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Abstract

In recent years, artificial intelligence has become a part of our daily life. Machine learning

algorithms are now used in many sectors, from telephony to entertainment platforms.

In the same way, the field of Cosmology has benefited from the enormous advantages

offered by this technology. More and more scientific researchers apply nowadays machine

learning algorithms to process and analyze the huge amount of data provided by wide-field

surveys and cosmological simulations. The number of publications related to the usage

of these techniques in the astrophysical sector has indeed grown exponentially in recent

decades, driven by the enormous successes that have been achieved.

Our Thesis work fits perfectly into this context. What we present is a machine learning-

based code aimed at drastically speeding up cosmological analyses. It is in fact an emulator,

i.e. an algorithm able to reproduce a given theoretical model in a very short time and with

great accuracy.

We implemented the code into the public libraries CosmoBolognaLib (Marulli,

Veropalumbo & Moresco, 2016), providing the users with a powerful tool to emulate the

cosmological functions already present in these libraries. The main limitation of these

functions is their run time in the context of Bayesian analyses. Indeed, having to calculate

these models millions of times, this type of statistical analysis becomes extremely slow.

Exploiting the machine learning algorithms provided by the numerical library

CosmoPower (Spurio Mancini et al., 2022), we built a neural network aimed at imitat-

ing the output of the theoretical model of the two-point correlation function, a type of

statistic widely used in Cosmology. As a first implementation example, we focused on

emulating the model by varying four cosmological parameters: the total matter density

parameter, Ωm, the energy density parameter, Ωde, the amplitude of the primordial power
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spectrum, As and the redshift, z. The training process of the network was carried out using

the large computational resources provided by the Department of Physics and Astronomy

of the University of Bologna. We then validated the emulator by comparing its output to

that of the original function, verifying its accuracy for the full range of input parameter

combinations.

Finally, we applied our code to the analysis of cosmological simulations. In partic-

ular, we measured the two-point correlation function of dark matter particles at three

different redshifts of the DUSTGRAIN-pathfinder (Giocoli, Baldi & Moscardini, 2018;

Hagstotz et al., 2019). We performed a Bayesian analysis to derive the posterior proba-

bility distribution of the parameters Ωm, Ωde and As, using both the original function of

the CosmoBolognaLib and its emulated version. The results obtained with our emulator

show almost perfect correspondence with that of the original model, with small differences

that completely fall within the statistical fluctuations of the method. The really innovative

part, however, lies in the timing of the analysis. With our emulator, the code becomes

thousands of times faster, bringing the total execution time from several tens of hours to

a few seconds.

Our code will also be improved by extending the emulation to other cosmological func-

tions and expanding the emulator’s range of validity to cover a wider parameter space.

The potential applications of this methodology in the future are numerous, and its use

will soon become a key element for future cosmological analyses conducted within the

CosmoBolognaLib.
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Sommario

In questi ultimi anni, l’intelligenza artificiale è diventata parte della nostra vita quotidiana.

Gli algoritmi di machine learning vengono oggi impiegati in moltissimi settori, da quello

della telefonia alle piattaforme di intrattenimento.

Anche la Cosmologia ha usufruito degli enormi vantaggi che offre questa tecnologia.

Sempre più ricerche infatti utilizzano oggi gli algoritmi di machine learning per processare

e analizzare l’enorme quantità di dati che ci viene fornita dalle survey a grande campo

e dalle simulazioni cosmologiche. Il numero di pubblicazioni riguardanti l’applicazione

di queste tecniche nel settore astrofisico e cosmologico è infatti cresciuto ad un ritmo

esponenziale negli ultimi decenni, guidato dagli enormi successi che sono stati ottenuti.

Il nostro lavoro di Tesi si colloca perfettamente in questo contesto. Quello che presen-

tiamo è un codice basato sul machine learning, volto a velocizzare drasticamente le analisi

cosmologiche. Si tratta infatti di un emulatore, ovvero un algoritmo in grado di riprodurre

un dato modello teorico in tempi brevissimi e con una grande accuratezza.

Il codice che abbiamo implementato è inserito nelle librerie free software

CosmoBolognaLib (Marulli, Veropalumbo & Moresco, 2016) e offre un potente strumento

per emulare le funzioni cosmologiche già presenti in queste librerie. Il limite principale di

queste funzioni è dato dal loro tempo di esecuzione nel contesto delle analisi Bayesiane.

Infatti, dovendo calcolare questi modelli milioni di volte, questo tipo di analisi statistica

risulta estremamente lento.

Sfruttando gli algoritmi di machine learning forniti dalla libreria numerica CosmoPower

(Spurio Mancini et al., 2022), abbiamo costruito una rete neurale volta ad imitare l’output

del modello teorico della funzione di correlazione a due punti, un tipo di statistica enorme-

mente utilizzato in Cosmologia. Come primo esempio di implementazione, ci siamo concen-
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trati sull’emulazione del modello al variare di quattro parametri cosmologici: il parametro

di densità totale della materia, Ωm, il parametro di densità di energia, Ωde, l’ampiezza

dello spettro di potenza primordiale, As e il redshift, z. Il processo di allenamento della

rete è stato svolto sfruttando le grandi risorse computazionali fornite dal Dipartimento di

Fisica e Astronomia dell’Università di Bologna. Abbiamo poi validato l’emulatore com-

parandone l’output con quello della funzione originale, e verificandone l’accuratezza per

tutte le combinazioni di parametri in input.

Abbiamo infine applicato il nostro codice all’analisi di simulazioni cosmologiche. In par-

ticolare, abbiamo misurato la funzione di correlazione a due punti delle particelle di materia

oscura a tre diversi redshift delle DUSTGRAIN-pathfinder (Giocoli, Baldi & Moscardini,

2018; Hagstotz et al., 2019). Abbiamo poi condotto un’analisi Bayesiana per derivare la

distribuzione della probabilità a posteriori dei parametri Ωm, Ωde e As, utilizzando come

modello sia la funzione originale delle CosmoBolognaLib, che la sua versione emulata. I

risultati ottenuti con il nostro emulatore mostrano una corrispondenza quasi perfetta con

quella del modello originale, con piccole differenze che rientrano nelle fluttuazioni statis-

tiche del metodo.

La parte veramente innovativa, però, sta nelle tempistiche dell’analisi. Con il nostro

emulatore il codice diventa migliaia di volte più veloce, portando il tempo complessivo di

esecuzione da diverse decine di ore a qualche secondo.

Il nostro codice verrà inoltre migliorato estendendo l’emulazione ad altre funzioni cos-

mologiche e ampliando il range di validità dell’emulatore per coprire un più ampio spazio

dei parametri. Le applicazioni future di questa metodologia sono innumerevoli e il suo

utilizzo costituirà presto un elemento chiave per le future analisi cosmologiche condotte

nell’ambito delle CosmoBolognaLib.
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Introduction

Massive breakthroughs have involved the field of Cosmology in the last decades. Deep and

wide cosmological surveys have precisely mapped the distribution of visible matter in the

sky, enhancing our knowledge of the Universe properties and their evolution over time.

The cosmological model commonly assumed to describe these large-scale observations

is the Λ-cold dark matter (ΛCDM). The ΛCDM model is based on the validity of the

cosmological principle, i.e. the hypothesis of homogeneity and isotropy at the Universe

large scales, as well as on the validity of the Einstein’s General Relativity. According to

this framework, the Universe is about 13.8 billion years old and is constituted by ∼ 5% of

baryons (i.e. the visible matter made of protons, neutrons and electrons) and by ∼ 25%

of a mysterious component named dark matter. This model assumes also the presence of

the cosmological constant, Λ, an unknown component representing the ∼ 70% of the total

energy density of the today Universe. The cosmological constant can be also interpreted

as the so-called dark energy and is assumed to be responsible for the current accelerated

expansion of the Universe.

However, the ΛCDM model has often been questioned, mainly because of the lack of

a physical explanation about the nature of its components, as well as about the exact

mechanisms regulating the Universe accelerated expansion. In addition, in recent years,

statistical tensions have emerged on the estimate of a few cosmological parameters from

different probes (see Abdalla et al., 2022, for a review), puzzling the scientific community.

For these reasons, many missions aimed at investigating these problems have already

been launched and are planned for the coming years. Cosmological simulations, in the

same way, have become larger and more precise, reproducing a huge number of different

realizations of the universe and covering a variety of cosmological scenarios. The amount of

8



data at our disposal has therefore become increasingly larger, and thus even more difficult

to manage and analyze.

In this context, machine-learning algorithms have taken on a dominant role, allowing

us to push the limits of cosmological investigations even further. They enable us to quickly

process catalogues of cosmic objects and carry on precise cosmological analyses in very

short times, as well as to derive cosmological constraints directly from the comparison

between simulations and real data.

Drawing on the numerous studies published in recent years on this topic, and moti-

vated by the great success of the application of neural networks in Cosmology, we present

in this Thesis work a new machine-learning based code aimed at improving the efficiency

of cosmological analyses. The code we developed is an emulator, i.e. an algorithm able

to reproduce with great accuracy a given model, for wide range of input parameters. It

is integrated in the framework of the free software numerical libraries CosmoBolognaLib

(Marulli, Veropalumbo & Moresco, 2016) and allows us to emulate any function imple-

mented in these libraries.

We are particularly interested in the cosmological models available in the

CosmoBolognaLib, since they are employed for extensive statistical analyses. As an il-

lustrative example, we prepared our emulator to reproduce the basic theoretical model for

the two-point correlation function, a statistic widely used in Cosmology. We employed

machine-learning algorithms provided by the library CosmoPower (Spurio Mancini et al.,

2022) to train the neural network, and subsequently we validated the accuracy of the

emulated model.

Then, we tested the efficiency of our emulator in the context of a Bayesian analysis.

We modelled the two-point correlation function measured in cosmological simulations, sam-

pling the posterior distribution of the model cosmological parameters by using the original

CosmoBolognaLib function and the emulated version we implemented. Besides confirming

the high accuracy of our emulator, this test revealed a speed-up factor between O(103)

and O(104). In practise, our emulator reduced the computational time required for the

analysis from tens of hours to a few seconds. This result proves the high potentiality of the

method, which will be extended in the near future to a multiplicity of cosmological appli-

cations and will dramatically improve the efficiency of the statistical analyses performed
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with the CosmoBolognaLib.

We briefly summarize the structure of this Thesis work in the following:

• in Chapter 1, we provide a brief overview of the theoretical background of modern Cos-

mology, starting with an exploration of the essential components of General Relativity

and concluding with an examination of the standard cosmological model;

• in Chapter 2, we delve into the structure formation and clustering of the Universe

at large scales. We outline the linear perturbation theory, which is essential to the

introduction of the two-point correlation function, i.e. the statistic that we aim at

emulating in this work. Then we briefly present the nonlinear perturbation theory,

which is essential to introduce the N-body simulations;

• in Chapter 3, we discuss the usage of machine learning and Bayesian inference in the

field of Cosmology. We focus on supervised learning methods and the concept of deep

neural network models, and how they can be implemented through the CosmoPower

libraries to compute the desired emulated models. We finally provide an introduction to

the basics of Bayesian statistics, as well as to the Markov Chain Monte Carlo technique

that we need to derive the test cosmological constraints;

• in Chapter 4, we present the C++/Python set of libraries CosmoBolognaLib, which

represent the numerical environment in which our code is implemented and can be

exploited for cosmological analyses. Then, we introduce our code by presenting the

new class we implemented. We also describe the training and the validation procedure

we performed to prepare our emulator. In the final part of the chapter, we provide two

examples of the usage of the new class for emulators, one to appreciate the accuracy

of the model and the other to appreciate its computational speed.;

• in Chapter 5, we present an application of our emulator to a Bayesian analysis. We

measure the two-point correlation function in the DUSTGRAIN-pathfinder simula-

tions (Giocoli, Baldi & Moscardini, 2018; Hagstotz et al., 2019) and we extract test

constraints on the cosmological parameters of our interest. Finally, we compare results

obtained with the original CosmoBolognaLib model function and those derived with

its emulated version, both in terms of accuracy and efficiency;
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• in Chapter 6 we sum up the achieved results, providing also an insight into the future

developments of our code.

11



Chapter 1

Cosmological framework

In this chapter we briefly introduce the fundamental theoretical topics that underline the

scientific analyses presented in this Thesis. This is done with no aim of completeness,

but only with a clarity purpose. For a depth dissertation of the these concepts, we invite

the reader to rely on the two fundamental textbooks, Ray & Vickers (2022) and Coles &

Lucchin (2002), which were used as reference for writing the following sections.

1.1 Elements of General Relativity

Our starting point for the building of a general theory for cosmology is the postulation

that gravitational forces are the primary interactions in our Universe on the largest scales.

We rely in particular on the widely accepted Einstein’s theory of General Relativity (GR),

which provides an accurate description of local gravitational interactions, linking the geo-

metrical features of the space-time with the the presence of mass and energy within it.

We assume that the whole set of all events, seen by an observer, is a differ-

entiable manifold. In the GR framework an event is described by a four-vector

xµ = (x0, x1, x2, x3), where the first element represents the time coordinate, while the

other ones the space coordinates. Let us consider two observers, each with their own ref-

erence frame, observing a pair of events. A distance operator between the events can be

defined over a differentiable manifold by the metric tensor:

gµν = ηαβ
dξα

dxµ
dξβ

dxν
, (1.1)
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where ηαβ is the metric tensor used by a second observer (historically an inertial one) and

the two events are characterized by the two four-vectors, ξα and ξβ , respectively.

For our purposes, it is necessary to introduce the Rienmann tensor, which can be

written as follows:

Rµ
αβγ =

dΓµ
αγ

dxβ
−

dΓµ
αβ

dxγ
+ Γµ

σβΓ
σ
γα − Γµ

σγΓ
σ
βα , (1.2)

where Γ is the affine connection, that is a geometric object used to describe the relation-

ship between two points on a curved surface. We also introduce the Ricci tensor and the

Ricci scalar, by the contraction, respectively, of the Riemann tensor with the Kronecker

tensor, ϵγµ, and than with gµν :

Rαβ ≡ Rµ
αβγϵ

γ
µ = Rµ

αβµ R ≡ gµνRµν . (1.3)

After the definition of all the terms we need to describe the geometrical proprieties

of the space-time, we have to introduce the term that is responsible for such features in

the GR framework: the energy-momentum tensor, Tµν , which represents the content of

energy and matter in the Universe. Now, assuming the minimal gravitational coupling

and the correspondence principles1, it is possible to link the energy-momentum to the

metric tensor, the Ricci tensor and the Ricci scalar, defining the so-called Einstein field

equation (EFE):

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (1.4)

where G is the gravitational constant, while c is the speed of light. According to the

EFE, the energy-momentum tensor is the source of the space-time curvature, which then

determines the motion of physical objects. We will see in Sect. 1.4 that only non-static

solution satisfy the EFE.

1.2 The Friedmann-Lemâitre-Robertson-Walker metric

To characterize the geometry of the space-time, we have first to figure out the terms of the

metric tensor. For this purpose, we start from the definition of the distance between two
1The first states that the amount of terms that describe a gravitational interaction between two or

more objects must be minimized, while the second that the GR and Newton’s theory of gravity must be
consistent.
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events, i.e. ds2 = gµνdx
µdxν , which can be expressed as:

ds2 = g00dt
2 + 2g0idtdx

i + gijdx
idxj , (1.5)

with i, j = 1, 2, 3. Here xi are the three spatial coordinates and t is the coordinate time.

The Cosmological Principle (CP) asserts that on scales of hundreds of megaparsecs or

larger, the Universe can be considered to be homogeneous and isotropic, meaning that no

direction or event is favored over others. As a result, the mixed term in Eq. (1.5) can be

disregarded.

