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Abstract

Entanglement entropy is the core argument of this thesis. After a brief
introduction of its properties and a review of the leading theoretical methods
for its computation, it is studied in free fermion models, namely the hopping
and the SSH model in one dimension. During this preliminary part, a code has
been created to test numerically the main results. Reached a satisfactory level
of reliability for this latter, simulations are used to probe second order symme-
try resolved Rènyi entropies (SRRE) in the SSH model. This investigation is
carried out considering both finite and infinite subsystems. In the second sce-
nario, sharp patterns regarding the distribution of SRRE for different charge
sectors are obtained and discussed. Supported by numerical data, exact for-
mulae have been achieved to describe the outcomes. In the end, methods are
rephrased to extend the analysis to more generic free fermion models.
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Introduction

Physics at quantum level shows properties as fascinating as atypical. Unlike classi-
cal phenomena, a certain degree of uncertainty is in fact at the very core of quantum
behaviour, along with quantization of energy levels, wave-particle duality and entangle-
ment. Especially this latter is arguably the most controversial feature of the whole quan-
tum framework as it violates the cardinal principle of causality. Introduced in 1935 by
Dirac[1] and immediately questioned by Einstein, Podolsky and Rosen[2], entanglement
can be intuitively described quoting one of Einstein’s letter to Born[3] as a "spooky action
at distance". A statement unfolding clear discomfort towards a phenomenon in severe
contrast with classical intuition.

It took almost three decades and the work of Bell[4] for entanglement to be undoubt-
edly recognized as an essential quantum property. Since then, it gained lot of attention
from very different fields of research, ranging from black hole[5][6] to quantum information
and computing[7][8] and quantum many-body theory[9]. Along with the rising awareness
it came the need for a quantitative measure of entanglement which does not increase under
local transformations and classical communications (LOCC). This urge led to the formu-
lation of entanglement monotones[10] with many measures being proposed and finding
use in the literature depending on the context[11]. For the purpose of this thesis I will
investigate entanglement entropy (EE)[12].

Besides its simple definition, EE gained large popularity in recent years due to its
multiple properties. For instance, in gapped systems it obeys an area law[13] while in one-
dimensional systems, at criticality, it shows a logarithmic growth directly proportional to
the central charge of the underlying theory[14], thus being able to spot quantum phase
transitions. In systems with internal symmetry this measure can be further characterized
for each charge sectors, hence taking the name of symmetry-resolved entanglement entropy
SREE [15][16]. In this case, equipartition is expected between different sectors under
precise conditions[17].

In the present work I studied EE in the hopping and SSH model. The initial part
was devoted to the creation of a reliable code able to simulate numerically free fermionic
chains and reproduce theoretical predictions regarding EE. By making use of it, I then
probed entanglement equipartition in SSH model with exact computation of SREE.

Regarding the structure of the elaborate, Ch.(1) is meant to present the main theo-
retical elements and tools in order for the thesis to be self-consistent and let the reader
get acquainted with the topic. In the second chapter(2) a detailed analysis of the models
considered is provided with insights concerning the creation of the code that will serve
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as useful resource for Ch.(3), where the problem of symmetry-resolved EE is tackled and
the main results are discussed.



Chapter 1

Theoretical background

In this chapter an overview of the theoretical background of this thesis is provided. In
order, an essential introduction with the main notions to describe entanglement measures,
the correlation function method and, finally, the replica trick, are presented.

1.1 Entanglement measures

Far from being a complete introduction of such a vast and vivid topic[18], main axioms
and properties of entanglement measures are reeled off for bi-partite systems, Fig.(1.1).

A

B

Fig. 1.1: Sketch of a bi-
partition.

The problem of defining and quantifying entanglement finds
many possible answers depending on the field of research.
From the quantum information point of view we are used to
think at entanglement in a very operational way as a quantity
due to quantum correlation that cannot be increased via lo-
cal operations and classical communication (LOCC). In this
framework entanglement measures were designed not only to
give an answer whether a system is entangled or not, but to
truly quantify how entangled a state is. To be consistent with
the above premises a measure must then satisfy the following:

• Entanglement must not increase due to LOCC,

• Separable states contain no entanglement,

• There exist maximally entangled states.

Consider the case of a quantum system described by a pure state |ψ⟩ and the bi-partition
A-B. Assuming the Hilbert’s space factorizes as H = HA ⊗HB, one can write:

|ψ⟩ =
∑
m,n

Amn |ψA
m⟩ |ψB

n ⟩ , (1.1.1)

with the summation running over the elements of the bases {|ψA
m⟩}, {|ψB

m⟩} of the two
subsystems. Evidently, depending on the dimensions of A and B, Am,n might not be a
square matrix as one is not forced to take two equal-sized partitions. State |ψ⟩ also admits
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1.1. Entanglement measures 5

a singular value decomposition with Eq.(1.1.1) turning into:

|ψ⟩ =
∑

l

λl |ϕA
l ⟩ |ϕB

l ⟩ , (1.1.2)

with {|ϕA
n ⟩}, {|ϕB

n⟩} being two new orthonormal bases for the subsystems, coefficients λi

real and positive definite and such that ∑l λl = 1 if the state is normalized. This result
goes under the name of Schmidt decomposition[19] and represents a very immediate tool
to picture entanglement since coefficients λl encode all the information about it. With
respect to these latter, a separable state is characterized by a single unitary coefficient
λ = 1 while maximally entangled states are those for which all coefficients have the same
value λ1 = · · · = λD = 1√

D
. Being able to recast |ψ⟩ as in Eq.(1.1.2) might prove to

be a hard task using singular value decomposition but it can be achieved using density
matrices.

Starting from the full density matrix:

ρ = |ψ⟩ ⟨ψ| , (1.1.3)

one can define reduced density matrices (RDM) for bipartite systems, ρA and ρB, tracing
out the degrees of freedom of the complementary part of the system:

ρA = TrB ρ,

ρB = TrA ρ.
(1.1.4)

Using Eq.(1.1.2), one can easily verify that their diagonal form must correspond to:

ρα =
∑

l

|λl|2 |ϕα
l ⟩ ⟨ϕα

l | , (1.1.5)

therefore, solving their eigenvalue problem automatically gives weights in Schmidt decom-
position. For this reason their spectrum is also associated with the name of entanglement
spectrum[20]. From Eq.(1.1.5) one can further realize the two RDM actually share the
same spectrum, independently from their dimensions. Whereas entanglement spectrum
allows to oultine the entanglement content we still lack the definition of a measure. Tak-
ing advantage of RDM let me thus introduce the entanglement entropy, defined as the
Von Neumann entropy of ρα:

Sα = −Tr ρα ln ρα, (1.1.6)

which is none but the limit for n → 1 of a larger class of EE going under the name of
Rényi entropies:

Sα, n = 1
1− n ln Tr ρn

α. (1.1.7)

As it can be understood from its derivation, EE not only depends on quantum states but



6 Chapter 1. Theoretical background

also on the partition considered, yet, once it is fixed, there is no difference in considering
one subsystem or its complementary as SA = SB = S. Coherently with the axioms
presented before, it can be proven that EE is null for separable state and is maximal
when all eigenvalues are identical. In this latter case S = lnD.

As stated, many more measures enrich the framework but, in our case, Von Neumann
and Rényi EE will be the ones considered and under observation for the rest of the
elaborate.

1.2 Reduced density matrices and correlation func-
tion method

As anticipated in the above segment, to study and quantify entanglement, a key role is
that of RDMs, yet deriving an explicit expression for them usually is a very demanding
task, especially when many-body systems grow considerably in size. There are exceptions
though. This is the case of free lattice models[21][22] and, in particular, of free-fermion
chains[23]. The aim of this section is to revise the main steps for the computation of
RDMs for these latter using correlation functions.

In the common sense, RDMs represent a basic tool of many-body theory in which they
describe the properties of few selected particles out of the whole system. In our interest
however, they acquire a slightly different connotation as they refer to a fixed subset of
sites A. In this framework consider the case of a partition given by a compact sequence
of M sites as subsystem and a state described by a Slater determinant |ψ⟩. For a generic
free hamiltonian of the form:

Ĥ = 1
2
∑
m,n

hm,nc
†
mcn, (1.2.1)

describing the system, all many-particle correlation functions factorize in products of
two-point functions as a consequence of Wick’s theorem[24] for free fermions. Readily:

⟨c†
αc

†
βcγcδ⟩ = ⟨c†

αcδ⟩ ⟨c†
βcγ⟩ − ⟨c†

αcγ⟩ ⟨c†
βcδ⟩ . (1.2.2)

The set of all possible one-particle correlation functions thus encodes the whole theory
content and it can be stored in a unique object constructing the so called correlation
function matrix C, whose elements are defined as:

Cm,n = ⟨c†
mcn⟩ . (1.2.3)

At this point, constraining the indexes to subsystem A, id est m,n ∈ A, one should
recover the same result using the corresponding reduced density matrix ρA, according to
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the relation:
⟨c†

icj⟩ = Tr(ρAc
†
icj), for: i, j ∈ A. (1.2.4)

This is guaranteed again by Wick’s theorem if ρA has the form of an exponential of a
free-fermion operator:

ρA = 1
Z
e−Ĥ = 1

Z
exp

[
−
∑

i,j∈A
h̃i,jc

†
icj

]
, (1.2.5)

with Z being a normalization constant. Here Ĥ is usually known as the entanglement
hamiltonian and must not be confused with the hamiltonian in Eq.(1.2.1) reduced to
A: Ĥ is in fact an ad-hoc hamiltonian build to replicate the elements of C. Its explicit
expression can be achieved considering its common diagonal representation with CA and
will allow us to determine the entanglement spectrum of the bipartition.

By being a density matrix, ρA must be hermitian and so does Ĥ as a consequence,
this implies the entanglement entropy always admits to be recasted in diagonal form:

Ĥ = 1
Z

∑
p

ϵpc̃
†
pc̃p. (1.2.6)

With respect to this new base {c̃p}, normalization factor Z can be derived from the
constraint Tr ρA = 1 as:

Z = Tr(e−Ĥ) =
∑
{k}
⟨{k}| e−

∑
p

ϵpñp |{k}⟩ =
∏
p

∑
{k}
⟨{k}| e−ϵpñp |{k}⟩ =

∏
p

(1 + e−ϵp).

(1.2.7)
Similarly, Eq.(1.2.4) becomes:

Cij = Tr(ρAc
†
icj) =

∑
p,q

Ψ∗
p(i)Ψq(j) Tr(ρAc̃

†
pc̃q), (1.2.8)

and focusing on Tr (ρAc̃
†
pc̃q) with HA being free, one derives non-trivial results only for

p = q, hence:

Tr (ρAñp) =
∑
{k}
⟨{k}| 1

Z
e−
∑

q
ϵqñq ñp|{k}⟩ =

∑
{k}
⟨{k}| 1

Z

−∂
∂ϵp

e−
∑

q
ϵqñq |{k}⟩ =

= 1
Z

−∂
∂ϵp

∑
{k}
⟨{k}|e−

∑
q

ϵqñq |{k}⟩ = − 1
Z

∂

∂ϵp

Z = − ∂

∂ϵp

ln
∏
k

(1 + e−ϵk) =

= − ∂

∂ϵp

[∑
k

ln(1 + e−ϵk)
]

= 1
eϵp + 1 .

(1.2.9)

This latter equation unfolds the relations between the eigenvalues of the reduced correla-
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tion matrix and the entanglement hamiltonian:

ξp = 1
eϵp + 1 , (1.2.10)

ϵp = ln 1− ξp

ξp

, (1.2.11)

moreover, using Eq.(1.2.11), ρA can be expressed explicitly as:

ρA = e−Ĥ

Z
=

∏
p e

−ϵpn̂p∏
q(1− ξq)−1 =

∏
p

(1− ξp)
(

ξp

1− ξp

)n̂p

=

= ⊗p∈A

[
(1− ξp) |0⟩p ⟨0|p + ξp |1⟩p ⟨1|p

]
.

