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Introduction

Nowadays, huge volumes of data, and particularly geospatial data, are
continuously collected for all sorts of reasons, such as traffic patterns analysis,
path optimization problems, environmental mapping, and weather forecasting.

With the advent of IoT, the amount of data that are collected will grow
even more, due to the ease of deployment of IoT devices, and the use of Internet
technologies and protocols for communication.

One of the major challenges of IoT big data collection is posed by the
fact that often incoming data need to be cleaned, prepared, or more generally
preprocessed, before performing the actual data analysis.

During the past decade, cloud technologies became increasingly utilized by
companies all around the world, that moved their on-premise resources and
workloads more and more to cloud providers, because of the many benefits that
they offer.

Among the workloads that are suitable the most for cloud environments,
there are the data analysis workloads, that are usually performed by clusters of
computers, and cloud providers enable great scalability of clusters when needed,
while also making customer pay only for what they use. Thus, companies may
leverage public clouds to both carry out their data analysis tasks faster, and
keep costs down by not paying for resources while not using them, limiting
the problem of having to over-provision on-premises resources in case they are
needed at a later time.

In these contexts, frameworks leveraging clustering shine the most, even
more when they are open-source, so to avoid vendor lock-in problems for
companies in the long run.

Moreover, analyzing such huge volumes of incoming data sometimes may
be either unfeasible, too costly, unnecessary, or a combination of these. To
help solve these problems, the introduction of lightweight nodes, capable of
performing task-specific data preprocessing and sampling technique, located
nearer the data origin source, may be beneficial.

xiii



xiv Introduction

These nodes are known as edge cloud nodes, since they are placed not in
the cloud core, a "distant" location in which powerful nodes perform the heavy
processing, but "near" data origins, and acts as intermediate nodes, placed
between the data source and the core of the cloud, in the pipeline of moving
data.

Such nodes can carry out simple tasks only on modest amounts of data, but
this is not a problem, since only data coming from nearby sources are received
and processed by each of them.

This is an increasingly popular architectural choice, and we wanted to
leverage it to offload cloud nodes of part of the workload, optimizing the overall
architecture performances.

Geospatial data analysis queries often make use of location approximation
techniques to lower the intensive computational work required to establish if a
point is located inside an area, a very common task performed by geospatial
queries. One of the most used techniques to do so relies on the use of Geohash,
which is a small string that uniquely identifies a rectangular area on the Earth’s
surface. Geohash may be quickly calculated starting from a latitude longitude
pair. Since all points inside this rectangle (whose size depends on the hash
length) are identified by the same Geohash, a Geohash can be used to aggregate
all the points belonging to the same area.

The scenario analyzed in this thesis was the one in which taxis — equipped
with an IoT device capable of sending information about the taxi speed and
position at a specific time — were moving in an urban scenario, specifically in
the city of Shenzhen in China.

Shenzhen is one of the biggest cities in the south of China, with a population
of more than seventeen million people. In this kind of scenario, it is easy to
imagine that huge volumes of geospatial data are produced daily.

Our idea was to introduce edge nodes capable of calculating the Geohash of
incoming data, and using it to perform simple data sampling and aggregation
tasks based on it.

Moreover, complex polygons, such as polygons describing the shape of a
neighborhood of a city, can be approximated with a list of Geohashes, and
locating a point inside a polygon, with a certain precision, becomes as simple
as consulting a hash table.

One of our objectives, was to elaborate a strategy to exploit this simple
idea to develop a way to distribute incoming data in a spatially-aware manner.

In particular, the edge nodes we developed, were not only capable to
efficiently sample data based on their geohash, by leveraging the sampling
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technique known as stratified sampling, but also to distribute data to specific
message queues, each with the peculiarity of containing only messages coming
from the same neighborhood (or area) of a city.

We call this technique spatial-aware data distribution, as data are sent to
message queues, and Apache Kafka topics were used for this purpose, that are
specific only to data coming from the same area.

Finally, the setup was deployed using containerization platforms, in particu-
lar by using Docker, to achieve portability and horizontal scaling capabilities
offered by containers, although we did not focus on dynamically scaling the
number of deployed edge nodes, as our work was primarily aimed toward pro-
totyping the overall data pipeline architecture: from the data origin, passing
through the edge nodes for preprocessing, to the data analysis carried out by
cloud nodes, leveraging Apache Spark to perform the analysis.



Chapter 1

Motivations and State of the Art

The purpose of this chapter is to provide a gentle introduction to the
motivations and state of the art regarding the topics that were treated in this
thesis work.

Huge volumes of geospatial data are collected daily from a variety of different
sources and for the most diverse of purposes. Transforming this continuously
arriving raw data into timely insights is critical for many modern online services.
For such settings, the traditional form of data analytics over the entire dataset
could be prohibitively limiting and expensive for supporting real-time stream
analytics[12].

This thesis work aims to provide a novel approach, leveraging edge cloud
nodes computing capabilities, and the performant spatial queries (e.g. Point-
in-Polygon) achievable by using the approximate location encoding technique
of Geohash to enhance the traditional setup of a cloud cluster performing both
data preprocessing and data analysis.

We propose a solution in which edge nodes are added to the architecture,
and acts as a kind of "smart gateway" for incoming data directed to the cloud.

These nodes should be capable of encoding the incoming data location with
a hash string, representing the approximate location of origin of the message,
calculated from its latitude and longitude. The algorithm we used to encode
incoming messages is known as Geohash, and is a common choice when spatial
tessellation techniques are needed.

We also developed a novel way — we called it spatially-aware data distribu-
tion — to distribute data arriving to message queues having the peculiarity
of containing only messages coming from the same neighborhood. This was
achievable thanks to the relatively low computational cost of finding the neigh-
borhood of a message obtained with the approximation of the neighborhood

1



2 Motivations and State of the Art

polygon with a set of geohashes composing it, kind of like a composing a mosaic.

These were, in short, the objectives we wanted to achieve with this thesis.
The remaining of the chapter, is a gentle introduction of the reader to the
topics of geospatial data processing, geohashing, the concepts behind cloud and
edge computing, and a brief overview of two techniques widely used in cloud
environments, i.e. virtual machines, and containers.

1.1 Geospatial Data Processing

In this section, the topic of geospatial data processing will be discussed in
depth.

Today’s proliferation of ubiquitous positioning devices and technologies has
simplified the collection of spatial data at an exponential rate[13]. Also, the
large-scale spread of mobile devices, such as smartphones and sensor-enabled
devices, has encouraged the participatory collection of a massive amount of
geospatial data, specifically in the so-called Smart Cities[14]. Consequently,
the demand for analyzing big spatial data volumes has become increasingly
important to extract information and knowledge that facilitate better decision-
making, which is beneficial for a variety of different fields.

Geospatial data processing involves the collection, analysis, and visualization
of data related to geographic locations on the earth’s surface. This type of data
is often represented in the form of maps, satellite images, or aerial photographs,
and can include information about terrain, vegetation, land use, demographics,
and more. In particular, geospatial data and geoinformatics technologies are
expected to play an essential role in supporting smart city strategies[15].

Geospatial data processing refers to the application of mathematical and
computational methods to data that is spatially-referenced. This process in-
volves collecting, organizing, processing, analyzing, visualizing, and interpreting
geographic information. Geospatial data processing can be used in a wide
range of applications, such as tracking changes in land use patterns, predicting
the spread of disease, analyzing social media activity in different locations, or
understanding the movement of vehicles in an urban scenario.

In urban scenarios, geospatial data processing can be used to analyze
the movement of vehicles (such as taxis), which can provide insights into
traffic patterns, demand for transportation services, and the impact of events
or construction on mobility. By using geospatial data processing techniques,
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researchers can identify hotspots for pick-ups and drop-offs, analyze travel times
and distances, and explore the factors that influence taxi usage in different
areas of a city.

One way to analyze taxi movement in an urban scenario is by using GPS
data, which can be collected from sensors in the vehicles themselves. This
data can be processed using geohashes, allowing researchers to aggregate data
points and identify patterns in taxi movement across different areas of a city.
By visualizing this data on a map, it is possible to identify congestion hotspots
and explore the factors that contribute to them.

Geospatial data processing is then a critical tool for analyzing and inter-
preting spatially-referenced data in a wide range of applications, including
understanding the movement of vehicles in an urban scenario, such as taxis. By
using geohashes and other geospatial data processing techniques, it is possible
to gain valuable insights into transportation patterns, traffic congestion, and
other factors that affect urban mobility.

1.1.1 Raster and Vector Data

Geospatial data can be categorized into one of two categories:

• Vector data - Vector data represents geographic data symbolized as
points, lines, or polygons[16]

• Raster data - represents geographic data as a matrix of cells that each
contains an attribute value[16].

Vector data can be as simple as GPS coordinates of latitude and longitude,
but also more complex geometries, such as the polygon that delimit a district of
a metropolis. In the context of this thesis, vector data are used in two different
scenarios:

• first, the incoming data are tagged with latitude and longitude coordinates

• then, to categorize each point as coming from a specific neighborhood,
the polygons making up each city’s district were used.

An example of raster data is, on the other hand, the Geohash (which will be
discussed deeply in the next section) of a specific coordinate: in fact, geohashes
divides a map into a discrete number of squares, each identified by a hash.
Thus, raster data were also used to carry out the thesis’ work.

As will be shown in the continuation of this document, vector data can be
converted into raster data, and vice-versa (obviously, with the loss of some
accuracy in this second case).
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Figure 1.1: The figure shows the difference between vector and raster data
models.[1]

GeoJSON Format

GeoJSON is an open standard format designed for representing simple
geographical features, along with their non-spatial attributes. It is based on
the JSON format[17]. It is a suitable format to represent vector data.

The features that one can represent with GeoJSON includes points, lines,
polygons, and multipart collections of these.

In particular, polygons are a suitable feature to describe the topology of a
neighborhood or district.

The following code snippet shows an example of a GeoJSON file:

{
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"geometry": {
"type": "Point",
"coordinates": [122.0, 0.9]

},
"properties": {
"prop0": "value0"

}
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},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[122.0, 0.5],
[123.1, 1.4],
[124.0, 0.1],
[125.0, 1.2]

]
},
"properties": {
"prop0": "value0",
"prop1": 1.0

}
}

]
}

Listing 1.1: Example of a GeoJSON file.

Some of the main fields of GeoJSON include:

• Type - this field represents the type of GeoJSON object. It can be
"Feature", "FeatureCollection", "Point", "LineString", "Polygon", and
so on

• Geometry - this field contains the actual geometrical data in the form
of coordinates for different types of objects such as Point, LineString,
Polygon, and others

• Properties - this field holds the attributes or properties of the GeoJSON
object. It may include fields such as name, population, elevation, and so
on, depending on the data requirements

• Crs - this field provides the coordinate reference system used by the
GeoJSON object. It includes information about the projection system,
the datum, and other spatial parameters

• Bbox - this field specifies the bounding box of the GeoJSON object. It
encloses the entire extent of the feature, which helps to optimize the
rendering of maps and other visualizations.
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Overall, GeoJSON is a useful format for representing geographical data
across different web platforms and applications. It is a lightweight, text-based
format that can be easily parsed and manipulated using various programming
languages and tools.

1.1.2 Geohashing

Geohashing is a spatial tessellation technique used to identify coordinates
that are "near" with a unique identifier. The more "similar" two geohash
are (i.e. the more prefix they share), the more two coordinates are spatially
close to each other. It is a powerful technique, because it enables to make
coarse-grained comparison between coordinates in a fast way, certainly faster
than calculating the exact distance between two points. Obviously, by using
geohashing techniques, one loses on the precision of the results, but oftentimes,
the performance gains of geohashing vastly overweight the loss in accuracy.

Geohash is a public domain geocode system invented in 2008 by Gustavo
Niemeyer[18]. Geohash encodes a geographic location into a short alphanumeric
string (generally 4/6 characters long).

The main idea is to divide a map into a square grid, and have a function
that maps each point to the square they are contained into.

One of the guarantees offered by geohashes is that the longer the shared
prefix of two geohash is, the spatially closer the points are.
In this sense, geohashes are fundamentally different from the hashes used in
cryptography, where two similar input string ("spatially close") need to have a
very different hash in order for the hash to be secure.

Geohashes have a wide range of applications, such as location-based search,
geographic clustering, and real-time tracking of mobile devices.

How Do Geohashes Work

Geohashes work by dividing the Earth’s surface into a grid of cells, each
with a unique code (geohash). The grid size is determined by the number of
characters in the output string (the geohash). A geohash with more characters
represents a smaller cell, thus a more precise location, while a geohash with
fewer characters represents a larger cell, thus a less precise location.

To create a geohash for a specific location, the latitude and longitude of
that location are first converted into binary format. The binary strings are
then interleaved to form a single binary string, which is then converted into
base-32 using a predefined set of characters. The resulting string is the geohash
for that location.
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Figure 1.2: Four iterations of the Z-order curve.[2]

Figure 1.3: Z-order traversal in Geohash.[3]
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Base-32 encoding
Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Base-32 0 1 2 3 4 5 6 7 8 9 b c d e f g
Decimal 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Base-32 h j k m n p q r s t u v w x y z

Table 1.1: Geohash base-32.

Geohash precision table
geohash length lat error lon error km error
1 ±23 ±23 ±2,500 km
2 ±2.8 ±5.6 ±630 km
3 ±0.70 ±0.70 ±78 km
4 ±0.087 ±0.18 ±20 km
5 ±0.022 ±0.022 ±2.4 km
6 ±0.0027 ±0.0055 ±0.61 km
7 ±0.00068 ±0.00068 ±0.076 km
8 ±0.000085 ±0.00017 ±0.019 km

Table 1.2: Precision for different lengths of a Geohash.

The Geohash encoding algorithm builds a geohash from a pair of coordinates
(latitude and longitude) using the base-32 character mapping shown in Table
1.1.

The maximum length of a geohash is twelve (12) characters.[19]
Without delving too deep into the implementation details of Geohash, it

is sufficient to know that the computation uses alternately the longitude and
the latitude of the coordinate to calculate the geohash and, by applying more
iterations of the algorithm, the precision increases.

By increasing the geohash length by one character, since geohash is base-32
encoded you can locate a coordinate (identified by latitude, and longitude)
inside a square that is 1

32
the area of the original one. Table 1.2 shows the

precision for each Geohash level.
Despite its numerous advantages, Geohash has some limitations, including:

• Edge-case problem - Locations that are located on the opposite sides of
the 180-degree meridian, although spatially close, do not share a common
geohash prefix (as one can note in Figure 1.3. The same happens with
points close together at the North and South poles

• Z-order problem - problem related to Z-order traversal. The problem is
that, because of the traversal order, some points having a common prefix,
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may not be spatially close (such as points R and S in Figure 1.3.

Other Spatial Tessellation Techniques

Geohash is not the only spatial tessellation technique available, nor the
only one used nowadays. In fact, there are other techniques available, such
as Voronoi, and the choice between a technique or another is often based on
the origin and use of geospatial data one wants to do. In particular, the paper
Taxi Demand Forecasting: A HEDGE-Based Tessellation Strategy for Improved
Accuracy [20] compares the geohash and the Voronoi technique, benchmarking
the two in various scenarios. The paper findings are that there is not a clear
winner between the two techniques, in particular the authors found that:

"[...] models based on Voronoi had superior performance over models
based on Geohash when the demand density was low, and vice versa.
While the Voronoi tessellation appeared to be the recommended
strategy for tessellating Bengaluru, the Geohash tessellation was
the suggested strategy for New York City. We concluded that the
performance of the chosen tessellation strategy is dependent on
the demand density in each partition, and the geography of the
city."[20].

Moreover, the Master’s thesis Partitioning of Spatial Data in Publish-
Subscribe Messaging Systems [21] showed how using pub-sub messaging systems
in combination with Geohash often is more beneficial than using pub-sub
messaging systems in combination with Voronoi to achieve good performances,
and thus a greater ability to scale, in filtering GIS data. In particular, quoting
the thesis:

"Our experiments show that Geohash was able to achieve better
results than Voronoi in general."[21]

1.1.3 Processing and Querying GIS Data Efficiently

In general, working with geospatial (or GIS) data is very complex, due to
the compute-intensive operations required to, for example, determine if a point
is inside or outside a polygon of complex shape, such as the polygon delimiting
a district of a city. But, more often than not, we are not as much interested in
having the maximum precision as much as we are in analyzing huge amounts
of data quickly.

It is right in these scenarios where using Geohash can become useful to our
objectives: in fact, by sacrificing some degree of accuracy, we can achieve huge
gains in performance.
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One use case exploiting both Geohash (and thus raster data) and GeoJSON
(i.e. vector data) in combination to achieve significant performance gains is
the following: image there is the need to categorize incoming data, spatially
referenced by latitude and longitude coordinates, to the neighborhood to which
it belongs. To achieve such a result, we could intersect each incoming point
with the polygon describing each neighborhood, until we find the one to which
the data belongs to. This is an approach that can allow us to achieve our
goal, but it is very compute intensive. Instead, we could define a degree of
precision that is enough for our use case, and once defined it, find a geohash
length level that meet our needs. Once defined the geohash length of our
interest, we can precompute the list of all the geohashes that belongs to a
neighborhood, and then, for each incoming data, compute its geohash (which
is a very fast operation), and then find the neighborhood to which it belongs
to (it is sufficient to find the neighborhood whose geohashes list contains the
incoming data’s geohash).

We could be also more efficient by reversing the map mapping each neigh-
borhood to a list of geohashes, and create a map mapping each geohash to
the neighborhood it belongs to. With such a map, it is possible to find the
neighborhood from a geohash in O(1).

Obviously, the gain in performance comes at the expense of precision, to
provide an example, by using geohashes 6 characters long, each point is identified
with a precision of 610 meters, which, depending on the dimension of the area
taken into account, may or may not be a sufficient precision. Although 610
meters may seem like a too big area, the Manhattan borough comprehends 59.1
square kilometers of land[22], thus, in cities as big as New York, 6 characters
long geohashes may be sufficient. And anyway, if still 6 character is not enough
precise, by just adding one character, the precision becomes of 76 meters.

One interesting point to highlight of the described scenario, is the coopera-
tion of both raster (geohash) and vector (the neighborhood polygon) data that
was used to achieve the desired result.

1.2 Introduction to Cloud and Edge Computing
Geospatial big data processing is a critical component in a wide range of

applications, such as urban planning, environmental monitoring, and transporta-
tion management. These applications require processing huge amounts of data
generated from various sources such as satellite imagery, vehicles onboarded
with GPS, and sensor networks.

Cloud and edge computing are two prominent paradigms in the field of
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distributed computing, suitable for processing huge amounts of data. Both
approaches provide different solutions to the challenges of managing and pro-
cessing large amounts of data in a distributed environment. Cloud computing
is a centralized model where computing resources such as servers, storage, and
software applications are provided over the internet. In contrast, edge com-
puting is a decentralized model where computing resources are located closer
to the data source or end-user.

In recent years, the proliferation of the Internet of Things (IoT) and the
need for real-time processing has led to an increase in the adoption of edge
computing.

This section aims to provide an overview of cloud and edge computing, what
they are and what they offer, what are their main advantages and drawbacks,
to the reader.