In order to get the value of g00, we can consider the motion of a photon, for which

ds2 = 0 by definition. Denoting with dl2 the spatial term, Eq. (1.5) yields:

0 = g00dt
2 − dl2

g00 =
dl2

dt2

g00 = c2 ,

where the negative sign is due to the metric signature assumed, i.e. (1,3)2.

We can express analytically the spatial distance dl2 using polar coordinates (r, θ, ϕ):

dl2 = a2(t)

[
dr2

1− kr2
+ r2dθ2 + sin θ2dϕ2

]
, (1.6)

where (r, θ, ϕ) are the comoving polar coordinates and t is the proper time (also called

as cosmic time), both defined in a reference system at rest with the Universe expansion,

a(t) has the dimensions of a length and it is the so-called cosmic scale factor, while k is

the curvature parameter. The parameter k can have three values only:

• -1, if the geometry of the universe is hyperbolic, i.e. a open universe;

• 0, if it is Euclidean, i.e. a flat universe;

• 1, if it is hyperspherical, i.e. a closed universe.
2The metric signature is a pair of numbers associated with a metric tensor, indicating the number of

positive and negative eigenvalues of the tensor.
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Taking into account all these assumptions, the metric in Eq. (1.5) can be written as

follows:

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
+ r2dθ2 + sin θ2dϕ2

]
, (1.7)

This is well-known Friedmann-Lemâitre-Robertson-Walker (FRLW) metric, which is

the most general one - up to coordinate transformations - fulfilling the CP.

1.3 The Hubble’s Law and the redshift

Let us consider two points, P0 and P not causally connected, such that dt = 0 and also

dθ = dϕ = 0 (for the sake of simplicity, but without lost generality thanks to the CP). If

we move P is at a distance r from P0, we can define the proper distance as:

Dpr = a(t)

∫ r

0

dr′√
1− kr′2

= a(t)F (r, k) , (1.8)

where F (r, k) depends only on r and k.

To evaluate the previous equation at the present time, t = t0 , we define the comoving

distance as:

DC ≡ a(t0)F (r, k) = Dpr(t0) =
a(t0)

a(t)
Dpr(t) , (1.9)

so that we obtain:

Dpr(t) =
a(t)

a0
DC , (1.10)

where the subscript 0 denotes that the corresponding quantity is computed at the present

time. Equation (1.9) tells us how the proper distances are related to the comoving ones.

Considering the time derivative of the proper distance, we can compute the radial

velocity of any two points in the universe:

d

dt
Dpr =

ȧ(t)

a0
DC =

ȧ(t)

a(t)
Dpr ≡ H(t)Dpr (1.11)

This equation is the so-called Hubble’s law and H(t) is called the Hubble’s parameter.

The latter describes the isotropic expansion rate of the Universe and at any given cosmic

time t, and it has the same value across all Universe. Its value at present day is denoted

as H0 and is called the Hubble constant. The global motion of cosmological objects in
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the Universe with respect to each other is known as Hubble flow.

Let us now consider two photons, one emitted at time te and the other at time te+ δte.

The two signals will arrive to an observer at time to and to+δto, respectively. Since ds2 = 0

for any light path, from Eq. (1.7) (assuming again dθ = dϕ = 0) we have:

∫ to

te

cdt

a(t)
= F (r, k) =

∫ to+δto

te+δte

cdt

a(t)
. (1.12)

If δte and δto are small, solving the two integrals yields to:

δte
a(te)

=
δto
a(to)

. (1.13)

Taking into account that δt = 1/ν, λ = c/ν and subtracting −1 at both side of the

equation, it turns out:

z ≡ λo − λe

λe
=

a(to)

a(te)
− 1 , (1.14)

where z is the shifting of the electromagnetic radiation, which is called redshift. If we

now consider a photon emitted at time t and observed at the present-time, we can re-write

Eq. (1.14) as:

1 + z =
a0
a(t)

. (1.15)

Equation (1.15) tells us that the redshift of a photon beam is inherently linked to the

cosmic scale factor and therefore to the distance between two objects in the Universe. Due

to the development of spectroscopy and photometry techniques, the redshift measure can

be applied to infer the distance of extragalactic sources. Moreover, once the distance of an

extragalactic object is established, it is possible to estimate the amount of time since the

emission of the light signal.

1.4 Cosmological constant and Friedmann models

In order to solve the EFE as stated in Eq. (1.4), an energy-momentum tensor must be

specified. The simplest assumption is to considering the Universe like as a perfect fluid so
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that the energy-momentum tensor becomes:

Tµν = −pgµν + (p+ ρc2)uµuν , (1.16)

where p and ρ are the pressure and the density of all components of the perfect fluid,

respectively, with an implicit time dependency, while uµ is the four-velocity of the fluid

particle.

Solving the EFE with respect to a, we obtain two fundamental equations, the so-called

First and Second Friedmann Equations:

ä = −4

3
πG
(
ρ+

3p

c2

)
a , (1.17)

ȧ2 + kc2 =
8

3
πGρa2 , (1.18)

which describe the dynamic evolution of the Universe, since solving this two equations one

can obtain the time evolution of the scale factor.

At the beginning of the 20th century, around the time the Friedmann equations were

developed, it was widely believed among the scientific community that the universe was

static. This requirement translates into imposing ä = ȧ = 0 in Eq. (1.17) and Eq. (1.18),

in order to obtain a static solution. From Eq. (1.17) it turns out:

ρ = −3p

c2
. (1.19)

However this solution does not follow the correspondence principle, one of the GR principles

(see Sect. 1.1), because in Newtonian physics both the density and the pressure must

be positive quantities. To solve this problem while preserving the principle of minimal

gravitational coupling, so minimizing the number of corrective terms, Einstein introduced

an additional term such that EFE became:

Rµν −
1

2
gµνR− Λgµν =

8πG

c4
Tµν , (1.20)

where the constant Λ take the name of cosmological constant and in modern cosmology

it is interpreted as an unknown Universe component generally denoted as dark energy
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(DE).

Let us now put −Λgµν into the right hand side of Eq. (1.20) and rewrite the energy

momentum tensor as T̃µν = Tµν +
Λc4

8πGgµν . Equations (1.17) and (1.18) become:

ä = −4

3
πG
(
ρ̃+

3p̃

c2

)
a , (1.21)

ȧ2 + kc2 =
8

3
πGρ̃a2 , (1.22)

where ρ̃ = ρ + Λc2

8πG and p̃ = p − Λc4

8πG are the new values for the density and the pressure,

respectively. Substituting ρ̃ and p̃ into Eq. (1.19) yields:

ρ =
Λc2

4πG
− 3p

c2
, (1.23)

satisfying the correspondence principle. In modern cosmology, the cosmological constant

is no longer utilized to derive stationary solutions; instead, it is related to DE, which is

thought to be the element of the Universe responsible for its accelerated expansion.

1.4.1 Curvature density parameter

Let us now focus on the second Friedmann equation to link the density ρ with the curvature

parameter k. Dividing each term of Eq. (1.18) by a2, we obtain:

H2
(
1− ρ

ρcrit

)
= −kc2

a2
, (1.24)

where ρcrit, the critical density, is equal to:

ρcrit ≡
3H2

8πG
, (1.25)

therefore for ρ = ρcrit we have k = 0 (flat universe), while for ρ > ρcrit we have k < 0

(closed universe) and for ρ < ρcrit we have k > 0 (open universe). We will analyze in more

details these three cases in Sect. 1.4.2.

Until now, we have implicitly denoted with ρ the total density ρtot of the perfect fluid.

However ρ can be re-written as the sum of the different components, i, constituting the
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Universe:

ρtot ≡
∑
i

ρwi . (1.26)

Here wi are constants arising from the equation of state (EoS):

p = wρc2 , (1.27)

where we have w = 0 for the non-relativistic elements of the fluid (i.e. the matter compo-

nent), w = 1/3 for the relativistic ones (i.e. the radiation component) and w = −1 for the

DE.

By imposing the adiabatic condition dU = −pdV , which in our case can be written

as d
(
ρc2a3

)
= −pda3, and by taking into account the EoS, we can derive at the following

expression:

ρw = ρw,0

(
a

a0

)−3(1+w)

∝ (1 + z)3(1+w) . (1.28)

This result demonstrates that each component of the universe evolves in density at a differ-

ent rate over time. Furthermore, the equation indicates that these components dominate

over each other at different times in the history of the universe, the so-called cosmic

epochs, with one prevailing over the others, as shown in Fig. 1.1.
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Figure 1.1: Density evolution of the cosmic components: radiation, matter, DE. Through the cosmic

time, different components start to predominate over the others. Credits to: https://pages.uoregon.

edu/jimbrau/astr123/Notes/Chapter27.html.

Let us define the density parameter as the ratio of the density ρ of a generic com-

ponent and the critical density: Ω ≡ ρ/ρcrit, where we kept implicit the time dependency

of the densities. With this definition we can now express the Eq. (1.18) as:

1− Ω = − kc2

a2H2
. (1.29)

We notice that since the right hand side of the equation cannot change its sign during the

expansion, so neither can the left hand side. This mean that a universe ruled by Friedmann

equations cannot change its geometry over time.

By combining Eqs. (1.11), (1.15), (1.27) and (1.29) we obtain:

H2(z) = H0
2(1 + z)2

[
Ω0,k +

∑
i

Ω0,wi(1 + z)1+3wi

]
, (1.30)

where Ω0,k ≡ 1−∑iΩ0,wi is the so-called curvature density parameter. At very high
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redshifts, the curvature density parameter becomes virtually null, allowing us to consider

the Friedmann universes approximately flat in the initial epochs.

1.4.2 Flat, open and closed universe

Let us now consider a universe with a single component. By inserting Eq. (1.27) into

Eq. (1.17) we obtain:

ä = −4

3
πGρ(1 + 3w)a , (1.31)

which is a good approximation of the first Friedmann equation at the early universe. As

shown in Fig. 1.1, at each cosmic epoch a single universe component results dominant.

In particular, the DE component, characterized by w < −1/3, becomes relevant near the

present time. This leads to ä < 0, meaning that the scalar factor grows monotonically.

This implies that, at some point in the past, a was equal to 0: this event is known as Big

Bang and represents the singularity of Friedmann models.

Having stated that a Friedmann universe cannot change its geometry over time, we can

conclude that if we consider a universe made up of a single component, then there are only

three possible scenarios:

• Ω0 < 1 open universes, the scale factor a grows indefinitely with time;

• Ω0 = 1 flat universes, the scale factor a grows indefinitely with time but with a slower

rate, tending to ȧ = 0 at infinity;

• Ω0 > 1 closed universes, the scale factor a grows up to a maximum, then it decreases

until it becomes null again.

These scenarios are represented schematically in Fig. 1.2, which shows the three temporal

trends of the scale factor.
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Figure 1.2: The scale factor trend in the three different scenarios: open (Ω0 < 1), flat (Ω0 = 1) and

closed (Ω0 > 1) universes (Coles & Lucchin, 2002).

1.5 The standard cosmological scenario

Since the start of the 21st century, the most widely accepted model of the Universe has

been the ΛCDM model. This model is backed up by a number of observational evidences

and gives us the basis to understand the structure formation. It describes a nearly flat

Universe, which is consistent with by the CP and whose development is directed by the

Friedmann equations, and thus by GR (see Sect. 1.2).

According to this cosmological scenario, the Universe composition is dominated by a

form of DE, resulting from the cosmological constant Λ (introduced in Eq. 1.20) and

secondarily by a matter component called cold dark matter (CDM). Here the term

“dark” refers to a non-baryonic form of matter which does not emit light. The dark matter

(DM) is in fact supposed to interact through the gravitational force only. Despite many

researches have been carried out to investigate the nature of this mysterious component,

a direct detection of DM particles has not been achieved up to date. Moreover, the DM is

assumed to be “cold”, i.e. non-relativistic at the time of its decoupling.

The ΛCDM model explains that our Universe has experienced a thermal history and

its evolution is strongly correlated to its temperature. The present temperature of the

electromagnetic radiation which pervades the Universe is 2.7255± 0.0006 K (Fixsen et al.,
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1996; Planck Collaboration et al., 2020). This radiation is called cosmic microwave

background (CMB) and was produced during the period of the recombination, i.e. the

moment in which electrons and protons first bonded to form hydrogen atoms, and the

Universe became electrically neutral (z ≃ 1100). After this, the Universe was dominated

by matter and gravitationally bound objects began to form and this led to the emergence

of the large-scale structures we see today.

The ΛCDM model describes a present-day universe composed by ∼ 70% of DE, linked

to the cosmological constant, by ∼ 25% of a cold non-ordinary matter component, by

∼ 5% of ordinary observable matter (i.e. baryons) and by a negligible fraction of radiation

(∼ 0.001%). These energy densities are consistent with the flatness condition Ω0,tot ∼ 1.

In Sect. 1.4.2, we saw that a universe not dominated by the DE component, which is

what we expect in a early epoch, has a decelerated expansion. Having now established

that the Universe is undergoing an accelerated expansion, with ä > 0, we must include a

flex in the scale factor function. It is easy to demonstrate that, given the current values

of the densities, this inversion in the expansion rate occurs at zf ∼ 0.7. Moreover, math-

ematical derivations can be used to find the moment of the matter-cosmological constant

equivalence, i.e. Ωm(zeq,Λ) = ΩΛ(zeq,Λ). This takes place at zeq,Λ ∼ 0.33, which is very

close to the present time. This implies that DE contribution became significant in recent

times.

In more detail, a full characterisation of the ΛCDM scenario requires the definition of

six essential parameters:

• Ωm: total matter density parameter,

• Ωb: baryonic matter density parameter,

• H0: Hubble constant,

• As: primordial power spectrum amplitude,

• ns: spectral index of the primordial power spectrum,

• τ : reionisation optical depth,

where Ωm and Ωb are usually expressed with their present-day values, respectively. The

strongest constraints on this set of parameters arise from the analysis of the CMB power
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spectrum combined with lensing measurements. The values for these fundamental pa-

rameters, as reported in Planck Collaboration et al. (2020) are: Ωmh
2 = 0.143 ± 0.001,

Ωbh
2 = 0.0224 ± 0.0001, ln (1010As) = 3.04 ± 0.01, H0 = 67.4 ± 0.5 km s−1 Mpc−1,

ns = 0.965± 0.004, and τ = 0.054± 0.007.

Employing Eq. (1.21), it is straightforward to demonstrate that a multi-component

universe containing the cosmological constant and matter yields:

ä = −aH2(t)
Ωm

2
+ aH2(t)ΩΛ , with ΩΛ ≡ Λc2

3H2(t)
. (1.32)

In order to achieve an accelerated expansion it must be ΩΛ > Ωm/2, which is fulfilled by

the present-day density values.

The ΛCDM model is currently the most widely accepted cosmological model due to the

high accuracy of its predictions with the majority of present-day cosmological observations

and its simplicity. However, there are still theoretical aspects of it that are not fully

understood. For instance, we have yet to provide a physical description for the main matter

component, the DM, and justify the presence of an ever more enigmatic component, i.e.

the DE, which currently cannot be associated with any known form of energy.
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Chapter 2

Structures formation and clustering

Structure formation and clustering refer to the processes by which the large-scale structure

of the universe, including galaxies, clusters of galaxies, and larger structures, have formed

and evolved over time. The study of structure formation involves modeling the evolution

of the distribution of matter in the universe over time, using computer simulations and

theoretical models. One of the key assumption in this area of research is the existence of

DM, which is thought to make up the majority of the matter in the universe and provides

the gravitational force that enables the formation of large structures. Clustering, on the

other hand, refers to the tendency of galaxies and other structures to be grouped together

forming the so-called cosmic web. Clustering is measured using statistical methods,

such as correlation functions and power spectra, which quantify the degree to which the

distribution of matter is more or less clustered with respect to a random distribution.

In this chapter, we provide a brief overview of the fundamental structure formation

and clustering concepts.

