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Abstract

Il Quantum Approximate Optimization Algorithm (QAOA) è un algoritmo ibrido classico-
quantistico, introdotto per risolvere problemi di ottimizzazione combinatoria, come il
Max Cut. Il QAOA sfrutta un circuito quantistico parametrico per stimare lo sta-
to fondamentale di una Hamiltoniana costo Hc, che codifica la soluzione del problema
combinatorio. I migliori valori per i parametri sono determinati tramite tecniche di ot-
timizzazione classica. Il QAOA è anche usato per ottenere lo stato fondamentale delle
molecole. In questo lavoro, noi estendiamo la sua applicabilità introducendo una pro-
cedura che ci permette di calcolare anche gli stati eccitati in modo iterativo: una volta
che lo stato fondamentale è conosciuto, è possibile ottenere una nuova Hamiltoniana
cui stato fondamentale è il primo stato eccitato dell’Hamiltoniana originale. Una volta
fatto il QAOA può essere applicato di nuovo. Il metodo proposto è stato testato sulle
molecole di H2 e LiH. Per la parte quantistica dell’algoritmo, la base STO-3G è stata
usata per il calcolo degli integrali a un corpo e a due corpi, considerando solo 2 orbitali
molecolari e 2 elettroni con spin opposto, un step necessario per ottenere l’Hamiltoniana
di seconda quantizzazione. Gli operatori di creazione e distruzione sono stati mappati
sui qubit usando le trasformazioni di Jordan Wigner. Riguardo all’ottimizzatore classico,
sono stati usati il metodo Basin-Hopping con l’algoritmo BFGS. E’ prima stata calcolata
l’energia e la funzione d’onda dello stato fondamentale. Per entrambe le molecule, gli
stati fondamentali possono essere stimati con successo per piccole distance inter-nucleari.
A grandi valori i risultati non sono buoni, ciò è dovuto alla degenerazione tra lo stato
fondamentale e il primo stato eccitato. Poi la procedura è applicata per il primo stato
eccitato per entrambe le molecole. Come prima, otteniamo un ottima convergenza sola-
mente a corte distanze inter-nucleari. Il problema della degenerazione non è più presente,
ma gli errori legati al calcolo dello stato fondamentale sono strasferiti al calcolo del primo
stato eccitato.
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Abstract

The Quantum Approximate Optimization Algorithm (QAOA) is a hybrid quantum-
classical algorithm introduced to solve complex combinatorial optimization problems,
such as the Max Cut. It exploits a parameterized quantum circuit to estimate the
ground state of a cost Hamiltonian Hc, that encodes the solution of the combinatorial
problem. The best values of the parameters are determined via classical optimization
techniques. The QAOA is also used to obtain the ground state of molecules. In this work,
we will extend its applicability by introducing a procedure that allows us to calculate
also the excited states in an iterative way: once the ground state is known, one can
obtain a new Hamiltonian whose ground state is the first excited state of the original
Hamiltonian. Now the QAOA can be applied again. The proposed method has been
tested using the H2 and the LiH molecule. For the quantum part of the algorithm,
the STO-3G basis has been used for the one-body and two-body integral calculation,
considering only 2 molecular orbitals and 2 electrons with opposite spins, a necessary
step to build the second quantized Hamiltonian. The creation and annihilation operators
have been mapped to qubits using the Jordan Wigner transformation. For the classical
optimizer, the Basin-Hopping method with the BFGS algorithm has been used. We first
calculate the ground state energy and wave function. For both the molecules, the ground
states can be successfully estimated for small inter-nuclear distances. At larger values
the results are not good, due to the degeneration between the ground state and the first
excited state. Then we apply our procedure for the calculation of first excited state for
both molecules. Again, we show convergence to the right results for short inter-nuclear
distances. The degeneration problem is no longer present, but the errors related to the
calculation of the ground states are transferred to the calculation of the first excited
states.
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Introduction

Classical computers are now part of our lives and have drastically changed society by
having the ability to solve otherwise unsolvable problems. Unfortunately some problems
are impractical even for supercomputers. A quantum computer is a computer that uses
the laws of quantum mechanics to solve this kind of problems. In contrast to the bit,
the basic unit of information is called qubit, which has the peculiarity to exist in a
superposition of states. In the quantum circuit model, the qubit is manipulated using
quantum logic gates. A quantum algorithm defines a quantum circuit, composed by
a sequence of quantum gates, that acts on some input qubits and terminates with a
measurement. Relevant quantum algorithms are the Shor’s algorithm, which promises
to perform integer factorization in a feasible amount of time and the Grover algorithm,
developed to speed up the unstructured search. Quantum computation finds application
in many problems such as computational chemistry, drug design, cryptography, machine
learning.

Quantum supremacy, the goal of proving that a programmable quantum device can
solve a problem that no classical computer can solve in a reasonable amount of time,
has been achieved in 2019 by Google Quantum AI using 54 qubits. Unfortunately it is
estimated that a lot of quantum algorithms require more the 1000 qubits to outperform
their classical counterpart. Indeed quantum computers suffer from decoherence, when
a quantum system loses its quantum properties, and quantum noise, which originates
from various sources, i.e., the environment. Quantum Error Correction (QEC) has been
developed for this reason. It is composed of a set of tools for the correction of quantum
errors and is essential to achieve quantum supremacy. But error correction methods
require additional qubits, and nowadays the number of qubits that can be implemented
is limited.

Existing quantum computers are called Noisy Intermediate-Scale Quantum (NISQ)
devices. They are composed of about 100 noisy qubits. Variational quantum algorithms
have been developed for this kind of devices. They are hybrid quantum-classical algo-
rithms, which delegate the classically difficult part of a problem to the quantum computer
and perform the others on some classical device. In particular, these algorithms use a
parameterized quantum circuit (PQC) U(θ⃗) that depends on some parameters θ⃗, usu-
ally randomly initialized. The PQC is applied to the qubit states that are used for the
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measurement of some cost Hamiltonian Hc. The result of the measure is used for the
optimization of the parameters θ⃗ by a classical device, using an optimization method
such as the stochastic gradient descent, therefore a new PQC U(θ⃗new) is obtained. The
whole procedure is iterated until convergence is established.

The most famous VQA algorithms are the Variational Quantum Eigensolver (VQE),
which has found applications in computational chemistry and quantum machine learning,
and the Quantum Approximate Optimization Algorithm (QAOA), which has been used
in this work.

The QAOA is a quantum algorithm developed to solve combinatorial problems such
as the Max Cut. It uses a PQC characterized by a unitary operator U(β⃗, γ⃗) which

is given in function of a set of parameters (β⃗, γ⃗), whose number is proportional to an
integer p ≥ 1. Increasing the value of p leads to better results, but the depth of the circuit
is also increased. The PQC is composed by the alternate application of two unitaries
exp{−iγiHc} and exp{−iβiHm}, with 1 ≤ i ≤ p, where Hc and Hm are respectively
called the cost and mixing Hamiltonian. Hc is chosen so that the solution of the problem
is represented by its ground state, while Hm is chosen to satisfy [Hm, Hc] ̸= 0, so that
the total evolution is able to to span the whole Hilbert space. At the beginning of
the algorithm, the parameters (β⃗0, γ⃗0) are randomly initialized and the initial states
is fixed to an equal superposition of the computational basis states. Then, the PQC
evolves the latter to |ψ(β⃗0, γ⃗0)⟩ which is used for the estimation of the cost function

⟨ψ(β⃗0, γ⃗0)| |Hc| |ψ(β⃗0, γ⃗0)⟩. The classical optimizer exploits this measure to find new

parameters (β⃗1, γ⃗1) for which the ground state is better estimated. This procedure
is repeated until the convergence of the optimizer is reached. As result we obtain the
ground state |ψg.s.⟩ = |ψ(β⃗opt, γ⃗opt)⟩ and the ground state energy αg.s. = ⟨ψg.s.|Hc |ψg.s.⟩
of the cost Hamiltonian.

The QAOA algorithm has been used only to estimate the ground state of a Hamil-
tonian, this is very limiting if the excited states are of interest. This work illustrates a
procedure for calculating the excited states using the QAOA algorithm.

The procedure is tested using the H2 molecule and the LiH molecule. The STO-3G
basis set has been used to calculate the one-body and two-body integral, considering only
2 molecular orbitals and 2 electrons with opposite spins, a necessary step for constructing
the second quantized Hamiltonian. The creation and annihilation operators, a† and a,
have been mapped using the Jordan-Wigner transformation. The Basin-Hopping method
with the BFGS algorithm has been used for the classical optimization. As a prerequisite,
the ground states of the two molecules are also calculated.

The content of the thesis is as follows.
In Chap. 1 the basic quantum properties for the treatment of quantum computation

will be introduced, followed by a description of quantum gates, such as the single qubit
gates and the controlled gates. Considering the circuit model, the quantum algorithms
are composed of these quantum gates. Finally, we will briefly introduce the requirements

2



for a physical realization of a quantum computer, and the steps scientists are taking to
reach quantum supremacy.

In Chap. 2 we will introduce Variation Quantum Algorithms (VQA). These types of
algorithms are designed for NISQ devices, and they are referred to as hybrid quantum-
classical algorithms. Then we will focus on one type of VQA algorithm, the Quantum
Approximate Optimization Algorithm, followed by the explanation of some optimization
algorithms, such as the BFGS and the Basin-Hopping method.

The benchmark of the procedure for calculating excited state using the QAOA will
be done using diatomic molecule Hamiltonians. For this reason, in Chap. 3 we will see
how to obtain the Schrodinger equation for the H atom and then diatomic molecules.
Finally we will introduce approximation for computational chemistry, and what is the
role of quantum computation in chemistry nowadays.

In Chap. 4 the procedure for the calculation of excited states will be introduced. We
will apply the QAOA to calculate of the ground state of the H2 and LiH molecules for
some distances, a prerequisite of the procedure. After applying a transformation to the
Hamiltonian, the first excited state will be calculated using the QAOA, and the results
will be benchmarked with respect to the calculations of exact diagonalization.
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Chapter 1

Introduction to Quantum
Computing

In this chapter, we will introduce the basic concepts of quantum computation, starting
with the quantum properties of the qubit, the basic unit of information in quantum com-
putation. Then we will focus on the basic building blocks of a quantum circuit, quantum
gates, a universal language for describing algorithms. In the end, we will talk about the
properties that an experimental setup must satisfy to be called a quantum computer,
and the steps the research is taking towards a fault-tolerant quantum computer. The
main reference used for this part is [4].

1.1 Qubits and Hilbert space

Quantum computers exploit quantum mechanical phenomena to manipulate informa-
tion. The basic unit of information in classical computation is the bit. Similarly to a
coin, it can be in two states, 0 (the head) or 1 (the tail). On the other hand, the basic
unit of information in quantum computation is the qubit.

A qubit is described as a quantum mechanical object, which, in analogy to a classical
bit, may be in the states |0⟩ and |1⟩. But, unlike the bit, the state |ψ⟩ of the qubit may
also be a linear superposition, of the states |0⟩ and |1⟩ :

|ψ⟩ = α|0⟩+ β|1⟩ (1.1)

where the coefficients α, β ∈ C, and |α|2 + |β|2 = 1. The state of a qubit is a unit vector
in a two-dimensional complex Hilbert space H . The special states |0⟩ and |1⟩ form an
orthonormal basis known as computational basis.
When a classical computer retrieves data from its memory, the value of a bit is always 0
or 1. On the other hand, when we try to measure the value of a qubit in the state |ψ⟩,
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we obtain either 0 with probability |α|2 or 1 with probability |β|2. It turns out that the
only way to know α and β is to measure infinitely identically prepared qubits.

The geometric interpretation of a qubit can be better grasped if the equation (1.1) is
rewritten, up to a global phase, as

|ψ⟩ = cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩, (1.2)

where θ and φ describe the position on a unitary sphere. Indeed we can visualize the
possible quantum states on the Block sphere, shown in Figure 1.1.

The evolution of a closed quantum system is described by a unitary transformation.
Given the state |ψ⟩ at time t1, it evolves to the state |ψ′⟩ at time t2 through a unitary
operator U(t1, t2),

|ψ′⟩ = U(t1, t2)|ψ⟩. (1.3)

Applying an unitary operator on a quantum state changes it, but an observer cannot
get any information about the states. To achieve that, a quantum measurement must
be performed.

Measurements

Quantum measurements are described by a collection {Mm} of measurements operators,
where the probability that the result m occurs is given by

p(m) =
〈
ψ
∣∣M †

mMm

∣∣ψ′〉 (1.4)

hence the state of the wave function collapse into the new state

|ψ⟩ → Mm|ψ⟩√
p(m)

(1.5)

The property of the probabilities to sum to one is assured by the completeness equation∑
m

M †
mMm = I (1.6)

The measurement of a qubit in the computational basis is particularly relevant, its defined
by the two measurements operatorsM0 = P0 = |0⟩ ⟨0| , M1 = P1 =| 1⟩ ⟨1|, the projectors
on the computational basis states |0⟩ and |1⟩. These measurements are Hermitian and
M2

0 = M0, M
2
1 = M1. Thus, when a qubit is measured in the computational basis, that

measurements leads to outcome an 0, corresponding to the state |0⟩, with probability
|α|2 and an outcome 1, corresponding to the state |1⟩, with probability |β|2.
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Figure 1.1: Bloch sphere representation of a qubit. From [4]

A projective measurement is described by an observable,M , with spectral decomposition,

M =
∑
m

mPm (1.7)

where Pm is the projector onto the eigenspace of M with eigenvalue m. Upon measuring
the state |ψ⟩, the probability of getting result m is given by

p(m) = ⟨ψ |Pm|ψ⟩ . (1.8)

Given that outcome m occured, the state of the quantum system immediately after the
measurement is

Pm|ψ⟩√
p(m)

(1.9)

When one moves from theory to experiment, the interaction between these states and
the outside world must be considered. It brings random interactions called random noise
that cannot be completely neglected. The control of such noise processes are the only
way to build useful quantum information processing systems.