1.2.1 Brief Mention to IoT Devices

The term Internet of Things (IoT) refers to the billions of physical objects,
also called “things”, that are connected to the internet, collecting and exchanging
data with other devices and systems over the internet. IoT devices are physical
objects that "sense", in the broadest of meanings, things going on in the physical
world, and are able to transmit that information via internet connectivity.

Thus, IoT devices must have some (more or less limited) computing capacity,
and the ability to send data on a network at least, in order to be considered
such.

IoT devices range from small sensors meant for the general public, such as
the smart objects many uses for house automation, to complex and sophisticated
industrial tools.

IoT device management helps companies and organizations integrate, orga-
nize, monitor and remotely manage internet-enabled devices at scale. But, since
for its own nature IoT devices are very different, and communicate with very
different services and devices, this poses a challenge on the developers, often
of different teams, to keep things working and interacting smoothly. To this
purpose, there is a need for standard, or at least well-defined, communication
interfaces and frameworks, to help teams and organizations manage IoT sce-
narios without too much effort being put on configuration and communication,
so that they concentrate on the actual business logic of their application. In
this sense, the internet protocols come in great help, but alone they are not
sufficient: technologies such as Apache Kafka, RabbitMQ, or other Message
Oriented Middlewares can further help developers of the different parts of an
IoT scenario keep their applications as decoupled as possible from other teams’
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choices.

In the context of geospatial data, an IoT device could be as simple as a
microcontroller installed on a vehicle that continuously reads the GPS position,
and sends this information to the cloud, leveraging the internet.

In the context of this thesis, we can imagine having installed on some taxis
an IoT device that can read the vehicle speed and position, and can send this
information to a Kafka topic via internet connectivity.

1.2.2 Cloud Computing

Cloud computing is the on-demand availability of computer system resources,
especially data storage (cloud storage) and computing power, without direct
active management by the user. Large clouds often have functions distributed
over multiple locations, each of which is a data center[23].

Through the cloud users can access data, services, software, and hardware
remotely leveraging their devices (smartphones, tablets, desktop PCs, etc.)
internet connectivity. Instead of being forced to buy increasingly more powerful
devices, users can exploit cloud resources, available on-demand, accessible, as
already stated, via internet. But individuals are not the only users of the clouds,
and arguably not even the one that benefits the most out of it.

Indeed, Cloud computing is increasingly used by organizations of any type
and size, because of the many advantages it provides, such as big data analytics,
disaster recovery capabilities, scalable deployments, less infrastructural work
to be done, load balancing, and so on.

At the present day, there are three main different deployment models for
cloud computing:

• Public cloud - a set of hardware, networking, storage, computing power,
applications, and more, operated by a third party, and offered as a service
(with a variable degree of management carried out by the third party
offering the service). The three main public cloud providers on the market
by share are Amazon Web Services (AWS), Microsoft Azure, and Google
Cloud Platform. One of the big advantages of the public cloud is that
the provider takes on its side a part of infrastructure management and
scaling that can help people to develop production-grade applications
faster. Another great advantage offered by public cloud is that there is
little need for a priori provisioning of resources of the right size; with
public cloud, one can start small and scale up or down as needed. The
main drawback of public cloud providers is the vendor lock-in, i.e. the
difficulty of moving the deployments from one cloud provider to another,
and this can potentially be leveraged by the cloud provider.
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• Private cloud - the same set of hardware, networking, and so on, offered
by the public cloud, but owned and operated by the organization itself.
This gives the maximum flexibility of choice to organizations, but also
charges them with the potentially overwhelming burden of having to
correctly provision, manage, update, upgrade, keep secure their private
cloud.

• Hybrid cloud - a combination of public and private cloud that is often
the middle ground operated by companies and organizations.

There is another option, that somewhat sits in the middle of the one
described above, that is multicloud. A multicloud environment consists of
multiple cloud services offered by different providers, both public and private.
Noteworthy is that all hybrid clouds are multicloud, but not all multicloud
environments are hybrid clouds. Multicloud environments become hybrid
only when the various cloud services are connected through an integration or
orchestration system. A multicloud environment can be intentionally created
to gain more effective control over sensitive data or to have redundant storage
space that ensures better recovery in case of emergency. Thus, if services are
not interconnected, they remain "separate", for example there can be a private
cloud environment, and another public cloud environment, both owned by the
same organization, but totally independent of one another. In this example,
the organization operates on multiple clouds, and thus leverage multicloud, but
this does not configure in a hybrid cloud environment.

Figure 1.4: Map of Google Cloud network as of 2023.[4]

Different Services Offered by Cloud Computing

The three main models of cloud computing services offered by cloud providers
are Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software
as a Service (SaaS). Each model represents a different section of the cloud
computing stack and is characterized by a specific division of responsibilities
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between the user and the service provider, with the Infrastructure as a Service
being the one requiring the most management on the user side, and Software
as a Service being the other extreme, with most of the management carried
out by the cloud provider.

The service model of Infrastructure as a Service (IaaS) is the foundation
of many cloud technologies. IaaS allows for flexible and cutting-edge hardware
(or virtualized) resources that can be scaled to meet the organization’s comput-
ing and storage needs. This infrastructure can be used to provide the necessary
applications, software, and platforms without the hassle of management and
maintenance.

A typical example of an IaaS implementation involves the use of virtual
machines and storage disks, customized to meet the specific needs of the
company, such as the server operating system or storage capacity, offered as a
service by a provider.

Platform as a Service (PaaS) is a cloud service model that provides
integrated access to hardware and software components through a service
provider. PaaS is primarily used for application development. With a PaaS
service provider, you can access the cloud infrastructure necessary for application
development, including databases, middleware, operating systems, and servers,
without having to manage the complexity of configuration and maintenance,
or having to manage just part of it. This increases efficiency because you can
focus exclusively on developing, executing and managing applications, without
worrying about the underlying infrastructure.

Finally, the cloud service model known as Software as a Service (SaaS)
provides access, via the internet, to a complete software product provided,
executed and managed by the service provider. Most SaaS solutions are
applications intended for end users.

Using an SaaS service allows one to focus exclusively on using the software,
without having to worry about managing the underlying infrastructure at all,
as this responsibility falls on the service provider. This means that one does
not need to worry about supplying, maintaining and updating the software, for
example.

1.2.3 Edge Computing

Edge computing is a distributed computing paradigm that brings computa-
tion and data storage closer to the sources of data or the end users. This is
expected to improve response times and save bandwidth. Edge computing is an
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architecture rather than a specific technology, and a form of location-sensitive
distributed computing topology[24].

Figure 1.5: Cloud computing vs edge computing.[5]

While cloud embodies core centralized compute and storage resources avail-
able via the internet, edge computing, for its nature, is an architecture that
decentralize, rather than centralize, the computation.

What is the Edge

In cloud computing, the edge is a colloquial term that refers to the devices of
infrastructure away from an organization’s core cloud resources. While the edge
can be a physical location, the simplest model, the edge can also be demarcated
by logical separations. Logical separation may look like a warehouse within a
compound of warehouses, where many IoT devices may be deployed.[25]

Edge Cloud Architecture

Edge cloud architecture refers to the combination of core and remote device
hardware, and their configurations, that produce a distributed system. In
general, edge environments consist of many smaller devices specialized for a
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particular task.[25] In the context of this thesis, these devices are both the
IoT devices that gather and send cab data, and the intermediate devices that
process incoming data before sending it to the "core cloud".

Figure 1.6: Edge computing diagram.[5]

The core cloud on the other hand aims for consistency, homogeneity, and
avoids specialization in favor of economies of scale. This is the main reason data
is back hauled to core resources, where it is cheaper to analyze huge amounts
of data.

When developing an application, cloud architects must evaluate where is the
best place to process data. Generally, the right fit means pushing time-sensitive
tasks to the edge, and retaining heavy processes in the core.[25]

Edge cloud could be implemented in various, and not mutually exclusive,
ways:

• IoT devices can perform telemetry processing on the device itself, instead
of sending raw data to the cloud



1.3. CLOUD-ENABLING TECHNOLOGIES 17

• regional data centers may replace a single central data center, distributing
cloud content in strategic locations

• Micro Modular Data Centers placed in proximity to edge device may
provide compute, networking, and storage capabilities, or perform some
micro-computations of data received.

Managing Heterogeneity

In edge cloud computing, and IoT, many different devices, onboarded
with different hardware and software can cooperate in a larger network with
(relative) ease, because the high heterogeneity is masked by the use of the
internet protocols (mainly TCP/IP). Indeed, by leveraging the internet, devices
just need a way to communicate over the internet, and applications just need to
agree on an interface to exchange data, and the communication is then possible;
regardless of which hardware is powering the devices, or what software stack
the applications are developed upon.

This concept can be pushed even further, in that one does not even need
each IoT device to be able to directly communicate using the internet protocols.
In fact, it is sufficient for the device to find a chain of devices ending with an
internet connected device to be able to participate in the network; for example,
one device can only have Bluetooth connectivity, but if it is able to communicate,
via Bluetooth, to a gateway device that can connect to the internet, then also
such a device can send data through the internet, by leveraging the gateway’s
connectivity. And it is not even mandatory for the chain to be one hop
long as in the example, or using only two different communication protocols;
although the longer and more heterogeneous the network is, the more modest
the performance will generally be.

1.3 Cloud-Enabling Technologies

Virtual Machines and containers are considered to be cloud-enabling tech-
nologies, that is, technologies that greatly simplified and pushed toward the
development of cloud environments. They both that improve IT efficiency,
application portability, and enhance DevOps, and are used by organization and
companies IT departments worldwide on a daily basis.

These two technologies, although similar in the goals and objectives they
try to achieve, have distinct characteristics and use cases, and understanding
their differences is crucial for developing an agile, cloud-native, and easy to
maintain environments and applications.
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Virtual Machines (or VMs) provide hardware-based virtualization, al-
lowing multiple virtual machines to run their own operating systems and be
isolated from each other on the same physical machine. VMs are the key
element of Infrastructure as a Service (IaaS) cloud services and can be created
on-demand by users.

Containers are operating system-based virtualization tools that share a
single host OS and the libraries it depends on, drivers, or binaries. They are
lightweight and introduce a fraction of the overhead compared to VMs, due to
the lack of hardware abstraction. Containers are primarily used for packaging,
delivering, and orchestrating software services and applications.

Figure 1.7: Comparison between Virtual Machines and Containers.[6]

Virtual Machine

A Virtual Machine is a software-based abstraction of a computer system that
provides a self-contained environment for executing software applications. Put
in simple terms, a VM is the virtualization or emulation of a computer system
[26]. It is created by partitioning a physical computer into multiple virtual
machines, each of which appears to the user as a separate and independent
computer system with its own operating system, memory, CPU, and storage
resources.

VMs are created and managed using virtualization software that runs on the
physical computer hardware, and the virtualization software serves as a layer
between the hardware and the virtual machines. The virtualization software
provides each VM with a virtual CPU, virtual memory, and virtual storage
that are isolated from other VMs and from the host operating system. This
allows multiple VMs to run on a single physical computer simultaneously, with
each VM having its own set of resources.
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A virtual machine can run any operating system that is supported by the
virtualization software, regardless of the underlying physical hardware or host
operating system. This makes VMs highly portable and flexible, allowing users
to easily move VMs between different physical computers or cloud environments.

In summary, a virtual machine is a self-contained software environment
that emulates a physical computer system, allowing multiple VMs to run on a
single physical computer. VMs are created and managed using virtualization
software that provides each VM with its own set of virtual resources, allowing
them to run any operating system and be highly portable and flexible.

Containers

Containerization is operating system-level virtualization or application-level
virtualization over multiple network resources so that software applications can
run in isolated user spaces called containers[27].

Containers are a fully functional and, most importantly portable, cloud or
non-cloud computing environment surrounding the application and keeping
it independent of other parallelly running environments. Individually, each
container simulates a different software application and runs isolated processes
by bundling related configuration files, libraries and dependencies.

Since containers are fully functional, portable environments, that are meant
to be lightweight, they are not a good fit usually for legacy monolith applications.
They are more suitable for running small individual modules of an application.
Thus, there is the need to compose multiple containers to create a "complete"
application most of the time, and this composition is usually achieved through
container orchestration.

Orchestration is the automation of various operational tasks required to
run containerized workloads and services. These tasks include provisioning,
deployment, scaling, networking, load balancing, and more.

Container orchestration tools help automate the maintenance of container-
ized applications, enable the replacement of failed containers automatically,
and manage the rollout of updates and reconfiguration during their lifecycle.

Containers are widely used in scalable microservices architectures, thanks
also to the relative ease with which they can be scaled and also moved around.
Microservices, especially if stateless, show a particular affinity to containers,
and container orchestration environments, because these technologies allow to
move replicate and move microservices across different architectural nodes easily
and quickly, and stateless microservices are by nature small, self-contained
software modules that are not tied to a particular node, or disk volume, and
require little to no coordination between themselves.
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Comparison Between VMs and Containers

The main advantage of containers is low performance overhead, whereas VMs
offer strong isolation[28]. Containers are more suitable for modern practices and
use cases, such as CI/CD in agile, DevOps environments, enhancing portability,
and promoting near-limitless scalability. On the other hand, VMs are more
suitable for migrating legacy applications to the cloud and hybrid environments,
especially for persistent, monolithic enterprise applications with infrequent
updates.

It is possible to combine VMs and containers by running containers on top
of VMs, which can improve containers’ isolation, resource utilization, system
management, and functionality. This approach offers benefits but comes at a
performance cost[28].

Big cloud provider companies, like Amazon Web Services, Microsoft Azure,
and Google Cloud Platform, have already deployed containers on VM instances.

Choosing the right approach depends on the specific application and infras-
tructure requirements.

1.4 Message Oriented Middlewares

The term middleware in Computer Science refers to the set of tools that sit
in the middle between higher-level applications and the low-level support (may
that be hardware, local Operating System, or else). Middlewares act kind of
like a "glue" for software. Usually, middlewares:

• hide heterogeneity

• hide component and resource physical distribution

• provide common interfaces for applications to use.

The term is most commonly used for software that enables communication
and management of data in the context of distributed applications.

Middlewares exists of many kinds; in this section we will focus on Message-
Oriented Middleware (MOM ), i.e. middlewares supporting sending and
receiving messages in distributed environments. A middleware of this kind
creates a distributed communications layer that insulates the application devel-
oper from the details of the various operating systems and network interfaces.
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1.4.1 Characteristics, Benefits, and Disadvantages

Message Oriented Middlewares allow application modules to be distributed
over heterogeneous platforms and reduces the complexity of developing appli-
cations that span multiple operating systems and network protocols[29].

The main characteristics offered by Message-Oriented Middlewares are:

• asynchronous communication - MOMs provide asynchronous communi-
cation, allowing applications to send and receive messages in an asyn-
chronous way, i.e. without waiting for a response

• message queues - many MOM implementations depend on a message
queue system, which temporarily stores messages

• routing - MOM can provide routing logic, rely on client applications for
routing information, or use a mix of both. Some implementations also
use broadcast or multicast distribution paradigms[29].

Given the listed characteristics and benefits that MOMs bring, make them
very suitable and widely used in cloud and IoT environments and contexts.

Benefits

The benefits brought to by MOMs are various, notably:

• enabling platform and language agnostic communication, indeed a MOM
enables transparent communication between software components devel-
oped independently and running on different networked platforms, using
various languages

• MOMs simplifies and streamline application development by providing
services that enable different applications and services to communicate
using common interfaces

• many MOMs can scale and load-balance, more or less seamlessly, to huge
amounts of traffic loads varying dynamically across distributed systems

• MOMs can implement security features, thus enabling developers to
develop secure applications with ease.

Disadvantages

The main disadvantage of many message-oriented middleware systems is
that they require an extra component in the architecture, the message transfer
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agent (message broker). Because of this, the increased complexity of the
architecture could lead to higher maintenance costs.

Moreover, the asynchronous nature of message-based communication, may
not be a good fit for all contexts and applications, especially in cases where
applications rely on some kind of intrinsically synchronous communication
(such as the sender needing to wait for a reply). However, most MOM systems
have facilities to group a request and a response as a single pseudo-synchronous
transaction[29].

1.4.2 Apache Kafka and RabbitMQ

Two of the most popular MOMs available today on the market are Rab-
bitMQ and Apache Kafka. They are both popular messaging systems used in
distributed computing to handle big data streams, acting as message brokers
between applications and services endpoints. However, they have different use
cases, capabilities, and trade-offs.

In particular, RabbitMQ uses a bounded data flow, where messages are
created and sent by the producer and received by the consumer, and it is
best suited for transactional data, such as order formation and placement.
On the other hand, Kafka uses an unbounded data flow, with key-value pairs
continuously streaming to topics (category or stream name to which records
are published by producers, and consumed by consumers).

Both MOMs are open-source and supported by different languages, thus
offering various options to developers to choose the language most suited for
the particular task they want to perform.

The two messaging systems utilize different messaging models for producers
and consumers. Kafka uses a publish-subscribe model, where producers publish
messages to topics and consumers subscribe to one or more topics to receive
messages. Kafka brokers maintain the current state of each subscribed consumer,
allowing them to resume consuming messages from their last known offset in
the event of failure or disconnection.

RabbitMQ, on the other hand, uses a message queue model, where producers
send messages to a queue and consumers consume messages from the same
queue. RabbitMQ brokers use a round-robin approach to distribute messages
among consuming clients, and messages are removed from the queue once they
have been successfully consumed by a client.

In general, Kafka is better suited for high-throughput, distributed systems
that require real-time data streaming and processing, while RabbitMQ is more
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suitable for asynchronous, reliable message delivery where message ordering
and consumer acknowledgement are important.

While RabbitMQ is a distributed message broker suitable for complex rout-
ing scenarios, utilizing what is known as a smart broker/dumb consumer model,
Kafka is a distributed event streaming platform designed for raw throughput
and direct stream processing using a dumb broker/smart consumer model.

RabbitMQ Use Cases

The scenarios in which RabbitMQ performs the best are:

• transactional data processing, such as order formation and placements

• low-latency message delivery in complex routing scenarios

• legacy protocols supporting applications

• when acknowledgement-based message retention is needed.

Apache Kafka Use Cases

The use case and scenarios in which Kafka usually performs the best are:

• high-throughput scenarios, such as big data environments where millions
of messages per second need to be processed

• operational data processing, such as auditing and logging statistics

• streams with "at least once" partitioned ordering.

1.5 Cluster Computing

“Customers invented clusters, as soon as they couldn’t fit all their
work on one computer, or needed a backup.”

– Gregory F. Pfister, In Search of Clusters [30]

1.5.1 Brief Overview of Clustering

Clustering is the process of grouping together multiple computing nodes to
work together, as a single logical unit, in a distributed system. It is a technique
used to improve the performance, scalability, and reliability of distributed
systems.
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Clustering was born out of the need to address the challenges posed by the
growing complexity of distributed systems. As distributed systems became
larger and more complex, the traditional approach of relying on a single node
to handle all the tasks became unsustainable. Clustering provided a solution
by allowing multiple servers to work together to handle the workload.

