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Abstract

Sickle Cell Disease (SCD) is a group of disorders of red blood cells that cause ab-
normal hemoglobin and could lead to different symptoms.

Brain MRI scans of patients affected by this condition show peculiar lesions in
White Matter, without any apparent neurological evidence, called Silent Cerebral
Infarcts (SCI).

To increase the comprehension of this condition is necessary to find and segment
the lesions. Up to now this process is performed manually, comporting an high
consumption of time and a dependence on the experience of the involved operator.

The European project GenoMed4All aims to provide solutions, control and pre-
vention for haematological diseases, including SCD, by applying AI technologies. In
this context, a pipeline for identifying and segmenting SCIs was proposed.

This work of thesis aims to develop and implement a pre-processing and post-
processing steps to improve the results obtained with the proposed segmentation
technique.

The pre-processing step includes a phase of brain automatic extraction and seg-
mentation of its main tissues. The post-processing step consists in the classification
of the lesions found in the segmentation step, aiming to remove the false positives.

The proposed steps were developed and tested on a data set of MRI scans pro-
vided by different medical centers in Italy. The performances of the pre-processing
step were tested comparing the obtained results with those of the software FSL,
which is a standard in the analysis of MRI scans. The brain mask comparison mea-
sured a Dice coefficient of 0.87, the white matter of 0.78, the grey matter of 0.67
and the cerebrospinal fluid of 0.66.

The post-processing step was developed training a set of three classifiers and
their results were compared to the manual annotation of the SCIs in the same data
set, obtaining a, AUC precision-recall for the best classifier of 0.75.
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Introduction

Sickle Cell Disease (SCD) is a group of inherited red blood cell disorders. A subject
affected by SCD has abnormal hemoglobin, which causes the red blood cells to
become hard and sticky and look like a sickle. Those cells die early, which causes a
constant deficiency of red blood cells [1].

The main symptom of SCD is anaemia, a medical condition that consists in a
low value of the haemoglobin (the substance that resides in the red blood cells,
responsible of the oxygen transport) in blood. Another frequent symptom is the
occurrence of painful episodes known as sickle cell crisis due to blood vessels that
become blocked and are frequently localized in limbs or back. People with SCD are
more vulnerable to infections, particularly in the early ages of life [2].

The most common neurological complication in subjects with SCD is the presence
of Silent Cerebral Infarcts (SCIs)[3]. SCIs are defined as an abnormal magnetic
resonance imaging of the brain in the setting of a normal neurologic examination,
without a history or physical findings associated with an overt stroke [4]. In the
brain magnetic resonance imaging(MRI) SCI usually present itself as an hypointense
region in the T-1 weighted image, or as an hyperintense region in the FLAIR image,
and are localized in the white matter as show in Figure 1.

SCIs’ consequences includes a decrement in general intellectual abilities, poor
academic achievement, working abilities and a minor quality of life [4]. Specific
morbidity can lead to a progression to overt stroke and progressive SCIs [4, 5].
Neuropsychological and neuroimaging studies are needed to understand how SCI
negatively affect cognition and provide a starting point for the identification of
potential targets for preventive therapies [6]. Up to now the segmentation of those
lesions is manually made by high trained and specialized neuroradiologists, which is
highly time consuming(severaly hours) and can be very subjectively, influenced by
the experience of the operator.

To overcome those issues it was proposed the usage of a neural network to auto-
matically segment the SCI in a brain MRI. A stepwise procedure was used to achieve
the segmentation of those lesions, differentiating the segmented regions from other
non-clinically relevant hypo regions in the white matter [5].

To do that it was necessary to process the MRI images before (pre-processing)
and after (post-processing) the application of the implemented SCI segmentation
tool. In the pre-processing stage the aim is to prepare the image to be processed by
the segmentation tool, cleaning it from everything could badly influence the success
of the AI segmentation. In the post-processing stage the purpose was to refine the
results obtained by the neural network.

This work of thesis, made in collaboration with the Department of Neuro-
science of the University of Padova, fits in the contest of the European project
"Genomed4All"[7] which aims to find correlation between -omics data and pheno-
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(a) Axial slice of a T1-weighted MR scan
without SCI evidences

(b) Axial slice of a FLAIR MR scan
without SCI evidences

(c) Axial slice of a T1-weighted MR scan
with SCI evidences

(d) Axial slice of a FLAIR MR scan with
SCI evidences

Figure 1: Comparison between healthy brain image and brain with SCI in both
T1-weighted and FLAIR MR scan. It’s possibile to appreciate how the SCI appears
as an hyperintense region in the FLAIR image and as an hypointense region in the
T1-w image, pointed by the red arrow.

type by the help of Artificial Intelligence [8] using European data of patients affected
by haematologic diseases, that often presents anomalies in the DNA.

The purpose of this work of thesis is to develop reliable, open source and relatively
quick strategies for the pre-processing and post-processing phase.
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Chapter 1

Preliminary Knowledge

The aims of this work of thesis was to prepare head MR images for a segmentation
using a U-Net and then to refine the outcomes cleaning the misclassified ones. In
order to do that different techniques was used and is necessary to briefly define,
show and explain the approaches used. In this chapter, medical images are briefly
introduced, then the main segmentation techniques used are illustrated; finally, the
metrics useful for evaluating the results obtained are treated.

1.1 Medical Images

An image is a collection of measurements in two-dimensional (2-D) or three-dimensional
(3-D) space [9]. A medical image is a discrete representation of the internal struc-
ture or function of an anatomic region in form of a tensor of picture elements called
pixels/voxels. A pixel is a discrete numeric representation of intensity or gray-
level[10]. The representation results from a process that maps every numerical
value in a position in space and the number of picture elements involved express the
level of detail with which the subject will be depicted [11]. The physical meaning
of the numerical value of a pixel changes according to the imaging modality, the
acquisition protocol, the reconstruction and eventually the post-processing. Nev-
ertheless there are 4 concepts in common for every medical image: pixel depth,
photometric interpretation, metadata and pixel data [12]. In the following
lines these characteristics will be rapidly described.

Pixel Depth Pixel depth is the number of bits used to encode the information
stored in each pixel. A higher number of bits per pixel permits to store a greater
information but requires a greater usage of memory [12]. We can exemplify the
concept just expressed considering a square image with a side of 256 pixel of depth
2 bytes = 16 bit (1 byte = 8 bits). In this case each pixel can express 216 = 65, 536
levels which are usually arranged as integers in range [0; 65, 535]. It is also possible
store the values in the interval [−32, 768; 32, 767] using 15 bits to store the level and
a bit to represents the sign. In this example the image will occupy 256× 256× 2 =
131, 072 bytes.

It is to mention also the possibility for a pixel to store a real number. For this
case the Institute of Electrical and Electronics Engineers created a standard (IEEE-
754) in which defines two basic formats for the binary encoding of a floating point
number: single precision with 32 bit depth and double precision with 64 bit depth.
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Photometric Interpetation The photometric interpretation specifies how the
pixel data should be interpreted for the correct image display as a monochrome or
color image. To clarify that sentence it is useful to introduce the concept of number of
channels, also known as sample per pixel. Monochrome images have only 1 sample
per pixel and all the bits in the pixel depth is used to represents the gray level
[12]. Typically x-ray computed tomography (CT) and magnetic resonance (MR)
images are monchrome, and so, in that elaborate, we will mainly consider those
kind of images. Furthermore nuclear medicine images, such as positron emission
tomography (PET) and single photon emission tomography (SPECT) the data are
usually visualized with a color map, that map is however predefined and the colors
are not information stored in the pixels. In that case the number of channels is 1 and
that images are usually referred to be in pseudo-color. To encode color information
into pixels is necessary to have more than one number of channels. It is common to
have RGB (Red, Green and Blue) images, which are composed of 3 channels. In this
case the pixel depth can be obtained multiplying the number of bits per channels
(usually 8 bits [13]) for the number of channels [12]. An example of colored images
in medical usage are the Doppler ultrasound in which the color is used to encode
blood flow direction and velocity. [11].

Metadata Metadata are informations that describe the image. It is usually stored
at the beginning of the file as a header and contains at least the image matrix di-
mensions, the spatial resolution, the pixel depth, and the photometric interpretation
[12]. Using the metadata, advanced medical image visualization software are able
to correctly read, display and elaborate medical images if the format is supported.
In medical images metadata acquires an also greater importance due to the nature
of the images itself. It is possible to store information about how the image was
produced and even informations on the patient [11].

Pixel data Pixel data represents the numerical value stored in the pixel. Accord-
ing to the data type, pixel data are stored as integers or floating point numbers.
Although is not common, it is also possible to store complex numbers in pixels. An
example is pixel data from MRI before the reconstruction that provides informations
about both the phase and the intensity (The so called k-space) [12].

1.1.1 Medical Image Format

Image file formats provide a standard way to store the information describing how
the image data are organized inside the image file and how the pixel should be
interpreted by software for the correct loading and visualization. First of all, it
is necessary to distinguish between two main categories of formats: The first is in-
tended to standardize the images generated by diagnostic modalities and the seconds
has the purpose of facilitate and strengthen post-processing analysis [12]. The ex-
ample here discussed are DICOM for the first category, that is the original file format
of the datas analyzed in that paper, and Nifti for the second category, which is the
format mainly used during during this thesis work.

DICOM The Digital Imaging and COmmunications in Medicine (which acronyms
is DICOM) standard was established by the American College of Radiology and the
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National Electric Manufacturers Association in 1993 and was introduced in imaging
departments a the end of the ’90s. Now it is the backbone of every medical imaging
department, also because it is not only a file format but also a network communica-
tion protocol. The value of DICOM is that the pixel data and the description of the
medical can’t be separated, accentuating the concept that an image is quite mean-
ingless without its metadata and so they are merged in a unique file. The DICOM
header contains a full description of the entire procedure used to acquire the image,
including patient information such as name, gender, age, weight, and height [12]. It
has 2 main limitations: As a matter of fact pixel that can only store integer values
(altough floating point data can be stored in the metadata), and also it is born for
only 2D images, so a 3D volume is described by a series of files containing the single
slices [11].

Nifti The Nifti format was originally created at the beginning of 2000s by a
committee based at the United States’ National Institutes of Health (known as
NIH) [12]. It’s strength is due to the header that can store information about image
orientation image centre and origin, and that can, for example, resolve ambiguity
between left and right in brain hemisphere MRI. It is supported by many software
of image viewing and can store 3D images. For those reasons it is the format used
in this work.

1.2 Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging is an imaging technique base on the physics phe-
nomenon of Nuclear Magnetics Resonance (NMR), a process that involves the mag-
netic moments of the atoms that, immersed in a constant magnetic field, align
themselves with the external magnetic field, giving rise to a small paramagnetic
polarization contrasted only by the thermal agitation. The constant magnetic field
also give rise to a phenomenon called Larmor precession, in which the nuclei’s mag-
netic moment precess around the external magnetic field direction with a particular
frequency, called Larmor frequency, dependent on the external field. Applying an os-
cillating magnetic field, perpendicular to the constant magnetic field (z axis), at the
Larmor frequency puts in resonance the nuclei, which magnetic moment’s latitude
will change accordingly to the magnetic pulse received. Inserting in the apparatus a
coil with axis perpendicular to the plane where lie the magnetic fields, it is possible
to register an oscillating induced voltage [14].

The nuclei, immersed in the constant magnetic field, will tend to come back
to their original orientation once the oscillating magnetic field is turned off. NMR
informations, and in particular the ones needed for the recording of an MRI im-
ages, comes just from the relaxation time of the magnetic polarization, that is the
time needed for the vector to return parallel to the constant field. It is necessary
to underline that magnetic polarization is a vector and so it can be splitted in two
components, one longitudinal (z axis) and one transversal (xy plane). The relax-
ation is so defined as the time to made the transversal component go back to 0
and the longitudinal component return to the initial value. Those two processes
has different individual relaxation times: T1 for the longitudinal component and T2

for the transversal component. The processes of realignment in longitudinal and
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transversal directions have different natures. The longitudinal relaxation for a nu-
cleus is due to the interaction of the spin with the lattice and so the T1 time is also
called spin-lattice relaxation time. The transversal relaxation otherwise is due to
the interaction between the nucleus’ spin with other spins, then the T2 time is also
called spin-spin relaxation time. It is also to be noticed that the T1 time is longer
than T2. This process of relaxation produce a signal called Free Induction Decay
(FID) that is the signal registered.

1.2.1 Pulse Sequences Images

In MRI the constant magnetic field is usually not uniform, but has a gradient.
The presence of a not uniform field lead to nuclei with different Larmor frequency
depending on their displacement in the space. Adjusting the frequency of the pulsing
field is possible to select only a small slice of space in which nuclei will have that
determined resonance frequency.