An operation that will be useful later is the trace. Given a matrix A, the trace of A is
defined to be the sum of its diagonal elements

tr(A) ≡
∑
i

Aii· (1.10)

it has properties such as linearity and cyclicity:

tr(xA+ yB) = x tr(A) + y tr(B), tr(AB) = tr(BA) (1.11)
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In general many qubits are required for computational tasks, so we have to consider
multiple qubit systems. The state space of a quantum system made up of more than one
distinct physical system is called composite system.

Density operator

Another possible formulation for the description of a quantum system, alternatively to
the use of state vectors, is the use of the density operator also called density matrix.
This formulation, although is mathematically equivalent to the previous one, its is able
to describe a quantum system as a mixed state, therefore, is able to take in account
the presence of noise. A mixed state can be described by the ensemble of pure states
{pi, |ψi⟩}, where pi is the probability of the state |ψi⟩. The density operator for the
system is defined by

ρ ≡
∑
i

pi |ψi⟩ ⟨ψi|. (1.12)

Unitary evolution and measurements are easily described in the language of density
operators; for proof see [4]. Thus, given a unitary operator U , the evolution of the
density operator is described by

ρ′ =
∑
i

piU |ψi⟩ ⟨ψi|U † = UρU † (1.13)

and, for a measurement described by measurement operators Mm, the probability of
obtaining result m is

p(m) = tr
(
M †

mMmρ
)

(1.14)

the state after the measurement which yields the result m described by the density
operator is equal to

ρm =
MmρM

†
m

p(m)
. (1.15)

The state space H of a composite physical system is the tensor product of the state
spaces of the component physical systems. Thus, if we have systems numbered from 1
to n, and system number i is prepared in the state ρi, then the joint state of the total
system is ρ1 ⊗ ρ2 ⊗ . . .⊗ ρn. In general, however, a state p ∈H cannot be written as a
tensor product of states of individual systems.

The density operator ρ associated to some ensemble {pi, |ψi⟩} must satisfies the condi-
tions:

1. (Positivity condition) ρ is a positive operator.
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2. (Trace condition) tr(ρ) = 1.

For prof see [4].

A density operator can describe a subsystem of a composite quantum system via the
reduced density operator. In a system, composed by the subsystems A and B, described
by ρAB, the reduced density operator for system A is defined by

ρA ≡ trB
(
ρAB

)
(1.16)

where trB is known as partial trace over the system B, with the definition

trB(|a1⟩A ⟨a2|A ⊗ |b1⟩B ⟨b2|B) ≡ |a1⟩A ⟨a2|A tr(|b1⟩B ⟨b2|B) (1.17)

where {|ai⟩A} and {|bj⟩B} form an orthonormal basis in HA and HB respectively.

Fidelity

A tool for the measure of distance between quantum states is the fidelity. The fidelity is
defined, given any two states ρ and σ as,

F (ρ, σ) ≡ tr
√√

ρσ
√
ρ

With the properties:

• Symmetry F (ρ, σ) = F (σ, ρ)

• Bounded values 0 ≤ F (ρ, σ) ≤ 1, and F (ρ, ρ) = 1.

At first glance, it doesn’t seem a useful measure of the distance between the states ρ and
σ, and also, it doesn’t seem symmetric. However, we can convince ourselves, considering
the case when ρ and σ commute, i.e., they are diagonal in the same basis:

ρ =
∑
i

ti|i⟩⟨i|; σ =
∑
i

wi|i⟩⟨i| (1.18)

In this case the fidelity takes the form:

F (ρ, σ) = tr

√∑
i

tiwi|i⟩⟨i| = tr

(∑
i

√
tiwi|i⟩⟨i|

)
=
∑
i

√
tiwi = F (ti, wi) . (1.19)

Now the fidelity is explicitly symmetric, and depends only on the eigenvalues.

8



1.2 Quantum gates and quantum circuits

Classical computer circuits consist of wires used to carry information around and logic
gates that manipulate the information according to an algorithm. Similarly, a quantum
computer is built from a quantum circuit that form a collection of quantum gates, while
the latter carries around and manipulates the quantum information.

Single qubit gates

Recalling that |α|2 + |β|2 = 1, operations on a qubit must be unitary transformations
in order to preserve its unitary norm. Some of the most important ones are the Pauli
matrices:

X =

[
0 1
1 0

]
; Y =

[
0 −i
i 0

]
; Z =

[
1 0
0 −1

]
.

The X Pauli matrix defines the quantum NOT gate, that interchanges the role of |0⟩
and |1⟩ of a state

X

[
α
β

]
=

[
β
α

]
. (1.20)

The Z Pauli gate leaves the direction |0⟩ unchanged, but flips the sign of the qubit in
direction |1⟩ → −|1⟩. Instead the application of the Y Pauli gate performs a rotation of
π radians around the y-axis.

Three other fundamental single qubit gates are the Hadamard gate H, the phase gate S
and the phase gate T (historically known as π/8 gate):

H ≡ 1√
2

[
1 1
1 −1

]
; S ≡

[
1 0
0 ei

π
2

]
; T ≡

[
1 0
0 ei

π
4

]
.

The Hadamard gate rotates the sphere around the ŷ axis by 90◦, followed by a rota-
tion around the x̂ axis by 180◦. The phase gates S and T act on the qubits such that
|0⟩ 7→ |0⟩ and |1⟩ 7→ eiφ|1⟩, where φ = π/2 or π/4 respectively, leaving unchanged the
probability to measure this states. Symbols and definitions for these single qubit gates
are shown in Figure 1.2.

The Pauli matrices are the generators of three transformations, the rotation operators
about the x̂, ŷ and ẑ axes of the Bloch sphere, and they are defined by:
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Hadamard

Pauli-X

Pauli-Y

Pauli-Z

Phase S

Phase T

H

X

Y

Z

S

T

1√
2

[
1 1
1 −1

]
[
0 1
1 0

]
[
0 −i
i 0

]
[
1 0
0 −1

]
[
1 0
0 ei

π
2

]
[
1 0
0 ei

π
4

]
Figure 1.2: Symbols for the common single qubit gates.

Rx(θ) ≡ e−iθX/2 = cos
θ

2
I − i sin θ

2
X =

[
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

]
(1.21)

Ry(θ) ≡ e−iθY/2 = cos
θ

2
I − i sin θ

2
Y =

[
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

]
(1.22)

Rz(θ) ≡ e−iθZ/2 = cos
θ

2
I − i sin θ

2
Z =

[
e−iθ/2 0
0 eiθ/2

]
(1.23)

For any real numbers α, β, γ and δ we have the following relation:

U = eiαRz(β)Ry(γ)Rz(δ) (1.24)

where U is a unitary operation on a single qubit. For prof see [4]

Hadamard basis

The states |0⟩ and |1⟩ are not the only possible choice of basis states. Another basis
states very popular in quantum information theory, called Hadamard basis, is the set of
states

|+⟩ ≡ (|0⟩+ |1⟩)√
(2)

and |−⟩ ≡ (|0⟩ − |1⟩)√
2

.
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|c⟩

|t⟩

|c⟩

|t
⊕

c⟩

Figure 1.3: Circuit representation for the controlled-NOT gate. The top line represents
the control qubit, the bottom line the target qubit.

If a qubit is measured with respect to this new basis, it results in the result ”+” with
probability |α+β|2/2 and the result ”-” with probability |α−β|2/2, with corresponding
post-measurement states |+⟩ and |−⟩, respectively.
An generic state |ψ⟩ = α |0⟩+ β |1⟩ can be written in terms of the Hadamard basis as

|ψ⟩ = α|0⟩+ β|1⟩ = α
|+⟩+ |−⟩√

2
+ β
|+⟩ − |−⟩√

2
=
α + β√

2
|+⟩+ α− β√

2
|−⟩. (1.25)

Therefore it is possible to treat the Hadamard basis as they were the computational
basis states. The Hadamard gate, introduced before, performs the change of basis in a
quantum circuit.

Controlled gates

Controlled operations are fundamental in classical computing; the same is valid in quan-
tum computation; one example of a controlled operation is the controlled-NOT (CNOT)
gate. This gate is applied to 2 qubits, they are called the control qubit (|c⟩) and the
target qubit (|t⟩). The circuit is represented in Figure 1.3. In terms of the computational
basis, the CNOT performs the transformation |c⟩|t⟩ → |c⟩|t⊕c⟩, where |c⟩, |t⟩ ∈ {|0⟩, |1⟩}
and ⊕ is the XOR operation. Therefore, when |c⟩ = |0⟩, |t⟩ is left unchanged, but if
|c⟩ = |1⟩ a bit flip is applied to |t⟩. The CNOT gate, respect to a two qubits basis, is
represented by the unitary trasformation

UCN =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.26)

Generalizing, if U is a single qubit unitary operation, the controlled-U operation is a
two qubit operation, with a control and a target qubit as before, where, if the control
qubit is |1⟩, then U is applied to the target qubit, otherwise, and the target qubit is left
unchanged, the transformation is
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U

Figure 1.4: Controlled-U operation. The top line is the control qubit, and the bottom
line is the target qubit.

|c⟩1|t⟩2 →
(
1 + Z1

2
+

1− Z1

2
U2

)
|c⟩1|t⟩2. (1.27)

The controlled-U operation is represented by the circuit shown in Figure 1.4.

Moving to a three-qubit system, the analog of the CNOT gate is the Toffoli gate (also
called CCNOT), it has two control qubits instead of one. The Toffoli gate is associated
to the unitary trasformation

CCNOT ≡ (II − |11⟩⟨11|)⊗ I + |11⟩⟨11| ⊗X =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


. (1.28)

Now if the two control qubit |c⟩1 and |c⟩2 are equal to |1⟩, the target qubit |t⟩ is flipped,
if only one control qubit is |0⟩, |t⟩ is left unchanged.

SWAP gate

Another important quantum gate in quantum computing is the SWAP gate, that ex-
changes the state of two qubits. In the computational basis, the SWAP gate maps

|00⟩ → |00⟩, |01⟩ → |10⟩, |10⟩ → |01⟩ and |11⟩ → |11⟩

The SWAP gate is equivalent to the unitary transformation

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


12



|qA⟩

|qB⟩

|qB⟩

|qA⟩

Figure 1.5: Circuit representation for the SWAP gate. The qubit qA and qB are swapped.

with respect to the computational basis. It can be decomposed in 3 CNOTS, as showed
in figure 1.5.

Universal quantum gates

In classical computation, Boolean functions are expressed using the gates AND, OR,
NAND, NOT etc. The NAND gate is called universal because it can compose the NOT,
OR and AND gates and from there, anything else. The NAND gate therefore is sad to
be Universal. A similar result can be achieved for quantum computation. If a set of
quantum gates can approximate any unitary operation with arbitrary accuracy, we can
say they are universal for quantum computation. We can find a possible set of gates
starting from the assumption that any unitary operators can be exactly expressed as
the product of a CNOT and a single qubit gate, the latter can be approximated by the
Hadamard, phase and π/8 gates, for proof see [4]. We can conclude that any unitary
operation can be approximated using the Hadamard, phase, π/8 and CNOT gates. One
might ask how many gates are necessary to compose a unitary transformation. Unitary
operators exist for which exponentially many gates are required the approximation.

Measures of Pauli strings

The Pauli string representation can be used to efficiently parameterize the observable.
The measurement of Pauli string works in this way, the expectation value of σz on a
qubit is ⟨σz⟩ = |α|2 − |β|2 where |α|2 is the probability for the state |0⟩ and |β|2, the
Pauli matrices σx and σy can be transformed into the σz basis using the phase gate S

and the Hadamard gate H. Therefore Pauli strings P̂ on qubits n ∈ N can be measured
using the same procedure on each qubit as

⟨P̂ ⟩U = ⟨
∏
k∈K

σz(k)⟩ŨU (1.29)

where Ũ is a product of single qubit rotations that depends on the Pauli matrix at qubit
k.
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1.3 Quantum computers

The physical realization of quantum qubits and gates has been proven to be extremely
complicated. To realize a quantum computer, DiVincenzo’s criteria [20] must be met:

1. A physical system with well-characterized qubit.

Where ”well characterized” means that the Hamiltonian of the qubit, and all the
possible couplings to external fields used to evolve the state of the qubit, have to
be known.

2. The capability to prepare the initial state of the qubits to a simple fiducial state.

Quantum computing requires the initialization of the qubits at a known value
before the start of the computation.

3. Decoherence times much longer than the gate operation time.

Decoherence transforms a quantum system into a classical one; therefore it is es-
sential that the execution of a quantum gate is faster than the decoherence time.

4. A universal set of quantum gates.

A quantum algorithm can be seen as a sequence of unitary transformations (quan-
tum gates) U1 = eiH1t, U2 = eiH2t, ... acting on the qubits, the experimental setup
must work in a way that H1 can be applied for a precise interval of time, then
turned off and followed by the application of H2 of another interval of time and so
on. Unfortunately, quantum gates cannot be applied perfectly; random errors are
expected. Quantum error correction can remove the error generated from unreliable
gates if the error is small enough.