A cluster’s nodes are usually interconnected through fast LANs (Local Area
Networks), and each node runs its own instance of an operating system[31]. The
connection between nodes needs to be fast in order to minimize the orchestration
and coordination overheads.

Cluster computing is used to achieve different goals, including:

• HPC (High Performance Computing)

• Load-balancing

• HA (High-Availability).

1.5.2 Benefits of Clustering

There are several benefits of clustering. One of the primary benefits is
improved performance. By distributing the workload across multiple servers,
the overall processing capacity of the system is increased, allowing it to handle
more requests and data more quickly. Clustering also provides scalability,
allowing the system to easily add or remove servers as needed to accommodate
changes in demand.

Another benefit of clustering is improved reliability. In a distributed system,
a single server failure can have a significant impact on the availability and
performance of the system. By using clustering, the workload is distributed
across multiple servers, reducing the impact of a single server failure. Clustering
also allows for automatic failover, where if one server fails, another server in
the cluster can take over its tasks without interrupting service.

There are different types of clustering in distributed systems, including
load-balancing clusters, failover clusters, and high-performance clusters. Load-
balancing clusters distribute the workload evenly across all servers in the
cluster to improve performance, while failover clusters provide redundancy
and automatic failover to improve reliability. High-performance clusters are
designed for high-performance computing tasks, such as scientific simulations
or big data analytics.
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1.5.3 Drawbacks of Cluster Computing

While clustering provides many benefits, that more often than not greatly
outweigh the cons, it is important to list also the drawbacks that cluster
computing introduces.

The main drawbacks introduced by cluster computing are:

• cost is high, in fact while having multiple computers working on a task
can provide better performances, load-balancing, and failover capabilities,
it also increases the cost, with respect to having just one server doing all
the work

• many computing units and nodes working together makes monitoring
harder, as well as failure analysis, and management

• also, the resulting infrastructure is more complex than having one server
only, thus more infrastructure management work is needed with cluster
computing.

1.5.4 Notable Examples of Frameworks Leveraging Clus-
tering

Apache Spark and Apache Kafka are two popular distributed frameworks
that make use of clustering techniques to achieve their performance and scala-
bility goals.

Apache Spark, that will be also called Spark from now on, is a distributed
computing system that is designed for processing large-scale data. It uses a
cluster of computers to split up data processing tasks into smaller sub-tasks,
which can then be processed in parallel across the cluster. Spark uses a
combination of load-balancing and failover clustering techniques to distribute
workloads across its cluster of nodes. The load-balancing technique ensures that
each node receives an equal amount of work, while the failover technique ensures
that if a node fails, another node can take over its tasks without interrupting
the computation.

Apache Kafka, that will be also referred to as just Kafka from now on, on
the other hand, is a distributed streaming platform designed for processing and
storing high-throughput, real-time data streams. It uses a cluster of servers
to store and distribute data streams across the system. Thanks to clustering,
Kafka can ensure high availability and fault-tolerance.

Both Kafka and Spark will be discussed extensively in the next chapter of
this thesis.
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1.6 Data Sampling

In data analysis, sampling is the practice of analyzing a subset of all data
in order to uncover the meaningful information in the larger data set[32]. Data
sampling is necessary in all that scenarios in which there are huge amounts of
data, and the necessity to have them processed within strict time constraints.

For example, in an urban scenario, to give up-to-date information about
traffic, one may need to process data coming continuously from hundred of
thousand or even millions of vehicles, but since traffic patterns change quickly,
the information is only useful if processed within tight time constraints, like
a minute or so. In a scenario like the one depicted, taking a sample of the
data may be a way to achieve the time constraints’ goal, at the expense of
some accuracy, that, in this scenario, does not represent a great constraint. In
fact, when looking for traffic updates, one is not interested in the exact average
speed of a given street, i.e. 22.541 Km/h, just knowing that the average speed
is between 20 and 24 Km/h is enough to choose which road to travel.

Moreover, using different sampling techniques that may or may not help in
retaining the original distribution of values can have an impact on both the
performances and the accuracy of a system.

1.6.1 Basic Statistics Definitions

Definition 1. (Probability distribution). In probability theory and statistics, a
probability distribution is the mathematical function that gives the probabilities of
occurrence of different possible outcomes for an experiment. It is a mathematical
description of a random phenomenon in terms of its sample space and the
probabilities of events (subsets of the sample space).[33]

Definition 2. (Statistical population). In statistics, a population is a set of
similar items or events which is of interest for some question or experiment.
A statistical population can be a group of existing objects (e.g. the set of all
stars within the Milky Way galaxy) or a hypothetical and potentially infinite
group of objects conceived as a generalization from experience (e.g. the set of
all possible hands in a game of poker).[34]

Definition 3. (Sampling). In statistics, sampling is the selection of a subset (a
statistical sample) of individuals from within a statistical population to estimate
characteristics of the whole population.[35]
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1.6.2 Sampling Strategies

The simplest way to take a sample from a population is to randomly sample
from the population. That is, if, in a population of two million items, one
wants to retain 50% of the items, one can randomly choose one million items
from the population. In statistics, this is called Simple Random Sampling. In
Definition 4, Simple Random Sampling is defined in a more rigorous way.

Definition 4. (Simple Random Sampling). In statistics, a Simple Random
Sample (or SRS) is a subset of individuals (a sample) chosen from a larger
set (a population) in which the individuals are chosen randomly, all with the
same probability. It is a process of selecting a sample randomly. In SRS, each
subset of k individuals has the same probability of being chosen for the sample
as any other subset of k individuals. A Simple Random Sample is an unbiased
sampling technique. Simple Random Sampling is a basic type of sampling and
can be a component of other, more complex, sampling methods.[36]

Simple Random Sampling is a good choice when one wants a fast sampling
technique and does not have any information on the population.

On the other hand, if one want to exploit some knowledge on the population
to sample with a better accuracy, one can use Stratified Sampling. In Definition
5, Stratified Sampling is defined in a more rigorous way.

One of the advantages of Stratified Sampling is that it can help to reduce the
sampling error, as we mitigate the risk of sampling a non-representative sample
(e.g. not sampling enough items from a given subpopulation). A situation in
which stratified sampling may be advantageous verifies when it is desirable to
have estimates of the population parameters for groups within the population,
as Stratified Sampling ensure that enough items from each of the strata are
taken. This is especially true if the strata greatly vary in size, as SRS may not
sample enough items from the smaller strata.

Definition 5. (Stratified Sampling). In statistics, stratified sampling is a
method of sampling from a population which can be partitioned into subpar-
titions. Stratification is the process of dividing members of the population
into homogeneous subgroups before sampling.[37] Each subpartitions is called a
stratum.

Stratified sampling could be a useful technique to carry out approximate
queries in big data scenarios without losing too much accuracy, but nonetheless
gaining significant speed, in all those cases in which it is possible to exploit
some knowledge on the information carried by the data, and it is possible to
find meaningful strata.
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Figure 1.8: Stratified Sampling illustrated.[7]

1.7 Programming Languages

Each programming language has its own unique set of strengths and weak-
nesses, that make it more suitable in some scenarios than others.

Programming languages could be roughly categorized into compiled lan-
guages and interpreted languages. The code written in compiled languages
is directly converted into machine code that can be run directly, while code
written in interpreted languages needs an interpreter that at runtime interpret
the source code (or an intermediate format) to machine instructions.

As a general rule of thumb, compiled languages provides generally better
execution speeds compared to interpreted languages, while interpreted languages
provides generally better development speed, and are therefore more suitable for
rapid prototyping, or when CPU-intensive tasks are delegated "under-the-hood"
to more optimized libraries, and the program just glues the different operations
together.

I would not delve deeper into this topic as it is outside the scope of the thesis,
nonetheless this brief introduction was necessary to justify the language choices
that were made developing the different programs this thesis is composed of.

1.7.1 Python

Python is an Object-Oriented, garbage-collected, dynamically typed, in-
terpreted programming language. It integrates some aspects of Functional
Programming, such as the lambda expressions, while remaining fundamentally
Object-Oriented.
It appeared for the first time in 1991[38], and has since then gained in popularity,
becoming one of the most used programming languages as of 2023.

It is one of the most used languages in the fields of Machine Learning
and Data Analysis, and is also a fairly common choice for backend and API
development.

Overall, Python is a very versatile language that is often used for rapid
prototyping, thanks to its relatively simple syntax, memory management, and
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the rich, vast, and vital ecosystem of libraries it provides for pretty much every
use case.

1.7.2 Rust

Rust is a multi-paradigm, compiled, general-purpose programming language
that first appeared in 2015, and has since gained a lot of popularity because of
its innovative way to achieve memory-safety and thread-safety, as well as for
its advanced features inherited from functional programming.

Its innovative way to achieve memory safety without the need of a garbage
collector, and being a compiled language, are two of the reasons that make
Rust a generally fast language, with performance comparable to C++.

Graydon Hoare created Rust as a personal project while working at Mozilla
Research in 2007. Mozilla officially sponsored the project in 2009. Since the
first stable release in May 2015, ever more companies have adopted Rust and
implemented it in their development pipelines.

Most notably, in December 2022, it became the second high-level language
to be supported in the development of the Linux kernel, the first being C.

Despite being relatively young, Rust already has a vast variety of data
analysis libraries (called crates in the Rust world) to choose from.

Some of the most beloved features Rust offers, apart from the compile-
time memory and thread safety achieved with the borrowing system and the
borrow-checker, are:

• the Option monad, which is an effective way to abstract over the side
effect of computations that may return a null value

• the Result monad, which is an effective way to abstract over the side
effect of computations that may fail, and may return an error. This
particular abstraction, together with some syntactic sugar offered by the
language, provides a powerful tool to manage error, that, in my opinion,
provides a solid way to manage possible run-time errors

• the support for proper pattern-matching is another feature of Rust that
gives developers more control over a program’s control flow.

Relevant to the thesis, Rust offers a good collection of geospatial-focused
crates, provided by GeoRust[39], that offers useful set abstractions, types
definitions, functions to treat geospatial data, and performs operations such as
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encoding or decoding geohashes, reading and writing GeoJSON files, and more.

Moreover, the Rust language comes with the powerful package management
tool named cargo, that is, in my opinion, one of the killer features of this
language.

With cargo, building binaries, testing both the code and the documentation,
and managing the dependencies is relatively easy.

dependencies with cargo are managed through the use of two files:

• Cargo.toml which is a file written in TOML language, which is basically
an advanced version of an INI file, in which dependencies are described
in a "broad sense", and it is thought to be developer-managed and
human-readable

• Cargo.lock which is the file containing the actual information about
dependencies, and it is thought to be managed by cargo.

Rust’s documentation suggest that end product repositories committing
both Cargo.toml and Cargo.lock files to their VCS (Version Control System),
and committing only Cargo.toml for non-end product repositories, such as a
rust library that other rust packages will depend on[40]. One of the few pain

points I encountered using cargo, is the slow fetch time from crates.io, the
Rust community’s crate (i.e. libraries) registry, but this is one of the points
the Rust community is working on to improve. This is especially a problem
when building Docker images that need to compile Rust binaries, unless you
are able to cache the result of the fetch somehow. But, apart for the slightly
longer build time the first time the build is made, this is often not a problem.



Chapter 2

Used Technologies

This chapter will provide to the reader an extensive discussion of the
technologies utilized and the motivations behind the choices that were made.

In particular, relevant technologies that will be extensively discussed includes
Apache Kafka, Apache Spark, and Docker.

2.1 From Virtual Machines to Containers
The thesis project started with the use of Virtual Machines, using Virtualbox

in particular, but later was made a switch to containers, in particular to Docker
containers.

The switch to a container-based approach was made for a variety of reasons:

• containers can reduce the overhead on the host machine with respect to
the use of several VMs, if used correctly

• less management of the software installation and of the networking is
required

• containers provide a solution that is more microservices and cloud oriented;
in fact they can often be seamlessly (or with little configuration) run on
local machine, on the most popular cloud providers, or on private cloud
solutions.

2.2 Docker
The emergence of Docker as a platform for containerization is closely

linked to the widespread use of virtualization in recent years. Since the 2010s,
containers have exploded in popularity as a technology, and Docker, since its
birth in 2013, have imposed as the de facto standard for containerization.

31
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2.2.1 Docker Inc.

The open-source project Docker was started in 2013 from the company
dotCloud, Inc. (now Docker, Inc.), specialized in Platform-as-a-Service. Docker
is written in Go language.

Go is a programming language that is greatly optimized for concurrency
and with a modern syntax (although inspired by C) developed by Google, and
widely used in cloud contexts.

Quickly since its launch, Docker has generated a global interest, due to
its ability to streamline the development process and make it easier to move
applications between different computing environments, leading the company
to enter into an important agreement with Red Hat in September 2013 and
collaborate with Microsoft in October 2014. Meanwhile, Google launched the
open-source container-orchestration tool Kubernetes, the open-source successor
of Borg, which drew the world’s attention to Docker.

However, there have been some frictions between Docker and Red Hat over
the years, particularly related to the development and adoption of container
technologies.

A key turning point was when Docker, in 2017, decided to make the source
code of some fundamental components of the technology public, donating it
to the Cloud Native Computing Foundation (CNCF). The CNCF is a Linux
Foundation project that was launched in 2015 to help advance cloud technologies
and tech industries to stay on par with the development of these technologies.

The move guaranteed compatibility between Docker and third party so-
lutions, and further pushed Docker as becoming the industry leader in the
containers field.

2.2.2 Docker Engine

The core of Docker is its Docker Engine, an architecture that interact with
the Linux kernel and allows receiving commands through a client, either by
command-line interface or API. The Docker Engine is based on a client-server
architecture:

• server - the layer on which the individual containers are executed. It has
the duty of managing the network layer, the shared resources layer and
the images, and exposes its services through a REST API

• client - it is a command line interface (CLI) allowing the user to send
commands to the server component. Client and server communicate
through a REST
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• registry - a repository from which it is possible to pull or push images.
The repository can be both public or private. The public repository
contains images that everyone can use, the private repositories contain
images accessible only to the organization that created it. The public
repository is the Docker Hub[8].

Figure 2.1: The architecture of Docker.[8]

2.2.3 Networking in Docker

Docker containers can communicate with each other and with the outside
world, using networking capabilities provided by Docker.

By default, each Docker container gets its own isolated network namespace,
which means that it has its own network interfaces, IP address, and routing
table.

Docker supports several networking modes, which determine how containers
are connected to the network. Some of the most common modes include:

• bridge networking. This is the default networking mode in Docker.
Containers are connected to a virtual bridge network, which allows them
to communicate with each other and with the host system

• host networking. In this mode, containers use the host system’s network
stack, which means they have direct access to the host’s network interfaces
and IP address. This can be useful for high-performance networking
applications, but it can also create security risks
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• overlay networking. This mode allows containers to communicate with
each other across multiple hosts in a distributed environment. It uses
a virtual overlay network that spans multiple physical networks and
provides seamless communication between containers.

In addition to these networking modes, Docker also provides several network
drivers, which allow containers to connect to different types of networks, such
as virtual private networks (VPNs), software-defined networks (SDNs), and
more.

Overall, Docker networking provides a flexible and powerful way for con-
tainers to communicate with each other and with the outside world.

The default networking mode, bridge networking, is enough for most appli-
cations, and not by chance it is the default one.

2.2.4 Docker Compose

Docker Compose is an auxiliary component of Docker that allows to de-
fine and execute applications spread among more Docker containers. Docker
Compose simplifies the process of managing multi-container applications by
making use of a declarative way to declare services provided by containers and
dependencies (such as if a container needs to start after another) between them.
Developers should define a set of containers, their dependencies, and how they
should be configured and run together in a YAML file called a Compose file,
and usually named docker-compose.yaml.

One of the main benefits of using Docker Compose is that it allows develop-
ers to define their entire application stack in a single, declarative, configuration
file. This makes it easy to start and stop the entire application with a single
commands, as well as to manage and scale individual containers of the stack.
Additionally, the Compose file is version controlled, providing a way for de-
velopers to easily manage changes to the application composition over time.

Another advantage of Docker Compose is that it simplifies the process of
managing dependencies between containers. Compose makes it easy to define
dependencies between services, and to ensure that those dependencies are
started and stopped in the correct order.

However, especially for small applications, Docker Compose may be an
overkill, and may only add maintenance overhead, because of the need to
maintain the compose file too.
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Docker Compose YAML

The YAML used to create an application spread among multiple containers
with Docker Compose is usually called docker-compose.yaml. This file uses a
declarative approach to describe the application.

The language chosen for it, YAML, is a human-readable data serialization
language that is used in many contexts, e.g. Kubernetes, with the same goal of
describing in a declarative way the goals one want to achieve, rather than how
to achieve them.

The main keys of the Docker Compose YAML are:

• The version of the Compose file, which specifies the version of the
Compose file format being used.

• A list of services, which define the containers that make up the applica-
tion stack. Each service has a name, a set of configuration options, and
can be dependent on other services.

• A list of networks, which define the networks that are available to the
containers in the application stack. Each network can have its own
configuration options, such as a custom IP range.

• A list of volumes, which define the volumes that are available to the
containers in the application stack. Each volume can have its own
configuration options, such as the location on the host file system where
the volume is stored.

• A set of environment variables, which can be used to set environment
variables for the containers in the application stack.

• A set of secrets, which can be used to store sensitive data, such as
passwords, outside of the Compose file.

• A set of configs, which can be used to store configuration data, such as
a configuration file for a web server, outside of the Compose file.

• A set of deploy options, which are used to configure the deployment of
the application stack to a swarm cluster.

2.2.5 Dockerfile

The Dockerfile is a fundamental element of the Docker ecosystem, because
in it are described the necessary steps to create a Docker image.
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The Dockerfile is a fundamental element of Docker’s ecosystem, because it
describes the steps needed to create a Docker image. The image is then used
to create a Docker container.

It is important to note that all containers created from the same image
are identical, and this makes it easy to have multiple replicas of the same
application. This is one of containers’ superpowers, but it is also the reason
why containers are best suited for stateless applications (not that managing
stateful applications is impossible, it is just a bit trickier).

The Dockerfile specifies two main things for an image:

• the base image from which it derives

• the customizations to apply to the base image.

Practically speaking, the Dockerfile is a text file containing a series of
instructions, that are executed in sequence to create an image. The Dockerfile
defines the steps needed to create a custom Docker image by specifying the
base image, installing dependencies, setting environment variables, and copying
files to the container.

Dockerfile Structure

The Dockerfile is a simple text file containing instructions for Docker on
how to build the image. The main commands are:

• FROM: specifies the base image for the Dockerfile. This command must be
the first command in the Dockerfile, and it determines the environment
in which subsequent commands are executed.

• RUN: executes a command in the container. This command is used to
install dependencies, set up the environment, and perform other operations
needed to build the image.

• ADD: copies a file or directory from the host to the container. This com-
mand is similar to the COPY command, but it has additional functionality,
such as the ability to extract compressed files and the ability to fetch
remote files.

• COPY: copies a file or directory from the host to the container. This
command is used to add files and directories to the container, such as
application code or configuration files.



2.2. DOCKER 37

• CMD: specifies the default command that should be executed when the
container starts. This command is optional, but it’s a best practice to
include it to ensure that the container has a default behavior.