2.1 Linear theory

The formulation of a comprehensive cosmological theory is essential to understand how

galaxies, galaxy clusters, and other cosmic structures have formed and how quickly have

evolved. Since the recombination (z ≃ 1100), thanks to gravity, the density fluctuations

of baryonic matter have grown in amplitude, giving rise to the luminous structures we can

observe in today’s Universe.
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At the time of recombination, the baryonic matter distribution was highly homoge-

neous. This is demonstrated by the fact that the amplitude of the perturbations in the

density field must have been of the same order as the temperature fluctuations observed

in the CMB:
δρ

ρ
∝ δT

T
∼ 10−5 . (2.1)

At the beginning of the 20th century, James Jeans, in an attempt to understand the

formation of stars and planets, demonstrated the existence of a fundamental instability in

evolving clouds of gas. This instability, now known as Jeans instability or gravitational

instability, is related to the evolution of small fluctuations into collapsed structures. The

theory that describes this phenomenon is called Jeans Theory.

2.1.1 Jeans theory

The Jeans theory describes how initial density fluctuations in the early Universe developed

over time to produce the observed inhomogeneities at the present day. This model can be

applied to non-relativistic matter, assuming small perturbations (i.e. δ ≪ 1), and describes

the evolution of density perturbations on spatial scales not exceeding the cosmological

horizon. The latter defines the volume of the Universe that is in causal contact with the

observer and is expressed as:

Rh ≡ a(t)

∫ t

tBB

c

a(t′)
dt′ , (2.2)

where tBB = 0 indicates the time singularity of all Friedmann model, i.e. the Big Bang.

From Eq. (2.2) we can define two separate scales of the Universe:

• scales smaller than the cosmological horizon, r < Rh, where the microphysical pro-

cesses become more important and each cosmic component of the system follow a

different density evolution;

• scales bigger than the cosmological horizon, r > Rh, where gravity is the only force in

action and the growth of perturbations has to be treated with the relativistic theory.

Since we are interested in small scales in a non-relativistic framework, we will use a New-

tonian approximation for the rest of the section.
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Let us assume a fluid to be homogeneous and satisfying the following equations:

• Continuity equation:
∂ρ

∂t
+∇(ρv⃗) = 0 , (2.3)

where v⃗ is the velocity of the fluid element;

• Euler equation
∂v⃗

∂t
+ (v⃗ · ∇) · v⃗ = −1

ρ
∇p−∇Φ , (2.4)

where Φ is the Newtonian gravitational potential generated by the fluid element;

• Poisson equation

∇2Φ = 4πGρ . (2.5)

The equation of state of this fluid is p = p(S, ρ), where S denotes the entropy. Nevertheless,

for our purposes, we can consider adiabatic perturbations which means dS/dt = 0. It

follows that the pressure p is assumed to be a function of the density ρ only.

Let us assume to know a static solution of the set of Eqs. (2.3) to (2.5):

ρ = ρb = const

Φ = Φb = const

p = pb = const

v⃗ = 0

, (2.6)

where the subscript b denotes the background. The set of Eq. (2.6) implies a static universe

with no perturbations of any kind. This cannot be a real solution because from Eq. (2.5) we

have that Φ = const if and only if ρ = 0, but we are interested in the density perturbations

case.

Let us now add small perturbations to our static solution, in order to have an almost
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negligible change compared to the background values of the four variables:

ρ = ρb + δρ

Φ = Φb + δΦ

p = pb + δp

v⃗ = δv⃗

. (2.7)

If we impose that the values of the variables expressed in Eq. (2.7) are solutions of Eqs.

(2.3, 2.4, 2.5), neglecting all the second- and higher-order terms of the perturbations, we

obtain the following set of equations:
∂δρ
∂t + ρb∇δv⃗ = 0

∂δv⃗
∂t = −v2s

ρb
∇δρ−∇δΦ

∇2δΦ = 4πGδρδp

, (2.8)

where vs is the sound speed in the fluid we are considering.

Let us assume that every perturbation has a wave-like analytical expression:

δρ(r, t) = δρke
ikr+iωt , (2.9)

where k = 2π/λ and ω = 2π/ν is the wavenumber and the frequency of the fluid element,

respectively. This leads to a new system of equations in whose the determinant is null if:

ω2 = v2s k
2 − 4πGρb . (2.10)

This condition is satisfied at the scale:

k =
2

vs

√
π

Gρb
. (2.11)

Let us now define the Jeans length as:

λJ ≡ 2π

kJ
= vs

√
π

Gρb
. (2.12)
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We will see in the next section how this scale determines different behaviours in the evo-

lution of the density perturbations according to their size.

2.1.2 Jeans instability in an expanding universe

Let us assume a homogeneous and isotropic fluid having a constant matter density and

enclosed in an expanding Universe. We can look for a solution similar to Eq. (2.7), including

this time the background expansion. Therefore v⃗ is:

v⃗ =
dr⃗

dt
=

d(ax⃗)

dt
=

da

dt
x⃗+ a

dx⃗

dt
= Hr⃗ + v⃗p , (2.13)

where r⃗ is the proper position of the fluid element, while x⃗ is the comoving ones. The

previous equations show us that each fluid element moves with a velocity that is the sum

of two contributions: the speed of the Hubble flow, Hr⃗, and the peculiar speed with

respect the flow, v⃗p.

Using the definition of the density contrast δ = δρ/ρb, assuming δv⃗ = v⃗p, imposing

that Eq. (2.7) are solutions of Eqs. (2.3) to (2.5) and looking for wave-like solutions, in a

linear regime (δ ≪ 1), we can derive at the so-called dispersion relation for the wave-like

perturbation:

δ̈k + 2Hδ̇k+

[
k2

a2
v2s − 4πGρb

]
δk = 0 . (2.14)

This has different solutions, which depend on the size of the perturbation, i.e. if it is

smaller or larger than the Jeans length. If λ < λJ the solution of the differential equation

is a wave-like function whose amplitude does not increase over time. Otherwise, if λ > λJ

the dispersion relation has growing and decaying mode solutions, i.e. a linear combination

of two solutions: the increasing one, δ+, and the decreasing one, δ−.

The solution that leads the formation of collapsed structures is the increasing one,

which for a generic cosmological model is:

δ+(z) = −H(z)

∫ z

0

1 + z′

a20H
3(z′)

dz′ . (2.15)

Instead of Eq. (2.15), which has no analytical solutions, it is generally used a parametric
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equation defining the growing factor f :

f ≡ d ln δ+
d ln a

≈ Ωγ
m +

ΩΛ

70

(
1 +

Ωm

2

)
, (2.16)

where the value of γ depends on which gravity model is assumed. For example, for GR

γ ≈ 0.545 (Linder & Jenkins, 2003). From Eq. (2.16) we see how the formation of cosmic

structures depends strongly on the density fraction of matter and to a lesser extent on the

cosmological constant.

2.1.3 Two-point correlation function and power spectrum

Inflation is thought to have caused the initial density fluctuations in the Universe, chang-

ing its structure and metric. From a Newtonian perspective, these fluctuations can be

interpreted as perturbations in the gravitational potential Φ. In particular, the Poisson

equation Eq. (2.5) links Φ to the density fluctuation δ.

Despite the Universe being a unique entity, a frequentist approach can be employed to

model the properties and evolution of large-scale structures. This is possible because, in

accordance with the ergodic hypothesis, different volumes of the Universe can be considered

as an ensemble of independent universes as long as they are not superimposed and are

sufficiently large to be considered independent (Ellis, Maartens & MacCallum, 2012).

Primordial density perturbations can be described by imaginary numbers, with random

phase, with a Gaussian distribution. A statistical analysis of the fluctuations can be carried

on in both the real and Fourier space. We will consider δ(x⃗) in the first case and δ(k⃗), or

simply δk, in the second case. The two quantities are related by the following equation:

δ(x⃗) =
1

(2π)3

∫
δ(k⃗)e−ik⃗·x⃗dk⃗ . (2.17)

The two-point correlation function (2PCF) is a fundamental statistic, which quantifies

the spatial clustering of the matter in the Universe, and is defined as:

ξ(r) ≡ ⟨δ(x⃗)δ(x⃗+ r⃗)⟩ , (2.18)
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where the angle brackets indicate the average value between all points that are at a co-

moving distance |r⃗| from x⃗. Thanks to the isotropy assumption ( see Sect. 1.2), the 2PCF

does not depend on the direction of r⃗.

It is possible to express the 2PCF in Fourier space by combining Eqs. (2.17) and (2.18):

ξ(r) =
1

(2π)3

∫
P (k)e−ik⃗·r⃗d3k , (2.19)

where we have defined the power spectrum as:

P (k)δ
(3)
D (k⃗ + k⃗′) =

⟨δ(k⃗)δ(k⃗′)⟩
(2π)3

, (2.20)

in which δ
(3)
D is the three-dimensional Dirac Delta.

Eq. (2.19) shows us that the 2PCF and the power spectrum are related by a Fourier

transform. Additionally, Eq. (2.20) reveals that the power spectrum is proportional to

⟨|δ(k)|2⟩, which is the average of the squared magnitude of all the perturbations that are

identified by a wavenumber k, regardless of their position x⃗.

The inflation theory states that primordial density perturbations arise from stochastic

quantum fluctuations of a scalar field, the inflaton, during a period of exponential ex-

pansion (Guth & Pi, 1982). Therefore the distribution of the perturbation amplitudes is

accurately described by a Gaussian. Under the assumption that during the creation of the

perturbations there was no preferential scale, the power spectrum can be expected to be

scale invariant, therefore the primordial power spectrum follows a power law given by:

P (k) = Akn . (2.21)

Here n is the spectral index whose value is generally assumed to be close to the unity

(Zeldovich, 1972), while A is the scalar amplitude and it has to be constrained through

observations.

Since standard inflationary models predict that primordial density fluctuations have

approximately a Gaussian distribution, we can relate the variance of this distribution to
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the power spectrum. Defining the variance as follows:

σ2 = ⟨δ2(x⃗)⟩ = 1

V

∫
⟨|δ(x⃗)|2⟩d3x , (2.22)

where V is the total volume of the Universe and the average is taken from a sample of

different realizations of V. Now, considering Eq. (2.22) and the Parseval’s relation1, it turns

out that:

σ2 =
1

2π2

∫ ∞

0
P (k)k2dk (2.23)

Unfortunately, there is no way to access to the value of the density contrast in each

point of the Universe, and so measure δ(x⃗) directly. We can however assume the cosmic

structures as indicators of the evolution of density fluctuations, counting the number of

galaxies inside a specific volume V to estimate δ(x⃗). If galaxies are used as tracers of

the density perturbation, then the density contrast in the i-th volume can be written as

follows:

δgal(Vi) =
Ngal(Vi)−Ngal(V )

Ngal(V )
, (2.24)

where Ngal(Vi), is the measured number of galaxies in the volume Vi , and Ngal(V ) is the

expectation value of the number of galaxies in V.

We assume that the density contrast of the number of galaxies is linearly related to

their mass, such that:

b =
δgal
δM

, (2.25)

where b is a measure of the discrepancy between the observed distribution of galaxies

and the total mass distribution, the so-called linear bias factor. While we can define

the density contrast of the total mass density fluctuations, δM, in a given volume Vi in a

similar way of Eq. (2.24):

δM(Vi) =
M(Vi)−M(V )

M(V )
, (2.26)

where the expected and measured number of galaxies have been substituted with the total

mass in the volume V and Vi, respectively.

The discrete matter density fluctuation is the result of the convolution between the
1Let F (k) and G(k) be the Fourier transform of f(x) and g(x), respectively. Then

∫ +∞
−∞ f(x)g(x)dx =∫ +∞

−∞ F (k)G(k)dk, where z denotes the complex conjugate.
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continuous density fluctuation, δ(x⃗), and a window function, W (x⃗, R). We obtain in

this way the following filtered function:

δM(x⃗) = δ(x⃗)⊗W (x⃗, R) , (2.27)

where R is the radius of the sphere inside which we want to estimate δM.

Combining now Eqs. (2.23) and (2.27), we derive the definition of mass variance:

σ2
M ≡ ⟨δ2M⟩ = 1

(2π)3

∫
P (k)Ŵ 2(k⃗, R)d3k , (2.28)

where Ŵ (k⃗, R) is the Fourier transform of W (x⃗, R). Since that inflation theory does

not predict the normalisation of the power spectrum, an alternative approach is to set

the value of the mass variance calculated with a filtering of R = 8 h−1 Mpc, where

h = H0/(100 km s−1 Mpc−1), at the present time:

σ2
8 =

1

2π2

∫
P (k)k2Ŵ 2(R = 8 h−1Mpc)dk . (2.29)

The value of σ8 represents the mass fluctuation in spheres with radius 8 h−1Mpc, that is

the normalization of the matter power spectrum. It is critical for the prediction of the

phenomenology of the low-redshift Universe.

2.1.4 Two-point correlation function estimators

The 2PCF defined in Eq. (2.18) measures the amount of clustering of cosmic matter in

space, and can be determined using a statistical approach. We can interpret ξ(r) as the

excess probability dP12 of finding a pair of objects separated by a comoving distance r in

two independent volume elements dV1 and dV2, compared to a random uniform distribution

of objects, using a discretised representation of the density field:

dP12 = n2
V[1 + ξ(r)]dV1dV2 , (2.30)

where nV is the comoving number density of objects in the total volume V . In practice,

the estimation of the 2PCF of a data sample is usually done by comparing the number of
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pairs of objects in the data sample to those found in a random distribution that has the

same geometry and number density pattern as the data sample.

Let us assume a catalogue of ND objects and its associated random sample of NR

objects. The number of pairs in the real catalogue will be NDD = ND(ND − 1)/2, and

NRR = NR(NR−1)/2 in the random catalogue. The number of pairs that can be obtained

by combining the two catalogues is NDR = NDNR. Let dd(r) be the number of pairs in

the real catalogue at a distance of r, rr(r) is the analogous in the random catalogue, and

dr(r) is the number of objects in the random catalogue with a distance r from the objects

in the real catalogue. It is useful to normalize the number of pairs at a certain distance r

by dividing it by the total number of pairs:

DD(r) =
dd(r)

NDD

RR(r) =
rr(r)

NRR

DR(r) =
dr(r)

NDR
.

Now, the 2PCF in its simplest form can be written as:

ξ̂N(r) =
DD(r)

RR(r)
− 1 . (2.31)

This is known as the Peebles & Hauser (1974) estimator. This estimator has low accuracy

at large scales because of the discreteness of the sample. For this reason, more accurate

estimators are usually preferred, which take into account the correlation between the data

and random catalogues. A popular estimator of this kind is the one proposed by Landy &

Szalay (1993):

ξ̂LS(r) =
DD(r)− 2DR(r) + RR(r)

RR(r)
. (2.32)

This estimator is characterized by a variance that is close to that of a Poissonian process.

When the number of objects is very large, it gives an unbiased estimate of the 2PCF with

minimal variance. This estimator is widely used in astrophysics and cosmology.
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2.1.5 The matter power spectrum evolution

Before the matter-radiation equivalence, t = teq, the Universe was dominated by radiation.

The Hubble drag term, which can be thought of as an expansion force, was stronger than

during the matter era (t > teq). Thus, the density perturbations that enter the cosmological

horizon before to the radiation-matter equivalence were unable to grow indefinitely, as they

were halted by the expansion of the Universe, reaching a maximum value. This effect is

called stagnation or Mészàros effect (Mészáros, 1974).

Since the cosmological horizon expands over time (see Equation (2.2)), larger pertur-

bations will enter it at later times and thus experience less stagnation. Consequently, the

power spectrum has a peak at the wavenumber kh,eq, associated with the cosmological

horizon at the moment of equivalence.

