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Abstract

In this work, we present a two-staged unweighting method for Monte Carlo event gener-
ation. This method is based on the use of an Artificial neural network surrogate, which
is trained to predict the events weights. The surrogate is used in a first unweighting
step in order to avoid the evaluation of the true weights for the rejected events. Then, a
second unweighting accounts for the error committed by the surrogate. This algorithm
can accelerate the unweighting thanks to the much faster evaluation of the surrogate
in respect to the evaluation of true weight, and to a small allowed overweight in the
final sample. We test this algorithm for two scattering processes at 13 TeV, which are:
pp → tt̄ and pp → e−e+ggdd̄.



Chapter 1

Introduction

At LHC, collisions that take place among high energy protons, allowing to study prop-
erties of the fundamental interactions and expand our knowledge of particle physics. In
order to test this, data are systemically compared to theoretical predictions, which are
provided by numerical codes generating events that fully simulate the physical process.
MadGraph5 aMC@NLO [1] (here called MadGraph) is one of the main tools used for
the simulations of the hard matrix-element (the first step of the simulation) and it used
to generate billions of events. Thus, its efficiency and its speed are relevant parameters
for the total CPU time during these simulations. Its speed is actually spotted has one
of the factor to improve to be able to tackle the challenge of the limited CPU resource
needed for the next phase of LHC: High Luminosity HLC [2, 3].

In this work, we describe an alternative method to speed up the generation of events
following a given distribution using Machine Learning methods. A neural network surro-
gate is used to approximate the weight of the events, and we use these predictions in an
acceptance-rejection sampling method to perform a fist unweighting. The evaluation of
this surrogate is cheaper than the evaluation of true function, and for complex processes
it can be much faster than the standard one. Only at this point, we compute the true
weight of the accepted events, and we use it to perform a second unweighting, where we
account for the error in the neural network predictions. This method allows avoiding the
computation of the weights of many events, which are rejected in the first unweighting
[4].

In section 2, we are going to describe the basics of Monte Carlo integration, giving
a look to the VEGAS-algorithm and to the Single-Diagram-Enhanced multi-channel
integration, which is used by MadGraph to compute the cross-section of events. Then
we are going to briefly discuss how to generate samples in the phase-space of high-
energy physics. In section 3, we will introduce the MadGraph integration algorithm and
the standard method to unweight the events. After that, we will describe the proposed
unweighting method based on the neural network surrogate. In section 4, we will describe
how a neural network works, with a particular attention to the parameters tuned during
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this work. Then we will describe the implementation of the neural network to the
processes that we studied. In section 5, we will present the results of this approach
on the processes that we studied, and we will make a comparison with the original
algorithm. Finally, in section 6, we will give some concluding remarks and present some
future outlook.
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Chapter 2

Monte Carlo

In general, with Monte Carlo methods, we refer to a broad class of computational al-
gorithms that solve mathematical problems using random variables with a known prob-
ability distribution. These methods are applied in a variety of fields for a wide range
of applications, and are most useful when it is difficult or impossible to use other ap-
proaches.

One can say that a first rude variant of a Monte Carlo method was used in 1777 in
the Buffon’s problem [5]. In this first experiment, the value of π has been measured by
counting how many times a needle, that was thrown over a sheet of paper, intersected
with equally spaced parallel lines. Then, Enrico Fermi in the 1930s, used the Monte
Carlo method for neutron diffusivity problem. However, he did not publish this work,
as confirmed by Emilio Segrè [6], that was a student and a collaborator of Enrico Fermi.
During the second world war, the Monte Carlo method was applied in the Manhattan
Project to calculate the neutron diffusion in fissionable material [7]. The first theoretical
essay about Monte Carlo methods belongs to Nicholas Metropolis and Stanislaw Ulam
in 1949 [8]. While John von Neumann programmed one of the first computers, called
ENIAC [9], to compute Monte Carlo calculations. The name “Monte Carlo method”
was chosen by Nicholas Constantine Metropolis because it is based on probability, like
gambling, and the roulette of the famous Monte Carlo Casino is a random numbers
generator.

In this chapter, we will briefly introduce the Monte Carlo methods. We will start
from the numerical quadrature rules, which belongs to the numerical integration family,
as Monte Carlo methods, and help us to understand the reason Monte Carlo methods
are so relevant in some fields. Then we will describe the basic idea behind Monte Carlo
integration, followed by the description of some variance reducing techniques, which are
fundamental to improve the efficiency of Monte Carlo integrations. We will show how to
use Monte Carlo methods to produce samples with a given distribution, with a particular
attention for phase-space sampling in high-energy physics at colliders.
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2.1 Numerical quadrature rules for integration

The numerical quadrature rules are a large class of algorithms for calculating the numer-
ical value of a definite integral. They rely on the evaluation of the integrand function on
a finite set of points, that is used to produce an approximation of the integral. Usually
the result is obtained through a weighted average of these integrand evaluations. In
general, these integration methods do not produce an exact solution, but they try to
reach a given level of precision with the fewest possible number of function evaluations.

The numerical integration methods are opposed to the analytical integration, where
we can find an exact solution by finding the antiderivative. There could be several
reasons to prefer the numerical integration methods to the analytical ones, for example
if the integrand function is known only at certain points. Other examples are when it is
impossible or too difficult to find the antiderivative of integrand, or when it is possible
but it is much easier to compute a numerical approximation than the antiderivative.

A generic quadrature rule in one dimension is defined as:∫ b

a

dx f(x) =
N+1∑
i=1

wi f(xi) + Err(f) , (2.1)

where xi are the set of N + 1 quadrature points, wi are the set of quadrature weights
and Err(f) is the error term of the integrand function. The error term is null (and
so the numerical integration is exact) if the integrand is a polynomial of degree lower
or equal to N . The numerical quadrature rules are divided into two categories: the
Newton-Cotes type rules, which evaluate the integrand at equally spaced points, and
the Gaussian quadrature rules, which evaluate the integrand at particular points (not
equally spaced). In this work, we are going only to briefly introduce the first type of
numerical rules.

The simplest method of the Newton-Cotes type formulae is the trapezoidal rule [10],
that consists into approximate the one-dimensional area of the integral into consecutive
trapezoids attached one to the other. Given a twice-differentiable integrand f , its integral
between two points x0 and x0 +∆x can be written as:∫ x0+x

x0

dx f(x) =
∆x

2

(
f(x0) + f(x0 +∆x)

)
− (∆x)3

12
f (2)(ξ) , (2.2)

where ξ is a point included in the interval [x0, x0+∆x] and f (2) is the second antiderivative
of f . The eq.(2.2) represents the integral of f as the integral of the trapezoid described
by the points f(x0), f(x0 + ∆x) and their projections on the x axis and a correction
term. In general, to locate the point ξ, in order to compute the correction term, we need
to know the integral

∫ x0+x

x0
dx f(x), which would make needless the computation of the

correction term. For this reason, usually the correction term is neglected, and an error
is introduced in the numerical evaluation.
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The eq.(2.2) can be extended to a generic interval [x0, xN ], that is divided by N
quadrature points, such that xi = x0 + i∆, with i = 0, .., N , obtaining the formula for
the numerical integral:∫ xN

x0

dx f(x) =
xN − x0

N

N∑
i=0

wif(xi)−
1

12

(xN − x0)
3

N2
f̃ (2) , (2.3)

where wi = 1/2 for i = 1, N and wi = 1 for i = 2, .., N − 1. The correction term is
proportional to f̃ (2) that is given by:

f̃ (2) =
1

N

N∑
j=0

f (2)(ξj) , (2.4)

where each point ξj is included in the interval [xj−1, xj]. Notice that, also here, the
correction term is usually unknown and for this reason an error that is proportional to
1/(N + 1)2 ≈ 1/N2 is introduced.

The Simpson’s rule [10] represents an improved method in respect to the trapezoidal
rule by the evaluation of each region in three points, instead of two. In particular, the
integral of a four-times-differentiable function in an interval [x0, x2] can be written as:∫ x2

x0

dx f(x) =
∆x

3

(
f(x0) + 4f(x1) + f(x2)

)
− (∆x)5

90
f (4)(ξ) , (2.5)

where x2 = x1 +∆x = x0 +2∆x. Generalizing to a larger interval divide in N/2 regions
(N must be an even number), we find the compound formula:∫ xN

x0

dx f(x) =
xN − x0

N

N∑
i=0

wif(xi)−
1

180

(xN − x0)
5

N4
f̃ (4)(ξ) , (2.6)

where wi = 1/3 for i = 1, N , wi = 2/3 for i = 2, 4, .., N −2 (even numbers) and wi = 4/3
for i = 3, 5, .., N − 1 (odd numbers). From eq.(2.6) we can notice that the error in the
Simpson’s rule is proportional to 1/N4.

It is possible to show that increasing the number of evaluations of the integrand in
the region ∆x, we have an increase of the accuracy of the numerical integration method.
In particular, for an odd number of evaluation, say 2N−1, the error term is proportional
to:

c2N−1(∆x)2N+1f 2N(ξ) , (2.7)

where c2N−1 is a constant, while for an even number of evaluation, say 2N , the error
term is proportional to:

c2N(∆x)2N+1f 2N(ξ) . (2.8)
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Each quadrature rule that has an error term proportional to f 2N is called of degree
2N − 1 and it is exact for polynomials up to the same degree.

Notice that a quadrature rule of degree k requires for the integrand function f to be
k-times-differentiable and for f (k) to be continuous. Otherwise, if the integrand is not
smooth enough, the error estimate is not reliable. Therefore, it is not always possible to
increase the error estimate, increasing the order of the quadrature rule at will. Moreover,
it is possible to show that for a large number of degree, the weights of the integrand in
the Newton-Cotes formulae become large and of mixed sign, which can lead to large
numerical cancellations.

One of the biggest issues about the Newton-Cotes formulae is that they are not
efficient for multi-dimensional integral. In fact, we could adapt these rules to a generic d-
dimensional integral by viewing it as an iteration of one-dimensional integral and perform
a quadrature rule in each of them. However, the error term would be proportional to
Nk/d, where N is the total number of points taken in each dimension and k is the degree
of the quadrature rule used in each dimension. For a large number of dimensions the
quadrature rules are affected by the so-called curse of dimensionality, where the volume
of the space increases so rapidly with the number of dimensions that the available data
become sparse. This implies that to achieve a reliable result, the required data must grow
exponentially with the number of dimensions, becoming very computationally expensive.

2.2 Monte Carlo integration

The Monte Carlo integration methods belong to the family of numerical integration algo-
rithms, and they are based on the evaluation of an integral through random sampling of
the integrand. They differ from the quadrature rules because the points where integrand
is evaluated are neither fixed nor carefully selected.

For example, we consider the integral of f(u1, .., ud), which is a square-integrable
function depending on d variables u1, .., ud. The integral is performed over the hypercube,
[0, 1]d and for simplicity we will describe a point in the hypercube as x ≡ (u1, .., ud). So,
we can write the integral I of f as:

I =

∫
dxf(x) =

∫
ddu f(u1, .., ud) . (2.9)

The Monte Carlo estimate E of I can be written as:

E =
1

N

N∑
i=1

f(xi) . (2.10)

where xi are N points of the hypercube independently sampled from a uniform distri-
bution. We can notice that E has the same form of a quadrature rule for numerical
integration, except that points are randomly sampled.
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Using the law of large numbers, it is possible to show that the Monte Carlo estimate
converges to the true value of the integral:

limN→∞
1

N

N∑
i=1

f(xi) = I . (2.11)

In the case of finite sample, this convergence is not valid, but we can obtain a probabilistic
error bound of the estimate in function of its variance. The variance of the function f ,
σ2(f), is defined as:

σ2(f) =

∫
dx(f(x)− I)2 . (2.12)

The root square of the variance of f is called the standard deviation of f , σ(f). It is
possible to show that the error in the Monte Carlo estimate is on average:

∆E =
σ(f)√
N

. (2.13)

More details can be found in [11].
Notice that the convergence rate of the error is fixed to 1/

√
N , that is a relatively

slow rate. It implies that, for example, if we want to divide by 2 the error, we need to
use a sample 4 times larger.

Through the central limit theorem, we can show that the probability that Monte
Carlo estimate E is between (I − aσ(f)/

√
N) and (I + bσ(f)/

√
N) is given by:

limn→∞Prob

(
−a

σ(f)√
N

≤ E − I ≤ b
σ(f)√
N

)
=

1√
2π

∫ b

−a

dt e−
t2

2 . (2.14)

This relation implies that the error in the Monte Carlo estimate is independent of the
dimension d of the integral, which is a very important property of Monte Carlo integra-
tion.