• WORKDIR: sets the working directory for the subsequent commands in the
Dockerfile. This command is used to ensure that subsequent commands
are executed in the correct directory.

2.2.6 Creation of a Docker Image

Docker images are built from a series of layers, where each layer represents
a change made to the image. When a Docker image is built, Docker takes each
instruction in the Dockerfile and creates a new layer based on the previous
layer. Each layer is read-only and represents a specific state of the image.

Layers are an important concept in Docker because they enable Docker to
cache and reuse existing layers when building new images.

Using layers effectively is crucial to build lightweigth and efficient Docker
images.

To create a Docker image, one need to run the following command of the
Docker command line interface:

docker build <path/to/dockerfile>

Optionally, one could specify a tag to give to the image with the option
-t <tagname>. The option is very useful in that, by omitting it, the resulting
Docker image will have a hard to remember name. Thus, the use of this option
is usually advised.

2.2.7 Useful Commands

In this subsection, a list of useful Docker CLI commands is provided. This
list is not meant to be comprehensive, nor all the available options of each
command is provided. It is just an overview of the most useful commands to
manage the lifetime of containers instances.

In Docker, after creating an image, it is as well possible to run it with the
following command:

docker run <image_name>

This command will run a container instance using the specified image.
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After running a container, it is possible to execute a series of actions inside
it, like opening a shell, and execute commands inside the container.

Listing the currently running containers, it is possible with the following
command:

docker ps

Stopping a container is another operation that one would want to execute
often, especially during the development stage, and is achievable with the
following command:

docker stop <container_name>

Finally, removing a container is possible with the command:

docker rm <container_name>

When, instead of an application made of a single container, you have an
application that is spread among multiple containers, using the docker-compose
command makes the management of these containers as a single unit easier.

To run an application that is made of multiple containers, go inside the
directory in which the docker-compose YAML is placed and run the following
command:

docker-compose up

It is also often useful to run the above command with the -d (or --detached),
to run the containers in background, and be able to continue using the current
shell.

Stopping a Docker compose application is possible running the following
command:

docker-compose down

2.3 Choice of the Message-Oriented Middleware
The choice of the Message-Oriented Middleware to use fell on Apache Kafka.

Kafka was chosen instead of other options, such as RabbitMQ, mainly because
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of the high-throughput it can support. Indeed, Kafka can support higher
throughput than RabbitMQ, reaching also millions of messages per seconds.
Moreover, Kafka is a fairly popular choice in IoT scenarios in which modest
amounts of data are frequently sent for monitoring purposes by many IoT
devices, which is exactly the scenario of this thesis focuses on.

Anyway, Kafka’s higher performances comes at the cost of a simpler broker
architecture, and thus a little more work to be done by the developer on the
business logic side.

2.4 Apache Kafka

Apache Kafka is an open-source system for message exchange developed
by the Apache Software Foundation and first released in 2011. Apache Kafka
is written in Scala and Java. The project aims to provide a unified, high-
throughput, low-latency platform for handling real-time data feeds[41].

Kafka was originally developed at LinkedIn, and was subsequently open
sourced in early 2011. The problem Kafka was originally set out to solve
was low-latency ingestion of large amounts of event data from the LinkedIn
website and infrastructure into a lambda architecture that harnessed Hadoop
and real-time event processing systems.

Apache Kafka is a distributed messaging system, a message-oriented middle-
ware as stated in the previous chapter, that acts as an event streaming platform,
with a strong focus on high scalability. Events, in the context of Kafka, are
anything (action, change, incident) that is recorded by software. For message
exchange, Kafka’s servers and clients uses a binary TCP-based protocol that is
optimized for efficiency and relies on a "message set" abstraction that naturally
groups messages together to reduce the overhead of the network roundtrip.

The interaction model used by Kafka is publish-subscribe, where producers
publish data to "channels" (called topics), and consumers subscribe to those
channels to receive the data. Kafka can deliver in-order, persistent, scalable
messaging. It has publishers, topics, and subscribers. It can also partition
topics and enable massively parallel consumption. All messages written to
Kafka are persisted and replicated to peer brokers for fault tolerance, and those
messages stay around for a configurable period of time[42].

The two main concepts on which Kafka is based are that of a distributed
commit log, and that of key-value pairs. Scaling in Kafka is achieved by splitting
logs into partitions (e.g. key-based splitting). A file system, or database commit
log is designed to provide a persistent record of all transactions, so that by
replaying them it is possible to consistently (re)build the state of a system.
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Similarly, data within Kafka is stored in a durable fashion, maintaining the
message order, and can be read deterministically.

The way Kafka achieves massive scalability and fault tolerance is via a
distributed architecture that allows it to be run on multiple nodes. with data
replication and partitioning across nodes.

Adding to the high throughput, fault-tolerant, and scalability, there are the
stream processing APIs provided by Kafka among the reasons of its success.
Stream processing APIs enable developers to build complex data processing
pipelines with ease.

Finally, one of the key strengths of Apache Kafka is the ability to support
both multiple producers and multiple consumers, writing and reading the topics
concurrently, in a seamless way.

2.4.1 Kafka Clients, Servers, and Brokers

Kafka architecture relies on the client/server model, where clients act as
normal clients, and servers are divided into brokers and servers running Kafka
Connect to continuously import and export data as event streams to integrate
Kafka with existing systems such as relational databases as well as other Kafka
clusters[9].

Kafka brokers are responsible for maintaining the storage layer, the layer to
which Kafka’s client consumer and producer applications can respectively read
and write data.

Kafka Client

Kafka clients are users of the messaging system, and they divide into
producers and consumers (of the messages). Producers create new messages to

topics. In general, a message is produced to a specific topic.
By default, the producer does not care what partition a message is written

to, and messages are load-balanced over all available partitions evenly. However,
there are situations in which writing a message to a specific partition is required
for semantics reasons, thus it anyhow is possible to choose what partition to
send the message to.

Consumers read messages from topics. The consumer subscribes to one or
more topics and read the messages in the order in which they were produced.
The consumer keeps track of which messages it has already read and consumed
by keeping track of the offset of the messages. The offset is a metadata of the
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message (an integer value that continually increases, like a counter) that Kafka
adds to each message as it is produced.

Consumers can be part of a consumer group, which is one or more consumers
that work together to consume a topic. The group assures that each partition
is only consumed by one member[10].

2.4.2 Event Streaming

Event streaming is the practice of capturing data in real-time from event
sources like sensors, mobile devices, databases, cloud services, and software
applications in the form of streams of events; storing these event streams
durably for later retrieval; manipulating, processing, and reacting to the event
streams in real-time as well as retrospectively; and routing the event streams
to different destination technologies as needed. Event streaming thus ensures a
continuous flow and interpretation of data so that the right information is at
the right place, at the right time.[41]

Event streaming is the digital equivalent of the human body’s central
nervous system, to use a biological metaphor[9].

Event streaming finds application in a wide variety of use cases in the
industry:

• to process payments and financial transactions in real-time, such as in
stock exchanges, banks, and insurances

• to track and monitor vehicles, fleets, and shipments in real-time, such as
in logistics and the automotive industry

• to continuously capture and analyze sensor data from IoT devices or
other equipment, such as in this thesis’ scenario

• to collect and immediately react to customer interactions and orders,
such as in retail industry, the travel industry, and mobile applications

• to monitor patients in hospital care and to ensure timely treatment in
emergencies

• to connect, store, and make available data produced by different divisions
of a company, which is an increasingly common situation

• to serve as the foundation for data platforms, event-driven architectures,
and microservices.
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2.4.3 Topics

Kafka topics are the way Kafka chose to organize events. A topic can be
imagined as a table in a relational database, or a log of events, or a channel.

Messages are written to topics in an append-only fashion, and consumed by
consumers from beginning to end. Topics are generally divided in partitions,
and for this reason there is no guarantee of strict time-ordering across the entire
topic, just within each individual partition[10].

In Kafka, topics are append-only and:

• can be configured to expire data after some time

• under the hood, they are files stored on disk

• can only be read by seeking an arbitrary offset, then scanning sequential
log entries.

There are several advantages of this approach:

• it is easy to understand, because the log-like semantics is already familiar
to developers

• it is relatively easy to manage, and the simple semantics is enabling for
high throughput.

Each message in a topic is uniquely identified by an offset, allowing con-
sumers to track their position in the stream.

2.4.4 Partitions

If topics were constrained to live only on a single machine, that would pose
a strong limit on Kafka scalability. Partitioning is then the mechanism provided
by Kafka to split a topic. Each partition is an ordered, immutable, sequence of
messages that is assigned to a specific broker in the cluster.

Partitioning enables for parallel message processing, making it possible
to scale the number of consumers that can read from a topic. Moreover,
partitioning provides fault-tolerance by allowing message replication across
different brokers.

The term stream is often used when discussing data within Kafka. Most
often, a stream is considered to be a single Kafka topic of data, regardless of
the number of partitions it has. This represents a single stream of data moving
from the producers to the consumers.
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A key feature of Kafka is the retention of messages, which is the durable
storage of messages for some period of time. Kafka brokers are configured with
a default retention, but custom configurations for retention can be applied.

Messages can be retained for either a specified time frame (e.g. 7 days) or
until the topic reaches a certain size in bytes (e.g. 2 GB). Once these limits are
reached, messages are expired and deleted. One thing that is not settable using
Kafka’s retention policies, is to expire a message once all interested subscribers
have consumed it, as it is possible in other message-oriented middlewares (such
as RabbitMQ). This is due to the Kafka’s choice of using a dumb broker, smart
consumer model. Also, these policies are simpler than expiring a message once
all consumers have consumed it, and they enable the broker to ensure higher
throughput, due to their simplicity.

2.4.5 Kafka APIs

In addition to command line tooling ,Kafka offers five core APIs:

• the Admin API to manage and inspect brokers, topics, and Kafka objects
in general

• the Producer API to publish a stream of events to one or more topics
the Consumer API used to subscribe and read from one or more topics,
and to process the stream of events produced

• the Kakfa Streams API to implement stream processing applications. It
offers higher-level functions to process streams when compared to the Con-
sumer and Producer APIs. These higher-level functions include functions
to perform transformations, stateful operations (such as aggregations and
joins), windowing, event-time based processing, and more. Input is read
from one or more topics in order to generate output to one or more topics

• the Kafka Connect API to build and run reusable data import and export
connectors that consume or produce streams. Connectors connect, for
example, to RDBMS like PostgreSQL, and others.

2.4.6 Producers and Consumers

Kafka clients are users of the system, and there are two basic types: pro-
ducers and consumers. In other MOMs, these may be called publishers and
subscribers, respectively.

When a producer publishes a message to a topic, it can specify a key for
the massage. That key is then used to determine the partition the message
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Figure 2.2: Figure showing a partitioned topic to which multiple client producers
can send data. It is important to notice that many clients can seamlessly write
not only to the same topic, but to the same partition too.[9].

will be assigned to. By default, the partition is chosen based on a hash of the
key, ensuring messages with the same key to be assigned always to the same
partition.

Consumers can read messages from one or more partitions of the same
topic. Each partition can be read by only one consumer at a time (to prevent
a message duplication), but a single consumer can read from multiple partition.
This is known as the single-consumer-per-partition model. This model is an
important Kafka concept, enabling for efficient, parallel, processing of messages
while avoiding duplicates or conflicts between consumers.

Consumers work as part of a consumer group, which is one or more consumers
that works together to consume a topic. The group assures that each partition
is only consumed by one member. The mapping of a consumer to a partition is
oftentimes referred to as ownership of the partition by the consumer[10].

With this concept of a consumer group, consumers can horizontally scale
to consume topics receiving large numbers of messages. Moreover, it provides
a way to achieve fault-tolerance. In fact, if a consumer fails, the remaining
members of the group will rebalance the partitions being consumed to take over
for the failed member. What happens, is that one of the remaining members
will start consuming the partition(s) consumed by the failed node.

This mechanism does not only work for fault-tolerance, indeed it works also
for scaling as, if a new node joins the group, the partitions will be rebalanced
also counting the new member.
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2.4.7 Cluster

Kafka brokers are designed to operate in a cluster. Within a cluster of Kafka
brokers, one broker will also function as the cluster controller (automatically
elected from the members of the cluster). The controller is responsible for
administrating the operations, such as assigning partitions to brokers and
monitoring the other members for broker failures.

A partition of a topic is owned by one single broker, called the leader of the
partition. A partition may also be replicated across multiple brokers, but one
and only one remain the leader for that partition. This mechanism provides
redundancy of messages, such that another broker can take over the leadership
if there is a failure in the leader without message losses[10].

Figure 2.3: Figure showing a Kafka cluster composed of two brokers, with
a topic having two partitions and replicated among the two brokers. It is
important to note that, for each partition of the topic, only one of the two
brokers will be the partition leader.[10].

2.5 Choosing a Big Data Analysis Framework
Apache Spark is a distributed computing system designed for processing

large volumes of data quickly and efficiently. It is built on top of Apache
Hadoop MapReduce and extends the MapReduce model to support more types
of computations, including interactive queries and stream processing.
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Apache Spark and Apache Hadoop are two of the main alternatives when
choosing a framework to perform big data analytics.

Apache Spark is often considered to be better than Hadoop MapReduce
for several reasons. First, it is significantly faster due to its in-memory data
processing capability, and also it can handle a variety of workloads including
batch processing, real-time processing, machine learning, and graph processing,
and is easier to use and more flexible than MapReduce.

Additionally, Spark provides built-in fault tolerance using Resilient Dis-
tributed Datasets (RDDs), whereas MapReduce requires more complex code to
handle fault tolerance. The Spark ecosystem includes a wide range of libraries
and tools for data processing, making it a popular choice for big data processing
over Hadoop MapReduce.

Because of this motivations, we quickly decided to focus on Spark rather
than Hadoop.

2.6 Spark

Apache Spark is an open-source distributed computing system designed for
processing large volumes of data quickly and efficiently, initially released in
2014 and developed by the University of California Berkeley’s AMPLab, and
later donated to the Apache Software Foundation, which has maintained it
since[43].

Spark provides an interface for programming clusters with implicit data
parallelism and fault tolerance.

The main components of Apache Spark include Spark Core, Spark SQL,
Spark Streaming, Spark MLlib, and Spark GraphX.

At a high level, every Spark application consists of a driver program that
runs the user’s main function and executes various parallel operations on a
cluster. The main abstraction Spark provides is a resilient distributed dataset
(RDD), which is a collection of elements partitioned across the nodes of the
cluster that can be operated on in parallel[44].

2.6.1 Spark Core

Apache Spark Core is the base engine for large-scale parallel and distributed
data processing. It is responsible for scheduling and dispatching tasks, co-
ordinating input and output (I/O) operations, and providing an underlying
execution engine for Spark. Spark Core introduces the concept of Resilient
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Distributed Datasets (RDDs), which are immutable fault-tolerant distributed
collections of objects that can be operated on in parallel.

RDDs can be created by loading an external dataset or distributing a
collection from the driver program. They support two types of operations:
transformations and actions. Transformations are operations (such as map,
filter, join, union, etc.) that are performed on an RDD and yield a new RDD
containing the result. Actions are operations (such as reduce, count, first, etc.)
that return a value after running a computation on an RDD.

Transformations in Spark are "lazy", meaning they don’t compute their
results right away. Instead, they remember the operation to be performed and
the dataset to which the operation is to be performed. The transformations
are only actually computed when an action is called, and the result is returned
to the driver program. This design enables Spark to run more efficiently.

By default, each transformed RDD may be recomputed each time an action
on it is run. However, an RDD, may also persist in memory using the persist
or cache method, in which case Apache Spark will keep the elements around
on the cluster for much faster access the next time it is queried[45].

2.6.2 Spark SQL

Spark SQL is a module in Apache Spark used for structured data processing.
It allows developers to query structured data using either SQL or the DataFrame
API[44].

One use of Spark SQL is to execute SQL queries in Apache Spark. When
running SQL queries from within another programming language (such as Scala
or Python), the results will be returned as a Dataset or DataFrame. It is as
well possible to interact with the SQL interface using the command-line or over
JDBC/ODBC.

Spark SQL provides the ability to generate logical and physical plans for a
given query using the EXPLAIN statement. The cost-based optimizer, columnar
storage, and code generation included in Spark SQL make queries fast, while
the Spark engine provides full mid-query fault tolerance, allowing it to scale to
thousands of nodes and multi-hour queries, without the risk of having to restart
from scratch in case of faults, which can never be underestimated, especially
when running on big clusters.

2.6.3 Spark Resilient Distributed Dataset

In Apache Spark, the primary user-facing API is the Resilient Distributed
Dataset (RDD), which is an immutable, distributed, collection of elements that
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can be operated on in parallel[44]. RDDs are fault-tolerant and automatically
recover from node failures.

RDDs can be created in two ways: by parallelizing an existing collection in
the driver program, or by referencing a dataset in an external storage system,
such as a shared file system, HDFS, HBase, or any data source offering a
Hadoop Input Format. RDDs can contain any type of Python, Java, or Scala
objects, including user-defined classes. RDDs are divided into logical partitions,
which may be computed on different nodes of the cluster.

Internally, RDDs are characterized by five main properties: a list of par-
titions, a function for computing each split, a list of dependencies on other
RDDs, optionally a partitioner for key-value RDDs (e.g. to say that the RDD
is hash-partitioned), and optionally a list of preferred locations to compute
each split on. All the scheduling and execution in Spark is done based on these
methods, allowing each RDD to implement its own way of computing itself.
Users can also implement custom RDDs (e.g. for reading data from a new
storage system)[44].

There are two types of shared variables in Spark: broadcast variables and
accumulators. Broadcast variables can be used to cache a value in memory on
all nodes, while accumulators are variables that are only "added" to, such as
counters and sums. By default, when Spark runs a function in parallel as a set
of tasks on different nodes, it ships a copy of each variable used in the function
to each task. Sometimes, a variable needs to be shared across tasks or between
tasks and the driver program[44].

Spark RDD supports a wide range of transformations that can be applied
to RDDs, the main ones being:

• map

• filter

• flatMap

• groupByKey

• reduceByKey

• sortByKey

• join

• distinct.
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Spark RDD also supports iterative and interactive operations. Iterative op-
erations store intermediate results in a distributed memory instead of persistent
storage (disk) and make the system faster. If the distributed memory (RAM) is
not sufficient to store intermediate results (state of the job), then Apache Spark
will store those results on the disk, an operation that degrades performances.
Interactive operations too keep data in memory for better performances.

By default, each transformed RDD may be recomputed each time an action
is run on it. However, it is also possible to persist an RDD in memory, in which
case Spark will keep the elements around on the cluster for much faster access
the next time it is queried. There is also support for persisting RDDs on disk
or replicated across multiple nodes, to help horizontal scaling.

Shuffling

Shuffling in Apache Spark is the process of redistributing data across different
executors and even across machines. This mechanism is triggered by operations
like groupByKey(), reduceByKey(), join(), and groupBy(). Shuffling is an
expensive operation, as it involves disk I/O, data serialization, and network
I/O[44], thus it is good practice to try to limit the amount of shuffling in Spark
applications.