The shape of P (k) at the equivalence time can be reproduced by defining a transfer

function, which gives us the fraction of the primordial power spectrum that is not affected

by the microphysical effects within the horizon. Let us define the transfer function, T (k),

such that:

P (k, teq) = P (k, ti) T
2(k) , (2.33)

where ti is a generic cosmological time. T (k), in a CDM scenario (see Sect. 1.5), has the

following behavior:

T (k) =


1 for k < kh,eq,

∝ k−2 for k > kh,eq .

(2.34)

The transfer function acts like a filter that does not affect the scales with k < kh,eq, but

reduces those with k > kh,eq. The effect of this filter depends on the type of matter we are

considering. Figure 2.1 shows the power spectrum trends for CDM and hot dark matter

(HDM), which is a relativistic dark matter.

The peak at kh,eq, showed in Fig. 2.1 mostly depends on Ωmh
2 and Ωrh

2, so on the

matter and radiation densities and the Hubble parameter. Therefore the observed shape

of P (k) is a powerful tool to constrain the Universe cosmology.
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Figure 2.1: Behaviour of the matter power spectrum for different type of matter. The solid line represents
the power spectrum at the equivalence time for a matter component made up only of CDM, while the dotted
line represents the power spectrum for a matter component made up only of HDM. As a reference, the
primordial Zel’dovich power spectrum, having a spectral index n = 1 is reported with a dashed line (see
Eq. (2.21)). Credits to Ryden (2016).

2.2 Nonlinear theory

The observable local Universe contains cosmic structures such as galaxies, clusters, and

DM haloes, which are the result of gravitational instabilities that occurred over the course

of cosmic history. The small-perturbations approximation cannot be used to explain the

formation of these objects, which are characterized by a very nonlinear regime (δ ≫ 1).

Once the linear regime is no longer valid, meaning when δ is close to 1, the weakly-

nonlinear regime begins. At this stage, the distribution of fluctuations starts to differ from

the Gaussian shape. Additionally, the evolution of baryons is not the same as DM since

baryons are subject to hydrodynamical effects like star formation, supernovae explosions,

and active galactic nuclei (AGN) feedback. These effects make it more difficult to create a

comprehensive and accurate theory. Although some approximated analytical models exist

to explain this, we mainly use N-body simulations to accurately model the weakly-

nonlinear and nonlinear perturbation growth.
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2.2.1 N-body simulations

Cosmologists use numerical simulations to study the large-scale structure (LSS) of the

Universe in the nonlinear regime, as it is too complicated to be studied analytically. This

involves selecting a cosmological theory and a set of appropriate parameters and then

running a simulation to see how the initial system evolves. The result of the simulation

can then be compared to observed data sets. This process approximates the formation of

cosmic structures as the dynamical evolution of a system of particles, which trace the total

mass distribution.

To accurately model the evolution of density fluctuations, the most important factor to

consider is the gravitational force, which is most prominent on large scales and affects the

majority of the matter of the Universe, i.e. DM. Simulations that only include the gravi-

tational force are called N-body simulations. To get a more realistic representation of the

large-scale structure of the Universe, simulations must also take into account the hydro-

dynamic effects of the baryonic matter. Simulations that include this baryonic component

are called hydrodynamic simulations. We are only interested in N-body simulations

for our purposes, and we will briefly describe their theoretical basis.

Let us consider the simplest kind of N-body simulations, which includes only gravita-

tional effects, solving the following differential equation system:


F⃗i = GMi

∑
j ̸=i

Mj

r2ij
r̂ij

¨⃗xi =
dv⃗i
dt = F⃗i

Mi

˙⃗xi =
dx⃗i
dt = v⃗i

, (2.35)

where for each i-th particles we have that F⃗i is the gravitational force, Mi is the inertial

mass, r̂ij is the comoving distance versor, v⃗i is the velocity component and x⃗i is the

comoving coordinate vector. Given the system of equations 2.35, the Eq. (2.4) can be

re-written as follows:

d ˙⃗xi
dt

+ 2
ȧ

a
v⃗i = − 1

a3
∇Φ = −G

a3

∑
j ̸=i

x⃗i − x⃗j

|x⃗i − x⃗j |3
=

F⃗i

a3
. (2.36)

37



Eq. (2.5) can be calculated, by using Eq. (1.18) (the Second Friedman Equation):

∇2Φ = 4πGρ(t)a2δ =
3

2
H2

0Ω0
δ

a
, (2.37)

where ρ(t) is the average non-relativistic matter density and δ the local density contrast.

An N-body simulation solves numerically the equations that govern the motion of N

objects over time and in discrete intervals. At each interval, δt, the total gravitational

force of the system, that is F⃗i for each object i, is calculated. The most accurate and

most expensive method to calculate the gravitational force acting on the i-th particle is

the particle-particle method, which requires computing the N(N − 1)/2 distances between

the particles. This method takes a huge amount of computational time, as the number of

operations scales as O(N2).

The equation of motion is solved by calculating the new positions, x⃗i(t ± δt), and

velocities, v⃗i(t ± δt), using numerical integration. The time is then increased, t = t + δt,

and the process repeated. Different criteria can be used to determine the value of δt,

which can be suitable for different approaches. These criteria can be divided into three

main categories (Bagla & Padmanabhan, 1997):

i) total energy conservation,

ii) convergence of final positions and velocities,

iii) reproducibility of the initial conditions.

The selection of one of the above criteria for determining δt in an N-body simulation

depends upon the numerical integration method used to solve the equations of motion.

Generally, the criterion that provides the most accurate estimate of δt while utilizing the

fewest computational resources is preferred.
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Chapter 3

Machine Learning and Bayesian

inference

In this chapter, we will first give a brief overview of the basic foundations of machine

learning. Afterwards, we will introduce the python package CosmoPower1 (Spurio Mancini

et al., 2022), a set of neural power spectrum emulators that allow us to compute the

theoretical 2PCF. At the end of this chapter, we will provide a brief overview of the

Bayesian inference and Markov Chain Monte Carlo, which are essential for validating the

accuracy of the emulator and estimating the speed up of cosmological analyses.

3.1 Machine Learning: supervised learning

The computer scientist Arthur Samuel used the term machine learning (ML) for the first

time in 1959 to describe certain computer algorithms. In the present day, ML has developed

into one of the mainstays of computer and data science, and it has been incorporated into

almost every part of everyday life. For instance, Google, YouTube, and Netflix have all

improved their search engine and “recommendation” functions by implementing learning

algorithms that record users’ choices and preferences to create a theoretically personalised

experience for each user. Additionally, ML algorithms, particularly those related to pattern

recognition, are commonly used by social networks to identify, e.g., different people in

photos. They also have applications in medicine, with 2D/3D images of human tissues and
1https://github.com/alessiospuriomancini/cosmopower
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organs being employed for diagnostic purposes. ML technologies are also used in a variety

of other fields too. The rise of learning algorithms is largely due to the proliferation of

data, coupled with advances in storage and computing capabilities, which can be utilized

with lower costs for upkeep and materials.

ML has found applications also in various astrophysical and cosmological pursuits,

such as image recognition in gravitational lensing studies (Hezaveh, Perreault Levasseur &

Marshall, 2017), measuring photometric redshift using galaxy images (Hoyle, 2016), mor-

phological galaxy classification (de la Calleja & Fuentes, 2004), determining the dynamical

mass of galaxy clusters (Ntampaka et al., 2015), learning from the two-point correlation

function of BOSS galaxies (Veronesi et al., 2023) and exoplanet transit detection (Schanche

et al., 2019). In a few years, new instruments such as Euclid (Laureijs et al., 2011; Amen-

dola et al., 2018; Euclid Collaboration: Blanchard et al., 2020), the Large Synoptic Survey

Telescope (LSST, LSST Dark Energy Science Collaboration, 2012; Graham et al., 2018;

Ivezić et al., 2019), and the James Webb Space Telescope (JWST, Gardner et al., 2006;

Kalirai, 2018) will provide an unprecedented volume of data for future studies, making ML

a pivotal factor in the cosmology of the modern era.

Several methods exist to enable an algorithm to learn. Supervised, unsupervised and

reinforcement learning are the key categories of learning algorithms. We will focus on

one type of supervised learning in the following section, since this is the technique

implemented in CosmoPower, i.e. one of the numerical libraries that we will employ in this

Thesis work.

In supervised learning, the goal is to get a function that maps an input, x, to an

output, y, based on observations of several examples of the input-output relationship.

This specific learning algorithm aims at identifying a function linking an input vector

to an output vector, based on input-output pairs that have been provided. This

is achieved in the training process: during this stage, along with the input details,

a target variable is also presented (acting as the “truth”), which contains the de-

tails that the algorithm needs to learn. The term supervised originates from the idea

of an external supervisor who guides the ML system, providing it with the desired outcome.
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3.1.1 Linear regression and loss function

Let us take a look at a concrete example of a ML algorithm to further understand the

concept of learning. The goal is to develop a system that takes a vector x ∈ Rn as input

and gives an accurate prediction of a scalar y ∈ R in output. The predicted value ŷ is

determined through a linear regression model, which is a linear function of the input x:

ŷ(x) = wTx + b , (3.1)

where w ∈ Rn is a vector of parameters called weights, while b is a scalar parameter

called bias. This terminology originates from the perspective that the output of the

transformation is biased towards a value of b in the absence of any input.

These parameters w and b control the behaviour of the linear regression model. Indeed,

if a feature xi has a positive weight wi, then increasing the value of that feature will lead

to an increase in the value of the prediction ŷ. Conversely, if the feature has a negative

weight, increasing the value of the feature will result in a decrease in the prediction. When

the magnitude of the weight is large, it has a large impact on the prediction, while a weight

of zero has no effect.

Training a model involves determining the values of all the weights and bias from

labeled examples so as to achieve an accurate prediction ŷ. In supervised learning, the

algorithm creates a model by analyzing numerous examples and attempting, iteratively,

to identify a model that minimizes the loss, i.e. a measure of the difference between the

output of the model and the expected output.

In order to calculate the amount of loss incurred, we need to assume a specific loss

function. The latter is a measure of how well a model is performing and it is usually

evaluated on a data set. There are various types of loss functions that can be employed,

for instance, the mean squared error (MSE) has the following expression:

MSE =
1

N

∑
(x,y)∈D

(y − ŷ(x))2 , (3.2)

where (x, y) is a labeled example and N is the number of the examples. We will refer to

y as labels and x as features, while D as a training data set. The latter is a set of
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labeled examples to train ŷ, to which we will refer as the model. The aim is to reduce the

MSE (thus the loss) as far as possible, although it does not necessarily have to be a null

value, as we will see in the following.

3.1.2 Optimization and gradient descent

Optimization in ML is the process of finding the best set of parameters to minimize a

given objective function, for instance the MSE in linear regression model. This involves

finding a set of parameters that minimize the loss function of a ML model. Optimization

in ML is used to tune the model parameters and improve the accuracy of the model.

Let us now present an example of ML optimization, considering again the linear re-

gression model (see Sect. 3.1.1) and assuming the MSE as the objective function, l(w).

Initially, when the training starts, all the weights are randomly set and the value of the

loss is calculated over D, as in Eq. (3.2): this is the so-called forward propagation.

Let w1 be the vector of the initial weights value. Considering Eq. (3.2) it turns out:

l(w1) ≡ MSE =
1

N

∑
(x,y)∈D

(y −wT
1 x+ b)2 , (3.3)

where we have only explicitly stated the dependence on w1. Our purpose is to reduce the

objective function as much as possible, so we will calculate the gradient of l(w) for w1 to

determine the direction in which it is increasing. At the next step, it will be necessary to

select a w2 in a direction opposite to that of the gradient to ensure that l(w2) < l(w1):

w2 = w1 − η∇[l(w1)] , (3.4)

where η is a hyperparameter called learning rate, which is lower than 1 and serves to

reduce the magnitude of ∇[l(w1)]. After computing w2, the back propagation process

starts, and the newly calculated values are placed into the model. This optimization

technique is called gradient descent and is the way the linear regression model moves

within the space of weights in a supervised learning. The training phase in ML covers a

certain number of epochs, including one or more cycles of forward and back propagation,

the so-called training iteration.
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Though it may appear that the gradient descent guarantees loss minimization, this

is not always the case. An improper choice of η can lead to the inability to reach the

minimum loss, or to a long number of epochs to get there. Indeed, let us suppose to have

a loss function with a shape like that in Fig. 3.1: setting a learning rate that is too small

takes too many steps to reach the minimum of the curve, while if chosen too large there is

a risk that the minimum will be missed.

Figure 3.1: Effect of different settings of learning rate on the loss function. Setting a learning rate

too small (left) can lead to an indefinitely increased time to reach the minimum, whereas setting a

value too large (right) can impede reaching the minimum. Credits to: https://developers.google.

com/machine-learning/crash-course/reducing-loss/learning-rate.

The choice of the features is crucial when feeding an algorithm. For the model to

be able to generalize and make correct predictions on new inputs, these features must

provide a thorough description of the data set. For example, if the goal is to emulate a

cosmological power spectrum model, appropriate features may include parameters defining

the cosmology, such as matter density parameters (see Sect. 1.4.1). It is also essential to

provide the algorithm with the correct label representation. For instance, CosmoPower

offers the option of using either P (k) or log[P (k)] as the label representation of the matter

power spectrum. The choice between the two label representation can significantly impact

the precision of the output model.

3.2 Machine Learning: deep neural network architecture

As mentioned in the introduction of this chapter, ML algorithms have started to be used

extensively in Astrophysics and Cosmology. The implementation of these powerful tech-

niques is expensive though, as it requires a great amount of resources to manage data
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sets of the order of terabytes needed for training. Luckily, emulators offer an innovative

solution to this problem.

Emulators are models derived through ML algorithms that can emulate the output

of cosmological models or simulations, with minimal loss of accuracy, but taking much

less execution time. This makes the process of deriving scientific results much quicker and

also removes the need to handle large data sets, as the realization of such outputs is not

overly expensive. Emulators designed to increase efficiency have already been documented

in the literature. For instance, emulators have been used to compute the power spectrum

for galaxy cluster analyses (e.g. DeRose et al., 2022), the two-point angular statistics for

photometry of galaxy surveys (e.g. Bonici et al., 2022) and the power spectrum with massive

neutrinos and self-consistent DE perturbations (e.g. Euclid Collaboration et al., 2021).

The aim of this Thesis work is the implementation of a 2PCF emulated model within

the CosmoBolognaLib (see Sect. 4.1) environment. We start with the computation of the

2PCF model. We chose the CosmoPower suite of neural cosmological matter and CMB

power spectra emulators for our purpose. This library is not only more convenient to

use, but also more versatile than other learning algorithms. In particular, we employ

CosmoPower to create and train deep neural network models, designed to emulate the

power spectrum of LSS.

In Sect. 3.1.1, we examined the linear regression model. Nonetheless, this type of

model is not able to replicate a cosmological function such as the power spectrum (see,

for example, Eq. 2.33). With CosmoPower it is possible to implement more complex learn-

ing algorithms that employ nonlinear models known as deep neural networks (DNN),

thus enabling a greater level of complexity in the processing of features, adequate for our

requirements.

A DNN architecture consists of multiple layers of neurons, which takes in input data

and produces an output, through a mathematical function called activation function.

Each model layer is connected to the next, in a hierarchical fashion: the input layer at the

bottom, the hidden layers in the middle and the output layer at the top. Each layer has

a certain number of neurons that are connected to the neurons in the adjacent layers. The

neurons in each layer receive input from the neurons in the previous one and, once it gets
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processed, it gives its output to the neurons in the next layer. Each neuron has a set of

weights which determine how much influence it has on the output of the layer. Fig. 3.2

schematizes what is described above.

Figure 3.2: An example of DNN. The model takes features in the input layer, which are elab-

orated in the hidden layers. Finally the output layer is the outcome of the model. Credits to:

https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964.