Usually, we use an estimate S2 for the variance σ2(f), due to the difficulty to compute
its exact value

S2 =
1

N − 1

N∑
i=1

(f(xi)− E)2 =
1

N

N∑
i=1

(f(xi))
2 − E2 . (2.15)

Initially we required that the function f is square-integrable, in fact, this is condition
is required for the reliability of the error estimate. Otherwise, if the function f is only
integrable, this will not be valid but the Monte Carlo estimate E will still converge to
the true value I. Finally, if we substitute the estimate for the variance, eq.(2.15), in the
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error formula of the Monte Carlo estimate, eq.(2.13), we find an estimate for the error
of E:

∆E =
1√
N

√√√√ 1

N

N∑
i=1

(f(xi))2 − E2 . (2.16)

Therefore, we have seen that Monte Carlo integration error goes like 1/
√
N inde-

pendently of the dimensions. This is a big advantage of the Monte Carlo integration,
especially for integrand with a large dimensions number, due to the fact that most of the
integration methods, like the quadrature rules, have a convergence rate which decreases
with the increase of the dimensions. For example, if we compare the Monte Carlo inte-
gration with the Simpson’s rule, eq.(2.6), we have that the error in the first case goes like
N−1/2 and in the second case like N−4/8. Thus, for a number of dimensions d lower than
8, the Simpson’s rule is being better than the Monte Carlo integration, but for higher
dimensionality it is much worse.

2.3 Variance reducing techniques

The Monte Carlo convergence rate is relatively slow and the sample size can be a limit
for the estimate error. Thus, in order to improve the quality of Monte Carlo integration
we need to reduce variance.

There are several variance reducing techniques, here we introduce some of the most
relevant:

• importance sampling, that consists into a change of variable∫
dxf(x) =

∫
f(x)

p(x)
p(x)dx =

∫
f(x)

p(x)
dP (x) (2.17)

where p(x) = ∂P (x)
∂x

. If p(x) is a positive-valued function and is normalized to unity,
then it can be interpreted as a probability density function. Moreover, if we can
generate a sample x1, .., xN according to P (x), we can evaluate the Monte Carlo
estimate as

E =
1

N

N∑
1=1

f(xi)

p(xi)
. (2.18)

The statistical error of the Monte Carlo integration becomes σ(f/p)/
√
N . Usually,

to decrease the variance, we choose a function p(x) that approximates f(x) in shape,
such that f/p is nearly constant, and that it is possible to generate easily samples
according to P (x). However, this method can be problematic in case of functions
p(x) which become null when f(x) remains positive, generating an infinity in the
variance.
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• control variates, that consists into add and subtract a function g(x) which approx-
imates f(x) ∫

dxf(x) =

∫
dx(f(x)− g(x)) +

∫
dxg(x) . (2.19)

If the primitive of g(x) is known, then the statistical error of the Monte Carlo
integration becomes σ(f − g)/

√
N . The variance will be lower if g(x) is close to

f(x). Usually, if we have a function h(x) which approximates f(x), it is better
to use the importance sampling method if f(x)/h(x) is almost constant, and it is
better to use the control variates if f(x)− g(x) is almost constant [12]. Moreover,
the control variates method is more stable than importance sampling because null
values in g(x) do not produce infinities in the variance 1.

• stratified sampling, that is based on subdivide the domain Ω into Ω1, ..,Ωk non-
overlapping regions. The Monte Carlo estimator becomes

E =
k∑

j=1

vj
Nj

Nj∑
i=1

f(xi,j) (2.20)

where vj is the volume of the region Ωj and Nj is the number of points sampled
from the region Ωj, while the resulting variance is

k∑
j=1

v2j
Nj

σ2
j (f) . (2.21)

As a general rule, to minimize the variance we have to take in each region a number
of points Nj proportional to the variance of that region Ωj [11]. This method is
more useful in the case of integrand with low dimension and without singularities
or rapid oscillations [13]. However, a bad choice of the subspaces Ωj and of the
number of points Nj can lead to an increase of the variance.

• antithetic variates, that is based on taking correlated points instead of independent
points. This method uses the

var(f1 + f2) = var(f1) + var(f2) + 2covar(f1, f2) (2.22)

where the covariance term covar(f1, f2) can be negative [14]. Thus, carefully choos-
ing points that are negative correlative, it is possible to decrease the variance.

1In the case of event generation, the control variates method could be more problematic. In fact, it
can generate events with negative weights, causing a loss in the efficiency. In particular for events at
the leading order, where we usually have positive weights. While the control variates method could be
used for the next-to-leading order calculations where negative weights are introduced by definition.
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One relevant difference between variance reduction techniques is how they learn about
the function to integrate. The techniques described above are based on the information
known from the integrand a priori. However, there is another type of techniques, called
adaptive Monte Carlo methods, which learn about the function as the algorithm proceeds.
For example, an adaptive stratified sampling method consists into concentrate more
samples where the integrand has the most variation in order to reduce the variance. The
domain is subdivided in subspaces and the Monte Carlo integration is performed in each
subspace to estimate the variance of that region. Then, if the variance of a region is
larger than a given threshold, that region is further subdivided in smaller subspaces.
This process is iterated up to each region has an acceptable variance.

2.3.1 VEGAS-algorithm

The VEGAS-algorithm [15, 16] is an adaptive Monte Carlo method, and it is widely
diffused in high energy physics. It consists into subdividing the domain in subspaces and
using importance sampling, taking more samples in those regions where the integrand is
largest. This is done by dividing the domain in a rectangular grid and perform the inte-
gration in each region. Depending on the magnitude of the integrand in each subspace,
the grid is improved for the next iteration. The goal of these iterations is to achieve an
optimal grid with step-like probability density functions p(x).

The Monte Carlo estimate of a given iteration is:

Ej =
1

Nj

Nj∑
i=1

f(xi)

p(xi)
(2.23)

and the estimate for the variance is:

S2
j =

1

Nj

Nj∑
i=1

(f(xi)

p(xi)

)2
− E2

j (2.24)

where Nj is the number of points of iteration j. These estimates are used to compute a
cumulative estimate such that:

E =
( m∑

j=1

Nj

S2
j

)−1( m∑
j=1

NjEj

S2
j

)
, (2.25)

where m is the number of total iterations.
To compute an integral in d dimensions with the importance sampling, VEGAS uses

a separable probability density function p(x) such that:

p(x) = p1(u1) · .. · pd(ud) . (2.26)
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Thus, it is possible to study individually each axis and obtain d different probability
density functions pi. Thanks to this, the number of bins of the grid goes like K · d,
where K is the number of bins in each dimension. Otherwise, using a not separable
probability density function, the number of bins would go as Kd, generating a curse of
dimensionality. However, this method implies that the result of VEGAS depends on the
validity of the approximation 2.26.

2.4 Multi-channel Monte Carlo

In the case where the integrand function f(x) has several sharp peaks, there could not be
a single transformation able to map efficiently all the peaks. Thus, the importance sam-
pling would obtain poor results trying to reduce the variance of the integrand function,
in particular if the peaks belong to different regions. To resolve this problem, we could
use the multi-channel Monte Carlo techniques[17]. The only condition for this method is
to know a transformation which can flatten each peak, separately. Each transformation
is called channel, and it has a probability density function pi(x), which is non-negative
and normalized to unity. Moreover, each region has a mapping function x = P−1

i (y)
from random numbers y, generated following pi(x), into the region of integration. Let
us consider m different channel and m non-negative constants λi, with

∑m
i=0 λi = 1.

Each λi corresponds to the weight of its channel. Given the total number of integrand
evaluations N , each channel is evaluated about Ni = Nλi times. We can rewrite the
integral I as

I =

∫
dxf(x) =

m∑
i=1

λi

∫
dPi(x)

f(x)

p(x)
(2.27)

with p(x) =
∑m

i=0 λipi(x) and dPi(x) = dx pi(x). The Monte Carlo estimates becomes

E =
1

N

m∑
i=1

Ni∑
ji=1

fji(x)

pji(x)
. (2.28)

The integration error is

∆E =

√
W (λ)− I2

N
(2.29)

where W (λ) is given by

W (λ) =
m∑
i=0

λi

∫
dxPi(x)

(f(x)
p(x)

)2
. (2.30)

We can notice that the parameters λi do not affect the Monte Carlo estimate E, thus
we can tune those parameters to minimize the function W (λ) and so also the integration
error. Moreover, due to the non-dependence of the integral I on the parameters λi, the
tuning of the parameters can be done also during the integration.
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2.4.1 Single-Diagram-Enhanced multi-channel integration

To compute the cross-section of a given process, we need to integrate a generic squared
amplitude over the phase-space of the final-state particles. If we look to the cross-section
of a generic 2 → n parton-level process, the integral to compute is:

σ =
1

flux

∑
a,b

∫
dxa dxb fa(xa) fb(xb)

∫
dΦn|Ma,b→n|2JΦn (2.31)

where fa(xa), fb(xb) are the parton distribution function of the initial parton a, b, Φn is
the phase-space of the final particles, Ma,b→n is the amplitude of the process and JΦn

is the Jacobian factor of variable mappings of the Lorentz invariant phase-space element
Φn.

To compute the cross-section, MG5aMC uses a revisited multi-channel Monte Carlo
method, called Single-Diagram-Enhanced multi-channel integration. The idea behind
this method consists into taking advantage of the physical content of the process to
obtain a natural basis fi to decompose the integrand function f . In fact, the peak
structure of a channel fi is equal to the peak structure of the amplitude squared |Mi|2
of the corresponding Feynman diagram. For this reason, using a standard Feynman
diagram expansion is possible to rewrite f as a sum of m channels such that the peak
structure of each diagram is efficiently mapped by pi. This basis is given by:

fi =
|Mi|2∑m
i=1 |Mi|2

|Ma,b→n| . (2.32)

Thanks to the basis defined by eq.(2.32), we can rewrite the integral of the amplitude
over the phase-space as

I =

∫
dΦ|Ma,b→n|2 =

m∑
i=1

∫
dΦi|Ma,b→n|2

|Mi|2∑m
j=1 |Mj|2

. (2.33)

Now we can define the values λi ≡ |Mi|2∑m
j=1 |Mj |2 as the channel weights, obtaining the

multi-channel integral

I =
m∑
i=1

∫
dΦiλi|Ma,b→n|2 . (2.34)

About the validity of the weights, it is trivial to show that
∑

λi = 1 with λi ≥ 0∀i.
In the classical limit, where the interference terms between the Feynman diagrams

are small, we have that:
m∑
i=1

|Ma,b→n|2∑m
j=1 |Mj|2

≈ 1 . (2.35)
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Therefore, it is possible to efficiently map the channel fi through an appropriate prob-
ability density function pi derived from the propagator of the corresponding Feynman
diagram. Moreover, in the classical limit we are able to compute the integral I as the
sum of integrals of single diagrams squared:

I ≈
m∑
i=1

∫
|Mi|2 . (2.36)

The integral of eq.(2.36) has the advantage to have poles easy to identify, which greatly
simplifies the use of importance sampling. To check the validity of the approximation
of eq.(2.35) and other sources of deviation from the ideal case, MadGraph relies on a
modified VEGAS algorithm [18].

The standard approach of the multi-channel Monte Carlo, described in (2.4), requires
computing the weight of each channel for each point in the phase-space. This issue can be
problematic in the case of a large number of channels or for computationally expensive
probability density functions pi(x). In the case of Sherpa [19], the evaluation of the
channel weight is as prohibitive as the computation of the matrix-element, spending
roughly half of the total CPU time. Note that even if the weight of a channel becomes
very small during the tuning of the weights λi, the time spent to compute the weight
of that channel does not change. Instead, the Single-Diagram-Enhanced multi-channel
method does not require computing the weight in each channel for each phase-space
point. This implies that the computational cost of the integration does not increase with
the number of channels.

A positive side of the MG5aMC approach is that the number of channel to be included
in the basis is arbitrary and, usually, it is smaller than the number of Feynman diagrams.
For example, this approach avoids multiple Feynman diagrams with identical particles
in the final state or not-relevant channels with no peaks or multiple Feynman diagrams
mapped in a similar way, like radiation coherence.

Another positive aspect is that the integration is done in an embarrassingly parallel
way 2. Thus, the computation of different channels can be performed by different re-
sources without any communication between them and then combine the results at the
end.