It is possible to obtain different contrast between tissues applying particular
sequences of impulses for the oscillating magnetic field that permits to maximize
or minimize the effect of some particular physics phenomena of the FID. It is, for
example, the case in which the FID from T1 relaxation time or the T2 relaxation
time are maximized, as briefly explained below. Another example of phenomena
which FID can be maximized is the diffusion, but they wouldn’t be treated because
are not relevant for this work of thesis. In the next lines will be briefly discussed
the main images obtained by the different sequences and the most used during the
work.

T1-Weighted T1 Weighted image (also referred as spin-lattice) is one of the more
frequently recorded image modality in MRI and demonstrates differences in the T1
relaxation times of tissues. For example fat’s longitudinal magnetization realigns
rapidly with B0, and it therefore appears bright. On the contrary water has a slower
relaxation time in the longitudinal axis and therefore has a lower signal appearing
dark [15].

T2-Weighted T2 Weighted image (known also as spin-spin) is also one of the
basic pulse sequences on MRI and highlights differences on the T2 relaxation time
of tissues [16]. In this kind of images the water appears bright and conversely fat
appears darker than the T1-w images. T2-weighted images are often most helpful
for assessing areas of pathology because diseased or injured tissue contains a higher
water content than is normal, resulting in signal hyperintensity [17].

FLAIR FLuid Attenuated Inversion Recovery (FLAIR) is a special sequence that
removes signal from the cerebrospinal fluid in the resulting images. Brain tissue on
FLAIR images appears similar to T2W images with grey matter brighter than white
matter, but cerebrospinal fluid (CSF) is dark instead of bright. It is very useful in
evaluating cerebral infarts and multiple sclerosis lesions because they will appear
hyperintense in this kind of images [18].

7



(a) T1-W image (b) T2-W image (c) FLAIR Image

Figure 1.1: Comparison between 3 images obtained with different pulse sequences
of the same brain [19]. It is possible to observe how the cerebrospinal fluid (CSF), the
white matter (WM) and grey matter (GM) appear in the different images. The lesion
here observable therefore appears hypointense in the T1W image and hyperintense
in the T2W and FLAIR images.

1.2.2 Image Acquisition Type

As explained in the previous section, in MRI the resonance is possible to encode
spatial information by using a magnetic gradient, due to the dependency of the
Larmor frequency on the intensity of the local magnetic field. Traditionally this
effect was used to select only a small slice of tissue and the image recorded was
in two dimensions. The MRI volume was in this case recorded as a set of planar
images. In more recent years another technique has been developed that permits to
record a volume in its integrity, obtaining images with truly cubic voxels and with
a higher resolution [20].

1.2.2.1 2D Imaging

In two dimensional imaging a constant field with a gradient is applied on the z axis
and a selective radiofrequency pulse is applied on the xy plane. In this way only the
nucleis on a small slice will be excited and that permits to select only a set of voxels
in an xy plane. The spatial informations about the remaining two dimensions (x
and y) are provided by an encoding of frequency and phase.

It is possible to select thinner slices increasing the gradient on the z axis but
there is a limitation to the thickness that can be choose. Usually is difficult to
select slices of a thickness lower than 3 mm. This is due to the Signal-to-Noise ratio
(SNR) because smaller voxels will produce a lower signal. This will cause to have
voxels that represent volumes with different tissues in it, this is the so called partial
volume effect. Also the slices are usually separated by a gap of non included tissue
to prevent overlapping between successive slices.

The result of this acquisition technique is then a set of 2D images with a low
resolution on the z axis [20].
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1.2.2.2 3D Imaging

In 3D imaging the constant field on the z axis has not a slice selecting gradient
and the entire sample volume is excited simultaneously. The spatial information
on the z axis is provided by another phase encoding. 3D images can be seen as a
rectangular box that delimits the anatomic region in all dimensions subdivided in
smaller contiguous voxels. In 3D scans voxels are usually isotropic, which means
that have the same dimensions in all the three axis. The images acquired with a
3D technique have usually a greater spatial resolution and having smaller voxels
permits to reduce the partial volume effect.

1.3 Registration

Image registration is an image processing technique used to align and overlay two or
more different images or volumes. The need for a registration appear whenever it is
necessary to compare two images containing different informations about the same
subject [21] or also when a study on many patient is done and there is the need to
have all the volumes in the same space. An example in medical field can be the case
in which it necessary to compare two images of the same patient taken with different
impulse modalities (i.e. T1-W and FLAIR). In this case, the examined anathomical
structure is the same, however the two images are not necessary overlapping. That
because may happen that a patient change his position during the exam. An other
use case may be in case of multi-patients studies, where there is the necessity to
compare the different images to an atlas.

Image registration process involves two images: a moving image (Im(x)) which
is moved and deformed, and a fixed image (If (x)), which is the reference one. The
registration process allows to find the transformation ( T (x)) which allows the mov-
ing image overlay the reference one. The best transform is estimated by minimizing
a certain cost function. This function has to be chosen according to the image type
and registration purposes [22], since different types of cost functions can lead to
very different results in the registration process. An example of of this cost function
can be the mean squared error between the pixel intensities of the fixed and moving
image. This kind of function can have good results registering two images acquired
with the same modality but would not work properly in registering images acquired
with different modalities (e.g. a T1W scan and a FLAIR scan), because the same
tissue have different pixel values in the two images. In this cases other metrics are
more effective, for example the mutual information.

There is the possibility to distinguish between two kinds of process that lay
under the name of registration. In the first meaning the word is used to indicate
the process of finding a transformation that can relate the position of features in
one image with the position of the corresponding feature in another image. The
second meaning both relates the position of corresponding features and enables us
to compare the intensity at those corresponding positions. In this second meaning
the concepts of resampling and interpolation are incorporated [23]. Resampling
is the process in which the orientation, resolution or field of view of an image is
changed [24]. In image registration this could be necessary because the sampling
grid of the original moving image is modified by the applied transformation. Due
to the changing of sampling of the moving image it appear the problem of finding
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the pixel intensities for the new pixels in the transformed grid. This can be done
estimating the new values starting from the original ones and taking into account
the transformation applied to the image. This process is called interpolation.

Another aspect to take in account is the type of transformation that can be
applied to the moving image. They can be subdivided by the degrees of freedom
(dof) of the transformation:

• Rigid transformation allows 6 dof. In this kind of transformation the image is
treated as a rigid body which undergoes to rotation (3 dof) and translation (3
dof) along the axis. In medical application is usually applied when the subject
of the image is rigid (e.g. a bone) or when the two images are acquired with
the same modality but with a time lapse between the two acquisitions;

• Affine transformations allows 9 or 12 dof. This kind of transformations incor-
porate also scale (3 dof) and skews (3 dof) besides rotation and translations.
Even if for the nature of the biological organs this approach don’t increase
greatly the applicability of image registration, because usually organs don’t
only stretch or shear, this kind of transformation is useful for overcoming
scanner induced errors [23];

• Non-affine transformations have an indefinite number of dof and allows also
the deformation of the moving image. There are many different non affine
transformations which uses different approaches. For example the non-rigid
component of the transformation can be determined using a linear combination
of polynomial terms, basis functions, or B-spline surfaces [23]. An interesting
example of non-affine approach is the deformation grid, in which a grid is
overimposed on the moving image and then stretched and deformed to match
the fixed image.

1.4 Segmentation

Image segmentation is defined as the partitioning of an image into non-overlapping,
constituent regions that are homogeneous with respect to some characteristic such
as intensity or texture [9]. The segmentation of an image have a great relevance for
medical purposes because it can help extracting features that provides informations
about organ volumes or lesions identification [11]. Usually it can be performed iden-
tifying a surface for each tissue class (boundary identification) or by the classification
of each pixel in the volume (volume identification) [25]. The classification of image
segmentation techniques is challenging or even impossible because of the different
criteria that can be used. One classification criteria can be defined by the segmen-
tation outcome: hard-segmentation that returns a net assignment of a pixel to a
determined class, or soft-segmentation, where the output is a map of probabilities
to belong to each class. It is always possible to transform a soft-segmentation to a
hard-segmentation by applying a threshold to the probability value.

Another possible classification for the segmentation process depends on the de-
gree of human interaction required to achieve the segmentation. Using this criterion
we can distinguish between manual, semi-automatic or automatic segmentation.
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Manual segmentation technique requires a trained and high specialised operator
that has to visually recognise and identify the searched region. The operator usually
visualize the images using specialized softwares and manually annotates them. Right
now it is still the most reliable and precise technique but it ha the disadvantages to
be highly time consuming and operator-dependent [10].

Semi-automatic segmentation techniques requires a limited interaction by an
human operator to set the parameters for the image segmentation. Those techniques
includes operation like clustering and thresholding in cases where the parameters are
not predetermined but has to be manually set for each volume. Another highly used
semi-automatic set of applications are the ones in which the images are firstly roughly
segmented automatically and then manually corrected by an operator. While this
approach permits to save time it keeps being operator-dependant.

Automatic segmentation Thanks to the improvement of computer power it be-
gan possible a fully automatic segmentation, which means that no human interaction
is needed. Often done with the help of Artificial Intelligence (AI) as in case of Neural
Networks [5]. This technique is faster and totally operator-independent, but it is
hard to implement[10] and is still in a development state.

1.4.1 Principal Segmentation Methods

During the years in literature are appeared several techniques on medical image
segmentation. When approaching a segmentation more than one of those techniques
can be combined into pipelines to obtain the best results [9]. In the following lines
will be described the ones used in this work.

1.4.1.1 Thresholding

Thresholding approach segment a scalar image by creating a binary partitioning
of the image intensities [9]. In thresholding the main goal is to find the threshold
that divides the histogram of the intensity occurrences of the image in two classes,
one with intensities higher and one with intensities lower than the threshold, that
are physically significant. An example of thresholding segmentation can be seen in
Figure 1.2.

It is common that more than two classes has to be find and in this case the
process is called multithresholding [9]. The simple application of a thresholding (or
mutithresholding) approach is often not sufficient to obtain a proper segmentation
due to the presence of noise or intensity nonuniformity, often found in medical
images. Despite that thresholding continue to be used, due to its semplicity, when
the problem permits it or as a step in a more complex approach[25].

1.4.1.2 Statistical Pattern Recognition

The statistical pattern recognition field groups many different techniques of segmen-
tation. Even if giving a proper definition is not easy, it is possible to summarize
the concept of saying that it consists in the automatic discovery of regularities in
data through the use of computer algorithms and with the use of these regularities
to take actions such as classifying the data into different categories [27].
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(a) Original Image (b) Thresholded Image (c) Image Histogram

Figure 1.2: Example of thresholding application to a common image [26]. In this
case the aim of the segmentation was to recognise the subject (class 1) from the
background (class 2). In the histogram image (c) it is possible to see the two classes
and the threshold division.

In order to do that classification it is necessary to evaluate a set of features
for each pixel. A feature is an individual measurable property or characteristic of
the pixel itself [27]. This changes from the original variables (the image) to some
new variables (the feature) is aimed to make the pattern recognition problem easier
to solve [27] as those features forms a set of patterns and the classification of that
patterns permits the classification for each pixel [25]. For example the more common
visual features include color (or grey level in 1-channel images), shape or texture
[28].

The pattern recognition techniques are usually classified in supervised or unsu-
pervised depending on their need for a set of example target labels in the training
set or not. In this section some of the main used pattern recognition techniques will
be briefly discussed, such as classifiers as a supervised approach and clustering for
unsupervised.

Classifiers need for an already labeled set in the training stage and so they are
considered as a supervised approach. The training data is usually manually seg-
mented to let the classifier learn how the features can lead a pixel to belong to a
class or another. Once trained the statistical classifier can assign to every pixel a
probability of belonging to each class, based on the extracted features. The main
disadvantage of this approach is the necessity for human work to collect the training
set. Those training data must be sufficiently large to offer to the classifier enough
variability in the set, otherwise the classifier risks to over specialize only on the
training data [9, 25, 11].