5. A measurement capability specific for the qubit.

The measurement on a qubit should give the outcome 0 with probability α and 1
with probability 1 − α, as explained in section 1.1, without changing the state of
other qubits. This measurement is only ideal and is said to have 100% quantum
efficiency. Usually this value is much lower than that. Some techniques have been
developed to overcome this problem.

These requirements are not easy to be satisfied. The manipulation of qubits requires
that they have to be accessible. However a quantum computer has to be well isolated
to retain its quantum properties. For instance, a single nuclear spin has the advantage
that superpositions on an external magnetic field can last for a long time; unfortunately,
measuring the orientation of single nuclei can be challenging because their coupling to
the world is minimal.
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Some examples of physical realization of a quantum computer are the optical photon
quantum computer [33], nuclear magnetic resonance (NMR) quantum computer [34] and
superconducting qubits [35]; the latter is a promising and studied platform. In 2019
Google published a paper claiming to have achieved quantum supremacy [26].

Quantum algorithms are meant to be implemented in quantum computers where the
physical error rate is below a certain threshold where, as stated by the Threshold theorem
[36], errors can be suppressed by Quantum Error Correction (QEC) techniques. Unfor-
tunately, these machines are still unavailable, and building an error-corrected quantum
computer may take decades. The set of methods that allow qubits to be protected from
quantum errors, introduced by decoherence and quantum noise, is called fault tolerant
quantum computing. QEC methods, such as the Shor code that aims to correct bit flips
and sign flips, requires ancilla qubits, which is not always possible in today’s quantum
computers. A method to reduce the error without ancilla qubits is called Quantum Error
Mitigation (QEM); it can reduce the error in finding expectation values using classical
post-processing and different runs of quantum circuits [11].

Originally proposed quantum algorithms incorporated with some QEC technique require
millions of physical qubits, currently quantum computers are composed of about 100
qubits; these devices are often called Noisy Intermediate-Scale Quantum (NISQ) devices;
they don’t use QEC techniques. Therefore their operations are subject to errors, to
overcome this problem, hybrid algorithms have been developed, where they partially run
on a classical computer to deal with the decoherence errors of the NISQ devices. This
approach is called near-term quantum computation. The NISQ era aims to exploit all
the quantum computational power possible from these devices [11].

15



Chapter 2

Variational Quantum Algorithms

Quantum algorithms are algorithms that can be performed on a quantum computer.
They are designed to outperform the efficiency of classical algorithms for some problem,
redefining what is a tractable or intractable.
There are various models of quantum computation, but the most commonly used is the
circuit model, that describes the computation in terms of a network of quantum gates,
as seen in the previous chapter.

The first breakthrough in the development of quantum algorithms was the Shor’s algo-
rithm [22], designed to find the prime factors of an integer. Public-key cryptography,
widely used in society today, relies on the fact that for classical computer factoring large
integers is computationally intractable. If a quantum computer with enough qubits could
operate without succumbing to quantum noise, then Shor’s algorithm could be used to
break public-key cryptography schemes.
Another example of a quantum algorithm that outperforms its classical counterpart is
the Grover search algorithm [13] (or quantum search algorithm), the problem of locating
an element in an unstructured list of N elements with a classical approach requires to
check at least N/2 (N in the worst case) elements, instead with the Grover algorithm
requires only about

√
2 steps.

2.1 Introduction to VQA

As introduced at the end of chapter 1.3, quantum computers available today are equipped
with about 100 qubits where QEC methods are not applied. Often they are called Near
Intermediate Scale Quantum (NISQ) devices and can implement the model of quantum
circuits, but because of the noise each gate involves, the depth of circuits is very limited.
Variational quantum algorithms (VQA) are a group of algorithms developed for NISQ
devices. They delegate the classically difficult part of some computation to a quantum
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computer and perform the classically tractable part on some sufficiently powerful classi-
cal device that optimizes the parameters of a parameterized quantum circuit U(θ⃗). One
of the two proposed VQA algorithms were the Variational Quantum Eigensolver (VQE)
and the Quantum Approximate Optimization Algorithm (QAOA) [2], proposed to solve
combinatorial optimization problems.

The VQA is composed by some modular components, shown in figure 2.1, mainly we
have four components:

Objective function: the Hamiltonian H encodes information about a physical sys-
tem, but also to problems not related to real physical systems, such as combinatorial
problems. Writing a function in an operational form allow us to solve the problem en-
coded by the function using a quantum computer. The classical part of a VQA aims to
minimize the cost function ⟨Ψ(θ⃗)|H |Ψ(θ⃗)⟩, such that the ground state energy is calcu-
lated. [11].

Parameterized quantum circuits (PQC): Another essential constituent of a VQA
is the quantum circuit that prepares the state that best meets the objective. It is gener-
ated through a unitary operation U(θ⃗) that depends on some parameters θ⃗opt. Finding

the parameter values θ⃗ that deliver to an optimal U(θ⃗opt), on the other hand, is the task
of the classical optimization subroutine. The unitary operation is applied to an initial
state |ψ⟩0 that can be a superposition of the basis or a particular state motivated by the
problem under consideration.

|ψ(θ⃗)⟩ = U(θ⃗) |ψ0⟩ (2.1)

Similarly, the initial parameters are unknown a priori. Usually they are chosen randomly,
however knowledge about the problem can be exploited to choose a suitable initial pa-
rameters [11].

Measurement: In VQA, the action of gaining information about the quantum state
is performed estimating the expectation value of the objective function ⟨Ψ(θ⃗)|H |Ψ(θ⃗)⟩.
The expectation value is estimated applying a unitary transformation in the diagonal
basis of the observable H. Is possible to obtain the expectation value directly from the
probability of measuring specific computational states corresponding to an eigenvalue of
H. In a NISQ device, determining if a measured qubit is in the |0⟩ or |1⟩ state can be a
expensive operation, because of the transformation to the diagonal basis. Alternatively
the Pauli string representation can be used to efficiently parameterize the observable, as
stated in 1.2.

Parameters optimization: The parameters of the PQC U(θ⃗) are optimized by a
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classical computer. This task is resolved by an optimization algorithm. It is impor-
tant to consider that noisy data coming from current devices can invalidate the result
of the optimization algorithm. This flaw makes that for PQC optimization there are
better algorithms than others, and new algorithms are being proposed specifically for
this purpose [11].

Figure 2.1: Representation of the VQA main components, a) the objective function O,
b) the parameterized quantum circuit, c) the measurement scheme U , d) the classical
optimizer that minimizes the objective. From [11]
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2.2 The Quantum Approximate Optimization Algo-

rithm

The QAOA (Quantum Approximate Optimization Algorithm), introduced by Farhi,
Goldstone and Gutmann [2], is a variational quantum algorithm developed to solve com-
binatorial problems such as the Max-Cut or the Travelling salesman problems. These
two problems are often used as benchmark in optimization methods because of their
heavy computational effort in classical computation.

The Max-Cut problem is about the partition of the nodes of an undirected graph G in
2 groups such that the links between these groups are maximized. A variant of it is the
Min-Cut, that aims to reduce the links between the 2 groups and can be solved by a
classical computer with less computational effort than the Max-Cut, using the Edmonds
and Karp algorithm [21]. The Traveling Salesman Problem tries to solve the problem of
starting from a city (a node), finding the shortest route (weighted links) that cross each
other city (the other nodes) only one time, and return to the original city.

The QAOA algorithm consists of the following steps:

1. Define a cost Hamiltonian Hc, such that its ground state encodes the solution to
the optimization problem.

2. Define a mixer Hamiltonian Hm, such that [Hc, Hm]=0, usually chosen as Hm =∑N
i Xi , where N is the number of qubits and Xi is the X Pauli matrix applied to

the qubit i.

3. Prepare an initial state |ψ0⟩, usually chosen as an equal superposition of the basis:

|ψ0⟩ =
1√
2N

(|0⟩+ |1⟩)⊗N (2.2)

4. Choose an integer p ≥ 1, keeping in mind that the depth of the circuit grows (at
worst) linearly with p, the quality of the approximation is expected to improve as
p increases.

5. Initialize the parameters of the quantum circuit β⃗0 and γ⃗0 with dimension p, usually
they are generated randomly in [−2π, 2π]. The parameter quantum circuit (PQC)
is built by the repeated application of the two unitaries e−iβiHC and e−iγiHM , with
i = 1, ..., p, in this way:

U(β⃗, γ⃗) = e−iβpHCe−iγpHM . . . e−iβ2HCe−iγ2HM e−iβ1HCe−iγ1HM (2.3)

19



6. Repeat the following loop until the convergence is reached:

(a) The PQC is applied to the initial state:

|ψ
(
β⃗k, γ⃗k

)
⟩ = U

(
β⃗k, γ⃗k

)
|ψ0⟩ (2.4)

(b) The approximated solution of ground state of the HamiltonianHc is measured:

Fp = ⟨ψ
(
β⃗k, γ⃗k

)
|HC|ψ

(
β⃗k, γ⃗k

)
⟩ (2.5)

(c) The value Fp is used by the classical optimizer to optimize the parameters of

the parametrized quantum circuit (β⃗k, γ⃗k)⇒ (β⃗k+1, γ⃗k+1) where k = 1, . . . ,N,
and N is the total number of steps performed.

After the N steps are performed, |ψopt ⟩ = |ψ
(
β⃗N, γ⃗N

)
⟩ is our approximation to the

ground state of Hc, using this state is possible to calculate the approximation to the
ground state Fp = ⟨ψopt |HC |ψopt ⟩, this value encodes the solution to our problem.

It has been estimated that for p = 1 and 420 qubits, it is possible to demonstrate the
quantum advantage [37].

Figure 2.2: Scheme of the QAOA algorithm, the classical optimizer optimizes the param-
eters that characterize the quantum gates, the states are evolved and used to calculate an
approximation of the ground state of the cost Hamiltonian; This algorithm is performed
until the desired approximation is reached. From [12]
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2.3 Optimization algorithms

Optimization algorithms are fundamental for variational quantum algorithms, but they
are also crucial in many fields of science and engineering. Many problems in these fields
can be solved as the optimization of some scalar parameterized objective function re-
quiring maximization or minimization with respect to its parameters. Often they are
gradient-based. The gradient-based optimization is a relatively efficient optimization
method if the function is differentiable, since the computation of its first derivative is of
the same computational complexity as the simple evaluation of the function [5].
The most known optimization algorithms gradient-based method is the stochastic gradi-
ent descent (SGD) but, with the increasing importance of these algorithms, extensions
and variants have been developed, such as Adam optimizer.

The stochastic gradient descent

Stochastic gradient descent (SGD) [23] is an iterative method for optimizing an objective

function f(θ⃗) with suitable smoothness properties. In the beginning of the algorithm is
selected a random point and at each iteration the SGD tries descend the slope updating
the point until the minimum is reached.
The algorithm follows this steps:

1. Pick a random initial value for the parameters θ⃗0.

2. Calculate the gradient function ∇f(θ⃗0).

3. Calculate the step sizes for each dimension w⃗k := w⃗k − η∇f(θ⃗k), where η is the
stepsize (or learning rate), a parameter that can be optimized in order to improve
the convergence.

4. Calculate the new parameters as: θ⃗k+1 := θ⃗k − w⃗k

5. Calculate the gradient with the new parameters ∇f(θ⃗k+1)

6. Repeat steps 3 to 5 for a reasonable number of steps or until gradient is almost 0.

Usually different values of the stepsize η are tested in order to improve the convergence.
Smaller stepsizes makes the convergence very low, while larger stepsizes make the algo-
rithm take huge steps down the slope, consequently it might jump across the minimum
point and missing it. Usually, it is a good practise to set the stepsize to 0.01.
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Figure 2.3: In the stochastic gradient descent the gradient of the cost function is calcu-
lated, for various steps, in order to minimize the latter. From [16]

The Adam optimization algorithm

The optimization algorithm Adam (P. Kingma & Lei Ba, 2015 [5]), which derived his
name from adaptive moment estimation, is a method for efficient stochastic optimization
that only requires first-order gradients. The method can adapt individually the learning
rates for different parameters from estimates of first and second moments of the gradients.
The Adam was developed combining the advantages of two others optimizer: RMSProp
(Tieleman & Hinton, 2012 [25]), an algorithm designed for artificial neural network
training, and AdaGrad (Duchi et al., 2011 [24]), which scale the learning rate for each
dimension. An important advantage of the Adam method is that the magnitudes of
parameter updates are invariant to the gradient rescaling. The Adam optimizer depends
on these parameters: α is the stepsize, similarly at the stochastic gradient descent, it
controls the movement in the search space , β1 and β2 are the exponential decay rates
for the 1◦ and the 2◦ moment estimates, ϵ is a small constant for numerical stability.
Let f(θ⃗) be the objective function, the following is the pseudo-code of the Adam taken
from [5]:
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Require: α: Stepsize
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector
m0 ← 0 (Initialize 1st moment vector)
v0 ← 0 (Initialize 2nd moment vector)
t← 0 (Initialize timestep)
while θt not converged do
t← t+ 1
gt ← ∇θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate)
vt ← β2 · vt−1 + (1− β2) · g2t (Update biased second raw moment estimate)
m̂t ← mt/(1− βt

1) (Compute bias-corrected first moment estimate)
v̂t ← vt/(1− βt

2) (Compute bias-corrected second raw moment estimate)
θt ← θt−1 − α · m̂t/(

√
v̂t + ϵ) (Update parameters)

end while
return θt (Resulting parameters)

Good default settings are α = 0.001, β1 = 0.9, β2 = 0.999 and ϵ = 10−8.