2.5 Sampling random variables

Usually, random processes are described by given distribution functions p(x), so, one
needs to produce samples with that distribution. To generate a sampling with a given

2A computation is said embarrassingly parallel when it can be trivially separated into parallel tasks
which require very little or no communication between them [20].
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distribution we need to have initially a sample with some random distribution, for sim-
plicity we can take the uniform one.

One simple method to do it is the inverse transform method. We consider a positive
distribution function p(x) and its cumulative distribution function, P (x) defined as:

P (x) =

∫ x

0

dx′p(x′) (2.37)

such that P (x) gives the probability that x′ ≤ x. If we take a uniform distributed random
variable u between 0 and 1, we can generate random numbers x from p(x) through the
inverse of its cumulative density distribution as:

x = P−1(u) . (2.38)

We can notice that to use this method we need to know the function P−1.
Another general algorithm to generate sampling of random variables is the acceptance-

rejection method [21]. This method consists into generate events from a uniform distri-
bution and accept them with a probability depending on the target distribution p(x).
First of all, we need to define a constant c such that p(x) ≤ c ∀x. Then we need to
generate a candidate event x from a uniform distribution and u from a uniform distri-
bution between 0 and 1. If u · c ≤ p(x) the candidate event is accepted as an event of
the distribution p(x), otherwise it is rejected. This method does not require the inverse
cumulative distribution, so it can be used when P (x) is too difficult or impossible to
compute.

2.6 phase-space sampling

To evaluate observables in high-energy physics at colliders, usually we need to integrate
over the Lorentz-invariant phase-space dΦn(P, p1, .., pn) of the n outgoing particles, where
P is the total four-momentum and pi the four-momentum of the i outgoing particle, and
over the Bjorken fractions of the initial states. Therefore, to evaluate the phase-space,
we need to generate the p1, .., pn. The lorentz-invariant phase-space is given by:

dΦn =
n∏

i=1

d4pi
(2π)3

Θ(p0i )δ(p
2
i −m2

i )(2π)
4δ4
(
P −

n∑
i=1

pi

)
=

n∏
i=1

d3pi
(2π)32Ei

(2π)4δ4
(
P −

n∑
i=1

pi

) (2.39)

where mi is the mass of the i outgoing particle. In the case of massless particles, the
phase-space volume is:

Φn =

∫
dΦn = (2π)4−3n(

π

2
)n−1 (P 2)n−2

Γ(n)Γ(n− 1)
. (2.40)
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The phase-space of n particles can be written as the phase-space of two fictitious particles
decay:

dΦn =
1

2π
dQ2dΦj(Q, p1, .., pj)dΦn−j+1(P,Q, pj+1, .., pn) (2.41)

with Q =
∑j

i=1 pi.
Using this last relation, it is possible to generate a n-body phase-space considering

the whole event as obtained from a sequence of fictitious two-body decays [22]. For
example, in the case of 4 outgoing particles A,B,C,D, it could be described like

ABCD → ABC +D → AB + C +D → A+B + C +D . (2.42)

To apply this method we substitute sequentially the: eq.(2.41) in the eq.(2.39), obtaining
the formula:

dΦn =
1

(2π)n−2
dM2

n−1 · .. · dM2
2dΦ2(qn, qn−1, pn) · .. · dΦ2(q2, p1, p2) (2.43)

where qi =
∑i

j=1 pj is the total four momentum of the fictitious particles i and M2
i = q2i

is its invariant mass squared. Each invariant mass Mi has an allowed region equal to
(m1 + ..+mi)

2 ≤ M2
i ≤ (Mi+1 −mi+1)

2. The phase-space for two particles produced by
qi in the rest frame of qi can be written as:

dΦ2(qi, qi−1, pi) =
1

(2π)2

√
λ(q2i , q

2
i−1,m

2
i )

8q2i
dφi dcos θ (2.44)

where λ is the Källen function defined as:

λ(a2, b2, c2) = (a2 − b2 − c2)2 − 4b2c2 . (2.45)

In the case of two outgoing particles (i = 2), the previous formula becomes

dΦ2 =
|p⃗|

16π2M
dcos θ dφ , (2.46)

where the modulus of the tri-momenta are given by the Källen function λ

|p⃗| =
√

λ(M2,m2
1,m

2
2)

2M
. (2.47)

This case requires only to generate the direction of one outgoing particle, which is uni-
formly distributed over the unit sphere. Then the other particle will move in the opposite
direction.

The algorithm of this approach [11] can be summarized by:

1. set i = n, qi = P and Mi =
√

q2i
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2. change to the qi rest frame

3. generate 2 uniform random variable ui,1, ui,2 and set ϕi = 2πui,1 and cosθi = ui,2

4. if i > 2, generate a uniform random variable ui,3 and set Mi−1 = m1 + ..+mi−1 +
ui,3(Mi −mi); if i = 2 set M1 = m1

5. evaluate |p⃗′i(M2
i ,M

2
i−1,m

2
i )|, p′i and q′i−1 =

(√
|p⃗′i|2 +M2

i−1,−p⃗′i

)
6. return to the original frame

7. set i = i− 1 and go to step 2

This algorithm produces weighted events, where the weight of the events is

w = (2π)4−3n21−2n 1

Mn

n∏
i=2

√
λ(M2

i ,M
2
i−1,m

2
i )

Mi

. (2.48)

An other method to generate n-body phase-space is using the RAMBO algorithm
[23]. The RAMBO algorithm samples the phase-space almost uniformly and it produces
uniformly weighted events for n massless outgoing particles. Let us study the quantity

Rn =

∫ n∏
i=1

d4qi
(2π)3

θ(q0i )δ(q
2
i )(2π)

4−2nf(q0i )

= (2π)4−2n
(∫ ∞

0

dxxf(x)
)n (2.49)

The Rn formula is similar to the phase-space volume formula for massless particles but
here the momenta qi are not bounded by momentum conservation relations and the
momenta have some weight function f such that f keeps the total volume finite. The
not bounded four momenta qi are related to the physical four momenta pi through the
relations

p0i = x(γq0i + b⃗q⃗i) , p⃗ = x(q⃗i + b⃗q0i + a(⃗bq⃗i)b⃗)) (2.50)

where:

Q =
n∑

i=1

qi , M =
√

Q2 , b⃗ = − 1

M
Q⃗,

γ =
Q0

M
, a =

1

1 + γ
, x =

√
P 2

M
.

(2.51)

If we apply a change of variables to Rn and we choose f(x) = e−x, then it is possible to
show that Rn = ΦnSn with:

Sn = 2π(P 2)2−n Γ(3
2
)Γ(n− 1)Γ(2n)

Γ(n+ 1
2
)

. (2.52)
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Thus, starting from the four momenta qi, we can compute the phase-space of n massless
particles. The algorithm is given by:

1. generate 4n uniform random variables ui,1, .., ui,4 between 0 and 1. Set the qi four
vectors equal to

q0i = −ln(ui,3ui,4)

qxi = q0i

√
1− (2ui,1 − 1)2cos(2πui,2)

qyi = q0i

√
1− (2ui,1 − 1)2sin(2πui,2)

qzi = q0i (2ui,1 − 1)

(2.53)

2. evaluate the physical four momenta pi through the transformation of eq. (2.50).

This method produces events with the same weight, that is given by

w0 = (2π)4−3n(π/2)n−1 (P 2)n−2

Γ(n)Γ(n− 1)
. (2.54)

Now it is possible to pass from the phase-space of n massless particles to the phase-space
of n massive particles with a change of variables in the momenta, assuming that P 2 stays
the same. In fact, we can define the four momenta ki such that:

k0
i =

√
m2

i + ξ2(p0i )
2, k⃗i = ξp⃗i (2.55)

where ξ is the solution of the equation:

√
P 2 =

n∑
i=1

√
m2

i + ξ2(p0i )
2 . (2.56)

Usually eq.(2.56) has no analytic solution, so ξ must be computed numerically. The
phase-space respect the massive momenta ki has no longer constant weight and the
weight of each event becomes w = w0 wm, with wm = wm(P, k1, .., kn).
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Chapter 3

MadGraph integration and
unweighting

MadGraph is a framework which aims to provide all the elements necessary for the study
of the Standard Model and Beyond the Standard Model phenomenology. MadGraph is
the new version of the MadGraph softwares, which involves several automated tools to
perform different tasks.

In particular, MadGraph can produce elements like the computations of cross-sections,
the generation of hard events and their matching with event generators, and the use of a
variety of tools relevant to event manipulation and analysis. It is an open source software
that can generate matrix elements at the tree-level for any renormalizable or effective
Lagrangian based model. It allows the user to select a given process in a High Energy
Physics, like a decay or a 2 → n scattering, through the choice of the initial and final
particles. Moreover, it allows for additional criteria about the process like: requiring res-
onances and decay chains or excluding resonances and internal particles. The standard
reference for the use of the code is ref. [1].

3.1 MadGraph integration algorithm

MadGraph is one of the main tools which belong to the MadGraph family. Starting from
a given process, MadGraph generates all the relevant Feynman diagrams for that process
and produces the mappings for the integration over the phase-space.

The algorithm for the diagram generation used by MadGraph take advantage of the
information of the model to produce only valid diagrams. This is done through con-
secutive iterations, which create sub-diagrams from the diagrams by merging legs[24].
The output result of MadGraph is a computer code that is used to evaluate the matrix
element at a given phase-space points. This work is done by a package, called MadEvent,
which receives as input the computer code produced by MadGraph. Then, MadEvent
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can produce the cross-section or decay width calculation and unweighted event gener-
ation. After the generations of the events, they can be passed to any shower Monte
Carlo program, where partons are perturbatively evolved through the emission of QCD
radiation, and eventually turned into physical states through hadronization.

As we explained in chapter 2, Monte Carlo techniques are used to perform the integra-
tion of the squared amplitude over the phase-space. However, the amplitude usually has
many sharp peaks in different regions of the phase-space, which makes really difficult the
integration. In general, these peaks are due to one or more propagators in one or more
regions which become large. Usually, this happens in proximity of a collinear-divergent
limit or in the limit of a virtual massive particle, that has a small width, reaching its
mass-shell. In order to solve this issue, we need to locate these peaks and then to map
them onto several different sets of variables, called as channels. The position and the
shape of the peaks in the matrix elements can be obtained with a standard Feynman
diagram expansion.

3.2 Events unweighting algorithm

As we have seen in the section (2.6), the phase-space sampling methods generate weighted
events. However, it is recommended to unweight the events in order to reduce the size
of the sample of events and, so, decrease the CPU cost.

3.2.1 Standard unweighting method

In general, the events unweighting methods are based on the acceptance-rejection tech-
niques [25]. Starting from N0 weighted events, we use a rejection sampling algorithm to
obtain N unweighted events, with N ≤ N0 corresponding to the accepted events. The
unweighting efficiency is defined as ε = N

N0
, but for large samples N we can describe the

efficiency as

ε =

∑N0

i=0wi

N0wthres

=
⟨w⟩
wthres

, (3.1)

where wi is the weight of the i-th event, wthres is the maximum of the weights and ⟨w is
the mean weight over the sample. This last formula represents the expected efficiency
given by the sum of the probability to keep each event, and it has the advantage to avoid
the fluctuations of the acceptance-rejection method.

Usually it is better to avoid choosing wthres as the true maximum of the weights. In
fact, in case of large samples, there could be some rare outliers much larger respect to
the other events. As we can see from eq.(3.1), wthres ≫ ⟨w⟩ would lead to an unweighting
efficiency close to zero. For this reason, in case of large outliers, it is better to define a re-
duced maximum wthres such that wthres ≤ max(w). All the events with w ≤ wthres will be
completely unweighted, with a neutral correction weight w̃ = 1, but those “overweight”
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events with w > wthres will have a correction weight w̃ = w/wthres > 1. This method is
called partially unweighting of the events because it produces a sample which contains
completely unweighted events (w̃ = 1) and events with a correction weights (w̃ > 1) to
account for their probability to be accepted larger than 100%.

The main advantage of the partial unweighting is that it produces always samples
with a larger efficiency than the complete unweighting (except in case of statistical
fluctuation). However, the main issue of this method is that we need to generate a
larger sample of partially unweighted events to obtain the same precision achieved by a
smaller completely unweighted sample. To evaluate this flaw between the two samples,
we introduce the effective sample size Neff as an estimate of the size of a simple random
sample required to achieve the same precision of the partially unweighted sample of size
N , with Neff < N . To estimate, Neff we use the Kish factor α [26] that is given by:

α =

(∑N
i=0 w̃i

)2
N
∑N

i=0(w̃i)2
. (3.2)

Then, the effective sample size is obtained as

Neff = αN , (3.3)

where N is the size of a fully unweighted sample with unitary weight. This implies that if
we use a partially unweighting method, to have the equivalent distribution of events (up
to the statistical fluctuation) of a completely unweighting methods with a size sample
N , we need to generate a sample with a size equal to N/α.