Also, shuffle generates a large number of intermediate files on disk, and
these files are preserved until the corresponding RDDs are no longer used and
are garbage collected (long-running Spark jobs may consume a large amount of
disk space because of this).

To optimize shuffle performance, developers can adjust various configuration
parameters. For example, one can change the default shuffle partition value
using the conf method of the SparkSession object or using Spark Submit
command configurations. Getting the right size of the shuffle partition is never
an easy task, and usually takes many runs with different values to achieve the
optimized number.

2.6.4 Spark Structured Streaming

Structured Streaming is a scalable and fault-tolerant stream processing
engine built on the Spark SQL engine.[11] It enables to use SQL queries on
real-time data streams. The Spark SQL engine will take care of running the
computation incrementally and continuously, and updating the final result as
streaming data continues to arrive[11]. The incoming data are continuously
processed in batches, using a micro-batch processing engine.

The input stream can be though of as an unbounded "Input Table". Every
data item that is arriving on the stream is like a new row being appended to it.
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A query on the input will generate the “Result Table”. Every trigger
interval (say, every 1 second), new rows get appended to the Input Table, which
eventually updates the Result Table[11].

Figure 2.4: The input stream is treated as if it was an unbounded table[11].

The output stream of a structured stream is defined as what gets written
out to the external storage (or console). The output can be defined in different
modes:

• complete, that is the entire updated Result Table will be written at every
update

• append, that is only the new rows appended in the Result Table since the
last trigger will be written in output

• update, i.e. only the rows that were updated in the Result Table since
the last trigger will be written to the external storage. Note that the
rows that were updated do not always coincide to the rows that were
appended, thus the distinction between the two modes.

2.6.5 Spark Web UI

The Spark Web UI is a suite of user interfaces that provide information
about the status of a Spark application and resource consumption of a Spark
cluster. The UIs include Jobs, Stages, Tasks, Storage, Environment, Executors,
and SQL. The UI also displays scheduling delay and processing time for each
micro-batch in the data stream if the application uses Spark streaming[44].
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To access the Spark Web UI, the Spark application must be running. If
the application is running locally, the Spark UI can be accessed at the URL
http://localhost:4040/ by using a common browser. The Spark UI runs on port
4040 by default.

The Spark metrics are available in JSON format as well. The JSON is
available for both running applications and in the history server. The endpoints
are mounted at /api/v1. The API gives developers an easy way to create
custom monitoring and visualization tools for Apache Spark.
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Figure 2.5: Example of the information available in the Spark Web UI Struc-
tured Streaming tab.



Chapter 3

Architecture and Features of the
Proposed Solution

To allow the reader to better understand the choices that were made, it is
important to start by briefly describing the scenario in which we posed ourselves
to carry out this thesis’ work.

The scenario was that of moving taxis in a city, as already stated a few
times, and the collection and pre-analysis and filtering of this data carried out
by intermediate edge nodes, before sending them to the cloud where further
analysis would be carried on.

Our architecture is based on the introduction of edge nodes, acting as
gateways, or a "shield", between the incoming data and the cloud. Incoming
data on each node were:

• Geohash encoded, and the hash then used to calculate (approximately)
the neighborhood of origin of each message

• optionally, sampled in batches of messages arrived within the same time
window

• sent to a Kafka topic that may optionally be "spatial-aware", in the sense
that it contains only messages originated from the same neighborhood.
Otherwise, sent to a random partition of a non-spatial-aware topic. This
was behavior was controlled via a settable configuration.

These are, at a high-level, the responsibilities the edge nodes implemented for
this thesis were capable to perform.

The cloud nodes running Apache Spark, on the other hand, continually
processed incoming data, by running a query calculating the average speed for

53
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each geohash for each 30-minute time window. Data were then updated and
exported to CSV at regular intervals.

As we did not have at our disposal a fleet of actually moving taxis, we
needed a way to simulate this scenario. To simulate this, we needed a program
able to distribute data to our edge nodes and, since we were already using
Kafka for sending data from the edge nodes to the cloud, we chose to leverage
yet another Kafka topic specifically for this.

To give an overview of our final setup, our final setup is composed of different
programs, running on different containers, and each with a specific purpose.
Specifically, it was designed and implemented:

• A program to simulate data arrival in the edge nodes, thus a program
that act as a distributor of data to the edge nodes

• A program, running on the edge nodes, that is able to read, preprocess,
and send out again incoming data

• A program, running (ideally) in nodes in the cloud, reading preprocessed
data and further analyzing them to extract meaningful information about
the traffic situation at a given time of day

• A program whose purpose is to visualize in an interactive way the analysis’
results, with a map showing visually the traffic situation for a given time
window, giving the possibility to resize and move the map, as well as to
select another time window.

Figure 3.1 shows what are the three main logical steps into which it was
divided the thesis’ work, and how information flows among the different pro-
grams.

As shown in step 1, the program that distributes data to the edge nodes
reads data from a file (specifically, it would be a CSV file), and writes the data
to a pipe of some kind.

In step 2, two edge programs run independently by reading messages to the
pipe, and writing them to another pipe. These are the binaries that would
ideally run on the edge nodes.

The third step, in which data analysis and visualization are carried out,
is divided into two parts. In the first part, step 3A, the data are read from
the pipe to which step 2 binaries wrote, and are analyzed. The output of the
analysis is then written to a file. Finally, in step 3B data are visualized in a
web application that reads from the file generated at the previous step, and
shows the results in an interactive map.
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Figure 3.1: Figure showing the various programs that will compose the setup
and the information flow between them.

The project was made using different technologies, that were combined to
create the final result.
In particular, the project started as a group of several Ubuntu Virtual Machines,
and later was switched to a more modern container-based approach. The project
in its final form consists of different parts, that implements:

• a Kafka cluster with specific topics where nodes produce to and consume
data from; specifically, there are two Kafka containers

• a Zookeeper container needed by Kafka nodes

• a Spark cluster processing incoming data composed of a master and a
worker node.

In this chapter, the implementation and choices made for the setup will be
discussed extensively.

Figure 3.2 shows an overview of the containers’ deployment structure, using
dashed lines to indicate that communication between two containers is direct.
It is possible to note that the two Kafka nodes do not communicate directly
with the Spark master, but Kafka nodes writes on a pipe, and the Spark master
reads from it. In particular, the "pipe" are one or more Kafka topics.
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Figure 3.2: Overview of the containers’ deployment structure. In the figure,
five containers are depicted. Spark(M) indicates that the Spark node act as
master, Spark(W) that the node act as a Spark worker.

3.1 Containers Setup
The base images for each of the containers previously described were pulled

from the Docker Hub. Specifically, the images pulled were the following:

• bitnami/zookeeper [46] image from Bitnami for the Zookeeper node

• bitnami/kafka[47] image for the Kafka nodes

• bitnami/spark [48] image for the Spark nodes.

These Docker images provided by Bitnami represents a very good start-
ing point to start working with Apache Spark, Apache Kafka, and Apache
Zookeeper, and comes with the possibility of customizing the main settings of
each of these software programs by default using some environments variables.

Moreover, the Spark and Kafka images were further specialized, via custom
Dockerfile, to run the binaries needed for the project.

3.1.1 Custom Image for The Kafka Nodes

To provide some context, the Kafka nodes needed to run two binaries:

• the first, running only on one of the two nodes, that read from the CSV
file simulating the data distribution
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• the second, running on both nodes that read from the specified partition
of the Kafka topic in which data arrives, that preprocess data and sends
them to the output Kafka topics.

It was possible to have a completely separate container running the first
binary, and then have two additional containers running only the second binary,
but this was considered an overkill, because the computational overhead of the
data distribution binary is minimal. Thus, it was made the choice to create
two images, one with the first and second binary (plus the duty of creating all
the needed Kafka topics), and another for the node running only the second
binary.

Ideally, if the setup would be deployed in a real production context, the
second image only would be needed, and the first image (the one that has also
the binary for running the data distribution) would not be deployed.

The Docker image for the Kafka node running both binaries described above
is the following:

1 FROM docker.io/bitnami/kafka:3.4
2

3 USER root
4

5 WORKDIR /
6

7 RUN mkdir kafka-producer-rs/
8 RUN mkdir kafka-edge-bin/
9

10 RUN apt-get update
11 RUN apt-get install -y \
12 build-essential \
13 libssl-dev \
14 pkg-config \
15 vim \
16 git \
17 curl
18

19 ## Update new packages
20 RUN apt-get update
21

22 # Get Rust
23 RUN curl https://sh.rustup.rs -sSf | bash -s -- -y
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24

25 RUN echo 'source /.cargo/env' >> /.bashrc
26 ENV PATH="${PATH}:/.cargo/bin"
27

28 COPY data/china /data/china
29 COPY kafka-producer-rs /kafka-producer-rs
30 COPY kafka-edge-bin /kafka-edge-bin
31

32 # Build producer
33 WORKDIR /kafka-producer-rs
34 RUN cargo build --release
35 RUN mv ./target/release/kafka-producer-rs /kafka-producer-rs
36 # Copy config file
37 COPY ./kafka-rs-configs/producer_config.toml

/kafka-producer-rs/producer_config.toml
38

39 # Build edge
40 WORKDIR /kafka-edge-bin
41 RUN cargo build --release
42 RUN mv ./target/release/kafka-edge-rs /kafka-edge-rs
43 # Copy config file
44 COPY ./kafka-rs-configs/kafka_edge_config-kafka.toml

/kafka_edge_config.toml
45

46 # Copy startup script
47 WORKDIR /
48 COPY ./docker-startup-scripts/startup-kafka.sh /startup.sh
49 RUN chmod +x /startup.sh

Listing 3.1: Dockerfile for the Docker image of the Kafka node running both
the data distribution and edge binary.

This Dockerfile changes the user to root, which is not a best practice
security-wise, but it is very helpful in development environments.

Moreover, multi-stage builds could have been used to keep the final image
size down, and this could be a possible improvement for the future. But, as
the ultimate goal of this thesis was not about the use of Docker, it was made a
choice to concentrate the efforts on other aspects.

This same considerations are valid for the other images that will be exposed
in this thesis.

The second Kafka image, the one used by the node (but potentially more
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than one) running the edge binary, is created from the following Dockerfile:

1 FROM docker.io/bitnami/kafka:3.4
2

3 USER root
4

5 WORKDIR /
6

7 RUN mkdir kafka-edge-bin/
8

9 RUN apt-get update
10 RUN apt-get install -y \
11 build-essential \
12 libssl-dev \
13 pkg-config \
14 vim \
15 git \
16 curl
17

18 ## Update new packages
19 RUN apt-get update
20

21 # Get Rust
22 RUN curl https://sh.rustup.rs -sSf | bash -s -- -y
23

24 RUN echo 'source /.cargo/env' >> /.bashrc
25 ENV PATH="${PATH}:/.cargo/bin"
26

27 COPY data/china /data/china
28 COPY kafka-edge-bin /kafka-edge-bin
29

30 # Build edge
31 WORKDIR /kafka-edge-bin
32 RUN cargo build --release
33 RUN mv ./target/release/kafka-edge-rs /kafka-edge-rs
34 # Copy config file
35 COPY ./kafka-rs-configs/kafka_edge_config-edge.toml

/kafka_edge_config.toml
36

37 # Copy startup script
38 WORKDIR /
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39 COPY ./docker-startup-scripts/startup-edge.sh /startup.sh
40 RUN chmod +x /startup.sh

Listing 3.2: Dockerfile for the Docker image of the Kafka node running the
edge binary only.

Startup Scripts

The startup script for the Kafka node running both binaries is:

1 #!/bin/bash
2 ./kafka-producer-rs/kafka-producer-rs create_topic
3 ./kafka-edge-rs topic create out --for-nbw-strat
4

5 ./kafka-producer-rs/kafka-producer-rs &
6 ./kafka-edge-rs -s 0.8

Listing 3.3: Startup script of the Kafka container having both data distribution
and edge binary.

The startup script for the Kafka node running only the edge binary is:

1 #!/bin/bash
2 sleep 10
3

4 ./kafka-edge-rs -s 0.8

Listing 3.4: Startup script for the Kafka container with the edge binary only.

Both the startup scripts runs the binaries with options that will be explained
in the following sections of this chapter. Anyway, it is important to highlight
that these scripts are not automatically executed on container start, so to leave
the possibility to customize some options while testing without the need to
rebuild the image, and to leave the possibility to the user to decide when to
start the execution.

3.1.2 Custom Image Used by the Spark Master

The Spark master also needed a custom image, because its duty is both
running the spark script, and the web server for data visualization. Thus, a
custom image was created using the following Dockerfile:

1 FROM docker.io/bitnami/spark:3.3
2
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3 USER root
4

5 WORKDIR /
6

7 RUN apt-get update
8 RUN apt-get install -y \
9 build-essential \

10 libssl-dev \
11 pkg-config \
12 git \
13 vim \
14 curl
15

16 ## Update new packages
17 RUN apt-get update
18

19 COPY data/china /data/china
20 COPY cloud_analytics /cloud_analytics
21

22 # Setup flask web app
23 COPY flask_data_viz /flask_data_viz
24 WORKDIR /flask_data_viz
25 RUN pip3 install -r requirements.txt
26

27 WORKDIR /
28 # Setup startup script
29 COPY ./docker-startup-scripts/startup-spark.sh /startup.sh
30 RUN chmod +x /startup.sh

Listing 3.5: Dockerfile used to build the Spark master node image.

Startup Script

The following is the startup script for the Spark node:

1 #!/bin/bash
2 sleep 15
3

4 # execute flask app in separate terminal
5 bash -c "cd /flask_data_viz && python3 main.py" &
6

7 # Set startup script
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8 spark-submit --packages
org.apache.spark:spark-sql-kafka-0-10_2.12:3.3.0
cloud_analytics/main.py &

Listing 3.6: Startup script on the Spark master container.

As for the other startup scripts, this one too does not start automatically,
but need to be started manually.

3.1.3 Composing the Containers

Previously in this section, the individual containers were thoroughly de-
scribed, both in their implementation and in the purpose they serve.

But these containers by themselves are not able to achieve much, they need
to be composed together in order for the whole setup to work successfully.

The composition of these containers is achieved by leveraging Docker Com-
pose, and in particular, the following is the docker-compose.yaml file that was
used:

1 version: '3'
2

3 services:
4

5 # ----------------- #
6 # Apache Spark #
7 # ----------------- #
8 spark:
9 build:

10 context: .
11 dockerfile: Dockerfile_spark
12 user: root
13 environment:
14 - SPARK_MODE=master
15 ports:
16 - '8080:8080'
17 - '4040:4040'
18 - '7077:7077'
19 - '5000:5000'
20 volumes:
21 - ./vol:/vol
22 spark-worker:
23 image: docker.io/bitnami/spark:3.3
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24 user: root
25 environment:
26 - SPARK_MODE=worker
27 - SPARK_MASTER_URL=spark://spark:7077
28 - SPARK_WORKER_MEMORY=4G
29 - SPARK_EXECUTOR_MEMORY=4G
30 - SPARK_WORKER_CORES=4
31 volumes:
32 - ./vol:/vol
33

34 # ----------------- #
35 # Apache Kafka #
36 # ----------------- #
37 zookeeper:
38 image: docker.io/bitnami/zookeeper:3.8
39 ports:
40 - "2181:2181"
41 environment:
42 - ALLOW_ANONYMOUS_LOGIN=yes
43 kafka:
44 build:
45 context: .
46 dockerfile: Dockerfile_kafka
47 user: root
48 environment:
49 - KAFKA_CFG_ZOOKEEPER_CONNECT=zookeeper:2181
50 - KAFKA_CFG_DELETE_TOPIC_ENABLE=true
51 - ALLOW_PLAINTEXT_LISTENER=yes
52 depends_on:
53 - zookeeper
54 edge-1:
55 build:
56 context: .
57 dockerfile: Dockerfile_edge
58 user: root
59 environment:
60 - KAFKA_CFG_ZOOKEEPER_CONNECT=zookeeper:2181
61 - KAFKA_CFG_DELETE_TOPIC_ENABLE=true
62 - ALLOW_PLAINTEXT_LISTENER=yes
63 depends_on:
64 - zookeeper
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65 - kafka

Listing 3.7: Docker Compose YAML composing the various containers of the
setup together. The base structure for this file was taken from the article "A
Fast Look at Spark Structured Streaming + Kafka" [49].

An important thing to notice is that the Spark master container (the one
named spark) and the Spark worker container (named spark-worker) share
memory by mounting the same volume (./vol). This allows the master to have
the worker’s results, written to CSV, always available in its local file system.

3.2 Data Distribution
The first step of the setup, was to simulate data arrival at the cloud’s edge.

The input dataset used in the setup was available as a CSV file. But, while the
dataset was one, the nodes that these data needed to be distributed were not
necessarily one, therefore there was the need to distribute the single dataset to
the numerous nodes. To achieve this, two options were considered:

• a first idea was to divide the dataset in N part with some strategy, and
then just mount on a container a volume containing a part of the dataset

• to leverage Kafka, and use a partitioned topic to distribute the data.
Each node would then read data from just some of the topic’s partition.

The first idea is for sure easier to implement, but present several limitations:

• the solution is rigid, the slightest change in the distribution logic needs
the partitioned files to be recreated

• the solution requires manual intervention if the distribution strategy needs
to be changed (an operator should create the new files that each node
need).

This option was therefore quickly discarded, in favor of the second one, that
required more work to get started, but provides much more flexibility.

The language chosen to implement such a program was Rust. Apart from
the implementation language, a choice was made into how to organize the
program that proved to be very handy once the switch to containers was made.
This choice was of using a TOML configuration file together with command
line options to customize the program’s behavior across runs.

This choice made it possible to just change a couple lines in the configuration
file and then rerun the container’s startup script, without the need to remember
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Figure 3.3: This figure shows how, conceptually, data are distributed to the edge
nodes. The data distribution program, named "Kafka CSV Producer" in the
figure, sends data to a partitioned Kafka topic. Then, the programs running on
the edge nodes, in the figure called "Kafka Edge Producer" (producer because
it produces the actual messages consumed by the data analysis node) consumes
messages from the assigned partition of the topic, elaborates them, and then
sends them to other topics, not shown in this Figure.

the CLI options to pass to the program, especially for the parameters that were
evaluated as "unlikely" to change often between different runs. Anyway, the
possibility to override some of these parameters with a command line option
was left in case of necessity, to speedup configuration tuning.

Also, the program was also developed with the ease of use in mind, and
thus subcommands to empower the user to easily setup/reset the environment
for the program’s execution (such as creating or deleting the target topic, or
create or swap the configuration file) were provided.

3.2.1 TOML Configuration File Structure

The following is an example of what a configuration file for the data
distribution program looks like:

1 [kafka]
2 zookeeper = [ "zookeeper:2181" ]
3 brokers = [ "kafka:9092" ]
4 topic = "datain"
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5 partitions = 2
6

7 [data]
8 source = "/data/china/mobility/guang.csv"
9 msg_sleep_in_ms = 1

10 chunk_size = 1000
11 chunk_sleep_in_ms = 500

Listing 3.8: Example configuration TOML for the binary simulating data
distribution.