Clustering doesn’t require labelled training examples since it is an unsupervised
approach. This approaches usually require an initial choice of parameters from which
they are particularly dependent [9, 11]. For brain segmentation usually the number
of clusters is previously known and so it is frequent that algorithms that needs this
parameter as input are used. Three from the most used algorithms of that kind will
be briefly explained in the next lines as examples:
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• k-means clustering: it permits to partition n (X(x1, x2, ..., xn)) pixels in k
clusters and minimize the distance function (

∑k
i=1

∑n
j=1(xij − Ci)

2) where Ci

represents the i-th cluster center. The k-means algorithm than follows this
steps [29]:

1. Initialize cluster centroids with random samples;

2. Assign each observation (xi) to the nearest cluster center;

3. Recalculate and update each cluster center (Ci);

4. Repeat steps 2 and 3 until Ci does not change.

• Fuzzy C-means: this algorithm is a generalization of the k-means clustering
that permits soft-segmentation. Intuitively, the degree to which a pixel belongs
to a cluster is inversely proportional to the distance from the pixel to the center
of that cluster. In this algorithm the function to minimize is always a distance
between each pixel and the cluster’s centroids, but it is weighted over the
probability of belonging to the determined class [30];

• Expectation Maximization: In this approach the pixel intensities of each
tissue are supposed to follow a Gaussian distribution. The distribution of the
pixel intensities of the whole image is supposed to follow a Gaussian Mixture
distribution. The Gaussian Mixture can then be defined as

p(x) =
K∑
k=1

πkN(x|µk,Σk) (1.1)

where {1, 2, ..., K} is the set of mixture components and, for the k-th mixture
component, πk is the mixture weight and N(x|µk,Σk) is a d-variate Gaussian
density, µk is the mean vector and is the covariance matrix.

The Expectation Maximization algorithm follows then this steps [29]:

1. Initial parameters are somehow initialized (randomly, by k-means or man-
ually given) and then the log likelihood is computed;

2. The posterior probability is computed using the current parameters (Expectation
step);

3. The parameters are recalculated from the current posterior probability
(Maximization step);

4. The log likelihood is recomputed;

5. Repeat step 2, 3, and 4 until a predetermined convergence criterion is
satisfied.

1.4.1.3 Neural Networks

Artificial Neural Networks(ANN) are a computational architecture derived from
neural physiological models [11]. In this network each node can perform elementary
computations, adapting the weight assigned to the connections between nodes gives
to the network a property similar to the biological capacity of learning [9]. This
brings out the necessity for a training stage, in which the network can compare a set
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of features for a pixel with the classification outcome. After this step it is possible
to give some new data to the ANN and it will classify them according to the data
received during the training step [25].

There are many different architectures for Neural Networks but one of the more
used in image segmentation is Convolutional Neural Network (CNN) [11].
CNNs are part of the class of Deep Learning Networks. It’s typical structure can
be divided in input layer, which represents the set of data, then quantity of hidden
layers and finally the output layer which provides the results of the segmentation
[10]. In this kind of architecture for image segmentation, the hidden layers usually
belongs to three categories:

• Convolutional layers is made of several convolutional kernels that iteratively
convolves local regions of the inputs to generate feature maps. The output of
a convolutional layer is a tensor of fetaures. Usually this layer is followed by
the application of an activaton function;

• Pooling layers which performs subsampling at their input data. For example
they can take inputs from a 2×2 unit region in the corresponding feature map
(from the convolutional layer) and would compute the average of those inputs.
This stage permits to achieve invariance respect small shifts of the image in
the corresponding regions of the input space [27]. Pooling layers are usually
placed in between two convolutional layers;

• Fully connected layers that is a layer in which every possible connection be-
tween the input and the output layers can be found. It can be usually find
after several convolutional and pooling layers in order to perform high-level
reasoning

To train the CNN model certain loss functions over its parameters as to be minimized
and until now many functions has been proposed, each for different scenarios. Due
to the high correlation between pixels in an image CNN showed high performances
in dealing with that data. It is also honorable to be mentioned that recently CNN
adaptation to quantum computers starts to be proposed [31].

In 2015 was proposed a CNN architecture specialized for biomedical applications,
called U-Net. It’s main goal is the possibility to be trained also when the training
dataset is not large, a condition that often happens in this kind of applications.
In order to work with such small number of data it relies on a huge data augmen-
tation. The peculiarity of the UNet is the presence of skipping connections which
builds a short-cut from a shallow layer to a deep layer by connecting the input of
a convolutional block directly to its output. Those skipping connections permits to
the network to keep the features learned in the low layers and avoiding performance
degradation when adding more layers [32]. The whole structure is divided into two
main parts:

• Encoder, i.e. contraction path: this path follows the typical architecture of a
CNN and consists on the repetition of pooling and convolutional layers. Each
couple of pooling and convolutional layers halves the input data and double
the number of feature channels;

• Decoder, i.e. expansion path: each step is a composition of convolutional
layer and up-sampling layer. Every step doubles the number of samples and
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halves the number of the feature channels. The expansive pathway combines
the feature and spatial information through a sequence of up-convolutions and
concatenations with high-resolution features from the contracting path [33].
The name U-Net is due to the resulting shape of its architecture, as it is
possible to see in Figure 1.3.

Figure 1.3: U-Net architecture example. Each blue box corresponds to a multi-
channel feature map. White boxes represent copied feature maps. The arrows denote
the different operations [33].

1.4.1.4 Atlas based Segmentation

Another technique consists in have a sort of template already segmented (the atlas)
and registering it on the image that is intended to be segmentated. This could lead
to a transfer of the labels found on the atlas to the image [25].

An atlas is a segment image of a composite head image formed from co-registered
head images of several subjects [25]. In an atlas the pixel intensity could be the sim-
ple average of the pixel intensity of the co-registered images, or it can be normalized
in some arbitrary way [34]. Another useful atlas can be tissue-type atlas, in which
pixel value represents the probability of that pixel to belong to a determined tissue
[35].

This technique consists in finding the right registration for the atlas that have
to be already segmented for the classes searched. Once the atlas is registered is
possible to apply the same transformation to the labels done on the atlas, in this
way the labels will be transformed in the image space. As for the other techniques
this one can be used standalone but have a great potentiality when pipelined with
some others.
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For example it is possible to register a probabilistic atlas over an unsegmented
volume and using that to select the "a priori" probability for the statistical pattern
recognition segmentation, as done in this work of thesis.

Finally it must be mentioned the use of probabilistic atlas had lead to the full
segmentation of brain, including subcortical structures [25].

1.5 Performance Evaluation Metrics

Once a pipeline of segmentation is implemented it is recommended to evaluate its
performance. In order to do that evaluation in this work of thesis a series of methods
and metrics are used. In first place to compute a metric there is the need for under-
standing what is a confusion matrix. Next the main metrics for the classification are
reported, such as precision, recall, specificity and FPR. Then more specific metrics
such as accuracy, dice coefficient, jaccard index, mcc and ROC AUC are discussed.

Confusion Matrix As a first thing it is necessary to define the four cases that is
possible to encounter during a binary classification:

• True Positive (tp): an element that has been classified as positive while
really being positive;

• True Negative (tn): an element that has been classified as negative while
really being negative;

• False Positive (fp): an element that has been misclassified as positive
while in reality is negative;

• False Negative (fn): an element that has been misclassified as negative
while in reality is positive.

Given those definitions is possible to define the confusion matrix, that is a table
that permits the visualization of the performance of classifier. Each row of the
matrix represents the instances in an actual class (i.e. the ground truth) while each
column represents the instances in a predicted class. (In literature is also possible
found the opposite, both variant are permitted [36, 37] )

Precision is the rate between the true positives and the number of all the elements
predicted as positive. Intuitively is the ability to don’t misclassify a negative element
as positive. In the subsequent Equation 1.2 there is the mathematic definition:

precision =
tp

tp+ fp
(1.2)

Recall , also known as true positive rate (TPR) or sensitivity is the rate between
the true positives and all the elements that really are positive (Equation 1.3). It
can be considered as the ability to correctly classify a positive element.

recall =
tp

tp+ fn
(1.3)
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Figure 1.4: Example of a binary confusion matrix. In this matrix we can find
displaced all the outcomes of the classification used. In the rows are visualized the
predicted classes and in the columns the actual classes of the incoming data. That
permits to have a visual indication of the performance of a classificiation algorithm.

Specificity is the rate between the true negatives and all the elements that really
are negative (Equation 1.4). It can be considered as the ability to correctly classify
a negative element.

specificity =
tn

tn+ fp
(1.4)

False Positive Rate (FPR) is the rate between false positives and the total
negatives. As visible in Equation 1.5 the total number of real negatives is the sum
the true negatives and the false positives.

FPR =
fp

tn+ fp
(1.5)

Accuracy and Balanced Accuracy The accuracy is the rate between the num-
ber of well estimated (true) outcomes with respects to the total outcomes (Equation
1.6) and it intuitively represents the fraction of well classificated elements with re-
spect to the total number:

accuracy =
tp+ tn

tp+ tn+ fp+ fn
(1.6)

When the two classes (positive and negative) are not composed of roughly the
same amount of data, usually referred as a situation of unbalanced data, the ac-
curacy is not a good measure of the goodnes of a classification, due to the low
reppresentation of a class in the total amount of the data.

To overcome this issue another metric was defined with the name of balanced
accuracy, which is the mean of recall and specificity (Equation 1.7).

balanced accuracy =
1

2

(
tp

tp+ fn
+

tn

tn+ fp

)
(1.7)
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Dice Similarity Coefficient / F1 score is used to measure the similarity of two
samples. In the case of two images the similarity can be thought as the capability
of the two images to overlay one on the other. It is the double of the rate between
the cardinality (number of elements in the set) of the intersection between two sets
and the sum of the cardinalities of the single sets (Equation 1.8). It is intuitively
that the best value is 1 (total overlapping) and the worst value is 0 (no overlapping).
Given two sets named X and Y the following is the mathematical definition:

DSC = 2
|X ∩ Y |
|X|+ |Y |

(1.8)

When applied to boolean data it is often referred as F1 score and is defined as
the harmonic mean of precision and recall (Equation 1.9).

F1 =
2

precision−1 + recall−1
= 2× precision× recall

precision+ recall
=

2tp

2tp+ fp+ fn
(1.9)

While not immediately obvious at a first sight, the proof of the equality of those
equations is reported in Appendix A.

Jaccard index , also known as Jaccard similarity coefficient, is a metric used
to evaluate overlapping between two sets. It is defined as the rate between the
cardinality of intersection of the sets and the cardinality of the union of the same
sets (Equation 1.10). Given X and Y as the sets to evaluate:

J =
|X ∩ Y |
|X ∪ Y |

(1.10)

Matthews correlation coefficient (MCC) , so called because was firstly used
by Matthews in 1975 [38], is a value that ranges between −1 and +1 and can be
applied to multiclass classification. Here it is discussed and defined (Equation 1.11)
only the case of binary classification. The +1 result means a total agreement while a
−1 means total disagreement. If the result is 0 than the prediction is totally random
[39].

MCC =
tp× tn− fp× fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
(1.11)

Receiver Operating Characteristic (ROC) curve Considering a soft segmen-
tation output in which the output is continue, to determine the classification (hard
segmentation) it is necessary to apply a threshold to the outcomes of the segmen-
tation and tp, tn, fp and fn will vary with the threshold. Usually there is a trade
off between fp and fn produced by the algorithm. ROC curve visualize this result
plotting the recall in function of the false positive rate while varying the threshold
[39].

We can distinguish two extreme curves:

1. a line with 45 of inclination, representing a random classifier with no benefit;

2. a broken line rising from the origin of axis to the point (0,1) and then ending
at (1,1) meaning a perfect classifier.
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Precision-Recall Curve Similarly to the ROC curve, the precision-recall curve
plot the trade off between the precision and the recall at the variation of the decision
threshold. This curve returns a better visualization for the goodness of a classifica-
tion when the data are unbalanced, i.e. one of the two classes is less represented in
the considered sample than the other [40].

While the perfect classifier is represented by an horizontal line starting from the
point (1, 1), reaching the point (1, 1) and then falling to the point (1, 0), a random
classifier is represented by an horizontal line at the height equal to the rate between
the positive and negative class.
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Chapter 2

Material and Methods

This work aims at the development and implementation of the pre-processing and
post-processing stages of a segmentation pipeline of Silent Cerebral Infarctions in
brain MRI of patients affected by Sickle Cell Disease.

The segmentation is carried out by a U-Net ensemble [5] that works on the
single slices in the axial direction and it requires standardized images as input. The
developed preprocessing phase aims the data normalization, with the batch effect
removal. To perform this tasks the brain was isolated from the head images obtained
and was next segmented into its main tissues.

It was observed that the U-Net ensemble tends to identify as SCI in some areas
which in reality are false positives. The aim of the post-processing phase is the
identification and removal of these areas.

This Chapter will firstly report a short review on the analysed dataset. Then
the pipelines of pre-processing and post-processing will be discussed in details, ex-
plaining also how they were implemented.

2.1 Materials

The main dataset used for this work of thesis was provided by three different medical
centers in italy and was acquired in the contest of the european project Genomed4All.
Those centers was respectively located in the cities of Padua, Naples and Genoa.
The dataset was composed of MRI scans, both T1W and FLAIR for each patient,
in Nifti format, recorded in the time range from 2009 to 2020. The provided dataset
has a high heterogeneity about acquisition systems used and spatial resolution as it
possible to see in Table 2.1. While all the images have the same size (256 × 256)
on the transverse plane (xy-plane) on the z-axis the size ranges from a minimum
value of 22 to a maximum value of 512. Also the acquisition parameters have a wide
range of values. The minimum echo time used is of 2.958ms and a maximum one
of 344.578ms. The repetition time instead ranges from 8.456ms to 11000.0ms.