The Kish factor is equal to 1 in case of no overweight and it is lower than 1 in case
of overweight, with its value that decreases with the increase of the overweight in the
sample. Therefore, a large overweight in the final sample (that corresponds to a small
α), must be compensated by the generation of a larger sample, which could compromise
the gain in performance of the partially unweighting method.

A classical unweighting algorithm with overweight can be summarized as:

1. Compute the reduced maximum weight wthres.

2. Generate a phase-space point u.

3. Compute the weight w of the point u.

4. Generate a uniform random r between 0 and 1.

5. If w > r · wthres: accept the phase-space point u and set its correction weight
w̃ = max(1, w/wthres); otherwise reject u.

6. Iterate from step 2.
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This algorithm is equivalent to the acceptance-rejection method described in the section
(2.3). If wthres corresponds to the true maximum, there is no overweight, so α = 1.

Theoretically an optimal sampler, would generate events with almost uniform weights,
in order to have an unweighting efficiency close to 100%. However, this is far from the
real case. For example, in the processes that we are going to study with MadGraph we
have an unweighting efficiency about between 1% and 10%, depending on the process.
Variance reduction techniques, like those described in the section (2.3), are already used
to improve these results.

3.2.2 Surrogate unweighting method

A problematic aspect of the event generation is the evaluation of the events weight, that
can have a high computational cost. Moreover, this method can be particularly inefficient
due to the fact that the evaluation is done for all events, even those which have a very
small probability to be kept. To improve this aspect, we can substitute the evaluation
of the weights with a surrogate function that well approximates it and that has a much
lower computational cost.

Following this idea, this study uses an algorithm for the event unweighting which
takes advantage of the Artificial neural network in order to be more computationally
efficient. This is done substituting the Artificial neural network prediction of the weights
to the computation of the real weights of each event, at least in a first step. The neural
network model is firstly trained over a large dataset of phase-space points and then it is
used to predict the weights of the phase-space points to sample.

The prediction s of the phase-space point u is used to perform a first unweighting
with a rejection sampling algorithm in respect a reduced maximum sthres of the surrogate
weights. Then, to consider the possible errors in the neural network predictions s, we
perform a second unweighting over the ratio x = w/s between the true weight and the
surrogate weight. Similarly to the first unweighting, the second one is also performed
respect a reduced maximum xthres. The algorithm of this method can be summarized as:

1. Generate N0 phase-space points ui.

2. Compute the surrogate weight si for each ui.

3. Compute the reduced maximum sthres.

4. Generate N0 uniform random number r1,i between 0 and 1.

5. If si ≥ r1,i · sthres: accept the event ui and set its correction weight

w̃(1) = max
(
1,

si
sthres

)
; (3.4)

otherwise reject it.

21



6. Compute the true weight of the N1 accepted events.

7. Compute the ratio xi = wi/si of the accepted events.

8. Compute the reduced maximum xthres.

9. Generate N1 uniform random number r2,i between 0 and 1.

10. If xi · w̃(1)
i ≥ r2,i · xthres: accept the event ui and set its correction weight

w̃
(2)
j = max

(
1,

xiw̃
(1)
i

xthres

)
; (3.5)

otherwise reject it.

At the end we obtain a sample of N2 accepted events from the second unweighting, with
correction weights w̃

(2)
i , where i = 1, .., N2, and a Kish factor α = α(w̃(2)). We define an

unweighting efficiency for the first unweighting ε = N1/N0, another one for the second
unweighting ε = N2/N1 and a total one ε = N2/N0, with ε = ε1 · ε2. Theoretically, an
optimal surrogate would imply xi = wi/si ≃ 1 for most the events, which would lead
to ε2 ≃ 1. This case would correspond to the maximal computational gain because we
would compute the true weights almost only for accepted events. However, this is not
possible and the values of x can span several orders of magnitude, depending on the
accuracy of the predictions.

There are several techniques to define a reduced maximum, in this work we will
use a technique called quantile reduction method. This method consists into define a
maximum such that the contribution of the remaining overweighted events corresponds
to a fraction of the total sum of the events. Given N events with weights s1, .., sN , sorted
by the smallest up to the largest (such that si < si+1∀i), and an overweight parameter
rs, the reduced maximum is defined as:

sthres = min

(
sj

∣∣∣∣∣
N0∑

i=j+1

si ≤ rs ·
N0∑
i=1

si

)
. (3.6)

In a similar way, we use the same maximum definition for the second unweighting, but
in this case we evaluate the maximum respect the quantity xi · w̃1,i. Given N1 accepted
events by the first unweighting, with ratios xi and correction weights w̃1

i , sorted such
that xi · w̃1,i < xi+1 · w̃1,i+1, and an overweight parameter rx, the reduced maximum is
defined as:

xthres = min

(
xj · w̃1j

∣∣∣∣∣
N1∑

i=j+1

xi · w̃(1)
i ≤ rx ·

N1∑
i=1

xi · w̃(1)
i

)
. (3.7)
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The choice of performing the second unweighting respect the quantity xi ·w̃(1)
i , instead

of xi, is motivated by the reabsorption of the first correction weights w̃(1). Thus, the final
correction overweight w̃ of an unweighted event can be approximated to the correction
overweight of the second unweighting w̃(2), given by the eq.(3.5), such that:

w̃ ≃ w̃(2) = max

(
1,

x · w̃(1)

xthres

)
. (3.8)

Notice that, for any accepted events in the second unweighting, if xiw̃
(1)
i < xthres, then

the overweight of the first unweighting is completely reabsorbed (w̃
(2)
i = 1). As we will

see in the chapter 5, with a proper choice of the overweight parameters, the overweight of
the first unweighting is completely reabsorbed in almost all the cases. Notice that there
are no conditions on the choice of the overweight parameters of the two unweightings.
Thus, they can be chosen also different values between them, rs ̸= rx. We will discuss
the choice of these parameters in the chapter 5.

To measure the possible gains in timing and efficiency of the surrogate method respect
the standard unweighting method of MadGraph, we define the effective gain factor feff
as

feff =
Tst

Tsu

, (3.9)

where Tst and Tsu are respectively the total time to produce N unweighted events for
MadGraph and for the surrogate algorithm. We can rewrite this formula defining the
average time ⟨tst⟩ to compute the weight of an event and unweight it with the standard
method, its initial number of events N st

0 and its efficiency εst such that

Tst = N st
0 · ⟨tst⟩ =

N

εst
⟨tst⟩ . (3.10)

We do the same also for the surrogate

Tsu = N su
0 · ⟨tsu⟩ =

N/α

εsu
·
(
⟨tnn⟩+ ε1⟨tst⟩

)
, (3.11)

where ⟨tsu⟩ accounts for both the average times of the neural network surrogate evaluation
and the first unweighting step (⟨tnn⟩) and of the true weights computation of the accepted
events and the second unweighting (ε1⟨tst⟩). Notice that here we need to generate a larger
sample, corresponding toN/α, to have the correct equivalent ofN completely unweighted
events. Moreover, while the surrogate evaluation and the first unweighting are performed
for all the events, the evaluation of the true weight and the second unweighting are
performed only for the accepted events by the first unweighting, with N1 = N su

0 ε1.
Finally, if we substitute these two formulas into eq.(3.9) we find

feff = α
1

⟨tnn⟩
⟨tst⟩

εst
ε1ε2

+ εst
ε2

. (3.12)
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To have a gain from the surrogate method respect the standard one, we need an effective
gain factor larger than 1. For the reasons previously discussed, here we will consider
only Kish factor values close to 1. From eq.(3.12) we expect better results when there
are small standard efficiency, while for high standard efficiency we can have only small
gains. Moreover, to obtain a good results we aim to achieve a fast neural network model,
such that ⟨tnn⟩ ≪ ⟨tst⟩, and low number of weight computations, such that ε2 ≫ εst.

Looking at the eq.(3.12) we can notice that one condition to have feff > 1 is that the
efficiency of the second unweighting must be larger than the standard efficiency, ε2 > εst.
In fact, if we consider the opposite case, ε2 < εst, knowing that they produce the same
number of events, it would imply that the surrogate method had computed more weights
than the standard method, which of course would lead to a negative gain.

In an ideal scenario, we would have α = 1, ε1 = εst, ε2 = 1 and a resulting effective
gain factor

feff =
1

⟨tnn⟩
⟨tst⟩ + εst

, (3.13)

that can be considered like an optimistic upper bound for feff .
To conclude this part, we highlight that effective gain factor refers only to this part

of the event generation and does not propagate to the other stages. Thus, it has to be
seen as an upper limit of a potential CPU time saving on the whole budget.
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Chapter 4

Artificial neural network: basic idea
and implementation

Machine learning is a subfield of the artificial intelligence and it aims to improve the
performances on some given tasks through the identification of patterns in the data.
Contrary to a more traditional (model-based) approach, where the model depends on
our knowledge of the process of interest, the Machine Learning (data-driven) approach
is to build a model with the information learned from the data. The Machine Learning
can learn the relations between the inputs and the desired output during the training
phase, in order to make predictions over unknown inputs.

There are different types of Machine Learning algorithms and they are characterized
by their training phase:

• supervised learning, where the data provided to the system have one or more
parameters and a label. The label is the information that the machine learning has
to predict in function of the parameters. The labels correspond the true value of the
outputs of the system. The supervised Machine Learning algorithm is mainly used
to solve regression problems (with continuum labels) and classification problems
(with discrete labels).

• unsupervised learning, where the data provided to the system have only features
but no label. So the system is not able to estimate and output quantity. In this case
the system can learn patterns and structures inside the data. The unsupervised
Machine learning is used, for example, in clustering and feature extraction.

• reinforcement learning, which is an algorithm in between the 2 above algorithms.
In this case the data has no label, but after the generation of the output, the system
receives feedback on the output from the environment.

In principle, there are also approaches which are somewhat in between of supervised and
unsupervised. Usually referred to as semi-supervised or weakly supervised.
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In this work, we use only Artificial neural networks in a totally supervised approach.
In the next section, we are going to briefly described the Artificial neural networks.

4.1 Artificial neural networks

An Artificial neural network is a computational network inspired to the biological neural
networks of the human brain. Similarly to the biological neurons, the nodes of an artificial
neural networks receive a signal, elaborate it and propagate it to the others nodes.
Moreover, the artificial neurons, like the biological ones, are able to modify the degree
of the connections between them depending on their experiences.

Figure 4.1: Fully connected artificial neural network architecture (Bre, Gimenez, and
Fachinotti 2018).

As we can see in fig. (4.1), the nodes are divided in layers, which are of 3 different
types:

• input layer, that is the first layer and it contains the information of a given event
of the dataset, that will be propagated to the following layer. Each node of the
input layer corresponds to a feature of the inputs.

• hidden layer, that is the type of layer which propagate the information from the
input to the output. Usually, there are several hidden layers and they work like
a black-box, because often we don’t know how all the individual neurons work
together to arrive at the final output.
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• output layer, that is the last layer and its outputs are the predictions of the neural
network for the event given as input. Each node of the output layer corresponds
to a prediction and its true value is the corresponding label of that event.

In a fully connected neural network, each node is connected to all the nodes of the
previous layer and of the following layer, in a web-like connection. The number of nodes
and the number of layers in a neural network are free parameters. The same is true also
for the sizes of the input and output layer, but they are usually fixed by the number of
inputs that we want to pass to the neural network and by the number of outputs that
we want to produce. Then, the architecture of the neural network depends on the type
of problem that we are studying and on the performance that we want to achieve.

Figure 4.2: Representation of what happens inside a node. Image from [27].

A node is a mathematical function which receive the inputs from the previous layer
and produce and an output, fig. (4.2). The output of a node depends only on the inputs
provided to it and on the parameters of the node. These parameters are: the weights
w0, .., wn−1 and the bias b, where n is the number of inputs x0, .., xn−1 to the node (or
the number of nodes in the previous layer). The output y of a node is given by:

ypred = f
( n∑

i=1

xi × wi + b
)

, (4.1)

where f is the activation function of the node. The activation function has the role to
introduce non-linearity into the output. Some relevant activation functions are:

• Sigmoid function σ(x) = 1
1+e−x . It is commonly used in the output layer to predict

a probability or for binary classification.
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• ReLU function σ(x) = max(0, x). It does not activate all the nodes, so it less
computationally expensive than others (like the Sigmoid) and it has very simple
derivative. It is commonly used in the hidden layers.

