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ABSTRACT 

Denoising Diffusion models are gaining growing popularity in the field of generative modeling 

for several reasons. These reasons include the straightforward and stable training, the outstanding 

generative quality, and the robust probabilistic foundation, picture synthesis, video production, 

and molecular design are all examples of what this tool can do. This thesis explores denoising 

diffusion models, which are statistical models that aim to remove noise from an image while 

preserving its important features. The study focuses on developing new techniques for improving 

the performance of denoising diffusion models, such as incorporating prior information about the 

image structure, designing more efficient numerical algorithms for solving the models, and 

evaluating the effectiveness of the denoising algorithms using various quality metrics. 

The research also investigates the application of denoising diffusion models in various image 

processing tasks, such as image restoration, feature extraction, and segmentation. The performance 

of the proposed methods is evaluated on a variety of benchmark datasets, and the results 

demonstrate significant improvements in denoising accuracy compared to existing state-of-the-art 

techniques. 

Overall, this thesis provides valuable insights into the development and application of denoising 

diffusion models, which have important applications in many fields, including medical imaging, 

computer vision, and remote sensing. The proposed techniques and algorithms can potentially lead 

to significant advances in image processing and analysis, with practical implications for improving 

the quality and reliability of image-based applications. 
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Chapter 1 

INTRODUCTION 

Diffusion models are a new class of state-of-the-art generative models that are capable of 

producing a wide variety of high-resolution images. They have already received a significant 

amount of attention ever since Open AI, Nvidia, and Google were successful in training large-

scale models. GLIDE [100], DALLE-2[112], Imagen[120], and the full open-source stable 

diffusion are some examples of architectures that are based on diffusion models. They have 

defeated the long-standing dominance of generative adversarial networks (GANs) in the difficult 

task of image synthesis and have also demonstrated potential in a wide variety of fields, ranging 

from computer science, natural language processing, temporal data modeling, multi-modal 

modeling, and robust machine learning have been applied to interdisciplinary applications in fields 

such as computational chemistry and medical image reconstruction. 

In this article, we begin by explaining the foundations of diffusion models (Chapter 2). We do so 

by offering a concise but self-contained introduction to the three predominant formulations: 

denoising diffusion probabilistic models (DDPMs), score-based generative models, and stochastic 

differential equations (Score SDEs). To generate new data samples, each of these methods relies 

on a similar principle: first, data is subjected to increasing levels of random noise (a process known 

as "diffusion"), and then, the noise is gradually reduced. We explain how these three models are 

connected and how they can be reduced to one another, as well as clarify how they work according 

to the same fundamental principle of diffusion. 

Next, we will present a taxonomy of recent research that maps out the field of diffusion models, 

classifying it into three key areas: efficient sampling (Chapter 3), improved likelihood estimation 

(Chapter 4), and methods for handling data with special structures (Chapter 5), such as relational 

data, data with permutational/rotational invariance, and data residing on manifolds. Each of these 

key areas will be broken down into subcategories that will be described in the following We 

proceed with our investigation of the models by subdividing each category into even more specific 

subcategories, as shown in Figure 1. 
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Fig. 1. The chapters titled "Typology of Diffusion Model Variants" (which can be found in Chapters 3 to5), "Links 

with Other Generative Models" (which can be found in Chapter 6), "Applications of Diffusion Models" (which can 

be found in Chapter 7), and "(in Chapter 8). 

 

 

 

Fig. 2. Diffusion models smoothly perturb data by adding noise, then reverse this process to generate new data from 

noise. Each denoising step in the reverse process typically requires estimating the score function (see the illustrative 

figure on the right), which is a gradient pointing to the directions of data with higher likelihood and less noise. 

 

In addition, we discuss the connections of diffusion models to other deep generative models 

(Chapter 6), such as variational autoencoders (VAEs), generative adversarial networks (GANs), 

normalizing flows, autoregressive models and energy-based models (EBMs). We have the 

opportunity to achieve an even higher level of performance if they combine these models with 

diffusion models. 

 After that, our survey examines six major categories of applications to which 

diffusion models have been applied in the previous research (Chapter 7): computer vision, 

natural language process, temporal data modeling, multi-modal learning, robust learning, 

Bioinformatics and interdisciplinary applications. To accomplish each task, we first define 

it, then explain how diffusion models can be used to solve the problem, and finally 

summarize the work that has been done previously that is pertinent to the problem. In the 

final Chapters of this paper (Chapter 8 and 9), we provide an overview of potential future 

directions for this emerging field of research. 
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Chapter 2 

The concept and foundation of diffusion models 

The family of probabilistic generative models known as diffusion models progressively destroys 

data by inserting noise, then learns to reverse this process to generate samples. In Figure 2, we 

demonstrate the conceptual underpinnings of diffusion models. Denoising diffusion probabilistic 

models (DDPMs) [59, 99], score-based generative models (SGMs) [132, 133], and stochastic 

differential equations (Score SDEs) [131, 135] are the three predominant formulations that are 

used in the majority of the research that is being done on diffusion models today. In this Chapter, 

we provide an introduction to these three formulations that stand alone, while at the same time 

explaining how they are connected. 

