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The most exciting phrase to hear in
science, the one that heralds the most
discoveries, is not “Eureka!” (I found
it!) but “That’s funny . . . ”

Isaac Asimov
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Abstract

Revealing the nature of dark matter (DM) is among the most puzzling issues of today’s
particle physics, astrophysics and cosmology. Given the striking pieces of evidence for
DM at all astrophysical scales, starting from galactic and going to cosmological scales, a
widespread and well-motivated assumption on the nature of the DM is that it is made by
a new particle that extends the Standard Model (SM) of particle physics content. Direct
detection of DM is a crucial probe to look for DM interactions with SM particles by
searching for nuclear recoils generated by the elastic scattering of DM particles in Earth-
based underground detectors. If such a signal is measured, it could provide insights into
the underlying particle physics model and the DM mass scale. More precisely, usual direct
detection methods are mostly sensitive to DM masses above 6 GeV, with a maximum of
sensitivity around 50-100 GeV. Below 6 GeV, the signal produced by the nuclear recoil
is below the experimental threshold. In the past few years, a new detection method has
attracted a lot of attention: the search for electronic recoils that can be induced by light
DM particles, around the GeV or sub-GeV scale. In this master thesis project, we will
focus on developing the phenomenology of electronic recoils induced by DM particles.
The main scope is to implement such signal within the MadDM package, which is so
far capable of computing nuclear recoils for generic DM models.
We consider a specific class of electronic recoils, namely ionization signals, that arise in
dual-phase liquid/gas detectors like XENON1T. Following the same procedure employed
for coding the nuclear recoil signal, we will implement the dominant interaction term of
electronic recoil rate for spin 0 and spin 1/2 DM particles. There are several building
blocks needed to achieve the automatic computation of the scattering rate. The first
step is the computation of the scattering matrix element square: it requires the building
of simplified DM electron models as well as models with four-fermion interactions in
FeynRules and the generation of UFO files for all models, as MadDM takes those as input
files. At the MadDM level, these files are then read to generate the elastic scattering
amplitudes for the simplified and effective models and take the interference term in such
a way to single out the dominant DM-electron scattering term. The second step is to
embed the electron, which is supposed to be free in the previous calculation, into the
atom: this is achieved by encoding the ionization form factor for the xenon atom.
Finally, the expected rate in the XENON1T detector can be computed by encoding
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its likelihood. This is the first time that the functionality of predicting the electronic
recoils for generic high energy DM models in the UFO format will be made public in a
numerical tool such as MadDM. The user is able to compute the expected DM electron
rate for his/her favourite model and set automatically bounds on light DM from direct
detection searches. We proceed further on this thesis by categorizing and implementing
all possible dominant terms describing the scattering of a DM particle of spin 0 or 1/2
and an electron. In the last chapter we describe a scalar dark QED model, and we make
constraints on its parameters using the new MadDM extension.

3



Contents

1 Current State of Art of DM 6
1.1 Evidences of DM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Galaxies rotation curves . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Cosmological evidences for DM . . . . . . . . . . . . . . . . . . . 9

1.2 Boltzmann’s equation and freeze-out . . . . . . . . . . . . . . . . . . . . 13
1.2.1 Freeze-in mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 The DM search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.1 Indirect detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.2 Collider searches . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.3 Direct detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Direct Detection of DM 23
2.1 DM velocity distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Kinematics of DM scattering in direct detectors . . . . . . . . . . . . . . 25

2.2.1 DM - nucleus scattering . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 DM - electron scattering . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Non-relativistic effective theory for DM - electron interaction . . . . . . . 30
2.4 Matching the relativistic and non-relativistic theories . . . . . . . . . . . 32

2.4.1 Effective relativistic operators for fermion DM . . . . . . . . . . . 32
2.4.2 Effective relativistic operators for scalar DM . . . . . . . . . . . . 34

2.5 DM induced electronic transitions . . . . . . . . . . . . . . . . . . . . . . 34
2.6 DM and Atomic Response Functions . . . . . . . . . . . . . . . . . . . . 37

3 Direct Detection of DM with MadDM 45
3.1 Introduction on MadDM . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Computation of low energy coefficients . . . . . . . . . . . . . . . . . . . 46
3.3 Derivation of the expected signal with MadDM . . . . . . . . . . . . . . 48

3.3.1 Derivation of the differential rate . . . . . . . . . . . . . . . . . . 48
3.3.2 XENON10 and XENON1T experiments . . . . . . . . . . . . . . 49
3.3.3 From differential rate to S2 signal . . . . . . . . . . . . . . . . . . 51

3.4 Derivation of exclusion limits from XENON10 and XENON1T data . . . 56

4



3.4.1 Evaluation of the p-value . . . . . . . . . . . . . . . . . . . . . . . 56

4 Analysis of DM models 59
4.1 Scattering amplitude of simplified Dirac DM-e models . . . . . . . . . . . 59

4.1.1 Vector mediated DM . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.2 Scalar mediated DM . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1.3 Pseudo-scalar mediated DM . . . . . . . . . . . . . . . . . . . . . 62

4.2 Exclusion limits on non-relativistic coefficients . . . . . . . . . . . . . . . 64
4.3 Scalar dark QED model . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Evaluating the relic density . . . . . . . . . . . . . . . . . . . . . 66
4.3.2 Exclusion limits from direct detection . . . . . . . . . . . . . . . . 68

5



Chapter 1

Current State of Art of DM

1.1 Evidences of DM
DM is one of the biggest mysteries in modern physics. Even with the most advanced
technologies and precise machines humanity has been able to build, DM has always
found a way to elude us. But DM is not a new topic; it has been around for many
decades. It was studied even by Lord Kelvin, who made an estimation of the mass of
the Milky Way from the measurements of the velocity dispersion of visible stars. In a
talk given in 1884, he stated: “Many of our supposed thousand million stars, perhaps a
great majority of them, may be dark bodies” [1]. In this chapter, we will briefly review
the current knowledge about DM, showing the constraints placed on its properties from
cosmology and astrophysics and presenting the role DM plays in theories beyond the
Standard Model (BSM).

1.1.1 Galaxies rotation curves

The problem of DM started in the 20th Century, when astronomers calculated with
high precision the total mass of galaxies and galaxy clusters by using dynamics and
their understanding of gravity, and then compared this total mass with the amount of
luminous matter belonging to the studied system: this is known as the mass-to-light
ratio. Even if more accurate methods were used, the mass-to-light ratio still showed
that something “dark” must exist inside galaxies [2, 3]. After a considerable amount
of time, advancements in radio astronomy and spectroscopy made it feasible to obtain
accurate calculations of stars and neutral hydrogen rotational rates, which displayed
obvious indications that the matter distribution in galaxies was not consistent with the
luminous matter [4, 5]. Entities located in the outer regions of spiral galaxies revolve
around a central point, with a circular velocity denoted as vc. According to Newtonian
gravity, this is given by

6



v2c (r) =
M(r)G

r
, (1.1)

where G is the gravitational constant and M(r) represents the mass enclosed within a
distance r from the galactic centre. The mass distribution is assumed to be spherically
symmetric, such that

M(r) =

∫ r

0

4πr′ 2ρ (r′) dr′, (1.2)

where ρ is the matter density. Astronomers used the rotation curve, which shows the
measured velocity vc of objects at different distances, to infer the mass distribution of
a galaxy. For many galaxies, the rotation curve is observed to be approximately flat at
large distances, far beyond where the majority of stars are located, indicating a constant
circular velocity vc(r) = const., as illustrated in Fig. 1.1.

Figure 1.1: Rotation curve for the NGC 6503 galaxy. Also shown is the predicted rotation
curve from different components of the galaxy. Figure from Ref. [12].

This implies a mass density given by

ρ(r) =
const.2

4πGr2
, (1.3)

which has no luminous counterpart in either gaseous or stellar matter. The assumption
of spherical symmetry, used to derive this equation, is a good first approximation for the
mass distribution of galaxies.
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The development of N-body simulations provided further evidence for the existence of a
large symmetrical structure in galaxies, known as the DM halo [6–8]. These simulations
showed that rotating spiral galaxies would be unstable without the addition of a DM
halo. The amount of non-luminous matter in galaxies was uncertain, but many mass-
to-light ratios were reported between 3 − 10 [9], highlighting the need for a significant
amount of DM.
Another solution to the missing mass problem is the Modified Newtonian Dynamics
(MOND) [10, 11], which affects small acceleration scales. Although initially introduced
as a phenomenological model, researchers have attempted to incorporate MOND into
a more fundamental theoretical framework. However, the initial formulation of MOND
was non-relativistic and therefore inconsistent with General Relativity (GR).
The phenomenon of gravitational lensing, where the light from distant stars is bent by
a massive object, is one of the successful predictions of GR. By using this phenomenon,
the total mass of the foreground galaxy or cluster can be determined and compared with
the luminous matter measured in the object [12]. However, modified gravity theories,
such as TeVeS (Tensor-Vector-Scalar gravity [13]), struggle to reproduce the gas density
distributions found in galaxy clusters, especially during cluster mergers [14]. For instance,
the Bullet Cluster collision shows a discrepancy between gravitational lensing and X-ray
astronomy observations; while lensing shows that the two clusters passed through each
other unaffected, X-ray images depict a violent collision. We can see the difference
between the two measurements in Fig. 1.2

Figure 1.2: Collision of the bullet cluster. The left side shows stellar matter, while the
right side displays the distribution of hot gas observed through X-rays and represented
by a range of colours. The green outlines illustrate the density of matter determined by
gravitational lensing. It is evident that most of the mass in the clusters passes through
each other without any impact. Figure from Ref. [15].

With more and more studies of cluster mergers [16] it became clear that the TeVeS
approach was not the right one.
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MACHOs (massive astronomical compact halo objects) have been suggested as another
possible explanation for these phenomena, and experimental studies searching for micro-
lensing effects were conducted [17, 18]. Those studies constrained MACHOs in the mass
range 10−7 to 1 Msun, and conclude that this type of MACHOs constitutes about the
8% of DM halo mass, therefore the DM mystery still was not solved. Fortunately, it is
possible to get stronger evidences for DM by studying the Big Bang Cosmology.

1.1.2 Cosmological evidences for DM

The existence of DM also plays a crucial role in the evolution of the Universe. This
phenomenon can be inferred for instance by using Hubble’s law and by analysing the
Cosmic Microwave Background (CMB).
The Universe that we observe today is both homogeneous and isotropic at very large
scales (>Mpc1). We refer to this fact as Cosmological Principle [19]. In this assumption,
it is possible to solve the Einstein’s field equations, obtaining the Friedman-Lemaître-
Robertson-Walker (FLRW) metric:

ds2 = dt2 − a2(t)
(

dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

)
. (1.4)

The term a(t) is a scale factor, and a (t0) = 1, where t0 is the present time. The term k
is the curvature, which is > 0, 0 or < 0 for respectively a closed, flat or open Universe.
We can define the Hubble parameter as

H(t) =
ȧ

a
, (1.5)

that is frequently expressed in terms of the dimensionless parameter h(t), which is defined
as

h(t) =
H(t)

100 km s−1Mpc−1 . (1.6)

Substituting the FLRW metric into Einstein’s field equation, and considering the time-
component, we obtain the Friedmann equation, which describes the evolution of the scale
factor a(t):

ȧ2 + k =
8

3
πGρa2, (1.7)

where ρ is the energy density of the Universe. Substituting the definition of the Hubble
parameter, we obtain

11 pc = 3.086× 1016 m
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1 +
k

H(t)2a(t)2
=

ρ(t)

ρc(t)
, (1.8)

where ρc is the critical density, defined as

ρc =
3H(t)2

8πG
. (1.9)

If we assume a flat Universe (k = 0), we obtain that the energy density ρ must be equal
to the critical energy

ρ = ρc = 1.054× 10−5h2 GeV cm−2, (1.10)

and we introduce the dimensionless density parameters

Ωi(t) ≡
ρi(t)

ρc(t)
, (1.11)

where i = m, r,Λ stands for matter, radiation and dark energy.
The density and flux of energy and momentum of the Universe is described by the energy-
momentum tensor T µν , which appears inside the Einstein’s field equation. We consider
the approximation of perfect fluid, therefore

T µν = diag(ρ,−P,−P,−P ), (1.12)

where P is the pressure that characterises normal stress. Taking the time component of
the continuity equation, ∆µT

µν = 0, where ∆µ is the covariant derivative, we obtain the
conservation of energy

∂ρ

∂t
+ 3

ȧ

a
(ρ+ P ) = 0. (1.13)

The equation of state p = wρ could be applied to different forms of energy density, such
as matter (w = 0) or radiation (w = 1/3). Applying the conservation of energy, we
obtain the following equation

ρ̇/ρ = −3(1 + w)H. (1.14)

Solving this equation we obtain that ρm ∝ a−3 for matter, ρr ∝ a−4 for radiation and
ρΛ = const. for dark energy. Hence, by measuring the densities of today, one can solve

H(a) = H0

[
Ωm0

a3
+

Ωr0

a4
+ ΩΛ0

]1/2
, (1.15)

to calculate how the scale factor has changed over time.
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The early Universe was not only very dense, but also very hot; this high temperature
initially produced quarks, which then hadronized into baryons at lower temperatures. A
few minutes after the Big Bang, the Universe cooled enough to support simple nuclei
forming in a process known as Big Bang Nucleosynthesis (BBN) [20]. These light ele-
ments were formed from the primordial plasma, first forming protons and neutrons, then
deuterium, helium-3, helium-4, and lithium. The abundance of deuterium is the cleanest
prediction to test BBN; in fact, it is not known to be produced by any astrophysical
source, therefore the only way it can be produced in the Universe was during BBN. The
observed abundance of deuterium D/H ∼ 10−5 can be explained by a baryon density of
Ωbh

2 ∼ 0.02 [21, 22]. Figure 1.3 shows the consistency between measurements of the
baryon density Ωb coming from the CMB [23] and the deuterium abundance [24].

Figure 1.3: Concordance between Deuterium to Hydrogen abundance found in Ref. [24]
and the Planck collaborations result reported in Ref. [23]. The black curve corresponds
to BBN calculations of primordial abundances as a function of baryon density

The CMB is the afterglow that came from the recombination epoch, approximately
380, 000 years after the big bang [25, 26]. In this epoch, electrons and protons begin
to bind electrically, forming hydrogen atoms. Before this period, photons were trapped
between the baryonic matter due to Thompson scattering with charged ions, but after
recombination, neutral hydrogen atoms were formed, therefore photons began to travel
freely through the Universe, which indeed became transparent.
Because the CMB happened a long time ago, to this day the temperature distribution
that we measure is incredibly homogeneous. The small temperature fluctuations in the
CMB provide important information about the structure of the early Universe.
It is possible to analyse the CMB using the angular power spectrum, in which the
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multipole order ℓ can be related to the angular size. Figure 1.4 shows the power spectrum,
where Dl is the variance in temperature.

Figure 1.4: Angular power spectrum of the CMB temperature fluctuations taken from
Ref. [27]. The curve represents the best assuming ΛCDM topological model. Residuals
are shown in the bottom panel.