• linear function σ(x) = x. It is used mainly in the output layer, commonly for
regression problems.

The process of computing the output of a given input is called forward propagation.
It consists into setting the values of the input layers and to use them as inputs to compute
the values of the nodes of the first hidden layer. Then the outputs of the first hidden
layers become the inputs for the following layer and so on, up to the generation of the
output. The data flows from layer to layer until it reaches the output layer.

During the training, the purpose of the neural network is to train the parameters of
each node (weights and biases) in order to minimize a given loss function Loss, which
represents the accuracy of the neural network predictions respect their true value. Some
interesting loss functions in our case are:

• mean squared error (mse)

Loss =
1

n

n∑
i=1

(
ypred(i)− ytrue(i)

)2
, (4.2)

where n is the number of outputs, ypred(i) is the predicted output by the i-th node
of the output layer for a given input and ytrue(i) is the corresponding true value.
It the most common loss function in regression problem.

• mean absolute error (mae)

Loss =
1

n

n∑
i=1

|ypred(i)− ytrue(i)| (4.3)

It is similar to the mse and it can provide better results in case of large errors, but
it has unstable solutions and possible multiple solutions.

• Logarithm of the hyperbolic cosine

Loss =
n∑

i=1

log

(
cosh

(
ypred(i)− ytrue(i)

))
. (4.4)

This function it is approximately equal to the mean squared error for small differ-
ences and to the mean absolute error minus the logarithm of 2 for large differences.
So, it has similar properties to the Huber function, but it is twice differentiable
and it does not require tuning a parameter.
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A possible issue for the neural network training is the presence of outliers events, which
are points relatively distant from other points in the multi-dimensional space of features.
Outlier events produce a large Loss and they can affect also the prediction of other
events. It is possible to partially mitigate the effects of these outlier events through the
choice of the loss function. The mse loss function tends to strongly penalize predictions
with a large error and so, the presence of some rare outlier events could be problematic
during the training. On the other hand, a mae loss function is more robust to this type
of event. To overcome the disadvantages of these two functions, a possible solution is to
use a different loss function, that can have both the advantages of the mse and of the
mae , like the logarithm of the hyperbolic cosine.

A method widely used to train the parameters of a neural network is the backward
propagation algorithm. It consists into use the gradient of the loss function with respect
to any weight or bias to update the value of that parameter. This is done by applying
the chain rule to the derivative of the loss function starting from the output layer, up to
the layer of that weight or bias. The backward propagation is computed in the opposite
direction to the forward propagation.

These processes described until now (forward and backward propagations) are iter-
ated for each input of the training dataset, during the training phase. The parameters
of the neural network, are not updated after the forward propagation of each input, but
after a given number of samples, that is called batch size. Depending on the batch size
of a model, the learning algorithms are separated into three types: stochastic gradient
descent, if they have a batch size equal to 1; batch gradient descent, if they have a batch
size equal to the number of training samples; mini-batch gradient descent, if they have
a batch size between one and the number of training samples.

Usually the model performs several cycles through the full training dataset and the
number of these cycles is called the number of epochs. One of the risks during the
training is that the neural network learns too many details in the training dataset along
with the noise from the training dataset. This causes the neural network to lose the
ability to generalize in respect to new data and so, worse results on unseen data. This
problem is called overfitting and to avoid it we use a validation dataset. The validation
dataset contains events which follow the same probability distribution as the training
dataset, but they are independent of it. The parameters of the neural network are not
trained over the validation dataset and it is used at the end of each epoch to check that
the loss function over the validation dataset will not increase (that could be a sign of
overfitting). To prevent this, TensorFlow [28] has a functionality called Early Stopping
Callback, which stops the training after that validation loss stops to decrease for a given
number of epochs. The number of maximum epochs before that the Early Stopping
Callback interrupts the training is called patience. The validation dataset can be used
to optimize the hyper-parameters of the neural network, which are non optimized during
the training phase, like the number of hidden layers and of nodes, the learning rate and
the batch size. It is suggested to use also a third dataset, called test dataset, to assess the
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final model that is chosen using the validation dataset and to avoid correlations which
could be present with the validation dataset.

4.2 neural network surrogate

We have seen in section (3.1) that we can compute the cross-section of a 2 → n partonic
scattering like eq. (2.31), using Monte Carlo integration techniques. Now we want to
train a neural network such that our model will be able to well predict the complete
weight w of each event. Predicting the complete weight including the product between
the matrix element and the Jacobian factor has the advantage to be a smoother function
over the phase-space than the single functions.

In order to have an improvement in the unweighting performing features, we look for
a neural network which is faster than the standard approach (⟨tnn⟩ ≪ ⟨tst⟩) and flexible
enough to achieve good predictions also for high-multiplicity scattering events. For these
reasons, we chose a fully connected neural networks.

We applied the surrogate unweighting algorithm to two different processes, which
are: pp → tt̄, as a first study of a relative simple process, and pp → e−e+ggdd̄, as a more
complex process with higher multiplicity.

4.2.1 Implementation on pp → tt̄ process

For simplicity, in the first process we studied only one of the MadGraph channels of inte-
gration. We studied the integration channel representing the s-channel of the scattering
mediated by gluons. To not loose physical information about the process, the minimum
number of inputs that we can use is equal to the number of the degrees of freedom. The
formula for the degrees of freedom of a 2 → n scattering with initial protons is given by:

d = 4n− n− 4 + 2 = 3n− 2 , (4.5)

where the term +4n corresponds to the four momenta of the final particles, the −n term
to the mass of the final particles which are on-shell, the −4 term to overal 4-momentum
conservation and the term +2 to the parton distribution functions of the initial protons.
Using the eq. (4.5) we obtain 4 degrees of freedom for the considered 2 → 2 process.
Here, we used 6 inputs, in order to facilitate the learning of the neural network of the
relevant physics information. These inputs are: the four momentum of the top quark
and the parallel momentum and the energy of the anti-top quark

1√
S
(ptx, p

t
y, p

t
z, E

t, pt̄z, E
t̄) , (4.6)

Each momentum is in the laboratory frame and it is normalized by the energy of the
center of mass of the protons

√
S.
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The output of the neural network is directly the weight of the event, w. Usually,
the predicted output of a neural network are normalized between 0 and 1 or they are
normalized with mean 0 and standard deviation 1. In this first part, we postponed
the study of the normalization of the output for the other process. Using the inputs
described above, we observed better results predicting directly the weights respect the
absolute value of the natural logarithm of the weight, y = | log(w)|. We underline that
this result is due to the absence of the output normalization. In fact, for this process
the weights are of the order of about 10−3 and it could be problematic for the neural
network to predict values much smaller than 1. However, the inputs are normalized in
order to be about of the same order of the weights, providing good results and avoiding
output normalization.

The prediction of the weights of the events belongs to the regression problems, thus
the activation function for the hidden layers that we used is the ReLU activation function
and the linear activation function for the output layer. The weights are initialized with
the heuristic initialization [29] and the optimizer is Adam [30]. Here, we tested only the
mean squared error as loss function. We used a batch size of 1000 events, a learning rate
equal to 10−3 and we trained the neural networks with epochs containing all training
points in random order. The maximum number of epochs has been fixed to 1000 and
the patience for the training to 30. The patience corresponds to the maximum number
of epochs which the neural network can have without the decrease of the validation
loss before the early stopping is activated and the best model (the one with the lowest
validation loss) is saved as the final model.

The layers architectures that we tested were composed by 2, 3 or 4 layers, each one
with the same number of nodes which was 16, 32 or 64. As expected, we observed an
improvement of performance with the increase of layers and of nodes, but also an increase
in the required time for the prediction, which almost flatten the increase in effective gain
factor. For this reason, we chose an architecture with 3 hidden layers and 64 nodes each
one.

NN hyper-parameter value

hidden layers 3
nodes per layer 64

activation function Relu
output activation function linear

loss function mse
optimizer ADAM

learning rate 0.001
batch size 1000

Table 4.1: Summary of the hyper-parameters used in the neural network model for the
pp → tt̄ process.
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4.2.2 Implementation on pp → e−e+ggdd̄ process

For the second process, we studied the MadGraph integration channel corresponding to
the Feynman diagram represented in fig. (4.3). The choice of this channel is due to

Figure 4.3: Feynman diagram corresponding to the integration channel G128. Image
generated by MadGraph.

the fact that it is one of the most relevant channels for this process, due to its large
cross-section respect to the other channels, and that it has a good accuracy on the
cross-section.

Using the formula eq. (4.5), we can see that for this process the number of degrees
of freedom is 16. However, we can decrease by 1 this number using the symmetry of the
final state in respect to the transverse angle to the beam axis and applying a rotation on
that angle. In this way, requiring that, for example, the transverse angle of the produced
down quark is null for each scattering, we obtain 15 degrees of freedom. Alternatively we
could take advantage of this symmetry, generating more events which are copies of the
initial ones except for a rotation on this angle. This method, called data augmentation,
would increase the dataset up to a factor K + 1, where K is the number of rotations
applied, and would let the model learn the symmetry directly from the dataset. Here
we choose to use this symmetry with the first suggested method in order to reduce the
number of inputs by 1. This choice is justified by the fact that a larger number of inputs
implies a larger dimension of the phase-space of the input variables. The same dataset
of events, used with a larger number of inputs, results into a more sparse dataset in the
phase-space of the inputs.

In this case, we used 16 inputs and we tested different normalisations of the inputs.
Here we described only the one that had better results during the test:

•
√

Ŝ/
√
S, where

√
Ŝ is the energy of the center of mass of the interaction and

√
S

is the energy of the center of mass of the protons

• βcm, that is the relativistic beta factor of the center of mass in the laboratory frame
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• pg
1

T /
√
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1
, ϕg1

• pg
2

T /
√

Ŝ, θg
2
, ϕg2

• pdT/
√
Ŝ, θd

where pT is the transverse momentum of the particle, while θ and ϕ are respectively the
angles in the parallel and transverse plane to the beam axis in the center of mass frame.
For the outputs we tested 4 different normalisations, which were: the normalisation
between 0 and 1 of the weights or the value of the logarithm of the weights, and the
normalisation with mean 0 and standard deviation 1 of the weights or of the absolute
value of the logarithm of the weights. In this case we had different performance for each
output normalisation depending on the architecture of the neural network and the loss
function used. In general, we observed slightly better prediction when we normalized
the output with mean 0 and standard deviation 1 while predicting the logarithm of the
weight. However, we observed the presence of a small negative bias in the prediction of
the logarithm of weight, as shown in fig. (4.4), and we have not been able to cancel it.
Anyway, the problem of this bias should not be problematic for the algorithm thanks
to the second unweighting step, which accounts for the error committed by the neural
network.

Figure 4.4: Weights distributions of the training, test and predicted datasets respect the
β factor of the center of mass in the laboratory frame, for pp → e−e+ggdd̄ process. The
training dataset has been normalized to be equal to the test dataset.

Similarly to the previous process, we used the ReLU activation function for the hidden
layers, the weights are initialized with the heuristic initialization and the optimizer is
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Adam. For the training, we used a patience equal to 30, as before. During the process
of model selection of the neural network, we tested different batch sizes, learning rates
and architecture. In the end, we chose the parameters which produced a lower validation
loss, which correspond to a batch size equal to 500 and a learning rate equal to 10−4. We
started from an architecture composed by 4 layers with 64 nodes each one and then tested
mainly other 2 architecture composed respectively by: 4 layers with 128 nodes each one
and 8 layers with 64 nodes each one. After several tests we observed that, compared to
the initial architecture, the last two architecture had in general slightly better results with
a lower validation loss. However, the architecture with 8 layers required almost a double
time for the prediction respect the architecture with 4 layers. For these reasons, we
selected the architecture with 4 hidden layers and 128 nodes each one. About the hyper-
parameters, we tested models with learning rates equal to 10−3, 10−4, 10−5 and batch
sizes equal to 64, 128, 256, 500, 1000. From our tests, we observed the best validation loss
with a learning rate equal to 10−4 and an improvement in the validation loss with the
increase of the batch size up to 500, with a similar or slightly worse value for 1000.