  

2.1. Denoising Diffusion Probabilistic Models (DDPMs) 

Denoising Diffusion Probabilistic Models (DDPM) is a family of generative models for 

image and video generation. It was introduced in a 2021 paper by Ho et al. called "Denoising 

Diffusion Probabilistic Models"[59]. DDPM models are based on the concept of diffusion, which 

is a process where noise is added to an image or signal to create a sequence of noisy images. The 

goal of DDPM is to denoise this sequence of images to obtain a high-quality image. 

DDPM models are trained using a denoising score-matching algorithm. This algorithm 

estimates the log-likelihood of the data distribution (for example, a standard Gaussian) by training 

a neural network to predict the score, which is the gradient of the log-density function. The score 

function is used to define a diffusion process, where the image is gradually transformed by adding 

noise to it. 

DDPM models use the reverse diffusion process during inference to denoise the noisy 

images. Starting from a noisy image, the model applies a series of denoising steps to gradually 

remove the noise and obtain a high-quality image. The reverse diffusion process is performed 

using a Markov chain Monte Carlo (MCMC) sampling algorithm. 

Forward diffusion process: Let's say we have a data point that was sampled from a real data 

distribution 𝒙𝟎 ∼  𝒒(𝒙). Then, let's say we want to define a forward diffusion process in which 

we take that sample and gradually add a small amount of Gaussian noise to it over the course of 

𝑻steps. This will result in a series of noisy samples 𝒙𝟏,… , 𝒙𝑻. The step sizes are determined by a 

variance schedule that looks like this: {𝛽𝑡 ∈ (0,1)}𝑡=1
𝑇 . 

𝑞(𝐱𝑡 ∣ 𝐱𝑡−1) = 𝒩(𝐱𝑡; √1 − 𝛽𝑡𝐱𝑡−1, 𝛽𝑡𝐈)𝑞(𝐱1:𝑇 ∣ 𝐱0) =∏ 

𝑇

𝑡=1

𝑞(𝐱𝑡 ∣ 𝐱𝑡−1) 

As the size of the step increases, the distinct characteristics of the data sample x0 begin to disappear 

gradually. At some point in the future, when T → ∞ xT, the distribution will be equivalent to an 

isotropic Gaussian. 
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Fig. 3. The Markov chain of forward (reverse) diffusion process of generating a sample by slowly adding      

(removing) noise. (Image source: Ho et al. 2020 with a few additional annotations). [59] 

The fact that we can take a sample 𝒙𝒕 at any arbitrary time step t in a closed form by using the 

reparameterization trick is a useful feature of the process described above. Let 𝛼𝑡 = 1 − 𝛽𝑡 and 

�̅�𝑡 = ∏  𝑡
𝑖=1 𝛼𝑖: 

𝐱𝑡     = √𝛼𝑡𝐱𝑡−1 +√1 − 𝛼𝑡𝝐𝑡−1 ;  where 𝝐𝑡−1, 𝝐𝑡−2, ⋯ ∼ 𝒩(𝟎, 𝐈)

    = √𝛼𝑡𝛼𝑡−1𝐱𝑡−2 +√1 − 𝛼𝑡𝛼𝑡−1𝝐
¯

𝑡−2;  where 𝝐
¯

𝑡−2 merges two Gaussians (∗).

    = ⋯

    = √�̅�𝑡𝐱0 +√1 − �̅�𝑡𝜖

𝑞(𝐱𝑡 ∣ 𝐱0)     = 𝒩(𝐱𝑡; √�̅�𝑡𝐱0, (1 − �̅�𝑡)𝐈)

(*) Recall that when we merge two Gaussians with different variance, 𝒩(𝟎, 𝜎1
2𝐈) and 𝒩(𝟎, 𝜎2

2𝐈), 

the new distribution is 𝒩(𝟎, (𝜎1
2 + 𝜎2

2)𝐈). Here the merged standard deviation is 

√(1 − 𝛼𝑡) + 𝛼𝑡(1 − 𝛼𝑡−1) = √1 − 𝛼𝑡𝛼𝑡−1. 

In most cases, we are able to make use of a more significant update step when the sample becomes 

more noisy, so 𝛽1 < 𝛽2 < ⋯ < 𝛽𝑇 and therefore �̅�1 > ⋯ > �̅�𝑇. 

Connection with stochastic gradient Langevin dynamics: A concept from the field of physics 

known as Langevin dynamics was developed for the purpose of statistically modeling molecular 

systems. Stochastic gradient Langevin dynamics is a technique that, when combined with 

stochastic gradient descent, can produce samples from a probability density 𝑝(𝐱) using only the 

gradients ∇𝐱log 𝑝(𝐱) in a Markov chain of updates. 