The images come from 57 patients of which 51 have evidences of SCIs and the
other 6 without this kind of lesion. The volumes were manually labeled by expert
clinicians from the University of Padua. The labels provided consist in a binary
segmentation of the SCIs’ volume.

Genua’s and Padua’s centers provided also general informations about the age
and the sex of the patients and in Table 2.2 is possible to appreciate that the dataset
consists mainly of underarged patients.
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Axis Size (pixel) Spacing (mm)
Mean Std. Dev. Mean Std. Dev.

x 256 0 0.85 0.12
y 256 0 0.81 0.14
z 90 132 4.34 1.93

Table 2.1: In this table are reported the the mean and the standard deviation for
the size and the spacing on the three main axis of the images of the entire data set.
The data reported in this table concern the scans from all the centers (Naples, Genua
and Padua).

Medical Center
of Provenience

Age Sex Number of Patients
Mean Standard Deviation M F

Padova 11.18 5.78 16 23 39
Genova 39 14.42 4 3 7

Table 2.2: Patient dataset description divided by center of provenience. It is possi-
ble to appreciate the distribution of ages, sex. The Naples center is omitted because
no informations were provided.

2.2 Pre-Processing

The starting point for the Silent Cerebral Infarcts’ segmentation was the T1 weighted
and FLAIR head MR scans. The approaches here explained are aimed to process
the T1W images only. It is therefore possible to transfer all the masks obtained
registering the T1W images over the FLAIR images using a rigid transformation
in order to align the two images and to permit that every mask obtained can be
transferred on the FLAIR images also. In Figure 2.1 is reported the full flowchart
of the pre-processing pipeline described below.

2.2.1 Description

The first need was to remove from the images everything except the brain, in a
step called brain extraction (or also skull stripping). Once this task was done the
challenge has been to segment the different brain tissues (white matter, grey matter
and cerebrospinal fluid), with special regard toward the white matter, because it is
the tissue where SCIs can be found.

The techniques developed for both the brain extraction and the segmentation
are atlas based and relies on the use of an already segmented atlas. The pipeline
is designed to work with every atlas that contains at least a brain mask and a soft
segmentation of the three tissues cited, but during the developing of this work of
thesis was used in particular the ICBM MNI 152 non linear symmetric atlas 2009a
which have isotropic voxels of size 1mm3 and a total size of 106× 232× 188 [41].

2.2.1.1 Brain Extraction

The process of brain extraction consists in the separation of the brain from the non-
brain tissues present in the head. This process is often called also skull-stripping
even if the two meanings are not totally interchangeable [42], it is common to use
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Figure 2.1: Workflow of the developed preprocessing pipeline. In this flowchart
are included both the brain extraction stage and the segmentation stage. The output
from the first stage is linked as input of the second stage since only the extracted
brain was used during the segmentation process. The atlas registration is linked to
the segmentation stage because the probability maps of the atlas was registered in the
brain space using the transformation parameters obtained during the registration of
the atlas in the brain extraction step.

both the terms to indicate the same process and in this work both the terms will be
used.

This is a common pre-processing step in neuroimaging as it permits to focus
only to the spatial volume where the researched features physically are. Due to
high variability that is possible to find between each image, caused by differences in
image acquisition or inter-patient variability the automatic brain extraction is not
a easy task.

The technique here proposed is intended to be totally automatic and compu-
tationally fast even on a domestic pc. It relies on the use of an atlas and the
corresponding binary brain mask. In that paragraph all the steps that brought to a
proper brain extraction are explained.

Registration: MNI152 atlas was registered onto the T1W image using a mul-
tiodal and multiresolution registration. The first transformation used was a rigid
transformation to roughly align the atlas on the T1 image. The so obtained image
was then transformed with an affine transformation to permit to the moving image
to scale and skew to reach a better alignment with the fixed image. In the last step
an elastic BSpline transformation was applied, to permit the deformation necessary
to make the two images as overlapping as possible. In all those three transformations
the metric to minimize was the mutual information which allows fast computation
of the metric value [43] and permits to match the images even when the values
of the matched pixel are not the same. Morevoer, according with the last applied
transformation, the chosen interpolator was a BSpline function in order to have a
higher precision in the final pixel values, since the computation time is not affected
in a significant way. The final result is visible in Figure 2.2.
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Masking: The mask obtained from the registration was then thresholded and
dilated with a spherical kernel of radius 1. The brain mask obtained was then used
to mask the image in order to have a first roughly extracted brain. The dilating
process was necessary in order to obtain a more conservative extraction of the brain
and assuring that all the regions of interest were conserved.

Thresholding: That allows to reach a rough head segmentation in which only the
brain and part of the skull are visible. The image obtained in such way was then
normalized. The normalization was done calculating the mean value an the standard
deviation for the pixels under the mask obtained in the precedent step and then
shifting the pixel values in order to have the mean value at 0 and scaling the values
of 1σ. The normalized image was then thresholded with a multi-otsu algorithm in
order to exclude the background and obtain a binary image. The thresholded image
was used as a mask on the original head image. The obtained masked image was
then normalized and thresholded again with a fixed threshold. Those two thresholds
were necessary to have a better control in removing the unwanted regions. The
normalization process was necessary in order to have the possibility of use a fixed
threshold.

Finding the Largest Connected Region: The result from the last step was
a binary image in which the gap between the brain and the skull was partially
considered background. In order to have a proper separation of the skull from the
brain an eroding filter with a spherical kernel of radius 1 was applied. At this point,
having the brain totally divided from the skull, the largest connected region in the
image was found, resulting in the brain.

Refinition: The so obtained mask was finally dilated with a spherical kernel of
radius 2, in order to regain the loss volume in the eroding applied for the purpose
of fully divide the skull from the brain.

In this way was possible to obtain an algorithm that compute the brain mask
for a T1W MRI scan like the ones visible in Figure 2.3 and Figure 2.4 with times in
the order of few minutes, even using a normal domestic pc.

2.2.1.2 Tissue Segmentation

Since the SCIs are found only in the white matter, a proper segmentation of the
brain tissues has a great value for their segmentation. For the aims of this work of
thesis the algorithm is intended to work with relatively short time even on a normal
domestic personal computer.

The main idea behind the approach here proposed was to consider the pixel val-
ues of the brain distributed as a mixture of Gaussians distributions, as visible in
Figure2.5 and then use an Expectation Maximization (EM) algorithm to estimate
the parameters for those distribution functions. The EM algorithm requires some
parameters for it initialization, such as the number of classes, the estimated mean
value for each class and the weight of each class on the total image. The potentiality
of having the brain already extracted was to have the background already segmented
and therefore the number of classes was set to 3 as the algorithm is intended to seg-
ment the main tissues of the brain (white matter, grey matter, cerebrospinal fluid).
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(a) Fixed Image (b) Original Moving Image (c) Registered Moving Image

Figure 2.2: T1W atlas registration over a T1W image. Figure a is the original
head scan. Figure b is the MNI 152 [41] atlas before the registration process. Figure
c is the atlas scan after the registration and is possible to see how the atlas was
deformed by the algorithm to match the fixed image.

(a) Original Image (b) Computed brain mask (c) Extracted brain

Figure 2.3: In these images is possible to see the comparison between an original
head image (a), the brain mask computed (b) and the brain extracted with that mask
(c).

The other parameters were estimated relying on the registration of the probability
maps for the tissue segmentation of the atlas on the images. This approach permits
an initialization more accurate and focused for each analysed volume.

In the first place the probabilistic tissue maps of the atlas were transformed
using the same transformation obtained for the atlas registration during the skull
stripping. Once the map were transformed each pixel was assigned to the class
with the higher probability. This process permitted to have a rough preliminary
segmentation of the tissues and this information was used to compute the estimate
for the class weight and the mean value of the pixels of every tissue.

It is to mention that the expectation maximization algorithm lead to a soft
segmentation, giving a probability map for every class in output. To compute the
hard segmentation was used the same approach as before: every pixel was assigned
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Figure 2.4: Using specialized applications is possible to render a 3D image of
the volumes permitting to have a better looking to the external structures of the
obtained object. The one here proposed let see the extracted brain with the proposed
algorithm. The image is the same of Figure 2.3. This 3D rendering is computed
with the application 3DSlicer [44].

to the class of greater probability. The results of the segmentation are visible in
Figure2.6.

2.2.2 Implementation

The two pipelines described before was implemented using Python, which is an high
level object oriented programming language. To perform all the essential operations
(input/output, filtering, morphological operations, etc.) two main libraries were
used: ITK [45] and Numpy [46]. To perform the registration and to apply the
obtained transformations the ITK-Elastix [47] library was used, which is an ITK
Python interface to Elastix [22]. To implement the brain segmentation the Scikit-
Learn[48] library was used.

The whole code is opensource and freely available con GitHub [49] and the instal-
lation is managed by a setup.py file which also provides the full list of dependencies.
During the developement, the installation was automatically tested on Ubuntu for
different python versions. This continuos integration process was carried out using
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Figure 2.5: In the figure is possible to see the histogram of an extracted brain
from a T1W scan. Looking at the pixel value distribution (expressed as Grey Level
since it is a monochromatic image) is possible to appreciate how to model the pixel
distribution as a mixture of Gaussians with different means (identifiable with the
three observable peaks) and different standard deviations.
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(a) Brain extracted from a T1W scan. (b) Brain segmentation result.

Figure 2.6: Segmentation process results on an already extracted brain. Figure a
is the brain extracted from the scan. In Figure b is is possible to observe the result
of the segmentation process in which the white matter is labeled in red, the grey
matter in yellow and the cerebrospinal fluid in green. The masks are obtained from
a Gaussian mixture model with three classes which parameters were estimated using
an expectation maximization algorithm.

the github actions.
The whole code is subdivided in three modules, respectively dedicated to regis-

tration, skull stripping and segmentation and is intended to work with Nifti images.

2.2.2.1 Brain Extraction

In the last years many methods were proposed. Some of the more widely used
examples of brain extraction methods are Brain Extraction Tool (BET) from the
FSL library, Brain Surface Extraction (BSE) which is part of BrainSuite and Robust
Learning-based Brain Extraction System (ROBEX) and many others [42]. Each of
the cited methods have a different approach to the skull stripping problem, ranging
from low level morphological operations to the classification using pattern recogni-
tion.

The brain extraction process proposed in this work of thesis relies on a registra-
tion of an atlas over the image as explained before, so both the registration module
and the skull stripping module are involved in this part of the implementation.

The registration was done using this function based on Elastix library. The
images were all read with the ITK I/O functions with floating pixels as required by
Elastix.

Listing 2.1: Multimap Registration Function
1 import itk
2
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3 def elastix_multimap_registration(fixed_image , moving_image):
4

5 # Setting our number of resolutions
6 parameter_object = itk.ParameterObject.New()
7 resolutions = 4
8

9 #Import RIGID parameter map
10 parameter_map_rigid = parameter_object.GetDefaultParameterMap(
11 ’rigid ’, resolutions)
12 parameter_map_rigid[’Metric ’] = [

’AdvancedMattesMutualInformation ’]
13 parameter_map_rigid[’Interpolator ’] = [
14 ’BSplineInterpolatorFloat ’]
15 parameter_object.AddParameterMap(parameter_map_rigid)
16

17 #Adding an AFFINE parameter map
18 parameter_map_affine = parameter_object.GetDefaultParameterMap(
19 "affine", resolutions)
20 parameter_map_affine[’Metric ’] = [
21 ’AdvancedMattesMutualInformation ’]
22 parameter_map_affine[’Interpolator ’] = [
23 ’BSplineInterpolatorFloat ’]
24 parameter_object.AddParameterMap(parameter_map_affine)
25

26 #Adding a NON -RIGID parameter map
27 parameter_map_bspline = parameter_object.GetDefaultParameterMap

(
28 "bspline", resolutions)
29 parameter_map_bspline[’Interpolator ’] = [
30 ’BSplineInterpolatorFloat ’]
31

32 parameter_object.AddParameterMap(parameter_map_bspline)
33

34 #Set the registration
35 elastix_object = itk.ElastixRegistrationMethod.New(
36 fixed_image ,

moving_image)
37 elastix_object.SetParameterObject(parameter_object)
38

39 #Start the registration
40 elastix_object.UpdateLargestPossibleRegion ()
41

42 return elastix_object

At the end of the registration and object containing both the registered image
and the transformation applied was returned. This function is then inserted in the
the main brain extraction pipeline.