A possible problem for a more complex problem could be the presence of outlier or rare
events, which can be difficult to learn for the neural network. In order to study whether
these type of events are present and affect the training or not, we tested different loss
functions. In particular, we tested as loss function for this process, the mse, the logarithm
of the hyperbolic cosine and the Huber function, which behaves as quadratic loss error
and linear for large error. However, we did not observe particular differences between
the predictions obtained with these loss functions, so we preferred to use the mse.

NN hyper-parameter value

hidden layers 4
nodes per layer 128

activation function Relu
output activation function linear

loss function mse
optimizer ADAM

learning rate 0.0001
batch size 500

Table 4.2: Summary of the hyper-parameters used in the neural network model for the
pp → e−e+ggdd̄ process.
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Chapter 5

Results

In the following chapter we will describe the results obtained studying two different
processes with the surrogate unweighting method describe in the section (3.2) and the
neural networks described in section (4.2).

We produced weighted events through MadEvent, bypass the unweighting algorithm.
Each event is characterized by the four-momenta of each initial and final particles and
its weight. Instead of the MadEvent unweighting, we will use the neural network as a
light-weight surrogate to perform a first unweighting and, then, compute the true weights
of the remaining events to perform a second unweighting in order to compensate for the
possible mismatches in the predictions.

5.1 Results on pp → tt̄

As a first test, we studied the scattering process pp → tt̄, which is a relatively simple
process. MadGraph has already good results with a fast evaluation of the matrix element
and a good unweighting efficiency. In particular, in the s-channel of the scattering
mediated by gluons, the average time to perform the unweighting of one event is <
tMG >= 0.00171s and the efficiency is about εst = 10%. < tMG > has been measured
unweighting a sample of 4000 events, however, we observed that the average unweighting
time decreases with the time increasing of the sample size to unweight. The surrogate
method has a good performance in this case, but it could give more benefits for more
complex processes where the time spent in the unweighting is much longer. For this
reason, we used this process only as a first example without taking care of the tuning
details to improve the surrogate unweighting, as we have done for the second process.

We used a dataset composed by 12000 events for the training and 4000 events for the
validation of the neural network. The simplicity of the process, as we can see from the
weights distribution of the events, fig. (5.1), allowed us to use a relatively small dataset,
even tough it has some statistical fluctuations. Using a small dataset allowed us to see
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Figure 5.1: Weights distributions of the training and validation datasets generated by
MadGraph for the s-channel of the process pp → e−e+ggdd̄ at

√
s = 13TeV . The

training dataset has been normalized to be equal to the validation dataset.
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that for a relatively simple process, the neural network can be trained with dataset of
about the same order of the samples of events that usually MadGraph has to unweight.

In the histograms of fig. (5.2) we can observe that the predictions are quite in
agreement with the true weights having an almost narrow peaks in correspondence of
w/s = 1. From the left most bin, we see the presence of some events (about 10) with a
w/s ≲ 0.1, while only few events have w/s ≳ 2. In the 2-d histograms of fig. (5.2) we
can notice these behaviours with the peak of events centered around w/s ≃ 1 and the
tail for small weights with an overestimation of the predictions.

In order to improve the precision for small weights and reduce the left-tail of the
distribution we tried to use a chi square loss function, but the resulting neural network
was too much sensible to small events, losing accuracy for the peak of events.

The histograms of fig. (5.2) is useful to understand the performances of the unweight-
ing efficiencies. In fact an overestimation of the large weights can lead to the definition
of a very large sthres, that is the value respect which the first unweighting is performed.
Such maximum value would correspond to a lowered first efficiency ε1. It is a similar case
for the second unweighting, that is performed over xthres, where x = w/s. A long tale to
the right of the peak in the histogram (5.2a), that is produced by a large underestimation
of the weights (independently of their order of magnitude), leads to a very large xthres

and so, to a lowered second efficiency. In the opposite case, a populated tail to the left
of the peak in the same plot, would imply the presence of a large number of events with
a small x value respect xthres, that is usually larger than 1. Thus, these events would
have a small probability to be accepted in the second unweigthing, contributing to a low-
ered second efficiency. For these reasons, it is important to obtain a narrow distribution
centered around 1 in the histograms (5.2).

The fig. (5.3, 5.4) shows the first and second unweighting efficiency of the model
discussed before. The 2 efficiencies have good performances with values between about
60% and 80% depending on the percentage of allowed overweight. Combining the two
efficiencies, we obtain the total efficiency that is, on average, larger than the MadGraph
one for this process (that is about 10%). Moving from the most left point of a curve
to the right points, we can notice that with the decreasing of the allowed overweight,
the maximum increases and the efficiency decreases, as expected from the acceptance-
rejection sampling method.

Each first unweighting is performed separately over the same initial sample. Starting
from the same sample, we produce a sample for each overweight parameter rs. These
parameters are used to find the corresponding sthres, which is used to perform the un-
weighting as described by the algorithm described in the section (3.2). The parameters
selected for this first test are rs = 20%, 10%, 5%, 1%. At the end of this step, we gener-
ate Nrs = 4 partially unweighted samples, where Nrs is the number of rs parameters to
test. Then, for each partially unweighted sample, the second unweighting is performed
separately for each overweight parameter rx, producing Nrs · Nrx unweighted samples.
For the second unweighting, we chose the overweight parameters rx equal to rs, so we
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(a)

(b)

Figure 5.2: Distribution of the surrogate weights s respect the true weights w for the
pp → tt̄ process. Fig. (5.2a) represents a one-dimensional histogram of the ratio x = w/s.
Fig. (5.2b) represents a two-dimensional histogram between the ratio x = w/s and w.
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Figure 5.3: Efficiencies of the first unweighting respect the maximum used to compute
the unweighting for the pp → tt̄ process. Each point corresponds to an unweighting per-
formed respect a different overweight parameter rs. From left to right, each point corre-
sponds respectively to 20%, 10%, 5%, 1% of allowed overweight in the first unweighting.
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Figure 5.4: Efficiencies of the second unweighting respect the maximum used to compute
the unweighting for the pp → tt̄ process. Each line corresponds to different unweightings
performed over the same dataset, which is produced by a given rs parameter. From left
to right, each point corresponds respectively to 20%, 10%, 5%, 1% of allowed overweight
in the second unweighting.
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generate 4 · 4 = 16 unweighted samples.
In the fig. (5.4) we can observe that the maxima xthres corresponding to the same

value of rx, are not perfectly coincident, but they are slightly shifted (especially in the
case of rs = 20%). This is due to the fact that the maxima xthres are computed after
the first unweighting and, so, the samples will depend also on rs. Thus, the value of
xthres and ε2 slightly depend also on the parameter rs. However, even if in this case
those differences are small, in the case of more complex processes those differences can
be relevant, in particularly, for small overweights parameters rx when the maxima are
more sensible to rare large outliers.

The choice of the rs, rx parameters determines the efficiencies ε1, ε2, but also the
number and the magnitude of the overweighted events. The distribution of overweighted
events defines the Kish factor, as described in eq. (3.2). The fig. (5.5) shows the
distribution of the correction weights w̃ of the unweighted events respect the parameters
rs and rx. N

ow
0 represents the number of accepted events with no overweight in the first

and in the second unweighting (w̃(1) = 1 and w̃(2) = 1); N ow
1 represents the number

of accepted events with overweight only in the first unweighting (w̃(1) > 1 and w̃(2) =
1); N ow

2 represents the number of accepted events with overweight only in the second
unweighting (w̃(1) = 1 and w̃(2) > 1); N ow

12 represents the number of accepted events with
overweight in both the first and the second unweighting (w̃(1) > 1 and w̃(2) > 1).

From these plots it is possible to observe that, for this process, the distribution of
the overweighted w̃(2) depends almost only on the overweight parameter of the second
unweighting rx. The overweight in the first unweighting is determined by the parameter
rs and it is almost completely reabsorbed in the second unweighting. We can see this
behavior from the fact that the number of events with an overweight in both the un-
weightings is much smaller than the number of of events with an overweight only in the
first unweighting and not in the second one. Thanks to this fact, also the Kish factor is
mainly determined by rx parameter, allowing us to have a larger overweight in the first
unweighting in respect to the second unweighting, in order to have a larger ε1 and a Kish
factor α closer to 1. Notice that the number of unit-weight in the final sample is given
by N ow

0 +N ow
1 , while the number of final overweighted events is given by N ow

2 +N ow
12 .

To evaluate the overall performance of the surrogate method we use the effective
gain factor to estimate the gain of time in respect to the classical method. The fig.
(5.6) illustrate the plots of the effective gain factor of the model discussed before. The
values contained in these plots are computed through the effective gain factor formula
(3.12) defined in the section (3.2.2). The first thing that we notice is that the surrogate
unweighting method has better result for larger allowed overweight rx, as expected. Even
tough the Kish factor is smaller for larger allowed overweight rx, the gain in efficiency
is dominant and produces a larger effective gain factor. In agreement with the almost
non-dependence of ε2 and α on rs, also, the effective gain factor is weakly sensible to the
allowed overweight in the first unweighting. We underline that for all the combinations
of rs and rx tested in this process, the surrogate unweighting method has always better
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(a) (b)

Figure 5.5: Comparison of the final event weights w̃ obtained by the unweighting of 4000
weighted events for the pp → tt̄ process. Fig. (5.5a) represents the unweightings with
different rx parameters respect the same rs = 20% parameter. Fig. (5.5b) represents the
unweightings with different rx parameters respect the same rs = 5% parameter.
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Figure 5.6: Effective gain factors achieved by different combinations of the rs and rx
parameters for the pp → tt̄ process. On the y-axis there is the allowed overweight in the
first unweighting rs and on the x-axis the allowed overweight in the second unweighting
rx. The magnitude of the effective gain factor is shown by the color-bar in the right.
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performances than the standard unweighting method. This is due to the high efficiencies
ε1 and ε2, which are always larger than standard efficiency εst.

The average time to unweight an event for the surrogate method, ⟨tnn⟩ is defined as:

⟨tnn⟩ =
tinit + tpred + tunwgt1 + tunwgt2

N
, (5.1)

where N is the initial number of weighted events, tinit is the time to initialize the inputs
of the sample for the neural network, tunwgt1 is the time to perform the first unweighting
and tunwgt2 is the time to perform the second unweighting. For this process, we measured
⟨tnn⟩ = 0.000043s. Notice that ⟨tnn⟩ slightly depends on the overweight parameters rs, rx,
due to the smaller size of the samples to unweight with the decreasing of the allowed
overweights rs, rx (and so with the decreasing of the efficiencies). However, we preferred
to use a fixed time ratio in order to avoid statistical fluctuations in the unweighting
time and neglecting those small differences of the order of ≲ 1%. Compared to the
standard unweighting, the surrogate method has an unweighting average time per even
about ⟨tMG⟩/⟨tnn⟩ ≃ 40 times faster for this process. For more complex processes we
expect smaller surrogate efficiencies, but a larger gain in time in respect to the standard
method.

In order to show the results independently of the ratio ⟨tnn⟩/⟨tst⟩, which can be
more easily improved in respect to the efficiencies, we define the plot in fig. (5.8). This
plot represents the minimum time performances, ⟨tst⟩/⟨tnn⟩, required to have a positive
effective gain factor. In particularly, the dots represent the time ratio required to obtain
a null gain, feff = 1, and the crosses represent the time ratio to obtain a large gain,
feff = 5. This means that each time performance above the corresponding dot (or cross)
has an effective gain factor larger than 1 (or larger than 5). Thus, if we look to two dots,
the lower one requires a lower time performance to achieve the same result.

We notice that, also time ratio lower 1 are allowed, which means that the surrogate
efficiencies are so better respect the standard efficiency that also for ⟨tst⟩ < ⟨tnn⟩, we
could have a positive effective gain factor. Moreover, each point has a color that indicates
the Kish factor for those parameters. This allows us to select the best models in respect
the efficiencies performances and the Kish factor in the same plot. We can see that, in
agreement with the previous plots, both the efficiencies performance and the Kish factor
depend mainly on the parameter rx of the allowed overweight in the second unweighting.