3.2.1 Activation function

In the whole DNN architecture, one of the most important roles is played by the activation

functions. These functions allow each neuron to process the incoming information, which

is an essential component for the model success. Different types of activation functions can

be used in ML models, but for the purpose of this discussion, we will focus exclusively on

the activation functions used in CosmoPower. Let n be the number of neuron in a hidden

layer, thus the activation function implemented in these libraries is (in matrix form):

f(x) =

(
β +

(
1− β

)
⊙
(
1 + e−α⊙x

)−1
)

⊙ x , (3.5)

where α,β ∈ Rn are vector parameters of the activation function, x is the input layer or

a hidden layer, while ⊙ is the wise-element product.

Eq. (3.5) allows us to express the mathematical form of a hidden layer in a DNN model.
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If we have I hidden layers in our model, with J neurons in each layer, the j-th neuron of

the i-th hidden layer, hij , can be expressed mathematically as:

hij(h
i−1) =

J∑
k=1

(
wi−1
jk f(hi−1

k )
)
+ bij =

J∑
k=1

[
wi−1
jk

(
βi
j +

i− 1βi
j

1 + e−αi
jh

i−1
k

)
hi−1
k

]
+ bij , (3.6)

where wi−1
jk is the weight parameter, hi−1

k is the k-th neuron of the (i− 1)-th layer, while

bij and the pair (αi
j , β

i
j) are, respectively, the bias parameter and the coefficients of the

activation function. We observe that the weight parameters in Eq. (3.1) form a vector, as

the linear regression model consists of an input layer and an output layer with a single value.

However, Eq. (3.6) represents a more complex situation, as there is a hidden output layer

of J elements processing an input layer of the same amount of components. Therefore, for

each layer of the DNN model, the weight parameters are not represented as vectors, but as

matrices, while the bias parameters and the activation function coefficients are represented

as a vectors.

3.3 Machine Learning: model training

In Sect. 3.1, we delved into the training phase of a linear regression model. Here, we will

deepen the discussion on the training of a DNN model in a supervised learning context,

with a focus on the techniques that can be implemented through CosmoPower.

After the architecture of the model has been determined - i.e. once the number of

hidden layers, the number of neurons in each layer and the activation function have been

chosen - the first training epoch begins. This consists of randomly selecting the trainable

parameters, which, in the case of a DNN model like the one of Sect. 3.2, are w,b,α,β (see

Eq. 3.6). Let us refer to P as the set of all trainable hyperparameters2:

P = {W,B,α,β} , (3.7)

where W is the set of all weight matrices, B is the set of all bias vectors, while α and β are

the set of all coefficient vectors belonging to the activation functions. When the forward
2We use a different notation for the subsets of hyperparameters, to distinguish those that belong to the

model architecture, from those that belong to the activation function.
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propagation (see Sect. 3.1.2) starts, all the labeled examples are processed by the DNN

model and the loss function is evaluated.

Let us now take a closer look at the loss function, l. Let us assume a training set, D,

formed by (xi,yi) labeled examples, where i ∈ [1, N ], and let e be a training epoch, where

e ∈ [1, E] the set of all epochs. The loss function implemented in CosmoPower is the root

mean square error (RMSE). For a generic epoch e, RMSE, is written as:

le(D) =

√∑N
i=1 |yi − ŷ(xi)|2

N
, (3.8)

where ŷ(xi) is the model prediction for the i-th example, which this time is not a scalar,

but is instead a vector. Before moving to the next epoch, the model must be optimized.

Rather than employing a gradient descent optimization (see Eq. 3.4), CosmoPower

utilizes adaptive moments estimation (ADAM, Kingma & Ba, 2014) to optimize its models.

This optimizer estimates the first and second moments, respectively, m and v, of the

gradient of the loss function, to adjust the learning rate. At the epoch e, ADAM employs

the exponential decay rates to compute the gradient moments as follows:

me = β1me−1 + (1− β1)∇l(pe−1)

ve = β2ve−1 + (1− β2)|∇l(pe−1)|2 ,
(3.9)

where β1, β2 ∈ [0, 1[ are the exponential decay rates, l is the loss function, and p ∈ P =

{w,b,α,β} the set of trainable parameter vectors for the DNN model (see Sect. 3.2).

Once me and ve have been computed, the back propagation (see Sect. 3.1.2) starts, so the

parameter vector is updated in the following manner:

pe = pe−1 − η
m̂e√
v̂e + ϵ

, (3.10)

where me =
me

1−βt
1

and v̂e =
ve

1−βe
2

are, respectively, the unbiased first and second moments

of the gradient, while η is the learning rate and ϵ is the ADAM parameter, usually set

equal to 10−8.

For each epoch, the loss function is calculated on all the N labeled examples, needing

both forward propagation and back propagation. This can lead to long gradient calculation
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times. Therefore, a batch is typically included as part of the training process. A batch is a

set of examples used for a single training iteration. By selecting a batch size of n, such that

n < N and N/n ∈ N, the loss function summation will have fewer terms, thus speeding up

gradient calculation. Moreover, for each epoch e, the number of training iteration grows

(N/n > 1), as all examples must be evaluated. It is essential to select accurately the batch

size, since a small one would lead to the usage of a reduced amount of examples, while

large one would not result in any time savings when calculating the gradient.

Selecting the right number of epochs is also essential. If the chosen number is too small,

the algorithm might not converge in the minimization of the loss function. On the other

hand, if it is too large a lot of computation time might be wasted, as the training will

continue for many epochs even after the reaching of the minimum, without any further

improvement.

3.3.1 The learning steps

In order to effectively monitoring the training process, it is necessary to break it down

into the learning steps. This can be done by running a fixed number of total epochs, E,

multiple times and evaluating the model accuracy with a validation set. The validation

set is a subset of the training set that is used to assess the accuracy of the model in

generalizing well, that is in accurately predicting data set not used for training. This

is done by performing only the forward propagation and measuring the value of the loss

function.

By setting the learning steps, we are able to adjust the learning rate and batch size

in order to create a training process that gradually decreases the learning rate, while

simultaneously increases the batch size, as training progresses. At each learning step, the

optimization process becomes more accurate. In fact, it evaluates a greater number of

examples to find the minimum loss function and moves in the parameter space with more

precision since η is smaller (see Eq. 3.10). Finally, a patience value can be set to limit

the amount of training time; this value is the max number of epochs that can elapse before

the loss function further decreases or else the learning algorithm will move on to the next

learning step.
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3.4 Machine Learning: model validation

Once the training of the DNN is finished, we test it to check its accuracy in the model

prediction. For example, in our case we evaluate how well the DNN is able to emulate

a cosmological function. To do this, we use a validation data set that contains labels

that the model has not seen before. We refer with T to the training set of all (x,y)

features-labels pairs never seen by the DNN model.

We compare the RMSE (see Eq. 3.8) of our model on the training data set, RMSE(D),

to the one on the testing data set, RMSE(T ). If RMSE(D) ≪ RMSE(T ) and RMSE(D) ≪
1 it means that the model is overfitting the training set. Overfitting occurs when the

model performs well on training data but generalizes poorly to unseen data. This issue

may arise when the architecture of the DNN is too complicated.

Our aim is to make RMSE(T ) as similar to RMSE(D) as possible to guarantee the

accuracy of our model beyond the training set. Though, this might not be sufficient. Even

if both values are similar, there might be underfitting, which is the opposite of overfitting,

and occurs when the model is not able to obtain a sufficiently low RMSE(D). This could

imply that the model is not appropriate for the task or it has not been trained properly.

To make sure the model has a balanced fit, we should have the lowest RMSE(D) and the

smallest gap between training and testing RMSE.
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3.5 Bayesian Methods for Cosmology

In modern cosmology, the Bayesian inference is the dominant paradigm for determining

the parameters of cosmological models. This is accomplished by comparing and combining

data from a variety of observations. As data sets become larger and more accurate, it is

necessary to apply increasingly accurate analysis techniques to account for both statistical

error bars and systematic effects. The primary goal of the cosmological statistical analyses

is to determine which parameters of a certain cosmological models provide the best fit to

observations.

3.5.1 Bayesian Inference of cosmological parameters

In a Bayesian statistical framework, the probability is a measure of the degree of belief in

a given proposition, rather than a property of the event itself. This concept is applicable

to any event, including repeated experiments, one-off situations, random variables, or

assumptions of a model (Trotta, 2017). Before moving forward, let us attempt to outline

this framework in a rigorous and mathematical fashion.

Let (Ω, F, P ) be a measure space, with Ω a set, F a σ-algebra3 on Ω, and P a real-valued

function on (Ω, F ) such that:

• P (E) ∈ R, P (E) ≥ 0 ∀E ∈ F ,

• P (Ω) = 1,

• P (
⋃∞

i=1Ei) =
∑∞

i=1 P (Ei) ∀Ei ∈ F such that P (Ei ∩ Ej) = 0 ∀i ̸= j

• P (Ei, Ej) = P (Ei)P (Ej |Ei) ∀i, j ∈ N, where P (Ei, Ej) is the probability that both

Ei and Ej occur, i.e. the joint probability, while P (Ej |Ei) is the probability that

Ej occurs when Ei has already occurred, i.e. the conditional probability.

The first three conditions are known as the Kolmogorov Axioms, and the fourth is the

Product Rule. In this context, a (Ω, F, P ) measure space is referred to as a probability
3In mathematical analysis and probability theory, a σ-algebra on a set X is a nonempty collection Σ of

subsets of X that is closed under the operations of complement, countable union and countable intersection.
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space, with sample space Ω, event space F and the probability distribution P . Thanks

to these relations we can re-write the conditional probability as:

P (Ei|Ej) =
P (Ei)P (Ej |Ei)

P (Ej)
, (3.11)

∀Ei, Ej ∈ F ∧ P (Ej) ̸= 0. This is the so-called Bayes’ theorem, which describes the

probability of an event, Ei, based on prior knowledge of conditions, Ej , that might be

related to the event.

In Bayesian probability, the term “event”, as written above, should be understood

broadly: in cosmology we can refer to Ei as H, the parameter vector of a given model, and

to Ej as d, the set of observational or simulated data. The importance of the conditional

probability, P (d|H), becomes evident when we make the parameters H vary while keeping

d constant. In this case we obtain a function depending on the parameters, which tells

us how admissible the data d are when the parameters H vary, allowing us to define the

likelihood function as:

L(H) ≡ P (d|H) . (3.12)

Thanks to the above definition we can re-write Eq. (3.11) as:

P (H|d) = L(H)P (H)

P (d)
, (3.13)

where P (H|d) is the posterior probability distribution, which represents our knowledge

of the hypothesis H after examining the data d. The posterior is proportional to the

likelihood L(H) multiplied by the prior probability distribution P (H), which represents

the state of knowledge about the hypothesis before the data are analysed. Since the data

set is fixed, the posterior distribution is determined by the likelihood function and prior

distribution, with P (d) acting as a normalization factor.

The knowledge about the prior can be derived from previous experiments. For example,

if these experiments provide a parameter posterior that is normally distributed, we can

embed this information thanks to a Gaussian prior, fully characterized by mean and

standard deviation. Alternatively, the prior may express the theoretically accepted range
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of values for a given parameter of a cosmological model. In this case it is referred to as a

flat prior, given that each value within the range is considered equally probable.

Let H belong to Rn, then we can write the probability density function (PDF) of

the flat prior distribution as:

p(H) =


Πn

j=1

(
1

Hu
j −Hl

j

)
∀ H ∈ Ω

0 ∀ H ∈ Rn \ Ω
, (3.14)

where p(H) is defined as:

P (Ω) =

∫
Ω
p(H)dΩ =

∫ Hu
1

Hl
1

...

∫ Hu
n

Hl
n

p(H) dH1...dHn = 1 , (3.15)

where H l
j and Hu

j are the lower and upper bound of each parameters validity range, such

that Ω = [H l
1, H

u
1 ] × ... × [H l

n, H
u
n ]. Naturally, the PDF is not an exclusive to the prior

probability distribution. In fact each probability distribution has its own PDF, which is

defined analogously to Eq. (3.15).

In an inference problem, we look for the parameters that give the best fit to the data.

In other words, we are interested in the relative probability of the parameters, rather than

their absolute value. This means that the normalization constants are not important, as

we are looking for the parameters that maximize the probability distribution, rather than

the value of the probability at its maximum. Therefore, assuming a flat prior distribution,

setting k = Πn
j=1

(
1

Hu
j −Hl

j

)
, Eq. (3.13) becomes:

P (H|d) ∝ L(H) . (3.16)

Suppose we have computed the posterior distribution, P (H|d), and we want to find the

posterior probability for a specific parameter. In a general case, the parameter vector will

be H = (H1, ...,Hn) ∈ Rn and we can rewrite the posterior as:

P (H|d) = P (H1, ...,Hn|d) . (3.17)
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Therefore the posterior for the i-th parameter, Hi, will be:

P (Hi|d) =
∫ Hu

1

Hl
1

...

∫ Hu
i−1

Hl
i−1

∫ Hu
i+1

Hl
i+1

...

∫ Hu
n

Hl
n

p(H1, ...,Hi, ...,Hn|d) dH1...dHi−1dHi+1...dHn ,

(3.18)

where p(H1, ...,Hn|d) is the PDF of P (H|d). This is called marginalization and P (Hi|d)
is the marginal posterior. It is the projection of the posterior along the parameter Hi

and is often used to marginalize over the nuisance parameters, which are parameters that

we must take into account for the statistical analysis, but without physical interest.

Marginalization is also necessary to compute the credible interval, i.e. an interval

in the marginal posterior domain within a parameter of H falls with a certain probability.

For instance, let Hj be the parameter of interest, then the credible interval, [HC
j
l
, HC

j
u
],

will be such that: ∫ HC
j

u

HC
j

l
p(Hj |d) dHj = C , (3.19)

where p(Hj |d) is the PDF of P (Hj |d) defined as in Eq. (3.18), while C is the probability

that we want to obtain. The C value can be interpreted as a multiple of σ, the variance

of a normal distribution, thanks to the central limit theorem. The latter establishes

that the sampling of an infinite independent and identically probability distributions tends

towards to the Gaussian one. In this case imposing C ≡ 1σ and evaluating Eq. (3.19), will

yield the credible interval within which there is the 68.3% probability to get the true value

of Hj , while imposing C ≡ 2σ (C ≡ 3σ) will yield the interval in which the probability

rises up to 95.4% (99.7%).

By extending the above reasoning to a pair of parameters of H, we can also provide

credible regions: ∫
R
p(Hi, Hj |d) dHidHj = C , (3.20)

where p(Hi, Hj |d) is the marginal posterior of Hi and Hj , while R is the region that gives

us the probability C of finding the true values of the pair of parameters.

3.5.2 Markov Chain Monte Carlo

The non-trivial mathematical expression of the likelihood function makes it very difficult

to obtain an analytical posterior distribution (see Eq. 3.13), especially for multi-parameter
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cosmological applications. Alternatively to infer the posterior, it is possible to sample its

distribution in the parameter space, particularly the most peaked regions. For this purpose,

the Markov Chain Monte Carlo (MCMC) method represents a fundamental tool.

Using the MCMC method, we aim at constructing a map of the posterior distribution

by generating a sequence (or chain) of points (or samples) in the parameter space. There

are various algorithms that can be employed to generate the chains. The key concept is

that the chain must follow a Markovian trajectory in the parameter space, meaning that

the probability of the (t + 1)-th element in the sequence is only determined by the value

of the t-th element.

Let H be a parameter vector such that H ∈ Ω ⊂ Rn. Two consecutive generic elements

of the chain will be H(t) and H(t+1). The transition probability T (H(t+1)|H(t)) describes

the probabilistic generation of chain elements, indicating the likelihood of transitioning

from H(t) to H(t+1) in the parameter space Ω.

