable with user
parameters

A.5.1 app_topography.m

% Double Gaussian function for normalized data
%
% INPUT:
%
% par -> scalar, single guess-values array, containing:
% param(2) -> A2, x-multiplication coefficient for the Gaussian
%
% xdata -> horizontal data for your topography
% (already rescaled within [-1,1])
%
% -------------------------------------------------------------------
%
% OUTPUT:
%
% g -> Call the function depending on provided parameters

function g = app_topography(par,xdata)

param = par;

g = exp(-param*(xdata).^2);

A.5.2 doublegauss_topography.m

% Double Gaussian function for normalized data
%
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% INPUT:
%
% par -> 4 guess-values array, containing:
% param(1) -> A1, coefficient for the first Gaussian
% (the coeff B1, for the second Gaussian, is given by 1-A1)
% param(2) -> A2, x-multiplication coefficient for the first
% Gaussian
% param(3) -> B2, x-multiplication coefficient for the second
% Gaussian
%
% xdata -> horizontal data for your topography (already rescaled
% within [-1,1])
%
% -------------------------------------------------------------------%
% OUTPUT:
%
% g -> Call the function depending on provided parameters

function g = doublegauss_topography(par,xdata)%,h_)
%
% switch nargin
% case 3
% h = h_;
% case 2
% h = 1;
% end

param = par;

g = param(1)*exp(-param(2)*(xdata).^2) + ((1-...
param(1))/1)*exp(-param(3)*(xdata).^2);
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List of Figures

1.1 Stress gradient effect on dike propagation. (1): Magma chamber feeding a
dike. If the overpressure (sum of external stress and magma pressure) on
the dike plane is uniform, the dike opening is elliptical. (The opening is
exaggerated in the figure) (2): The dike may undergo a pressure gradient
due to external factors. (3): The dike seals at the end undergoing the
greater stress. (4): The stress intensity factor at the dike tip overcomes the
fracture toughness; the dike begins to propagate autonomously, without
further injection of magma from the magma chamber. (Modified from a
figure by E. Rivalta) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Buoyancy effect. (1): For a vertical dike, when rock density is greater
than magma density, magma pressure increases more slowly than rock
pressure as depth increases. (2): A pressure gradient results along the
intrusion vertical line. (3): The dike seals at the bottom and rises at
the top, breaking the rock above it (Modified from a figure by Eleonora
Rivalta). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Effect on dike propagation induced by a triangular load applied on the
surface. In panel C2 the volume of the intrusion is double than in panel
C1. In panel C3 the starting point of the intrusions is shifted horizontally
by 6 km and in C4 by 12 km (in this last configuration the initial dip an-
gles of the dikes are opposite with respect to the previous configurations.)
Here σ is plotted in background (the horizontal component of the devia-
toric stress tensor induced by the load), the short grey lines indicate the
direction of the maximum compressive axis. From: Maccaferri, Bonafede,
and Eleonora Rivalta (2011) . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Erta Ale, Ethiopia. Example of elongated volcano edifice, with the big-
ger axis oriented perpendicularly to the least compressive regional stress.
Dikes are shown orienting accordingly. From: (Valerio Acocella, 2006). . 14
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1.5 Vent distribution at Concepcion volcano, Nicaragua. (a) Shaded relief and
structural features; (b) slope angle; (c) north–south topographic profile
along dashed line in Figure 1b. Arrows indicate the location of vents,
including several at the cone base. Old domes (circles) and Holocene
cones (triangles) along a pronounced north–south rift zone are all located
on the lower volcano slopes. From Kervyn et al. (2009), adapted from the
works of Borgia and Wyk de Vries (2003)a and Wyk (1995). . . . . . . . 16

1.6 Figure showing a simple representation of the σ1 orientation (the most
compressive stress) and of the isobar lines in the substratum and in a
volcanic cone based, from Kervyn et al. (2009), based on James H Di-
eterich (1988), Wyk (1995), Vries and Matela (1998). Dikes tend to prop-
agate perpendicularly to the least principal stress and parallel to orien-
tations of σ1 and σ2. The stress distribution within the conical edifice
will focus dikes toward the central axis. On the other hand, the pressure
gradient below the volcano load can favor lateral dike propagation toward
lower confining pressure, so that dikes would tend to migrate out from
under the volcano, and then erupt away from the center of the cone. . . . 17

1.7 a: Geographic reference: Galapagos Islands, Ecuador (from GeomapApp
Ryan (2009)) b: Idealized cross-section of a Galapagos volcano suggest-
ing the different areas where circumferential and radial dikes should be
favored in the numerical models in order to form the pattern of eruptive
fissures observed at the surface. c: Maps of eruptive vents, including
eruptive fissures (lines) and cones (outlines) on Fernandina. b and c from:
Chadwick Jr and J. Dieterich (1995). . . . . . . . . . . . . . . . . . . . . 18

1.8 Three-dimensional representation of circumferential (a) and radial (b) in-
trusions; in purple the 1-km-depth magma reservoir, in yellow the intru-
sions feeding fissure eruptions. From Bagnardi, Amelung, and Poland (2013). 19
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1.12 Best results of dike geometry inverted from four interferograms spanning
the eruption overlaid with seismicity between 22 and 31 May in a map
view (a) and along a north–south cross section (b). Colours represent the
dike opening (0–2.5 m). Sha: Shaheru Crater. Nyabihu Fault is marked
in red. Its 72.5°dip is estimated from seismic profiles45. Coordinates are
given in kilometres in the WGS 1984 UTM (Zone 35S) system. From:
Smittarello et al. (2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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(Ryan, 2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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2.3 Model by S. Martel and J. Muller (2000) for an elastic body undergoing
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ideal erosion episode). The segments of the dashed line are the consid-
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