The BFGS algorithm

The Broyden, Fletcher, Goldfarb, and Shanno (or BFGS) algorithm [14], is one of the
most used second-order algorithms for numerical optimization. It is principally used for
the logistic regression algorithm in machine learning.

It makes use of the second-order derivative of an objective function, therefore is referred
as second-order optimization algorithm. It belongs to a class of algorithms called Quasi-
Newton methods that approximates the second derivative (the Hessian) for optimization
problems, important, especially where the second derivative cannot be calculated.

The Newton’s method work in this way, a function f(xk) is approximated at the point xk
with a paraboloid, and then the approximation is minimized stepping to the minimum of
that paraboloid. Differently to the stochastic gradient descent introduced before, there
is no longer a need to set a learning rate parameter η, in the BFGS the step size is
determined by the distance from xk to the minimum of the fitted parabola. The Newto-
nian method has mainly two problems, is too sensitive to initial conditions and can be
very computationally expensive in proportion to the number of parameters. The Quasi-
Newtonian method was developed to overcome these problems, it takes the best of the
SGD method and Newton’s method, it has a faster convergence than the SGD, and a
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lower cost per iteration than Newton’s method [15].

In the BFGS method, the descent direction is determined by preconditioning the gradient
with curvature information. It does so by gradually improving an approximation to the
Hessian matrix of the cost function.
In Newton’s method, the Hessian of the function are computed, instead in quasi-Newtonian
method, we just approximate it with a matrix Bk, which is updated iteration after iter-
ation using information computed from previous steps.
The search direction pk at step k is given a the solution that is similar to the Newton
equation:

Bkpk = −∇f(xk) (2.6)

where Bk is an approximation to the Hessian matrix, and f(xk) is the function to min-
imize. The search direction characterized by pk is then used to find the next step xk+1

by minimizing f(xk + γpk) where γ > 0.
The quasi-Newton condition imposed on the update of Bk is

Bk+1 (xk+1 − xk) = ∇f (xk+1)−∇f (xk) (2.7)

At the point xk+1 is computed the approximation to the Hessian matrix Bk+1, and at
the approximate Hessian, at step k, is summed to two matrices:

Bk+1 = Bk + Uk + Vk (2.8)

Where Uk and Vk are symmetric rank-one matrices, and their sum is a rank-two update
matrix. To maintain the symmetry and positive definiteness of Bk+1, the update form
can be chosen as

Bk+1 = Bk + αuu⊤ + βvv⊤ (2.9)

Imposing the secant condition, Bk+1sk = yk. Choosing u = yk and v = Bksk, we can
obtain:

α =
1

yT
k sk

and β = − 1

sTkBksk
(2.10)

Finally, we substitute α and β into Bk+1 = Bk + αuu⊤ + βvv⊤ and get the update
equation of Bk+1:

Bk+1 = Bk +
yky

T
k

yT
k sk
− Bksks

T
kB

T
k

sTkBksk
(2.11)

The algorithm is the following:
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1. Obtain a direction pk = −∇f(xk)B
−1
k

2. Perform a one-dimensional optimization to estimate an acceptable stepsize αk in
the direction found in the first step.

3. Set sk = αkpk and update xk+1 = xk + sk

4. Calculate the difference yk = ∇f(xk+1)−∇f(xk)

5. Calculate Bk+1 = Bk +
yky

T
k

yT
k sk
− Bksks

T
k B

T
k

sTk Bksk
and go back to step 1

A possible inizialization for Bk is B0 = 1, in this case the first step will be equivalent to
a gradient descent.
The first step of the algorithm is performed using the inverse of the matrix Bk.

B−1
k+1 =

(
I − sky

T
k

yT
k sk

)
B−1

k

(
I − yks

T
k

yT
k sk

)
+

sks
T
k

yT
k sk

(2.12)

The step 5 can be rewritten such that Bk must be the approximation of the inverse of
the Hessian instead of the Hessian approximation to avoid matrix inversion.

Basin-hopping optimization

The basin-hopping algorithm, by Wales et al. [7], is a stochastic global optimization
method that attempts to find the global minimum of an objective function. It has been
motivated by problems from physical chemistry, especially to find configurations with
the lowest energy or stable molecular configurations. These tasks are characterized by a
lots of local minima which makes it hard for standard optimization methods because of
the very strong dependency on the initial conditions.

The basin-hopping is composed by two ingredients, the Monte Carlo approach, and a
local optimizer that returns for a given starting point a local minimum.

The algorithm is composed by the following steps:

1. Choose a starting point.

2. Compute a local minimum with the associated local optimizer.

3. Apply a random perturbation on the coordinates of the local minimum.

4. Compute the next local minimum.

5. Compare the local minima using a criterion previously chosen and keep the best.
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The random displacement obviously needs to be sufficiently large to escape the current
local minimum but no too large that the hopping doesn’t become completely random.

The step for the random displacement is bounded by the stepsize, an important basin-
hopping parameter, that bounds the size of the step. The step is chosen uniformly in
the region from x⃗0-stepsize to x⃗0+stepsize where x⃗0 is the position of a local minimum
previously reached. Ideally, it should be comparable to the typical separation (in ar-
gument values) between local minima of the function being optimized. This method,
by default, adjusts the stepsize to find an optimal value, but this may take many iter-
ations, the algorithm can be faster if a sensible initial value for stepsize is initially chosen.

A possible criterion for the comparison between the minima is the Metropolis criterion,
where the new local minimum is always chosen if f(xnew) < f(xold), if this is not the
case, the new local minimum is chosen with probability

e−(f(xnew)−f(xold))/T (2.13)

Where T , the temperature, is a parameter to optimize. To get better results, T should
be comparable to the typical difference (in function values) between local minima. If
T = 0, the algorithm is called ”Monotonic basin-hopping”, in which all steps that in-
crease energy are not taken in consideration [8].

A lot of molecular systems have been optimized primarily using basin-hopping, their
are stored in the Cambridge Cluster Database [6], this database includes minimization
problems exceeding 300 degrees of freedom.
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Chapter 3

Diatomic molecules

We need a Hamiltonian to benchmark the algorithm for the calculation of the excited
states using the QAOA. The diatomic molecule Hamiltonian will be used for this purpose.

This chapter will introduce the properties of diatomic molecules, starting from the study
of the Hydrogen atom and the H+

2 molecule. Only for one-electron systems, the exact
solution of the Schrodinger equation can be calculated, for other systems approximations
are necessary, such as the LCAO approximation. Usually, in computational chemistry,
one-electron functions are approximated using a finite basis set. There are many basis
sets, where the choice depends on the physics of the problem.

In the end, we will see the limits of classical computation applied to the problems of
chemistry, and how quantum computation can help to overcome these limits. An elec-
tronic system can be treated by a quantum computer mapping the orbitals by qubits.
This is achieved using the electronic Hamiltonian in second quantization, where the cre-
ation and annihilation operators are mapped into qubits using a transformation such as
the Jordan-Wigner transformation.
The main reference used for this part is [3]

3.1 The Hydrogen atom

The hydrogen atom is the simplest atom in nature and a good starting point for studying
atomic structure. It consists of an electron moving in the proton’s spherically symmetric
Coulomb potential. Hydrogen and other one-electron systems are the only real sys-
tems for which the Schrödinger equation can be solved exactly. For all other atoms or
molecules, approximations must be made.
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3.1.1 Schrödinger Equation for one-electron systems

The Schrödinger equation can be viewed as the fundamental equation of non-relativistic
quantum theory. The treatment of the hydrogen atom can explain the basic ideas of
quantum mechanics.

The Schrödinger equation for a system consisting of one electron (massm1, charge q = −e
and radius vector r1) and a nucleus (mass m2 ≫ m1, charge q = +Ze and radius vector
r2) is:

− h̄2

2m1

∆1ψ −
h̄2

2m2

∆2ψ −
Ze2

4πε0r
ψ = Eψ (r1, r2) , (3.1)

where ∆i is the Laplace operator respect to ri. The first term describes the kinetic energy
of the electron, the second the kinetic energy for the nucleus and the third the Coulomb
interaction between the two particles, where r = |r1 − r2|.

A closed particle system can always be broken down into the movement of the center of
mass and the relative movement of the particles in the center of mass:

R =
m1r1 +m2r2

M
with M = m1 +m2, R = {X, Y, Z}.

and with relative distance r = {x, y, z} = |r1 − r2|. Using standard techniques, we use
separation of variables by setting ψ(R, r) = f(r)g(R) to obtain an equation for the
relative motion:

− h̄2

2µ
∆ψ + Epot (r)ψ = Eψ (3.2)

that is the Schrodinger equation for a particle in a spherically symmetric potential:
Epot(r) = −2e2/4πϵ0r.

3.1.2 Quantum Numbers

For any spherical potential, the wave function (3.2) can be broken down into a radial
function Rn,la(r), dependent on distance proton-electron r, on the principal quantum
number n and orbital angular quantum number l, and spherical functions Y m

l , dependent
from the angular components (θ, ϕ), on the magnetic quantum number m and the orbital
angular quantum number l, the wave function can be written as:

ψn,l,m(r, ϑ, φ) ∝ Rn,l(r)Y
m
l (ϑ, φ) (3.3)

are also called atomic orbitals. The normalized total wave functions ψ for the lowest
energy states of the hydrogen atom are compiled in Table 3.2.
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l state label |m| state label
0 s 0 σ
1 p 1 π
2 d 2 δ
3 f 3 φ
4 g 4 γ

Table 3.1: Labeling of atomic states (l,m) using Latin and Greek letters

n l m Eigenfunction ψn,l,m(r, ϑ, φ)

1 0 0 1√
π

(
Z
a0

)3/2
e−Zr/a0

2 0 0 1
4
√
2π

(
Z
a0

)3/2 (
2− Zr

a0

)
e−Zr/2a0

2 1 0 1
4
√
2π

(
Z
a0

)3/2
Zr
a0
e−Zr/2a0 cosϑ

2 1 ±1 1
8
√
π

(
Z
a0

)3/2
Zr
a0
e−Zr/2a0 sinϑe±iφ

Table 3.2: Normalized total wave functions of an electron in the Coulomb potential
Epot = −Ze2/ (4πε0r)

Each atomic state, described by its energy and spatial distribution of electrons, is
uniquely defined by the three quantum numbers n, l and m, summarized in Table 3.1.

The energy En of an atomic state in this model depends exclusively on n, therefore, all
states with possible combinations of l andm, for a fixed value of n, have the same energy.
Not all sets of quantum numbers (n, l,m) are possible. For example, the orbital angular
quantum number l can never be greater or equal to the principal quantum number
n(l < n). They must obey the constraints:

• n = 1, 2, 3, . . .

• l = 0, 1, 2, . . . , (n− 1)

• m = −l, (−l + 1), . . . , 0, . . . , (+l − 1),+l

As a consequence for the magnetic quantum number m there are 2l + 1 possible values,
because −l ≤ m ≤ +l.

The radial wave functions of some atomic states are shown in Fig. 3.1. Different states
with the same energy are called degenerate states. The number of degenerate states is
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called the degeneracy order.

We must be careful that several effects, such as electron spin, nuclear spins and external
fields, not included in the Schrödinger theory. They can break the degeneracy and split
degenerate levels into components with different energies.

Figure 3.1: The radial wave function Rn,l(r) for the principle quantum numbers n =
1, 2, 3. From [3]
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3.2 The H+
2 molecular ion

The H+
2 ion, which has two identical nuclei (protons) and one electron, is the most basic

of all molecules. The interaction potential Epot between the three particles is

Epot = −
e2

4πε0

(
1

rA
+

1

rB
− 1

R

)
(3.4)

where R is the distance between the 2 protons, and rA and rB are distances from the
proton A and B to the electron, as showed in Fig. 3.2

Figure 3.2: The H+
2 molecule. From [3]

When we choose the origin of our coordinate system as the center of mass of the two
protons (the small mass the electron does not noticeably change the center of mass) we
obtain from Fig. 3.2 the relations

r = RA + rA = RB + rB ⇒ r =
1

2
(rA + rB) (3.5)

because RA = −RB. With R = rA − rB we can replace rA and rB by:

rA = r +
1

2
R; rB = r − 1

2
R (3.6)

The Schrödinger equation for this three-body problem is:

ĤΦ = EΦ (3.7)

with

Ĥ =− h̄2

2M
(∆A (RA) + ∆B (RB))−

h̄2

2m
∆e(r) + Epot(r,R) (3.8)
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where the kinetic energy of the nuclei is represented by the first two terms, and that of
the electron by the third. The nuclei and the electron move in the potential Epot (r, R).