Let us now consider a posterior distribution P (H|d) (Sect. 3.5.1). Sufficient condition

to have a Markov chain is that the transition probability satisfies the detailed balance

condition (Trotta, 2017):

P (H(t)|d) T (H(t)|H(t+1)) = P (H(t+1)|d) T (H(t+1)|H(t)) . (3.21)

For the sake of clarity, we re-write this equation as follows:

T (H(t)|H(t+1))

T (H(t+1)|H(t))
=

P (H(t+1)|d)
P (H(t)|d)

. (3.22)

We can now appreciate that the ratio of the transition probabilities is inversely proportional

to the ratio of the posterior probabilities, for each pair of consecutive points in the chain.

A sequence that satisfies Eq. (3.21) is called ergodic chain (see e.g. Metcalf, 2022),

and is characterized by the following proprieties:

• irreducibility, i.e. any point of the chain can be reached in a finite number of steps;

• aperiodicity, i.e. there is not periodicity in the chain;

• positive recurrently, i.e. the expectation value for the number of steps between any

two states, H′ fand H′′, is finite.
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Ergodic chains allow us to get the parameter posterior distribution, since they have a

unique stationary distribution such that:

P (H(t+1)|d) =
∫ ∞

0
dt′ P (H(t′)|d) T (H(t+1)|H(t′)) . (3.23)

This means that we are able to sample the posterior once we have sampled an ergodic

chain in the parameter space Ω.

There are many MCMC methods, but we will only discuss the Metropolis-Hastings

algorithm (Metropolis et al., 1953), which is the one used in this thesis work and is also

widely used for the Bayesian inference in cosmology. This algorithm is based on finding

a transition probability that will have any desired stationary distribution, i.e. P (H|d) in

our case.

The transition probability is, for each successive pair of sampled parameter vectors,

H(t+1) and H(t):

T (H(t+1)|H(t)) = q(H(t+1)|H(t)) α(H(t+1),H(t)) , (3.24)

where q(H(t+1)|H(t)) is the proposal distribution, while α is equal to:

α(H(t+1),H(t)) = min

{
1,

q(H(t)|H(t+1))

q(H(t+1)|H(t))

P (H(t+1)|d)
P (H(t)|d)

}
. (3.25)

Thanks to this assumption, the chain that we sample will be ergodic (it easy to show that

Eq. 3.24 satisfies Eq. 3.21) with the stationary distribution P (H|d).
The following steps can be used to schematize the Metropolis-Hastings algorithm:

(i) starting from a random point H(0);

(ii) proposing a candidate point H(c) by drawing from the proposal distribution q;

(iii) evaluating α and generating a random number u from the uniform distribution [0, 1[.

Accepting candidate sample H(c) if α > u, rejecting otherwise;

(iv) if the candidate point has been accepted, adding to the chain. Otherwise H(0) will

be counted twice in the sequence. Go back to point (ii).
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The selection of the proposal distribution q is essential for the successful investigation of

the posterior. If the scale of q is too small when compared to the scale of the target

distribution, then exploration will be inadequate as the algorithm will take too much time

at a local level. On the other hand, if the q scale is too large, the chain will get stuck as

it will not move frequently enough.

The Metropolis-Hastings algorithm is implemented in the CosmoBolognaLib (see

Sect. 4.1) and will be used in Sect. 5.2 to sample the posterior distribution of the cos-

mological parameters investigated in this Thesis work. We refer the interested reader to

Trotta (2017) for further details about the MCMC technique and methods.
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Chapter 4

A new two-point correlation function

emulator

In this chapter we present the main result of this Thesis work, i.e. a new code for emulating

functions in Cosmology. The main goal is to provide a public and user-friendly tool,

useful to speed up the analysis of cosmological data sets. To this purpose, we begin

by introducing the CosmoBolognaLib, i.e. the numerical environment in which our code

is inserted. Then, we discuss in detail the class Emulator, representing the core of our

implementation. Finally, we present an example of the usage of this class through a

concrete example.

4.1 CosmoBolognaLib

The CosmoBolognaLib1 (CBL, Marulli, Veropalumbo & Moresco, 2016) is a comprehensive

collection of free software numerical libraries, tailored for cosmological calculations. These

libraries are based on object-oriented programming and implemented in C++. Moreover,

their usage is possible in Python language too, thanks to wrapping procedure applica-

ble. The CBL is a continuously evolving project, which has been utilized by many as-

trophysicists and cosmologists worldwide. This set of libraries is ideal for manipulating

extra-galactic source catalogues, both real and simulated, and extracting cosmological pa-

rameters from statistical analyses.
1We considered V6.1, which is available at https://gitlab.com/federicomarulli/CosmoBolognaLib
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For example, they offer a valuable tool to measure the 2PCF (see Eq. 2.19) and predict

its trend for different cosmological parameters, as well as for different theoretical models.

The 2PCF models are public members of the class Cosmology. This class allows the user to

easily define a cosmological model by specifying the values of all the standard cosmological

parameters. The latter can then be used to calculate the theoretical 2PCF model, selecting

a number of input parameters (e.g. the redshift and the spatial scale) to obtain the desired

output. Furthermore, various Bayesian inference techniques have been implemented in the

CBL, such as MCMC posterior sampling methods, like the Metropolis-Hastings algorithm

discussed in Sect. 3.5.2.

The primary goal of this Thesis is to expand these already existing set of libraries

with a code for emulating functions of the class Cosmology. This is done through the new

class Emulator, which offers the possibility to reproduce a given function in a fast but still

accurate manner. We focus in particular on emulating the spherically averaged 2PCF of

DM, ξ(r). The 2PCF represents in fact one of the primary statistics in Cosmology, and

it is fundamental to improve the numerical tools for its analysis. We underline, however,

that the code presented in this Thesis work is applicable to any model function, paving

the way to a number of different cosmological applications.

Using the CBL, we calculate the 2PCF by Fourier transforming the DM power spec-

trum, P (k). The latter can be computed by exploiting a Boltzmann solver, a code that de-

rives a number of observables by solving the linearized Einstein-Boltzmann equations on an

expanding background (Dodelson, 2003). Two examples of widespread Boltzmann solvers

are the Code for Anisotropies in the Microwave Background2 (CAMB, Lewis, Challinor

& Lasenby, 2000) and the Cosmic Linear Anisotropy Solving System3 (CLASS, Lesgour-

gues, 2011; Blas, Lesgourgues & Tram, 2011). Both the codes are incorporated in the

environment of the CBL, but are external and independent to these libraries.

In this work, we will focus on the usage of CAMB to compute the power spectrum,

but our analysis can be easily extended to other Boltzmann solvers. It is important to

highlight that, albeit very accurate, these codes require a considerable amount of time to

run. Even if a single run may take a time frame of the order of the second, this becomes
2https://camb.info/
3https://lesgourg.github.io/class_public/class.html
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very important when used in the context of a MCMC, where power spectrum – or, more in

general, the cosmological function derived from it – is typically computed millions of times.

Hence the need for a tool to reproduce the same output provided by the CBL functions

in a dramatically reduced amount of time, i.e. an emulator. In fact, an emulator would

allow any type of function to be calculated for a certain range of validity of the input

parameters, avoiding the direct solving of complex and time-consuming calculations, such

as derivatives and integrals.

4.2 The Emulator class

We present here the class Emulator, whose full name in the CBL environment is

cbl::emulator::Emulator4. This new implementation allows the user to create an object

of class Emulator, with which it is possible to reproduce a given function (the 2PCF in

this case). An emulator is a DNN model built up by the setting of weights, W, bias values,

B, and the matrices α and β, whose entries are the parameters of the activation function

(as described in Sect. 3.2.1). All these parameters are embedded in the set of parameters

P, as described in Sect. 3.3.

A C++ object of class Emulator can be created via two main constructors: the first

requires to insert manually each element of P, while the second automatically loads them

from a specified directory containing all the hyperparameter details. In the following, we

will provide a more detailed description of P.

Let us assume that we set the DNN architecture (see Sect. 3.2) with N hidden layers,

each containing M neurons. Therefore, the set of weights is given by:

W = {w0, ...,wN} , (4.1)

where each wi is a matrix whose entries are the coefficients that connect the neurons of

a single layer with the neurons of the next one. In particular, the w0 is a n ×M matrix,

which links n parameters5 of the input layer to the M neurons of the first hidden layer.

Then, wi with i ∈ [1, N − 1] are M × M matrices, which connect the M neurons of the
4cbl indicates the global namespace of the CBL.
5We will describe in detail in Sect. 4.3.1 the parameters we are interested in, comprising cosmological

parameters and redshift.
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i-th hidden layers to the i+ 1-th one. Finally, wN is a M × k matrix, which links the M

neurons of the last hidden layer to the spatial scale range where the 2PCF is evaluated (or,

more in general, the x input of whatever f(x) function). We assume the input quantity of

the function we want to emulate to be a vector of S elements.

The set of bias parameters is given by:

B = {b0, ...,bN} , (4.2)

where bi are vectors. Those vectors have M elements for i ∈ [0, N − 1], which are the

bj values belonging to the hidden layers (see Eq. 3.6), while the N -th vector, bN , has S

elements and belongs to the output layer.

Lastly, the coefficients of the activation functions are given by the matrices α and β:

α = {αij}i∈[1,N ], j∈[1,M ]

β = {βij}i∈[1,N ], j∈[1,M ]

, (4.3)

where αij and βij are the coefficients of the activation function (see again Eq. 3.6). α and

β are N ×M matrices, where N is the number of the hidden layers and M the number of

the neurons belonging to each layer.

Once the model hyperparameters are loaded, it is possible to compute the 2PCF model

using the implemented function cbl::emulator::Emulator::model, by setting the follow-

ing function parameters:

• cosmologicalParameters, a vector containing the input cosmological parameters,

to fix the desired cosmology;

• outputModes, a vector containing the values of the spatial scale at which we want to

compute the 2PCF;

• redshift, the redshift at which the 2PCF is evaluated.

This function computes the forward propagation (see Sect. 3.1.2) of the emulated model

thanks to two private functions implemented in the Emulator class: m_layerOperation

and m_activactionFunc (where cbl::emulator::Emulator:: is implicit). The first one
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defines the computational flow between the model layers, while the second the operations

done by each neuron (see Eq. 3.6), returning:

ξemu(Ω, r, z) = {ξemu(Ω, r1, z), ..., ξemu(Ω, rS , z)} , (4.4)

where the subscript “emu” refers to the emulated model, while Ω, r, and z are, respectively,

the inputs cosmologicalParameters, outputModes and redshift.

The structure of the function cbl::emulator::Emulator::model is independent of

the choice of the learning algorithm chosen to calculate the DNN model. Indeed, the

m_layerOperation function is common to every DNN model, and if we want to use a

pre-trained model, which activation function is different from Eq. (3.6), we only have to

add a new different m_activactionFunc, needed to compute the new different activation

function operations. This flexibility allows our class to work with trained models computed

with any learning algorithm, not just CosmoPower.

In the following section we present the training and validation operations performed to

prepare the DNN implemented in the CBL to emulate the 2PCF model. The outcome of

this procedure is the set of hyperparameters P needed to emulate the target model. We

emphasize that the whole process is extensible to any cosmological function, so the results

presented have to be interpreted as just one of the many applications that the methodology

offers.

4.3 Training and validation

Our goal is to construct a map between the space of the input parameters and the space of

the corresponding 2PCF model outputs. In particular, we aim at using the ML to provide a

partial representation of this map. In fact, we prefer to limit the input parameter space to

its most relevant sub-set, as increasing the number of parameters mapped implies a decrease

in the emulator accuracy. For example, we train our DNN to emulate the 2PCF model

in those cosmological parameter ranges that are favoured by the recent survey analyses or

that we are most interested in.

Moreover, we focus on two 2PCF models: linear and nonlinear. The latter includes

those nonlinear effects affecting mainly the small spatial scales. Both are derived with the
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CBL function xi_matter and by exploiting the Bolztmann solver CAMB (see Sect. 4.1).

Hereafter, we will refer to them with xi_matter(CAMB linear) and xi_matter(CAMB

nonlinear), respectively. Otherwise we will use xi_matter(CAMB) if no distinction is

needed.

4.3.1 Sampling the training and testing data sets

In Sect. 3.1.1, we explained that a training data set is needed to compute a DNN model (see

Sect. 3.2). It consists in our case of a sample of parameter values and the corresponding

2PCFs computed for each set of these parameters. In particular, we choose to focus on the

cosmological parameters and the redshift. These are the features of our training set, while

the computed 2PCF models represent the labels of the ML algorithm.

We aim at emulating xi_matter(CAMB linear) and xi_matter(CAMB nonlinear) for

different values of the redshift z and three cosmological parameters: the matter density

parameter, Ωm, the DE density parameter, Ωde, and the scalar amplitude, As. We leave

the other cosmological parameters fixed, but we underline that the procedure can be easily

extended to them, although with the challenge of keeping the accuracy of the emulator

sufficiently high. For completeness, we report in the following the list of cosmological

parameters that we leave unchanged in our analysis:

• the density parameters such as baryon density, Ωb, neutrino density, Ων , radiation

density, Ωr, cold dark matter density, Ωcdm, and the density of curvature energy Ωk;

• the values of Neff and Nν concerning, respectively, the effective number and the

number of degenerate massive neutrino species belonging to the cosmic neutrino

background;

• the dimensionless Hubble parameter h, i.e. H0/100;

• the spectral index, ns, and pivot scale (in unit of Mpc−1), k0, of the primordial

matter power spectrum;

• the coefficients w0 and wa of the Chevallier-Polarski-Linder parametrization of the

DE equation of state (Chevallier & Polarski, 2001).
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Parameter prior range / value

Ωm [0.2423, 0.3883]
Ωb 0.0486
Ων 0.00141975
Ωr 9.26535 · 10−5

Ωcdm 0.26528
Ωde [0.572, 0.812]
Ωk 0
Neff 2.04
Nν 1
h 0.6736
As [1.8e-9, 2.4e-9]
k0 0.05
ns 0.9649
w0 1
wa 0
τ 0.0544
z [0, 2]

Table 4.1: Parameters used to generate the features and label pairs of the training and testing
sets. These parameter values are used for both xi_matter(CAMB linear) and xi_matter(CAMB
nonlinear).

We report in Table 4.1 the parameters considered in the training of the DNN: Ωm, Ωde

and As are allowed to vary in a range spanning ±10 times the standard deviation provided

by Planck Collaboration et al. (2020), while the redshift value covers the range 0 ≤ z ≤ 2,

suitable for treating the data of ongoing and next generation wide-field surveys. We set the

other parameters to their best-fit values provided by Planck Collaboration et al. (2020).

Given the limited nature of our computational resources, it is necessary to cover the

parameter space properly by working with a finite number of parameter values. We employ

the Latin hypercube sampling (LHS) method to sample the parameter space: it consists

in generating quasi-random samples extracted from a multidimensional distribution of

values, which in our case is uniform. This is achieved by dividing the parameter space,

composed of the cosmological parameters and redshift values, into a hypercube grid, such

that each grid cell contains only one element of the parameter space.

We choose to allocate 2 × 105 points for the training set, Dtrain, and 2 × 104 points

for the validation set, Dvalid, getting the respective feature sets for every element. Each
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element has the following structure:

xi = {Ωmi ,Ωdei , Asi , zi} , (4.5)

where i ∈ [1, 2× 105] if xi belongs to Dtrain, while i ∈ [1, 2× 104] to Dvalid. The difference

in the length of the two data sets is due to a twofold reason: first, to accelerate the

computation of the testing set, and second, to cover points of the parameter space that

have not been seen by the emulator during the training phase, ensuring the effectiveness

of the validation test (see Sect. 3.4).

To get the labels of the training and testing set we compute the function

xi_matter(CAMB) setting the fixed values reported in Table 4.1 and using the features

seen in Eq. (4.5). Moreover, we set the range scale, r, to [0.1, 200] h−1 Mpc with a

custom binning: 75 bins in [0.1, 90] h−1 Mpc, 150 bins [90, 130] h−1 Mpc and 75 in

[130, 200] h−1 Mpc, for a total of 300 bins. This difference in the bin spacing allows us

to give more importance to those scales that are harder to model during the learning op-

timization phase (see Sect. 3.1.2), such as baryonic acoustic oscillation6 (BAO) scale.