(1.2.12)

From there, replacing it in Eq.(1.1.6), Von Neumann entropy simplifies as:

SA = −Tr
[
e−
∑

p
ϵpñp

Z
ln e

−
∑

p
ϵpñp

Z

]
= −Tr

[
− ρA ln(Z)− ρA(

∑
p

ϵpñp

)]
=

= ⟨ ln (Z) +
∑

p

ϵpñp ⟩ = ln
[∏

p

(1− ξp)−1
]

+
∑

p

ϵpξp =

= −
∑

p

[
ln(1− ξp)− ϵpξp

]
= −

∑
p

[
ln(1− ξp)− ξp ln

(1− ξp

ξp

)]
=

= −
∑

p

[
(1− ξp) ln(1− ξp) + ξp ln(ξp)

]
.

(1.2.13)

At this point it is interesting to note how eigenvalues ξp, as a direct consequence of their
definition in Eq.(1.2.11), belong to the interval [0, 1], ensuring Von Neumann EE is well
defined and always positive.

Code insights

Before proceeding to the next section let me quickly list and discuss some properties
regarding C, CA and their eigenvalues which have been useful during code writing as
intermediate checks. Correlation function matrix C is such that it squares to itself,
meaning C2 = C and all its eigenvalues must be either 0s or 1s; further, its trace matches
the number of particles inside the subsystem. When the system is in a half-filled state, CA

also benefits of specific properties. In this case its trace corresponds to half the number of
sites in the subsystem and it can be proven that its eigenvalues, if ordered by magnitude,
satisfy the special relation[21][25]:

ξm = 1− ξM−m. (1.2.14)
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1.3 Replica trick

Theoretical interest for EE is further enriched by its universal scaling in one dimensional
systems at criticality. EE is in fact able to spot the location of quantum critical points
and it is a quantity sensible to their most characterizing trait: the central charge c of the
corresponding underlying theory. In numerical simulations these are extremely valuable
information since entropies can be easily measured and they can be exploited to test the
solidity of the code in use.

This preamble, although being very short, describes crucial predictions coming from
the domain of conformal field theories which the reader might not be necessarily familiar
with. As the title suggests, the main method involved is the so called replica trick which I
will now illustrate and discuss in its main aspects. As this section will not cover the whole
state of the art, for a more historical and complete description let me refer the works of
Calabrese & Cardy[14][26][27] and the paper of Holzhey, Larsen and Wilczek[5].

Starting from the unitarity of the trace, ∑i wi = 1, and positive definiteness of RDMs,
wi ≥ 0, eigenvalues wi must lie in the interval [0, 1]. The sum Tr ρn

A = ∑
i w

n
i is thus

absolutely convergent for any n > 1 and therefore analytical. This remains true even
promoting n to a real variable as long as it is bigger than one. At this point, if the
entropy SA = −∑i wi lnwi is finite, we can capitalize n ∈ R and rephrase Von Neumann
entropy as:

SA = − lim
n→1

∂

∂n
Tr ρn

A = lim
n→1

SA, n. (1.3.1)

Here is where replica trick comes into play. Being able to determine Tr ρn
A is, in fact,

a difficult task generally but considering the analytical continuation of n, the problem
reduces to the computation of a partition function on a specific Riemann surface, which
is achievable using tools of quantum field theories. To be able to understand it however,
few intermediate concepts must be introduced.

1.3.1 Path integral formulation of reduced density matrices

Consider a well-defined lattice quantum theory in 1 + 1 dimension with continuous time.
Lattice sites are labelled by a discrete variable x whose domain can be finite, semi-infinite
or infinite. A complete set of observable is defined by {ϕ̂x} with corresponding eigenval-
ues and eigenstates represented respectively by {ϕx} and |{ϕx}⟩. A generic state |ψ⟩ for
the system is then given by a linear combination of ⊗x |{ϕx}⟩ = |∏x{ϕx}⟩, which indeed
constitute a basis. Assuming the dynamics is ruled by the hamiltonian H and recalling
Eq.(1.2.5), one might note a similitude between ρ and the quantum time operator e−itH ,
especially if we move to an imaginary time t→ −iβ. This analogy is indeed very mean-
ingful as it allows to rephrase density matrices using path integral formalism. In details,
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elements of ρ in a thermal state at inverse temperature β are given by:

ρ(ϕ|ϕ′) ≡ ⟨
∏
x

{ϕx}| ρ |
∏
x′
{ϕ′

x′})⟩ = ⟨
∏
x

{ϕx}|
e−βH

Z(β) |
∏
x′
{ϕ′

x′})⟩ , (1.3.2)

with Z(β) = Tr(e−βH) being the partition function. The same expression can be in fact
interpreted as the path integral for the imaginary time interval [0, β]:

ρ(ϕ|ϕ′) = 1
Z

∫
[dϕ(y, τ)]

∏
x′
δ(ϕ(y, 0)− ϕ′

x′)
∏
x

δ(ϕ(y, β)− ϕx)e−SE , (1.3.3)

with SE =
∫ β

0 dτL being the euclidean action and L the euclidean lagrangian. In the
interest of clarity Eq.(1.3.3) is usually juxtaposed with its graphic counterpart. As can
be observed in Fig.(1.2), the path integral version of ρ can be imagined as the evolution
of the initial field, represented as a line on the x-axis, toward the final configuration with
time on the y-axis. Accordingly, the partition function Z = Tr ρ is found setting ϕ = ϕ′,
which has the effect of gluing together the two edges, forming a cylinder of circumference
β. Reasonably, in the limit for β →∞ the cylinder becomes a plane.

ρ (ϕ|ϕ′) =
Z

ϕ

ϕ′
β

(a) Path integral of ρ(ϕ|ϕ′).

Z =
β

(b) Partition function Z.

Fig. 1.2: Path integral visualization of density matrices. On the left the
generic element ρ(ϕ|ϕ′) is pictured. On the right the partition function
is obtained for ϕ = ϕ′, hence gluing the edges in (a). The circumference
of the final cylinder is equal to β.

Chosen a subsystem A consisting of a compact set of points, A = [u, v], the corre-
sponding reduced density matrix ρA is obtained form Eq.(1.3.3) gluing together all the
sites not included in A, thus leaving a cut open in the cylinder, Fig.(1.3). In principle
nothing forbids to take more exotic subsystems, for instance considering disjoint intervals
of points, but in practice this cause the rest of the procedure to be way more complicated,
sometimes not even solvable at the present stage. For the purposes of my thesis then,
only compact intervals are discussed.

ρA =
β

A

(a) ρA for finite time β.

ρA = A

(b) ρA for infinite time β →∞.

Fig. 1.3: Path integral of ρA.
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1.3.2 Replicated target space and twist fields

Given the definition of ρA, the computation of Tr ρn
A is secured by making n copies of the

above structures, for n being any positive integer, and gluing them together imposing the
appropriate continuity equations:

ϕj(x, τ = β−) = ϕj+1(x, τ = 0+),

ϕn(x, τ = β−) = ϕ1(x, τ = 0+).
(1.3.4)

This procedure defines an n-sheeted Riemann surface. In Fig.(1.4) it is pictured for n = 3
and β both finite and infinite. Partition functions on these surfaces are denoted by Zn(A)
and are such that:

Tr ρn
A = Zn(A)

Zn
, (1.3.5)

which allow to solve Eq.(1.3.1).

ϕ1 ϕ3

ϕ2

β

(a) 3-sheeted Riemann surface for finite β.

ϕ1

ϕ3

ϕ2

(b) 3-sheeted Riemann surface for β
infinite.

Fig. 1.4: Pictures of 3-sheeted Riemann surfaces for a single compact
interval A.

Identified an n-sheeted Riemann surface withRn, the corresponding partition function
Zn(A) can be expressed as:

Zn(A) =
∫

[dϕ]Rne
−
∫

Rn
dxdτL[ϕ]

, (1.3.6)

with L[ϕ] being the local lagrangian density. At this point, since the only points with
non-trivial effects of Rn are those located at the boundaries of A, we are expected to
be allowed to rephrase Zn(A) in terms of the action of abstract fields in u and v for a
theory defined on the complex plane z = x + iτ with proper boundary conditions. Such
fields are indeed defined by the above equation which encodes their correlation functions.
Still, extracting them directly from Eq.(1.3.6) would result in the formulation of non-local
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fields[28], which is something we generally prefer to avoid in physics. To recover local fields
it is first necessary to re-adapt the topology of the Riemann surface to the target space
where they are defined. This is done considering a model formed by n independent copies
of the original one so the partition function in Eq.(1.3.6) can be rewritten as:

Zn(A) =
∫

[u,v]
[dϕ1 · · · dϕn]e−

∫
C

dxdτ(L[ϕ1]+···+L[ϕn]). (1.3.7)

The integration over [u, v] now indicates the restricted path integral with conditions:

ϕi(x, 0+) = ϕi+1(x, 0−) for: x ∈ [u, v], (1.3.8)

and we might introduce the Lagrangian density of the multi-copy model defined as:

L(n)[ϕ1 · · ·ϕn](x, τ) = L[ϕ1](x, τ) + · · ·+ L[ϕn](x, τ). (1.3.9)

Fields described by Eq.(1.3.7) are now local and are associated to two opposite operations
schematized in Fig.(1.5):

Tn : ϕi(x) 7→ ϕi+1(x), (1.3.10)

T̃n : ϕi+1(x) 7→ ϕi(x), (1.3.11)

with the latter essentially coinciding to the inverse of the former.

ϕi

ϕi

ϕi

T

ϕi ϕi ϕi

ϕiϕi+1 ϕi+1 ϕi+1
T̃

u v

Fig. 1.5: Scheme of twist fields action.

They are called branch-point twist fields and are such that the partition function on
the n-sheeted Riemann surface is proportional to their propagator in a replicated theory:

Zn(A) ∝ ⟨Tn(u)T̃n(v)⟩L(n),C . (1.3.12)

More in general, this identification holds for correlation functions in Rn as:

⟨ϕ(x, τ, sheet j) · · ·⟩L,Rn
=
⟨Tn(u1, 0)T̃n(v1, 0)ϕj(x, τ) · · ·⟩L(n),C

⟨Tn(u1, 0)T̃n(v1, 0)⟩L(n),C

, (1.3.13)

with ϕj fields in the model L(n) coming from the jth copy of L.
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1.3.3 Von Neumann entropy in an infinite chain

In the interest of clarity this section contains a detailed analysis to derive the main
formulae. The example of an infinite chain is accompanied with explicit calculations.

Consider the case of a single interval [u, v] of length M = |u− v| in an infinitely long
one-dimensional chain at zero temperature. Complex coordinates are here obtained from
Rn after a double transformation. In the first place it is necessary to map the branch cut
[u, v] to the real axis, secondly, all Riemann surfaces must be squeezed in a unique plane.
Explicitly, one has, starting from w = x+ iτ :

w = x+ iτ → ζ = w − u
w − v

→ z = ζ
1
n . (1.3.14)

For a better understanding, the scheme can be observed in Fig.(1.6) where branch cuts
are represented by wavy lines.

u v

w ζ

u v

z

u v1

v2

v3

Fig. 1.6: Scheme to mapR3 in C. Wavy lines represent branch cuts: in
a 3-sheeted Riemann surface we have three planes glued together which
in the last step are squeeze in C.