3.2.1 A Solution for the H+
2 Molecule

In contrast to the case for the H atom, the Schrödinger equation cannot be analytically
solved. Approximations must be taken. Calling M the mass of the proton and m the
mass of the electron, we can ignore the kinetic energy of the nuclei Ekin = p2/2M ,
because (M/m ≈ 1836), considering the nuclei at fixed distance R (Born-Oppenheimer
approximation) [3].
For each selected value of R, we have the wave function, the electron’s energy, and the
repulsive potential energy between the two nuclei. It follows that all pertinent values of
R are resolved for the equation (3.7).
In this approximation of the rigid H+

2 the Schrödinger equation (3.7), making explicit
the potential (3.4), becomes:

[
− h̄2

2m
∆e(r)−

e2

4πε0

(
1

rA
+

1

rB
− 1

R

)]
Φ (rA, rB, R) = E(R)Φ (rA, rB, R) (3.9)

where rA and rB depend on the coordinates both of the electron and of the two nuclei.
Equation (3.9) can be solved analytically in a similar way as (3.1) for the H atom. It
is convenient to use elliptical coordinates because the potential energy no longer has
spherical symmetry but instead cylindrical symmetry. The line linking the two nuclei is
the symmetry axis (z-axis), and the two nuclei are the focal points of an ellipsoid with
cylindrical symmetry.
Following the proof in [3], we have that the wave functions result in discrete energy
eigenvalues En(R) and depend on the internuclear separation R (Fig. 3.3).
The functions E(R) can either exhibit minima at a specific value of R if the energy states
are stable or decrease inversely with R (repulsive instable energy states).
These curves

E(R) =
〈
Ekin

(
e−
)〉

+
e2

4πε0

(
1

R
−
〈

1

rA
+

1

rB

〉)
(3.10)

are called potential energy curves, although they also include the averaged kinetic energy
of the electron.
The angular momentum l of the electron is no longer constant because the potential is
not spherically symmetric. It precesses around the internuclear axis. Its absolute value
|l| depends on the internuclear separation R, but its projection onto the z-axis lz has a
well-defined expectation value:

⟨lz⟩ = mh̄, (3.11a)

32



Figure 3.3: The potential curves E(R) for the H+
2 molecule, corresponding to bound

states and repulsive unstable states. From [3]

which is determined by the integer m = 0,±1,±2, . . . ,±l (Fig. 3.4) and is, for a given
potential curve E(R), independent of R, because is only dependent on φ.

Figure 3.4: The orbital angular momentum l of the electron that precess on the internu-
clear axis and its constant projection lz = λ. From [3]

The energy of a level does not depend on the direction of the field in the axial electric
field of a non-rotating diatomic molecule. This indicates that levels with the same energy
have the following coordinates: ⟨lz⟩ = ±m ·h̄, we have that the quantum number λ = |m|
describes the molecular levels. Instead of (3.11a) we write
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⟨lz⟩ = λh̄ (3.11b)

The electrons in diatomic molecules are called σ-electrons for λ = 0 ; π electrons for
λ = 1 and δ-electrons for λ = 2 etc.

A magnetic field in the z direction is created as a result of the electron’s precession
around the internuclear axis for λ > 0. The magnetic moment µs can have two different
orientations in this field if the electron spin s is taken into account, which is similar to
the situation for atoms in the Stern-Gerlach experiment. Only the z-component of the
electron spin precesses around the magnetic field direction, which is the z-direction. The
expectation value for the z-component electron spin

⟨sz⟩ = ms · h̄ = ±1

2
h̄ (3.11c)

has definite eigenvalues (Fig. 3.5).

Figure 3.5: The projections of the orbital angular momentum l and the electron spin s
adds up to the total projection ωh̄ = (λ+ms)h̄. From [3]

3.2.2 The LCAO Approximation

The rigid H+
2 molecule can be rigorously treated, but it is instructive to use some ap-

proximation methods to describe the molecule and compare the results with the exact
solutions, and learn more about the advantages and disadvantages of these methods [3].
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One of these techniques consists into approximating the molecular wavefunction as a
linear combination of the atomic orbitals (LCAO) of the constituent atoms. The coeffi-
cients of this linear combination are chosen to minimize the energy calculated through
the molecular wave function. The correct wave function creates always lower energies
than the approximative ones.
The absolute square of the molecular orbital wave function |Φ(x, y, z)|2 represents the
spatial probability density distribution of the electron and corresponds to the classical
orbitals of the electron in the molecule.
The H+

2 molecular ion can be composed of a H atom (nucleus A) and a H+-ion (nucleus
B), where the lowest energy state of H+

2 corresponds to the H atom in its 1s ground
state. The atomic orbital of the electron in the H atom is then (see table 3.2):

ϕA (rA) =
1√
πa30

e−rA/a0 . (3.12)

where ra is the distance between the electron and the nucleus A. Either nucleus A or
B can have the electron nearby, both possibilities must be considered because we are
unable to distinguish them. As a result we assume:

Φ(r, R) = c1ϕA (rA) + c2ϕB (rB) (3.13)

where rA and rB can be substituted by the internuclear distance R and the distance
from the electron to the center of mass r = |r| (Fig. 3.2).
The wave function should be normalized for arbitrary values of R. This demands the
integration is performed over the coordinates of the electron.

∫
|Φ|2 dr = c21

∫
|ϕA (rA)|2 drA + c22

∫
|ϕB (rB)|2 drB + 2c1c2

∫
ϕAϕBd

3r = 1 (3.14)

The first two integrals go to 1 because the atomic orbitals are already normalized, instead
for the coefficients, from (3.14) we obtain the condition for the normalized molecular wave
function:

c21 + c22 + 2c1c2SAB = 1 (3.15)

where SAB is called overlap integral and is given by the integral:

SAB =

∫
ϕA (rA)ϕB (rB) dτ with dτ = r2 sinϑdrdϑdφ, (3.16)

Because the integration is over the electron coordinates r, which depend on R, its
value is dependent on this parameter, as a consequence of symmetries, we have the
condition |c1|2 = |c2|2 = |c|2, additionally, the exchange of the two atomic orbitals
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requires the molecular wave function to be either symmetric or antisymmetric. The
normalized molecular wave functions are therefore given by:

Φs =
1√

2 + 2SAB

(ϕA + ϕB) and Φa =
1√

2− 2SAB

(ϕA − ϕB) (3.17)

as shown by Fig. 3.6:

Figure 3.6: Cut through the surfaces with cylindrical symmetry (a) ψs and ψa (b) |Φs|2
and |Φa|2. From [3]

The expectation value for the energy is

⟨E⟩ =
∫

ΦĤΦdτ (3.18)

where Ĥ is the Hamiltonian in the Schrödinger equation (3.9) of the rigid molecule.
Inserting (3.18) with (3.17) into the Schrödinger gives two energies
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Es(R) =
HAA +HAB

1 + SAB

and

Ea(R) =
HAA −HA0

1− SAB

(3.19)

which depend on the nuclear distance R, because the following integrals

HAA =

∫
ϕAĤϕAdτ

HBB =

∫
ϕBĤϕBdτ

HAB =

∫
ϕAĤϕBdτ and

SAB =

∫
ϕAϕBdτ

(3.20)

depend on R.
The Fig. 3.7 shows the potential curves Es(R) and Ea(R). While Es(R) has a minimum
and corresponds to a bound state, Ea(R) falls with increasing R. It corresponds to an
unstable molecular state and represents a repulsive potential.

Figure 3.7: Potential curves Ea(R) for the antisymmetric distribution |ϕa|2 and for Es(R)
the symmetric charge distribution |ϕs|2 calculated in the LCAO approximation. From
[3]
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The LCAO approximation in its simplest form is not in good agreement with the
correct solutions, this happens because the LCAO approximation doesn’t describe accu-
rately the following effects:

• The electron charge distribution, having its maximum in the middle between the
two nuclei pulls the two nuclei towards each other.

• The molecular wave function Φs has a larger spatial extension than the atomic 1s
orbitals. The spatial uncertainty for the electron is increased and its momentum
uncertainty is therefore smaller than for the H-atom, leading to a decrease in the
kinetic energy,

The approximation must be improved.

3.2.3 The H2 molecule

The H2 molecule (Fig. 3.8) consists of two protons and two electrons, whose interactions,
differently from the H+

2 , must be taken in account.

Figure 3.8: The H2 molecule. From [3]

As a consequence we can no longer separate the wave function into a product of one-
dimensional functions, as we could for the H+

2 ion and no exact analytical solution is
possible, even assuming a fixed distance between the nuclei. Furthermore, because two
electrons with the same spatial wave functions are non-distinguishable the Pauli princi-
ple has to be obeyed. This means the total wave function has to be antisymmetric with
respect to an exchange of the two electrons.

The two most commonly used approximations for this molecule are the molecular orbital
(MO) approximation and the valence bond theory. They provide good insight into the
approximate calculation of electronic states of molecules and their physical motivation.
Their differences and possible improvements are discussed in [3].
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3.3 Diatomic Molecules

3
Up to now we have discussed the electronic ground state of the molecule H+

2 and have
obtained the potential energy curve E(R) using the LCAO approximation. A similar
concept is pursued for larger diatomic molecules with N electrons. The molecular wave
function

Φ (r1, . . . , rN , R) = Σcnϕn (3.21)

is always written as a linear combination of many basis functions ϕn, which might be
atomic orbitals centered at the corresponding nucleus, but also Slater orbitals and Gaus-
sian functions.
The results of the computations, always assuming a fixed distance between the nuclei,
give the potential energies Ek(R) for the different electronic states, from which the
equilibrium distance Rek can be found.
For a given configuration of the two atoms forming a molecule for decreasing internuclear
distance R, many different molecular states are possible.

The different electronic states Ei(R) of diatomic molecules is characterized by the index
i, which stands for the various quantum numbers (principal quantum number, angu-
lar momentum and spin quantum numbers). The quantum number n characterize the
energetic order of the electronic states in atoms, this is not always true for molecules [3].

3.3.1 Electron Configurations and Molecular Ground States

Because the potential, in which the electron is immersed, has no spherical symmetry,
the orbital angular momentum li is in function of the time and precesses around the
symmetry axis of the molecule, which we choose as the z-axis [3]. We define the projection

lz = λh̄ (3.22)

by the projection quantum number λ = |ml|. The precessing electron produces a mag-
netic field in the z-direction. For molecules, with one electron and small nuclear charge
numbers Z, the interaction between li and the electron spin si precess independently
around the z-axis. The projection of s is called sz = σh̄, where σ is the spin projection
quantum number (Fig. 3.9).

We can characterize the molecular electronic state by the quantum numbers λ, σ and s.
For molecules with more than one electron, the coupling order of the different angular
momenta depends on the strength of the different interactions.
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Figure 3.9: Separate precession of s and l around the z-axis for weak spin-orbit coupling.
From [3]

If the interaction between different orbital angular momenta li is larger than the coupling
between li and si, we are in the so called weak spin orbit coupling situation, the total
orbital momentum and the total electron spin are defined as

L =
∑

li , S =
∑

si (3.23)

They make an independent precession around the internuclear axis (Fig. 3.10), forming
the constant projections

Lz = Λ · h̄ and Sz = Σ · h̄ (3.24)

Electronic states with Λ = 0 are called Σ-states, with Λ = 1 are Π-states, with Λ = 2
are ∆-states, etc.

Figure 3.10: Separate precession of L =
∑
li and S =

∑
si around the internuclear axis

z for small spin-orbit coupling. From [3]

The spins SA and SB of the atomic states A and B define the spin
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S = SA + SB (3.25)

of the molecular state formed by combination of the two atomic states as the vector sum
of the atomic spins. The multiplicity of a molecular state is given by the number (2S+1)
of possible projections Σ of S onto the inter-nuclear axis [3].

The molecular orbitals are determined by using wave functions of the type (3.21),
they are labeled by the index n = 1, 2, 3, . . . . The orbital angular momentum quantum
number l of the electron and its projection quantum number λ, the nomenclature is
shown in table 3.3.
The calculations give the following energetic order of the orbitals ψ(n, l, λ):

1sσ, 2sσ, 2pσ, 2pπ, 3sσ, 3pσ, 3pπ, 3dσ, 3dπ, 3dδ, 4sσ, . . . ,

Quantum numbers
n l λ Term nomenclature
1 0 0 1sσ
2 0 0 2sσ
2 1 0 2pσ
2 1 1 2pπ
3 3 1 3dπ
3 3 2 3dδ

Table 3.3: Quantum numbers and term nomenclature of a molecular electron with prin-
cipal quantum number n, angular momentum quantum number l, projection quantum
number λ = |ml|

where the atomic orbital is indicated with the Latin letter and gives the major contri-
bution to the molecular orbital.
The number of electrons in an occupied molecular orbitals are written with an exponent
1 or 2. Orbitals which are left unchanged by the operation of inversion are called gerade,
otherwise ungerade. Homo-nuclear diatomic molecules have twice as many orbitals as
for hetero-nuclear molecules. This happens because their orbitals can be realized with
gerade as well as with ungerade symmetry, i.e., σg and σu.
Table 3.4 shows the electron configurations, equilibrium inter-nuclear distances Re and
binding energies of the ground states for some molecules. where σg orbitals are called
bonding orbitals. They lead to negative bonding energy and are responsible for the
creation of molecules. Instead, σu orbitals are called anti-bonding orbitals. They result
in repulsive potential curves that lead to unstable molecules.
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Molecule Configuration state Re/a.u. EB/eV

H2 (1sσg)
2 ↑↓ 1Σ+g 1.398 4.476

He+2 (1sσg)
2 (1sσu) ↑ 2Σ+

u 2.041 2.6

He2 (1sσg)
2 (1sσu)

2 ↑↓ 1Σ+g − 0

Li2 (1sσg)
2 (1sσu)

2 (2sσg)
2 ↑↓ 1Σ+g 5.046 1.03

B2 (1sσg)
2 (1sσu)

2 (2sσg)
2 (2sσu)

2 3Σ−g 3.005 3.6

(2pπu)
2 ↑↑

LiH (1σ)2(2σ)2 1Σ+ 3.024 2.52
CH (1σ)2(2σ)2(3σ)21π 2Π 2.116 3.65
HF (1σ)2(2σ)2(3σ)21π 1Σ+ 1.739 6.11

Table 3.4: Electron configurations, equilibrium distances Re and binding energies of the
ground states of some homonuclear and heteronuclear diatomic molecules

In the H2 molecule, both electrons are in the bonding 1σg orbital. Without the repulsion
between the two electrons, the binding energy EB (Re) of H2 should be twice as large as
for H+

2 . The positive repulsion energy decreases the binding energy slightly. Respect to
the H+

2 molecule, the equilibrium distance Re is slightly smaller.