5.2 Results on e−e+ggdd̄

The second process that we studied is the scattering pp → e−e+ggdd̄ mediated by two
gluons. For the generation of the events we used the default phase-space cuts of Mad-
Graph. We used the integration channel corresponding to the Feynman diagram in fig.
(4.3) to optimize the neural network performance in terms of timing and accuracy.
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Figure 5.7: Table containing the results of the unweighting in respect to all the combi-
nation of the overweight parameters rs, rx for the pp → tt̄ process.
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Figure 5.8: Comparison of the minimum ratio ⟨tst⟩/⟨tnn⟩ between the ratios of the stan-
dard method and the surrogate method to achieve a given effective gain factor for the
pp → tt̄ process. Each column (composed by a vertical pair of a dot and a cross) cor-
responds to a given combination between rs (above) and rx (below). The color of each
combination represents the Kish factor α associated to the corresponding final events
sample of that combination.
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The higher multiplicity of this process, respect to the previous one, implies a longer
evaluation of the cross-section and a more difficult unweighting. These additional dif-
ficulties cause a longer average time to unweight an event and a lower unweighting
efficiency. In particular, for this channel, we measured an average time to unweight an
event ⟨tst⟩ = 0.00248s and an unweighting efficiency εst = 1.4%. These values has been
measured unweighting a sample of 16000 events, which is larger than the sample of the
previous process (4000) due to the fact that usually for more complex processes Mad-
Graph requires a larger sample to achieve a good accuracy in the cross-section evaluation.
As before, we observed a decrease of the average unweighting time per event with the
increase of the sample size to unweight.

As we said before, the tt̄ process is relatively simple and also for the neural network
is relatively simple to learn the prediction of the weights. This allowed us to use a
quite small dataset to train the neural network with only 16000 events. Due to the
higher complexity of this process and to the larger number of inputs, the neural network
required a much larger dataset for the training respect to the previous process. For
the training and the validation of the neural network we used 2 datasets composed
respectively by 5000000 and 2000000 weighted events. For this process we used also a
test dataset of 1000000 events and the results showed below are the results obtained
over this test dataset. In fig. (5.9) it is shown the distributions of the training and
validation datasets described above. We can notice that the weights span several order
of magnitude between them, up to 25.

In the histograms of fig. (5.10) we can observe the distributions of the ratio of the
true weights respect the predictions w/s. They present a peak centered around w/s = 1,
showing that about half of the events have a precise prediction with s ≃ w. However,
fig. (5.10a) shows quite long tails for the distribution of w/s, reaching respectively
about 10−7 and 103 for the predictions with the largest errors. In 2-d histogram of fig.
(5.10b) we observe that the peak of events corresponds to an almost flat region centered
around w/s = 1, in agreement with the 1-d histogram. We can notice also that the
neural network achieved the best accuracy for the most populated region of training
sample, w ∼ 10−7, as shown in fig. (5.9). In the less populated region, we can observe
that the predictions tend to overestimate the events with w ≲ 10−7, while they tend to
underestimate the events with w ≳ 10−7.

The fig. (5.11) the distributions of the partially unweighted samples considering also
their overweight w̃(1). These samples are obtained from the first unweighting, using
different allowed overweight parameters rs. In particular, we can notice that decreasing
rs, also the number of accepted events decreases, due to the increase of the maximum
sthres. These samples produce different maxima xthres for the second unweighting, which
so slightly affects also the efficiency of the second unweighting.

In the fig. (5.12, 5.13), the efficiencies of the first and second unweighting are rep-
resented. The efficiencies for the first unweighting are included between about 2% and
20%, while for the second one are included between 1% and 9%.
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Figure 5.9: Weights distributions of the training and validation datasets generated by
MadGraph for the channel G128 of the process pp → e−e+ggdd̄ at

√
s = 13TeV . The

training dataset has been normalized to be equal to the validation dataset.
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(a)

(b)

Figure 5.10: Distribution of the surrogate weights s respect the true weights w for the
pp → e−e+ggdd̄ process. Fig. (5.10a) represents a one-dimensional histogram of the
ratio x = w/s. Fig. (5.10b) represents a two-dimensional histogram between the ratio
x = w/s and w.
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Figure 5.11: Distribution of the accepted events by the first unweighting respect the
quantity w̃(1) · w/s for the pp → e−e+ggdd̄ process. Each sample is obtained by a
different overweight parameter for the first unweighting rs. The dotted lines represent
the xthres corresponding to each sample using an overweight parameter for the second
unweighting rx = 2%.
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Figure 5.12: Efficiencies of the first unweighting respect the maximum used to com-
pute the unweighting for the pp → e−e+ggdd̄ process. Each point corresponds to an
unweighting performed respect a different overweight parameter rs. From left to right,
each point corresponds respectively to 10%, 1%, 0.1%, 0.01% of allowed overweight in the
first unweighting.

51



Figure 5.13: Efficiencies of the second unweighting respect the maximum used to com-
pute the unweighting for the pp → e−e+ggdd̄ process. Each line corresponds to different
unweightings performed over the same dataset, which is produced by a given rs parame-
ter. From left to right, each point corresponds respectively to 4%, 3%, 2%, 1% of allowed
overweight in the second unweighting.
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Comparing these results, with the efficiencies of the previous process, we observe
a drop in the performance of the first and second unweighting. Some causes of this
behaviour are describe here. First of all, we chose different overweight parameters for
this process. We required a lower overweight in both the two unweightings, producing a
lower efficiency. The choice of smaller overweight parameters rs, rx is motivated by the
distributions of s and w/s, which now span several orders of magnitude and, so, larger
remaining overweights w̃(1), w̃ (defined respectively in eq. (3.4) and (3.5)) are produced.
The presence of large overweights w̃ tends to drastically decreasing the Kish factor, as
we can notice from the table (5.16). In fact, comparing this table with the previous table
(5.7), we can observe that the unweighting of the second process is much more sensible
to the overweight, producing lower Kish factor α. Secondly, the first unweighting is
performed over a sample which have weights which span several orders of magnitude
between them. Thus, the acceptance-rejection sampling, described in eq. (3.4), will
provide for the smaller weights a probability to be accepted almost null, lowering the
first efficiency. Lastly, in a similar way, also the second unweighting is performed over a
sample with a wide distribution, as it is shown in fig. (5.11), producing a small second
efficiency.

In the case of ε2, we observe that due to the presence of events with a large x = w/s
ratio, the definition of the maximum xthres is really sensible to the second overweight
parameters rx.

The fig. (5.14) show the distribution of overweighted events. As discussed before, we
observe that to achieve Kish factor α ≃ 1 we need to require small allowed overweight
rx ≲ 1%. Moreover, as in the first process, the overweighted events of the first process
are almost reabsorbed all final samples with rs ≲ 1. For this process we can observe a
larger dependence of the Kish factor on the first unweighting parameter rs.

The fig. (5.15) shows the effective gain factor of the samples obtained by the different
combinations of rs and rx. The first difference, with the previous process, that we can
notice is that here the effective gain factor are not always positive. In fact, for small
allowed overweight parameter rs and rx we produce samples with an effective gain factor
close or lower than one, implying an almost null or a negative gain in time performances
of the surrogate method respect the standard one. This behaviour is caused by the
large maxima xthres for small parameters rx, which produce small second unweighting
efficiencies ε2. As discussed in section 3.2, to produce a positive gain in performance,
one condition is that the second efficiency must be larger than the standard efficiency,
ε2 > εst. However in fig. (5.13), we can observe that for rx ≲ 1%, the second unweighting
efficiency is close to the standard one, εst = 1.4%.

For this process we measured ⟨tnn⟩ = 0.00003s. Compared to the standard unweight-
ing, the surrogate method has an unweighting average time per even about ⟨tMG⟩/⟨tnn⟩ ≃
80 times faster for this process. ⟨tnn⟩ has been measured unweighting a sample of 16000
events, as for ⟨tMG⟩. However we observed an increase of the ratio ⟨tMG⟩/⟨tnn⟩ with the
increase of the sample size.
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(a) (b)

Figure 5.14: Comparison of the final event weights w̃ obtained by the unweighting of
2000000 weighted events for the pp → e−e+ggdd̄ process. Fig. (??) represents the
unweightings with different rx parameters respect the same rs = 10% parameter. Fig.
(??) represents the unweightings with different rx parameters respect the same rs = 1%
parameter.
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Figure 5.15: Effective gain factors achieved by different combinations of the rs and
rx parameters for the pp → e−e+ggdd̄ process. On the y-axis there is the allowed
overweight in the first unweighting rs and on the x-axis the allowed overweight in the
second unweighting rx. The magnitude of the effective gain factor is shown by the color-
bar in the right.
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In the fig. (5.16) we see the the summary of the results of this process. For example,
in the case of (rs = 1%, rx = 1%), we obtain a quite good result with high Fish factor,
α = 0.988, and a positive effective gain factor, feff = 1.471. While if we allow smaller
Kish factor, we achieve larger feff.

In the fig. (5.17) we see that the minimum time ratio required by this process to
achieve a positive effective gain factor is larger than the previous one in fig. (5.8).
Similarly to the previous plots, these worse performances are mainly due to the lower
efficiencies of the second process. Moreover we observe that in this case it is generally
not possible to reach large effective gain factor, feff > 5, just decreasing the average
unweighting time per event of the surrogate method, or it would require too large time
ratios, like ⟨tMG⟩/⟨tnn⟩ > 104.

We have noticed that the value of the second reduced maximum xmax increases with
the sample size and this tends to decrease the efficiency of the second unweighting. This
behaviour compromises the gain of the surrogate method for large sample size. To show
this behaviour we can have a look to fig. (5.18). This table represents the summary
of the results achieved by the same neural network model used to achieved the results
above, but in fig. (5.18) it is used to unweight a sample of 100000 events. Comparing
this table, with the one obtained using a sample of 1 million of events in fig. (5.16), we
observe that with a smaller dataset, the surrogate method is able to reach much better
results, with a Kish factor close to 1 and an effective gain factor of the order of 4. This
likely points to an issue of the method that the ratio x between the surrogates and the
real weight might not be bounded or achieve it’s maximum in the tail of the distribution
making difficult to have a correct estimate of that maximum.

5.3 Comparison to the original algorithm

In this subsection, we will compare our work to a similar work [4], done by K. Danziger, T.
Janßen, S. Schumann and F. Siegert. Although, the two works have a similar algorithm,
they present some major differences which we are going to discuss.

The first major difference is that the study of the paper [4] regards the event genera-
tion at LHC using AMEGIC, that is a part of the SHERPA package [19]. In particular,
the SHERPA framework contains modules which automatically construct both the tran-
sition matrix elements and appropriate multi-channel integrators for a generic tree-level
process. AMEGIC is one of the two built-in matrix element generators of SHERPA.

About the algorithm, there are important differences in the unweightings. Firstly
they tested 2 different maxima functions, which one is the maximum quantile reduction,
but with a fixed overweight contribution, such that overweighted events have a relative
contribution of 1‰ to the inclusive cross-section. In our case we only used the maximum
quantile reduction function because it has a better control over the final overweight and
we tested it for several overweight parameters, paying attention to avoid results with a
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Figure 5.16: Table containing the results of the unweighting respect all the combination
of the overweight parameters rs, rx for the pp → e−e+ggdd̄ process.
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Figure 5.17: Comparison of the minimum ratio ⟨tst⟩/⟨tnn⟩ between the ratios of the
standard method and the surrogate method to achieve a given effective gain factor for
the pp → e−e+ggdd̄ process. Each column (composed by a vertical pair of a dot and a
cross) corresponds to a given combination between rs (above) and rx (below). The color
of each combination represents the Kish factor α associated to the corresponding final
events sample of that combination.
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Figure 5.18: Table containing the results of the unweighting respect all the combination
of the overweight parameters rs, rx for the pp → e−e+ggdd̄ process. These results have
been obtained over a sample of size 100000 (10 times smaller than the sample used
above).
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final Kish factor lower than about 0.98.
An other relevant difference regards the first unweighting, they perform it respect

wthres, suggesting that is the reduced maximum of the real weights of the events wi.
However, the first unweighting is performed over the surrogate weights si, so it seems
to be more suitable to define the maximum respect the same surrogate weights si. A
maximum defined over a different set of events, could lead to large overweights, in par-
ticular if sthres = max(si) > wthres = max(wi). Moreover, the overweights produced in
this way could be more difficult to control due to the non-correspondence between the
allowed overweight parameter rs in wi (which defines wthres), and the resulting overweight
contribution in the si sample.