At this point, we consider the holomorphic component of the stress-energy tensor T (w)
which, under conformal transformations, is related to T (z) according to[29]:

T (w) =
(
dz

dw

)2
T (z) + c

12{z, w}, (1.3.15)

with {z, w} being the Schwartzian derivative. Once there, knowing ⟨T (z)⟩C must be zero
to preserve symmetries, one may write:

⟨T (w)⟩Rn
= c

24

(
1− 1

n2

) (u− v)2

(w − u)2(w − v)2 , (1.3.16)

which, however, corresponds to the expectation value of just a single copy of T and must
be then multiplied for n to find ⟨T (tot)⟩. Finally, recalling Eq.(1.3.13) and comparing it
with the conformal Ward identity[30]:

⟨T (z)ϕ(z1)ϕ(z2)⟩
⟨ϕ(z1)ϕ(z2)⟩

= ∆ (z1 − z2)2

(z − z1)2(z − z2)2 (1.3.17)
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everything boils down to:
∆ = c

24

(
n− 1

n

)
, (1.3.18)

which is half of the conformal scaling dimension of our twist fields. Indeed it can be
proven ∆ = ∆̄. Twist fields thus act as primary fields under conformal transformations
and their two-point function follows the usual rule:

⟨Tn(u)T̄n(v)⟩ ∝ |u− v|−4∆. (1.3.19)

Replacing this result in Eq.(1.3.12) drive us to the explicit relation:

Zn(A) = Tr ρn
A = cn M

− c
6 (n− 1

n
), (1.3.20)

where cn is a constant and should not be confused with the central charge c.
Ultimately, taking the analytical continuation for n non-integer, the derivative in

Eq.(1.3.1) can be solved, leaving us with the final result:

SA = c

3 lnM + c′
1. (1.3.21)

Changing slightly the initial setup and moving to the case of a finite one-dimensional
chain at criticality, the whole machinery is still effective but needs few adjustments. Specif-
ically, assuming a system of size L, the RDM ρA at zero-temperature takes the form of
a cylinder with L as circumference. When mapping the Riemann surface to the complex
plane it is thus necessary to stretch the cylinder into a plane firstly and subsequently one
can apply the scheme in Eq.(1.3.14). The former step is achieved using a complex expo-
nential with initial coordinates y = τ + ix going to w = e

2πy
L . Propagating the variation

in successive steps leads us to:

SA = c

3 ln
(
L

π
sin πM

L

)
+ c′

1. (1.3.22)

Coherently, in the limit for the chain growing indefinitely, L→∞, Eq.(1.3.22) replicates
Eq.(1.3.21). These latter formulae are of major importance for this work as they will serve
to both check the value of the central charge is correct and verify if numerical simulations
match the predictions.

In general, whenever the topology of the Riemann surface is equivalent to those in
Fig.(1.4), the problem can be addressed following the above procedure. Nonetheless, for
the purposes of my thesis I won’t discuss further examples as Eqs.(1.3.21), (1.3.22) already
fulfill my needs.



Chapter 2

Analysis of free fermionic chains

In this chapter the hopping and the SSH models are studied. Starting with a brief
overview of the two, the attention is mostly drawn to describe their entanglement content.

2.1 Hopping model

Hopping models are a family of models describing systems whose dynamics is characterized
by discretized kinetics terms. This is the case, for example, of particles in discrete lattices.
They might present different ranges of hopping, different amplitudes and, sometimes, even
interactions and potentials are included. In the following sections I will consider arguably
the simplest among them with jumps being described by a unique hopping parameter and
occurring only between first neighbors in one-dimension. The analysis will treat both the
finite and infinite chain scenarios.

2.1.1 Finite dimensional chain

The hopping model for first neighbours with a single hopping parameters t is described
by the hamiltonian Ĥ:

Ĥ = −t
N−1∑
n=0

(
|n⟩ ⟨n+ 1|+ |n+ 1⟩ ⟨n|

)
, (2.1.1)

or, in second quantization formalism:

Ĥ = −t
N−1∑
n=0

(
c†

ncn+1 + c†
n+1cn

)
. (2.1.2)

It describes the dynamics of fermions on a chain without the presence of any potential
or interaction and, precisely for this latter detail, Ĥ can be addressed either as a single-
particle or a many-body hamiltonian. N is a finite integer and corresponds to the total
number of sites in the chain. Embedding the system on a ring, corresponding to the
introduction of periodic boundary condition for which we identify the sites n and n+N ,
Ĥ commutes with the translational operator T̂ :

T̂ =
∑
m

|m+ 1⟩ ⟨m| , such that: [Ĥ, T̂ ] = 0. (2.1.3)

15
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Ĥ thus admits block-diagonal form. Such simplified version can be derived introducing
plane waves, id est moving to momentum space. Eigenstates are then given by the discrete
Fourier transforms:

|k(q)⟩ = 1√
N

N−1∑
n=0

eik(q)n |n⟩ , (2.1.4)

for k = 2π
N
· q, q ∈ [0, N − 1] and the prefactor 1√

N
in front to grant normalization. The

set {|k(q)⟩}q=0,...,N−1 hence forms an orthonormal basis for the system. For completeness,
inverse transformations are eventually given by:

|n⟩ = 1√
N

N−1∑
q=0

e−ik(q)n |k(q)⟩ . (2.1.5)

Employing the lexical from solid state physics[31], one usually refers to k(q) as wavevector
and it either spans from [0, 2π[ or [−π, π[ depending on the domain of the quantum
number q: q ∈ [0, N [ in the former case, q ∈ [−N

2 ,
N
2 [ in the latter. Wavevectors k(q)

are fundamental to study the energy spectrum as they identify a so called Brilloiun zone,
where all quantum energy states are hosted.

Taking advantage of Eq.(2.1.5), Ĥ can be rephrased in momentum space, where it is
completely diagonal:

Ĥ = −t
N−1∑
n=0

(
|n⟩ ⟨n+ 1|+ |n+ 1⟩ ⟨n|

)
=

= − t

N

N−1∑
n,q,p=0

(
eik(p)e−i[k(q)−k(p)]n |k(q)⟩ ⟨k(p)|+ e−ik(q)e−i[k(q)−k(p)]n |k(q)⟩ ⟨k(p)|

)
=

= −t
N−1∑
q=0

(
eik(q) + e−ik(q)

)
|k(q)⟩ ⟨k(q)| =

=
N−1∑
q=0
−2t cos [k(q)] |k(q)⟩ ⟨k(q)| ≡


ˆ̃Hq=0 · · · 0

... . . . ...
0 · · · ˆ̃Hq=N−1

 .
(2.1.6)

Once here, fixing the value of the hopping parameter t in this latter expression allows
us to completely outline the energy spectrum. Few examples are provided in Fig.(2.1) in
which two essential features can be easily noted. In primis, the spectrum becoming finer
and finer the more sites the chain hosts. In secundis, the presence of null-energy states
for q = N

4 when N is indeed a multiple of 4.
Knowing the spectrum, let me define the groundstate of the system as the zero tem-

perature filled Fermi’s sea, id est, the state with all negative eigenstates occupied. Using
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(a) Spectrum for N = 100. (b) Spectrum for N = 150.

Fig. 2.1: Spectra for two different values of the hopping parameter
t = 1, 2 in a chain of: a) N = 100, b)N = 150.

ladder operators of momentum space it can be expressed as:

|gs⟩ =
∏

|q|≤qF

c̃†
q |0⟩ , (2.1.7)

with qF = N
4 being the quantum number fixing the Fermi level. Clearly this is a many-

body state since the chain is half-filled. At this point it is interesting to note the effects of
null-energy states which cause the groundstate to be degenerate. As a consequence, the
summation for |q| ≤ qF might be improperly defined as states related to qF can be either
included or not in |gs⟩ without changes in the total energy. During simulations, to avoid
any possible subtlety, a practical solution is to examine only systems with N not divisible
by 4: this way the summation immediately restricts to |q| < qF as no states related to
qF are present. With respect to Eq.(2.1.7) and tracing back the steps in Sec.(1.2), the
elements of C in the hopping model read as:

Cmn = ⟨gs|c†
mcn|gs⟩ = 1

N
⟨gs|

 N/2∑
q=−N/2

e−ik(q)mc̃†
q

 N/2∑
p=−N/2

eik(p)nc̃p

|gs⟩ =

= 1
N

N/2∑
q,p=−N/2

e−i[k(q)m−k(p)n] ⟨gs|c̃†
q c̃p|gs⟩ =

= 1
N

∑
|q|<qF

e−ik(q)(m−n).

(2.1.8)

From there, indicating with q̄ the extremes for q, such that |q| < qF → q ∈ [−q̄, q̄], one
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can further manipulate the result as follows:

Cmn = 1
N

q̄∑
q=−q̄

e−ik(q)(m−n) = 1
N

q̄∑
q=−q̄

e−i 2π
N

(m−n)q = 1
N

q̄∑
q=−q̄

bq =

= b−q̄

N

2q̄∑
q=0

bq
(1− b

1− b

)
= b−q̄

N(1− b)(1− b2q̄+1) =

= b
1
2

Nb
1
2

b−(q̄+ 1
2 ) − b+(q̄+ 1

2 )

b− 1
2 − b 1

2
= 1
N

ei 2π
N

(m−n)(q̄+ 1
2 ) − e−i 2π

N
(m−n)(q̄+ 1

2 )

ei 2π
2N

(m−n) − e−i 2π
2N

(m−n)
=

= 1
N

sin [k(q̄)(m− n) + π
N

(m− n)]
sin [ π

N
(m− n)] .

(2.1.9)

Note that for m = n this expansion would be undefined. For this trivial case however it is
enough to consider the initial formula (2.1.8) as it becomes:

A

Fig. 2.2: Sketch of a com-
pact subsystem A for a
hopping model on a ring.

Cmm = 1
N

q̄∑
q=−q̄

1 = 1
2 , (2.1.10)

at least as long as we consider a chain with an even number
of sites. At this point, selected a compact subsystem A as in
Fig.(2.2), which can be thought as the set of consecutive sites
A = [i, i + M ] with M being its size, we aim to define ρA.
We thus reduce the correlation matrix C to CA, discarding
all the terms involving sites not belonging to the subsystem:

C =


C1,1 · · · C1,N

... . . . ...
CN,1 · · · CN,N

; CA =


Ci,i · · · Ci,i+M

... . . . ...
Ci+M,i · · · Ci+M,i+M


and then numerically compute its eigenvalues. In Fig.(2.3(a)) an example of entanglement
spectrum for a subsystem of size M = 30 is provided. As it can be noticed, eigenvalues
are no longer just zeros and ones but they still have the tendency of staying close to those
extremes. This is a consequence of the introduction of boundaries and the formation of
edge states while the bulk remain unchanged.

Finally, all unknown variables in Eqs.(1.2.12), (1.2.13) have been found so one can
determine the reduced density matrix and entanglement entropy of subsystem A. A plot
for this latter can be observed in Fig.(2.3(b)) for different sizes M of the subsystem. What
emerges is the graph of a reversed parabola showing a maximum when M corresponds
precisely to half the size of the chain. Over numerical results a fit has been performed using
the equation for Von Neumann entropy predicted by CFT, Eq.(1.3.22), which allowed us
to determine the two parameters c = 1 and c′

1 = 0.73. These results agree with the
expected values[27] with the former telling us that we are studying Dirac’s fermions.
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(a) Eigenvalue spectrum for M = 30. (b) Von Neumann entropy for variable sizes.

Fig. 2.3: a)Eigenvalue distribution for a subsystem of size M = 30 on
a ring of size N = 150, b) Von Neumann entropies comparison from a
numerical and a CFT approach.

2.1.2 Infinite dimensional chain

A

Fig. 2.4: Sketch of a subsystem in the infinite chain.