The He+2 molecule has three electrons; the third electron has to occupy the next higher
orbital 1σu, which is anti-bonding, as a consequence, its binding energy and equilibrium
distance are smaller than that of H2.
Instead, for the neutral He2 molecule, which the electronic configuration is shown in the
diagram in Fig. 3.11, the binding contribution of the two electrons in the 1σg orbital
is nearly cancelled by the anti-bonding energy of the 1σu orbital, therefore, the binding
energy of He2 is extremely small. For temperatures T > 1 K its ground state is unstable.
Finally, the Li2 molecule has, in addition to the He2 configuration, two electrons in the
bonding 2sσg orbital which contribute to the binding energy. The ground state of Li2 is
therefore stable and has a binding energy of EB = −1 eV [3].

3.3.2 Excited Molecular States

Excited electronic states are formed when one of the electrons occupies an orbital with
higher energy; their energies En(R) depend on the distance between the nuclei R. We
obtain for each of these states, always considering the clamped nuclei approximation, a
potential energy curve E(R), which converges for R→∞ towards the degeneration into
a ground state atom and an excited atom.

In general, there are many bound excited states, as can be seen in Fig. 3.12, which shows
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Figure 3.11: Molecular Orbital Diagram for the He2 molecule. From [17]

potential curves of the Li2 molecule. When two electrons are excited into higher orbitals,
doubly excited states can also be generated. The excited Li2 molecule dissociates for
R → ∞ into two excited Li-atoms. For all these states, the core electrons in the 1s
atomic shells do not contribute to the molecular binding; they are barely affected by
the excitation of one or two electrons from the outer 2sσ orbital into higher unoccupied
orbitals.

The electrons in closed inner shells barely contribute to the formation of molecules.
They stay concentrated around their original nucleus when the molecule is formed. At
the same time the electrons from the atomic valence shell are rearranged into molecular
orbitals. The valence electrons are responsible for the molecular binding energy. Their
spatial rearrangement makes the energy to minimize at a certain inter-nuclear distance
Re, the bond length, which is the reason for the binding of the two atoms into a stable
molecule [3].

3.4 Basis Sets

In modern computational chemistry, quantum chemical calculations are performed using
a finite basis set [19]. These basis sets are used to approximate one-electron functions
that are required for the calculation of the ansatzes of electronic structure problem. The
choose of the basis set with the right mathematical properties, is made considering the
physics of the problem, can remarkably facilitate the evaluation of the Hamiltonian ele-
ments and expectation values.
The quality of the basis set can be measured making a comparison with an hypothetical
infinite basis set. These are chosen in function of the nature of the problem, were different
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Figure 3.12: Some potential curves of the Li2 molecule, up to the ionization limit, in-
cluding some doubly excited states (black dashed curves). From [3]

basis sets offer different levels of compromises. This method provide a systematic way of
constructing basis sets for molecules by keeping a dataset of atom orbitals (AOs) for a
large part of the elements in the periodic table. The functional form of atomic basis sets
is inspired by the solutions of the Schrödinger equation for hydrogen-like atoms, with
the general form of the Schrodinger equation (3.3).

The most common basis is the Slater-type orbitals (STOs) basis set. It has the same
structure as the orbitals of hydrogenic atoms, with the radial function taking the form

RSTO
n (r) = Nrn−1e−ζr (3.26)
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whereN is a normalization constant and ζ is called orbital exponent and controls how fast
the density vanishes as a function of the nuclear distance. The minimum and maximum
orbital exponents determine how far and how close the resulting wave function can be
represented within a basis set comprised of several STOs. With a particular combination
of individual basis set functions associated at the orbitals of a selected atom, is possible
to construct the AO basis sets, for example, each atom in the second period in the
periodic table, a basis set can be constructed using five STOs with different exponents
and appropriate spherical harmonics to represent the 1s, 2s, 2px, 2py, and 2pz orbitals
[19].
An advantage of STOs is that the appropriate behavior of electron density near and
far from the nuclei is well predicted. Unfortunately, this basis is restricted to small
molecules. This problem the consequence of the lack of analytical solutions for molecu-
lar integrals.

To remedy this, the Gaussian-type orbitals (GTOs) basis sets has been developed. It
differs in the form of the radial function respect to the (STOs), which adopts a Gaussian
form:

RGTO
n (r) = Nrn−1e−ζr2 (3.27)

GTOs have convenient analytical properties that allow for an efficient evaluation of the
molecular integrals. But, differently from STOs, they fail to describe the exponential
tail of the electronic density: this flaw is corrected introducing the contracted GTOs
scheme, where a linear combination of GTOs, called primitives, emulate a single STOs.
This method is largely used for electronic structure calculations in isolated molecules.
Exist two types of contraction schemes

• Segmented contractions. Different orbitals are represented by different sets of prim-
itive GTOs. An example is the 3-21G, where the core electrons are made of a
contraction of 3 GTOs, and the valence electrons are described with contractions
of 2 and 1 GTOs.

• General contractions. All the orbitals are expanded using the same set of primitive
GTOs, where the combination coefficients of the linear combination are different
from each orbital.

In the modern basis sets the schemes segmented and general contraction are mixed.

3.5 Quantum chemistry and quantum computing

Since the advent of classical computers, computation have revolutionized chemistry as
a discipline, playing a fundamental role in the development of chemistry. Unfortunately
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even supercomputers struggle to model a single molecule in its full complexity and the
exponential growth of the dimension of a wave function makes manipulation and storage
very inefficient.

However the recent emergence of quantum computation opens a window for solve these
problems. With quantum computers is possible to explicit represent the wave function of
a system, and differently from a classical computation, the entanglement of the system
can be taken in consideration.

Some classical subroutines can be substituted by quantum algorithms that improve the
tractability and accuracy of chemical predictions. This brings up the importance of
the synergy between quantum information theory and classical quantum chemistry tech-
niques [19].

VQE has been used for the simulation of small molecules as the helium hydride ion
[38]. It as been also applied at the beryllium hydride molecule [39]. Using the Varia-
tional Quantum Eigensolver and the Google’s Sycamore quantum processor, a 12 qubit
simulation of a hydrogen chain was demonstrated in 2020 [40].

3.5.1 The second quantized Hamiltonian

The diatomic Hamiltonian is determined by its electronic structure, the kinetic energy
of the nuclei is neglected using the clamped nuclei approximation, as justified in Sect.
3.2.1. The first quantized Hamiltonian is described as follows:

Helec = −
∑
i

∇2
ri

2
−
∑
k,j

Zk

|Rk − rj|
+
∑
k,l>k

ZkZl

|Rk −Rl|
+
∑
i,j>i

1

|ri − rj| (3.28)

where ri are the coordinates of the electrons, that depend on the fixed coordinates of
the nuclei Rk, and Zk denote the nuclear charges. An infinite-dimensional Hilbert space
is assumed in Eq. (3.28), but for the application of quantum computation, the Hamil-
tonian must be considered in the second-quantized formulation, in which the system is
described approximately using a finite basis, introduced in section 3.4. This basis will
be generically denoted with ϕi(x).

In second quantization states are labeled by the occupation of the orbitals, and the ex-
change symmetry of the particles is naturally considered through the use of fermionic
creation and annihilation operators ai and a

†
i . The second-quantization Hamiltonian is

defined as
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H = h0 +
∑
ij

hija
†
iaj +

∑
ijkl

hijkla
†
ia

†
jakal (3.29)

where the constant h0 represents the nuclear coulombic repulsion. Instead hij describes
the one-electron interaction, and takes in consideration the kinetic energy of each electron
and its coulombic attraction towards the two nuclei, it is given by the integral:

hij =

∫
dxϕ∗

i (x)

(
∇2

r

2
−
∑
k

Zk

|Rk − r|

)
ϕj(x) (3.30)

Finally hijkl represents the two-electron interaction and takes in consideration the Coulomb
repulsion between the electrons. It can be written as:

hijkl =

∫
dx1 dx2

ϕ∗
i (x1)ϕ

∗
j (x2)ϕk (x1)ϕl (x2)

|r1 − r2|
(3.31)

Both these coefficients are functions of the inter-nuclear distance, and can be computed
using the basis sets introduced in Sect. 3.4.

3.5.2 Mapping to qubits

Once the second quantized Hamiltonian has been obtained, there is a further prerequisite
before the Hamiltonian can be implemented in a quantum computer. The creation and
annihilation operators aj and a†j have to be mapped to the qubits, where the mapping
must preserve the algebraic relations, i.e., the fermionic canonical commutation relations{
aj, a

†
k

}
= δjkI. The principal mapping methods are the Jordan-Wigner transformation

and the Bravyi-Kitaev transformation. [19]

Jordan-Wigner transformation

Under the Jordan-Wigner Transform each electronic orbital is described by the annihi-
lation/creation operators that are mapped to qubit operators as follows:

aj 7→ ãj =
1

2
(Xj + iYj)

j−1∏
i=0

Zi = (|0⟩⟨1|)j
j−1∏
i=0

Zi (3.32)

This operator has the following action on a computational basis vector |z0, . . . , zN−1⟩.

ãj |z0 . . . , zj−1, 1, zj+1, . . . , zN−1⟩ = (−1)
∑j−1

i=0 zi |z0 . . . , zj−1, 0, zj+1, . . . , zN−1⟩
ãj |z0 . . . , zj−1, 0, zj+1, . . . , zN−1⟩ = 0

(3.33)
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Observe that ãp acts not only on qubit p but also on qubits 0, . . . , p − 1. Therefore
fermionic operators with low weight can get mapped to qubit operators with high weight,
where weight means the number of qubits an operators acts on. These high-weight oper-
ators can be problematic, for instance, they may require more gates to simulate and are
more expensive to measure on near-term hardware platforms. The annihilation operator
on the last mode aj will map to an operator ãj which acts on all the qubits. [18]
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Chapter 4

Diatomic molecule excited states
calculation with the QAOA
algorithm

In this chapter, we describe the procedure that makes the Quantum Approximation
Optimization Algorithm (QAOA) able to calculate the excited states of a generic Hamil-
tonian. The method is applied to diatomic molecules. It is first tested on the simple case
of the Hydrogen molecule, then to the more complicated case of the Lithium Hydride
molecule.

We will perform these simulations of the QAOA algorithm on a classical computer. As
a consequence, the peculiar errors of quantum computation are not taken into consider-
ation. In a possible implementation of the procedure, experimental errors of the specific
platform must be taken into account.

The program is written in the Python programming language v.3.9 [32]. Linear algebra
calculations are performed using the QuTip library [30]. All the plots are generated by
the Matplotlib library [31]. The source code is available at https://github.com/danie
letrisciani/qaoa-excited-state.

4.1 First excited state calculation using the QAOA

algorithm

The Quantum Approximate Optimization Algorithm, introduced in Sect. 2.2, is designed
to calculate the ground state of the cost Hamiltonian. That can be very limiting if
we are interested in excited states of the Hamiltonian. To overcome this problem, to
calculate the first excited state, one can add to the original Hamiltonian a penalty term
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that gives an extra energy to the ground state. To do so one needs to add to the
original Hamiltonian the projector Pg.s. = |ψg.s.⟩ ⟨ψg.s.| over the ground state itself, with
a sufficiently large positive coefficient. More specifically, one needs to consider

He.s. = H + λ |ψg.s.⟩ ⟨ψg.s.| (4.1)

where |ψg.s. ⟩ is the ground state calculated using the QAOA algorithm, and λ is a
constant that must satisfy the relation:

λ+ α0 > α1 (4.2)

where α0 is the ground state energy and α1 is the first excited state energy. The value
of α1 is unknown. Therefore the calculation of λ is not trivial. We can adopt these two
methods:

• The greatest energy αmax of the Hamiltonian can be calculated by putting a minus
in front of the gradient used in the classical optimizer. We set λ > αmax, and the
condition (4.2) is satisfied.

• If the order of magnitude of the difference between the energies is known, we set λ
greater than it.

The ground state of He.s. and its energy are equal to the first excited state of H and its
energy. Now the QAOA algorithm can find the excited state energy of the Hamiltonian
H, using as cost Hamiltonian the Hamiltonian He.s..

This procedure can be repeated to calculate every excited state of the Hamiltonian. For
instance, to calculate the second excited state, at first, we measure the ground state, and
choose a suitable value for λ, we apply the transformation (4.5) that gives us a new cost
Hamiltonian for the QAOA that let us calculate the first excited state. Once this state
is calculated, it can be used in transformation with a suitable value for λ, the resulting
Hamiltonian has in the ground state the second excited state we are looking for. This
procedure comes with a problem. Each state has linked to an error; therefore at each iter-
ation of the transformation, more and more errors add up to the result we are looking for.

The QAOA algorithm is performed with the following settings. Values of p range from
1 to 5; as we will see later, p = 5 is enough to have a good approximation. The Basin-
Hopping method, introduced in Sect. 2.3, performs the classical optimization, where its
local optimizer is the BFGS algorithm, explained in Sect. 2.3. The number of Basin-
Hopping iterations is 10, this means that the algorithm attempts to find a new local
minimum 10 times. The parameter Temperature T is equal to 1. The choice of this
optimization algorithm is justified by the nature of the QAOA algorithm, and by the
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result of the previous chapter.