In this configuration file, the sections and fields shown has the following
meaning:

• the kafka section, is the section in which the options strictly related to
the Kafka behavior are placed

– the zookeeper field is an array of strings containing the information
about the zookeeper instances used by Kafka to work properly

– the brokers field is an array of strings of all the Kafka brokers to
which to connect to

– the topic field is a simple string containing the name of the Kafka
where to write the messages to be distributed among edge nodes

– the partitions field is an integer (greater than zero) representing
the number of partitions the topic should have

• the data section is the section in which information about how to dis-
tribute data is stored

– the source field is a string that must contain the absolute path to
the data source CSV file

– the msg_sleep_in_ms field is an integer that initially was used to
specify a particular sleep in between sending each individual message,
expressed in milliseconds, but in later stages of the development
was considered a suitable, and valuable, option to manage traffic
load, as the minimum granularity for this option is 1 millisecond,
and that was not enough in most testing scenarios (indeed, using
the chunk_size option together with the chunk_sleep_in_ms one
provide a much better mean for controlling traffic load). The option
was nonetheless maintained, and is available for possible use in the
future
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– the chunk_size field is an integer value that determines how many
messages are sent in a single iteration of the loop sending messages
(provided enough messages are left in the file)

– the chunk_sleep_in_ms field is an integer value that determines
how often a chunk of messages is sent on the topic.

This configuration file, in order to be effective at run-time, need to be placed
in the same directory in which the program’s binary is. A couple of utility
subcommands for creating a new configuration file using a default template,
and to swap the configuration file with a new one were provided, to allow the
user to quickly change the configuration without the need to know or remember
where exactly the binary is placed.

3.2.2 Messages Structure

The CSV files have the following structure:

• have an ID, which is a string that identifies the taxi driver sending that
particular message

• have a latitude and a longitude, that are two floating point numbers

• have a timestamp, which is easier (in this step) to treat as a string to
avoid useless conversions during serialization and deserialization, as we
are not interested in this step at the actual timestamp (this duty will be
carried out by the Spark cloud data analysis script)

• have a speed, which is a non-negative floating point number that is the
detected speed by the IoT sensors on the vehicles at the given timestamp.

To deal with messages with this structure, the following Rust structure was
defined for this purpose:

1 #[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
2 /// Struct holding the message Kafka message that will be sent.
3 pub struct Message {
4 pub id: String,
5 pub lat: f64,
6 pub lon: f64,
7 pub time: String,
8 pub speed: f64,
9 }

Listing 3.9: Message structure used by the data distribution program.
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It is important to notice that this structure derives several traits (concep-
tually similar, if not equivalent, to interfaces for people more familiar with
Object-Oriented programming) that are helpful in managing instances of this
struct.

In particular, the PartialEq trait allows the overload of the equality (and
inequality) operator. One may wonder why the equality is only "partial" and
not complete. The equality can be derived as only "partial" because the
"complete" version, called Eq, requires the equality to be reflexive, symmetric
and transitive, and this is not the case for floating point numbers (because the
equality between two NaN numbers returns false). Thus, the Eq trait cannot
be derived, i.e. automatically generated, for structures whose fields contain at
least a field of a type that does not implement Eq. Anyway, the PartialEq
trait is sufficient in our use case.

Two other important derived traits for the message structure are Serialize
and Deserialize, that provides implementations for structures that should
support being serialized and deserialized. These traits are provided by the
serde crate, that allows to easily managing serialization and deserialization
capabilities.

The deserialization, in particular, is used when reading an entry from the
CSV file, to deserialize the read record into the data structure.

Moreover, the structure implements a method that is used to send messages
to Kafka in JSON formatting, which is a format that is a widely popular choice
to send data over the network in recent years. In particular, the method uses
the json macro from the serde_json crate to achieve this goal:

1 impl Message {
2 /// Serialize the `Message` in JSON format.
3 pub fn json_serialize(&self) -> Value {
4 json!({
5 "id": self.id,
6 "lat": self.lat,
7 "lon": self.lon,
8 "time": self.time,
9 "speed": self.speed,

10 })
11 }
12 }

Listing 3.10: Implementation of the JSON serialization method.
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3.2.3 How to Use the Binary

The binary comes with several subcommands that are intended to help to
manage the configuration and the interaction of the program with Kafka.

In particular, a production-grade powerful argument parser is obtained using
the derive feature capabilities offered by the clap (which stands for Command
Line Argument Parser) crate. The available subcommands are:

• edit_config - a subcommand that allows to easily manage the configu-
ration TOML file. The command has two other subcommands

– create - used to create a new configuration file in the same directory
in which the executable is placed from a template

– replace - takes a file path as input, and it is used to replace an
existing (or non-existing) configuration with the provided file.

• create_topic - a subcommand used for creating the topic (the topic is
created as indicated in the config TOML file)

– the command accepts a command line option
(--replication-factor) that can be used to specify the desired
replication factor of the topic to be created (with a replication factor
of one being the default if the option is not provided)

• delete_topic - allows deleting the topic specified in the configuration
file. It is useful because deleting messages from a Kafka topic is not a
supported operation, and when running multiple tests it is often useful
to delete a topic to restart from an empty one.

Finally, a useful helper is generated for each command and subcommand,
producing the output shown in 3.4. The helper is also automatically generated
by clap.

3.2.4 The Kafka Producer

The producer implemented using the kafka-rust crate[50], which is a crate
that implements a Kafka client using only Rust.

The following code is used to initialize the producer:

1 let mut producer = Producer::from_hosts(config.kafka.brokers)
2 .with_ack_timeout(Duration::from_secs(1))
3 with_required_acks(RequiredAcks::One)
4 .create()?;
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Figure 3.4: Example output of the Kafka data distribution program’s helper.

Listing 3.11: Creation of a Kafka producer using rust-kafka.

The created producer uses the acknowledgement one, meaning that the
producer will consider the write successful when the leader broker receives the
record. Also, the acknowledgement would be awaited for a maximum of one
second.

3.2.5 Reading From CSV

The CSV reader is implemented using the csv crate[51], which is a very
good crate to handle with ease CSV files of even considerable size.

The following code shows how the reader is created:

1 let file = File::open(config.data.source)?;
2 let mut reader =

ReaderBuilder::new().has_headers(true).from_reader(file);

Listing 3.12: Creation of a CSV reader using the csv crate.

One important thing to mention when working with files in Rust is that,
thanks to its ownership model, one just have to open file, and they are automat-
ically closed as soon as the variable owning it goes out of scope, thus freeing
the developer from the burden of remembering to close the file in the appropri-



3.2. DATA DISTRIBUTION 71

ate points (which are not always easy to remember, especially in presence of
conditional flows and multiple returns). This same principle is applied also to
all the resources leaning on the open/close, or acquire/release, semantics, such
as network connections and mutexes.

3.2.6 The Data Distribution Loop

Data are distributed using a loop that iterates until there are records to
iterate on and, once chunk_size records are read (with the chunk size taken
from the configuration TOML), they are sent to the output Kafka topic to a
partition selected in a round-robin fashion from the first one.

If records to send are prepared before the time between each chunk send
has elapsed, a wait for the remaining milliseconds is implemented.

After the messages are sent, the partition for the next chunk is selected, the
timer is reset, and the vector of output messages is cleared. Then, the loop
starts again processing new CSV records, until chunk size (or last record) is
reached.

The code implementing this behavior is the following:

1 let mut chunk = Vec::with_capacity(chunk_size);
2

3 let mut start_time = Instant::now();
4 let mut partition = 0
5

6 let records = reader.records().count();
7 for (i, result) in reader.records().enumerate() {
8 let record = result?;
9 let data: Message = record.deserialize(None)?;

10 let data_json = data.json_serialize();
11 let record =
12 Record::from_key_value(&config.kafka.topic[..],

data.id, data_json.to_string())
13 .with_partition(partition);
14 chunk.push(record);
15

16 if chunk.len() == chunk_size || i == records - 1 {
17 // wait for all the chunk_sleep_in_ms to pass
18 let elapsed = start_time.elapsed();
19 if start_time.elapsed() <

config.data.chunk_sleep_in_ms {
20 sleep(config.data.chunk_sleep_in_ms - elapsed);
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21 }
22

23 // send the chunk
24 for rec_chunk in chunk.chunks(100) {
25 producer.send_all(&rec_chunk)?;
26 }
27

28 println!("Sent {} records", chunk.len());
29

30 // reset for next chunk
31 chunk.clear();
32 partition = (partition + 1) % partitions_number;
33 start_time = Instant::now();
34 }
35 }

Listing 3.13: Implementation of the data distribution loop.

One important thing to notice is that, although a chunk is considered as a
single batch of messages, in reality the chunk is sent in sub-chunks of at most
100 messages. One may wonder the motivation behind this choice, and the
motivation is that it was empirically determined that (probably because of a
bug in the crate) sending larger batches using this crate caused unpredictable
behavior, with some messages that were lost in a seemingly random fashion.
This was the only effective mitigation of this behavior that was found, other
mitigation strategies such as tweaking Kafka’s or producer’s parameters were
tried with no luck.

3.3 Edge Data Processing
The edge data processing is indeed the core of this thesis. The program

that will be described runs on nodes ideally deployed at the edge of the cloud,
that continually receives data from one or more partitions of a Kafka topic,
elaborates them (in particular, the geohash of the message is calculated and,
from it, also the neighborhood of provenance of the message), and then sends
them to some other output topics (from which the message will be read by the
node performing data analysis).

The duties of this program are simple:

• read the incoming message stream (which is one or more partitions of a
Kafka topic)
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• save each incoming message in an in-memory array of messages, and add
information about the geohash and neighborhood to each message

• every window milliseconds (with a configurable window) sample the data
that were read until that moment, since the end of the previous window

• send the sampled message to an output stream (consisting of one or more
Kafka topics).

Figure 3.5: Figure shows what are the messages format in the input and output
stream. Moreover, it is illustrated that the geohash and some geographical
information about the topology of the incoming data’s region are used to
calculate the neighborhood of the message.

Just like the data distribution program, the program was developed in Rust,
and makes use of the kafka-rust crate[50].

This binary too is configured with both a configuration TOML file and
some command line options, and comes with various subcommands to manage
its life-cycle.

3.3.1 TOML Configuration File Structure

The program is configured with a TOML file placed in the same directory
as the binary, and named kafka_edge_config. The following is an example of
configuration file that can be used to configure the edge program:

1 [kafka]
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2 zookeeper = [ "zookeeper:2181" ]
3 brokers = [ "kafka:9092" ]
4

5 [data_in]
6 source_topic = "datain"
7 consumer_group = "datain_cons"
8 partitions_to_consume = [ "1" ]
9

10 [data_out]
11 target_topic = "dataout"
12 send_every_ms = 10000
13 send_strategy = "NeighborhoodWise"
14 sampling_strategy = "Stratified"
15 neighborhoods_file =

"/data/china/neighborhood/shenzhen_converted.geojson"

Listing 3.14: Example configuration TOML for the edge program.

In this configuration file, three sections are defined, each with different
fields, with the following meaning:

• the kafka section is the section in which the options strictly related to
Kafka’s behavior are placed, and the fields zookeeper and brokers have
the same meaning they had in the data distribution configuration file

• the data_in section contains the configurations available for the incoming
messages

– source_topic is the field used to configure the Kafka topic to
consume in input

– consumer_group is the field to specify the Kafka consumer group
to be part of

– partitions_to_consume is the field in which the partitions that
the binary need to consume are listed. It is useful when one wants
to simulate unbalanced traffic on the networks (it is sufficient to
configure a node to consume more partitions than the other)

• the data_out section is the section in which the options relative to how
to configure the output stream are specified

– the target_topic field contains the name (or the shared prefix) of
the output topic (or topics)
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– the send_every_ms field can be used to set the window of time
in which the program just consumes and process messages, before
sampling and sending them. To be more clear, the collected input
messages will be sampled and sent every this many (send_every_ms)
milliseconds

– the send_strategy field contains the strategy to be used to send
the messages. There are two strategies one can choose, and they
will be discussed in depth later in the chapter

– the sampling_strategy field contains the strategy to be used for
sampling. Also in this case, there are two strategies, that will be
discussed later too

– the neighborhood_file contains the absolute path to the GeoJSON
file in which the polygons of the incoming data city (the city of
Shenzhen in China, in our case). This file is used to determine the
neighborhood of a message, given its geohash.

3.3.2 Messages Structure

The message structure is very similar to the one described in the Listing
3.9, but with the addition of two optional fields:

• geohash, where the geohash of a message is saved

• neighborhood, where the calculated neighborhood of a message is saved.

Also, the implementation block for the message structure is slightly different
from the one provided for the data distribution program. In particular, the
method to JSON serialize the message here includes the two newly introduced
fields, and a method to JSON deserialize, and another one to calculate the geo-
hash of the message are provided. The following is the updated implementation
block for the structure holding the message:

1 impl Message {
2 /// Serialize the `Message` in JSON format.
3 ///
4 /// # Panics
5 /// Panics if the message does not have a geohash and a

neighborhood.
6 pub fn json_serialize(&self) -> Value {
7 json!({
8 "id": self.id,
9 "lat": self.lat,
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10 "lon": self.lon,
11 "time": self.time,
12 "speed": self.speed,
13 "geohash": self.geohash.as_ref().unwrap(),
14 "neighborhood":

self.neighborhood.as_ref().unwrap_or(&String::from("")),
15 })
16 }
17

18 /// Deserialize a JSON `Message`.
19 pub fn json_deserialize(message: &[u8]) -> Result<Message,

Error> {
20 serde_json::from_slice(message)
21 }
22

23 /// Calculate the geohash of the message.
24 pub fn geohash(&self) -> Result<String, GeohashError> {
25 geohash::encode(
26 Coord {
27 x: self.lat,
28 y: self.lon,
29 },
30 6,
31 )
32 }
33 }

Listing 3.15: Message structure used by the data edge processing program.

The geohash encoding was not directly implemented, but a third-party crate
was used. The crate is called geohash, and it is part of the collection of crates
GeoRust [39], that comprise many different crates to easily handle geospatial
data.

3.3.3 Extracting the Neighborhood From a Message

To extract information about the neighborhood from which a message is
coming, three things are necessary:

• the first prerequisite it to have a rough idea about the provenance of
messages, for example, knowing that they all come from a particular city
or region (in our case, Shenzhen)
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• having stored somewhere the information about the various neighborhoods
shapes (here we focus on neighborhoods, but this can be generalized to
any area of interest)

• knowing the latitude and longitude from which the message come.

With these three prerequisites satisfied, it is in general possible to extract
information answering the question: "from which area this message comes?".
Or, in our specific case: "from which neighborhood this message comes?".

In computational geometry, this problem is called the point-in-polygon (or
PIP) problem, and an algorithm that solves it is the ray casting algorithm[52].

Figure 3.6: The figure shows how intersections are counted for a ray cast from
outside the polygon. As visible in the figure, once the ray will cross the last
edge, the intersection count will become even, and thus we deduct that the ray
originated outside the polygon.

Practically speaking, using the ray casting algorithm to find whether the
point is inside or outside a simple polygon consist in testing how many times
a ray, starting from the point and going in any fixed direction, intersects the
edges of the polygon. If the point is on the outside of the polygon, the ray will
intersect its edge an even number of times, if it is inside, the ray will intersect
its edge an odd number of times. This algorithm is sometimes also known as
the crossing number algorithm or the even–odd rule algorithm, and was known
as early as 1962[52].

Apart from the problems originating from the fact that the computer’s
floating arithmetic has finite precision, the problem with this algorithm is
that it is too time-consuming to be deployed on an edge node, often with
limited computing resources. Moreover, the degree of precision offered by this
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algorithm, is often not even needed for many geospatial applications, and it
just gives a computational overhead (meaning increased costs, more or more
powerful nodes, more energy consumed) that does not offer a better accuracy
on the data analysis we need to perform.

Thus, a smarter approach for our use case, is that of leveraging two things:

• a GeoJSON file with, for each neighborhood we’re interested in, the
corresponding

• the possibility of encoding each (valid) coordinate with a geohash.

From the GeoJSON file, we could read the polygons of each neighborhood,
and precompute a map mapping each neighborhood, with the list of geohashes
that are contained in it.

Then, when a new message arrives, we compute the geohash of its coor-
dinates, and we can visit the map to find the neighborhood containing the
message’s geohash.

To be even more efficient, we could invert the map, and map each geohash,
with its corresponding neighborhood. This new map, although less space
efficient, can guarantee the retrieval of the neighborhood in which a geohash
is located in constant time, O(1). The concept of behind this optimization is
shown in Figure 3.7.

Figure 3.7: The figure shows on the left the map mapping each neighborhood
with the vector of geohashes inside that neighborhood, and on the right the
reversed map, with each geohash mapped with its neighborhood, is shown.

By using such a technique, it is possible to save a lot of computational
power, and achieve a result that is similar in accuracy, for most cases, but that
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suffers a little bit more on the edge cases. Indeed, the less precise the geohash
is, the less precise the boundaries of the polygon are detected. In fact, it may
happen with this technique, that a message is a bit outside the actual polygon,
but its geohash is considered as inside the polygon, and thus the point will
be considered as if inside the polygon, or vice versa (this depends on whether
consider only the geohashes that are completely inscribed in the polygon or
the geohashes that circumscribe it).

In a real-world scenario, this becomes a major problem on if the polygon
size and the geohash precision cover similar areas, otherwise, if inside a polygon,
hundreds of geohashes are present, the problem arises only for a small percentage
of the total data.

Implementation

The implementation of an algorithm capable of taking as input a vector
of GeoJSON features, and returning a map, mapping each geohash with a
neighborhood, is not directly supported by any of the crates of GeoRust. But,
the primitives the geo, geohash and geojson crates make available, are sufficient
to implement such an algorithm. Moreover, an easy integration between these
crates is provided by geo-types, a crate that defines geometric types for the
GeoRust ecosystem.