The first peak was measured by WMAP, where they reported a flat curvature [28, 29]. By
measuring subsequent peaks, it is possible to extract the values of the density parameters
Ωi; in the case of ΩDM, only the first peaks are sufficient. This is due to the fact that by
using the relative heights of the peaks, one can disentangle multiple effects. While the
relative baryon density produces an enhancement of odd peaks due to baryon loading in
oscillations, the total matter density can be inferred by observing which perturbations
entered the horizon before equality. This is a consequence of Gravitational Driving [30].
Thanks to the experimental measurement of Planck, we can finally get the most stringent
measurements on the total DM density [27],

ΩDMh
2 = 0.1199± 0.0027. (1.16)
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By comparing the value of the DM density to the baryon one, we see that, even at very
early times, baryons were a sub-dominant component of matter in the Universe.
Based on the experimental evidence, it is clear that DM plays a fundamental role in
the evolution of the Universe. However, the nature of DM remains unknown. The
prevailing hypothesis is that DM is a new fundamental particle that isn’t described by
the SM. In this scenario, based on the measurements of mass-to-light ratio of galaxies,
we deduce that DM must be a massive particle, and because we have not observed light
emission from DM, we deduce that it is a neutral particle, or at least couples weakly with
photons. In the case in which DM particles interacts weakly with SM particles, they are
also referred to as WIMPs (weakly interacting massive particles), and is the scenario
that we will consider in this thesis. Thanks to the measurements of cluster collision, we
also conclude that DM particles does not interact, or interact weekly with themselves.
Using the experimental data, we can put bounds on the strength of DM self-interaction
[31]:

σself
mDM

< 1 cm2 g−1, (1.17)

where σself is the DM self-interaction cross-section and mDM is the DM mass. In a first
approximation, we can assume that DM is a collisionless particle. Another propriety that
characterize DM is that it is non-relativistic. For this reason, we say the DM particle
is “cold”. This last propriety can be obtained by studying the effect of DM particles on
structure formation in the Universe [32, 33].

1.2 Boltzmann’s equation and freeze-out
If DM is a particle, it should have been formed during the early Universe, and it should
have produced the relic abundance measured by Planck. We can use thermodynamic
principles to describe the DM as a particle in the early Universe. If there is a non-
gravitational coupling between DM and SM matter, we can describe the DM number
density nχ using Boltzmann equations:

ṅχ + 3Hnχ =
gχ

(2π)3

∫
C[f ]

d3pχ
Eχ

, (1.18)

where gχ is the internal degrees of freedom, pχ is the DM three-momentum and Eχ is the
DM energy. C is the collisional operator, which depends on the specific BSM model, and
modifies the number density nχ through its action. For instance, if a DM particle χ and
SM particles f annihilate only via 2→ 2 processes, the Boltzmann equation becomes

ṅχ + 3Hnχ = n2
f⟨σv⟩ff̄→χχ̄ − n2

χ⟨σv⟩χχ̄→ff̄ , (1.19)

where ⟨σv⟩ is the thermally averaged cross-section defined by
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⟨σv⟩χχ̄→ff̄ ≡
1

nχ,Eqnχ̄,Eq

∫
d3pχ̄
2Eχ̄

d3pχ
2Eχ

σχχ→ff exp [− (Eχ + Eχ̄) /T ] , (1.20)

where T is temperature. Assuming that CP is not violated, ⟨σv⟩ff→χχ = ⟨σv⟩χχ→ff ,
that leads to the following simplification

ṅχ + 3Hnχ = ⟨σv⟩
(
n2
f − n2

χ

)
. (1.21)

Because SM particles in the early Universe are in equilibrium, they follow the correspond-
ing thermal number densities, that are different for relativistic (rel) and non-relativistic
(nr) particles

nrel =gεFB
ζ(3)

π2
T 3,

nnr =g

(
mχT

2π

)3/2

e(µ−m)/T ,

(1.22)

where εFB is a numerical factor equal to 3/4 for fermions and 1 for bosons. For a
particle species to be in thermal equilibrium, it must satisfy the condition that its particle
interaction rate, which, in the case of our 2 → 2 example, is the annihilation rate
nχ⟨σv⟩, is greater than the expansion rate H(t). As the Universe expands and cools, the
annihilation rate can decrease below H(T ), at which point the particle will no longer
interact quickly enough. This results the comoving number density Y = n/T 3 to become
constant, or, in other words, the comoving number density “freezes-out”. This fact can
be seen by modifying Eq. (1.21), obtaining

dY

dT
=
⟨σv⟩s
HT

(
Y 2
χ − Y 2

eq,χ

)
. (1.23)

In this calculation, we utilized the principle of entropy conservation, which states that
sR3 remains constant. We also made the assumption that the process occurred during
the radiation dominant era, where Ṫ = −HT .
When dealing with relativistic particles, the quantity Yeq,χ is not dependent on temper-
ature. Therefore, the final value of Y at a later time is equal to the equilibrium value
at the moment of freeze-out. The number density of a species that remains in equilib-
rium and one that becomes decoupled differ in the present day because the number of
radiation degrees of freedom that contribute to the radiation energy density, g∗, and the
radiation degrees of freedom that contribute to the radiation entropy density, gs∗, change
over time. The number of degrees of freedom are approximately given by
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g∗ =
∑

bosons

gi

(
Ti
T

)4

+
7

8

∑
fermions

gi

(
Ti
T

)4

,

g∗s =
∑

bosons

gi

(
Ti
T

)3

+
7

8

∑
fermions

gi

(
Ti
T

)3

,

(1.24)

where Ti is the temperature of decoupled relativistic particle species i, that are no longer
in thermal equilibrium. The behaviour of g2∗s/g∗ over temperature is shown in Fig. 1.5.

Figure 1.5: Ratio between the squared radiation energy density, g∗, and the radiation
degrees of freedom that contribute to the radiation entropy density, gs∗ [34]. The dashed
line comes from simply counting both relativistic degrees of freedom in Eq. (1.24) as
contributions to the energy and entropy density, respectively. Ref. [35] calculates these
contributions more precisely and considers the QCD phase transition at different tem-
peratures, which we show with solid lines. The level of agreement between the dashed
line and the solid lines appears to be within an acceptable range.

As a concrete example, we could try to explain the DM density using only neutrinos,
because they are the only SM particle that could mimic the DM behaviour, given that
it is a neutral massive particle that interacts weakly with SM particles. Knowing that
the neutrinos freeze out at T ∼ 1MeV, it is possible to compute their density as

Ωνh
2 =

∑
i s0Yeq (Tf )h

2mνi

ρc
=

∑
imνi

91eV
, (1.25)
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where we have summed over different generations of active neutrinos. In the case in
which the neutrinos exclusively contribute to the DM density, i.e. Ωνh

2 = 0.11 we would
need the sum of the masses of the three generations to be ∼ 9 eV, which is of orders of
magnitude higher than experimental upper bounds of 0.12eV [36].
Another reason for which neutrinos can not contribute entirely to the DM density is
that, by studying structure formations, we know that DM must be a cold particle, while
neutrinos are relativistic. In the non-relativistic case, the equilibrium comoving number
density is

Yeq,nr =
45g

2π4g∗

√
π

8

(m
T

)3/2
e−mχ/T . (1.26)

If we define the variable x = mχ/T , Eq.(1.23) becomes

dY

dx
= −λx−2

(
Y 2
χ − Y 2

eq,χ

)
, (1.27)

where

λ ≃ 0.264
(
g∗s/g

1/2
∗
)
MPlmχ⟨σv⟩, (1.28)

in which we plug the values of g2∗s/g∗ shown in Fig. 1.5. After freeze-out, Yeq(x) is
exponentially suppressed, therefore Eq. (1.27) becomes

dY

dx
= −λx−2

(
Y 2
χ

)
. (1.29)

In the-non relativistic limit, we can expand ⟨σv⟩ in powers of v via the plane-wave
expansion,

⟨σv⟩ ≈ ⟨σv⟩s + ⟨σv⟩pv2 + . . . , (1.30)

where the subscripts names are given using plane-wave scattering nomenclature. Since
v2 ∼ T/m, the highest order of λ(x) is independent of velocity, i.e. x0. We can solve
Eq. (1.29), and the solution is shown in Fig. 1.6. We see that the comoving number
density drops exponentially until the freeze out point, at which it becomes constant. For
increasing values of λ the relic density becomes lower, due to a later freeze-out.
For a broad range of masses and cross sections, the temperature at which freeze-out
occurs is roughly Tf ∼ 20mχ. Although Y∞ is quite sensitive to the mass mχ, the
CMB constraint is not particularly sensitive to it, since ρχ = s0Y∞/mχ. This leads
to an approximate value of ⟨σv⟩ ≃ 1 × 10−26 cm3 s−1 for a DM mass across the GeV
to TeV range. This value for σ is very similar to that of electroweak processes. This
coincidence has been named the “WIMP miracle”, which was initially quite promising
for the numerous extensions of the SM that predicted new physics at the weak scale.
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Figure 1.6: Numerical solutions to Eq.(1.29) for different values of mχ on the left and
⟨σv⟩ on the right. We see that a sub-GeV DM freezes-out at approximately x = 20,
drawn with a dotted line [34].

If we approximate the annihilation cross-section of a weak-scale interaction as σ ∼ G2
Fm

2
χ,

we arrive at the Lee-Weinberg bound, which states that the DM mass mχ must be above
few GeV [37, 38]. Additionally, requiring that unitarity is respected gives an upper bound
of mχ ≲ 100TeV [39]. However, both of these bounds can be avoided. For instance, they
can be alleviated for composite DM candidates, in which the DM particle content is given
by more than one species of DM, with a certain hierarchy of masses like in the SM [40],
and the lower bound can be circumvented for specific scalar models [41]. Nonetheless,
these two bounds typically define the mass range that is considered when discussing
WIMPs. This range is where numerous experiments are most sensitive and therefore
capable of investigating these thermally generated candidates.

1.2.1 Freeze-in mechanism

It is not necessary to assume that DM was in thermal equilibrium with the SM at some
point to achieve the correct relic abundance. If the coupling to the SM is weak enough
that equilibrium is never reached, DM will be produced effectively through a one-way
process in the thermal bath. This results in a slow approach to a stable abundance, which
is referred to as Freeze-in mechanism. FIMPs (Feebly Interacting Massive Particles) are
DM candidates that couple extremely weakly to the SM and can produce the correct
relic abundance for a broad range of masses, usually ranging from eV to TeV [42, 43].
Although FIMPs have never reached thermal equilibrium, they have been generated
with some energy from the SM bath. If scattering is feasible among the FIMPs, they
may thermalize and reach equilibrium [44]. Other types of FIMPs may be metastable
and decay into a thermal DM candidate, such as the scenario of SuperWIMPs [45].
SuperWIMPs increase their abundance through metastable decay, implying that their
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connection to the SM can be limited.

1.3 The DM search
There are numerous ways in which DM could exist in our Universe. The above-mentioned
production mechanisms demonstrate that we have not restricted the possibilities signif-
icantly, which motivates further experimentation. Many or most of the experimental
searches focus on WIMPs, that is the case considered in this thesis.
In this section, we will briefly describe the main three approaches for detecting DM:
indirect detection, production at collider, and direct detection.

SM

χ

SM

χ

Figure 1.7: Diagram representing schematically the interaction between a DM particle
χ and a SM particle. Reading it from top to bottom, the DM particles annihilate into
two SM particles. From bottom to top, DM particles are produced from SM ones. From
left to right, a SM particle scatters with a DM one.

1.3.1 Indirect detection

This method of detection is used for models where DM can decay or annihilate into SM
particles. This process can be seen by reading Fig. 1.7 from top to bottom. Many
thermal freeze-out models would generate detectable signals, but only for those with S-
wave thermal cross sections, given that the other cross sections are suppressed by powers
of the DM velocity v, as shown in Eq. (1.30). If the products of annihilation or decay
are photons or neutrinos, they would travel to Earth mostly undisturbed. Satellites or
ground-based telescopes look for regions of high DM density such as the Milky Way centre
to test DM models. The Fermi Large Area Telescope (Fermi LAT) [46] can constrain the
annihilation into photons for a vast DM mass range. Dwarf spheroidal galaxies are ideal
DM structures to look for signals [47] because they have fewer sources of gamma-ray
background, but their DM structure uncertainties are higher. For masses above 1 TeV,
HESS [48] and HAWC [49] experiments are more sensitive. Neutrino detectors such as
IceCube [50] and Antares [51] can detect high-energy neutrinos and identify the direction
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of the source, allowing them to restrict certain sources like the Galactic centre or the
Sun, which may contain a higher DM density within it [52].
The detection of antiprotons and positrons in the interstellar medium provides valuable
information for constraining DM models. In models where DM can annihilate or decay
into SM particles, equal amounts of DM and anti-DM, as seen in the case of WIMPs,
could result in an excess of SM antiparticles beyond astrophysical predictions. The AMS-
02 [53] and PAMELA [54] experiments have successfully constrained DM models within
the mass range of 100MeV − 1TeV.

1.3.2 Collider searches

Collider searches focus on the processes wherein DM is generated via collisions of SM
particles. This process is described in Fig. 1.7 by reading it from bottom to top. If the
mediator particles that connect DM to SM are heavy, as is the case in many scenarios,
high-energy collisions are necessary for an efficient production of DM. Currently, the
LHC is actively searching for such signals [55, 56].
In terms of detection, DM particles are similar to neutrinos, as they lack any electromag-
netic or colour charge. If DM is the lightest and most stable particle of new states, then
the collider signature would be a cascade decay of the heavier new states, ultimately
yielding multi-parton or multi-lepton final states alongside missing energy.
Colliders have several advantages for DM searches. Firstly, they are equipped with mul-
tipurpose detectors capable of measuring numerous observables and reconstructing the
kinematics of the DM production process. Secondly, colliders possess high luminosities,
which is a crucial parameter in collider experiments that expresses the rate of events
per second. High luminosity implies a vast amount of data, which may contain many
DM-related events. Finally, simulations can be used to thoroughly examine background
processes.
The combination of these three features renders colliders a promising method for DM
searches. If we discover a new particle with DM properties through colliders, we will
acquire a plethora of information about that particle. Nevertheless, detecting the signa-
ture of DM is a challenging task, and revealing a particle that does not decay within the
detector volume does not necessarily imply that it is stable on a cosmological timescale.
This is the primary prerequisite for DM in order to explain the DM relic density.
Collider searches have not yet detected any non-SM signals, leading to only constraints
on DM models.