Optimization methods are not deterministic, the results of different runs can be very
different depending on the randomly chosen initial conditions. To overcome this problem,
more than one run is usually performed, and the results are averaged between them. In
this work, each measure of the energy and state of the Hamiltonian is repeated 10 times
for different randomly generated initial parameters. The average αavg =

∑K
i αi and the

deviation standard are therefore calculated, the latter is defined as follows

σ =

√√√√ 1

K

K∑
i=i

(αi − αavg)2 (4.3)

where αi is the energy or the fidelity for the distance di and K = 10.

4.2 First excited state calculation for the diatomic

molecule Hamiltonian

In this section, we will apply the procedure for calculating the excited states to the Hydro-
gen and Lithium Hydride Hamiltonian. It will be explained how the second quantization
Hamiltonian is built and how the number of qubits to deal with these Hamiltonians can
be reduced. Then the ground state for these molecules and some inter-nuclear distances
will be calculated using the QAOA algorithm. Once the ground states are calculated,
they are used to estimate the first excited states.

4.2.1 The diatomic molecule Hamiltonian in second quantiza-
tion

As we have seen in Sect. 3.5.1, before a Hamiltonian can be used with the QAOA algo-
rithm it should be transformed in a second quantization form. For a diatomic molecule
can be used the second quantized Hamiltonian in Eq. (3.29), for which we have to choose
a basis set, introduced in Sect. 3.4 for the estimation of the coefficients h0, hij and hijkl
and a transformation for the mapping of the creation and annihilation operators, intro-
duced in Sect. 3.5.2. We will use the Jordan-Wigner transformation.

We will consider only the first 2 molecular orbitals. Thus, the molecule can host up to 2
electrons, with spin 1

2
. Each qubit corresponds to a molecular spin orbital in this way:

• The 1◦ qubit corresponds to spin ↑ electron in the first molecular orbital.

• The 2◦ qubit corresponds to spin ↓ electron in the first molecular orbital.
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• The 3◦ qubit corresponds to spin ↑ electron in the second molecular orbital.

• The 4◦ qubit corresponds to spin ↓ electron in the second molecular orbital.

Using this basis, the Hamiltonian (3.28) becomes a 16x16 matrix of the form:

0 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ 1 1 ◦ 1 ◦ ◦ ◦ 1 ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ 1 1 ◦ 1 ◦ ◦ ◦ 1 ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ 2 ◦ 2 2 ◦ ◦ 2 2 ◦ 2 ◦ ◦ ◦
◦ 1 1 ◦ 1 ◦ ◦ ◦ 1 ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ 2 ◦ 2 2 ◦ ◦ 2 2 ◦ 2 ◦ ◦ ◦
◦ ◦ ◦ 2 ◦ 2 2 ◦ ◦ 2 2 ◦ 2 ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ 3 ◦ ◦ ◦ 3 ◦ 3 3 ◦
◦ 1 1 ◦ 1 ◦ ◦ ◦ 1 ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ 2 ◦ 2 2 ◦ ◦ 2 2 ◦ 2 ◦ ◦ ◦
◦ ◦ ◦ 2 ◦ 2 2 ◦ ◦ 2 2 ◦ 2 ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ 3 ◦ ◦ ◦ 3 ◦ 3 3 ◦
◦ ◦ ◦ 2 ◦ 2 2 ◦ ◦ 2 2 ◦ 2 ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ 3 ◦ ◦ ◦ 3 ◦ 3 3 ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ 3 ◦ ◦ ◦ 3 ◦ 3 3 ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 4



(4.4)

Here, the symbols ”1, 2, 3, 4” denote coefficients in the subspaces with fixed number of
electrons, N = 1, 2, 3, 4 respectively, while ◦ denotes the elements that are zero since the
Hamiltonian conserves the number of particles.

We will consider only states with 2 electrons and opposite spins, in this way less qubits
are necessary for treating the Hamiltonian, making the problem more computationally
manageable. In the next section it will be explained how this reduction of the number
of qubits is performed.

4.2.2 Reduction of the Hydrogen molecule Hamiltonian

We are going to consider the simplest of the diatomic molecules, the Hydrogen molecule,
introduced in 3.2.3. We have to calculate the coefficients of the Hamiltonian (3.29) for
the Hydrogen molecule for a chosen set of inter-nuclear distances. The coefficients are
calculated using the open-source software library OpenFermion [28], and the computa-
tional chemistry package Psi4 [29], using the basis set STO-3G, introduced in Sect. 3.4.

The inter-nuclear are chosen in a way to catch the repulsive and attractive behavior of
the 2 protons. The bond length for H2 of 1.4 a.u., taken from the Table (3.4), can help
us to estimate them. The distances considered are
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from 0.47 a.u. to 4.63 a.u., step 0.09 a.u. (4.5)

In total 45 inter-nuclear distances have been considered. Let us explicitly show the
Hamiltonian (4.4) for the Hydrogen molecule for the bond length:

H(4) =



0.706 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.224 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.224 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.439 0 0 0 0 0 0 0 0 0.182 0 0 0
0 0 0 0 −0.541 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −0.543 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −0.361 0 0 −0.182 0 0 0 0 0 0
0 0 0 0 0 0 0 0.334 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −0.542 0 0 0 0 0 0 0
0 0 0 0 0 0 −0.182 0 0 −0.361 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −0.543 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.334 0 0 0 0
0 0 0 0.182 0 0 0 0 0 0 0 0 −1.116 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −0.455 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.455 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.901


with the corresponding eigenvalues, that can be calculated classically:

(−1.13712, −0.54278, −0.54278, −0.54278, −0.54171, −0.54171, −0.45524, −0.45524,
− 0.17924, 0.2243, 0.2243, 0.33374, 0.33374, 0.4598, 0.70557, 0.90148) a.u.

To reduce the complexity of the problem, we consider only the subspace with 2 electrons
with opposite spins, which is expected to contain the ground state and the first excited
state. We can apply the projector P

(4)
2 at the Hamiltonian. As stated in [1], it is defined

as follows

P
(4)
2 = N↑ (2−N↑)N↓ (2−N↓) and N↑ = n1 + n2, N↓ = n3 + n4

where nj = a†jaj is the number operator for the j-th qubit. The projector P
(4)
2 is applied

to the Hamiltonian using this transformation

H
(K)
N = P

(K)†
K H(K)P

(K)
N

where K is the number of qubits and N is the number of electrons we are considering,
in this case K = 4 and N = 2. The Hamiltonian after the transformation is:
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H
(4)
2 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.43884 0 0 0 0 0 0 0 0 0.18177 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −0.36101 0 0 −0.18177 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −0.18177 0 0 −0.36101 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.18177 0 0 0 0 0 0 0 0 −1.11615 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Its dimension can be further reduced. Swapping some rows and columns, all the non-
zero coefficients can be rearranged in a 4x4 block, and this 4x4 block can be extracted
to obtain a 2-qubit Hamiltonian

H
(2)
2 =


0.43884 0.18177 0 0
0.18177 −1.11615 0 0

0 0 −0.36101 −0.18177
0 0 −0.18177 −0.36101

 (4.6)

In [1] arithmetical steps for the extraction of the 4x4 block are illustrated. The reduction
of the complexity of the Hamiltonian remarkably speeds up the calculation of its ener-
gies for both classical and quantum methods. Therefore the Hamiltonian (4.6) can be
decomposed in a two 1-qubit Hamiltonians, making the problem of finding the energies
too trivial; this issue will be discussed later.

For the bond length (1.4 a.u.), the energies calculated with the diagonalization
method are:

(−1.13712, −0.54278, −0.17924, 0.4598) a.u. (4.7)

The form of the matrix Hamiltonian (4.6) does not change if we consider other inter-
nuclear distances. This property let us write the Hamiltonian in the general form:
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H
(2)
2 =


a b 0 0
b c 0 0
0 0 d −b
0 0 −b d

 (4.8)

or in Pauli representation

H
(2)
2 = c114 + c21⊗ Z + c2Z ⊗ Z + c3Z ⊗X + c4Z ⊗ 1 (4.9)

where a = c1 + 2c2 + c4, b = c3, c = c1 − 2c2 + c4 and d = c1 − c4.

The orthonormal basis used to write the 2-qubit Hamiltonian has the following meaning:

• |00⟩: spin ↑ on the second molecular orbital, spin ↓ on the second molecular orbital

• |01⟩: spin ↓ on the first molecular orbital, spin ↑ on the second molecular orbital

• |10⟩: spin ↑ on the second molecular orbital, spin ↓ on the first molecular orbital.

• |11⟩: spin ↑ the first molecular orbital, spin ↓ on the first molecular orbital.

The energy as a function of the inter-nuclear distance, calculated with the classical
diagonalization method, is plotted in Fig. 4.1. The meaning of the states are, in energetic
order, illustrated as follow:

• |ψ0⟩ = α |00⟩ + β |01⟩, where the value |α|2 goes to 0 and |β|2 goes to 1 when the
inter-nuclear distance tends to 0.

• |ψ1⟩ = 1√
2
|11⟩ + |01⟩, it means that the probability to have an electron spin ↑ in

the first molecular orbital and another with spin ↓ in the second molecular orbital
is the same if we exchange the electrons.

• |ψ2⟩ = 1√
2
|11⟩ − |01⟩, it means that the probability to have an electron spin ↑ in

the first molecular orbital and another with spin ↓ in the second molecular orbital
is the same if we exchange the electrons.

• |ψ3⟩ = β |00⟩+α |01⟩, where |α|2 goes to 0 and |β|2 goes to 1 when the inter-nuclear
distance tends to 0.

In the next section the energies of the Hamiltonian (4.1) will be extracted using the
QAOA algorithm.
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Figure 4.1: H2 molecule. Energy for all the states of hydrogen molecule as a function
of the inter-nuclear distance obtained via exact diagonalization. Only states with 2
electrons with opposite spins in the first 2 molecular orbitals are considered.

4.2.3 First excited state calculation of the H2 Hamiltonian

The transformation (4.1) requires |ψg.s.⟩ to be known. In this section the QAOA algo-
rithm will be used for the calculation of the ground state and then the first excited state
of the H2 Hamiltonian.

The ground state energy of the H2 Hamiltonian is calculated by the QAOA algorithm
for the inter-nuclear distances (4.5). These energies are plotted in Fig. 4.2, for different
parameters of the depth parameter p = 1, ..., 5.
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Figure 4.2: H2 molecule. Ground state energy as a function of the inter-nuclear distance.
For values of p from 1 to 5. The calculation is performed by the QAOA algorithm. The
energy calculated using the exact diagonalization method are also plotted, to make a
comparison. Error bars are calculated by the Eq. (4.3).

As expected, increasing p, we find a better convergence between the energies calculated
by the QAOA algorithm and the exact diagonalization. For p values greater than 2, we
already have a good convergence. The estimated bond length is 1.41729 a.u. in agree-
ment with that calculated by classical diagonalization and similar to the experimental
value in the Table 3.4.

The convergence is estimated by looking at the fidelity | ⟨ψqaoa|ψqaoa⟩ |2, where |ψqaoa⟩ ≡
|ψ(β⃗optγ⃗opt)⟩ is the QAOA estimated ground state, and |ψdiag⟩ is the classically computed
state. It is shown in function of the inter-nuclear distance, and for each value of p, in
the plot of Fig. 4.3, instead, Table 4.1 reports the QAOA calculated states and energies
for the bond length and for the values for p, together with the exact diagonalization
calculated state and energy. The increase of the convergence with p is clearly highlighted
in Fig.s 4.4, where the fidelity and the normalized energy are in function of p for a fixed
inter-nuclear distance, the bond length. The normalized energy is defined as αnorm =
(α− αclass)/αclass, where αclass is the energy calculated classically.
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p |ψqaoa⟩ QAOA energy (a.u.)
1 0.07592+0.12544j, 0.79115, 0.17809+0.55896j, 0.08578+0.03265j -0.7016
2 -0.09116-0.05936j, 0.96828, 0.04522-0.01660j, 0.18484+0.1189j -1.01403
3 -0.11458, 0.99341, 0, 0 -1.11496
4 -0.11458, 0.99341, 0, 0 -1.13712
5 -0.11458, 0.99341, 0, 0 -1.13712

|ψdiag⟩ diag. energy (a.u.)
-0.11458, 0.99341, 0, 0 -1.13712

Table 4.1: Ground state of the H2 molecule. The states and energies calculated using
the QAOA algorithm are compared with the ones calculated with exact diagonalization,
for some values of p, for the bond length distance of 1.42 a.u.

Figure 4.3: H2 molecule. The fidelity between classically and QAOA calculated ground
states in function of the distance for each value of p. With the increasing distance, the
classical optimizer can’t distinguish between the first excited state and the ground state,
resulting in a very low fidelity. Error bars are calculated by the Eq. (4.3).

The plot in Fig. 4.3 clearly shows how the fidelity goes down when the inter-nuclear
distance goes to ∞, especially for low values of p. This behavior results from the degen-
eracy between the ground state and the first excited state energies when the diatomic
molecule dissociates in two atoms, as shown in Fig. 4.1. This problem can be partially
solved increasing the value of p or the iterations of the basin-hopping algorithm. How-
ever, when the molecule dissociates completely, the ground state and the first excited
state are indistinguishable.