Extending the analysis to an infinite chain is straightforward but it needs the proper
expedients. First of all, as one might expect from what claimed beforehand about

Fig. 2.5: Energy spectrum for an infinite chain.

energy eigenvalues getting denser and
denser, in this case the system devel-
ops a continuous energy band as it can
be observed in Fig.(2.5). Thereafter,
defined once more the groundstate as
a filled Fermi sea, the goal is to derive
C. Nonetheless, for an infinite chain,
this would be an impossible task as C
would be an infinite dimensional ma-
trix. Taking a look back, one might
realize this is not really necessary as
to define the reduced density matrix
ρA the correlation function method, in
reality, only makes use of CA. Thus,
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picked a subsystem A as sketched in Fig.(2.4) and starting from Eq.(2.1.8), it is just a
matter of studying the limit for N going to infinite of:

Cmn = 1
N

sin [k(q̄)(m− n) + π
N

(m− n)]
sin [ π

N
(m− n)] −−−→

N→∞

1
π(m− n) sin

[
π

2 (m− n)
]
. (2.1.11)

and let the code run for all pair of indexes m,n ∈ A. In Fig.(2.6) the evolution of
Von Neumann entropy is plotted for a subsystem of size M ranging from 1 to 300 sites.
As anticipated, this time SA has a different behaviour and shows a logarithmic growth.
Fitting numerical results with CFT predictions, Eq.(1.3.21), we recover the same values
for the central charge c = 1 and the constant c′

1 = 0.73, proving once more the reliability
of the code.

Fig. 2.6: Von Neumann entropy evolution for subsystem sizeM varying
from 1 to 300.

2.2 SSH model

The follow-up in the analysis of free fermionic chains is the 1-dimensional SSH model[32],
once more assuming in the first place finite dimension and periodic boundary condition.

A

B

nt1

t2

Fig. 2.7: SSH model.

A very detailed analysis is provided
in this case as this is the model I
will focus on for the remaining part
of the elaborate. SSH describes a so
called dimerized chain consisting in
an hopping model with alternating
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parameters t1 ̸= t2. The limit case for t1 = t2 just relates to the previous sections.

2.2.1 Finite dimensional chain

Starting from the finite dimensional case, SSH chains are described by hamiltonians of
the form:

Ĥ =
N−1∑
n=0

[
t1

(
|2n⟩ ⟨2n+ 1|

)
+ t2

(
|2n+ 1⟩ ⟨2n+ 2|

)
+ h.c.

]
, (2.2.1)

or, in second quantization formalism:

Ĥ =
N−1∑
n=0

[
t1

(
c†

2nc2n+1 + c†
2n+1c2n

)
+ t2

(
c†

2n+1c2n+2 + c†
2n+2c2n+1

)]
. (2.2.2)

There exists even a third formulation involving the notion of sub-lattices. Sub-lattices
can be observed in Fig.(2.7) and using them the hamiltonian becomes:

Ĥ =
N−1∑
n=0

[
t1

(
|n,A⟩ ⟨n,B|

)
+ t2

(
|n,B⟩ ⟨n+ 1, A|

)
+ h.c.

]
(2.2.3)

. Note that, independently from the formulation chosen, n is no longer a site index as
before but it turned in a cell index essentially. The process to diagonalize the hamiltonian
this time is more articulated but still crucial to be able to determine the groundstate in
a similar fashion as before. In the following lines I summarized it by providing the main
results.

Acknowledging SSH also enjoys a translational symmetry, this time brought in by a
slightly different operator:

T̂ =
N−1∑
n=0

(
|n+ 1, A⟩ ⟨n,A|+ |n+ 1, B⟩ ⟨n,B|

)
, (2.2.4)

we are prone to move again to momentum space. In this case, however, it is necessary to
introduce 2 sets of plane waves, one localized on sub-lattice A and one on B:

|k̃(q)+⟩ = 1√
N

N−1∑
n=0

eik(q)n |n,A⟩ , (2.2.5)

|k̃(q)−⟩ = 1√
N

N−1∑
n=0

eik(q)n |n,B⟩ . (2.2.6)

Recasting Ĥ in terms of Eqs.(2.2.5),(2.2.6) results in matrix blocks ˆ̃Hq ∈ M2x2 of the
form:

ˆ̃Hq =
 0 t1 + t2 e

−ik(q)

t1 + t2 e
ik(q) 0

 for q = 0, · · · , N − 1. (2.2.7)

Evidently additional manipulations are required to fully diagonalize the problem but, from
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matrices (2.2.7), it is already possible to derive the relation for eigenvalues and outline
the energy spectrum. Readily one has:

Eq = ±
√
t21 + t22 + 2t1t2 cos[k(q)], (2.2.8)

and, expressing staggered parameters as:

t1 = t(1 + δ),

t2 = t(1− δ),
(2.2.9)

allows us to plot the energy bands for different δ as in Fig.(2.8(a)). Looking at them, it
straightforward to realize how the introduction of a parameter δ ̸= 0 causes the presence
of a gap between the two bands of width 4δ. Systems with a similar energy spectrum are
in fact known as gapped system and are generally used to model insulators.

(a) Energy spectrum for N = 100. (b) Energy spectrum limit for an infinite chain.

Fig. 2.8: SSH model’s energy spectra evolution towards the limit for
N going to infinite for t = 1 for δ = 0.5, 0.3, 0.1.

The definition of a brand new set of operators is then required to fulfill diagonaliza-
tion, let us therefore introduce {αq, βq}q=1,··· ,N−1. Such operators must satisfy the usual
canonical anti-commutation relations in order to preserve the fermionic nature of the
underlying theory and are obtained from the transformations:c̃q+

c̃q−

 = Uq

αq

βq

 ←−−−−−−−−−−→
complex conjugation

c̃†
q+

c̃†
q−

 = U∗
q

α†
q

β†
q

 , (2.2.10)
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with Uq being the unitary matrix that diagonalizes ˆ̃Hq:

Uq =


1√
2 −

√
ηq−
2ηq+√

ηq+
2ηq−

1√
2

 for: ηq+ = t1 + t2 e
ik(q) = η∗

q− . (2.2.11)

According to this formulation, it can be proven α†
q/αq are the operators related to positive

energy states while β†
q/βq to negative ones. The definition of the groundstate, intended

again as the zero temperature filled Fermi’s sea, thus follows as:

|gs⟩ =
N−1∏
q=0

β†
q |0⟩ , (2.2.12)

and will serve once more as the reference state to construct the correlation matrix C.
Recalling n plays the role of cell index for the SSH model, each element Cmn actually

counts 4 different terms as it keeps in account all possible interactions between the particles
of the m−th, n−th cells. Intuitively, this can be sketched in a clear way using matrix
representation:

Cmn = ⟨gs|c†
mcn|gs⟩ =

⟨c†
m,A cn,A⟩ ⟨c†

m,A cn,B⟩
⟨c†

m,B cn,A⟩ ⟨c†
m,B cn,B⟩

 . (2.2.13)

Finding their direct expressions for every A-B combination is thus our next goal. For a
matter of clarity, let me first disclose explicitly the decomposition rules for momentum
operators:


c̃†

q+ = 1√
2

[
α†

q −
√

ηq+
ηq−

β†
q

]
c̃†

q− = 1√
2

[√
ηq−
ηq+

α†
q + β†

q

] ←−−→
c.c.


c̃q+ = 1√

2

[
αq −

√
ηq−
ηq+

βq

]
c̃q− = 1√

2

[√
ηq+
ηq−

αq + βq

] (2.2.14)

as an helpful intermediate step to refer in the upcoming computations.

• A-A correlation term, Cmn,AA:

Cmn,AA = ⟨c†
m,A cn,A⟩ =

[
1
N

N−1∑
q,p=0

e−i[k(q)m−k(p)n]
]
⟨c̃†

q+ c̃p+⟩ =

=
[

1
N

N−1∑
q,p=0

e−i[k(q)m−k(p)n]
][

1
2

]
⟨β†

qβp⟩ =
[

1
2N

N−1∑
q,p=0

e−i[k(q)m−k(p)n]
]
δq,p =

= 1
2N

N−1∑
q=0

e−ik(q)[m−n] = 0.

(2.2.15)

Differently from the result obtained for the hopping model, in this case the series
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sums over all possible values of q = 0, · · · , N − 1, ending in a trivial outcome.

• B-B correlation term Cmn,BB behaves precisely as the previous one since its decom-
position leads to the very same expression:

Cmn,BB = ⟨c†
m,B cn,B⟩ =

[
1
N

N−1∑
q,p=0

e−i[k(q)m−k(p)n]
]
⟨c̃†

q− c̃p−⟩ =

=
[

1
N

N−1∑
q,p=0

e−i[k(q)m−k(p)n]
][

1
2

]
⟨β†

qβp⟩ = 0.
(2.2.16)

• A-B correlation term Cmn,AB:

Cmn,AB = ⟨c†
m,A cn,B⟩ =

[
1
N

N−1∑
q,p=0

e−i[k(q)m−k(p)n]
]
⟨c̃†

q+ c̃p−⟩ =

=
[

1
N

N−1∑
q,p=0

e−i[k(q)m−k(p)n]
][
− 1

2

√
ηq+

ηq−

]
⟨β†

qβp⟩ =

= − 1
2N

N−1∑
q=0

e−ik(q)[m−n]

√
t1 + t2 eik(q)

t1 + t2 e−ik(q) .

(2.2.17)

The opposite correlation term Cmn,BA can be derived from Eq.(2.2.17) upon complex
conjugation of the terms inside the square root. As a matter of fact Cmn,AB =
Cnm,BA must hold.

Before moving on with the analysis of entanglement entropy, let me point out how, com-
putationally wise, the workload already increases a lot here: mixed terms from the corre-
lation matrix can be in fact only esteemed summing every single contribute at time as no
further simplification have been spotted. Looking at Figs.(2.9(a)),(2.9(b)) very different
behaviours arise compared to hopping model. Clearly, both of them can be traced back
to the introduction of the half-gap parameter δ.

Commencing from the so called saturation phenomenon, this is a consequence of the
system not being at criticality. As soon as this happens, correlation functions lose their
power law nature and start to decay exponentially with a finite correlation length ξ1.
In such condition CFT’s methods are no longer applicable. More details can be found
in the introduction of [33]. Still, it can be observed how, before reaching a plateau, SA

follows very accurately the trend of the system at criticality within a certain interval.
Such circumstance can be explained in relation to the dimension of the subsystem: if M
is small enough with respect to the correlation length the exponential decay does not drop
sufficiently fast inside the partition and the subsystem behaves like it is still at criticality.
In Fig.(2.9(a)) this is the case for δ = 0.001 for which SA never splits from the critical

1Recalling the usual notation for correlation lengths, here ξ should not be confused with the eigen-
vanlues of CA.
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(a) SA saturation phenomenon.

(b) SA in different cut scenarios.

Fig. 2.9: Relevant traits of Von Neumann for a finite SSH model.

prediction. Analyzing the exponential decay in relation to δ, Fig.(2.10), it can be stated
correlation length scales approximately as ξ ∝ δ−1. No need to mention, the more δ is
close to zero, the more Von Neumann entropy resembles Fig.(2.3(b)).

Pointing the attention at Fig.(2.9(b)) the strong dependence of Von Neumann entropy
on subsystem boundaries emerges. It should not surprise, in fact, how performing a double
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(a) Exponential decay for δ = 0.5. (b) Exponential decay for δ = 0.1.

(c) Exponential decay for δ = 0.05. (d) Exponential decay for δ = 0.01.

Fig. 2.10: Correlation lengths for δ = 0.5, 0.1, 0.05, 0.01.

cut on two strong links t1 (SS) instead of two weak ones t2 (WW) results in completely
different values of SA, regardless M being the same. Such fact should appear even more
reasonable considering the limit for δ = 1. In this case one usually says the chain is
completely dimerized: weak links no longer exist thus performing a cut on t2 would
contribute with no entanglement at all.

2.2.2 Infinite dimensional chain

As for the hopping model, letting N →∞ allows us to move to the infinite chain scenario.
While the energy spectrum can be derived rather straightforwardly and was already pro-
vided aside its discrete counterpart in Fig.(2.8(b)), adapting the formulae to derive the
correlation matrix is quite challenging. First of all, starting from Eq.(2.2.17), one must
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recast the series into an integral to be able to compute it. In particular, since the extremes
of integration would go to infinite, for the sake of simplicity it is simpler to consider as
variable of integration the wavevector k given its domain is finite. It thus follows:

Cmn,AB = − 1
2N

N−1∑
q=0

e−ik(q)[m−n]

√
t1 + t2 eik(q)

t1 + t2 e−ik(q)

q→k(q)−−−−→
N→∞

−
∫ π

−π

dk

4πe
−ik(m−n)

√
t1 + t2eik

t1 + t2e−ik
.