The code implementing such a functionality in the edge program is the
following:

1 pub const BASE_32: [char; 32] = [
2 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'b',

'c', 'd', 'e', 'f', 'g', 'h', 'j', 'k',
3 'm', 'n', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x',

'y', 'z',
4 ];
5

6 pub fn children(gh: &String) -> Vec<String> {
7 BASE_32.iter().map(|c| format!("{}{}", gh, c)).collect()
8 }
9

10 pub fn bbox(gh: &str) -> Option<Polygon<f64>> {
11 if gh.is_empty() {
12 let min = Coord::<f64>::from((-180.0, -90.0));
13 let max = Coord::<f64>::from((180.0, 90.0));
14 return Some(geo_types::Rect::new(min,

max).to_polygon());
15 }
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16 match geohash::decode_bbox(gh) {
17 Ok(rect) => {
18 let bl = rect.min();
19 let tr = rect.max();
20 let outer = LineString(vec![
21 Coord::from((bl.x, bl.y)),
22 Coord::from((tr.x, bl.y)),
23 Coord::from((tr.x, tr.y)),
24 Coord::from((bl.x, tr.y)),
25 Coord::from((bl.x, bl.y)),
26 ]);
27 Some(Polygon::new(outer, Vec::new()))
28 }
29 _ => None,
30 }
31 }
32

33 pub fn contains(outer: &Polygon<f64>, inner: &Geometry<f64>)
-> bool {

34 match *inner {
35 Geometry::Point(ref g) => outer.contains(g),
36 Geometry::Line(ref g) => outer.contains(g),
37 Geometry::LineString(ref g) => outer.contains(g),
38 Geometry::Polygon(ref g) => outer.contains(g),
39 Geometry::Rect(ref g) =>

outer.contains(&g.to_polygon()),
40 Geometry::Triangle(ref g) =>

outer.contains(&g.to_polygon()),
41 Geometry::MultiPoint(ref mp) => mp.0.iter().all(|p|

outer.contains(p)),
42 Geometry::MultiLineString(ref mls) =>

mls.0.iter().all(|ls| outer.contains(ls)),
43 Geometry::MultiPolygon(ref mp) =>

mp.0.iter().all(|poly| outer.contains(poly)),
44 Geometry::GeometryCollection(ref gc) =>

gc.0.iter().all(|geom| contains(outer, geom)),
45 }
46 }
47

48 pub fn covering(geom: &Geometry<f64>, level: usize) ->
Vec<String> {
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49 use geo::algorithm::intersects::Intersects;
50 let mut ghs: Vec<String> = vec![];
51 let mut queue: Vec<String> = vec!["".to_string()];
52 while !queue.is_empty() {
53 let gh = queue.pop().unwrap();
54 if let Some(poly) = bbox(&gh) {
55 if contains(&poly, geom) || poly.intersects(geom) {
56 if gh.len() < level {
57 queue.extend(children(&gh));
58 } else {
59 ghs.push(gh);
60 }
61 }
62 }
63 }
64 ghs
65 }
66

67 /// Get a map of geohashes for each neighborhood.
68 ///
69 /// # Panics
70 /// Panics if a feature has an invalid geometry.
71 pub fn get_geohashes_map_from_features(features:

&Vec<Feature>) -> HashMap<String, Vec<String>> {
72 let mut geohashes_map: HashMap<String, Vec<String>> =

HashMap::new();
73 for feature in features {
74 let geometry =

Geometry::try_from(&feature.geometry.clone().unwrap())
75 .unwrap();
76 let covering_geohashes = covering(&geometry, 6);
77 geohashes_map.insert(
78 feature
79 .properties
80 .clone()
81 .unwrap()
82 .get("NAME")
83 .unwrap()
84 .to_string(),
85 covering_geohashes,
86 );
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87 }
88 geohashes_map
89 }
90

91 pub fn invert_neighborhood_geohashes_map(
92 neigh_gh_map: &HashMap<String, Vec<String>>,
93 ) -> HashMap<String, String> {
94 let mut inverted_geohashes_map: HashMap<String, String> =

HashMap::new();
95 for (neighborhood, geohashes) in neigh_gh_map {
96 for geohash in geohashes {
97 inverted_geohashes_map.insert(geohash.clone(),

neighborhood.clone());
98 }
99 }

100 inverted_geohashes_map
101 }

Listing 3.16: Implementation of the data distribution loop.

The implementation was inspired by the geoq repository[53], which imple-
ment the functionality of getting the list of geohashes that intersects (meaning
also that only partially overlaps) the polygon.

The implementation was then slightly adapted to iterate over a list of
polygons, so to obtain a map mapping each neighborhood name with the list
of geohashes it contains, and the function to invert the resulting map, thus
mapping each geohash with its neighborhood, was implemented.

To explain briefly, the purpose of each function:

• children is a function that, given a geohash, returns the list of "children"
geohashes, that is the list of geohashes that are one character longer and
that have the initial geohash as a shared prefix. These children are
always 32, since the geohash encoding base is base-32, and because of the
properties of the geohash, all the children are located completely inside
the "parent" geohash

• bbox is a function that given a geohash returns the polygon (a rectangle)
that circumscribe all the points having that geohash

• contains is a function that given two polygons, outer and inner, returns
true if inner is contained in outer, and false otherwise
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• covering is the core function that given a geometry, return the list of
geohashes covering that geometry. It works by continually extending a
queue of "candidate" geohashes to test (increasing the geohash precision
until the desired precision is reached), and by adding to the results list
the geohashes of the desired precision that intersects the given geometry.
The procedure is iterated until the queue empties, and at that point the
results list is returned

• get_geohashes_map_from_features is a function that given a vector of
features (extracted from a GeoJSON file) returns a hashmap with the
neighborhood name as the key, and the list of geohashes covering the
neighborhood as the value. It works by calling covering for each feature
in input

• invert_neighborhood_geohashes_map is a function that, given in input
the hashmap returned by get_geohashes_map_from_features, inverts
the values with the key, and thus returns a hashmap mapping the geohash
(used as the key) with the corresponding neighborhood.

3.3.4 Sampling Strategies

The program comes with two sampling strategies one can choose:

• "Random" which implements the Simple Random Sampling strategy

• "Stratified" which implements the Stratified Sampling strategy.

The Random strategy simply retains a certain percentage of the incoming
messages. This is implemented by retaining each input message with a certain
probability (if one wants to retain 60% of the input messages, each message
would be retained by choosing a random boolean with the 60% of chances of
being true).

The Stratified strategy, on the other hand, is a bit more complex. The goal
is to divide the input messages into strata (the stratification being done on
the message geohash), and then sampling each stratum independently. For
example, if one wants to retain the 60% of the incoming messages, one should
group each message by geohash, and then retain 60% of the messages in each
group.

The following is the code used to implement this strategy:

1 let total_size = messages.len();
2 let sample_size = total_size as f64 * sampling_percentage;



84 Architecture and Features of the Proposed Solution

3 let mut groups: HashMap<&str, Vec<&Message>> = HashMap::new();
4 for message in messages as &[Message] {
5 groups
6 .entry(message.geohash.as_ref().unwrap())
7 .or_insert_with(Vec::new)
8 .push(message);
9 }

10

11 let mut sample_sizes: HashMap<&str, usize> = HashMap::new();
12 for (geohash, group) in &groups {
13 if group.len() == 1 {
14 sample_sizes.insert(
15 geohash,
16 either!(rng.gen_bool(sampling_percentage) => 1; 0)

as usize,
17 );
18 } else {
19 let proportion = group.len() as f64 / total_size as

f64;
20 sample_sizes.insert(geohash, (proportion *

sample_size) as usize);
21 }
22 }
23

24 let sampled_groups: Vec<Vec<&Message>> = groups
25 .par_iter()
26 .map(|(geohash, group)| {
27 group
28 .iter()
29 .cloned()
30 .choose_multiple(&mut rand::thread_rng(),

sample_sizes[geohash])
31 })
32 .collect();
33 *messages =

sampled_groups.into_iter().flatten().cloned().collect();

Listing 3.17: Implementation of the stratified sampling strategy.

To increase efficiency, the parallel iterator provided by the rayon[54] was
used. The rayon parallel iterator allows performing operations (such as filtering
or mapping) in parallel, by using "behind the scenes" a thread pool, whose size
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depends on the available degree of parallelism of the runtime.

3.3.5 Sending Strategies

The strategies to send out data implemented are three:

• sending messages to a single partitioned Kafka topic, with the partition
chosen randomly

• sending all messages to a single partitioned Kafka topic, with the partitions
selected in a round-robin fashion

• creating a topic for each neighborhood (and a topic for the messages that
we were unable to assign a neighborhood to), and sending each message
to the Kafka topic dedicated to messages from the same neighborhood.

The three strategies are called respectively: Random, RoundRobin, and
NeighborhoodWise.

The first two strategies are indeed quite similar from one another. The
most different one of the three is the NeighborhoodWise sending strategy. This
strategy is the most complex of the three, and the one that is arguably the
most interesting to test.

3.3.6 How to Use the Binary

The binary comes with many subcommands that help in managing its entire
life-cycle.

Specifically, the main subcommands are:

• topic - a subcommand that allows managing the topic-related stuff

• config - a subcommand allowing to manage the configuration in an easy
way.

The topic command has itself other subcommands, specifically:

• create - a command that allows to create topics. When using this
command to create topics for the NeighborhoodWise strategy, it is impor-
tant to remember to set the option --for-nbw-strat (this is necessary
because one may also override the sending strategy via command line
option). Moreover, it is possible to set the replication factor for the
topic(s) that will be created

• delete - a command that allows deleting topics.
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The config command, has itself other subcommands too. Specifically:

• create - a command to create the configuration from a template. It
is also possible to directly specify the source and target topic of the
configuration that will be created

• replace - a command that takes a file path as input, and it is used to
replace an existing (or non-existing) configuration with the provided file

• show - a utility command that prints to standard output the current
configuration.

Moreover, when running the main program, it is possible to supply the
following options through command line:

• --sampling-percentage (or -s) is the option configuring which percent-
age of the incoming messages at each window to retain. It must be an
integer between 0.0 and 1.0, and when not supplied it defaults to 0.5

• --override-send-strategy is the option used if one wants to override
the sending strategy (for example to switch from Random to Neighbor-
hoodWise.

3.4 Cloud Data Analysis
For the data analysis task, it was chosen to use Apache Spark, as said in

the previous chapter, because of its in-memory data processing capabilities.
Spark allows developers to write data analysis programs in a variety of

languages. Notably:

• Scala - a modern language that combines object-oriented and functional
programming, and that it is the language in which Spark itself is written

• Java - one of the most popular object-oriented languages, and among the
most used today

• Python - one of the most used languages for data analysis, with a simple
syntax, and very well suited for rapid prototyping

• R - a language specifically suited for statistical computing.

Among these choices, the most used ones are Python and Scala. After
experimenting with both languages, it was chosen to focus on Python, because
it is easier to use even without advanced IDE support, which is not true for
Scala, and because I was also more familiar with it.
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The Python API for Spark is called PySpark, and enables to execute Python
scripts in Apache Spark. It is possible to execute Python code both by an
interactive shell, or by the spark-submit mechanism, which is a mechanism that
can be used to launch applications on a cluster.

3.4.1 The Performed Data Analysis

The data analysis performed aimed at calculating the average speed for each
geohash in each thirty-minute window. The data are processed in-memory from
an input stream consisting of several topics (all the output data topics that
may be used by the edge processing nodes), and saved to CSV every minute
(by overwriting the previous file).

The following snippet is the source code of the data analysis performed by
Apache Spark:

1 import time
2 from datetime import datetime
3 from pyspark.sql import SparkSession
4 import pyspark.sql.functions as F
5 from pyspark.sql.types import StructType, StructField,

StringType, DoubleType, TimestampType, TimestampNTZType
6

7 KAFKA_BOOTSTRAP_SERVERS = "kafka:9092"
8 KAFKA_TOPICS = "dataout_0,dataout_1,dataout_2,dataout_3," + \
9 "dataout_4,dataout_5,dataout_6,dataout_e"

10

11 OUTPUT_PATH = "/vol/"
12

13 SCHEMA = StructType([
14 StructField("id", StringType(), False),
15 StructField("lat", DoubleType(), False),
16 StructField("lon", DoubleType(), False),
17 StructField("time", TimestampType(), False),
18 StructField("speed", DoubleType(), False),
19 StructField("geohash", StringType(), False),
20 StructField("neighborhood", StringType(), False),
21 ])
22

23 spark: SparkSession = SparkSession.builder.appName(
24 "write_traffic_sensor_topic").getOrCreate()
25
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26 # set log level to WARN
27 spark.sparkContext.setLogLevel("WARN")
28

29

30 df_stream = spark\
31 .readStream.format("kafka")\
32 .option("kafka.bootstrap.servers", KAFKA_BOOTSTRAP_SERVERS)\
33 .option("subscribe", KAFKA_TOPICS)\
34 .option("startingOffsets", "earliest")\
35 .load()
36 # deserialize the data from kafka
37 df_stream = df_stream.selectExpr("CAST(value AS STRING)")
38 # json deserialie using schema
39 df_stream = df_stream.select(F.from_json(
40 F.col("value"), SCHEMA).alias("data")).select("data.*")
41

42 df_stream = df_stream.groupBy(F.window("time", "30 minutes"),
F.col("geohash"))\

43 .agg(F.avg("speed").alias("avg_speed"))
44 # creates a write stream with the query name
45 df_stream.writeStream\
46 .queryName("query").format("memory").trigger(
47 processingTime="30 seconds")\
48 .outputMode("complete").start()
49

50 time.sleep(60)
51 while True:
52 df = spark.sql(f"select * from query")
53 if df is not None:
54 df.show()
55 df = df.orderBy(F.col("window.start").desc())
56 #stringify the time
57 df = df.withColumn("window",

F.col("window.end").cast(StringType()))
58 df = df.withColumnRenamed("window", "time")
59 # save the results in a csv file
60 filename = "avg_speed"
61 df.repartition(1).write\
62 .mode("overwrite")\
63 .option("header",True)\
64 .csv(OUTPUT_PATH + filename)
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65

66 time.sleep(60)

Listing 3.18: Pyspark data anlysis script.

As it is possible to notice from the script, the incoming data from the input
streams are first deserialized, so that the individual fields are available for
querying, then the actual data analysis is performed.

Data in the stream are grouped by time in windows of thirty minutes, and
by geohash. Finally, the average speed for each geohash is computed, and the
new column is given the alias name avg_speed.

A write stream writing in-memory the results of this computation, and
triggering each thirty seconds an update of type complete (meaning the whole
table is recomputed on each update), is created, and is given the query name
"query".

Thanks to the query name, it is possible to use the Spark SQL API to
perform SQL a query that selects all the table computed in-memory. From the
query results, the window field is replaced with the only window end timestamp,
because by knowing that each window is thirty minutes, it is not necessary to
save both the extremes of the window, and saving a single timestamp makes it
easier to manipulate the field by the data visualization web application. The
resulting data frame is then saved in CSV every sixty seconds.

3.5 Data Visualization
Visualizing data is an important task in many scenarios, because graphical

representations of data are often more impactful and clear to humans than the
numerical datasets from which they are extracted.

Thus, to both monitor and explore the results of the data analysis performed
by Apache Spark, a simple web server serving an interactive map visualizing
the results of the analysis was implemented.

Among the many options for a web sever available on the market today, it
was chosen the Python framework for web applications named Flask.

Flask is a micro web framework written in Python. It is considered a
micro-framework because it does not require particular libraries or tools, and
it has no database abstraction layer, nor form validation, or any other com-
ponents where pre-existing third-party libraries provide common functions.
Nonetheless, it supports extensions that can add application features as if they
were implemented in Flask itself.

Flask was created by Armin Ronacher of Pocoo, an international group
of Python enthusiasts formed in 2004. According to its creator, the idea was
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originally an April Fool’s joke that was popular enough to make into a serious
application.

In April 2016, the Pocoo team was disbanded and development of Flask
and related libraries passed to the newly formed Pallets project[55]. Flask has
become popular among Python enthusiasts, and, in general, it is among the
most used web frameworks nowadays.

Flask was chosen among the other choices, such as Django, Express, Next.js,
and others, because it combined the following characteristics making it really
suited for the particular purpose of this thesis:

• it is very easy to set up (just few lines of Python are needed)

• it uses Python as a language, that, in turn, has many good libraries for
visualizing data on a map (notably, Folium[56])

• it offers an easy-to-use template system that is really useful for basic
customization of static sites.

3.5.1 Flask Setup

The setup of the web server is the simplest possible, with the only base
path route (/) implemented for the HTTP GET method only.

The route tries to fetch the latest results from the volume in which the
data analysis results are saved, and displays them on an interactive map made
using Folium[56]. Folium builds on the data wrangling strengths of the Python
ecosystem and the mapping strengths of the leaflet.js library to provide easy to
develop interactive maps.

The results are, as showed in the chapters, saved in a CSV containing the
average speed for each geohash in each available thirty-minute window.

The returned page presents, other than the map, an interactive list from
which it is possible to choose the time window one is interested in. The list
items have a clickable link that makes a GET request to the same page, but
inserting the window in the request query parameters.

When no query parameters are passed, then the first window appearing in
the results dataset is returned by default.

The map is created using both Folium and pandas[57], which is one of the
most powerful and popular data analysis libraries available today. Once created,
the map is saved in HTML format and embedded in the home page.
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The final result of the web app is shown in Figures 3.8 and 3.9. As noticeable,
the resulting page is very minimal, as creating a complex and feature-rich web
application goes outside the scope of this thesis.

Figure 3.8: The figure shows an example of what the interactive map looks
like. Each colored rectangle overlaid on the map is a geohash, and its color is a
function of the average speed: the higher the average speed the more the color
is toward the green, the lower the speed the more red it is.

3.5.2 Interactive Map Creation

A function was defined in the source code to create and save (in HTML
format) the interactive map, starting from a pandas data frame containing the
data read from the data analysis output CSV file.

The following is the source code of the function:

1 def process_data(data: pd.DataFrame, time: str):
2 # map from red to green based on the avg_speed field
3 cmap = linear.RdYlGn_09.scale(0, 60)
4 # add color field to the data
5 data['color'] = data['avg_speed'].apply(lambda x: cmap(x))
6 data['lat'] = data['geohash'].apply(lambda x:

geohash.decode(x)[0])
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Figure 3.9: The figure shows the interactive map zoomed. Note that, if you
click on a particular geohash, a label with its exact average speed for the
selected time window is shown.

7 data['lon'] = data['geohash'].apply(lambda x:
geohash.decode(x)[1])

8

9 data = data[data['time'] == time]
10 data.reset_index(inplace=True) # reset index to avoid

problems (like index 0 not existing)
11

12 # Create a map centered on the first geohash in the dataset
13 #map = folium.Map(location=[data['lat'][0],

data['lon'][0]], zoom_start=10)
14 map = folium.Map(location=[22.59, 114.11], zoom_start=10)
15

16 for _, row in data.iterrows():
17 bounds = get_rectangles_bounds(row['geohash'])
18 if bounds is None:
19 continue
20

21 folium.Rectangle(bounds=bounds, color=row['color'],
fill=True, fill_color=row['color'], popup="%.2f" %
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round(row['avg_speed'], 2)).add_to(map)
22

23 map.save('templates/map.html')

Listing 3.19: Function creating and saving the map using a pandas data frame
for the geohash data, and Folium to create the interactive map.





Chapter 4

Results and Discussion

In this chapter, the experimental results achieved by testing several aspects
of the architecture that was implemented in the previous chapters are presented
to the reader, together with a brief discussion about their meaning and relevance.

The setup, as thoroughly described in the previous chapters, is composed of
many interacting containers, with different duties each, and many things may
have been worth of proper testing.

Anyway, the experiments that were conducted mainly focused on the fol-
lowing aspects:

• measuring the Kafka performances, and the performances of the binaries
using Kafka, in various scenarios, and with different traffic loads

• measuring the performances of Apache Spark in performing the data
analysis task

• measuring the accuracy of the obtained results in different scenarios,
and with different configuration parameters (for example, by varying the
sample size, or the sampling strategy).

4.1 Testing Setup
The tests were conducted on a dataset containing data for 664 taxis moving

in the city of Shenzhen in China. The dataset contained data for the whole
day of 22 October 2014, for the whole 24 hours, and amounted to a total of
1,155,653 entries.

In all the tests that were carried out, unless otherwise stated, the geohash
length was set to six characters.