1.3.3 Direct detection

The direct detection method aims to observe scattering interactions between DM from
the galactic halo of the Milky Way and ordinary matter by measuring the energy de-
posited from the scattering, as shown in Fig. 1.7 by reading it from left to right. Typ-
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ically, elastic scattering is assumed. Direct detection experiments are placed in under-
ground facilities [57, 58] in order to avoid cosmic ray background. There has been a
worldwide experimental effort to achieve extremely sensitive experiments, which have
probed DM interactions with ordinary matter with unprecedented precision. Even if
we made huge progresses, the sensitivity of DM detectors will be hindered by unavoid-
able backgrounds from astronomical neutrinos [59–61]. Initially labelled as the “neutrino
floor”, this phenomenon is now commonly referred to as the “neutrino fog” to better rep-
resent that, rather than being an inflexible limit on the sensitivity of direct detection, the
neutrino background imposes a gradual penalty that we can overcome only by increasing
the exposure of the experiments.
So far, no signals of DM have been detected, therefore stringent upper bounds on the
DM elastic scattering cross section with nuclei have been reported. For DM-nucleus
interactions, we distinguish between spin-independent and spin-dependent cross sections:
in the first case, the DM scattering with the nucleus isn’t dependent on the spin of the
two particles, and the DM scatters coherently with the whole nucleus, therefore the
cross section is proportional to the mass number A of the nucleus. In the second case,
the interaction depends on the spin of the two particles, so DM scatters only with the
unpaired nucleons in the nuclear shell, given that nucleon pairs have spin 0, therefore
SD cross section is generally suppressed with respect to the SI one.
Figure 1.8 provides a summary of the current status of spin-independent DM cross section
limits and the projected sensitivity of future experiments. The blue contour map of Fig
1.8 presents the neutrino fog for a xenon target, indicating that neutrino backgrounds
are a significant challenge for direct detection experiments. At contour n, obtaining a
10× lower cross section sensitivity requires an increase in exposure of at least 10n. The
black wide-dashed line shows the n = 2 fog contour for argon.
Currently, the spin-dependent case is mainly dominated by xenon for interactions be-
tween DM and neutrons, as well as fluorine for interactions between DM and protons,
for technologies that are in use or planned for the near future. Fluorine is also much less
sensitive to coherent neutrino interactions than xenon, which enables it to reach much
lower spin-dependent cross sections [73].
Dual-phase time projection chambers (TPCs) are currently being used in direct detection
experiments to search for DM with masses above 6 GeV. Some examples of these detectors
include LUX [69], XENON1T [74], and PandaX [62]. These detectors rely on two types of
signals: a prompt photon signal from scintillation in the liquid xenon and a proportional
charge signal amplified in the gas phase. By comparing the ratio of these signals, it is
possible to recognize the recoiling particle. The position of the interaction in the TPC
can be determined from the drift times and light pattern of the signals, allowing for a
background-free fiducial volume to be defined due to self-shielding.
The next generation of liquid noble gas detectors, using xenon (LZ [75], XENONnT [76],
and DARWIN [77]) or argon (DarkSide20k [78]), will further probe the parameter space
of WIMPs with unprecedented precision. These detectors, using either xenon or argon,
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Figure 1.8: Exclusion limits for spin-independent dark-matter nucleon scattering cross
section vs DM mass. The gray area shows the currently excluded space [62–71] (data
points taken from [72]). The dashed lines indicate the projected 90% confidence level
exclusion sensitivity of upcoming experiments. The blue contour map of Fig 1.8 presents
the neutrino fog for a xenon target. Figure from Ref. [73].

are expected to have improved sensitivity and lower background levels, allowing for the
detection of even weaker DM interactions.
Direct detection experiments typically have an energy threshold of a few keV, making
it difficult to constrain lower mass DM, except for the DarkSide-50 result [68]. Crystal
detectors such as SuperCDMS [79] and CRESST [66] have made significant progress in
lowering the energy threshold of direct detection experiments, detecting energy depo-
sition via phonons. CDMS is capable of detecting ionization, while CRESST detects
scintillation signals [80]. Additionally, the NEWS-G experiment [81] uses new spherical
proportional counters and light noble gases to search for light DM. These experiments
have relatively light nuclei and low thresholds, making them prominent in constraining
DM masses below 6 GeV. However, these collaborations have less exposure compared to
their heavier counterparts and do not reach the same level of sensitivity.
In recent times, there have been significant advancements in both theoretical and exper-
imental aspects of DM detection, with an emphasis on exploring alternative technologies
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for direct detection, especially for low-mass DM models. While, as we said, by analysing
DM-nucleon recoil it is possible to be sensitive to DM masses of the order of the GeV,
by using the same data it is also possible to constrain DM with masses on the order of
the MeV. This can be done by considering models in which DM couples to electrons.
Given that the electrons are orders of magnitude lighter than the nuclei used in direct
detection experiments, a lighter DM could scatter an electron off the target atom with
sufficient energy to produce a detectable signal. The current experimental status of
direct detection trough electronic recoil is shown in Fig. 1.9.

Figure 1.9: Left: Current 90% C.L. limits on DM-electron scattering mediated by a
heavy mediator from SENSEI [82–84], CDMS-HVeV [85, 86], DAMIC at SNOLAB [87],
EDELWEISS [88], DarkSide-50 [89], XENON10 [90–92], XENON100 [93], XENON1T
(S2-only (“S2o”) and single-electron (“SE”) analyses) [94, 95], PandaX-II [96], and EJ-
301 [97]. Right: Same as for top left plot, but assuming scattering mediated by an
ultralight mediator. Figure from Ref. [98]

In this thesis, I will focus on direct detection analysis of DM, focusing on the XENON10
and XENON1T experiments.
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Chapter 2

Direct Detection of DM

In this chapter, we will describe the aspects of DM scattering useful to compute the
theoretical rates in direct detection experiments, focusing on the DM scattering with
bound electrons.
We start with the description of the DM velocity distribution in the Solar System, fol-
lowed by describing the kinematics of the DM-e scattering. We describe then the non-
relativistic effective theory for DM-electron interaction, useful to compute the interaction
matrix element. Once we have computed the matrix element of the scattering, in order
to compute the ionization rate, we need to take into account the fact that the electron
is bound to an atom. This is encoded in the atomic response functions presented in the
following section. The computation of the atomic response functions is reported follow-
ing Ref. [99], and the numerical evaluation of those functions, showed in Fig. 2.3 and
2.6, was done using the software in Ref. [100].

2.1 DM velocity distribution
For direct detection experiments, it is important to know the DM density and how it is
distributed close to the Sun. We refer to it as the “local” DM density and the “local” DM
distribution.
The local DM density is typically assumed to be ρχ = 0.4GeV/cm3, which is obtained
from models of the local gravitational potential within a distance of 1 kpc. However,
various techniques yield different results, with differences ranging from 10− 50% of ρ. A
comprehensive review of the measurements and methods can be found in Ref. [101].
Determining the velocity distribution of DM is a challenging task, as even small varia-
tions in the distribution can have significant effects on the rates of direct detection. A
commonly used approximation for the velocity distribution of DM in the solar neigh-
bourhood is a truncated Maxwellian distribution, as it is expected that DM is mostly
virialized in this region. In the frame of the Galaxy, this distribution is isotropic and is
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represented by the following formula:

fGalaxy (v) =
1

N (v0)
exp

(
−v2

v20

)
Θ(vesc − |v|) , (2.1)

where v0 is approximately equal to 220 km/s (∼ 103 c) [102]. The distribution is trun-
cated at the local escape speed, which is estimated to be vesc ≃ 544 km/s [103]. The
normalization factor N(v0) ensures that f(v) is normalized

N (v0) = π3/2v30

[
erf

(
vesc

v0

)
− 2√

π

vesc

v0
exp

(
−v

2
esc

v20

)]
. (2.2)

This is known as the Standard Halo Model. We need then to boost Eq. (2.1) in the
Earth (laboratory) frame:

fEarth(v) =
1

N (v0)
exp

(
−(v +Ve(t))

2

v20

)
Θ(vesc − |v +Ve(t)|) , (2.3)

where Ve is the Earth’s velocity, that we can decompose into the Sun’s motion in the
Galaxy (V⊙) and the orbit of the Earth about the Sun (V⊕) :

Ve(t) = V⊙ +V⊕(t). (2.4)

When computing rates, the Earth’s orbital motion can be neglected due to the fact that
its velocity |V⊕| ≈ 29.8 km/s is significantly less than the Sun’s rotational velocity
|V⊙| ≈ 232 km/s [104]. The Sun’s motion has a fixed direction relative to the Milky
Way, which is towards the Cygnus constellation, therefore the DM velocity distribution
seems to be approaching us on average from the opposite direction −V⊙. This leads
us to refer to the incoming DM as a “wind” from Cygnus, although in reality there is a
distribution of DM arrival directions.
We now define the following function, which we will use later to compute the DM inter-
action rate

η (vmin) =

∫
d3vgχ (v⃗)

1

v
Θ(v − vmin)

=
1

K

∫
2πd cos θdvve−(v

2+V 2
e −2vVecθ)/v20Θ(v − vmin)Θ (vesc − |v +Ve(t)|) ,

(2.5)
where v is the DM velocity, VE = |VE| is the velocity of the Earth, cθ = cos θ is the
angle between the velocity and the velocity of the Earth and vmin is the minimum velocity
defined in Eq. (2.24). We can explicitly solve Eq. (2.5) considering the two following
cases:

1. vmin < vesc − VE ,
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2. vesc − VE < vmin < vesc + VE ,

where vesc, VE, vmin > 0. In these two cases, we obtain the following solutions [105]:

η1 (vmin) =
v20π

2VEK

(
−4e−v2esc/v

2
0VE +

√
πv0

[
Erf

(
vmin + VE

v0

)
− Erf

(
vmin − VE

v0

)])
,

η2 (vmin) =
v20π

2VEK

(
−2e−v2esc/v

2
0 (vesc − vmin + VE) +

√
πv0

[
Erf

(
vesc
v0

)
− Erf

(
vmin − VE

v0

)])
,

(2.6)
where the subscript corresponds to the case number. Note that the two cases converge
to the same value for vmin = vesc − VE.
It is important to know that the assumption of a Maxwellian velocity distribution may
not hold for the entire range of DM velocities. Simulations suggest that the true dis-
tribution is more complex, possibly anisotropic within the Galaxy, and may have un-
virialized components [106–108]. Additionally, the sharp cut-off at the escape velocity
is not physically realistic. As a result, using the Maxwellian distribution to calculate
elastic scattering rates for DM may affect the recoil spectrum and have a certain impact
on total rates. This impact is larger for light DM because direct detection experiments
are more sensitive to DM with high velocity, therefore it is important to have a detailed
knowledge of the velocity distribution tail. Although we lack direct means of measuring
the velocity distribution, recent studies have examined the velocity distribution of the
metal-deficient stellar halo as a substitute for DM [109–111]. As more data becomes
available, we anticipate that our understanding of this distribution will become more
accurate.

2.2 Kinematics of DM scattering in direct detectors

2.2.1 DM - nucleus scattering

k

p p′

k′

N

χ

N

χ

Figure 2.1: Diagram representing schematically the scattering between a DM particle χ
and a nucleus N .

25



An examination of the kinematics of DM-nucleus scattering can help identify the rel-
evant physics. In direct detection experiments, the typical kinetic energy of a nucleus
is proportional to the temperature T of the target, which is usually well below room
temperature, allowing us to consider the nucleus to be initially at rest. Referring to the
momentum labels in Fig. 2.1, the initial total momentum and energy of DM can be
expressed as:

Ei =
p2

2mχ

, p = mχv, (2.7)

where v is the DM velocity. In the collision, the DM particle exchanges a momentum
q = p′ − p. The energy of the outgoing DM particle is

Ef =
(p− q)2

2mχ

+
q2

2mN

, (2.8)

while the recoil energy of the nucleus is

ER = q2/ (2mN) . (2.9)

Defining cos θ = p̂ · q̂, energy conservation gives the requirement that

|p∥q| cos θ
mχ

=
q2

2µχN

, (2.10)

where µχN = mχmN/ (mχ +mN) is the reduced mass for the DM-nucleus system. The
maximum momentum transfer is limited to

|q|max =
2µχN |p|
mχ

= 2µχNv, (2.11)

where v = |v| ∼ 10−3 is the average DM speed in the laboratory frame. For a WIMP
with a mass of the order of tens of GeV, and a typical nucleus used in direct detection,
the value of µχN is approximately 10-100 GeV, and |q|max is approximately 20-200 MeV.
This leads to a maximum recoil energy of:

Emax
R =

|q|2max

2mN

=
2µ2

χNv
2

mN

≃ 20− 200 keV. (2.12)

The energy threshold for direct detection experiments is of the order of the keV (1.6
for Xenon1T [70] and 1.1 keV for LUX [112]), therefore we see that we are sensitive to
DM above the GeV. In this calculation, we have only considered the typical DM speed,
however, it is possible for larger recoils to occur if the DM has greater speeds. In such
cases, the minimum incoming speed for DM to produce a given recoil energy would be

vmin =
√
mNER/2µ2

χN . (2.13)
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Nevertheless, the probability of DM with higher velocities decreases exponentially, and
there is almost no DM with velocities greater than the local escape velocity, which
corresponds to vesc ∼ 3× 10−3 in the lab frame.
The energy and momentum scales are important in understanding the physics of DM-
nucleus interactions. To determine the length scale of typical momentum transfer, we
use 1/|q| ∼ 1−10 fm, which is similar to the radius of the nuclei used in direct detection
experiments. For this reason, we need to account for a form factor in DM-nucleus
interactions. When 1/|q| ≫ 10 fm, the DM interacts coherently with the entire nucleus,
leading to a rate scaling as A2 in the small |q| limit, where A is the atomic number.
However, form factor suppression occurs at larger |q| depending on the target nucleus.
It is assumed that the effect of exciting bound atomic or nuclear states can be neglected.
Nuclear excited states have a splitting of ∼ 30 − 1000 keV, leading to smaller rates for
inelastic scattering compared to elastic recoils [113–116].
It is important to note that we have only considered the primary DM-nucleus interaction
here, and the recoiling atom subsequently collides with other atoms in the target, leading
to the detected signals in scintillation light, charge yield, or phonons.
DM-nucleus scattering can be approached through multiple steps. First, microscopic
interactions are considered, and a suitable theory at the QCD scale is identified. The DM
interaction operators with quarks and gluons are then matched with operators that act
on the whole nucleon. The nucleons inside a nucleus can be treated non-relativistically
because their momentum scale is much smaller than their mass and is set by the nuclear
radius RN , where 1/RN ≃ 1 − 10 MeV ≪ mn,p, and the scattering with a DM particle
is at low energy (q ≪ mχ,mN). Because the scattering is at low energy, the mediator
is integrated out. Nuclear matrix elements for non-relativistic nucleon operators are
determined using nuclear form factors or response functions. Finally, the differential
scattering cross section is integrated against the DM velocity distribution in the lab
frame to determine the rate of nuclear recoils.
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2.2.2 DM - electron scattering

k

p p′

k′

e

χ

e

χ

Figure 2.2: Diagram representing schematically the scattering between a DM particle
χ and a electron e. The electron in this case is bound to the atom and has a non-zero
momentum k.

While for DM-nucleus scattering we need a DM mass above the GeV to get a nucleus
with enough recoil energy to be detected, DM-electron scattering offers a promising ap-
proach for identifying sub-GeV DM particles. In such a scenario, DM-electron scattering
is inherently inelastic, which means that a greater fraction of the DM particle energy
is transferred to the electron in the collision, resulting in ionization signals that can
potentially be detected.
Let’s consider a DM particle that collides with a bound electron, causing the electron
to be excited to a higher-energy bound state or an ionized state. Unlike a nucleus, an
electron in a bound state does not possess a specific momentum and could potentially
have a limitless amount of momentum. Consequently, the kinematics in this scenario are
vastly distinct from those in the previous section. Nonetheless, we can still determine
the energy that the DM particle transferred to the electron in terms of the momentum
that the DM particle lost q = p − p′, where the labels for the momenta are shown in
Fig. 2.2. The electron in this case is bound to the atom. The energy acquired by the
electron is given by

∆Ee = −∆Eχ −∆EN , (2.14)

where ∆Eχ and ∆EN are respectively the difference in energy of the DM particle and the
entire atom, which recoils after the scattering. The energy transfer for the DM particle
is given by:

∆Eχ =
|mχv − q|2

2mχ

− 1

2
mχv

2. (2.15)

We want now to study the recoil energy of the nucleus. In the case in which all the
exchanged momentum is transferred to the nucleus, its recoil energy will be
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∆EN =
q2

2mN

. (2.16)

In this case, we can write the difference in energy of the electron as

∆Ee =−
|mχv − q|2

2mχ

+
1

2
mχv

2 − q2

2mN

= q · v − q2

2mχ

− q2

2mN

.

(2.17)

In the case of light DM, we can neglect the term q2

2mN
, which is smaller than q2

2mχ
.

Therefore, we obtain

∆Ee = q · v − q2

2mχ

. (2.18)

We can find the maximum allowed energy transfer by maximizing this last equation with
respect to q. This would be the case in which all the kinetic energy of the collision is
transferred to the electron.

∆Ee ≤ ∆Emax
e =

1

2
mχv

2, (2.19)

from which we can obtain a bound for the DM mass:

mχ ≥
2∆Ee

v2
. (2.20)

The energy transfer to the electron ∆Ee contributes to both the binding energy Ei
b of

the electron in its initial bound state i, and to the electron recoil energy Eer

∆Ee = Eer + Ei
b. (2.21)

Therefore, the bound for the mass becomes

mχ ≥
2(Eer + Ei

b)

v2
. (2.22)

The binding energy for the external shells of the atoms used in direct detection is of the
order of tens of eV, and the typical electron recoil energy is on the order of tens of eV
(see section 3.3.3). As said in the previous section, the typical DM velocity is on the
order of 10−3. By using these values inside Eq. (2.22), we obtain a minimum DM mass
of the order of the MeV for Xe detectors.
We can substitute ∆Ee also in Eq. (2.18), and by taking the momentum transfer to be
parallel to the initial DM velocity (so q · v = |q||v| ≡ qv), we can find an expression for
the minimum DM velocity required to obtain an electron recoil Eer.
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Eer + Ei
b = qvmin −

q2

2mχ

. (2.23)

Solving for vmin gives:

vmin =
Eer + Ei

b

q
+

q

2mχ

. (2.24)

Note from this equation that the minimum DM velocity required to excite an electron
with recoil energy Eer depends on the bound-state energy of the target electron. This
means that if we measure an electron with recoil energy Eer, this can be given by an
interaction with a DM particle with velocity equal to vmin or bigger. Therefore, to
compute the rate of DM interaction, we have to make an integral over the DM velocity
distribution starting from vmin.