(2.2.18)

This formula would be already acceptable to build a code around it but very costly com-
putationally. With few manipulations however, it is possible to achieve a very satisfactory
result to reduce the execution time. To not interrupt abruptly the flow of the thesis, here
I just provided the final result, relegating the whole procedure in appendix(A):

Cmn,AB ≡
1
2an−m = 1

2ar =


ϵr

2

(
− 1

2
r

)
∆+
Γ( 1

2 )2

∫ 1

0
dt tr− 1

2 (1−t)− 1
2

(1−zt)− 1
2

if: r > 0,

ϵ−r

2

( 1
2

−r

)
∆

Γ(− 1
2 )Γ( 3

2 )

∫ 1

0
dt t−r− 3

2 (1−t)
1
2

(1−zt)
1
2

if: r < 0.
(2.2.19)

Using the above result it is possible to completely determine CA and thus derive its
eigenvalues.

At this point, following the modus operandi for the finite SSH chain, Von Neumann
Entropy is analyzed with an eye on saturation and different cut possibilities. In Fig.(2.11)
the evolution of SA for different subsystem sizes M and various δ is plotted. For an infinite
chain the subsystem has no theoretical limitation concerning its size M : this allows to
simulate also very big subsystems and thus appreciate the effect of saturation even for
considerably small values of δ as δ = 10−3 or δ = 10−4. Starting from the left picture,
Fig.(2.11(a)), saturation is only visible for δ down to 10−2 as M ranges just from [0, 160].
However, extending its range to M ∈ [0, 1000], Fig.(2.11(b)) on the right, compels also
the gap for δ = 10−3 to become significant while SA(10−4) slightly separates from critical
behaviour only at the very end . All in all, saturation is again expected when M ∝ δ−1.

Regarding different cut scenarios, no further comments are needed since the outcomes
are essentially identical to the one observed for a finite chain. In this regard, plots in
Fig.(2.9(b)) and Fig.(2.12) are very relatable with Von Neumann entropy splitting in 3
different branches.
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(a) SA saturation phenomenon for M ∈ [0, 160]. (b) SA saturation phenomenon for M ∈ [0, 1000].

Fig. 2.11: Von Neumann entropy saturation for a finite subsystem in
an infinite SSH chain for different values of δ.

Fig. 2.12: SA in different cut scenarios.



Chapter 3

Symmetry resolved entanglement
entropies

Symmetries always played a crucial role in understanding physics and sorting out its
complexity. One cannot help but acknowledging their importance as they are studied in
a vast majority of fields, varying from classical to quantum domains, including entangle-
ment measures. In this latter case, taking advantage of symmetries, allows us to better
characterize entanglement.

To understand how, consider the example of a quantum many body system with
an internal symmetry U(1). Let ρ be its density matrix and Q̂ the operator for the
conserved quantity, it follows [ρ, Q̂] = 0. Identified a bipartition of the total system A-B
and assuming the charge operator splits as Q̂ = Q̂A +Q̂B, relation [ρ, Q̂] = 0 can be traced
out over B finding [ρA, Q̂A] = 0. This implies ρA also admits a block-diagonal form as a
direct consequence of the above premises. In particular, with respect to the eigenbase of
Q̂A, it can be expressed as:

ρA = ⊕q Π̂qρA = ⊕q [p(q)ρA(q)], (3.0.1)

with Π̂q being the projector on the charge sector related to the eigenvalue q, ρA(q) the cor-
responding collapsed version of the RDM and p(q) the charge distribution in A. Formally
p(q) ≡ Tr(ΠqρA) and is known as full counting statistics FCS in the literature[34][35].
Rephrasing ρA in charge sectors allows us to readily refine Von Neumann entropy:

SA = −Tr[ρA ln ρA] = −
∑

q

⟨ϕq|ρA ln ρA|ϕq⟩ =

= −
∑

q

p(q) ln p(q)−
∑

q

p(q)SA(q) =

≡ Sf + Sc,

(3.0.2)

where the definition of symmetry resolved entanglement entropy SREE has been intro-
duced for:

SA(q) = Tr[ρA(q) ln ρA(q)]. (3.0.3)

In Eq.(3.0.2) the first contribution, Sf , is the Shannon entropy linked to charge fluctua-
tions while the second, Sc, is called configurational entanglement entropy[36] and measures

29
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the total entropy due to each sector, each respectively weighted by p(q).
In parallel, the definition extends to symmetry resolved Rényi entropies SRRE accord-

ing to:
Sn,A(q) = 1

1− n ln Tr[ρn
A(q)], for n > 1. (3.0.4)

EE are expected to spread evenly between charge sectors when q− ⟨Q̂A⟩ is much smaller
then the standard deviation of Q̂A itself. Such result is known as entanglement equipar-
tition and has been proved for multiple systems.

The aim of this final chapter is that of studying SRRE for the SSH model, providing
results able to match simulations’ outcomes. Still, before proceeding, an additional piece
of theory is necessary as evaluating symmetry resolved quantities using the equations
above generally requires severe efforts. In the present case, starting from Eq.(3.0.4),
SREE can be rephrased as:

Sn,A(q) = 1
1− n ln Tr

[(Π̂qρA

p(q)

)n]
= 1

1− n ln Tr[(Π̂qρA)n]
p(q)n

= 1
1− n ln

[
Zn(q)
Z1(q)n

]
, (3.0.5)

with the quantities Zn(q) corresponding to:

Zn(q) ≡ Tr[(Π̂qρA)n]. (3.0.6)

Note p(q) coincides exactly with Z1(q) and can be evaluated through its characteristic
function:

Z1(α) = ⟨eiαQ̂A⟩ = Tr(eiαQ̂AρA), (3.0.7)

via Fourier transform:
Z1(q) =

∫ +π

−π

dα

2π e
−iαqZ1(α). (3.0.8)

Generalizing the notion of characteristic function to any order n:

Zn(α) = Tr(eiαQ̂Aρn
A) (3.0.9)

it is possible to determine all Zn(q) and thus fruitfully address the computation of SRRE
without the need to extract the projectors Πq. Objects in Eq.(3.0.9) are called charged
momenta and will have therefore a central role in the upcoming sections.
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3.1 SRRE in a finite subsystem in SSH

Charge operator Q̂ in a free fermion chain generally corresponds to the number operator
since the total number of particle is conserved. This means:

Q̂ =
N−1∑
j=0

n̂j −−−−−−−−−→
restricting to A:

Q̂A =
∑
j∈A

n̂j, (3.1.1)

but, for convenience, we will use:

Q̃A = Q̂A − ⟨Q̂A⟩ =
∑
j∈A

(n̂j −
1
2), (3.1.2)

as it allows to considerably facilitate future expressions. Yet, some caution is needed as
these advantages do not come completely for free: when M is odd, translating Q̂ according
to Eq.(3.1.2) implies it will turn into an half-integer. Replacing Q̃A in the equation for
charged momenta, Eq.(3.0.9), along with the corresponding RDM, one derives:

Zn(α) = Tr
[
⊗j∈A

(
(1− ξj)n |0⟩ ⟨0|j + ξn

j |1⟩ ⟨1|j
)
eiαQ̃A

]
=

=
∏
j∈A

[
(1− ξj)ne−i α

2 + ξn
j e

i α
2

]
.

(3.1.3)

Setting A = [1,M ] and recalling the identity for the eigenvalues of CA in Eq.(1.2.14), the
above equation becomes:

Zn(α) =
M/2∏
j=1

[
(1− ξj)2n + ξ2n

j + 2(1− ξj)n(ξj)n cos(α)
]
× θ(M%2)

[( 1
2n

)
2 cos

(
α

2

)]
,

(3.1.4)

with the θ(M%2)-term being there only when the size of the sub-system is odd. Let me
point out how, in this latter case, charged momenta become anti-periodic. Once charged
momenta are known, the problem is basically solved. It is then interesting to look at the
behaviour of charge distribution FCS and SRRE, at different orders, and especially to
consider how those quantities vary with respect to sub-system size.

On general grounds p(q) is a gaussian distribution centered in zero with variance
strongly conditioned by both δ and M . When the subsystem is taken to be close to
criticality, Fig.(3.1), variance is given by the relation:

σ2 = 1
π2 ln M2 + const, (3.1.5)

and reasonably no differences emerge if cuts are performed on two weak (WW), two
strong (SS) or mixed links (WS). In the example provided for δ = 10−4, the value of the
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constant has been esteemed performing the fit in Fig.(3.1(b)). Replacing const = 0.314
in Eq.(3.1.5) and considering M = 400 one immediately recovers the variance σ2 = 0.848
of Fig.(3.1(a)). This latter plot also highlights how, for different cuts, we obtain the very
same distribution as all data can be fitted by a single gaussian.

(a) Independence of p(q) from cut edges. (b) Logarithmic growth of variance σ2.

Fig. 3.1: Behaviour of p(q) and σ2 in conditions resembling criticality.
In (a) neutrality of p(q) with respect to cutting conditions appear evi-
dent as all numerical data can be fitted by the same gaussian. In (b)
the fit of Eq.(3.1.5) is plotted.

As the subsystem loses its critical-like behaviour, both p(q) and σ2 start feeling effects
related to cuts. This can be observed in Fig.(3.2(a)) where distributions for WW, SS
and WS no longer coincide and, for each of them, a different gaussian can be delineated.
Concerning variance, Fig.(3.2(b)), again a phenomenon of saturation takes place.

Drawing the attention to symmetry resolved Rényi entropies Sn,A(q), depending on
their order n, the corresponding charged momenta and Fourier transforms must be com-
puted. In Fig.(3.3) a sketch of the various Zn(q) for n ranging from 1 to 5 is provided.
As it can be observed, these functions behave in a similar way and tend to drop very
quickly as soon as one moves from the origin. Also, the higher is the order n, the smaller
is the distributions. When it comes to simulations, this turns out to be a strong lim-
iting factor since the Zn(q), even for q just few units away from the origin, are already
smaller than a float datatype precision, causing Eq.(3.0.5) to be unusable. To overcome
such constraint the more natural solution would be to use a more precise datatype but
this has considerable consequences on execution times. To prevent such circumstance the
focus has been thus directed uniquely to Rényi entropies of second order since, as it will
be shown, without changing datatype it is already possible to compute their values in
enough charge sectors to derive appreciable results. Second order SRRE (S2,A(q)) will
thus be the main quantity under investigation from now on.
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(a) Distinct charge distributions for WW, SS, WS. (b) Saturation of σ2.

Fig. 3.2: Behaviour of p(q) and σ2 in conditions far from criticality.
in (a) charge distributions in the three scenarios, WW, SS, WS, are
plotted. For each of them a different gaussian is derived as proof of
their distinction. In (b) saturation phenomenon for variance is plotted.

(a) Fourier transform for δ = 10−2. (b) Fourier transform for δ = 10−4.

Fig. 3.3: Plots of Fourier transforms with the order n varying from 1
to 5 for: (a) δ = 10−2, (b) δ = 10−4.

By simulating and plotting S2,A(q) varying parameters δ and M for all possible cutting
scenarios WW, SS and WS; the presence of few recurrent patterns might be spotted.
Fig.(3.4) and Fig.(3.5) are the some up of this process for which the most significant and
understandable plots have been picked.

The first crucial aspect, recognizable even after a quick glance, is how the parity of
M affects the behaviour of S2,A(q). When M is odd, Fig.(3.4), Rényi entropies have a
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regular behaviour while, when is odd, Fig.(3.5), they display an oscillating trend. Further,
comparing WW and SS, another detail emerges: SRREs oscillate for both but with a
complete opposite phase upon charge sector.