About the second unweighting, they define the maximum xthres in a similar way to
the first unweighting, but in this case each event xi is weighted by the surrogate weight
si. Given N1 events, with parameters xi sorted such that xi ≤ xi+1;∀i, they defined the
reduced maximum xthres such that:

xthres = min

(
xj

∣∣∣∣∣
N1∑

i=j+1

xi · s1i ≤ rx ·
N1∑
i=1

xi · s1i

)
, (5.2)

where rx is the fraction of the contribution of the overweighted events. Then, they per-
form the second unweighting over the parameter xi. Instead, we preferred to implement
the second unweighting in order to partially compensate for the first unweighting. As
explained in section (3.2.2), we defined xthres in eq. (3.7) in order to include also the
remaining overweight w̃(1) of the first unweighting and, then, perform the second un-
weighting over the quantity xi · w̃(1)

i . In this way, if the first overweight w̃
(1)
i does not

contribute to the overweight in the second unweighting, the first overweight is reabsorbed.
Our approach in the second unweighting allows us to consider approximately only

one final overweight source and so, to consider the final overweight equal to the second
overweight w̃ = w̃(2). In the other study, they have two separate overweight sources and,
so, their final overweight for an unweighted event is given by:

w̃i = w̃
(1)
i · w̃(2)

i = max

(
1,

si
wthres

)
·max

(
1,

xi

xthres

)
. (5.3)

This different approach implies that an initial overweight in the first unweighting, w̃
(1)
i ,

produces always an overweight in the final remaining weight w̃i, due to the fact that
w̃(2) ≥ 1.

About the hyper-parameters used in the neural network, they used the parameters
described in the table (5.1). The only differences regard the learning rate, the batch
size and the output activation function. About this last one, we prefer to use a linear
output activation function in order to be able to predict also negative output. In fact,
if we standardize the output with mean 0 and standard deviation 1, we obtain negative
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NN hyper-parameter value

hidden layers 4
nodes per layer

activation function Relu
output activation function linear

loss function mse
optimizer ADAM

learning rate 0.001
batch size 1000

Table 5.1: Summary of the hyper-parameters used in the neural network model of the
work [4] for the pp → e−e+ggdd̄ process.

output even if we have only positive weight. We underline that we don’t predict directly
the weight of the events.

In the study presented in the paper [4], the number of inputs used for the neural
network is quite larger than the minimum number required. As we explained in section
(4.2), the number of degree for this process is equal to 16, but it can be easily reduced to
15. The study in question used 20 inputs for the neural networks, which are: the momenta
along the beam axis of the initial particles and the three-momentum components of the
final state particles (assuming the initial state momenta of partonic scattering events to
be collinear with the incoming beams).

We defined a second algorithm, similar to the one presented in [4], and we applied
this algorithm to the unweighting of the same sample used for the pp → e−e+ggdd̄
process to compare the results of the 2 different algorithms. The second algorithm that
we defined differs from the proposed one in [4] for the definition of xthres, which in our
case is defined respect the sample to unweight (and not in an other sample like in the
other work). Moreover it differs also for the fact that we use only the maximum quantile
reduction function. In the following part we present the results that we obtained with
this different algorithm on the same dataset used in 5.2.

Comparing the fig. (5.19) with the fig (5.10), we see that the second approach has
a better accuracy for the rare events with w ≲ 10−12. However, similarly to the first
algorithm, it tends to overestimate the events with w ≲ 10−7 and to underestimate the
events with 10−12 ≳ w ≳ 10−7.

In fig. (5.20), we observe that the maximum used for the first unweighting, wthres in
this case, it is about one or 2 order larger respect the maximum sthres defined in the first
algorithm. This explains the slightly lower efficiency of this second algorithm compared
to the first one in fig. (5.12). However we underline that this discrepancy in the definition
of the maxima should be at least partially caused by the small bias that we observed in
the predictions.
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(a)

(b)

Figure 5.19: Distribution of the surrogate weights s respect the true weights w for the
pp → e−e+ggdd̄ process obtained with the algorithm presented in [4]. Fig. (5.19a)
represents a one-dimensional histogram of the ratio x = w/s. Fig. (5.19b) represents a
two-dimensional histogram between the ratio x = w/s and w.
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Figure 5.20: Efficiencies of the first unweighting respect the maximum used to com-
pute the unweighting for the pp → e−e+ggdd̄ process obtained with the algorithm pre-
sented in [4]. Each point corresponds to an unweighting performed respect a different
overweight parameter rs. From left to right, each point corresponds respectively to
10%, 1%, 0.1%, 0.01% of allowed overweight in the first unweighting.
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In fig. (5.21) we see that the ε2 tends to be larger using the second algorithm respect
the first one in fig. (5.13). In fact, the definition of xthres in eq. (5.2) allows to define a
maximum on the parameter xi weighted using the the prediction weight si. Thanks to
this, the events with a larger weight (and usually a larger accuracy) will have a larger
relevance on the definition of the maximum.

Figure 5.21: Efficiencies of the second unweighting respect the maximum used to compute
the unweighting for the pp → e−e+ggdd̄ process obtained with the algorithm presented
in [4]. Each line corresponds to different unweightings performed over the same dataset,
which is produced by a given rs parameter. From left to right, each point corresponds
respectively to 4%, 3%, 2%, 1% of allowed overweight in the second unweighting.

As discussed before, in fig. (5.22) we see that there is no re-absorption of the over-
weighted events of the first unweighting.

In fig. (5.23) we can notice that due to the large value of wthres (compared to sthres),
the effective gain factor with a parameter rs ≲ 0.1% is always lower than 1. In the case
of rs = 10%, we observe a large effective gain factor for the second algorithm, while in
the case of rs = 1%, we observe a large effective gain factor for the first algorithm. To
check these results it is possible to see the fig. (5.24).
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(a) (b)

Figure 5.22: Comparison of the final event weights w̃ obtained by the unweighting of
2000000 weighted events for the pp → e−e+ggdd̄ process obtained with the algorithm
presented in [4]. Fig. (5.22a) represents the unweightings with different rx parameters
respect the same rs = 10% parameter. Fig. (5.22b) represents the unweightings with
different rx parameters respect the same rs = 1% parameter.
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Figure 5.23: Effective gain factors achieved by different combinations of the rs and rx
parameters for the pp → e−e+ggdd̄ process obtained with the algorithm presented in [4].
On the y-axis there is the allowed overweight in the first unweighting rs and on the x-axis
the allowed overweight in the second unweighting rx. The magnitude of the effective gain
factor is shown by the color-bar in the right.
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Figure 5.24: Table containing the results of the unweighting respect all the combination
of the overweight parameters rs, rx for the pp → e−e+ggdd̄ process obtained with the
algorithm presented in [4].
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Figure 5.25: Comparison of the minimum ratio ⟨tst⟩/⟨tnn⟩ between the ratios of the
standard method and the surrogate method to achieve a given effective gain factor for
the pp → e−e+ggdd̄ process obtained with the algorithm presented in [4]. Each column
(composed by a vertical pair of a dot and a cross) corresponds to a given combination
between rs (above) and rx (below). The color of each combination represents the Kish
factor α associated to the corresponding final events sample of that combination.
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Chapter 6

Conclusions

In this work we presented an alternative unweighting algorithm which could substitute
the standard one in order to decrease the time and computational cost of the unweighting
step during the generation of events. This algorithm takes advantage of a neural network
surrogate which well-approximate the weight of the events and its evaluation is much
cheaper than the evaluation of the true weights. The neural network surrogate is used
in a first unweighting step, where the initial sample is unweighted with an acceptance-
rejection sampling respect the predicted weights. After this step, the true weights are
evaluated for all the accepted events. The true weights are used to perform a second
unweighting step in order to address the error committed by the neural network. In order
to increase the efficiencies of the two unweighting steps, we defined a reduced maximum
with the maximum quantile reduction function. The definition of a reduced maximum
allowed also to protect the maxima against rare large outliers, which could heavily affect
them. However, the definition of a reduced maximum implied a partial unweighting
of the events, with the presence of some overweighted events. The overweight of the
overall final sample has been evaluated through the Kish factor. To avoid final samples
with large overweight we tested different overweight parameters combination, in order to
choose only those parameters with a relatively good Kish factor for a given process. To
obtain a more efficient algorithm than the standard one, we need a fast surrogate neural
network and good predictions of the true weights. To measure the gain in timing of the
surrogate algorithm respect the standard algorithm we used the effective gain factor,
that is defined as the ratio between the total times spent to perform the unweight.

In this work, we presented two processes. For the first process (a simple top pair
production), we have seen that the surrogate method reached high efficiencies in both
the unweighting efficiencies and the in speed of the surrogate unweighting (about 40
times faster than the standard unweighting), give a resulting effective gain factor about
7. Moreover, this result has been obtained with a Kish factor very close or equal to 1.
This means that for simple processes, like pp → tt̄, the surrogate unweighting method
can be up to about 7 times faster than the standard unweighting, without the need to
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compensate for overweighted events. We underline that this result has been achieved
without a detailed study of the optimization of the process. Thus, it could be possible
to further improve the results just with a deeper study of the process. For example, it
would be interesting to properly study the input of the neural network, in order to find
the optimal number of inputs and which parameter pass to the neural network in order
to help the learning of the neural network. It could be done also a deeper study of the
model selection, in order to find the optimal neural network architecture.

For more complex processes, like the second process that we presented, pp → e−e+ggdd̄,
we observed that the training of the neural network requires a large dataset and that for
the neural network it is more difficult to learn the weight of the events, in particular for
less common events. In fact, the ratio between the true weights and the predicted one
can span several orders of magnitude. For this reason, the unweighting is much more
sensible to outlier events and this can affect the final result. Thus, in the case of complex
events, we need to select more carefully the overweight parameters.

We underline that we observed a bias in the prediction of the logarithm of the weight
that was absent in the prediction of the weight. The prediction of the neural network are
not heavily affected by this bias and it should be canceled during the second unweighting,
when we consider the error of the predictions respect their true value. However, this bias
could have affected the result of the second algorithm, the one similar to [4], in section
(5.3).

We observed that with the increase of the sample size of the events to unweight, for
the surrogate method it is more difficult to define a reduced maximum for the second
unweighting which can provide a good effective gain factor. While for sample size of
the order of 100000 events, it is easier for the surrogate method to obtain Kish factor
close to 1 and effective gain factor about 3 or larger. On the other side, the average
time to unweight an event decrease with the increase of the sample size. As we can see
from this example, the definition of the maximum of the second unweighting represents
a serious problem for the performance of the algorithm presented in this work. This
maximum tends to be affected by outlier events, in particularly for large sample, affecting
the effective gain factor, and it is problematic for large simulations, where we need to
unweight a very large sample of events. A solution could be to use another the definition
of the maximum of the second unweighting, such that it would be not heavily penalized
by outlier events. Otherwise, another solution, or a complementary one, could be to
avoid the events which would heavily penalize the maximum. This can be achieved by
using a particular loss which tends to penalize more the under-estimations of the true
weight in respect to the over-estimations or using a dedicated trick for the tail. This
trick could be, for example, to fix a minimum value for the prediction and all the values
of the surrogates lower than such threshold would use that value (s = max(s, smin)).
In this way, we would be sure to correctly estimate the maximum x = w/s ratio for a
relatively small sample without being impacted by the tail, which will be over-populated
by construction.
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About the comparison between the two surrogate unweighting algorithm, the one
proposed in this work and the one proposed in the paper [4], we observed that our
algorithm has a slightly better control over the overweight of the final sample. While
the other algorithm presents a better effective gain factor, sometimes almost 2 time
larger. This better result is mainly due to the definition of the maximum for the second
unweighting xthres. In fact, the maximum proposed in [4] allows defining the maximum
avoiding the effect of outlier events and so obtain a smaller maximum, which guarantees
a higher efficiency in the second unweighting.

This work could be extended with the generalization to non-positive event weights,
which would allow also the study of higher-order perturbative calculations. In fact, neg-
ative event weights are introduced by definition for this type of calculation based on
local subtractions methods like Catani–Seymour [31]. To extend the presented algo-
rithm to non-negative weights, we should generalize the output, avoiding predicting the
logarithm of the weight of the events. However, this should result in worse performance
of the algorithm, thus an optimization of the algorithm and of the neural network would
be required. In order to keep the advantages of reducing the order of magnitudes in the
weights while preserving the sign, a suitable preprocessing for the output would be the
hyperbolic arcsine, instead of the logarithm.

Another interesting extension of this work would be the substitution of the input
used in this algorithm with the random number used in event generation to produce the
phase-space points. This approach would have the advantage to avoid the computation
of the phase-space points for the rejected events by the first unweighting. Moreover, this
approach could help the neural network training to learn directly the useful information
needed for the evaluation of the surrogate weight. However, the computation of the
phase-space points is not computational expensive as the evaluation of the weight of the
events, so this would have a smaller impact on the effective gain factor.
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