2.3 Non-relativistic effective theory for DM - electron
interaction

In direct detection of DM-e scattering, the scale of interaction is very small, because the
DM particle that we consider is light (mχ ≳ 1 MeV/c2) and non-relativistic, having a
typical speed of the order of 10−3, as mentioned in section 2.2.1. The electron is also
non-relativistic, in fact the typical speed of electron bound in atoms is approximately
αZeff, where α ≃ 1/137 and Zeff ≃ 1 for electrons in outer shells, which have a higher
probability to be ionized from a DM scattering. Because the faster and lightest particle
is the electron, we expect that the typical momentum transfer is approximately Zeffαme

[105]. Therefore, it can be useful to describe the DM - e scattering using a non-relativistic
effective field theory (NREFT).
NREFT is different from relativistic EFT; in the latter, the operators are built by com-
bining the known field content in a gauge and Lorentz invariant way. These relativistic
operators Oi are then parametrized by their Wilson coefficients ci(j), where j is the di-
mension of the associated operator, and then inserted in the SM Lagrangian:

L = LSM +
∑
i

ci(5)
Λ
O(5)

i +
∑
i

ci(6)
Λ2
O(6)

i + . . . , (2.25)

where Λ is the scale of new physics. In the non-relativistic EFT the operators are defined
using the relevant degrees of freedom that describe the particles, and are invariant under
Galilean transformations and three-dimensional rotations, which, in a non-relativistic
regime, replace Lorentz invariance.
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In non-relativistic DM-electron scattering, the incoming (outgoing) electron and DM
particle are characterized by their three-dimensional momenta k (k′) and p (p′), respec-
tively. However, due to momentum conservation and Galilean invariance, only two out
of the four three-dimensional vectors are independent. Thus, a convenient choice for the
independent momenta is given by the momentum transferred in the scattering q, and
the following velocity

v⊥ =
(p+ p′)

2mχ

− (k+ k′)

2me

= v − q

2µe

− k

me

,

(2.26)

where µe is the reduced mass of the DM particle and the electron, and v is the incoming
DM velocity. In the case of elastic DM-electron scattering, v⊥ · q = 0 because of energy
conservation.
In addition to q and v⊥, the operators can also be built using the spin of the electron
Se and the spin of the DM particle Sχ if it is not zero.
The resulting NREFT is then described in terms of a Lagrangian containing four-fermion
non-relativistic operators ONR

i , which account for the elastic scattering between a DM
particle and a target electron,

Lint =
∑
i

ciONR
i χ+χ−N+N−. (2.27)

The non-relativistic fields e± and χ± in this expression are simply constructed from
quantum mechanical annihilation and creation operators, while the non-relativistic coef-
ficients ci are real parameters, that we need to match with the high energy coefficients.
Using the degrees of freedom q,v⊥, Sχ and Se, the only NR operators ONR

i that we can
build that are invariant under Galilean transformations and three-dimensional rotations
are the following ones:

ONR
1 = 1,
ONR

3 = iSe ·
(
q× v⊥) , ONR

4 = Sχ · Se,
ONR

5 = iSχ ·
(
q× v⊥) , ONR

6 = (Sχ · q) (Se · q) ,
ONR

7 = Se · v⊥, ONR
8 = Sχ · v⊥,

ONR
9 = iSχ · (Se × q) , ONR

10 = iSe · q,
ONR

11 = iSχ · q, ONR
12 = v⊥ · (Sχ × Se) .

(2.28)

Since the non-relativistic fields are constructed with creation and annihilation opera-
tors, and since we are considering a 4-point interaction without propagators, the matrix
element is given by

M =
∑
i

ciONR
i . (2.29)
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2.4 Matching the relativistic and non-relativistic the-
ories

BSM models of DM are described by high energy physics, that we can approximate with
relativistic EFT operators Oi at low energy. We therefore need to match these operators
to the non-relativistic ones ONR

i by taking the non-relativistic expansion of the first ones.
In this way, we will be able to translate the constraints that we make on the relativistic
coefficients ci into the actual relativistic theory. We will study the case for scalar and
fermion DM.

2.4.1 Effective relativistic operators for fermion DM

Using only Dirac neutral DM fields χ and electron fields e, it is possible to construct the
following basis of effective operators at dimension six [117]:

O1 = χ̄χēe, O2 = χ̄iγ5χēe,
O3 = χ̄χēiγ5e, O4 = χ̄iγ5χēiγ5e,
O5 = χ̄γµχēγµe, O6 = χ̄γµγ5χēγµe,
O7 = χ̄γµχēγµγ

5e, O8 = χ̄γµγ5χēγµγ
5e,

O9 = χ̄σµνχēσµνe, O10 = χ̄iσµνγ5χēσµνe.

(2.30)

The operators listed in Eq. (2.30) are the only non-zero operators that respect gauge
and Lorentz symmetry. In this list, we omitted the operators

χ̄σµνχēiσµνγ
5e, χ̄iσµνγ5χēiσµνγ

5e, (2.31)

because, thanks to the identity iσµνγ5 = −1
2
εµνρτσρτ , those operators are respectively

equal to O10 and −O9.
In the case of Majorana DM, the only non-zero bilinears are:

χ̄χ, χ̄γ5χ, χ̄γµγ5χ, (2.32)

as, by applying the charge conjugate operator, we can see that χ̄γµχ and χ̄σµνχ must
be zero [118].
To get the non-relativistic operators from the ones in Eq. (2.30) we can expand the
solution of the Dirac equation in the non-relativistic limit:

us(p) =

( √
pµσµξ

s

√
pµσ̄µξ

s

)
=

1√
2 (p0 +m)

(
(pµσµ +m) ξs

(pµσ̄µ +m) ξs

)
=

1√
4m

(
(2m− p · σ)ξs
(2m+ p · σ)ξs

)
+O

(
p 2
)
,
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where σµ = (1, σ), σ̄µ = (1,−σ) and we approximate pµ = (m,p) + O(p 2) in the
non-relativistic limit. In this way, we can rewrite the fermion bilinears in terms of their
velocity, momentum and spin. At first order in the three-momenta, we get the following:

ū (p′)u(p) ≃ 2m,

ū (p′) iγ5u(p) ≃ 2iq · S,

ū (p′) γµu(p) ≃
(

2m
P+ 2iq× S

)
,

ū (p′) γµγ5u(p) ≃
(

2P · S
4mS

)
,

ū (p′)σµνu(p) ≃
(

0 iq− 2P× S
−iq+ 2P× S 4mεijks

k

)
,

ū (p′) iσµνγ5u(p) ≃
(

0 −4mS
4mS iεijkqk − 2Pis

j + 2Pjs
i

)
,

(2.33)

where P = p+ p ′. The spin operator is S ≡ ξ′† σ
2
ξ, and when it is not present, a ξ′†ξ is

implicit.
We can finally substitute Eq. (2.33) in the expressions of the relativistic operators in
Eq. (2.30). Contracting the bilinears and taking the leading order in the non-relativistic
expansion, we can finally rewrite the relativistic operators in terms of the basis of non-
relativistic operators shown in Eq. (2.28):

⟨O1⟩ = ⟨O5⟩ = 4mχmeONR
1 ,

⟨O2⟩ = −4meONR
11 ,

⟨O3⟩ = 4mχONR
10 ,

⟨O4⟩ = 4ONR
6 ,

⟨O6⟩ = 8mχ

(
meONR

8 +ONR
9

)
,

⟨O7⟩ = 8me

(
−mχONR

7 +ONR
9

)
,

⟨O8⟩ = −
1

2
⟨O9⟩ = −16mχmeONR

4 ,

⟨O10⟩ = 8
(
mχONR

11 −meONR
10 − 4mχmeONR

12

)
.

(2.34)

From Eq. (2.34) we can see that more than one relativistic operator corresponds to
the same non-relativistic operator, as the case for O1 and O5. Those contributions are
therefore indistinguishable in direct detection experiments, which are only sensitive to
the coefficient associated with the non-relativistic operator. For this reason, the bounds
on the coefficients of the relativistic operators O1 and O5 are the same. Moreover, if a
model has both O1 and O5 operators, which are associated with a scalar and a vector-
mediated DM, cancellations or enhancements of the scattering cross section could arise,
because they both contribute to the same non-relativistic coefficient.
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2.4.2 Effective relativistic operators for scalar DM

Using scalar neutral DM fields ϕ and electron fields e, we can build the following basis
of effective operators [117]:

O1 = ϕ∗ϕēe, O2 = ϕ∗ϕēiγ5e,

O3 = i
(
ϕ∗←→∂µϕ

)
ēγµe, O4 = i

(
ϕ∗←→∂µϕ

)
ēγµγ5e.

(2.35)

In the first line, the operators have dimension five, while in the second line, the operators
have dimension six, and are equal to zero for a real field ϕ. Note that we have not
considered the operator ∂µ(ϕ∗ϕ)ēγµe because if we integrate by parts it is proportional
to the divergence of the conserved current ēγµe, that vanishes when the electron in an
external particle, according to the equations of motion for a fermion. The operator
∂µ(ϕ

∗ϕ)ēγµγ5e instead can be reduced to 2meϕ
∗ϕēiγ5e by integrating by parts and using

the equations of motion for the electron field. This operator is therefore proportional to
O2, so we do not need to add it to the list of operators.
As we did in the fermion DM case, we can match the matrix element of the relativistic
operators to the non-relativistic ones. At leading order in the non-relativistic expansion,
we obtain the following expressions:

⟨O1⟩ = 2meONR
1 ,

⟨O2⟩ = 2ONR
10 ,

⟨O3⟩ = 4mχmeONR
1 ,

⟨O4⟩ = −8mχmeONR
7 .

(2.36)

2.5 DM induced electronic transitions
In order to translate the direct detection measured events into limits for the Lagrangian
parameters, we need to understand how the detector materials respond to the DM in-
teraction. This response, also called atomic response function, is a function that can
be described in terms of the overlap between the initial and final wave functions that
describe the atom before and after the scattering [99].
We take the initial state |i⟩ ≡ |e1,p⟩ = |e1⟩ ⊗ |p⟩ and the final state |f⟩ ≡ |e2,p′⟩ =
|e2⟩⊗|p′⟩, where |p⟩ and |p′⟩ are the initial and final state of the DM particle, while |e1⟩
and |e2⟩ are the initial and final electron state. The electron states are eigenstates of the
electron energy with eigenvalue E1 and E2, but are not eigenvalues of the electron mo-
mentum, because the electron is in a bound state. Single particle states are normalized
such that

⟨p,p⟩ = ⟨e1, e2⟩ = (2π)3δ(3)(0) =

∫
d3x ≡ V. (2.37)
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The divergent volume V will not appear in the expression of physical observables.
Let’s now take the first non-trivial term of the Dyson expansion of the S-matrix element
that describes the transition |i⟩ → |f⟩:

Sfi = −i⟨f |
∫

d4xHI(x)|i⟩

= −i
∫

d4x
〈
p′, e2

∣∣eiH0tHS(x)e
−iH0t

∣∣ e1,p〉
= −i

∫
d3x ⟨p′, e2 |HS(x)| e1,p⟩

∫
dtei(Ef−Ei)t

= −i(2π)δ (Ef − Ei)

∫
d3x ⟨p′, e2 |HS(x)| e1,p⟩

= −i(2π)δ (Ef − Ei)

∫
d3x

∫
d3k

(2π)3

∫
d3k′

(2π)3
⟨e2 | k′⟩ ⟨k′,p′ |HS(x)|p,k⟩ ⟨k | e1⟩ ,

(2.38)
where HI(x) (HS(x)) is the interaction Hamiltonian density in the interaction (Schrodinger)
picture in the spacetime point x, and H0 is the free DM-e Hamiltonian such that:
H0 |i⟩ = Ei |i⟩ and H0 |f⟩ = Ef |f⟩. In Eq. (2.38) the identity∫

d3k

(2π)3
|k⟩⟨k| = 1, (2.39)

has been used, where |k⟩ are eigenstates of the free-electron Hamiltonian. We use the
adiabatic hypothesis, so HI is assumed different from 0 only for a finite time window;
for this reason the asymptotic states |i⟩ and |f⟩ are eigenstates of H0 with eigenvalues
Ei and Ef , which in the non-relativistic limit are equal to:

Ei = mχ +me +
mχ

2
v2 + E1,

Ef = mχ +me +
|mχv − q|2

2mχ

+ E2.
(2.40)

We can then define ∆E1→2 ≡ E2 − E1 as the energy difference between the two bound
states. In the non-relativistic limit, using Eq. (2.40), we get that the energy difference
Ef − Ei is equal to:

Ef − Ei = ∆E1→2 +
q2

2mχ

− qv cos θqv, (2.41)

where θqv is the angle between q and v. Let’s now consider the elastic scattering |k,p⟩ →
|k′,p′⟩, between a DM particle with initial (final) momentum p (p′) and a free electron
particle with initial (final) momentum k (k′). Let’s now take the first non-trivial term
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in the Dyson expansion of the S-matrix element of this process:

Sfree
fi = −i(2π)δ

(
Ẽf − Ẽi

)∫
d3x ⟨p′,k′ |HS(x)|k,p⟩ , (2.42)

where Ẽf ≡ Ek′ + Ep′ and Ẽi ≡ Ek + Ep. The S-matrix element can equivalently be
expressed as follows

Sfree
fi = i(2π)4δ

(
Ẽf − Ẽi

)
δ(3) (p′ + k′ − p− k)

× 1√
2Ep′2Ek′2Ek2Ep

M (k,p,k′,p′) ,
(2.43)

whereM is the amplitude for DM-e scattering in which the electron is a free particle.The
factor 1/

√
2Ep′2Ek′2Ek2Ep comes from the normalization of single-particle states, in-

troduced in Eq. (2.37). Comparing Eq. (2.42) with Eq. (2.43), we get the following
equation ∫

d3x ⟨p′,k′ |HS(x)|k,p⟩ = −(2π)3δ(3) (p′ + k′ − p− k)

× M (k,p,k′,p′)√
2Ep′2Ek′2Ek2Ep

.
(2.44)

By substituting the free scattering result that we have obtained in Eq. (2.44) into the
general S-matrix element in Eq. (2.38) and going into the non-relativistic limit, so
2Ep′2Ek′2Ek2Ep = 16m2

χm
2
e, we obtain

Sfi = (2π)δ (Ef − Ei)
1

4mχme

∫
d3k

(2π)3
⟨e2 | k+ q⟩ ⟨k | e1⟩

× iM(k,p,k+ q,p− q),

(2.45)

Using the normalized electron wave functions

ψ1(k) = ⟨k | e1⟩ /
√
V ,

ψ∗
2(k+ q) = ⟨e2|k+ q⟩/

√
V ,

(2.46)

we can rewrite Eq. (2.45) as follows

Sfi = (2π)δ (Ef − Ei)
V

4mχme

∫
d3k

(2π)3
ψ∗
2(k+ q)ψ1(k)

× iM(k,p,k+ q,p− q).