Finally, observing more carefully picture by picture, a recursive trait unfolds for M
getting bigger as S2,A(q) seems to converge to precise limits. Specifically, when M is even,
Rényi entropy’s oscillations sort of stabilize between two fixed extremes, viceversa, when
M is odd, S2,A(q) appears to flatten towards a constant value. This latter remark is what
inspired us to consider subsystems of infinite dimension looking for a method to predict
exactly SRRE in this limit.

(a) WS cuts for δ = 0.1. (b) WS cuts for δ = 0.01.

(c) WS cuts for δ = 0.001.

Fig. 3.4: Second order SRRE behaviour for δ = 10−1, 10−2, 10−3 in
cutting scenario WS.
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(a) WW cuts for δ = 0.1. (b) SS cuts for δ = 0.01.

(c) WW cuts for δ = 0.01. (d) SS cuts for δ = 0.01.

(e) WW cuts for δ = 0.001. (f) SS cuts for δ = 0.001.

Fig. 3.5: Second order SRRE behaviour for δ = 10−1, 10−2, 10−3 in
cutting scenarios WW and SS.
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3.2 SRRE in an infinite subsystem in SSH

Thinking about it, this problem shows up as an impossible one to solve, at least with the
elements of theory discussed in previous chapters. To an infinite subsystem, in fact, it
corresponds an infinite dimensional reduced correlation matrix CA ∈ M∞×∞ for which
solving the eigenvalue problem numerically is just an helpless task. Still, SSH model
admits another procedure to determine its entanglement spectrum and, in particular, this
is an analytical one[37]. Before outlining the machinery behind it, let me point out how,
unlike for finite subsystem, this time even a single cut can be enough to isolate A as the
other end of the chain just goes to infinite.

Introducing the quantities:

χ = exp
[
− πI(k′)

I(k)

]
with: I(k) =

∫ 1

0

dt√
(1− t2)(1− k2t2)

(3.2.1)

and:

k =

 ϵ if: ϵ2 < 1 ↔ δ > 0

ϵ−1 if: ϵ2 > 1 ↔ δ < 0
,

k′ =
√

1− k2,

(3.2.2)

Fig. 3.6: Sketch of ϵ as a function of δ.

eigenvalues ξm of CA are then given by:

ξm = 1
1 + χm

with:

 m odd if: δ > 0,

m even if: δ < 0.
(3.2.3)

Note that no restrictions applies to m which
can be also negative and in fact, eigenvalues
ξm still satisfy the relation ξm = 1 − ξ−m. In
the interest of clarity, it should be pointed out
Eq.(3.2.3) specifically generates eigenvalues for
an half-infinite chain with a single cut on (1−δ)
and not the other way around. Such distinc-
tion is supported by the following analysis of the limits δ → ±1:

• For δ < 0, as a consequence of m = 0, one always has ξ0 = 0.5. Taking the limit
for δ → −1, this eigenvalue becomes the only non-trivial one as all others reduce to
either 0’s or 1’s. Such eventuality is none but having a single cut taken in a dimer
of a fully dimerized chain, id est, on its strong link S.

• On the other hand when δ > 0, one has to use odd integers and shall consider
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the opposite limit case. For δ → 1 one gets χ = 0 and thus ends up with ξm

being only 0’s or 1’s. Recalling Eq.(1.2.13), those are linked to a non-production of
entanglement entropy for the subsystem which, in a dimerized chain, corresponds
to performing a cut between two adjacent dimers, hence the weak link W of an SSH
chain.

To eventually compose the full spectrum of an infinite subsystem with two edges it is
enough to consider two sets of eigenvalues instead of one, paying attention to the types of
cuts characterizing the partition. Taking as an example the case of subsystems with one
boundary on a weak and one on a strong link (WS), one should combine the ξm’s coming
from the use of both even and odd integers. Similarly, if boundaries are two of the same
type, one should just take a double copy of each ξm.

As a solidity check, we compared the entanglement spectra obtained analytically ac-
cording to Eq.(3.2.3) with numerical results obtained using reduced correlation matrix
method in a SSH chain far from criticality but with a finite size. In this latter case in
fact, choosing a subsystem with M greater than δ−1 of few orders of magnitude, implies
that the two boundaries barely communicate one with the other thus, up to exponentially
small corrections, the subsystem is expected to behave as if it has infinite length. By
virtue of completeness, an agreement up to the 13th digit has been recorded for eigenval-
ues simulated with M = 1000 and δ = 0.05.

Before moving on with the analysis of second order SRRE let me just make one
last comment. Being analytical, this method would generate infinite many eigenvalues
populating the spectrum. Nonetheless when it comes to coding only a bunch of them
are really relevant as all the others are just close to either 0 or 1 beyond float precision.
Speaking of this set of relevant eigenvalues, as δ becomes smaller and smaller, it counts
more and more elements. This is a consequence of the variation of χ, Eq.(3.2.1), whose
plot can be found in Fig.3.7(a). Accordingly, powers χm in Eq.(3.2.3) also increase causing
the corresponding eigenvalues to detach from extreme values 0 or 1. Such activation of
eigenvalues can be clearly observed in Fig.3.7(b),3.7(c) for few positive even indexes. All
in all, the closer the system is to criticality, the wider the set of relevant eigenvalues
get. Coherently with what we claimed before this is to be expected as to replicate this
result via simulations we would need a bigger subsystem in order for the two edges not
to communicate.

Using this analytical approach with explicit expressions for eigenvalues of the entangle-
ment spectrum opens to the possibility of rephrasing Von Neumann entropy, Eq.(1.2.13).



38 Chapter 3. Symmetry resolved entanglement entropies

(a) Evolution of χ(δ) plotted in reversed logarithmic scale
for δ.

(b) Evolution of few χ2n(δ) powers plotted in reversed
logarithmic scale for δ.

(c) Eigenvalues activation for χ(δ) increasing.

Fig. 3.7: Plots of χ and eigenvalues activation ξ2m for δ varying from
10−8 to 10−1.

Depending on the edge scenario one starts with:

S = −
∑

m∈Z

[
ξm ln ξm + (1− ξm) ln(1− ξm)

]
if WS , (3.2.4)

S = −2
∑
m

[
ξm ln ξm + (1− ξm) ln(1− ξm)

]
with:

m odd, if WW,

m even, if SS,
(3.2.5)

with the presence of a prefactor 2 in WW-SS scenarios to remind ξm are two-fold degen-
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erate when identical cuts are taken. From there, given the following identity:

ξm ln ξm + (1− ξm) ln(1− ξm) = χm ln(χm)
1 + χm

− ln (1 + χm), (3.2.6)

and recalling the relation for ξm and ξ−m, we might reduce above formulae as:

S = ln(2)− 2 ln(χ)
[ ∑

m∈Z+

(
mχm

1 + χm

)]
+ 2 ln

[ ∏
m∈Z+

(1 + χm)
]

if WS , (3.2.7)

S =


−4 ln(χ)

[∑
m>0

(
mχm

1+χm

)]
+ 4 ln

[∏
m>0(1 + χm)

]
WW, m odd,

2 ln 2− 4 ln(χ)
[∑

m>0

(
mχm

1+χm

)]
+ 4 ln

[∏
m>0(1 + χm)

]
SS, m even,

(3.2.8)

with 2 ln 2 being the term due to m = 0 which has been taken out from sequences
cause it has no counterpart ξ−0 or, to be the more precise, it is its own counterpart.
Eq.(3.2.7),(3.2.8) have been tested comparing their results with numerical outcomes.

3.2.1 SRRE for an infinite half-chain

Addressed the problem of computing entanglement spectrum we can finally draw back the
attention to second order SRRE. Recalling the equation for charge momenta, Eq.(3.1.4),
the first task is to understand whether the dimension of our system is even or odd.
However, since M is infinite, answering this question is a subtle point and we can only
try to solve it using theoretical arguments.

Assuming the limit of a fully dimerized SSH we proved for an infinite half-chain with
boundary on a strong link, that its entanglement spectrum becomes completely trivial
except for ξ0 = 1

2 . Being this the only relevant term we might conjecture that from the
other end no contributions to entanglement entropy arise which implicitly implies the
partition must end between two dimers, on a weak link. As a consequence, when the
half-chain has the cut on S, M has to be treated as odd while, as soon as we include or
remove an adjacent site, moving the cut on W, M turns even.

The analysis of the 2 cases follows. An additional index µ has been added to Z(µ)
n (α)

to distinguish them: µ = 0 when the cut is on W, µ = 1 vice versa. The former will be
identified as odd case while the latter as even case due to the integers used to create their
entanglement spectra.
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The odd case (0)

Starting from Eq.(3.1.4) with M even and the summation running only over odd indexes,
one gets:

Z(0)
n (α) =

∏
m≥1

[
(1− ξm)2n + ξ2n

m + (1− ξm)n(ξm)n2 cos(α)
]

=

=
∏

m≥1

[(
χm

1 + χm

)2n

+
( 1

1 + χm

)2n

+
(

χm

(1 + χm)2

)n

2 cos(α)
]

=

=
∏

m≥1

[1 + χ2nm + χnm2 cos(α)]
(1 + χm)2n

=

=
∞∏

l=1

(1 + χn(2l−1)eiα)(1 + χn(2l−1)e−iα)
(1 + χ(2l−1))2n

=

=
∞∏

l=1

(1 + γ2l−1eiα)(1 + γ2l−1e−iα)
(1 + χ(2l−1))2n

,

(3.2.9)

where γ = χn has been introduced to simplify the expression. Next, taking into account
the definition of the Jacobi theta function θ3[38, (20.5.9)] for p = eiπz and s = eiπτ :

θ3(πz|τ) ≡ θ3(p | s) =
∞∏

l=1
(1− s2l)(1 + s2l−1p2)(1 + s2l−1p−2) =

∞∑
m=−∞

p2msm2
, (3.2.10)

one can reformulate Eq.(3.2.9) as:

Z(0)
n (α) =

∞∏
l=1

(1− γ2l)
(1− γ2l)

(1 + γ2l−1eiα)(1 + γ2l−1e−iα)
(1 + χ(2l−1))2n

=

=
∞∏

l=1

(1 + γ2l−1)2

(1 + γ2l−1)2
θ3(α

2 , γ)
(1− γ2l)(1 + χ(2l−1))2n

=

=
θ3(α

2 , γ)
θ3(0, γ)

∞∏
l=1

(1 + γ2l−1)2

(1 + χ(2l−1))2n
=

=
θ3(α

2 , γ)
θ3(0, γ)

∞∏
l=1

[
(1 + χ(2l−1)n)
(1 + χ(2l−1))n

]2

= θ3

(
α

2 , γ
)
A(0)

n .

(3.2.11)

At this stage, after Fourier transform, one derives:

Z(0)
n (q) = A(0)

n γq2 = A(0)
n χnq2

, (3.2.12)

and in particular:
Z

(0)
1 (q) = A

(0)
1 χq2 = 1

θ3(0, χ)χ
q2
, (3.2.13)

https://dlmf.nist.gov/20.5.E9


3.2. SRRE in an infinite subsystem in SSH 41

which has indeed the form of a gaussian distribution. Using Eq.(3.2.12) symmetry-resolved
Rényi entropies reduce to:

S(0)
n (q) = 1

1− n ln
[
A(0)

n

(A(0)
1 )n

]
= 1

1− n ln
[
θ3(0, χ)n

θ3(0, γ)

∞∏
l=1

( (1 + χ(2l−1)n)
(1 + χ(2l−1))n

)2
]

=

= 1
1− n ln

[ ∞∏
l=1

(1− χ2l)n(1 + χ2l−1)2n

(1− γ2l)(1 + γ2l−1)2
(1 + γ(2l−1))2

(1 + χ(2l−1))2n

]
=

= 1
1− n ln

[ ∞∏
l=1

(1− χ2l)n

(1− γ2l)

]
.

(3.2.14)

From this latter formula it is possible to appreciate entanglement equipartition between
charge sectors with clarity as the dependence on charge number q is lost.