The implemented pipeline use different functions that are aimed to perform the
different steps described in the previous sections. The first needs encountered was
to have a simple interface for the application of the used ITK filters, as threshold
and morphological operations and their name is always self explanatory.

One of the most important step in this brain extraction pipeline is the rough
masking done with the registered atlas’ brain mask. Due to the ITK installation
on python, in which not every filter are wrapped from the original C++ language,
the masking functions was not always available for the used types. To bypass the
problem a dedicated function that explicitly set a 0 value for every pixel outside the
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mask was implemented with the name of negative_3d_masking.
One of the important processes needed to explain in this section is the normal-

ization used to permit the using of a fixed threshold. It permits the normalization
of the pixels values masked by a certain mask which in this case is the brain mask
obtained in the first steps, permitting to not have the background pixel’s value to
account for the normalization process.

The last step in the brain extraction is the function that permits to find the
largest connected region in the image. This is the step in which the proper brain
is extracted. The function implemented simply found every connected region in the
image and then sort them by their dimension, finally keeping only the greater ones.

Listing 2.2: Largest Connected Region Finder
1 import itk
2

3 def find_largest_connected_region (image):
4

5 #searching for connected regions in the images
6 connected_filter = itk.ConnectedComponentImageFilter[OutputType

, OutputType ].New()
7 connected_filter.SetInput(cast_filter.GetOutput ())
8 connected_filter.Update ()
9

10 #relabeling the images in increasing order for decreasing
dimension

11 label_filter = itk.RelabelComponentImageFilter[OutputType ,
OutputType ].New()

12 label_filter.SetInput(connected_filter.GetOutput ())
13 label_filter.Update ()
14

15 #tengo solo la regione connessa p i grande
16 thresholdFilter = itk.ThresholdImageFilter[OutputType ].New()
17 thresholdFilter.SetInput(label_filter.GetOutput ())
18 thresholdFilter.ThresholdOutside (1,1)
19 thresholdFilter.SetOutsideValue (0)
20 thresholdFilter.Update ()
21

22 return thresholdFilter.GetOutput ()

The pipeline for the brain extraction is then implemented as follows.

Listing 2.3: Brain Extraction Function
1 import itk
2 import numpy as np
3

4 def skull_stripping_mask (image , atlas , mask ,
transformation_return = False):

5

6 reg_atlas_obj = elastix_multimap_registration( image , atlas )
7

8 #apply the transformation to the mask and then make it again a
binary image

9 reg_mask = itk.transformix_filter( mask , reg_atlas_obj.
GetTransformParameterObject () )

10 bin_reg_mask = binarize( reg_mask )
11

12 #dilating the mask to be more conservative
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13 bin_reg_mask = binary_dilating(bin_reg_mask)
14

15 #do a first skull stripping
16 first_brain = negative_3d_masking( image , bin_reg_mask )
17

18 #binarize the first_brain to obtain a mask useful for the
normalization

19 first_brain_mask = binarize( first_brain )
20

21 #Casting the first_brain_mask to be used by the normalization
filter

22 OutputType = itk.Image[itk.UC , 3]
23 cast_filter = itk.CastImageFilter[type(first_brain_mask),

OutputType ].New()
24 cast_filter.SetInput(first_brain_mask)
25 cast_filter.Update ()
26 first_brain_mask = cast_filter.GetOutput ()
27

28 #normalize the first obtained brain
29 normalized_first_brain = itk_gaussian_normalization(

first_brain , first_brain_mask )
30 normalized_first_brain.Update ()
31

32 #Normalized image must be casted
33 OutputType = itk.Image[itk.D, 3]
34 cast_filter = itk.CastImageFilter[type(normalized_first_brain.

GetOutput () ), OutputType ].New()
35 cast_filter.SetInput(normalized_first_brain)
36 normalized_first_brain = cast_filter.GetOutput ()
37

38 #MultiOtsu thresholding the normalized_brain
39 InputType = type(normalized_first_brain)
40 motsu = itk.OtsuMultipleThresholdsImageFilter[InputType ,

InputType ].New()
41 motsu.SetInput(normalized_first_brain)
42 motsu.SetNumberOfThresholds (3)
43 motsu.Update ()
44 thresholded_first_brain = binarize(motsu.GetOutput (), hi_value

= 3 )
45

46 #creating a second brain
47 second_brain = negative_3d_masking( image ,

thresholded_first_brain )
48

49 #Casting the thresholded_first_brain to be used by the
normalization filter

50 OutputType = itk.Image[itk.UC , 3]
51 cast_filter = itk.CastImageFilter[type(thresholded_first_brain)

, OutputType ].New()
52 cast_filter.SetInput(thresholded_first_brain)
53 cast_filter.Update ()
54

55 #normalize the second obtained brain
56 normalized_second_brain = itk_gaussian_normalization(

second_brain , cast_filter.GetOutput () )
57 normalized_second_brain.Update ()
58

59 thresholded_second_brain = binarize( normalized_second_brain.
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GetOutput (), -3, 1.5 )
60

61 #eroding the mask to better find the largest connected region
62 eroded_mask = binary_eroding( thresholded_second_brain )
63

64 #find the largest connected region
65 first_mask = find_largest_connected_region( eroded_mask )
66

67 #apply a dilation to the mask and a hole filler
68 final_mask = hole_filler( binary_dilating(first_mask , 2) )
69

70 print(’Your brain mask is ready!’)
71

72 if transformation_return == False:
73 return final_mask
74 else:
75 return final_mask , reg_atlas_obj.

GetTransformParameterObject ()

2.2.2.2 Tissue Segmentation

As for the brain extraction there many software that permits the segmentation of
the brain tissues. The approach here proposed to segment the brain tissues the code
was based on the use of a Gaussian Mixture function of the Scikit-learn library. The
image has to be given in input to the Gaussian Mixture function as a flatten array,
so there were the need to flatten the image having the possibility to rebuild it once
it was segmented. This need of giving to the Scikit-learn function a flatten array
arises because it takes in input an array of dimension Nsamples × Nfeatures in
which, for our application, the samples are the pixels and the only feature given was
the pixel value.

In order to do this flattering two functions were implemented, the first one to
flatten the image and the second to rebuild the image once it was segmented. The
main idea was to create an array with only the pixels under the brain mask. This
permits to limit the number of pixels that the algorithm had to classify and to don’t
have to model the background pixels. This lead to the necessity of save the original
index of every pixel to have a correct reconstruction at the end of the segmentation.

Listing 2.4: Indexing functions
1 import itk
2

3 def indexing (image , mask):
4 Dimension = 3
5 index = itk.Index[Dimension ]()
6

7 image_array = [] #The array with the grey values of the masked
pixels

8 index_array = [] #The array with the itk indexes of the pixels
9

10 for index [0] in range( image.GetLargestPossibleRegion ().GetSize
()[0] ):

11 for index [1] in range( image.GetLargestPossibleRegion ().
GetSize ()[1] ):

12 for index [2] in range( image.GetLargestPossibleRegion ()
.GetSize ()[2] ):
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13 #Only if the pixel is under the mask then the function will
take that pixel

14 if mask.GetPixel(index) != 0:
15 image_array.append( image.GetPixel(index) )
16 index_array.append( [ index[0], index [1], index

[2] ] )
17

18 return image_array , index_array
19

20

21

22 def label_de_indexing (image_array , index_array , reference_image ,
first_label_value = 0 ):

23 Dimension = 3
24 ImageType = itk.template(reference_image)[1]
25

26 #Creation of the new itk image
27 image = itk.Image[ImageType ].New()
28

29 #Creation of the itk Index object
30 index = itk.Index[Dimension ]()
31

32 #Setting the new image space as the one of the original (
reference) image.

33 image.SetRegions( reference_image.GetLargestPossibleRegion () )
34 image.SetSpacing( reference_image.GetSpacing () )
35 image.SetOrigin( reference_image.GetOrigin () )
36 image.SetDirection( reference_image.GetDirection () )
37 image.Allocate ()
38

39 #create a black image
40 for index [0] in range( image.GetLargestPossibleRegion ().GetSize

()[0] ):
41 for index [1] in range( image.GetLargestPossibleRegion ().

GetSize ()[1] ):
42 for index [2] in range( image.GetLargestPossibleRegion ()

.GetSize ()[2] ):
43 image.SetPixel(index , 0)
44

45 for i in range(len(index_array)):
46 #Set the itk index as the i_th index of the index_array
47 index [0] = int( index_array[i][0] )
48 index [1] = int( index_array[i][1] )
49 index [2] = int( index_array[i][2] )
50

51 #Set the Pixel value of the image as the one in the array
52 image.SetPixel( index , image_array[i] +

first_label_value )
53

54 return image

As previously discussed the aim of the proposed pipeline was to automatically
segment the image, this result in the need of functions that can estimate the initial
parameters of the Gaussian Mixture. The estimation of those parameters was done
using the probability maps of the used atlas registered in the space of the image.
Two functions were then implemented to permit to find the relative weight of each
mask and the mean pixel value for each class.
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Listing 2.5: Parameters Estimation
1 import itk
2 import numpy as np
3

4 def find_prob_weights (wm_mask , gm_mask , csf_mask):
5

6 #Getting arrays from masks
7 wm_array = itk.GetArrayFromImage(wm_mask)
8 gm_array = itk.GetArrayFromImage(gm_mask)
9 csf_array = itk.GetArrayFromImage(csf_mask)

10

11 tot_array = wm_array + gm_array + csf_array
12

13 four_dim_array = [wm_array , gm_array , csf_array]
14

15 #finding for every pixel which is its most probable type
16 prob_array = np.argmax(four_dim_array , 0)
17

18 #finding number of pixels for gm and csf
19 gm_pixels = np.count_nonzero(prob_array == 1)
20 csf_pixels = np.count_nonzero(prob_array == 2)
21

22 #finding the total number of pixels
23 tot_pixel = np.count_nonzero( tot_array )
24

25 if tot_pixel == 0 :
26 #In this case the masks are empty images.
27 return [0,0,0]
28

29 wm_pixels = tot_pixel - gm_pixels - csf_pixels
30

31 #finding weights for the masks
32 wm_weight = wm_pixels/tot_pixel
33 gm_weight = gm_pixels/tot_pixel
34 csf_weight = csf_pixels/tot_pixel
35

36 #creating a list with all the weights.
37 weights = [wm_weight , gm_weight , csf_weight]
38

39 return weights
40

41

42

43 def find_means (brain , brain_mask , csf_mask , gm_mask , wm_mask):
44

45 #converting everything in numpy array. This is done because ITK
functions in python are not always wrapped for every type.

46 brain_array = itk.GetArrayFromImage(brain)
47 wm_array = itk.GetArrayFromImage(wm_mask)
48 gm_array = itk.GetArrayFromImage(gm_mask)
49 csf_array = itk.GetArrayFromImage(csf_mask)
50 brain_mask_array = itk.GetArrayFromImage(brain_mask)
51

52 #setting a greater value for bg in order to have it correctly
selected in prob array

53 background = np.where(brain_mask_array == 0, 2, 0)
54

55 #finding for each pixel what is its more probable class (bg =
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0, wm = 3, gm = 2, csf = 1)
56 four_dim_array = [background , csf_array , gm_array , wm_array]
57 prob_array = np.argmax(four_dim_array , 0)
58

59 #recreating the pixels array
60 wm_array = np.where(prob_array == 3, 1, 0)
61 gm_array = np.where(prob_array == 2, 1, 0)
62 csf_array = np.where(prob_array == 1, 1, 0)
63

64 #creating arrays in which there are only pixels of the brain
where those pixels are of that class

65 wm_brain = np.where (wm_array == 1, brain_array , 0)
66 gm_brain = np.where (gm_array == 1, brain_array , 0)
67 csf_brain = np.where (csf_array == 1, brain_array , 0)
68

69 #find means
70 wm_mean = np.sum(wm_brain)/np.count_nonzero(wm_array)
71 gm_mean = np.sum(gm_brain)/np.count_nonzero(gm_array)
72 csf_mean = np.sum(csf_brain)/np.count_nonzero(csf_array)
73

74 means = [csf_mean , gm_mean , wm_mean]
75

76 return means

The implementation of the brain segmentation is then provided. It is to mention
that the provided function permits to return both a single image with the labels for
each tissue or a set of three images containing the probability map of each tissue.

Listing 2.6: Segmentation pipeline
1 import numpy as np
2 from sklearn.mixture import GaussianMixture
3

4 def brain_segmentation ( brain , brain_mask , wm_mask , gm_mask ,
csf_mask , auto_mean = False , undefined = False , proba = False ):

5

6 #casting of the mask for the normalization.
7 OutputType = itk.Image[itk.UC , 3]
8 cast_filter = itk.CastImageFilter[type(brain_mask), OutputType

].New()
9 cast_filter.SetInput(brain_mask)

10 cast_filter.Update ()
11 brain_mask = cast_filter.GetOutput ()
12

13 #brain normalization
14 norm_brain_filter = itk_gaussian_normalization (brain ,

brain_mask)
15

16 #I change the physical space because the normalization have
changed it.