(2.47)

The probability for the transition |e1,p⟩ → |e2,p′⟩, taking into account the normalization
of the single-particle states from Eq. (2.37), is given by |Sfi|2 /V 4.
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The probability, P(p), that a DM particle with initial momentum p scatters with a
bound electron in the |e1⟩ state into an interval of final states in which the DM momenta
∈ (p′,p′ + dp′) and the electron is in the state |e2⟩ is then given by |Sfi|2 /V 4 multiplied
by the number of states in the (p′ + dp′) interval:

P(p) =
|Sfi|2

V 4

V d3p′

(2π)3
=
|Sfi|2

V 4

V d3q

(2π)3

= (2π)δ (Ef − Ei)
T d3q

(2π)3V

1

16m2
χm

2
e

×
∣∣∣∣∫ d3k

(2π)3
ψ∗
2(k+ q)M(k,p,q)ψ1(k)

∣∣∣∣2
(2.48)

where T =
∫
dt is a divergent factor that arises when squaring the one-dimensional Dirac

delta in Eq. (2.47), but physical observables, for example the interaction rate, will not
depend on it. In order to simplify the notation, we replace M(k,p,k + q,p − q) with
M(k,p,q).
Now we can compute the rate per unit DM number density for the transition |e1,p⟩ →
|e2,p′⟩ with p′ within (p′,p′ + dp′). In fact, the rate is simply equal to P(p)V/T .
To get the total rate of transition from |e1⟩ to |e2⟩ we just need to integrate P(p)V/T
over the DM particle velocity distribution fχ and the transferred momentum q, and
multiply by the local DM number density, n3

χ, obtaining:

R1→2 =
nχ

16m2
χm

2
e

×
∫

d3q

(2π)3

∫
d3vfχ(v)(2π)δ (Ef − Ei) |M1→2|2, (2.49)

where |M1→2|2 is the squared electron transition amplitude, defined as

|M1→2|2 ≡
∣∣∣∣∫ d3k

(2π)3
ψ∗
2(k+ q)M(k,p,q)ψ1(k)

∣∣∣∣2, (2.50)

where a bar denotes an average over initial spin states and a sum over final spin states.

2.6 DM and Atomic Response Functions
In Eq. (2.29) we showed that it is possible to write the amplitudeM of DM-e interaction
in the non-relativistic limit as the linear combination of the non-relativistic operators,
therefore, the amplitude M is dependent on q and v⊥. It is possible to rewrite the
amplitudeM in the following way:

M
(
q,v⊥) =M (

q,v⊥)
k=0

+

(
k

me

)
·me∇kM

(
q,v⊥)

k=0
. (2.51)
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This is an exact approximation, as Eq. (2.29) is at most linear in v⊥. If we now substitute
Eq. (2.51) into the squared transition amplitude in Eq. (2.50), we find

|M1→2|2 =
{
|M (q,v⊥)|2 |f1→2(q)|2

+ 2meℜ [M (q,v⊥) f1→2(q)∇kM∗ (q,v⊥) · f∗1→2(q)]

+m2
e | ∇kM (q,v⊥) · f1→2(q)|2

}
k=0

.

(2.52)

This is the most general expression for the squared transition amplitude, taking into
account all the degrees of freedom of the DM-e interaction.
In the case in which the scattering amplitude depends only on q, we can take outM(q)
from the integral in Eq. (2.49), and only the first term in Eq. (2.52) contributes to
the squared transition amplitude |M1→2|2. We can see that this standard assumption
M =M(q) is very convenient because it implies a factorization of atomic physics and
DM physics. Following the notation of Ref. [105], forM =M(q), we can define a scalar
atomic form factor

f1→2(q) =

∫
d3k

(2π)3
ψ∗
2(k+ q)ψ1. (2.53)

The transition amplitude,M1→2(q), can be obtained by multiplying the free scattering
amplitude by the form factor f1→2(q)

M1→2(q) =M(q)× f1→2(q). (2.54)

The momentum space wave functions ψ1 and ψ2 have dimension [energy]−3/2, therefore
f1→2(q) is a dimensionless quantity.
In the general approach, in which the transition amplitude depends on both the trans-
ferred momentum and the velocity v⊥, we get both the scalar form factor of Eq. (2.53)
and a vectorial atomic form factor, that appears in Eq. (2.52),

f1→2(q) =

∫
d3k

(2π)3
ψ∗
2(k+ q)

(
k

me

)
ψ1(k). (2.55)

The details of the evaluation of the scalar, f1→2, and vectorial, f1→2, atomic form factors
are presented in Ref. [99].
Until now we treated the DM-e scattering in a general way, in terms of initial and final
state electron wave functions, ψ1 and ψ2, respectively. From now, however, we will focus
on the case of DM-induced ionization of isolated atoms. This means that the initial state
(formerly simply denoted by “1”) is a bound state characterized by the principal, angular
and magnetic quantum numbers (n, ℓ,m), while in the final state (“2”) the electron is
not bound to the atom, but still affected by the remaining ion’s presence close by. The
final state is defined by the quantum numbers (k′, ℓ′,m′), where k′ is the asymptotic
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momentum of the electron and ℓ′,m′ are its angular and magnetic quantum numbers.
In this case the total ionization rate Rnℓ

ion of a full atomic orbital (n, ℓ) can be obtained
by summing the transition rate R1→2 over all occupied initial electron states and by
integrating over the allowed final electron states. For what concerns the sum over the
initial electron states, the rate has to be summed over all values of the magnetic quantum
number m and multiplied by 2 to account for the spin degeneracy. Then we need to sum
over all the allowed electron final states; this is achieved by acting on R1→2 with the
integral operator [105]

V

2

∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

∫
k′3 d lnEe

(2π)3
. (2.56)

where, Ee = k′2/ (2me) is the ionized electron’s final energy, and V d3k′/(2π)3 is the
number of final states with asymptotic momentum between k′ and k′+dk′. Summarizing,
the total ionization rate for the (n, ℓ) orbital is given by

Rnℓ
ion =

ℓ∑
m=−ℓ

∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

∫
d lnEe

V k′3

(2π)3
R1→2, (2.57)

and the associated final state electron ionization energy spectrum by

dRnℓ
ion

d lnEe

=
ℓ∑

m=−ℓ

∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

V k′3

(2π)3
R1→2. (2.58)

It can be shown that the divergent factor V in Eq. (2.58) cancels with the 1/V factor
that comes from the normalization of ψk′m′ℓ′ . Substituting Eq. (2.49), we can rewrite
the rate as

dRnℓ
ion

d lnEe

=
nχ

128πm2
χm

2
e

×
∫

dq q

∫
d3v

v
fχ(v)Θ (v − vmin )

∣∣Mnℓ
ion

∣∣2, (2.59)

where vmin is defined in Eq. (2.24) and, following [105], we integrated over cos θqv while
assuming that fχ(v) = fχ(v), and then replaced fχ(v) with fχ(v) in the final expression1.

The squared ionization amplitude,
∣∣Mnℓ

ion

∣∣2, present in Eq. (2.59) is defined as

∣∣Mnℓ
ion

∣∣2 ≡ V
4k′3

(2π)3

ℓ∑
m=−ℓ

∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

|M1→2|2. (2.60)

We can express it explicitly in terms of the amplitudeM
(
q,v⊥) as follows

1In this way we get a simplified evaluation of Eq. (2.49). This is justified by the fact that we are not
interested in a directional analysis of the predicted signal.
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∣∣Mnℓ
ion

∣∣2 = {∣∣M (
q,v⊥)∣∣2 ∣∣fnℓ

ion (k′, q)
∣∣2

+ V
4k′3

(2π)3

ℓ∑
m=−ℓ

∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

[
2meℜ [M (q,v⊥) f1→2(q)∇kM∗ (q,v⊥) · f∗1→2(q)]

+m2
e|∇kM (q,v⊥) · f1→2(q)|2

]}
k=0;v·q/(qv)=ξ

,

(2.61)
where ξ = ∆E1→2/(qv) + q/ (2mχv) and fnℓ

ion (k
′, q) is the dimensionless ionization form

factor

∣∣fnℓ
ion (k

′, q)
∣∣2 = V

4k′3

(2π)3

∞∑
ℓ′=0

ℓ∑
m=−ℓ

ℓ′∑
m′=−ℓ′

|f1→2(q)|2 . (2.62)

This ionization form factor is shown in Fig. 2.3 for the outer shell of the xenon atom.

Figure 2.3: Ionization form factor
∣∣fnℓ

ion (k′, q)
∣∣2 defined in Eq. (2.62) for the electron

orbital 5p of xenon.

Note that, to compute the ionization form factor, the wave functions of the initial and
final state electrons are expanded into spherical harmonics:

40



ψnℓm(x) = Rnℓ(r)Y
m
ℓ (θ, ϕ),

ψk′ℓ′m′(x) = Rk′ℓ′(r)Y
m′

ℓ′ (θ, ϕ),
(2.63)

where the radial parts Rnℓ(r) and Rk′ℓ′(r) describe isolated argon and xenon atoms, and
are given in Appendix B 4 of Ref. [99]. Notice that, even if those radial functions are not
applicable to dense liquid argon and xenon systems, they are a good approximation and
have been used in previous direct detection analysis of DM [89]. This is due to the fact
that the electron binding energies in liquid nobles are smaller than those of the isolated
atoms, so we expect the effect on theoretical predictions on DM rate to be negligible.
In order to use this framework for numerical applications, as we will do later in this thesis,
we need to rewrite these equations in a more compact form. The squared ionization
amplitude,

∣∣Mnℓ
ion

∣∣2, can be written in the following way:

∣∣Mnℓ
ion

∣∣2 = 4∑
i=1

Rnℓ
i

(
v⊥,

q

me

)
W nℓ

i (k′,q) . (2.64)

Each term on the sum is factorized into two functions: Rnℓ
i

(
v⊥

el
, q
me

)
are the DM response

functions. Those functions depend on the couplings of Eq. (2.29), therefore those are
the pieces that contain all the information about the DM-electron interaction.
W nℓ

i (k′,q) are called atomic response functions, and carry all the information regarding
the electron initial and final state wave functions. Thanks to Eq. (2.64), we are able
to disentangle the particle physics input from that of the atomic physics. The final
expression of the four DM and atomic response functions is2:

2Their detailed derivations can be found in Appendixes A and B of Ref. [99].
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Rnℓ
1

(
v⊥,

q

me

)
≡ c21 +

c23
4

(
q

me

)2 (
v⊥)2 − c23

4

(
q

me

· v⊥
)2

+
c27
4

(
v⊥)2 + c210

4

(
q

me

)2

+
jχ (jχ + 1)

12

{
3c24 + c26

(
q

me

)4

+
(
4c28 + 2c212

) (
v⊥)2+

(
2c29 + 4c211 + 2c4c6

)( q

me

)2

+
(
4c25 + c213 + c214 − 2c12c15

)( q

me

)2 (
v⊥)2

+ c215

(
q

me

)4 (
v⊥)2 − c215( q

me

)2(
v⊥ · q

me

)2

+
(
−4c25 + 2c13c14 + 2c12c15

)(
v⊥ · q

me

)2
}
,

Rnℓ
2

(
v⊥,

q

me

)
≡
(

q

me

· v⊥
)[
−c

2
7

2

(
q

me

)−2

− jχ (jχ + 1)

6

{(
4c28 + 2c212

)( q

me

)−2

+ (c13 + c14)
2

}]
,

Rnℓ
3

(
v⊥,

q

me

)
≡ c23

4

(
q

me

)2

+
c27
4
+
jχ (jχ + 1)

12

{
4c28 + 2c212

+
(
4c25 + c213 + c214 − 2c12c15

)( q

me

)2

+ c215

(
q

me

)4
}
,

Rnℓ
4

(
v⊥,

q

me

)
≡ −c

2
3

4
+
jχ (jχ + 1)

12

{
−4c25 − c215

(
q

me

)2

+ 2c12c15 + 2c13c14

}
,

(2.65)
where ci are the non-relativistic coefficients of Eq. (2.29). The dependence on the (n, ℓ)
quantum numbers comes through the dependence of v⊥el on the binding energy of the
shell: in fact, it is possible to see that, thanks to the conservation of energy and using
Eq. (2.40), we obtain

v · q = ∆E1→2 +
q2

2mχ

. (2.66)

Replacing Eq. (2.66) into the definition of v⊥ (Eq. (2.26)), we get that

(
v⊥)2∣∣∣

k=0
= v2 +

q2

4µ2
e

mχ −me

me +mχ

− ∆E1→2

µe

, (2.67)
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where in this case ∆E1→2 = EB + k′2/ (2me). In the above expressions, v⊥ is evaluated
at k = 0 due to the non-relativistic expansion ofM.
The expression of the four atomic response functions is the following one:

W nℓ
1 (k′,q) ≡ V

4k′3

(2π)3

ℓ∑
m=−ℓ

∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

|f1→2(q)|2 ,

W nℓ
2 (k′,q) ≡ V

4k′3

(2π)3
×

ℓ∑
m=−ℓ

∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

q

me

· f1→2(q)f
∗
1→2(q),

W nℓ
3 (k′,q) ≡ V

4k′3

(2π)3

ℓ∑
m=−ℓ

∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

|f1→2(q)|2 ,

W nℓ
4 (k′,q) ≡ V

4k′3

(2π)3
×

ℓ∑
m=−ℓ

∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

∣∣∣∣ qme

· f1→2(q)

∣∣∣∣2 .

(2.68)

The first atomic response function W nℓ
1 (k′,q) can be identified with the ionization form

factor
∣∣fnℓ

ion (k′, q)
∣∣2 that usually appears in sub-GeV DM detection literature [105]. Fig-

ure 2.6 shows the four atomic response functions, W nℓ
j , j = 1, . . . , 4, for the xenon 5p

atomic orbital.
The physical meaning of the atomic response functions can be understood by evaluating
them in the plane wave limit, where we take the initial and final wave functions equal to
the eigenstates of the electron momentum operator

ψ1(x) = exp(ik · x)/
√
V ,

ψ2(x) = exp (ik′ · x) /
√
V ,

(2.69)

with eigenvalues k and k′ respectively. In this limit, initial and final state electron states
describe free particles, that are not bound to the atom. Substituting ψ1(x) and ψ2(x) in
Eqs. (2.68), we obtain the following expressions

|f1→2(q)|2 =
(2π)3

V
δ(3) (q+ k− k′) , (2.70a)

q

me

· f1→2(q)f1→2(q) = −
(

k

me

· q

me

)
× (2π)3

V
δ(3) (q+ k− k′) , (2.70b)

|f1→2(q)|2 =
∣∣∣∣ kme

∣∣∣∣2 (2π)3V
δ(3) (q+ k− k′) , (2.70c)∣∣∣∣ qme

· f1→2(q)

∣∣∣∣2 = ∣∣∣∣ kme

· q

me

∣∣∣∣2 × (2π)3

V
δ(3) (q+ k− k′) . (2.70d)
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Figure 2.4: The four atomic responses for the outer atomic orbital of xenon. Over
the atomic response, there are three white lines (dotted/dashed/solid) that delimit the
region in which the minimum speed vmin in Eq. (2.24) exceeds the maximum speed
vmax = vearth + vesc for a DM mass of respectively 10MeV/100MeV/→ ∞. The top left
panel shows the same function as the left panel of Fig. 2.3, but now with the final state
electron asymptotic momentum k′ on the y-axis. Note the different colour bar scales in
the four panels.