The even case (1)

In this second case we will go through very similar steps but this time with M being odd
and the summation including only even indexes. Likewise:

Z(1)
n (α) =

∏
m≥2

[
(1− ξm)2n + ξ2n

m + (1− ξm)n(ξm)n2 cos(α)
]
× 1

2n−1 cos
(
α

2

)
=

= 1
2n−1 cos

(
α

2

)
×
∏

m≥2

[1 + χnm2 cos(α) + χ2nm]
(1 + χm)2n

=

= 1
2(n−1) cos

(
α

2

) ∞∏
l=1

(1 + 2γ2l cos(α) + γ4l)
(1 + χ2l)2n

,

(3.2.15)

in which, again, we used γ = χn. Few differences can already be spotted comparing with
Eq.(3.2.9) like the additional cosine factor in front and the exponents being indeed even.
As a consequence we won’t make use of the Jacobi theta function θ3 but rather θ2[38,
(20.5.2)]:

θ2(z, s) = 2s 1
4 cos(z)

∞∏
l=1

(1− s2l)(1 + 2s2l cos(2z) + s4l), (3.2.16)

thanks to which is possible to rephrase charge momenta equation as:

Z(1)
n (α) = 2

2n

γ
1
4

γ
1
4

cos
(
α

2

) ∞∏
l=1

(1− γ2n)
(1− γ2n)

(1 + 2γ2l cos(α) + γ4l)
(1 + χ2l)2n

=

= θ2

(
α

2 , γ
) 1

2nγ
1
4

∞∏
l=1

1
(1− χ2ln)(1 + χ2l)2n

= θ2

(
α

2 , γ
)
A(1)

n .

(3.2.17)

From there, to Fourier transform, one shall consider a second identity [38, (20.2.2)]:

θ2(z, s) = 2
∞∑

l=0
s(l+ 1

2 )2 cos((2l + 1)z) =
∑

m∈Z+ 1
2

sm2
ei2mz, (3.2.18)

https://dlmf.nist.gov/20.5.E2
https://dlmf.nist.gov/20.2.E2
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which comes helpful to derive:

Z(1)
n (q) = A(1)

n γq2 = A(1)
n χnq2

, (3.2.19)

and in particular:

Z
(1)
1 (q) = A

(1)
1 χq2 = 1

2χ 1
4

∞∏
l=1

1
(1− χ2l)(1 + χ2l)2χ

q2 = 1
θ2(0, χ)χ

q2
. (3.2.20)

As expected, Z(1)
1 (q) is also gaussian and really mimics the odd FCS, Eq.(3.2.13), if not for

θ2 replacing θ3. Plots of these distributions can be found in Fig.(3.8) for reference values
of δ = 0.05 and δ = 0.001. As it can be observed, except for the odd FCS being related to
integer charges and the even one to half-integers, the two of them basically trace back to
the same gaussian for these parameters. This is a consequence of second and third Jacobi
theta functions coinciding with an error ∝ 10−2 when their first argument is trivial and
δ ∝ 0.05 or lower.

(a) Z
(0,1)
1 (q) for δ = 0.05. (b) Z

(0,1)
1 (q) for δ = 0.001.

Fig. 3.8: Comparison between odd and even charge distributions for
δ = 0.05 and δ = 0.001. Combining Z(0)

1 defined for integer and Z(1)
1 for

half-integer charges q an overall unique gaussian fit can be performed
as the two graphs show.

In the end, the explicit expression for symmetry resolved Rényi entropies is:

S(1)
n (q) = 1

1− n ln
[
A(1)

n

(A(1)
1 )n

]
= 1

1− n ln
[

(2χ 1
4 )n

2nγ
1
4

∞∏
l=1

(1− χ2l)n(1 + χ2l)2n

(1− χ2ln)(1 + χ2l)2n

]
=

= 1
1− n ln

[ ∞∏
l=1

(1− χ2l)n

(1− γ2l)

]
.

(3.2.21)
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(a) S
(µ)
2 (q) for δ = 0.05. (b) S

(µ)
2 (q) for δ = 0.001.

Fig. 3.9: S(µ)
2 (q) for δ = 0.05 and δ = 0.001. From each charge sectors

we obtain the very same contributions, even comparing odd and even
scenarios. For an infinite half-chain equipartition holds.

Again equipartition is present and, quite surprisingly, we recover the very same expression
of the odd case, Eq.(3.2.14), id est S(0)

n = S(1)
n . In the interest of completeness, plots of

S
(µ)
2 (q) for δ = 0.05 and δ = 0.001 are provided in Fig.(3.9). Not much can be commented

here as equipartition forces all points to lay at the same level, yet it can be notice we have
a greater contribution from each sector as δ gets smaller.

3.2.2 SRRE in the limit of an infinite chain

Using the results of the previous sections it is finally possible to extend the analysis to the
limit case for M →∞, id est for an infinite chain with double boundaries. In such setup
the two edges of the interval will not interact with each other and the bi-partition can be
thus studied as the union of two disjoint spectra for infinite half-chains. As seen before,
3 different scenarios enter the framework here, depending on where the edges are placed.
One thus has to considered the usual three sets of entanglement eigenvalues combined:
WW, SS and WS. According to those premises and reminding Eq.(3.1.4), one expects
charged momenta to factorize as:

Z(µ,ν)
n (α) = Z(µ)

n (α)Z(ν)
n (α), (3.2.22)

with the indexes (µ, ν) for µ, ν = 0, 1 identifying the spectra listed. Next, after Fourier
transform, one gets:

Z(µ,ν)
n (q) =

∑
q′∈Z+ µ

2

Z(µ)
n (q′)Z(ν)

n (q − q′), (3.2.23)
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with q′ being integer or half integer depending on µ while q is integer if µ = ν or half-
integer vice versa. This latter can be eventually parametrized as q ∈ Z+ (µ−ν)

2 . Eq.(3.2.23)
is nothing but the discrete convolution over charge sectors of Zµ

n and Zν
n. Plugging in

their explicit expressions, Eqs.(3.2.12), (3.2.19), the above result can be rephrased in:

Z(µ,ν)
n (q) = A(µ)

n A(ν)
n

∑
q′∈Z+ µ

2

χnq′2
χn(q−q′)2 =

= A(µ)
n A(ν)

n χn q2
2

∑
q′∈Z+ µ

2

χ2n(q′− q
2 )2
.

(3.2.24)

At this point the attention must be drawn at the summation:

F (µ,ν)
n (q) =

∑
q′∈Z+ µ

2

χ2n(q′− q
2 )2
, (3.2.25)

which is a function showing different behaviours depending on the indexes µ, ν. In the
interest of clarity, solving for the parametrization:

q
′ = s+ µ

2 ,

q = t+ µ−ν
2 ,

Eq.(3.2.25) becomes,

• for µ = ν:

F (µ,µ)
n (t) =

∑
s,t∈Z

χ2n(s+ µ−t
2 )2 =


∑

p∈Z χ
2np2 = θ3(0, χ2n) if t mod 2 = µ,∑

p∈Z+ 1
2
χ2np2 = θ2(0, χ2n) if t mod 2 ̸= µ,

(3.2.26)

• for µ ̸= ν:

F (µ,ν)
n (t± 1

2) =
∑
s∈Z

χ2n(s+ µ+t
2 ± 1

4 )2 = 1
2

[ ∑
p∈Z+ 1

4

χ2np2 +
∑

p∈Z+ 3
4

χ2np2
]

=

= 1
2

[ ∑
p∈Z/4

χ2np2 −
∑
p∈Z

χ2np2 −
∑

p∈Z+ 1
2

χ2np2
]

=

= 1
2

[
θ3(0, χ

n
8 )− θ3(0, χ2n)− θ2(0, χ2n)

]
.

(3.2.27)

In the former case F (µ,ν)
n (q) oscillates between two Jacobi theta functions with period 2

while in the latter it stays constant for any value of q.
Using the above results, symmetry resolved Rényi entropies can be recasted, scenario

by scenario, as follows:

1. Weak-Strong cuts (WS) or vice versa, µ ̸= ν:
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S(µ,ν)
n (q) = 1

1− n ln Z(µ,ν)
n (q)[

Z
(µ,ν)
1 (q)

]n = 1
1− n ln A(0)

n A(1)
n F (µ,ν)

n (q)[
A

(0)
1 A

(1)
1 F

(µ,ν)
1 (q)

]n =

= 1
1− n

[
ln A(0)

n

[A(0)
1 ]n

+ ln A(1)
n

[A(1)
1 ]n

+ ln F (µ,ν)
n (q)[

F
(µ,ν)
1 (q)

]n
]

= S(0)
n + S(1)

n + 1
1− n ln

[
2(n−1) θ3(0, χ

n
8 )− θ3(0, χ2n)− θ2(0, χ2n)[

θ3(0, χ
1
8 )− θ3(0, χ2)− θ2(0, χ2)

]n
]
.

(3.2.28)

2. Weak-Weak cuts (WW), µ = ν = 0:

S(0,0)
n (q) = 1

1− n ln Z(0,0)
n (q)[

Z
(0,0)
1 (q)

]n = 1
1− n ln [A(0)

n ]2F (0,0)
n (q)[

A
(0)
1

]2n[
F

(0,0)
1 (q)

]n =

= 2S(0)
n (q) +


1

1−n
ln
[
2n−1 θ3(0,χ2n)

[θ3(0,χ2)]n

]
if: q mod 2 = 0,

1
1−n

ln
[
2n−1 θ2(0,χ2n)

[θ2(0,χ2)]n

]
if: q mod 2 = 1.

(3.2.29)

3. Strong-Strong cuts (SS), µ = ν = 1:

S(1,1)
n (q) = 1

1− n ln Z(1,1)
n (q)[

Z
(1,1)
1 (q)

]n = 1
1− n ln [A(1)

n ]2F (1,1)
n (q)[

A
(1)
1

]2n[
F

(11)
1 (q)

]n =

= 2S(1)
n (q) +


1

1−n
ln
[
2n−1 θ3(0,χ2n)

[θ3(0,χ2)]n

]
if: q mod 2 = 1

1
1−n

ln
[
2n−1 θ2(0,χ2n)

[θ2(0,χ2)]n

]
if: q mod 2 = 0

(3.2.30)

Despite their unfriendly shapes, above formulae describe a rather simple framework:
for mixed cuts still we witness exact equipartition between charge sectors while, in the
homogenous scenarios, Rényi entropies oscillate with opposite phases, de facto breaking
pure equipartition in favor of an oscillating pattern. The shift between WW and SS can
be eventually encoded writing S(0,0)

n (q) = S(1,1)
n (q + 1).

To not break continuity with past figures, graphs of second order SRRE can be found
in Fig.(3.10) for δ = 0.05 and δ = 0.001. Intuitively they can be thought as the limit
cases for N →∞ of Figs.(3.4),(3.5).
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(a) S
(µ,ν)
2 (q) for δ = 0.05.

(b) S
(µ,ν)
2 (q) for δ = 0.001.

Fig. 3.10: S(µ,ν)
2 (q) for δ = 0.05 and δ = 0.001. This time equipartition

holds only for the mixed scenario when µ ̸= ν, in the other setup it
breaks in favor of an oscillating behaviour.
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3.3 SRRE in generalized free fermion chain

Following the approach used for the SSH model it would be really interesting to extend
predictions regarding SRRE to even more generic models. Let me thus use this section
to present some preliminary results which may serve in future for such purpose.

Hamiltonians for free fermion chains can be formulated, excluding on-site potentials,
as:

Ĥ =
∑
m,n

∑
α,β

tα,β
m,n c

α †
m cβ

n (3.3.1)

with m,n being cell indexes and α, β sublattice indexes. In the finite scenario we may
assume m,n ∈ [0, N − 1] and α, β ∈ [0, S − 1] with N size of the chain and S size of
the cells. Considering PBC the system becomes translational invariant: tα,β

m,n → tα,β
(m−n),

meaning it depends only on cell distance, and it is convenient to move to momentum
space. Replacing the usual definitions for plane waves one is left with:

Ĥ =
∑

q

∑
α,β

t̃α,β
q c̃α †

q c̃β
q , (3.3.2)

for:
t̃α,β
q =

∑
p

tα β
p eikqp. (3.3.3)

As for the SSH model, the problem is still not fully diagonalized but it is already possible
to derive the full energy spectrum analyzing each t̃α,β

q .