17 matching_filter = match_physical_spaces(norm_brain_filter.
GetOutput (), brain)

18 matching_filter.Update ()
19 brain = matching_filter.GetOutput ()
20

21 #mask back to float
22 cast_filter = itk.CastImageFilter[type(brain_mask), OutputType

].New()
23 cast_filter.SetInput(brain_mask)
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24 cast_filter.Update ()
25 brain_mask = cast_filter.GetOutput ()
26

27

28 #linearize and indexing the brain obtaining the image array and
the index array

29 #(the index array is useful to build the itk label image)
30 brain_array , index_array = indexing (brain , brain_mask)
31

32

33 #Masking also the Probability maps
34 wm_mask = negative_3d_masking(wm_mask , brain_mask)
35 gm_mask = negative_3d_masking(gm_mask , brain_mask)
36 csf_mask = negative_3d_masking(csf_mask , brain_mask)
37

38

39 #INITIALIZING THE MODELS PARAMETERS
40 if auto_mean : #if automean the proposed function will be used

to find the means values
41

42 if undefined :
43 means = np.reshape(find_4_means(brain , csf_mask ,

gm_mask , wm_mask), (-1,1))
44

45 else: means = np.reshape(find_means(brain , brain_mask ,
csf_mask , gm_mask , wm_mask), (-1,1))

46

47 #Adding a check for the mean values.
48 #We should obtain mean values sufficiently different and in

order csf < gm < wm.
49 #if not then the mean values will be initialized by the k-

means++ algorithm of Scikit -Learn
50 if ( (means [0]+0.1) >= means [1] ) or ( (means [1] + 0.1) >=

means [2] ) :
51 means = None
52

53 else: means = None #The k-means++ algorithm of Scikit -Learn
will be used to initialize the means

54

55 if undefined:
56 n_classes = 4
57 weights = find_prob_4_weights(csf_mask , gm_mask , wm_mask)
58 else:
59 n_classes = 3
60 weights = find_prob_weights(csf_mask , gm_mask , wm_mask)
61

62 #Definition of the models
63 model = GaussianMixture(
64 n_components = n_classes ,
65 covariance_type = ’full’,
66 tol = 0.01,
67 max_iter = 10000,
68 init_params = ’k-means ++’,
69 means_init = means ,
70 weights_init = weights
71 )
72

73 #updating the funtion to find the labels
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74 model.fit( np.reshape( brain_array , (-1,1) ) )
75

76 #Return 3 probability masks
77 if proba:
78 label_array = model.predict_proba( np.reshape( brain_array ,

(-1,1) ) )
79 wm = label_de_indexing (label_array [:,2], index_array ,

brain)
80 gm = label_de_indexing (label_array [:,1], index_array ,

brain)
81 csf = label_de_indexing (label_array [:,0], index_array ,

brain)
82

83 return wm, gm , csf
84

85 else:
86 label_array = model.predict( np.reshape( brain_array ,

(-1,1) ))
87 label_image = label_de_indexing (label_array , index_array ,

brain , 1.)
88 return label_image

2.3 Post-Processing

Post processing stage aims to improve the goodness of the SCIs segmentation ob-
tained with the U-Net implemented, optimizing the full pipeline. In the processing
step it was discovered that the implemented neural network has the tendency to ob-
tain false positives, i.e. to find many false lesions. This use to happen in the regions
near the brain ventricles because their wall can appear as hyperintense in FLAIR
images or in some areas in the grey matter. The proposed pipeline is therefore in-
tended to remove the wrong segmented regions and its structure is summarized in
Figure 2.7.

Figure 2.7: Workflow of the developed post-processing pipeline. In the flowchart
is reported also the training of the classifiers which will be necessary only in the
developing step. Once the classifiers are trained they can be used straightly on the
new scans proposed.
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2.3.1 Description

The post processing pipeline has to classify the labels obtained by the U-Net en-
semble as true or false.

Traditionally, SCI must be greater that 3mm in greatest linear dimension [4] and
visible in at least two planes [50]. Since the MRI has been improved and the 3D
imaging became more often used this definition no longer holds strictly, but assure
that, on the time this work of thesis was done, SCI’s label can’t be too small. For
those reason the first operation done on the results of the automatic segmentation
was to remove all the labels smaller than two voxels. Even if the scans of the data
set has an high variability in term of spacing, it was chosen to consider the number
of voxels of the lesion instead of the physical space because the U-Net ensemble only
consider single slices as 2D images.

The next step was the training of a classificator to decide if a segmented SCI
has to be considered true based on features that will be discussed further on in this
section. Different classifiers was attempted to reach the best possible results, as it
will showed in the next Chapter. Both the training and the testing of the classifier
was possible thanks to the provided manual segmentation of the SCIs, used as a
ground truth.

2.3.1.1 Ground Truth

The first task to perform in order to obtain a good classifier was to decide how the
automatically segmented lesions has to be considered true or false. That is needed
since even the labels for the corrected segmented lesions often wasn’t perfectly su-
perimposable on the ground truth label. This need was satisfied using a metric
which is a modified version of the Jaccard index which is capable to take in account
for the cases in which a single label obtained with the U-Net ensemble overlaps two
or more labels of the manual segmentation. The mathematically expression of the
used index in reported in equation 2.1.

score(X) =
|X ∩ (Y1 ∪ Y2 ∪ ... ∪ Yn)|

|X|+
∑n

i=0 |Yi|
(2.1)

Where X represents the set of pixel of the automatically segmented label, Yi rep-
resents one of the ground truth label that overlaps X and n is the number of the
overlapped ground truth labels. To consider the a priori truth value of a single label
obtained with the U-Net were manually compared the automatic segmentation of
the SCIs with the ground truth and were chosen to keep a value of 0.25 for the
modified Jaccard index as a minimum threshold to consider the label true.

2.3.1.2 Feature Extraction

The next step was to choose which features to extract for the automatically seg-
mented labels. The features extracted where the followings:

• The mean probability value of a label given by the U-Net;

• The total volume of the label measured in mm3;
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• The overlapping of a segmented label with a determined mask in which the
probability of finding SCI is higher. The overlapping was measured computing
the fraction of the pixels of the label that overlaps the selected mask over the
total number of pixels of the label. It was again chosen to use the number of
pixel because the U-Net ensemble only consider one slice per time;

• The overlapping of a segmented label with a determined mask in which the
probability of finding SCI is lower. The overlaping was measured in the same
way as for the previous point;

• The probability of a label to be in the white matter considering the partial
volume map of the atlas. This probability was evaluated averaging the prob-
ability of each pixel of the label over the total number of pixels of the lesion;

• The probability of a label to be in the grey matter;

• The probability of a label to be in the cerebrospinal fluid;

The first feature comes from the output of the U-Net. The segmentation neural
network returns a probability for each pixel to be part of a lesion. The mean value
for the pixels of each label was taken.

The volume of a lesion was taken because, since the nature and the given defi-
nition of a SCI, the probability of finding very large or very small lesion is low.

Two binary masks were provided by expert clinicians from the University of
Padua. The first one is a mask of the boundary region of brain arteries and the cor-
tical zone that in this work thesis will be called boundary region. This is the region
where the SCIs are more localized since the global reduction in arterial oxygen con-
tent and the cerebral hemodynamic factors seems to drive the ischemic mechanism
[51]. An example of the applied mask can be seen in Figure 2.8a The second is a
mask of the ventricular and periventricular regions in the brain. Those regions have
a great probability to lead to false positive due to their structure which often lead
to high intensity zone in a FLAIR scan for normal anatomical factors. This mask
will be called exclusion region and an example can be seen in Figure 2.8b. Those
mask were manually segmented on the MNI 152 atlas and then registered on each
image analysed. The overlapping between a label and a certain mask was calculated
averaging the number of pixels in the mask over the total number of pixels in the
label, as showed in the equation 2.2.

P (X ∈ Y ) =
|X ∩ Y |
|X|

(2.2)

Where X is the set of pixels of a label and Y is the set of pixels in the mask.
The probability of a label of being localized in a determined tissue therefore was

obtained using the maps of the partial volume effect obtained in the pre-processing
stage, having in this way a feature calculation which is based on the proper anatomy
of each brain. This features were extracted in order to keeping in account both the
medical evidence of the SCI to be more localized into the deep white matter [6], and
the working proper of the U-Net ensemble, which consider only one slice per time
and therefore could suffer the partial volume effect. For each tissue the probability
of a label to belong to that tissue was calculated averaging the probability of each
pixel over the total number of pixel in a label as the equation 2.3 shows.
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(a) Boundary Zone (b) Exclusion Zone

Figure 2.8: In Figure are reported an example of the masks used to evaluate the
localization of a label registered over a patien volume. In Figure a is possible to see
the region where the SCIs are usually more localized due to the anatomy of the human
brain [6], and in Figure b a zone which tends to naturally give hyperintense zones in
the FLAIR image due to the walls of the ventricles. Both the masks were manually
segmented by two expert clinicians of the University of Padua on the MNI152 atlas
[41] and then registered on each valued image.

P (X ∈ A) =

∑
i P (xi ∈ A)

|X|
(2.3)

Where A is the considered tissue (WM, GM or CSF), X the set of pixels of a label
and xi is a pixel of the label. The probability P (xi ∈ A) is given by the probability
maps returned by the pre-processing segmentation.

2.3.1.3 Training

A set of two classifiers were then trained taking in input both a 2 dimensional array
of features (Nsamples×Nfeatures = Nsamples×7) and a single dimensional array
reporting the ground truth classification of each label, obtained starting from the
manual segmentation and calculated as explained above. The classifiers chosen were
a Decision Tree a Random Forest and a Logistic Regression classifiers. The Decision
Tree was chosen because of its interpretability and its capability to mimic the human
decision process. The Random Forest was attempt because of its higher resilience to
overtraining and its usually highly performances with respect to decision tree. The
Logistic Regression was implemented due to the possibility of return a probability
for each classification.
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The complete data set was divided in two independent subsets, the first one,
composed of 51 patient’s scans, was used during the training stage, the second one,
composed of 6 patients’ scan was used for the test stage. In order to keep in account
of all the possible variables the full data set was divided in order to obtain both
the training and the test data set heterogeneous in terms of center or provenience,
physical size of the automatically segmented labels and possible outcomes of the
ground truth (i.e. possibility for a patient to be healthy and really not having SCI’s
evidences).

The training set was composed of the images of 51 patients and totally counted
5581 automatically obtained labels. This set was found to be highly unbalanced
since approximately only the 3.7% was labels classified as true. To obtain a better
training two resampling algorithms where used that permitted to obtain a better
balancing for the two classes.

Firstly a SMOTE [52] algorithm where used to add data to the less populated
class. The SMOTE is a resampler algorithm that permits to artificially generate
new data starting from the existing ones. The more populated class was then un-
dersampled with a random resampler algorithm, which randomly take out data from
the selected class.

The parameters of the implemented classifiers were found using a Grid Search
Cross Validation, a process that permits to find the best parameters combination
automatically maximizing a predetermined metric in a cross validation test. The
cross validation process consists in the division of the given set (in this case the
training set in to n subsets, n− 1 of those subsets are used for training the classifier
and the remaining one is used for test, measuring a predetermined metric, then the
operation is repeated changing every time the test subset and finally averaging the
obtained score. The grid search operation consists in repeating the cross validation
test for every possible parameters combination, permitting to find the one that
obtain the maximum value for the chosen metric. In this case also the parameters
for the resamplers was found using the Grid Search, but generally for the SMOTE
the output ratio between the minority and majority class ranged between 0.2 and
0.3 and for the random undersampler the output ratio found was between 0.6 and
0.7 for each classifier.

2.3.2 Implementation

The post processing pipeline was implemented using Python. To perform the essen-
tial operations the same libraries used on the pre-processing stage where used: ITK
[45] and Numpy [46]. To perform the classification the automatically segmented
label two libraries were used: Scikit-Learn [48] and Imbalanced-Learn [53].
The whole code is opensource and freely available on GitHub [49]. During the devel-
opement, the installation was automatically tested on Ubuntu for different python
versions. This continuos integration process was carried out using the github actions.

2.3.2.1 Feature Extraction

The first need was to distinguish and enumerate the labels for both the ground
truth and the output labels uniquely. This was obtained implementing a function
that finds the connected regions on an image, which relies on an ITK filter already
existing. The name of the function is self-explanatory.
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Then the need was to quantify the agreement of automatically obtained label of
the training set with the provided ground truth. This was obtained implementing a
function that measure the modified Jaccard index as shown in equation2.1 and then
selecting only those lables that reaches a score higher than 0.25.