In the plane-wave limit, it is possible to define a laboratory frame in which k = 0,
meaning that the initial electron is at rest. In this frame, Eqs. (2.70b, 2.70c, 2.70d)
are equal to 0, therefore W nℓ

j (k′,q) = 0 for j = 2, 3, 4, and Eq. (2.64) reduces to the
expression for the modulus squared of the amplitude for DM scattering by a point-like
particle, as it is shown in Ref. [119] in the case of a proton target. So we see that the
first atomic response function describes the contact interaction with the electron, which
will be used in the rest of this thesis. The other three atomic response functions describe
distortions in the ionization spectrum induced by the fact that the initial state electron
is not at rest and obeys a momentum distribution with a finite dispersion, being the
electron bound to an atom.
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Chapter 3

Direct Detection of DM with MadDM

In the previous chapter, we saw how to compute the ionization rate caused by the
interaction with a DM particle. To compute the rate, we need to know the coefficients
ci that describe the interacting Lagrangian in the non-relativistic limit, as shown in Eq.
(2.27). The non-relativistic operators can be matched with the relativistic ones, as shown
in section 2.4.
BSM theories that describe DM particles are written in terms of high energy theories
that describe the DM-electron interaction through a mediator, and up to this date, a
very large number of models has been proposed. The process of matching these models
to EFTs, and then to NREFT in order to compute the rate of DM scattering as shown
in the previous section would be extremely impractical for an analytical analysis of
different DM models. In addition to that, in order to make constraints on the Lagrangian
parameters, the ionization rate must be converted into the expected signal in direct
detection experiment, that one can finally compare with the measured one by evaluating
the p-value for each set of parameters of the assumed model. In order to make this type
of analysis, the use of numerical tools is mandatory.
In this thesis, we focus on the numerical tool MadDM [120], in which we automatized
the full procedure described above in the case of DM-electron scattering. In this chapter,
we outline the full procedure that has been implemented.
We start with a brief introduction of MadDM, followed by the description of the projec-
tion operator method for extraction of low energy coefficients, used in MadDM to obtain
the coefficients of the effective field theory that describes the full model inserted by the
user in Unified FeynRules Output (UFO) format [121], that is a set of Python files that
can be imported in MadGraph5_aMC@NLO. After that, we show how the rate is
computed and transformed into the expected signal, taking into account the specifics of
the XENON10 and XENON1T experiments. At the end of the chapter, we describe how
the p-value evaluation was implemented using the number of events measured by those
experiments, and how it is used to make exclusion limits on the Lagrangian parameters.
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3.1 Introduction on MadDM

MadDM is a computational software capable of calculating observables related to DM
for any DM model in UFO format. The initial version [122] allowed for the computation
of the relic density. The second release [123] included the calculation of the DM-nucleon
cross-section, as well as the double differential event rates of nuclear recoils in a generic
Xe experiment. Additionally, it integrates the LUX experimental likelihoods [124].
The most recent version of MadDM includes an indirect detection module that enables
the computation of observables related to DM annihilation and loop induced processes.
This feature allows for the prediction of the fluxes of neutrinos and gamma rays originat-
ing from the annihilation of DM in the Milky Way or dwarf spheroidal galaxies. MadDM
is used as a plugin for MaDGrapH5_AMC@NLO, thereby inheriting its capabilities.
Moreover, MadDM has introduced a novel functionality known as the experiment mod-
ule, which allows testing of different model points against experimental constraints for
direct and indirect detection. For indirect detection, MadDM has incorporated the
FERMI-LAT likelihood for prompt γ-rays detected in dwarf spheroidal galaxies analysis.
In the case of direct detection for nuclear recoil, the exclusion limits include XENON1T
and LUX for spin-independent cross-section, while for spin-dependent cross-section, the
limits are set by LUX and Pico60, respectively. More detailed information regarding the
capabilities of MadDM can be found in Ref. [120].
In this thesis, we add the capability to evaluate DM-e scattering in MadDM, and to
produce limits based on XENON10 and XENON1T. In this way, we can analyse the
region of light DM mass, opening the possibility to study a greater variety of theoretical
models.

3.2 Computation of low energy coefficients
Given a Lagrangian that describes the interactions between DM and electrons, it is
possible to rewrite it as a linear combination of effective orthogonal operators in the
low-energy limit, where the exchanged momentum Q2 goes to 0 [123], as follows:

LQ2=0 =
∑
i

αiOi, (3.1)

where the operators Oi stand for four point DM-e interactions and are defined in Table
3.1, while αi are multiplicative coefficients. The list of operators is divided into even
(e) and odd (o) operators: under the interchange of electrons with positrons (and vice
versa) the odd operators changes sign, while the even operators do not change sign.
Furthermore, we distinguish between spin-dependent (SI) and spin-independent (SD)
operators, described in section 1.3.3. For DM-e interactions, the SD interactions are
only suppressed by a multiplicative constant proportional to the spin of the interacting

46



DM spin Even Odd

scalar current vector current

0 2Mχϕϕ
∗ψ̄eψe i (∂µϕϕ

∗ − ϕ∂µϕ∗) ψ̄eγ
µψe

SI 1/2 ψ̄χψχψ̄eψe ψ̄χγµψχψ̄eγ
µψe

1 2MχA
∗
χµA

µ
χψ̄eψe i

(
A∗α

χ ∂µAχα − Aα
χ∂µA

∗
χα

)
ψ̄eγµψe

axial-vector current tensor current

1/2 ψ̄χγ
µγ5ψχψ̄eγµγ5ψe −1

2
ψ̄χσµνψχψ̄eσ

µνψe

SD 1
√
6
(
∂αA

∗
χβAχν − A∗

χβ∂αAχν

)
ϵαβνµψ̄eγ5γµψe i

√
3
2

(
AχµA

∗
χν − A∗

χµAχν

)
ψ̄eσ

µνψ̄e

Table 3.1: Most relevant effective operators for scalar ϕ, fermion ψχ and vector Aχ DM
fields [125].

particles. In the case of scalar DM, SD interactions are forbidden. The table only shows
the operators that give relevant contributions at Q2 = 0, and are the ones that will be
considered in the rest of this analysis. We can rewrite Eq. (3.1) as:

LQ2=0 = (Le
SI + Lo

SI) + (Le
SD + Lo

SD) =
∑
s

αSI
s OSI

e,s +
∑
s

αSD
s OSD

e,s , (3.2)

where s = e, o. The matrix elementM resulting from this Lagrangian can be projected
via a Fiertz transformation into the set of effective operators, and we use this transfor-
mation to get the αs coefficients. This procedure is equivalent to taking the interference
term of the full matrix elementM for DM-e scattering with an effective operator matrix
elementMeff for the same process:

αe + αo =
|Mf∗ · Mf,e

eff |
|Mf,e

eff |
2 , (3.3)

where f stands for fermion (referred to the electron). We can use the even and odd
propriety of the operators Oi insideMeff to get the same expression but for DM-positron
scattering:

αe − αo =
|Mf̄∗ · Mf̄ ,e

eff |

|Mf̄ ,e
eff |

2 , (3.4)

where f̄ stands for anti-fermion (referred to the positron). Since the basis of operators
is orthogonal, the projection into the effective operators will also select either SI or SD
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operators. Notice that the interference is computed only using the matrix element from
the even effective operator. We could also compute the interference using the odd one.
In this case, Eq. (3.3) remains the same (with Mf̄ ,o instead of Mf̄ ,e), while Eq. (3.4)
becomes

αo − αe =
|Mf̄∗ · Mf̄ ,o

eff |

|Mf̄ ,o
eff |

2 . (3.5)

By adding and subtracting Eq. (3.3) and (3.4) we finally obtain the effective coefficients:

αe =
1

2

(
|Mf∗ · Mf,e

eff |
|Mf,e

eff |
2 +

|Mf̄∗ · Mf̄ ,e
eff |

|Mf̄ ,e
eff |

2

)
, (3.6)

αo =
1

2

(
|Mf∗ · Mf,e

eff |
|Mf,e

eff |
2 − |M

f̄∗ · Mf̄ ,e
eff |

|Mf̄ ,e
eff |

2

)
. (3.7)

3.3 Derivation of the expected signal with MadDM

The BSM models, including the even effective operators for fermion and scalar DM shown
in Table 3.1 have been built in UFO format, that can be read by MadDM. The code
implemented in this thesis has instructed MadDM to take the user model for DM-e
and match it with the EFT model. Then the interference term shown in Eq. (3.3) is
computed as:

|Mf∗ · Mf,e
eff |

|Mf,e
eff |

2 =
1

2

|Mf
tot|2 − |Mf |2 − |Mf,e

eff |2

|Mf,e
eff |

2 , (3.8)

whereMf is the matrix element of the full theory inserted by the user,Mf
eff is the matrix

element of the effective operator, andMf
tot is the matrix element of both the full theory

and the effective one. Then, the effective coefficients αi are obtained using Eqs. (3.6)
and (3.7).

3.3.1 Derivation of the differential rate

Once we have obtained the effective (relativistic) coefficients αi, following Eq. (2.34) we
can directly write the non-relativistic coefficients ci in terms of αi. We are interested on
the operators shown in Table 3.1 because these are the dominant terms as they are not
suppressed by Q2. These operators correspond to the relativistic operators O1, O5, O8,
O9 in the fermion DM case and O1, O3 in the scalar DM case. Therefore, in the fermion
DM case, the expression for the c1 and c4 coefficients is:
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c1 = 4mχme(α
SI
e + αSI

o ),

c4 = 16mχme(−αSD
e + 2αSD

o ),
(3.9)

while for the scalar DM case:

c1 = 2me(αe + 2mχαo). (3.10)

For fermion DM, since c1 and c4 are the only non-zero coefficients, the DM response
functions reported in Eq. (2.65) simplify to:

R1 = c21 +
3

16
c24, (3.11)

while for scalar DM we have:

R1 = c21. (3.12)

Given that the only non-zero DM response function is the first one, the squared ionization
amplitude shown in Eq. (2.64) becomes∣∣Mnℓ

ion

∣∣2 = R1 W
nℓ
1 (k′,q) . (3.13)

Because the DM response function is a constant, it factors out of the integrals in Eq.
(2.59), and gives two factorized integrals

dRnℓ
ion

d lnEe

=
nχ

128πm2
χm

2
e

×R1

∫
d3v

v
fχ(v)Θ (v − vmin )

∫
dq q W nℓ

1 (k′,q) . (3.14)

We already presented the analytic solution for the integral over the DM velocity distri-
bution in Eq. (2.6), while for the second integral the integration is done numerically
inside MadDM.
If we include other operators, the DM response function can acquire a dependence on
v⊥, therefore we can not factorize it, and the integral over the DM velocity must be
evaluated numerically.

3.3.2 XENON10 and XENON1T experiments

XENON10 and XENON1T are dual-phase liquid xenon detector time projection cham-
bers (TPC) that contain respectively 25 and 2000 kg of pure liquid xenon (LXe) [94, 126].
Both experiments were installed at the Gran Sasso Underground Laboratory (LNGS).
XENON10 data covers a period between October 6th 2006 to February 14th 2007, while
its successor, XENON1T, took data between October 2016 and February 2018.
The principle of operation of those TPC detectors is shown in Fig. 3.1.
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Figure 3.1: Detection of a signal in the XENON10 two-phase TPC. Figure from [126].

The volume of liquid xenon acts both like a target and a scintillator: each interaction
ionizes or excites the xenon atoms, and then ionization electrons and primary scintillation
photons (S1) are produced. The S1 photons are produced by the de-excitation of excited
Xe molecules (Xe∗2) to the ground state (Xe2) and have a wavelength of about 178 nm.
The chamber is permeated with an electric field ϵd ≃ 1 kV/cm. Under the effect of the
electric field, the ionization electrons that escape the recombination with positive ions
drift towards the liquid-gas interface with a drift velocity vd ≃ 2 mm/µs. When the
electrons reach the gas phase the electric field is stronger (ϵe ≃ 10 kV/cm), and the
electrons accelerate producing secondary scintillation photons (S2). To detect S1 and
S2 signals, photomultiplier tubes (PMTs) are placed in the sensitive regions of the liquid
and gas phases.
The number of secondary scintillation photons emitted in the gas is proportional to the
number of electrons, which is proportional to the energy deposited in the liquid by the
DM particle. One drifting electron produces enough secondary photons to be detected
by the PMTs, so a two-phase detector is single-electron sensitive. The difference in the
amplitudes of S1 and S2 signals helps in the discrimination between background (given
by beta and gamma-rays) and nuclear recoil signal.
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XENON10
bin [ S2 ] obs. events
[14, 41) 126
[41, 68) 60
[68, 95) 12
[95, 122) 3
[122, 149) 2
[149, 176) 0
[176, 203) 2

XENON1T
bin [S2] obs. events
[150, 200) 8
[200, 250) 7
[250, 300) 2
[300, 350) 1
− −
− −
− −

Table 3.2: Observed signal at XENON10 (left) [91] and XENON1T (right) [94] in the
given S2 bins.

3.3.3 From differential rate to S2 signal

Once we have computed the differential rate with Eq. (3.14), we want to translate it into
the number of expected events that would be measured in XENON10 and XENON1T.
In Table 3.2 we report the binned signal measured in S2 by XENON10 and XENON1T
experiments, after the background discrimination and the efficiency cuts.
To better see how the rate is modelled into the S2 signal, we take, as an example,
the differential rate of a benchmark model in which the only non-zero non-relativistic
coefficient is c1; therefore it could be the case of a scalar or vector (or both) mediated
DM. The reference DM-e cross-section, in this case, is

σ̄e ≡
µ2
χc

2
1

16πm2
χm

2
e

, (3.15)

and, for this example, I take σ̄e = 10−38 cm2. Figure 3.2 shows the differential rate
produced by the code implemented in this thesis.
Note that only the outer shells of Xe with principal quantum number n ≥ 4 contribute
to the rate. This is because the binding energy of inner shells is higher, and, following
Eq. (2.24), for a light-DM particle and for q > 0 we get a minimum velocity that is above
vesc+VE, therefore the integral over the DM velocity distribution is zero (see section 2.1).
The values for the binding energies are shown in Table 3.3. A heavier DM particle could
also ionize the inner shells, but the rate would be too small, given that it is proportional
to 1/m2

χ (see Eq. (3.14)). For this reason, we focus only on light-DM with mχ ≤ 1 GeV.
As described in Section 3.3.2, each interaction produces a number nq of quanta, which can
be ionization electrons and/or scintillation photons. We want to compute the number ne

of electrons, which will then drift towards the upper part of the detector and produce the
S2 signal. To compute ne we need to use a probabilistic model based on both theoretical
and empirical understanding of the electron yield of high-energy electronic recoils [127].
We start with the primary scattered electron, which produces a number Ni of ions and
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Figure 3.2: Differential ionization rate dRion/dEe for σ̄e = 10−38cm2 and mχ = 1 GeV.
In the plot are shown the different contributions for each shell of xenon atoms and the
total rate. Only the outer shells contribute to the rate, because for the inner shells with
principal quantum number n < 4 the binding energy is bigger, and it would require too
high DM velocity to ionize the Xe atom.

a number Nex of excited atoms, whose initial ratio is determined to be Nex/Ni ≈ 0.2 for
a wide range of energies above a keV [128, 129]. Electron-ion recombination follows a
modified Thomas-Imel recombination model [130, 131], so the fraction fR of ions that
recombine is basically zero at low energy, therefore ne = Ni and nγ = Nex. Consequently,
the fraction fe of initial quanta observed as electrons is given by [131]

fe =
1− fR

1 +Nex/Ni

≈ 0.83. (3.16)

At high energy, the total number nq of quanta is observed to be n(1) = ⌊Eer/W ⌋ 1, where
1⌊x⌋ is the floor function that takes as input a real number x and gives as output the greatest integer

that is equal or less x.
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Shell 5p6 5s2 4d10 4p6 4s2

Binding Energy [eV] 12.4 25.7 75.6 163.5 213.8
Photon Energy [eV] - 13.3 63.2 87.9 201.4
Additional Quanta 0 0 4 6− 10 3− 15

Table 3.3: Binding energies of xenon shells, energy difference from the outer shell 5p6 to
the inner shell, and additional quanta produced in the de-excitation [133]. Note that the
number of additional quanta is not a fixed number, but instead is a range: this takes into
account the fact that there could be more than one available lower energy shell for the
higher energy shell to de-excite into. In this thesis, I take the minimum of this range.