Now that the ground state is known, the transformation (4.1), that gives us a Hamilto-

58



Figure 4.4: Ground state of the H2 molecule. On the left side, the fidelity | ⟨ψdiag|ψqaoa⟩ |2
for the bond length as a function of p. On the right side, the normalized energy for the
bond length as a function of p. Error bars are calculated by the Eq. (4.3).

nian He.s. which its ground state is the first excited state we are looking for. The order of
magnitude of the energies is very low. We have used λ = 10, it is a valid value because is
greater than the difference between the energies of the Hamiltonian, that is usually less
than 1 a.u.. This new Hamiltonian He.s. is used as the cost Hamiltonian in the QAOA
algorithm. The first excited state energy as a function of the inter-nuclear distance for
all the values of p is plotted in Fig. 4.5.

The fidelity for the first excited state is shown as a function of the inter-nuclear distance
in the plot given in Fig. 4.6. We observe a good agreement with the values obtained by
exact diagonalization only for small inter-nuclear distances. This is because the QAOA
calculated ground states for large distances were not well calculated that is the conse-
quence of the degeneracy between the ground state and the first excited state. In Fig.s
4.7 the fidelity and the energy are plotted in function of p, where the values refer to the
bond length. In Table 4.2 are reported QAOA calculated excited states and energies for
the values of p, considering only the values for the bond length.

From the H2 Hamiltonian (4.6), it can be deduced that the calculation of its energies
can be reduced to a 1-qubit problem (second order equation problem), making it too
trivial. A more complex Hamiltonian can be constructed considering another diatomic
molecule. All the homogeneous diatomic molecules, with 2 electrons with opposite spin,
can be reduced to a 1-qubit problem, as stated in Sect. 4.1. A valid choice for our
purpose is the Lithium hydride molecule. In the next section, the QAOA algorithm will
be applied to this molecule to calculate the first excited state.
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Figure 4.5: H2 molecule. First excited state energy as a function of the inter-nuclear
distance, for values of p from 1 to 5. The calculation are performed by the QAOA
algorithm. The energies calculated using the classic diagonalization method are also
plotted, to make a comparison. Error bars are calculated by Eq. (4.3).

p |ψqaoa⟩ QAOA energy (a.u.)
1 0.01022-0.03066j, 0.00877+0.00032j, 0.72138, 0.69173-0.00138j -0.52337
2 0, 0, 0.70711, 0.70711 -0.54273
3 0, 0, 0.70711, 0.70711 -0.54278
4 0, 0, 0.70711, 0.70711 -0.54278
5 0, 0, 0.70711, 0.70711 -0.54278

|ψdiag⟩ diag. energy (a.u.)
0, 0, 0.707, 0.707 -0.543

Table 4.2: For the first excited state of the H2 molecule. The states and energies cal-
culated using the QAOA algorithm are compared with the ones calculated with exact
diagonalization, for some values of p, for the bond length distance of 1.42 a.u.

60



Figure 4.6: H2 molecule. The fidelity between diagonalization and QAOA calculated
excited state in function of the distance, for each value of p. With the increasing distance,
the classical optimizer can’t distinguish between the first excited state and the ground
state, resulting in very low fidelity. Error bars are calculated by the Eq. (4.3).

Figure 4.7: Excited states of theH2 molecule. On the left side, the fidelity | ⟨ψdiag|ψqaoa⟩ |2
for the bond length as a function of p. On the right side, the normalized energy for the
bond length as a function of p. Error bars are calculated by the Eq. (4.3).
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4.2.4 First excited state calculation of the LiH Hamiltonian

Similarly to the Hydrogen molecule, the STO-3G basis set is used for the construction
of the second-quantized Hamiltonian of the LiH molecule. The considered inter-nuclear
distances are

from 1.13 a.u. to 6.24 a.u., step 0.09 a.u. (4.10)

for a total of 54 points. The energies as a function of the inter-nuclear distance, calculated
with the exact diagonalization method, are plotted in Fig. 4.8.

Figure 4.8: LiH molecule. Energies of Lithium hydride as a function of the inter-nuclear
distance. Only states with 2 electrons with opposite spins are considered.

For the inter-nuclear distance going to ∞, the ground state and the first excited state
become degenerate, as we have seen for the H2 molecule. Therefore we expect low fidelity
for wide distances. From classical calculations is possible to extract the value of the bond
length of 2.83459 a.u., similar to the experimental value in the Table 3.4. The reduced
Hamiltonian at that distance is

H( 2.83459 a.u.) =


−7.16737 0.01214 −0.0531 0.0531
0.01214 −7.86336 0 0
−0.0531 0 −7.70529 −0.01214
0.0531 0 −0.01214 −7.70529

 (4.11)

The form of the matrix Hamiltonian (4.6) does not change if we consider other inter-
nuclear distances. This property let us write the Hamiltonian in the general form:
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H =


a b f −f
b c 0 0
f 0 d −b
−f 0 −b d

 (4.12)

or in Pauli representation

H = c114+c21⊗Z+c2Z⊗Z+c3X⊗1−c3X⊗X+c3X⊗Z+c3Y ⊗Y +c4Z⊗1+c5Z⊗X
(4.13)

where a = c1 + 2c2 + c4, b = c5, c = c1 − 2c2 + c4, d = c1 − c4 and f = 2c3.

We can see how the calculation of the energy cannot be decomposed in a 1-qubit prob-
lem, as it was for the H2 molecule Hamiltonian. The structure of states are similar but
different from the ones described for the Hydrogen molecule in the end of section 4.2.2.

As stated before, the calculation of the first excited state requires the knowledge of the
ground state. The setting of the QAOA algorithm is the same as described in the ending
of the section 4.1. The ground state energies, calculated by the QAOA algorithm, as a
function of the inter-nuclear distances 4.10 are shown in the plot 4.9.

Figure 4.9: Ground state energy, calculated using the QAOA algorithm, as a function of
the inter-nuclear distance, for values of p from 1 to 5. The energies calculated using the
classic diagonalization method are also plotted to make a comparison. Error bars are
calculated by the Eq. (4.3).

For p > 2 we have already a good convergence with the classically calculated energies.
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The fidelity, plotted in Fig. 4.10 is close to 1 only for p = 5. We see there is a greater
convergence than in the H2 molecule. In particular for the inter-nuclear distance going
to∞. For high distance, the fidelity is better than the one obtained for the H2 molecule.
This behaviour results from the longer distance necessary for the total dissociation of the
LiH molecule. The fidelity and normalized energy are plotted in Fig.s 4.11 as a function
of p, considering only the bond length. As expected, we have better results increasing
p. In Table 4.3 are reported QAOA calculated ground states and energies for the values
of p, considered the bond length distance.

Figure 4.10: LiH molecule. Fidelity between the QAOA and classical calculated ground
state, as a function of the inter-nuclear distance, for p from 1 to 5. Error bars are
calculated by the Eq. (4.3).

Now that the ground state is known, the transformation (4.1) can be applied on the
Lithium Hydride molecule Hamiltonian, allowing the QAOA to approach the first excited
state. The first excited state energy as a function of the inter-nuclear distance for all the
selected values of p is plotted in Fig. 4.12.
The convergence is high for all the values of p > 1, and is better than the one calculated
for the ground state. The fidelity for the first excited state as a function of the inter-
nuclear distance is plotted in Fig. 4.13. In Table 4.4 are reported QAOA calculated
excited states and energies for values of p, considered only for the bond length.
The fidelity and the normalized energy, calculated for the bond length as a function of
the values of p, are plotted in the Fig.s 4.14. As expected, the bigger the value of p
and better the results. Similarly to the case of the Hydrogen molecule, the excited state
fidelity is better than the one calculated for the ground state. We have proven that the
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p |ψqaoa⟩ QAOA energy (a.u.)
1 0.17305+0.20231j, 0.70865, 0.01189+0.57262j, -0.2569-0.18142j -7.74736
2 0.0095-0.08181j, 0.90062, 0.23726-0.21206j, 0.15342+0.23939j -7.78753
3 -0.01831, 0.9999, -0.00574, 0.00568 -7.86056
4 -0.01831, 0.9999, -0.00569, 0.00571 -7.86357
5 -0.0183, 0.9999, -0.00571, 0.0057 7.86358

|ψdiag⟩ diag. energy (a.u.)
0.0183, -0.9999, 0.0057, -0.005702 -7.86358

Table 4.3: For the ground state of the LiH molecule. The states and energies calculated
using the QAOA algorithm are compared with the ones calculated with exact diagonal-
ization, for some values of p, for the bond length distance of 2.83 a.u.

p |ψqaoa⟩ QAOA energy (a.u.)
1 0.07097-0.06943j, -0.01204+0.00588j, 0.72895, 0.67403-0.06542j -7.69685
2 0.01113+0.00487j, 0-0.000821j, 0.70268-0.05236j, 0.70949 -7.71706
3 0, 0, 0.70712, 0.7071 -7.71743
4 0, 0, 0.70712, 0.7071 -7.71743
5 0, 0, 0.70711, 0.70711 -7.71743

|ψdiag⟩ diag. energy (a.u.)
0, 0, 0.70711, 0.70711 -7.71743

Table 4.4: For the first excited state of the LiH molecule. The states and energies
calculated using the QAOA algorithm are compared with the ones calculated with exact
diagonalization, for some values of p, for the bond length distance of 2.83 a.u.
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Figure 4.11: Ground states of the LiH molecule. On the left side, the fidelity
| ⟨ψdiag|ψqaoa⟩ |2 for the bond length as a function of p. On the right side, the nor-
malized energy for the bond length as a function of p. Error bars are calculated by the
Eq. (4.3).

Figure 4.12: LiH molecule. First excited state energy as a function of the inter-nuclear
distance, calculated by the QAOA algorithm, for p from 1 to 5. The energies calculated
using the classic exact diagonalization method are also plotted to make a comparison.
Error bars are calculated by the Eq. (4.3).

QAOA algorithm can calculate the first excited state also for the non-trivial Hamiltonian
of the Lithium Hydride molecule.
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Figure 4.13: LiH molecule. Fidelity between the QAOA and classically calculated
ground state, as a function of the inter-nuclear distance, for p from 1 to 5. Error bars
are calculated by the Eq. (4.3).

Figure 4.14: Excited states of the LiH molecule. On the left side, the fidelity
| ⟨ψdiag|ψqaoa⟩ |2 for the bond length as a function of p. On the right side, the nor-
malized energy for the bond length as a function of p. Error bars are calculated by the
Eq. (4.3).
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Conclusion

The Quantum Approximate Optimization Algorithm was developed initially to solve
combinatorial problems, in which the solution is encoded in the ground state of a Hamil-
tonian. Still, it can be applied to a generic Hamiltonian. The calculation of the excited
states using a quantum computer and the QAOA algorithm might be of interest. In
this work, we have tested a possible procedure for calculating excited states using the
QAOA algorithm. The Basin Hopping method has been used for classical optimization.
The values of p considered are from 1 to 5. To measure the first excited state we apply
the transformation (4.5) to the Hamiltonian of interest. It put the first excited state
and its energy of a Hamiltonian H in the ground state of a Hamiltonian He.s.; in this
way, the QAOA algorithm can calculate the first excited state using that latter as the
cost Hamiltonian. The transformation requires a parameter λ, which can be each real
number greater than the difference between the first excited state and the ground state
energies, moreover we have to know the ground state.

This algorithm has been tested using the Hydrogen molecule Hamiltonian, but because
of the triviality of calculating its energies, the Lithium Hydride Hamiltonian has been
also considered. Only the states with 2 electrons and opposite spins have been consid-
ered to reduce the number of qubits necessary. For these molecules, the ground state
is calculated by the QAOA algorithm for some distances in the proximity of the bond
length. The fidelity between this states and the classically calculated states is also calcu-
lated. When the inter-nuclear distance goes to∞, the first excited state and the ground
state become degenerates, and the classical optimizer can’t distinguish the two states
anymore. The value p = 5 is enough to have a good convergence between the states
calculated by the QAOA and the diagonalization method, for the distances considered,
in the case of the Lithium Hydride. In the case of the Hydrogen, after a certain distance,
the fidelity also falls for this value of p; to overcome this problem the value of p or the
Basin Hopping iteration should be incremented.

Once the ground state for these distances is known, it can be used to apply the trans-
formation (4.5) to the Hamiltonian and obtain the a new Hamiltonian which the ground
state is the first excited state we are looking for. We have chosen λ = 10; this is an
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acceptable value because it is higher than the order of magnitude of the energies. First
excited states are calculated using the same values for p, and the same classical opti-
mizer. The ground states used in the transformation are the ones calculated with p = 5.
In the case of the Lithium Hydride, the first excited state energies and the fidelities are
well estimated already with a value of p = 3. Differently from the case of the ground
state, the fidelity, plotted in Fig. 4.13, doesn’t fall for the inter-nuclear distance that
goes to∞; this happens because in this new Hamiltonian, the ground state and the first
excited state are not degenerate. Instead, the fidelity for the Hydrogen molecule starts
to fall at some distance; this happens because some of the ground states used for the
transformation (4.5) were badly estimated because of the degeneration.

In this work, the QAOA is classically simulated. In a real implementation, quantum
errors must be taken into consideration.

69



Bibliography

[1] N. Moll, A. Fuhrer, P. Staar, I. Tavernelli, Optimizing qubit resources for quantum
chemistry simulations in second quantization on a quantum computer, Journal of
Physics A: Mathematical and Theoretical, 49, 29 (2015) URL: https://arxiv.or
g/abs/1510.04048

[2] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization
algorithm (2014) https://arxiv.org/abs/1411.4028
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