Listing 2.7: Modified Jaccard Index
1 import itk
2 import numoy as np
3

4 def find_Jaccard_truth_value (counted_label , gnd_label , threshold =
0.25):

5

6 #FINDING NUMBER OF LABELS
7 maximum_filter = itk.MinimumMaximumImageCalculator[type(

counted_label)].New()
8 maximum_filter.SetImage(counted_label)
9 maximum_filter.ComputeMaximum ()

10 num_labels = maximum_filter.GetMaximum ()
11

12 count_labels = np.array ([0] * num_labels) #total number of
pixels for lesion

13 value_array = np.array( [False] * num_labels ) #array that
reports what label is true

14

15 #FINDING NUMBER OF GND TRUTH LABELS
16 counted_gnd = find_connected_regions(gnd_label)
17 maximum_filter = itk.MinimumMaximumImageCalculator[type(

counted_gnd)].New()
18 maximum_filter.SetImage(counted_gnd)
19 maximum_filter.ComputeMaximum ()
20 num_gnd = maximum_filter.GetMaximum ()
21

22 count_gnd = np.array( [0] * num_gnd ) #total number of pixels
for lesion

23

24 overlapping_matrix = np.array( [[0]* num_gnd ]* num_labels)
25 jaccard_index = np.array ([0.]* num_labels)
26 index = itk.Index [3]()
27

28 for index [0] in range( counted_label.GetLargestPossibleRegion ()
.GetSize ()[0] ):

29 for index [1] in range( counted_label.
GetLargestPossibleRegion ().GetSize ()[1] ):

30 for index [2] in range( counted_label.
GetLargestPossibleRegion ().GetSize ()[2] ):

31 if counted_gnd.GetPixel(index) != 0 :
32 count_gnd[ counted_gnd.GetPixel(index) -1]

+=1
33 if counted_label.GetPixel(index) != 0 :
34 count_labels[ counted_label.GetPixel(index)

-1] +=1
35 if counted_gnd.GetPixel(index) != 0 :
36 overlapping_matrix[counted_label.

GetPixel(index) - 1][ counted_gnd.GetPixel(index) -1] += 1
37

38 num = np.array ([0]* num_labels)
39 den = np.array ([0]* num_labels)
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40

41 for i in range(num_labels):
42 for j in range(num_gnd):
43 num[i] += overlapping_matrix[i][j]
44 if overlapping_matrix[i][j]!= 0 : den[i] += count_gnd[j

]
45 den[i] += count_labels[i] - num[i]
46

47 jaccard_index[i] = num[i]/den[i]
48

49 value_array[i] = (jaccard_index[i] >= threshold)
50

51 return value_array , jaccard_index

Once the labels of the training set have been classified as true or false the sub-
sequent step was to properly extract the cited features.

The features extracted was the mean of the probability values given by the U-Net
for the pixels in a label; the volume of the label, obtained multiplying the number
of the voxels in a label for the voxel dimension; the mean of overlapping with two
binary masks (boundary region and exclusion region) and the mean value for the
overlapping with three probability masks (WM, GM, CSF). Since the boundary and
exclusion region are binary the overlapping has been taken in the same way the mean
probability of belonging to a determined tissue was calculated. This permitted to
implement a function that take as input only two parameters: the image with the
labels and a list of masks.

The feature extracted therefore had different magnitude and also there was the
possibility that some features was an outlier. Outliers are defined as an observation
which deviates a lot from other observations to arouse suspicion that was generated
by a different mechanism in a data set [54]. To have a better distribution of the
data the obtained features was then applied a scaler, i.e. an algorithm capable to
normalize the data in order to have all the same order of magnitude. The applied
algorithm was the function Robust Scaler from the library Scikit-Learn [48], which
computes the median and the interquartile range (IQR) for each feature of the data
set proposed and then remove the medians for each feature and scales them according
to the IQR [55]. Usually features scaling the mean and the variance are used, but
those metrics tend to be badly affected by the outliers, this approach is more robust
toward outliers and permits better results.

Listing 2.8: Feature Extracion
1 import itk
2 import numpy as np
3 from sklearn.preprocessing import RobustScaler
4

5 def feature_scoring (label_img , masks_list):
6 #binarize the labels
7 bin_label = binarize (label_img , 0.5)
8

9 #differentiating the labels
10 counted_label = find_connected_regions (bin_label)
11 #Calculating the volume of a voxel
12 voxel_volume = label_img.GetSpacing ()[0] * label_img.GetSpacing

()[1] * label_img.GetSpacing ()[2]
13

14 #FINDING NUMBER OF LABELS
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15 maximum_filter = itk.MinimumMaximumImageCalculator[type(
counted_label)].New()

16 maximum_filter.SetImage(counted_label)
17 maximum_filter.ComputeMaximum ()
18

19 index = itk.Index [3]()
20 pounded_score = np.array( [[0.] * (len(masks_list) + 2)] *

maximum_filter.GetMaximum () ) #score for lesions divided pixels
per lesion

21 score = np.array( [[0.] * (len(masks_list) + 2)] *
maximum_filter.GetMaximum () ) #total scores for each lesion

22 count = np.array( [0.] * maximum_filter.GetMaximum () ) #total
number of pixels for lesion

23

24 for index [0] in range( label_img.GetLargestPossibleRegion ().
GetSize ()[0] ):

25 for index [1] in range( label_img.GetLargestPossibleRegion ()
.GetSize ()[1] ):

26 for index [2] in range( label_img.
GetLargestPossibleRegion ().GetSize ()[2] ):

27 if label_img.GetPixel(index) != 0 :
28 count[counted_label.GetPixel(index) - 1] += 1
29 score[counted_label.GetPixel(index) - 1][0] +=

label_img.GetPixel(index)
30 for i in range(len(masks_list)):
31 score[counted_label.GetPixel(index) - 1][i

+ 2] += masks_list[i]. GetPixel(index)
32

33 for i in range(len(score)):
34 pounded_score[i][0] = score[i][0] / count[i]
35 pounded_score[i][1] = voxel_volume * count[i]
36

37 #everything in the mask must be averaged
38 for j in range( 2, len(score[i]) ):
39 pounded_score[i][j] = score[i][j] / count[i]
40

41 return pounded_score , counted_label
42

43 def robust_scaling(data , transformer = None):
44

45 if transformer == None:
46 transformer = RobustScaler ().fit(data)
47

48 new_data = transformer.transform(data)
49 return new_data , transformer
50

2.3.2.2 Training

Once the features were extracted for the labels of the training set, then it was possi-
ble to define and train the classifiers. For both classifiers the parameter class_weight
was set as ’balanced’ since, in this way, the fitting algorithm would have taken in
account the unbalancing of the training set. All the other parameters were auto-
matically chosen using a grid search algorithm. The metric that where chose to
maximize was the AUC precision-recall score, which keeps in account both the pre-
cision and recall and is usually a valid choice to estimate goodness of unbalanced
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data classification.

Listing 2.9: Training
1 from sklearn.tree import DecisionTreeClassifier
2 from sklearn.linear_model import LogisticRegression
3 from imblearn.ensemble import BalancedRandomForestClassifier
4 from imblearn.over_sampling import SMOTE
5 from imblearn.under_sampling import RandomUnderSampler
6

7 dtc = Pipeline ([
8 (’SMOTE’, SMOTE(sampling_strategy = 0.2, random_state = 42)),
9 (’UnderSampler ’, RandomUnderSampler(sampling_strategy = 0.7,

random_state = 42)),
10 (’classification ’, DecisionTreeClassifier(random_state = 42,

max_depth = 6, class_weight = ’balanced ’, criterion = ’entropy ’)
) ])

11 dtc.fit(train_score , train_truth)
12

13 lr = Pipeline ([
14 (’SMOTE’, SMOTE(sampling_strategy = 0.3, random_state = 42)),
15 (’UnderSampler ’, RandomUnderSampler(sampling_strategy = 0.7,

random_state = 42)),
16 (’classification ’, LogisticRegression(random_state = 42,

class_weight = ’balanced ’, penalty = None , solver = ’lbfgs ’,
max_iter = 10000)) ])

17 lr.fit(train_score , train_truth)
18

19 brfc = Pipeline ([
20 (’SMOTE’, SMOTE(sampling_strategy = 0.2, random_state = 42)),
21 (’UnderSampler ’, RandomUnderSampler(sampling_strategy = 0.6,

random_state = 42)),
22 (’classification ’, BalancedRandomForestClassifier(
23 random_state = 42,
24 class_weight = ’balanced ’,
25 criterion = ’entropy ’,
26 max_depth = 8,
27 max_features = None ,
28 n_estimators = 1000,
29 n_jobs = 10)) ])
30 brfc.fit(train_score , train_truth)
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Chapter 3

Results

The proposed pipeline was developed and applied on the data set described in Chap-
ter 2.1. The main method for the evaluation of the pre-processing pipeline, i.e. the
skull stripping and the tissue segmentation, was a quantitative comparison with the
results obtained using the software FSL [56], which is a library of functions devel-
oped specifically for the analysis of the MRI brain images that became a standard in
literature for MR analysis during the last couple of decades [56]. The post-processing
pipeline instead was evaluated comparing quantitatively the labels with the manual
segmentation of the SCIs provided.

3.1 Pre-Processing

The FMRIB Software Library (FSL) became a standard for the analysis of MRI
images and then it was decided to use the brain mask obtained with the BET
function and the segmentation masks (one for each tissue class) obtained using the
FAST function to use as references for the pre-processing tools developed during
this work of thesis. Another aspect of the proposed pipeline during its development
was the execution time that had to be reasonably low in order to give the possibility
to use the implemented algorithms also on personal computers.

3.1.1 Timing

One of the main researched feature for the implemented pipeline was the short
execution time required to obtain a full segmentation. It was therefore pre-processed
the full data set of 57 patients, calculating the computation time for each volume.
Nevertheless the computation time depends on the input size and, as it was shown in
the previous chapter, the data set is highly heterogeneous. Since the main difference
between images is the size and the spacing on the z-axis, the time results are plotted
as a function of the number of slices (i.e. images in planes perpendicular to the
z-axis) as it is possible to see in Figure 3.1. To obtain the provided data the whole
pre-proessing pipeline was performed 8 times on the entire data set. Of the analysed
images 44 have 30 slices or less and for those images the mean execution times was
smaller than 1 minute, 10 images have a number of slices between 224 and 288 and
for those images the execution time ranged from 178 s to 216 s. For the remaining
three images with 512 slices the computation time was about 6 min.
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Figure 3.1: In the Figure is plotted the execution time in function of the number of
slices that composed the image. It is possible to see how the execution time increases
linearly with the number of slices. In general, for images with 30 slices or fewer the
execution time was less than a minute. The maximum values were reached for the
images that have 512 slices and is of about 375 s.

The results plotted are obtained running the pipeline on one of the server of the
Department of Physics and Astronomy of the University of Bologna, a computer
with 32 CPUs and 126Gb of RAM.

3.1.2 Segmentation Performances

This sections describes the comparison between the presented pre-processing pipeline
and the segmentation obtained using FSL. The comparison was carried out using
the dice coefficient presented in equation 1.8. As described before, this metric pro-
vides an overlapping measure; it’s range is in [0, 1] where 0 means no overlapping
and 1 a perfect overlapping of two binary volumes. To provide that measure was
chosen to compare the obtained masks (brain mask, white matter, grey matter and
cerebrospinal fluid) with the ones obtained with FSL. The comparison was done on
a subset of 56 over the total data set of 57 patients. This was because one of the
volumes has a incredibly poor resolution the FSL FAST software totally fails in its
segmentation.

Brain Extraction: The first process evaluated was the brain extraction. It was
measured calculating the Dice coefficient of the overlapping between the brain masks
obtained with the proposed pipeline and the ones obtained with the FSL BET
function. The obtained DSC ranges from a minimum value of 0.47 to a maximum
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of 0.96. As visible in Table 3.1, the mean DSC was 0.87± 0.12 where the error was
evaluated as the standard deviation of the analysed volumes. The median value for
the DSC was 0.93.

To have a better comprehension of the obtained Dice coefficient values is however
necessary to do also a qualitative evaluation of the goodness of the results of FSL.
In Figure 3.2 are reported the results of brains extracted with both FSL and the
proposed pipeline for a volume which the two software are in agreement leading to a
high value for the Dice coefficient, and for a volume in which the FSL BET segmen-
tation partially fails while the proposed pipeline manage in a good segmentation,
leading to a low value for the measured metric. It is therefore necessary to underline
that the FSL function result can be optimized by manually change the extraction
parameters while the goal researched for the proposed pipeline was to work fully
automatically.