Eer is the energy of the initial scattered electron, and W = 13.8 eV is the average energy
required to create a single quantum [132]. In addition, if the ionized shell is an inner
shell, then an electron from one of the outer shells will de-excite into the ionized shell,
emitting a photon that could then photoionize, producing a number n(2) of quanta. The
binding energies of xenon shells and the number of quanta produced by the de-excitation
are reported in Table 3.3.
Note that the values that are reported for fR, Nex/Ni and W were measured at ener-
gies higher than the ones in which we are interested in, therefore this adds theoretical
uncertainty in the predicted rate.
To resume, the number of electrons ne will be given by ne = n′

e+n
′′
e , where n′

e represents
the primary electron, thus is 0 or 1 with probability fR or 1−fR respectively, while n′′

e is
the number of quanta observed as electrons, which has a mean value of nq/ne = fe ≈ 0.83,
therefore n′′

e follows a binomial distribution with success probability fe and nq trials. The
number nq of quanta is given by n(1)+n(2), where n(1) = ⌊Eer/W ⌋ is the number of quanta
given by the initial scattered electron, and n(2) is the number of quanta given by the de-
excitation into inner shells.
All of these contributions can be condensed in one single function P nℓ(ne|Ee) that gives
the probability for ne electrons to reach the gas phase of the TPC given an initial ionized
electron with energy Ee. Therefore, to convert the rate over energy into the rate over
the number of electrons, we need to apply the following equation:

dRnℓ
ion

dne

=

∫
dEeP

nℓ (ne | Ee)
dRnℓ

ion

dEe

. (3.17)

In this way, given the rate shown in Fig. 3.2, we obtain the rate shown in Fig. 3.3
We need now to compute the rate over the number of secondary scintillation photons S2.
As said before, after an event produces ne electrons inside the TPC, those electrons drift
towards the gas phase and then produce a number S2 of secondary scintillation photons.
The S2 signal follows a Gaussian distribution [133–135] with mean neµ and width

√
neσ,

where µ is the secondary-scintillation gain factor and σ is the associated with factor.
Those two parameters depend on the experimental setup, and their reported values are
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Figure 3.3: Differential rate over the number of produced electrons dRnℓ
ion

dne
for σ̄e =

10−38cm2 and mχ = 1 GeV.

µ = 27 (33) and σ = 6.7 (7) for XENON10 (XENON1T) [76, 94, 133, 136]. Therefore,
the rate in terms of S2 is given by the following expression

dRnℓ
ion

dS2
= ε(S2)

∞∑
ne=1

P (S2 | ne)
dRnℓ

ion

dne

, (3.18)

where P (S2 | ne) is the probability to produce S2 photo-electrons given ne drift electrons,
that is equal to

P (S2 | ne) = Gauss (S2 | neg2,
√
neσS2) , (3.19)

and we also multiplied for the efficiency ε(S2). For XENON10 the efficiency is the
product of a flat cut efficiency of 92% multiplied by the trigger efficiency shown in Fig.
1 of [127]. For XENON1T the efficiency is given by the products of all the cuts2 shown
in Fig. 3 of [94] and a flat efficiency of 93%.
Finally, to compute the signal, we need to multiply the rate with the exposure of the
two experiments. For XENON10 the exposure is 15 kg days [127], while for XENON1T
the exposure E is given by

2Note that the “radius” efficiency needs to be squared
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E = R2π ×∆z × ρXe ×∆t, (3.20)

where R = 47.9 cm is the target’s radius, ∆z = 20 cm is the height of the search’s
volume (corresponding to z ∈ [−30 cm,−10 cm]), ρXe = 3.1 g cm−3 is the density of
liquid xenon, and ∆t = 180.7 days is the time of the search data [94]. This gives an
exposure of ∼ 80755 kg days. The signal dNion/dS2 for our benchmark example, for
both XENON10 and XENON1T, is shown in Fig. 3.4. The straight lines indicate the
S2 bins used to report the signal. The signal events are given by integrating the signal
over each bin. The binned signal is reported in Table 3.4.

Figure 3.4: Signal over the number of photo-electron for XENON10 (above) and
XENON1T (below) for σ̄e = 10−38cm2 and mχ = 1 GeV. The vertical gray lines in-
dicate the S2 values for the bins used to report the signal, as shown in Table 3.2. For
XENON1T, only the signal above 150 S2 events has been reported.

We can now compare these results to the measured signal shown in Table 3.2. We can see
that, for the benchmark point, in the case of XENON10 the expected signal is smaller
than the measured signal, while XENON1T the expected signal is way bigger than the
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XENON10
bin [ S2 ] obs. events
[14, 41) 1.72
[41, 68) 0.58
[68, 95) 0.34
[95, 122) 0.44
[122, 149) 0.53
[149, 176) 0.43
[176, 203) 0.32

XENON1T
bin [S2] obs. events
[150, 200) 55.45
[200, 250) 58.35
[250, 300) 41.01
[300, 350) 26.53
− −
− −
− −

Table 3.4: Predicted signal for XENON10 (left) and XENON1T (right) for a DM particle
with mass mχ = 1 GeV and a reference cross section σ̄e = 10−38 cm2.

measured one. The case in which the expected signal is smaller than the measured one
can be due to unknown background, so the expected signal is compatible with the data.
In the case in which the expected signal is larger than the experimental signal, we can
say instead that the model taken into account is not compatible with the data, so we
discard it.
Here we made only qualitative assumptions, the next section shows how to use the results
on Table 3.4 to get a quantitative understanding of the agreement of our model with
experimental data, and also how to produce exclusion limits on the parameters of a given
model.

3.4 Derivation of exclusion limits from XENON10 and
XENON1T data

In this section, we describe how to obtain the level of agreement of our model to the
experimental data, that is described by the p-value, and present the exclusion limits on
the non-relativistic coefficients c1 and c4 studied in this thesis.

3.4.1 Evaluation of the p-value

The p-value p is a statistical measure used to determine the probability of observing
the outcome of an experiment as extreme as the measured one, assuming that the null
hypothesis is true. A p-value smaller than the significance level (usually set to 0.05
or 0.01) indicates that the observed difference is statistically significant, and the null
hypothesis is rejected. In our case, we want to see if our model is excluded or not, so we
take the null hypothesis to be our DM model, that produces the expected signal µ shown
in Table 3.4, where µ is the sum of the signal in each bin. The p-value is then given
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by the probability to measure a signal s′ as extreme as the measured signal s shown in
Table 3.2, where s is the sum of the measured signal in each bin3.
With “as extreme as”, we mean that, if s ≤ µ, the “more extreme” measures are the ones
lower than s, therefore the p-value p is given by the sum of the probabilities to measure
a signal s′ lower or equal than the measured one s, that means:

p = P0(µ) + P1(µ) + P2(µ) + · · ·+ Ps(µ) =
s∑

i=0

Pi(µ), (3.21)

where Pi(µ) stands for the probability to measure s′ = i given an expected value µ. If
instead s ≥ µ, we take the sum of probabilities to measure a signal s′ bigger or equal
than the measured one s:

p = Ps(µ) + Ps+1(µ) + Ps+2(µ) + · · ·+ P∞(µ) =
∞∑
i=s

Pi(µ). (3.22)

But as said in the previous section, we are not interested in the case in which s ≥ µ,
because we are only interested into excluding DM models that give us a signal bigger than
the measured one. Therefore, in this thesis, we will only consider Eq. (3.21), therefore
obtaining a one-sided upper bound on the parameters of the DM model.
To get a robust upper bound, we can treat each bin independently and compute the
p-value for each one of them. To compute the p-value p(j) associated to the j-th bin,
we assume that the signal follows a Poisson distribution with mean µ(j) equal to the
expected DM signal on the j-th bin. Therefore, the probability Pi(µ

(j)) to measure a
signal equal to i, given an expected value µ(j), is equal to the Poisson density function

Pi(µ) = fPoiss(i;µ) =
e−µµi

i!
, (3.23)

and the p-value for the j-th bin is given by

p(j) = P0(µ
(j)) + P1(µ

(j)) + P2(µ
(j)) + · · ·+ Ps(j)(µ

(j)) = FPoiss(s
(j);µ(j)), (3.24)

where FPoiss is the Poisson cumulative density function

FPoiss(n;µ) =
n∑

i=0

e−µµi

i!
. (3.25)

We assume a Poisson distribution because it is commonly used to model the distribution
of counts or frequencies of rare events, where each event is independent of the others and
occurs at a fixed average rate. Therefore, the Poisson distribution is a natural choice for

3We consider the case in which the signal measured by the XENON collaboration is entirely given
by DM scattering, therefore the background is assumed to be zero.
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modelling the distribution of entries in a histogram, particularly when the bin contents
are low and the probability of observing multiple counts in a single bin is small.
Once we have computed the p-values p(j) for each bin, we take the final p-value to be
equal to the lowest one. This is due to the fact that some bins have reported way fewer
events than others, therefore they are more sensitive than others to detect possible DM
candidates, so we consider only the p-value associated to the most sensitive bin.
If we apply this procedure using as signal s the data reported in Table 3.2 and as expected
signal µ the data reported in Table 3.4, we obtain a minimum p-value equal to 0.65 for
XENON10 and 2.36×10−17 for XENON1T. Therefore, using a significance level equal to
0.01, we can say that for XENON10 the expected signal is compatible with the measured
one, while this is not true for XENON1T, so we reject the model point.
MadDM has the capability to make scans on the parameter space of the DM model
inserted by the user. In this way, it is possible to obtain the p-value for any region of
the parameter space. By plotting all the points with p-value above a certain quantity α,
it is possible to get the exclusion limits with confidence level C.L. = 1− α.
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Chapter 4

Analysis of DM models

In this chapter, we first study different simplified models for a Dirac DM particle that
interacts with a SM particle through a scalar, vector or pseudo-scalar mediator. We
then study the case of scalar dark QED model of DM, in which the scalar DM particle φ
couples to a massive “dark photon” that mixes kinetically with the SM photon. In this
last case, we compute as well the model parameter space that leads to the measured relic
density and confront it with the upper bounds from XENON10 and XENON1T.
Those models were implemented in UFO format using FeynRules, and then loaded
into MadDM to validate the analytic result of the scattering amplitudes. We also use
them to verify the correct projection into the effective operators of Table 3.1.
We show how the non-relativistic coefficients c1 and c4 are linked to the Lagrangian
parameters, and we present the exclusion limits of c1 and c4 computed with MadDM.

4.1 Scattering amplitude of simplified Dirac DM-e mod-
els

4.1.1 Vector mediated DM

The Lagrangian for vector mediated DM is:

L = Lkin + Lint + Lmass + LSM

= −1

4
F µνFµν + (gVe ēγ

µe+ gVχ χ̄γ
µχ)Vµ +

M2
V

2
V µVµ −mχχ̄χ+ LSM ,

(4.1)

where χ is the Dirac DM particle with mass mχ, Vµ is the vector mediator with mass
MV and F µν = ∂µV ν − ∂νV µ is the field strength for V µ. The matrix element of DM-e
interaction is:
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Figure 4.1: Vector mediated scattering between DM and electrons

iM = (−igVχ )ū3γµu1
−igµν
t−M2

V

(−igVe )ū4γνu2. (4.2)

We compute the unpolarized squared amplitude, averaging on the polarizations of the
initial particles:

|Ā|2 = 1

4

∑
spin

|M|2 = 1

4
gVχ

2
gVe

2 1

(t−M2
V )

2

∑
spin

ū3γ
µu1ū4γµu2ū1γ

νu3ū2γνu4. (4.3)

Rearranging the spinor products in order to get a trace and using the fermion complete-
ness relations, we obtain:

|Ā|2 = 1

4
gVχ

2
gVe

2 1

(t−M2
V )

2 Tr
[
(/p+mχ)γ

ν(/p
′ +mχ)γ

µ
]

·Tr
[
(/k +me)γν(/k

′
+me)γµ

]
.

(4.4)

We compute the trace of the gamma matrices, and we rewrite the amplitude squared in
terms of the 4-momenta of the particles:

|Ā|2 = 8gVχ
2
gVe

2 1

(t−M2
V )

2

[
(p · k′)(p′ · k) + (p · k)(p′ · k′)

−me
2p · p′ −mχ

2k · k′ + 2me
2mχ

2
]
.

(4.5)

We analyse the case in which the incoming DM has an initial energy Eχ and it scatters
with an electron loosely bound to a nucleus, so we can assume it to be at rest. After the
scattering, the electron acquires a recoil energy ER. So we can write the 4-momenta of
the particles as:

p = (Eχ,pχ), k = (me,0), p′ = (E ′
χ,p

′), k′ = (ER,pe). (4.6)

Substituting those 4-momenta inside Eq. (4.5) we obtain the following result:
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|Ā|2 = gVχ
2
gVe

2 1

(t−M2
V )

28
{
me

[
me(2E

2
χ − 2EχER + E2

R)

− (3m2
e +m2

χ)ER

]
+ 2m3

eEχ + 2m4
e +m2

χm
2
e

}
.

(4.7)

The value of the amplitude squared was validated using MadDM. In the low energy
limit, the interaction Lagrangian can be written as an effective field theory

(Lint)M2
V ≫t = GV ēγ

µeχ̄γµχ, (4.8)

where GV = gVe g
V
χ /M

2
V . Given that the effective Lagrangian of Eq. (4.8) is proportional

to the SI odd operator shown in Table 3.1, the projection of this Lagrangian is non-zero
only for this operator, and the only non-zero relativistic coefficient is

αSI
o = GV =

gVe g
V
χ

M2
V

. (4.9)

This expression has been validated analytically and numerically with MadDM.

4.1.2 Scalar mediated DM

The Lagrangian for scalar-mediated DM is:

L = Lkin + Lint + Lmass + LSM

= (∂µϕ)∗(∂µϕ) + (gϕe ēe+ gϕχχ̄χ)ϕ−M2
ϕϕ

∗ϕ−mχχ̄χ+ LSM ,
(4.10)

where χ is the Dirac DM particle with mass mχ and ϕ is the scalar mediator with mass
Mϕ. The matrix element of DM-e interaction is:

k

p

k′

p′

e−

χ

e−

ϕ

χ

Figure 4.2: Scalar mediated scattering between DM and electrons

iM = (−igϕχ)ū3u1
i

t−M2
ϕ

(−igϕe )ū4u2. (4.11)

We compute the unpolarized squared amplitude:
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|Ā|2 = 1

4

∑
spin

|M|2 = 1

4
gϕχ

2
gϕe

2 1

(t−M2
ϕ)

2

∑
spin

ū3u1ū4u2ū1u3ū2u4

=
1

4
gϕχ

2
gϕe

2 1

(t−M2
ϕ)

2 Tr
[
(/p+mχ)(/p

′ +mχ)
]
Tr
[
(/k +me)(/k

′
+me)

]
= 4gϕχ

2
gϕe

2 1

(t−M2
ϕ)

2 (p · p
′ +m2

χ)(k · k′ +m2
e).

(4.12)

Using the 4-momenta of Eq. (4.6), we obtain the following result:

|Ā|2 = gϕχ
2
gϕe

2 1

(t−M2
ϕ)

24me(2m
2
χ −m2

e +meER)(ER +me). (4.13)

The value of the amplitude squared was validated using MadDM. In the low energy
limit, the interaction Lagrangian can be written as an effective field theory

(Lint)M2
ϕ≫t = GS ēeχ̄χ, (4.14)

where GS = gϕe g
ϕ
χ/M

2
ϕ. Given that the effective Lagrangian of Eq. (4.14) is proportional

to the SI even operator shown in Table 3.1, the projection of this Lagrangian is non-zero
only for this operator, and the only non-zero relativistic coefficient is

αSI
e = GS =

gϕe g
ϕ
χ

M2
ϕ

. (4.15)

This expression has been validated analytically and numerically with MadDM.