Different configurations were tested, by varying the configuration parameters
shown in the previous chapter, such as the sampling window on the edge nodes,

95
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the rate at which data were distributed to the nodes, and the sampling size
and strategies.

All the tests were conducted on a 2020 MacBook Air powered by the M1
chip by Apple, with 8 GB of RAM and 256 GB of SSD.

4.2 Edge Nodes Performances

In this section, the performances of the edge nodes observed and measured
by carrying out different types of tests are thoroughly exposed and commented.

The edge nodes were tested for the following several different aspects:

• Kafka performances in terms of throughput — that is, the number of
messages a node was able to send in a unit of time

• stratified sampling processing time performances — that is, the time
needed to sample a certain amount of messages

• accuracy of stratified sampling observed for different sampling percentages,
analyzed and discussed by using both a quantitative and qualitative
approach.

4.2.1 Kafka Performances

The theoretical throughput of Kafka is around one million writes per
seconds. However, as always, when putting things into practice, especially if
the computations that need to be done do not have a negligible impact on the
performances, the practice may differ significantly from the theory.

The evidence collected suggests that there are two main factors limiting the
performances:

• the sampling operation, which, depending on the implementation, may
become increasingly time-consuming when there are a lot of data to
sample. In our implementation, its impact on performance was reduced
by switching to a parallel sampling implementation, which helped to
make performance generally good.

• the other limiting factor for performances was the speed of the chosen
Kafka library, which proved not to be exceptional, and in the future
different implementations may be tried to improve performances.
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Also, experimenting with the window size — i.e. the time window the edge
nodes wait before preprocessing all data arrived — so that the incoming data in
each window are not a huge volume can help in greatly reducing the impact of
this computation on performances The tests without sampling, an example run

of which is shown in Figure 4.1, show that, the time to send data is dependent
on the number of messages to send, but, experimental results also showed
that the optimal number of messages to send in a batch, to optimize average
performances, is around 20 thousands messages. Indeed, tests conducted
showed that batches of 5 to 20 thousand of messages needs more or less the
same time to be delivered, thus sending 20 thousand messages allows for a
higher number of messages to be delivered in the same time, i.e. a higher
throughput. From the tests conducted, it was noted that the time required to
send 20 thousand messages is around 100 milliseconds.

In particular, the average time to send 20 thousand messages over 52 data
points is milliseconds.

Anyway, although not completely clear from the obtained results, it is
highly likely that these results are highly specific to the particular library
(kafka-rust [50]) utilized. Probably, with a different library being used, better
performances may be achievable, for example rust-rdkafka[58] looks like a
promising candidate.

4.2.2 Stratified Sampling Compute Time Performances

Performances of sampling are crucial to the architecture that we imple-
mented, as the edge nodes must rely on efficient sampling techniques in order
to avoid becoming a bottleneck for the whole data processing pipeline. In fact,
the performance gain obtained by moving data sampling to the edge of the
cloud may be canceled by sampling time, if this turn out to be too high.

To achieve a good performance of the sampling on the edge nodes, various
different implementations of the stratified sampling technique were tried, before
finally settling for the one implemented using the rayon crate [54] (whose
implementation is shown in Listing 3.17), that exploit multithreaded processing
to improve performances.

The first implementation was very similar to the final one, but instead of
using a parallel iterator, like the one provided by rayon, it was using a sequential
one. The differences in performance were, as expected, huge, especially for
larger volumes of data to sample.

Anyway, rigorous data were not collected for the sequential implementation,
as an accurate comparison of the two methods was not considered relevant to
the thesis objectives.
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Figure 4.1: The figure shows the Kafka performance of a run of the edge binary
on both the edge nodes (named kafka and edge, respectively).

Several test runs were conducted to collect data about the sampling perfor-
mances. The aggregate results of both edge nodes for all the runs are shown in
Figure 4.2. Each data point is a pair of messages to sample and sampling time.

The results of the individual containers are shown in Figure 4.3 for the edge
node running both the data distribution and data preprocessing binaries, and
Figure 4.4 for the other running only the latter binary.

The results show that the time increase almost linearly with the dimension
of the problem, apart from three particularly slow samples of around 100’000
messages that all happened on the same run on the container running both
the data distribution and preprocessing binaries, thus the most overloaded of
the two. In general, apart from this very sporadic slow samples, the sampling
technique shows a very consistent behavior.

Also, the test carried out showed no particular performance difference for
different sampling percentages. In the tests, the sampling time appeared to be
predominantly driven by the number of message to sample.
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Figure 4.2: The figure shows each pair of messages to sample and sampling
time in milliseconds on both the edge nodes of the architecture across all runs.

As a final note about the sampling technique used, the sampling implemen-
tation uses hash maps to both group by geohash and determine the size each
sampled stratum should have.

Rust’s standard hash maps uses SipHash algorithm, which is a state of
the art non-cryptographic algorithm that shows consistent performances for
various input sizes. However, in our case, we know a priori the length of the
keys, and this length is particularly short (it is the length of the geohash), it
may be worth it to try using different hashing algorithms and test if a bit of
performance more can be squeezed out.

In particular, two particularly promising hashing algorithms for short keys
may be the Fowler-Noll-Vo algorithm and the FxHash algorithm. While both
algorithms have been proved not to exhibit particularly good performances for
long keys, and they also have a higher collision rate than SipHash, they may
be good candidates for our scenario, in which we have small keys and relatively
short hash tables (at most a few thousands of entries)[59][60].

4.2.3 Stratified Sampling Accuracy Performances

To test the accuracy performances of the data, we decided to compare the
Geohash with 6 characters of precision with the Geohash with 5 characters
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Figure 4.3: The figure shows each pair of messages to sample and sampling
time in milliseconds on the container running the data distribution and data
preprocessing binary, named kafka in the docker-compose file shown in Listing
3.7.

of precision. These two will be reffered to from now on as Geohash-6 and
Geohash-5 respectively.

The results of testing stratified sampling performances were aimed at mea-
suring both the MAPE (Mean Absolute Percentage Error) and MAE (Mean
Absolute Error) of each run with a certain sampling percentage when compared
to a baseline. The baseline was the results of a run in which no data were
sampled out (i.e. the whole dataset was used) with Geohash-5 for the Geohash-5
test, and with Geohash-6 for Geohash-6.

Qualitative Analysis of Geohash-6

Since numbers alone are difficult to grasp for humans, the results were also
compared graphically by making use of the web application with the interactive
map that was created.

Shown below are some figures that exemplify the differences in the results
obtainable with different sampling percentages.

As noticeable, on a visual level, the differences between the complete dataset
(Figure 4.5, and the stratified sampling applied by retaining 80% of the original
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Figure 4.4: The figure shows each pair of messages to sample and sampling
time in milliseconds on the container running the data preprocessing binary
only, named edge1 in the docker-compose file shown in Listing 3.7.

dataset (Figure 4.6, shows barely noticeable differences between them. This
suggests that, by using stratified sampling together with a sample size of 80%
of the original population, it is possible to be fairly confident that the analysis
results are not too dissimilar from the actual situation.

Anyway, as more and more data are sampled out, (Figures 4.7, 4.8, and
4.9), it becomes increasingly evident the different with respect to the baseline.
Anyway, however small was the tested sample (no sample size smaller than 20%
was considered), the resulting image was similar when looked at in its totality,
that is when considering the zones with a prevalence of orange to red rectangles,
and the zones with a prevalence of yellow to green rectangles, remained more
or less the same for all the sample sizes considered.

Also, for some geohashes the data points in the original dataset used for
testing were just a few, making it very difficult to have an accurate estimate
even for small sample sizes. This is just a hypothesis, but it could be easily
tested in a future work with a bigger dataset.
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Figure 4.5: The figure shows the data visualization map resulting from a
sampling rate of 100% (i.e. all data are retained). The figure results are
referred to the traffic situation of taxis moving in the Shenzhen city from 23:30
on 22 October 2014 to 00:00 (midnight) on 23 October 2014.

Figure 4.6: The figure shows the data visualization map resulting from a
sampling rate of 80% (i.e. all data are retained). The figure results are referred
to the traffic situation of taxis moving in the Shenzhen city from 23:30 on 22
October 2014 to 00:00 (midnight) on 23 October 2014.
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Figure 4.7: The figure shows the data visualization map resulting from a
sampling rate of 60% (i.e. all data are retained). The figure results are referred
to the traffic situation of taxis moving in the Shenzhen city from 23:30 on 22
October 2014 to 00:00 (midnight) on 23 October 2014.

Figure 4.8: The figure shows the data visualization map resulting from a
sampling rate of 40% (i.e. all data are retained). The figure results are referred
to the traffic situation of taxis moving in the Shenzhen city from 23:30 on 22
October 2014 to 00:00 (midnight) on 23 October 2014.
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Figure 4.9: The figure shows the data visualization map resulting from a
sampling rate of 20% (i.e. all data are retained). The figure results are referred
to the traffic situation of taxis moving in the Shenzhen city from 23:30 on 22
October 2014 to 00:00 (midnight) on 23 October 2014.

Quantitative Analysis and Comparison of Geohash-5 and Geohash-6

In the tests we carried out, the performance of stratified sampling for
Geohash-5 was evaluated with different sample sizes, namely 20%, 40%, 50%,
60%, 80%, and 100% (baseline), and with sample sizes of 20%, 50%, 80%,
and 100% for Geohash-6. Two widely used metrics, namely Mean Absolute
Percentage Error (MAPE) and Mean Absolute Error (MAE), were employed to
assess the performance of the sampling method. The findings revealed that, for

Geohash-6, and an 80% sample size, the MAPE was observed to be around 10%,
indicating a relatively low level of error between the sample and the baseline.
On the other hand, when the sample size was reduced to 20%, the MAPE
increased significantly to about 38%, suggesting a higher degree of discrepancy
between the smaller sample and the baseline.

Geohash-5, on the other hand, have consistently outperformed Geohash-6
in all the runs, showing a minimum MAPE of around 7% with a sample size of
80%, and a maximum MAPE of around 26% with a sample size of 20%.

These findings suggest that, although coarser-grained, the Geohash-5 should
be preferred over Geohash-6, at least with the given dataset and for the city of
Shenzhen.
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As found even in other studies, the Geohash performances are highly
dependent on the particular geographical conformation of the analyzed territory
and the particular dataset [21], so it is not unlikely that for other datasets and
cities the results may be different, and Geohash-5 and Geohash-6 may show
opposite trends.

4.2.4 Final Considerations About Edge Nodes Perfor-
mances

As the primary key factor driving sampling performances was found to be
the number of messages to be sampled, and the same factor was also found to
be the main factor driving Kafka’s performances (with the library used), an
important thing to consider, to keep the overall performances as high as possible,
is the dimension of the sampling window so that the number of messages to
send when the window trigger is not too high. Empirically, it was found that
by sizing the window so that around twenty thousand messages were arriving
within it was the optimal size.

Another important thing that emerged from our tests was that, although in
our implementation the window time is set statically and in milliseconds to wait
before re-triggering the processing, in real world scenarios, with variable traffic,
unpredictable spikes of traffic, and so on, better choices for window sizing, like
dynamically adjusting windows, or incoming messages based windows, may be
better choices, that may be worth to test in future works on these topics.

Regarding the accuracy performances of Geohash, on the other hand, the
choice of the Geohash precision is an important factor that should be carefully
evaluated. The choice should take into account both the particular character-
istics of the geographical location of the data, and of the collected data, as
supported also by other works[21], but always keeping in mind the granularity
constraints that the queries require in order to give meaningful results in the
particular scenario.

In the case one cannot find the right balance between granularity of query
results, and Geohash based stratified sampling accuracy for its use case, other
sampling techniques not analyzed in this work may be evaluated, for example
reservoir sampling may be an alternative to stratified sampling.

In conclusion, finding the right balance among computing power require-
ments, sampling accuracy, and required granularity of results is not an easy
task, as changing one parameter may affect the others in a way that is difficult
to predict in a consistent way, as it is also highly dependent on the particular
case one is considering.
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4.3 Spark Performances
Measuring Apache Spark performances is possible in a relatively easy way

by using the Spark Web UI. In fact, this UI accessible via web browser offers
many different useful metrics about tasks that are being carried out by Spark.

In our scenario, measuring Spark performances was not an easy task to
carry out due to the limited size of the dataset, and the fact that Spark can
easily handle large amount of data, thus we had a hard time in trying to put it
under stress.

Anyhow, the metric that it was chosen to measure was the average duration
of a Spark batch (information that can be easily retrieved in the Structured
Streaming tab of the Spark Web UI) with different sampling percentages. In
particular, we carried out tests with sampling percentages set to 20%, 40%,
60%, 80%, and 100%, and always using the stratified sampling technique and
the neighborhood-wise sending strategy discussed before (that is, data were
distributed to a dedicated topic for each neighborhood).

Although several runs for each sampling percentage were performed, the
dataset exhausted within a few batches for each run, and thus overall the data
points collected were not much for each sampling percentage.

Moreover, it was decided to exclude from the averages the first batch
of each run, as it always took significantly longer to complete with respect
to all subsequent batches, but also showed a behavior that was completely
independent of the incoming data rate, as confirmed from several "dry-run",
that is runs in which no data were sent, and that showed that this batch took
about the same time regardless of the fact that data was actually arriving or
not. This is likely due to the fact that, in the first batch, Spark "prepares the
ground" for the upcoming data.

The results of our tests, showed in Figure 4.10, showed a slight positive
correlation between sampling percentage and average batch execution time,
but the difference is not as significant as we expected. In fact, the measured
difference in performance between analyzing a sample of 20% of the data, as
opposed to analyzing the whole dataset, shows a performance increase of just
about the 11% in front of a dataset that is 80% smaller in size.

Our guess for a so modest performance increase was that we were not able
to adequately stress the Spark node with our dataset, probably also because the
computations that were carried out by Spark were relatively simple. Further
testing in the future to confirm our hypothesis should be carried out.
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Figure 4.10: The figure shows how the average batch times changed for different
sampling percentages in our tests.





Conclusion and Future
Developments

The work of this thesis was aimed at evaluating the feasibility and perfor-
mances of the introduction, in the architecture, of nodes deployed to the edge
of the cloud, performing preprocessing of the incoming data, in scenarios in
which huge volumes of geospatial data are continuously collected and analyzed.
These architectural nodes were found to be very promising as they were capable
of offloading the cloud nodes of a considerable part of their duties with limited
resource consumption.

The scenario in which we posed ourseleves was that of taxis moving in a city,
specifically the city of Shenzhen in China, and continuously sending data about
their speed and position to a message queue, and to this particular purpose
Apache Kafka was used. The data analysis performed by cloud nodes was a
query to found the average speed in different areas of the city, so to locate
traffic congestion hotspots.

The work we carried out had the objective of efficiently preprocess data in
edge nodes before sending them, in a smart way, to a cluster in the cloud in
which Apache Spark was running the heaviest part of the data analysis task.

The smart way we are referring to, is the technique we called neighborhood-
aware topic distribution, in which data are not sent all to a single Kafka topic
to the nodes in the cloud, but several Kafka topics, one for each neighborhood
of the city, are introduced, so that data are sent in a more spatially-aware
fashion to cloud nodes.

In particular, what we were able to achieve, was to offload the cloud nodes
from the heavy job of locating each message in a specific neighborhood or
area of the city performed by using the spatial tessellation technique known as
geohashing, and that was used to aggregate data coming from approximately
the same area.

Moreover, we wanted to measure the query accuracy loss when data sampling
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techniques, such as stratified sampling, were performed by the edge nodes, and
we evaluated the loss in accuracy when sampling using Geohash-5 (Geohashes
five characters long) and Geohash-6 as stratum selection method.

Geohashing, is a technique that allows to approximate the location of a
point in space, at the cost of a quantifiable loss of precision (depending on
the Geohash length), but allowing to significantly faster compute if a point
belongs to a certain area. This technique is often used in cloud geospatial data
processing scenarios, in which the availability (always responding in a timely
manner) is often more important than in high precision.

We were particularly interested in data sampling, because in case of sudden
spikes in traffic, data sampling helps to avoid overloading nodes downstream in
the data processing pipeline. But, to be able to perform effective data sampling,
the sample technique chosen must have two fundamental characteristics: it
should be fast, otherwise the node performing sampling may itself overload,
and so the problem is just moved a step before; and it must not degrade too
much the query accuracy, otherwise it is not helping in an effective way.

Our testing shows that, for our particular testing scenario, the loss in
accuracy observed by using Geohash-6, was higher than the loss in accuracy
observed by using Geohash-5 for strata selection when comparing the query
results at different sampling rates. Anyway, research made by other people
suggest that the difference in performance is also tightly tied to the particular
geographic origin, as well as to the volume, of the incoming data. Thus, the
experimental results we obtained should not be considered general, and in
different scenarios, independent testing should be carried out when choosing
the sizing of this parameter. Moreover, one should always be conscious that
different Geohash precision involves different granularity of the query results,
thus this is another important factor not to underestimate when making a
choice.

Overall, our work demonstrated that it is indeed possible, to offload cloud
nodes of simple but costly data preprocessing tasks by using introducing in
the general architecture one or more edge nodes, as long as these nodes can
perform their tasks with a negligible impact on data throughput.

Both objectives, effectively preprocess data on edge nodes, and not resulting
in a bottleneck for performances, may be considered achieved with the work
carried out in this thesis. In fact, even if the incoming data rate increase, and
start to become overwhelming for the current number of edge nodes deployed,
it is sufficient to horizontally scale the deployment, by adding one or more new
nodes, to return to a manageable situation.
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The scaling of the nodes, although not investigated in this thesis, may be
implemented with little to no adjustments to the current implementation of
the data preprocessing binary deployed on the edge nodes, and this may be an
interesting direction for future works.

As the current implementation of stratified sampling is making use of
hash tables having the Geohash as the key, another interesting point that
may be investigated in the future, is the comparison between different hashing
algorithms for these tables, as the currently used algorithm (SipHash), although
very good for the general case, is outperformed, for small hash keys as it is the
case of Geohash (which is a few bytes long), by algorithms such as FxHash and
FNV-hash.

Finally, Spark performances in our tests showed a small positive correlation
between the amount of filtered out data, and the gain in Spark performances,
measured as the average time to complete a batch job. Due to the limited size
of the dataset at our disposal, we were not able to precisely quantify the gain
in performance in longer runs.

Thus, future work could be done towards better quantifying the performance
gain derived from data sampling in the runtime of a batch job in Apache Spark,
using a larger dataset that can exert greater stress on a Spark cluster. Other
metrics may also be introduced, such as the average amount of shuffled data
from each of the executor’s partitions when using a single Kafka topic to send
the data, and when using the technique of sending data to neighborhood-aware
topics introduced in this thesis.

To summarize, the work carried out open the way to many different future
research scenarios, and while testing focused mainly toward evaluating the feasi-
bility of introducing edge preprocessing nodes in approximate cloud geospatial
data analysis scenarios, with positive results obtained in this regard, limitations
on the testing dataset posed a limit on the amount of metrics we could collect
to investigate the effectiveness of our introduction of a neighborhood-aware (or,
more generally, spatial-aware) topics model for data distribution.
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