(a) Original scan (b) Brain extracted with FSL (c) Implemented pipeline

(d) Original scan (e) Brain extracted with FSL (f) Implemented pipeline

Figure 3.2: In the figure is reported the visual comparison of the brain extracted
with FSL and the brain extracted with the proposed pipeline in two different cases.
The first row (Figures a, b, c) show a brain extraction that comparing the obtained
brain mask with the one of FSL obtained a Dice coefficient of 0.95. The second row
(images d, e, f) refers to a brain extraction that receive a Dice coefficient of 0.59.

The Dice coefficient is a metric to measure the overlapping between two images,
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then in the cases in which the FSL brain extraction is not the most desired one, as
it is possible to see in the Figure 3.2e, the measured metric could be low even when
the implemented pipeline gives a correct result.

Tissue Segmentation: The tissue segmentation was evaluated mainly comparing
the binary masks obtained by the proposed pipeline to the ones obtained by the FSL
FAST algorithm, after a first evaluation by eyes, checking the eventually presence of
visible errors. In this way was found that on a minority of the volumes the algorithm
used to merge two classes together, usually the white matter and the grey matter.
This kind of issue used to happen in images with a lower contrast as it is to see in
Figure 3.3. Looking at the probability maps obtained emerged that the lost class
was correctly found but with a probability lower than the majority class (usually
the white matter).

(a) Original Scan (b) Segmentation results

Figure 3.3: In Figure is reported a T1W scan and the result of a segmentation with
the proposed algorithm. In this case is possible to observe how the low contrast of the
original image lead to an erroneous segmentation in which the grey matter and the
white matter are both classified in the same class (red) and only the cerebrospianl
fluid is correctly classified (green). It is therefore important to say that the grey
matter was correctly found in the partial volume maps but the associated probability
was lower than the one in the white matter map.

Once the volumes were manually evaluated, a comparison between the masks
obtained with FSL and the ones obtained with the proposed pipeline were computed
measuring the obtained Dice coefficient. For the images in which two classes were
merged for the missing class was kept a Dice coefficient of 0. The obtained scores
are reported in Table 3.1.

It is important to mention that the FSL algorithm failed in some cases as is possi-
ble to see in Figure 3.4. This usually happened in those volumes where also the brain
extraction failed. Thus the Dice coefficient isn’t a direct measure of the reliability
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of the proposed pipeline but an overlapping metric between the obtained masks and
the masks computed by FSL, in the images in which FSL fails the obtained DSC is
low even if the proposed pipeline manage to obtain a good segmentation.

Mean Std. Dev. Median IQR
Brain Mask 0.87 0.12 0.93 0.11

WM 0.78 0.19 0.83 0.19
GM 0.67 0.30 0.80 0.28
CSF 0.66 0.24 0.79 0.22

Table 3.1: In the table are reported the mean values, the standard deviation, the
median value and the interquartile range of the Dice coefficient for the comparison
between the binary masks for the brain, the white matter (WM), the grey matter
(GM) and the cerebrospinal fluid (CSF) obtained with the proposed algorithm and
the ones obtained with FSL BET (for the brain mask) and FAST (for the tissue
segmentation). As it is possible to see for the tissue segmentation the median is
significantly higher than the mean. This happened because the outliers of both the
proposed pipeline segmentation (where two classes were merged) and the outliers
of the FSL segmentation (in which the brain extraction failed, leading to a failing
segmentation) were kept in account.

On the images taken with an higher resolution it is possible to appreciate how
the proposed pipeline correctly extract the brain and segment the image in its entire
volume, as visible in Figure 3.5.

3.2 Post-Processing

The provided data set was divided in two subsets. The first one is comprehensive of
51 images, in which the U-Net ensemble found a total of 5581 lesions, and constitute
the training set, used to train the chosen classifiers. The remaining 6 images con-
taining 425 total labels of which 99 are considered true, constitute an independent
test set, used to evaluate the classification performances.

The goodness of the classifiers was evaluated comparing the labels classified
by the three proposed approach with the ones classified "a priori", measuring the
modified Jaccard score for overlapping with the manual segmentation, as shown
in equation 2.1. To have a quantitative comparison were used different metrics in
order to take in account of all the possible difference between the three implemented
classifiers. The results, for each classifiers are reported in Table 3.2. The first
researched characteristic for the three classifiers was to have an high recall value,
in order to be more conservative toward the lesions correctly found by the U-Net
ensemble. This characteristic was satisfied by all the implemented classifier. The
classifier which gained the highest values for all the metrics was the random forest
classifier, which however is the less explainable one. For this reason also the other
two classifiers were kept during the work of thesis. It is interesting to compare the
decision tree and the logistic regression because, even if the decision tree classifier
have greater balance accuracy and recall, the logistic regression classifier gains an
higher AUC ROC score and especially an higher AUC precision-recall score, a metric
that is particularly suited for unbalanced data [40]. It is important to compare
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(a) Original scan (b) FSL segmentation (c) Implemented pipeline

(d) Original scan (e) FSL segmentation (f) Implemented pipeline

Figure 3.4: In the figure is reported the visual comparison of the brain segmented
with FSL and the brain segmented with the proposed pipeline. The color scheme here
used is red for white matter, yellow for grey matter and green for cerebrospinal fluid.
The head scan for the second row (Figures d, e, f) is the same of Figure 3.2 and in it
is possible to see how a low quality segmentation lead not fully correct segmentation,
concurring to obtain a lower Dice coefficient.
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(a) Axial view. (b) Frontal view. (c) Lateral view.

Figure 3.5: 3D visualization of the segmentation of an extracted brain. Looking
at the three different points of view of the captured volume (axial view, frontal view
and lateral view) is possible to appreciate how the full brain volume was extracted
from the unwanted head structures and segmented in white matter (red), grey matter
(yellow) and cerebrospinal fluid (green).

the result obtained for the area under precision-recall curve with the ones that a
random classifier would have gained with the proposed set of data: since the data
are unbalanced with a positives ratio of about 0.23 the expected score for a random
classifier is of 0.23.

Bal. Acc. AUC ROC AUC PR Precision Recall
Decision Tree 0.74 0.81 0.45 0.38 0.96

Logistic regression 0.68 0.83 0.61 0.32 0.96
Random Forest 0.74 0.90 0.74 0.38 0.97

Table 3.2: In the table are reported the results of the five evaluated metrics (balanced
accuracy, area under ROC curve, area under precision-recall curve, precision and
recall) comparing the classified labels with the ones ’a priori’ classified for all the
three implemented classifiers (decision tree, logistic regression and random forest).
As it is possible to appreciate all the classifiers obtain a very high value for the recall,
which means that very few classified data are found to be false negative. The Random
Forest classifier obtains the higher value in all the remaining metrics and therefore
is the one that also classify correctly the greatest number of negative lesions.

In the end was also interesting to look at the importance of the features for the
decision tree and the random forest classifiers and to look at the coefficient given at
each feature by the logistic regression. This gave us important informations about
the functionality of the U-Net ensemble. The results obtained are reported in Table
3.3. It was discovered that both the random forest classifier and the decision tree
didn’t took in account at all for the probability given as output from the U-Net
ensemble and the logistic regression gave it a strong negative value. As a check this
feature was removed from all the classifier and the results obtained for the measures
of the different metrics evaluated didn’t change significantly. Another interesting
discovery was the high relevance given to the white matter probability map, meaning
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that the U-Net ensemble have the tendency to find lesions also outside the white
matter, probably due to the working characteristic of the U-Net to consider one slice
per time, and then suffer the possible partial volume effect.

Prob. Size Boundary Exclusion WM GM CSF
Dec. Tree 0.000 0.0133 0.032 0.034 0.659 0.042 0.098
Log. reg. 0.00 8.83× 10−2 0.236 -1.50 1.07× 105 4.58× 104 7.82× 103

Rnd F. 0.000 0.146 0.027 0.029 0.615 0.067 0.116

Table 3.3: Table reporting the importance of the features for the decision tree and
random forest classifiers. The features indicated are the probability in output from
the U-Net, the physical size of the lesion, the overlapping with a manually defined
boundary and exclusion regions and the probability to be in the white matter, grey
matter or cerebrospinal fluid. For the logistic regression classifier the coefficients
associated at the features are reported. It can be seen how the classifiers take in ac-
count the different features and for example evaluating which feature can be removed.
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Conclusions

In this work of thesis I have developed, implemented and tested an automatic
pipeline for the brain extraction and tissue segmentation for MRI head scans, and a
pipeline for the refinement of the results of an automated process of labelling Silent
Cerebral Infarcts in patients with Sickle Cell Disease. The data set used in this
work of thesis consists of a set of 57 FLAIR and T1W MRI head scans provided by
different medical centers in Italy. The images of the data set were already manually
labelled by expert clinicians at the University of Padua.

As a first step I have performed a brain extraction. This step involves the
usage of a brain mask of an already segmented head atlas which permitted first
rough extraction for the brain, followed by a sequence of application of different
morphological operations in combination with thresholing operations. This step
is then followed by a brain tissues segmentation implemented by the usage of an
expectation maximization algorithm applied to a Gaussian mixture model whose
parameters were estimated using the maps of the partial volume effect provided
by the ICBM MNI 152 atlas. The first step have permitted to obtain standardized
images that the already implemented SCIs’ segmentation pipeline, a U-Net ensemble,
could more easily elaborate. The second step has led to a soft segmentation of the
brain, resulting in three partial volume maps for each image and this has been useful
for the features extraction of the post-processing stage.

The last step has been the classification of the labels obtained by the U-Net
ensemble in order to refine the results by removing the false positive outcomes
of the U-Net ensemble itself. To perform this step, different features have been
extracted from the labels considering both the proper functionality of the labelling
ensemble and the known anatomical characteristics of the SCIs. A set of three
classifiers has then been trained on a subset of the whole provided data set using
the features extracted measuring the overlapping of the labels with the probability
maps in output from the segmentation step, the physical size of the labels and the
overlapping with masks manually provided by expert clinicians that delimits brain
regions in which usually are localized the SCIs.

The pre-processing pipeline has been tested comparing the results obtained for
both the brain extraction and the tissue segmentation to the segmentation obtained
using the functions of the software FSL. For the whole data set has been measured
the Dice similarity coefficient (DSC) of the overlapping between the obtained masks.

The mean dice similarity coefficient of the proposed brain extraction technique
is 0.87 ± 0.12 and on some images performed better than the software using for
comparison. The tissue segmentation pipeline has shown some issues on the images
with poor contrast but have obtained however a mean DSC value of 0.78± 0.19 for
the white matter segmentation, 0.67± 0.30 for the grey matter and 0.66± 0.24 for
the cerebrospinal fluid. Even in this case on some volumes the proposed technique
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reach better results than the software used for the comparison.
The post-processing pipeline has been tested on a subset of the whole data set

that has not been used during the training stage. The test set has been chosen to
well represents the heterogeneity of the full data set. The test has been performed
measuring different metrics to correctly evaluate the performance. All the classifiers
have shown a recall next to the maximum value (0.97), meaning the almost absence
of false negative outcomes and a good balanced accuracy, always higher than 0.67.
The classifier which reaches the best performances has been a random forest classifier
that scores an AUC precision recall near 0.74 and balanced accuracy of 0.74.

The pipeline has been implemented using Python and is part of an open-source
project freely available on the platform GitHub.

Further developing of this project is possible, like increasing the performances of
the tissue segmentation step considering different approaches in the way the initial
parameters are estimated, or to develop the pipeline of the post-processing stage to
permit a refinement on the boundary and the size of the labels found by the U-Net
ensemble.

In the end this project provided a suitable approach with satisfactory results for
the extraction and the segmentation of the brain from head T1W MRI scans and an
approach capable to improve the segmentation of the SCIs obtained with a U-Net
ensemble.
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Appendix A

Proof of equality between Dice
Coefficient and F1 Score

Using the four definitions given for the confusion matrix in Chapter 1 it is possible
to proof the equalities of those two equations.

Recalling 1.2 and 1.3:

F1 =
2

1
precision

+ 1
recall

=
2

tp+fp
tp

+ tp+fn
tp

=

=
2

2tp+fp+fn
tp

=
2tp

2tp+ fp+ fn

(A.1)

Now the two classes to be considered in the Dice Similarity Coefficient 1.8 are
the Predicted Positive as X and the True Positive as Y , so we find that X = tp+fp
and Y = tp+ fn

Applying those definitions we find that:

|X ∩ Y | = tp

|X|+ |Y | = tp+ fp+ tp+ fn = 2tp+ fp+ fn
(A.2)

The consequence is that:

DSC = 2
|X ∩ Y |
|X|+ |Y |

= 2
tp

2tp+ fp+ fn
= F1 (A.3)
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