(a) Energy bands for S = 3. (b) Energy bands for S = 4.

Fig. 3.11: Energy spectra for more general free fermion chains. In the
present case two examples for S = 3 and S = 4 are considered.

By changing the parameters inside t̃α,β
q , a large multitude of different spectra can be
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created with the total number of bands always matching the cell size S. In the interest of
clarity two simple examples can be observed in Fig.(3.11). Within this general framework,
the definition of the groundstate also opens to many possibilities as one can even choose
the amount of bands to be filled. According to this choice, the computation of correlation
matrix elements will need the proper adjustments.

The full diagonal form of Ĥ can be then achieved, easily or not, following the same
scheme discussed for the SSH model and, with the new operators found, one can derive the
corresponding correlation matrix C. Note however, that the various simplifications will
not apply this time as the system is now completely different. Subsequently, extracted the
eigenvalues of its reduced version CA, one can again investigate second order SRRE which,
in this case, will outline a way richer scenario. Using this general formulation in fact, an
indefinite number of different links might be inserted in the chain causing the presence
of a large multitude of possible boundary combinations. In addition to that, technical
problems arise as in this framework there are still no methods to compute analytically the
eigenvalues for subsystems of infinite sizes. As a consequence, to look for sharp patterns
we are forced to simulate very large systems and this generally takes an unreasonable
amount of time.

Sticking to small subsystems, few simulations has been performed with the most in-
teresting results plotted in Fig.(3.12). Even though they refer to two different systems
both seem to suggest the presence of patterns regarding the distribution of entanglement.
Specifically Fig.(3.12(a)) refers to a system with cells of size S = 3 featuring three alter-
nating hopping parameters: t1 = 0.9, t2 = 1 and t3 = 1.1. In the picture, S2(q) is plotted
considering always the same boundary combination but increasing the subsystem size. As
it can be observed, with the number of cells N growing, the distribution seems to flatten.
Speaking then of Fig.(3.12(b)), these are the results for a system with cells of size S = 4
and hopping parameters t1 = 0.9, t2 = 1, t3 = 1.1 and t4 = 1.2. In this case N is fixed
and SRREs are computed for different boundary combinations. Looking at the picture
some clear patterns already show up.

All in all, simulations for finite subsystems are encouraging, but to derive exact for-
mulae further methods are needed.
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(a) S2(q) distribution for S = 3 and N variable.

(b) S2(q) distribution for S = 4 with different boundaries.

Fig. 3.12: Second order SRRE distributions for two different systems
with S = 3 and S = 4. In a) S2(q) is studied keeping the boundaries
on fixed links while varying the subsystem size. In b) instead the size
has been kept constant while boundaries has been change.



Conclusions

In this thesis entanglement entropies in the hopping and the SSH models are investi-
gated. Using the correlation function method, the entanglement content of the two free
fermion models has been computed. In this regard, explicit formulae for the correlation
matrix elements are provided throughout this elaborate as key ingredients for the cre-
ation of a reliable code. This is the case of Eqs.(2.1.9), (2.1.11), (2.2.17) and (2.2.19).
With the support of numerical simulations, the main predictions coming from CFT are
perfectly matched for the hopping model with Eqs.(1.3.22), (1.3.21) tracing exactly the
data recorded in Figs.(2.3(b)), (2.6). Regarding the SSH model interesting phenomena
are discussed, namely the saturation and the split in multiple branches of Von Neumann
entanglement entropy. Respectively, they can be observed in Figs.(2.9(a)), (2.9(b)) for a
finite chain, in Figs.(2.11(a))-(2.11(b)), (2.12) in the infinite case.

Moving to the study of second order SRRE in SSH model and starting from the finite
scenario, numerical simulations allowed to esteem and plot the entanglement content per
charge sector. Results are in Figs.(3.4), (3.5). Their analysis highlighted the presence
of recurrent patterns, possibly having a precise behaviour in the limit for the size of
the partition going to infinite. This is what inspired to include in the investigation also
infinite subsystems, specifically the infinite half-chain and the infinite chain. Outcomes
for the former are collected in Fig.(3.9) and feature exact equipartition. For the latter,
results can be observed in Fig.(3.10). As claimed, this scenario is richer and characterized
by the appearance of sharp patterns whose shape is determined by Eqs.(3.2.28), (3.2.29)
and (3.2.30). In this case equipartition holds only for mixed boundaries and it is lost
otherwise.

Drawing the attention to future outlooks, it would be interesting to be able to char-
acterize SRRE even in more generic free fermion chains. Fig.(3.12) seems to be suggest
the existence of such patterns, though it has been not possible to exactly predict them.
Another direction could be that of computing SRRE for graphene which can be modelled
as an ensemble of SSH models[39].
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Appendix A

Simplification of correlation matrix
element

In the interest of clarity let me rewrite the starting equation:

Cmn,AB = − 1
2N

N−1∑
q=0

e−ik(q)[m−n]

√
t1 + t2 eik(q)

t1 + t2 e−ik(q)

q→k(q)−−−−→
N→∞

−
∫ π

−π

dk

4πe
−ik(m−n)

√
t1 + t2eik

t1 + t2e−ik
.

(A.0.1)

Recalling the parametrization for t1, t2 in Eq.(2.2.9), with δ > 0 being half the gap, and
replacing k with the complex variable z = e−ik, the above equation can be rephrased as:

Cmn,AB = −
∫ π

−π

dk

4πe
−ik(m−n)

√
1 + ϵeik

1 + ϵe−ik
= for: ϵ = 1− δ

1 + δ

=
∮

C1

dz

4πiz
(m−n)−1

√
1 + ϵz−1

1 + ϵz
=
∮

C1

dz

4πiz
(m−n)−1f(z).

(A.0.2)

Borrowing lexicon from quantum field theories one might be more familiar with the no-
tation by referring to the above expression as the propagator between the mth and nth

cells:
Cmn,AB = D(m− n), (A.0.3)

At this point, expanding f(z) = ∑
r∈Z arz

r and considering Cauchy’s integral formula,
the problem reduces, up to constants, to the esteem of the (n−m)th Laurent coefficient
of f(z):

D(m− n) =
∮

C1

dz

4πi
1
z

( ∞∑
r=−∞

arz
r+(m−n)

)
= 1

2an−m. (A.0.4)

In details, inside the annulus ϵ < |z| < ϵ−1, one can write:

f(z) = (1 + ϵz−1) 1
2 (1 + ϵz)− 1

2

(
1 + 1

2ϵz
−1 − 1

8ϵ
2z−2 + · · ·

)(
1− 1

2ϵz + 3
8ϵ

2z2 · · ·
)

=

=
[∑

q≥0

(1
2
q

)
ϵqz−q

][∑
p≥0

(
−1

2
p

)
ϵpzp

]
≡

∞∑
r=−∞

arz
r,

(A.0.5)
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with the binomial coefficient for real numbers defined after the identity:(
α

β

)
= Γ(α + 1)

Γ(β + 1)Γ(α− β + 1) . (A.0.6)

The explicit expression for the rth Laurent coefficient is then given by the combination of
all terms such that p− q = r. Indeed, replacing p = q + r while keeping p ≥ 0 leads to:

ar =
[∑

q≥0

(1
2
q

)
ϵq

][ ∑
q≥−r

(
−1

2
r + q

)
ϵq+r

]
=

∑
q≥max{0,−r}

[(1
2
q

)(
−1

2
r + q

)
ϵ2q+r

]
=

=


if r > 0 : ∑

q≥0

[( 1
2
q

)(
− 1

2
r+q

)
ϵ2q+r

]
= ϵr

(
− 1

2
r

)
2F1

(
− 1

2 ,
1
2 + r, 1 + r, ϵ2

)
,

if r < 0 : ∑
q≥−r

[( 1
2
q

)(
− 1

2
r+q

)
ϵ2q+r

]
= ϵ−r

( 1
2

−r

)
2F1

(
1
2 ,−

1
2 − r, 1− r, ϵ

2
)
,

(A.0.7)

with 2F1 being the hypergeometric function[38][40], defined as:

2F1(α, β, γ, z) ≡ F (α, β, γ, z) =
∞∑

n=0

(α)n(β)n

Γ(γ + n)n!z
n, (A.0.8)

and (α)n being the Pochhammer symbol:

(α)n = α(α + 1) · · · (α + n− 1). (A.0.9)

In Eqs.(A.0.7),(A.0.8), the presence of binomial coefficients, Pochhammer symbols, gam-
ma functions and factorials must be handled very carefully when it comes to coding as
series of products can easily lead to overflow errors. To avoid such contingency, both the
binomial coefficients and the hypergeometrics function must be factorized properly when
M grows in magnitude. In the former case it is enough to compute the series as:

(
∓0.5
r

)
= ∓0.5(∓0.5− 1)(· · · )(∓0.5− r + 1)

r! =
r−1∏
i=0

∓0.5− i
i+ 1 , (A.0.10)

obtaining two convergent sequences. In the latter it is convenient to use the integral
representation of the hypergeometric function [38, (15.6.1)]:

F (α, β, γ, z) = Γ(γ)
Γ(β)Γ(γ − β)

∫ 1

0

tβ−1 (1− t)γ−β−1

(1− zt)α
dt, (A.0.11)

for which sources of overflow condense as a fraction of gamma functions in front of the
integral. At this point, it is possible to reabsorb them as follows. Replacing the definitions
of their arguments and considering:

Γ(z + 1) = zΓ(z), (A.0.12)

https://dlmf.nist.gov/15.6.E1
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formula (A.0.11) can be reduced to:

F (α, β, γ, z) =


if: r > 0 Γ(1+r)

Γ( 1
2 +r)Γ( 1

2 )

if: r < 0 Γ(1−r)
Γ(− 1

2 −r)Γ( 3
2 )

×
∫ 1

0

tβ−1 (1− t)γ−β−1

(1− zt)α
dt =

=


∆+
Γ( 1

2 )2

∆−
Γ(− 1

2 )Γ( 3
2 )

×
∫ 1

0

tβ−1 (1− t)γ−β−1

(1− zt)α
dt,

(A.0.13)

with:

∆+ =
r∏

n=1

n

n− 1
2
, ∆− =

|r|∏
n=1

n

n− 3
2
. (A.0.14)

Note that ∆± are both divergent series, however their growth is so slow that there is no
risk of overflows for systems of sizes N ≈ 103, 104. All in all, one ends up with:

D(m−n) ≡ D(−r) = 1
2ar =


ϵr

2

(
− 1

2
r

)
∆+
Γ( 1

2 )2

∫ 1

0
dt tr− 1

2 (1−t)− 1
2

(1−zt)− 1
2

if: r > 0,

ϵ−r

2

( 1
2

−r

)
∆

Γ(− 1
2 )Γ( 3

2 )

∫ 1

0
dt t−r− 3

2 (1−t)
1
2

(1−zt)
1
2

if: r < 0.
(A.0.15)

The above equation is the final result we were looking for. Still, before concluding this
appendix, let me discuss here an additional consistency check that has been carried out
as it involves hypergeometric functions. This consisted in testing the above formulae for
δ = 0 expecting to recover the same reduced correlation matrix of a non staggered hopping
model. In this limit ϵ, z → 1 and one can thus take advantage of a simplified version of
the hypergeometric function [38, (15.4.20)]:

F (α, β, γ, 1) = Γ(γ)Γ(γ − α− β)
Γ(γ − α)Γ(γ − β) . (A.0.16)

to lighten the code. Results were compatible in this sense.

https://dlmf.nist.gov/15.4.E20
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