The BAO feature is visible around 105 h−1 Mpc and the position of its peak and shape is a

powerful tool to constrain the expansion rate of the Universe and to investigate the nature

of DE (see e.g. Crocce & Scoccimarro, 2008; Percival et al., 2010; Beutler et al., 2011).

Therefore, it is fundamental to sample densely this region in order to emulate accurately

the 2PCF.

Following the work of Spurio Mancini et al. (2022), to better emulate the matter power

spectrum we apply a change in the label representation. By utilizing CosmoPower, it is

possible for example to convert the label values’ representation to a decimal logarithm

ones. However, this is not a viable solution for 2PCF models, due to the presence of non-

positive values. Therefore, we choose to use a custom representation by multiplying the

values of 2PCF by the square of the spatial scale r, resulting in the following labels:

yi = {r20 · ξ0,i, ..., r2299 · ξ299,i} . (4.6)
6It refers to the fluctuations visible in the distribution of the baryonic matter on large scales, generated

by the acoustic waves propagating in the primordial plasma before the recombination epoch (see Sect. 1.5).
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Parameter Value for each learning step

learning_rates [10−1, 10−2, 10−4, 10−5, 10−6, 10−7]
batch_sizes [102, 2 · 102, 103, 2 · 103, 104, 2 · 104]
patience_values [20, 20, 20, 20, 20, 20]
max_epochs [2000, 2000, 2000, 2000, 2000, 2000]

Table 4.2: Table showing the values chosen to optimize the learning phase during the building of
the emulator (see Sect. 3.3), for both xi_matter(CAMB linear) and xi_matter(CAMB nonlinear).

This approach is indeed commonly used in cosmological analyses to highlight the BAO

feature of the 2PCF. As a final result, we obtain the four desired data sets: two training

data sets, i.e. DCAMB linear
train and DCAMB nonlinear

train , with 2× 105 pairs (xi,yi) of tuples, and

two validation data sets, i.e. DCAMB linear
valid and DCAMB nonlinear

valid , with 2× 104 pairs (xi,yi)

of tuples.

4.3.2 Model training

We now set up the CosmoPower-implemented learning algorithm in order to obtain the

emulated models of xi_matter(CAMB linear) and xi_matter(CAMB nonlinear). This will

provide the sets of hyperparameters, P, seen in Sect. 4.2. We define the model architecture

by configuring 4 hidden layers, each comprising 20 neurons, with the activation function

outlined in Sect. 3.2.1.

We configure 6 learning steps (see Sect. 3.3.1) and we fix the learning hyperparam-

eters (learning_rates, batch_sizes, patience_values and max_epochs) as shown in

Table 4.2. We set these parameters on the basis of the work of Spurio Mancini et al.

(2022), adjusting then their values according to the output our model. This fine-tuning

procedure is aimed at reaching, as quickly as possible, the lowest value for the RSME, i.e.

the loss function (see Eq. 3.8). Let us note how during each learning step the values of the

learning_rates decrease, while those of the batch_sizes increase. This optimizes and

speeds up the search for the minimum value of the loss function.

We compute the DNN models using the parallel computing cluster of the Open Physics

Hub7 at the Physics and Astronomy Department in Bologna. In particular, utilizing 56

CPUs with a clock frequency of 2.2 GHz, the algorithm took approximately 1 hour to
7https://site.unibo.it/openphysicshub/en
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process each model. However, we underline that the execution time is closely related to

the architecture of computed models, to the number of labelled examples of the training

test and to the computational resources employed. For example, the usage of a GPU node

would dramatically reduce the computation time required for the algorithm training.

Once the best configuration of the hyperparameters is achieved and the loss value is

satisfactory, it is possible to proceed with the testing phase, which we will present in

Sect. 3.4. Otherwise, further investigations must be conducted to improve the outcome,

such as changing the DNN architecture parameters or label representation, or both. After

implementing the necessary modifications, the training phase must be repeated to verify

if the desired result has been achieved.

4.3.3 Model validation

Now that the learning phase is completed, we move on to the testing phase to evaluate the

accuracy of the generated models. In principle, this phase could be skipped, simply loading

the models into the Emulator class. In that case, the model validation would be performed

applying the emulator directly to a Bayesian analysis (as we will see in Chapter 5), com-

paring the posterior distributions obtained with the original xi_matter(CAMB) and its

emulated version. However, if the model turns out to have low accuracy, it is more difficult

in that case to understand how to improve the emulator.

To test the accuracy of the emulated models, we firstly compute the RMSE over the

testing data set, Dtest, and compare them with those of the training data set, Dtrain. This

is useful to check if a balanced fit is achieved (Sect. 3.4). In Table 4.3 we show the RMSE

values for both the CAMB linear and the CAMB nonlinear emulated models. These values

indicate that a balanced fit has been achieved, as the gap between the RMSE for Dtest and

Dtrain is of the order of 10−5.

To evaluate the accuracy of the models, we compute the percent error as follows:

∆%(rj) =

∣∣∣∣ξemu(rj)− ξtrue(rj)

ξtrue(rj)

∣∣∣∣ · 100 , (4.7)

where rj is the range scale value, in unit of h−1 Mpc, such that j ∈ [0, 299] (see Eq. 4.6)

and the expression is evaluated over the whole Dtest. We aim at reaching a percent error
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CAMB linear RMSE

Dtrain 5.05 · 10−3

Dtest 5.12 · 10−3

CAMB nonlinear RMSE

Dtrain 5.56 · 10−3

Dtest 5.64 · 10−3

Table 4.3: RMSE values computed over the whole training and testing data set, for the emulated
models of CAMB linear and CAMB nonlinear. In both case the gap between the RMSE is small
enough to ensure a balanced fit for the sets of hyperpamarameters of the DNN models.

lower than 4% for each function over the whole Dtest, as achieved in the work of Spurio

Mancini et al. (2022).

Figure 4.1: Emulator percent error, computed evaluating xi_matter(CAMB linear) on the 2 ·104 combi-

nations of parameters of the sample DCAMB linear
test , on the scale range r ∈ [0.1, 200] h−1 Mpc. We represent

the median percentage error with a red line and the 68% confidence region around this value with a shaded

area.
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Figure 4.2: As Fig. 4.1, but for the model xi_matter(CAMB nonlinear).

We show in Fig. 4.1 and Fig. 4.2 the percentage error computed for the

xi_matter(CAMB linear) and xi_matter(CAMB nonlinear) DNN models, respectively.

We represent the median of the distribution of percentage errors, obtained by testing all

the combination of values extracted with the LHS technique. With a shaded band we

represent the 68% of probability around the median, so the interval between the 16-th and

84-th percentile. The median percent error of the emulator is less than ≈ 0.2% in the scale

range r ∈ [0.1, 200] h−1 Mpc, for both models. When considering the 68% probability

region, the percentage error reach the values ≈ 0.6% and ≈ 0.7%, for the cases CAMB

linear and nonlinear, respectively. However, this happens only at the spatial scales in the

range r ∈ [100, 150] h−1 Mpc, i.e. the region characterized by the BAO peak. Given the

complexity of this 2PCF feature, the accuracy of the emulator is indeed expected to be

lower in this zone, despite the denser scale sampling we applied area during training.
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Figure 4.3: Emulator absolute error computed for xi_matter(CAMB linear) and multiplied by 107. The

description of the plot is analogous to the one of Fig. 4.1.

Figure 4.4: As Fig. 4.3, but for the model xi_matter(CAMB nonlinear).
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To better understand if the discrepancy we detected on the scales r ∈
[100, 150] h−1 Mpc is relevant for statistical analyses, we compute the absolute error

between the two models:

∆(rj) = |ξemu(rj)− ξtrue(rj)| . (4.8)

We report the absolute values calculated for CAMB liner and CAMB nonlinear in Fig. 4.3

and Fig. 4.4, respectively, along the restricted range r ∈ [100, 150] h−1 Mpc. We note

in this case that median of distribution of absolute errors is of the order of magnitude

of 10−7. We can conclude that the loss of accuracy we found is not relevant to standard

cosmological analyses, where the uncertainty on the 2PCF measures is usually larger than

the discrepancy between the emulated model and the original function. Being these results

very encouraging, we move now to practical applications of the trained DNN models by

using the class Emulator for example cosmological analyses.

4.4 Examples of usage

Let us now present a practical demonstration of the usage of the class Emulator. The fol-

lowing Python script is named xi_CAMB_emulator.py and is provided among the examples

stored in the CBL. It shows how to calculate the 2PCF model with both a standard CBL

function and by using the implementations of the class Emulator.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from matplotlib import gridspec

4 import CosmoBolognaLib as cbl

5

6 # Create a Cosmology object

7 cosm = cbl.Cosmology(cbl.CosmologicalModel__Planck18_)

8

9 # Define the spatial scales and the redshift

10 rr = np.linspace (30., 120., 100)

11 zz = 1.

12

13 # compute the 2pt correlation function with CAMB

14 xi_r2_matter = [cosm.xi_matter(RR , "CAMB", False , zz)*RR*RR for RR in rr]

15
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16 # Create an Emulator object

17 emu = cbl.Emulator("xi_r2_CAMB")

18

19 # compute the 2pt correlation function with CAMB

20 xi_r2_emu = emu.model([cosm.OmegaM (), cosm.OmegaDE (), cosm.scalar_amp ()],

rr , zz)

21

22 # compute the percent error

23 perc_error = np.zeros (100)

24

25 for i in range(len(perc_error)):

26 perc_error[i] = (xi_r2_emu[i]-xi_r2_matter[i])/xi_r2_matter[i]*100

27

28 # Plot results

29 fig , ax = plt.subplots (2,1, figsize =(20, 16), sharex=True , gridspec_kw ={’

height_ratios ’:[2,1], ’hspace ’:0, ’wspace ’:0.15})

30

31 # main plot

32 ax[0]. plot(rr , xi_r2_emu , label="emulated \texttt{xi\_matter}", ls="-", lw

=4)

33 ax[0]. plot(rr , xi_r2_matter , label="\texttt{xi\_matter}", ls="--", lw=4)

34 ax[0]. set_ylabel("$\xi(r) \ r^2$", fontsize =40)

35 ax[0]. legend(fontsize =35)

36

37 # sub -plot

38 ax[1]. axhline(y=0, color=’grey’, ls=’:’, lw=2.5)

39 ax[1]. plot(rr , perc_error , lw=4)

40 ax[1]. set_ylim ([ -0.75 ,0.75])

41 ax[1]. set_xlabel("$r \ [h^{-1} \ \mathrm{Mpc}]$", fontsize =40)

42 ax[1]. set_ylabel("$\Delta_ {\rm \%}(r)$", fontsize =40)

43

44 plt.show()

We start with the definition of an object of the class Cosmology, built with the cosmological

parameters provided by Planck Collaboration et al. (2020). Then we compute the linear

2PCF model at z = 1 on the spatial range [30, 120] h−1 Mpc via the function xi_matter.

In this case we exploit the output of CAMB to predict the 2PCF model, ξ(r), multiplying

it by a factor r2 to highlight the region of the BAO.
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Figure 4.5: Output plot of the Emulator class Python example. We compare the linear 2PCF model,
ξ(r), multiplied by r2, computed with two approaches: through the standard function xi_matter of the
class Cosmology (orange dashed line) and with the function of the Emulator class (blue solid line). We
show in the sub-plot the discrepancy between the two models, computed as the percentage error with
respect to the original xi_matter function.

To compare this output with the emulated model we build and object of the class

Emulator by loading all the DNN hyperparameters from the directory “xi_r2_CAMB” we

prepared after the training procedure. Then we call the function model by giving as input

the list of cosmological parameters of our interest (Ωm,Ωde, As, in this case), the list of the

spatial scales and the redshift at which computing the model. When running the code, a

summary table of the DNN model is printed, containing all the details of emulated starting

model. In this case we trained the DNN to emulate the function ξ(r) r2 derived from the

CBL function xi_matter and the range of validity parameters of the emulator is the one

reported in Table 4.1.

Finally, a plot is produced to compare the output of the two functions, i.e. xi_matter

and its emulated version. We report it in Fig. 4.5, where it is easy to appreciate the perfect

matching between the two curves. The residuals show indeed that the discrepancy between

the emulated model and the original one is lower than 0.7%.

To test the speed of the emulated function, another CBL exampled is provided, named
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xi_CAMB_emulator.cpp. Being conceptually similar to the example just presented, we

provide here just a rapid overview of the code.

It is written in C++ language and computes the execution time needed to calculate

1000 emulated linear ξ(r), for different cosmological parameters and on 150 points of the

spatial scale r. The execution time obviously depends on the machine on which the code

is run, but considering a standard portable computer it takes about 5 ms. The same

function, computed only one time with the standard xi_matter function would have taken

2 s. The improvement is roughly of a factor 400. Although the difference between the

two computation times could appear irrelevant, in Chapter 5 we will demonstrate the

importance of this improvement, by applying the Emulator class in the context of MCMC

analyses.
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Chapter 5

Application to cosmological

simulations

In this chapter, we present an application of the Emulator class to a more complex cos-

mological analysis. We model the 2PCF measured in different snapshots of a cosmological

simulation, applying an MCMC analysis (see Sect. 3.5.2) to sample the posterior distribu-

tion of the cosmological parameters Ωm, Ωde, and As. The main goals of this test are: (i)

to assess the precision of the emulator we developed, and (ii) to quantify the improvement

in the computational efficiency of the code, compared to the implementation based on the

original 2PCF model function (see Sect. 4.3).

5.1 2PCF measure

We consider a sub-set of the N-body simulation suite named DUSTGRAIN-pathfinder

(Dark Universe Simulations to Test GRAvity In the presence of Neutrinos, Giocoli, Baldi

& Moscardini, 2018; Hagstotz et al., 2019). Although these simulations are designed to

test different cosmological models, we focus on the standard flat ΛCDM catalogues, at

redshifts z = 0, 1 and 2. This interval covers indeed the redshift range explored during the

training of our emulator.

The DUSTGRAIN-pathfinder are built with the cosmological simulation code GADGET2

(Springel, 2005), which guides the evolution of 7683 DM particles within a periodic cosmo-

logical box of 750 h−1 Mpc per side. The ΛCDM simulation is characterized by DM parti-
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Figure 5.1: Distribution of DM particles in the central parts of the DUSTGRAIN-pathfinder ΛCDM
snapshot at z = 0. We consider a sub-box with edges [300, 400] h−1 Mpc and we represent the X and Y
positions of each DM particle with a blue dot.

cles of mass 8.1× 1010 h−1 M⊙. We show a zoom-in in the central region (100h−1 Mpc)3

of the z = 0 snapshot in Fig. 5.1, where we represent the spatial distribution of the DM

particles projected along the Z-axis.

The cosmological parameters of the simulation are in agreement with the Planck Collab-

oration et al. (2016) results: Ωm = 0.31345, Ωde = 0.68655, h = 0.6731, As = 2.199× 10−9

and ns = 0.9658. We underline that h and ns are slightly different to those reported by

Planck Collaboration et al. (2020), on which we trained our emulator. In particular, they

differ from those of Table 4.1 by 0.07% and 0.09%, respectively. Nevertheless, we will see

that these differences do not have a statistically significant impact on our results.

To reduce computational time during the measure of the 2PCF, we sub-sample the

original particle catalogue down to the 1%. This procedure lowers the spatial resolution

of the sample, but does not affect the 2PCF measure on the spatial scales of our interest.