4.1.3 Pseudo-scalar mediated DM

The Lagrangian for pseudo-scalar mediated DM is:

L = Lkin + Lint + Lmass + LSM

= (∂µa)∗(∂µa) + (gae ēγ
5e+ gaχχ̄γ

5χ)a−M2
aa

∗a−mχχ̄χ+ LSM ,
(4.16)

where χ is the Dirac DM with mass mχ and a is the pseudo-scalar propagator with mass
Ma. The matrix element of DM-e interaction is:
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Figure 4.3: Pseudo-scalar mediated scattering between DM and electrons

iM = (−igaχ)ū3γ5u1
i

t−M2
a

(−igae )ū4γ5u2. (4.17)

We compute the unpolarized squared amplitude:

|Ā|2 = 1

4

∑
spin

|M|2 = 1

4
gaχ

2gae
2 1

(t−M2
a )

2

∑
spin

ū3γ
5u1ū4γ

5u2ū1γ
5u3ū2γ

5u4

=
1

4
gaχ

2gae
2 1

(t−M2
a )

2 Tr
[
(/p+mχ)γ

5(/p
′ +mχ)γ

5
]
Tr
[
(/k +me)γ

5(/k
′
+me)γ

5
]

= 4gaχ
2gae

2 1

(t−M2
a )

2 (m
2
χ − p · p′)(m2

e − k · k′).

(4.18)
Using the 4-momenta of Eq. (4.6), we obtain the following result:

|Ā|2 = gaχ
2gae

2 1

(t−M2
a )

24(m
2
e −meER)

2. (4.19)

The value of the amplitude squared was validated using MadDM. In the low energy
limit, the interaction Lagrangian can be written as an effective field theory

(Lint)M2
a≫t = GPS ēγ

5eχ̄γ5χ, (4.20)

where GPS = gaeg
a
χ/M

2
a . The effective Lagrangian of Eq. (4.8) does not correspond to

any operator shown in Table 3.1, so the projection of this Lagrangian is zero for each
one of them. This is due to the fact that the scattering amplitude in Eq. (4.19), at low
energy, is proportional to Q4.

|Ā|2 ∝
(
m2

e −meER

)2
=
(
m2

e −me

√
m2

e + p2e

)2
= m4

e

(
1−

√
1 +

p2e
m2

e

)2

pe→0−−−→ m4
e

(
1− 1− p2e

2m2
e

)2

=
1

4
p4e =

1

4
Q4,

(4.21)
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where the last equivalence is justified by the fact that the final electron momentum pe is
equal to the exchanged momentum, given that the electron is initially assumed at rest.
Because the amplitude is proportional to Q4, the interference with the operators of Table
3.1, which are independent on Q, is always zero in the low energy limit. This was also
verified numerically with MadDM.
We can repeat the same procedure for axial and tensorial mediated Dirac DM, and we
verified both analytically and numerically that the only non-zero relativistic coefficient
in these cases are respectively

αSD
e =

gax
χ g

ax
e

M2
ax

, αSD
o =

gt
χg

t
e

M2
t
. (4.22)

4.2 Exclusion limits on non-relativistic coefficients
Thanks to Eq. (3.9) and Eq. (3.10) we can write the non-relativistic coefficients c1 and
c4 in terms of the relativistic ones, that we can link to the Lagrangian parameters as
seen in the previous chapter. For fermion DM we obtain:

c1 = 4mχme

(
gϕχg

ϕ
e

M2
ϕ

+
gVχ g

V
e

M2
V

)
,

c4 = 16mχme

(
−
gax
χ g

ax
e

M2
ax

+ 2
gt
χg

t
e

M2
t

)
,

(4.23)

while for a scalar DM particle φ, we obtain:

c1 = 2me

(
gϕφg

ϕ
e

M2
ϕ

+ 2mχ

gVφ g
V
e

M2
V

)
. (4.24)

Using MadDM we can make scans on the Lagrangian parameters, and then make ex-
clusion limits on c1 and c4. In Fig. 4.4 we show the exclusion limits at C.L. = 95% for
the individual couplings c1 and c4 for a DM mass mχ ∈ [1, 1000] MeV.
In this case, the exclusion limits between c1 and c4 are quite similar because, as shown in
section 3.3.1, they appear both in the DM response function just as constants multiplied
by a number. If we consider only c1 the DM response function is simply Rnℓ

1

(
v⊥, q

me

)
=

c21, while if we consider only c4 we get Rnℓ
1

(
v⊥, q

me

)
= 3

16
c24.

In the case in which we consider the other suppressed operators, the DM response func-
tion becomes more complex and acquires a dependence on v⊥

el and/or q, therefore the
exclusion limits will have a different shape.
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Figure 4.4: Exclusion limits at 95% C.L. on the non-relativistic coefficients c1 (continuous
line) and c4 (dashed line) for mχ ∈ [1, 1000] MeV. The exclusion limits are computed
using XENON10 and XENON1T data, which exclude respectively the light blue and
blue regions of the plot.

4.3 Scalar dark QED model
We start by introducing the most generic Lagrangian of two Abelian gauge bosons Aa

and Ab, described by two gauge groups U(1)a and U(1)b, that couples respectively to the
DM particle and to SM fermions with coupling gD and e, where gD ≡

√
4παD is a new

“dark” coupling and e is the QED coupling [137]. The two gauge bosons are kinematically
mixed, and the mixing is controlled by a parameter ϵ. This Lagrangian, considering only
the kinetic and interaction terms, is:

L = Lkin +Lint = −
1

4
FaµνFaµν −

1

4
Fb

µνFbµν −
ϵ

2
Fb

µνFaµν + eJµAb
µ+ gDJDµAa

µ, (4.25)

where Fa and Fb are respectively the Aa and Ab field strengths:
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Fa
µν = ∂µAa

ν − ∂νAa
µ,

Fb
µν = ∂µAb

ν − ∂νAb
µ.

(4.26)

while Jµ, JDµ are the SM and DM currents:

Jµ =
∑
f

ψ̄fγ
µψf ,

J µ
D = iφ∗∂µφ+ c.c. .

(4.27)

We diagonalize the kinetic terms in Eq. (4.25) by redefining the two gauge fields Aa and
Ab: (

Aµ
a

Aµ
b

)
=

(
1√
1−ε2

0

− ε√
1−ε2

1

)(
A′µ

Aµ

)
, (4.28)

where we identify Aµ with the SM photon and A′µ with the dark photon. In this new
basis, the interaction Lagrangian becomes:

Lint =

[
gD√
1− ε2

J ′
µ −

eε√
1− ε2

Jµ

]
A′µ + eJµA

µ. (4.29)

Thanks to the kinematic mixing, the SM current couples to the dark photon with a cou-
pling eε/

√
1− ε2, therefore DM particles can interact with SM fermions by exchanging

a dark photon. Because experimentally we have not measured this mixing, we assume ϵ
to be small, therefore the coupling between the SM particles and the dark photon can
be approximated to εe. Using the same approximation also for the coupling between the
DM particle and the dark photon, we can rewrite the interaction Lagrangian as:

Lint =
(
gDJ ′

µ − eεJµ

)
A′µ + eJµA

µ. (4.30)

We constrain the parameters of this DM model using the relic abundance of DM and
direct detection analysis.

4.3.1 Evaluating the relic density

In general, DM particles freeze out around x ∼ 20, and the ⟨σv⟩ value that provides the
correct relic abundance is ⟨σv⟩ ∼ 1 × 10−26 cm3 s−1, therefore, the parameters of our
model must satisfy this condition.
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Figure 4.5: DM annihilation into two SM particles mediated by a dark photon A′.

For light-DM (mφ < 1 GeV), freeze-out happens at a temperature T ∼ mφ/20 < 0.1
GeV, that is lower than the temperature of QCD phase transition [138], so we can no
more describe the relevant SM particles as free quarks, but as hadrons. For this reason,
to compute the annihilation cross section we should use chiral perturbation theory, but
in the case of this dark QED model, we can avoid that, since this model has the same
structure as QED. To compute the cross section for φ∗φ → hadrons, we can use the
R-ratio, defined as

Rγ
had(
√
s) ≡ σ (e+e− → hadrons )

σ (e+e− → µ+µ−)
. (4.31)

This ratio is determined experimentally and tabulated in Ref. [139]. We can use it to
determine the dark matter annihilation cross section to hadrons

σ(φ∗φ→ hadrons ) = σ
(
φ∗φ→ µ+µ−)R(√s). (4.32)

The annihilation cross section into two SM particles is therefore given by

σ
(
φ∗φ→ SM SM

)
=
∑

ℓ=e,µ,τ

σ
(
φ∗φ→ ℓ+ℓ−

)
+ σ (φ∗φ→ hadrons)

=
∑

ℓ=e,µ,τ

σ
(
φ∗φ→ ℓ+ℓ−

)
+ σ

(
φ∗φ→ µ+µ−)R(√s), (4.33)

where the annihilation cross section of DM into two fermions f can be computed ana-
lytically [140], and is equal to

σ =
ncg

2
Ds

12π
[
(m2

A′ − s)2 + Γ2
A′m2

A′

]√1−
4m2

φ

s

√
1−

4m2
f

s

[
(ϵe)2

(
1 +

2m2
f

s

)]
, (4.34)

where nc is the number of colours, therefore nc = 1 for leptons, and the dark photon
width is given by
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ΓA′ ≡
∑
f

Γ(A′ → ff̄) =
∑
f

ncmA′

12πS

√
1−

4m2
f

m2
A′

[
(ϵe)2

(
1 + 2

m2
f

m2
A′

)]
, (4.35)

where S ≡ 1(2) for (in)distinguishable final states particles. We can now compute the
thermally averaged cross section ⟨σv⟩ shown in Eq. (1.20) using the annihilation cross
section in Eq. (4.33) for a range of DM masses mφ, mediator masses mA′ , coupling
gD and mixing parameter ϵ. We select all the combinations of parameters that satisfy
the condition ⟨σv⟩ = 1 × 10−26 cm3 s−1 and we use those parameters to compute the
reference cross section σe for DM annihilation into e+e−:

σ̄e =
µ2
φ,e

πm4
A′
(ϵegD)

2, (4.36)

where µφ,e is the DM-e reduced mass. The dashed line in Fig. 4.7 shows the reference
cross sections σe that satisfies the condition ⟨σv⟩ = 1×10−26 cm3 s−1. This cross section
is equal to the one for DM-e scattering, thanks to the crossing symmetry propriety of
the scattering amplitude, so we can confront it to the one computed in direct detection
analysis.
In the region above the dashed line, the resulting DM relic abundance would be lower
than the measured one, but a hidden-sector/multi-component DM scenario, could still
complete the DM abundance, see for example Ref. [141]. In this scenario, the DM
particle that couples to SM fermions is a sub-dominant component of the DM particle
content, therefore the relic abundance associate to this particle can be lower than the
measured one.
Below the dashed line, the abundance is larger than the measured one, thus leading to
overclosure of the Universe, so we exclude this region.

4.3.2 Exclusion limits from direct detection

Using MadDM is it possible to make scans on the parameters mφ, mA′ , gD and ϵ of this
theory, obtaining the p-value p for each combination. We can select the combinations
of coefficients that satisfy the condition p > 1 − C.L., and then use those parameters
to compute the reference DM-e cross section shown in Eq. (4.36), similarly as we have
done in the previous section.
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Figure 4.6: DM-e scattering mediated via a dark photon A′.

To compute the exclusion limits, we could also use the ones that we already made on c1,
shown in Fig. 4.4. In fact, in the case of a scalar dark QED model, the full theory at low
energy can be described by the odd SI relativistic operator of Table (2.30), and the only
non-zero non-relativistic coefficient is c1. In this case, the cross section σe, is defined as:

σ̄e ≡
µ2
φ,ec

2
1

16πm2
φm

2
e

, (4.37)

Notice that, using Eq. (3.10) and using a similar procedure to the one shown in section
4.1.1, we can compute analytically c1, obtaining

c1 = 4mχmeα
SI
o = 4mχme

ϵegD
m2

A′
. (4.38)

By substituting c1 to Eq. (4.37), we obtain Eq. (4.36), so the two procedures are indeed
equivalent.
The exclusion limits considering mφ ∈ [1, 1000] MeV are shown in Fig. 4.7.
Other constraints for the parameters of this model arise from different types of analysis,
as collider experiments like BaBar, in which the process e+e− → γ+ invisible is studied
[142–144], or electroweak precision tests (EWPT) [145, 146]. Constraints for gD come
from DM self interaction, that requires σself-int ≲ 1 cm2/g for clusters [147], or from
perturbative consistency [148], while constraints for ϵ, gD and mA′ come from beam-
dump analysis [149].
Future direct detection experiments, like LZ [75], XENONnT [76], DARWIN [77]) or
DarkSide20k [78], with their improved sensitivity and lower background levels, could
probe the region that describes the correct DM relic abundance, therefore leading to a
potential discovery or excluding this model for a certain range of DM mass mφ.
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Figure 4.7: Exclusion limits at 95% C.L. on the cross section of scalar DM-e interaction
mediated via a dark photon vs DM mass. The exclusion limits are computed using
XENON10 and XENON1T data, which exclude respectively the light blue and blue
regions of the plot. The dashed line shows the cross section for which the correct relic
abundance is obtained from freeze-out. Above this line, the relic abundance is lower than
the measured one; this region could be associated to a multi-component DM scenario, in
which the DM particle considered in this model is a subdominant component of the DM
particle content. Below this line (gray region), the relic abundance is bigger than the
measured one, leading to overclosure of the Universe, therefore we exclude this region.
The white region represents unconstrained parameter space.

70



Conclusions and outlook

As presented in Chapter 1, DM is a mysterious entity that we discovered more than a
hundred years ago, however, its nature still remains unknown, even if its presence influ-
ences the Universe since its beginning. By studying the effects of DM on the evolution of
the Universe, we can assume that DM must be a fundamental particle that the current
SM does not describe.
We pointed out the current experimental effort that has been made in order to detect this
elusive particle, and in Chapter 2, we described DM interactions with ordinary matter,
focusing on DM-e interactions. In order to describe these interactions, being at low
energy, we used a NREFT approach, and we showed how this can be linked with the
high energy theories that could describe DM particles. In direct detection experiments,
the electron that interacts with DM particles is bound to an atom; if the interaction with
the DM particle is strong enough, the atom ionizes, and the scattered electron produces
a measurable signal. To compute the ionization rate, we considered the effect of the
atomic shells of xenon atoms, used in many direct detection experiments, described by
the atomic response functions.
In order to produce exclusion limits on the parameters of the theory that describes
DM particles, the use of a numerical tool is needed, and in Chapter 3 we introduced
MadDM, a numerical tool capable of calculating numerous DM observables for any
given DM model. In this thesis, we expanded the MadDM software, by implementing
the computation of DM induced ionization rates, and the evaluation of the associated
expected signal in XENON10 and XENON1T experiments. By comparing this signal
with XENON10 and XENON1T experimental data for each point of the parameter space
of the BSM theory, we obtain exclusion limits on such parameters.
In Chapter 4 we finally analysed simplified DM models for fermionic DM mediated by
a vector, a scalar and a pseudo-scalar mediator, and we presented the exclusion limits
on the non-relativistic coefficients that describe these type of interactions. We then
described the scalar dark QED model, in which a scalar DM particle interacts with SM
particles through a dark photon mediator. We evaluated the relic density of this model,
from which we obtain a lower limit on the DM-e cross section, that is presented together
with the upper limits on the DM-e cross section computed with MadDM.
In this thesis we focused only on the relevant EFTs that describes the DM-e interaction,
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which are the ones that are not suppressed by factors proportional to the exchanged mo-
menta q, which is a very small quantity in direct detection experiments. Future prospects
of this work may revolve into implementing the suppressed operators in MadDM, al-
lowing to consider a wider choice of DM-e interactions.
In the next future, many new experiments with higher sensitivity to DM interactions will
start to operate, and by adding these results to our analysis we will be able to constrain
wider regions of the parameter space of DM models. This will lead to the rejection of
many DM models, helping us to get closer to the solution of the DM problem.
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