Indeed, we measure the 2PCF on a range scale r ∈ [15, 120] h−1 Mpc, calculating it on 30
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Figure 5.2: Models and measures of the 2PCF in the ΛCDM DUSTGRAIN-pathfinder simulations at
z = 0 (left), z = 1 (center) and z = 2 (right). We represent the measured 2PCF with black dots and error
bars. The nonlinear model computed with xi_matter is reported with a red solid line, and the emulated
model with a blue dashed line. The bottom panels show the residuals, calculated in terms of σerr, between
the measured 2PCF values and those of xi_matter and emulated xi_matter, in red and blue respectively.

bins. This range is widely covered by our emulator and includes the BAO region. Smaller

scales are more difficult to model because of the stronger nonlinear effects, while on larger

scales the 2PCF signal becomes very low and noisy.

We measure the 2PCF with the Landy & Szalay estimator (see Eq. 2.32) and we

evaluate the statistical errors applying the Bootstrap resampling method (Efron, 1982;

Norberg et al., 2009). In particular, we divide the original catalogues in 125 sub-boxes,

constructing 300 realisations by resampling from the sub-catalogues, with replacement.

To model the measured 2PCF at z = 0, 1 and 2, we can use xi_matter(CAMB non-

linear) function, since our matter tracers are unbiased and in real space. In practice, no

additional corrections to the theoretical model are included to take into account the effects

of the tracer bias, geometrical and redshift-space distortions. In future works, we will also

extend the emulation to models of the two-point correlation function that include these

effects.

We start by assuming the true cosmology of the simulation and compute the nonlinear

2PCF model with the original CBL function xi_matter and its emulated version. Once

again, we multiply ξ(r) by r2 to highlight the BAO scale.

We show in Fig. 5.2 the comparison between the 2PCF measures and the two versions of

the model, at z = 0, 1, 2. We note that the data are well reproduced by the theory at all the
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redshifts, indeed the residuals show a discrepancy lower then 1σerr. The latter is computed

as the difference between the model and the data, divided by the data error, at each value of

r. The small differences between the two models (xi_matter and emulated xi_matter) are

barely visible in the residuals, confirming again the accuracy of the emulator we developed.

5.2 Bayesian Analysis

In this section we apply the Bayesian statistical framework and methods seen in Sect. 3.5

to infer test cosmological constraints from the 2PCF measured in DUSTGRAIN-pathfinder

snapshots. We compare then the MCMC results obtained by using the original xi_matter

with those derived by exploiting the new emulated function, both in terms of accuracy and

efficiency.

5.2.1 MCMC preparation

Let us indicate the set of cosmological parameters of our interest as H = {Ωm,Ωde, As}.
Using the notation introduced in Sect. 3.5.1, we can express the posterior distribution that

we aim at sampling as follows:

P (H|ξsim) =
L(ξsim|H)P (H)

P (ξsim)
. (5.1)

In this equation, ξsim is the data set composed of the 2PCF measures extracted from the

three redshifts of the DUSTGRAIN-pathfinder simulation. Then, L(ξsim|H) is the likeli-

hood, assumed in this work to be Gaussian. The priors on the cosmological parameters,

P (H), are imposed to be uniform (see Eq. 3.14) such that the parameter space is:

[Ωl
m,Ω

u
m]× [Ωl

de,Ω
u
de]× [Al

s, A
u
s ] , (5.2)

where the superscripts l and u denote, respectively, the lower and upper values of the range

in which we trained our emulator. This means that, in this MCMC analysis, Ωm,Ωde and

As are allowed to vary independently inside the interval defined by the prior reported in

Table 5.1, while the other cosmological parameters are kept constant to the true values of

the simulation (see Sect. 5.1).

77



Free parameter Prior range

Ωm [0.2423, 0.3883]

Ωde [0.572, 0.812]

As [1.8e-9, 2.4e-9]

Table 5.1: Free parameters of the model (Ωm, Ωde and As) and corresponding priors used in the

Bayesian cosmological analysis. The prior distributions are flat and cover the entire validity range

of the emulator.

We compute the nonlinear 2PCF model, multiplied by r2, by using both the original

xi_matter function derived with CAMB and its emulated version. The model is calcu-

lated on the same spatial scales of the measured 2PCF and at the redshifts z = 0, 1, 2,

consistently with the data set analyzed.

Then, we sample the posterior distribution of the model free parameters with the

Metropolis-Hastings method (see Sect. 3.5.2), which is available in the CBL with an opti-

mized implementation. At each step of the MCMC, the computation of the model and the

associated posterior probability is entrusted to a number of walkers, which run in parallel

on different threads. This allows us to reduce consistently the computational time, being

different steps of the MCMC computed by different CPUs simultaneously.

We set the MCMC code with 28 walkers, each performing 7000 steps. As the initial

steps of the MCMC are usually necessary for the walkers to identify the region in which the

posterior probability is higher, we remove the first 1000 steps of the output MCMC. This

chunk is commonly denoted burn-in, and its removal is necessary to ensure the results to

be computed with steps in which the MCMC has already converged. The final MCMC is

therefore composed of 168 000 steps. We run the posterior sampling code on the cluster

of calculus of the Physics and Astronomy Department in Bologna, already mentioned in

Sect. 3.3, using also in this case 56 CPUs with a clock frequency of 2.2 GHz.

5.2.2 MCMC results

We present now the outcome of the MCMC analysis, comparing the results obtained by

using the CBL function xi_matter and its emulated version. We show in Fig. 5.3 the

values of the cosmological parameters we left free to vary and the corresponding MCMC
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Figure 5.3: Values of the parameters Ωm,Ωde and As for every MCMC step considered in the Bayesian
analysis. We represent in red the output for xi_matter and in blue the one of its emulated version. We
report the true cosmological value of the DUSTGRAIN-pathfinder as black horizontal lines.
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steps, for the two models considered. We can note that the distribution of points is very

similar for the two cases, and in agreement with the true values of the parameters, i.e.

Ωm = 0.31345, Ωde = 0.68655 and As = 2.199× 10−9. Moreover, the points show a stable

trend with the step number, indicating that the MCMC are converged.

We report in Fig. 5.4 the parameter posterior distributions we sampled through the

MCMC analysis. We highlight how all the 2D confidence contours we obtained are neat and

closed, for both the model functions considered (i.e. xi_matter and emulated xi_matter).

This means that our MCMC algorithm was able to sample accurately the full posterior

distribution of the parameters and that the cosmological degeneracies between them are

not very strong. However, looking at the orientation of the 2D contours, we can note

a small correlation between Ωm–As, and an anti-correlation between Ωm–Ωde and Ωde–

As. The projected 1D distributions represent instead the marginalized posterior for each

parameter (see Sect. 3.5.1), which is well represented by a Gaussian.

Thanks to the test constraints we derived, we can conclude that the model we assumed

is suitable to reproduce the 2PCF measured in the DUSTGRAIN-pathfinder simulations.

Indeed, the true value of all the cosmological parameters we considered falls within the

68% of confidence level.

In this Thesis work, however, the important thing to notice is the similarity between

the posterior distributions obtained with the two functions used to compute the theoret-

ical 2PCF model. Indeed, the confidence contours derived with our emulator are almost

perfectly overlapped to those of the original CBL function xi_matter. This further demon-

strates the accuracy of the DNN model we trained. The small differences we see are totally

within the statistical uncertainly, thus not significant. As an additional validation, we

report in Table 5.2 the mean values and the standard deviations of the cosmological pa-

rameters we derived with the two model functions.

Now the most important comparison to make: the computational time spent to perform

the MCMC analysis in the two cases. The code takes approximately 40 h for the posterior

distribution sampling when using xi_matter, while only 16 s with the emulated version

we provided. The improvement shown in the code efficiency is of utmost relevance. The

lowering of the MCMC execution time is indeed of a factor 9 000. However, as already

mentioned, this time values are dependent on the computational resources employed, like
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Figure 5.4: 68% and 95% 2D confidence regions obtained by modelling the 2PCF measures with
xi_matter (blue) and corresponding emulated function (red). The projected 1D distribution of the param-
eters is shown in the upper panel of each column, with a shaded area representing the 68% of probability
around the maximum. The solid black lines indicate the true cosmological values of the DUSTGRAIN-
pathfinder simulation. These distributions are obtained with an MCMC algorithm, which takes in ap-
proximately 40 hours when run with the CBL function xi_matter, whereas in only 16 seconds with the
corresponding emulated function.

Parameter xi_matter emulated xi_matter true value

Ωm 0.3156± 0.0046 0.3160± 0.0043 0.31345
Ωde 0.692± 0.020 0.690± 0.020 0.68655

As · 109 2.15± 0.10 2.16± 0.10 2.199

Table 5.2: Mean and standard deviation of the parameters Ωm, Ωde, and As, obtained by using
as model function xi_matter (second column) and its emulated version (third column). As a
comparison, we report the true values of the DUSTGRAIN-pathfinder simulations in the last
column.
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the number of CPUs and the clock frequency.

For example, running the same MCMC on a laptop having 8 CPUs with a frequency of

2.4 GHz takes about 30 s, when using the emulator. The application to an MCMC analysis

of the standard xi_matter function (paired with the Boltzmann solver CAMB) is instead

almost precluded to portable personal computers. Therefore, the methodology we propose

in this Thesis work represents a very powerful tool to perform fast and precise statistical

analyses, and will be applied in the near future to a number of cosmological applications.
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Chapter 6

Conclusions

In modern Cosmology, Bayesian inference (see Sect. 3.5) is the primary statistical frame-

work for determining the parameters of the cosmological model. This is achieved by sam-

pling the posterior probability distribution of the model parameters. Such sampling pro-

cedure often needs of a big computational effort, as it requires to repeat the calculation of

cosmological functions millions of times. Even with optimized codes and large computa-

tional resources, this process can take several hours.

For this reason, recent years have seen a surge in the use of ML techniques to reduce

the execution time of such analyses (see Sect. 3.1). This has been achieved by reproducing

the original cosmological functions with DNN models (see Sect. 3.2). These models are

known as emulators and are developed to reduce the computation time while maintaining

a negligible loss of accuracy, when compared to the original functions. As a result, many

resources have been conducted to provide accurate and efficient emulators (e.g. Euclid

Collaboration et al., 2021; Bonici et al., 2022; DeRose et al., 2022; Nygaard et al., 2022).

In this Thesis work we built an emulator of the models implemented in the

C++/Python set of libraries CosmoBolognaLib (CBL, Marulli, Veropalumbo & Moresco,

2016, see Sect. 3.1), with the aim of speeding up the cosmological analyses performed

with codes based on these libraries. We added to the CBL a new C++ class to create

and use emulated functions. We focused in particular on emulating the CBL function

that provides the basic theoretical model for the 2PCF (see Sect. 2.1.3), xi_matter. This

function is based on the output of a Boltzmann solver, which computes the matter power
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spectrum as a function of the cosmological model parameters, in both linear and nonlinear

theory. Although very precise, xi_matter is limited by the computation time required by

the Boltzmann solver. In this work, we relied for example on CAMB (Lewis, Challinor &

Lasenby, 2000), which takes some seconds to execute in the configuration of our interest.

To emulate the output of the function xi_matter obtained with CAMB, we prepared

a DNN architecture with 4 hidden layers, composed of 20 neurons each, and with the

activation function presented in Eq. (3.5). We trained the DNN model in a supervised

learning context, exploiting the methods and algorithms implemented in the numerical

libraries CosmoPower (Spurio Mancini et al., 2022).

We focused on the emulation of the 2PCF linear and nonlinear models on the scale

range r ∈ [0.1, 200] h−1 Mpc, and for the variation of the redshift z and the cosmological

parameters Ωm, Ωde and As. We trained the DNN model on 2× 105 points, created with

the LHS method (see Sect. 4.3.1) to cover the parameter space defined in Table 4.1. We

imposed Ωm, Ωde and As to span in a range wide ±10 times the standard deviation of the

parameters presented in Planck Collaboration et al. (2020), while the redshift in the range

z ∈ [0, 2].

Then, we validated our DNN model on another set of 2 × 104 points, comparing the

RMSE to the one of the training data set. We found a gap of 10−5 between the two,

which demonstrates the achievement of a balanced fit. Moreover, the median percentage

error between the original function and its emulated version, computed in the full range of

parameters we analyzed, was demonstrated to be lower than the 0.2% at all spatial scales.

We detected a slight worsening in the precision of the emulator only on the BAO region,

which is in fact more difficult to model. The discrepancy is however lower than the 0.7%

for the 68% of the parameter combinations we tested.

Finally, we applied our emulator to a Bayesian analysis. We measured the 2PCF at

three redshift of the DUSTGRAIN-pathfinder simulations (Giocoli, Baldi & Moscardini,

2018; Hagstotz et al., 2019) and we applied the MCMC technique (see Sect. 3.5.2) to sample

the posterior distribution of the parameters Ωm, Ωde and As. We assigned uniform prior

distributions to these parameters, spanning on the same ranges used in the DNN training

phase. We compared then the outcomes achieved by assuming the nonlinear 2PCF model

with xi_matter and its emulated version. In both the cases, we recovered the true values of
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the cosmological parameters within the 68% of uncertainty. Moreover, the two sets of the

obtained confidence contours were almost perfectly overlapped and the mean parameter

values were almost identical, and totally compatible within the statistical errors.

The most important result, however, was the improvement measured in the computa-

tional time required to run the MCMC analysis for the two model functions. When using

the original CBL function xi_matter, the code took approximately 40 h, while with the

implemented emulator only 16 s. With an increment of a factor 9 000, our emulator has

been confirmed to provide an extraordinary tool to speed up statistical analyses, laying

the groundwork for a number of future applications in Cosmology.

6.1 Future perspectives

The Emulator class we developed will be made public with the release of the new CBL

version. With it, the two examples outlined in Sect. 4.4, one to appreciate the accuracy of

the model and the other to appreciate its computational speed, will be available to help

the user to get familiar with the code. Thanks to the extraordinary small computational

resources required, our emulator can be exploited on any laptop or on-line server (e.g.

Google Colab).

Future developments of our emulator will first concern the extension of the validity

range of the DNN model, involving both a larger number of parameters and wider param-

eter intervals. This, however, will undermine the accuracy of the emulator, as the output

behaviour of the target function will become comprehensively more complex, and so more

difficult to reproduce. To address this issue, we will test different DNN architectures to

optimize even further the performances of our code. Alternatively, we can provide different

trained models for the same function, so as to lower the complexity of the single emulated

model and consequently select the most suitable one for a given analysis.

Another natural improvement of our emulator will involve the usage of different Boltz-

mann solvers, like CLASS or MGCAMB (i.e. a modified version CAMB applicable to a

number of alternative cosmological scenarios, Zhao et al., 2009; Hojjati, Pogosian & Zhao,

2011; Zucca et al., 2019). Then, we will extend our implementation by emulating more

complicated 2PCF models, including e.g. the effects of the tracer bias, redshift-space and
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geometrical distortions (see e.g. Scoccimarro, 2004; Sánchez et al., 2014). But also by

emulating different cosmological functions, to model e.g. the 2PCF multipoles (Taruya,

Nishimichi & Saito, 2010; Pezzotta et al., 2017), the 3PCF (Slepian & Eisenstein, 2017),

the matter power spectrum (Beutler et al., 2017; Vargas-Magaña et al., 2018), the halo

mass function (Tinker et al., 2008; Despali et al., 2016), the void size function (Sheth &

van de Weygaert, 2004; Jennings, Li & Hu, 2013), and many others. All these models are

already present in the CBL and our methodology can be easily applied to all of them. Our

goal will be therefore to prepare a large set of pre-trained models to emulate the cosmo-

logical functions implemented in the CBL, and at the same time to provide the users with

all the tools necessary to train, validate, and use any model of their choice.

The methodology we presented in this Thesis work could be potentially applied to an

unlimited number of cases, allowing us to validate the theoretical models of our interest

for different cosmological models, as well as on different scales and redshifts, without the

wasting of execution time and computational resources. This will be of key importance in

the perspective of the large amount of data expected from the new-generation telescopes,

like JWST, Euclid and LSST.
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