𝐱𝑡 = 𝐱𝑡−1 +
𝛿

2
∇𝐱 log 𝑝(𝐱𝑡−1) + √𝛿𝝐𝑡, where 𝝐𝑡 ∼ 𝒩(𝟎, 𝐈) 

where 𝛅 is the step size. When 𝑻 → ∞, 𝝐 → 𝟎, 𝐱𝑻 equals to the true probability density 𝑝(𝐱). 

Stochastic gradient Langevin dynamics, in comparison to standard SGD, injects Gaussian noise 

into the parameter updates in order to avoid collapses into local minima. 

 

Reverse diffusion process: If we are able to reverse the process described above and take a sample 

from 𝑞(𝐱𝑡−1 ∣ 𝐱𝑡) we will be able to recreate the true sample that was generated from an input of 



6 
 

Gaussian noise, which is denoted by 𝐱𝑇 ∼ 𝒩(𝟎, 𝐈). It is important to keep in mind that if t is 

sufficiently small, then 𝑞(𝐱𝑡−1 ∣ 𝐱𝑡) will also be Gaussian. Because it needs to use the entire 

dataset, unfortunately, we are unable to easily estimate 𝑞(𝐱𝑡−1 ∣ 𝐱𝑡). As a result, in order to run 

the reverse diffusion process, we need to learn a model 𝒑𝜽 that can approximate these conditional 

probabilities. 

𝑝𝜃(𝐱0:𝑇) = 𝑝(𝐱𝑇)∏  

𝑇

𝑡=1

𝑝𝜃(𝐱𝑡−1 ∣ 𝐱𝑡)𝑝𝜃(𝐱𝑡−1 ∣ 𝐱𝑡) = 𝒩(𝐱𝑡−1; 𝝁𝜃(𝐱𝑡, 𝑡), 𝚺𝜃(𝐱𝑡, 𝑡)) 

 

 

Fig. 4. An example of training a diffusion model for modeling a 2D Swiss roll data. (Image source: Sohl- 

Dickstein et al., 2015). [128] 

It is worthy of note that the reverse conditional probability can be solved when it is conditioned 

on 𝐱0: 

𝑞(𝐱𝑡−1 ∣ 𝐱𝑡, 𝐱0) = 𝒩(𝐱𝑡−1; �̃�(𝐱𝑡, 𝐱0), 𝛽𝑡𝐈). 

Using Bayes' rule, we have: 
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𝑞(𝐱𝑡−1 ∣ 𝐱𝑡, 𝐱0) = 𝑞(𝐱𝑡 ∣ 𝐱𝑡−1, 𝐱0)
𝑞(𝐱𝑡−1 ∣ 𝐱0)

𝑞(𝐱𝑡 ∣ 𝐱0)

∝ exp(−
1

2
(
(𝐱𝑡 −√𝛼𝑡𝐱𝑡−1)

2

𝛽𝑡
+
(𝐱𝑡−1 − √�̅�𝑡−1𝐱0)

2

1 − �̅�𝑡−1
−
(𝐱𝑡 −√�̅�𝑡𝐱0)

2

1 − �̅�𝑡
))

= exp(−
1

2
(
𝐱𝑡
2 − 2√𝛼𝑡𝐱𝑡𝐱𝑡−1 + 𝛼𝑡𝐱𝑡−1

2

𝛽𝑡
+
𝐱𝑡−1
2 − 2√�̅�𝑡−1𝐱0𝐱𝑡−1 + �̅�𝑡−1𝐱0

2

1 − �̅�𝑡−1
−
(𝐱𝑡 −√�̅�𝑡𝐱2

1 − �̅�𝑡

= exp(−
1

2
((
𝛼𝑡
𝛽𝑡
+

1

1 − �̅�𝑡−1
) 𝐱𝑡−1

2 − (
2√𝛼𝑡

𝛽𝑡
𝐱𝑡 +

2√�̅�𝑡−1

1 − �̅�𝑡−1
𝐱0)𝐱𝑡−1 + 𝐶(𝐱𝑡, 𝐱0)))

 

Where 𝐶(𝐱𝑡, 𝐱0)is some function not involving 𝐱𝑡−1 and details are omitted. Following the 

standard Gaussian density function, the mean and variance can be parameterized as follows (recall 

that 𝛼𝑡 = 1 − 𝛽𝑡 and �̅�𝑡 = ∏  1
𝑖=1 𝛼𝑖). 

𝛽𝑡 =
1

(
𝛼𝑡
𝛽𝑡
+

1
1 − �̅�𝑡−1

)
=

1

(
𝛼𝑡 − �̅�𝑡 + 𝛽𝑡
𝛽𝑡(1 − �̅�𝑡−1)

)
=
1 − �̅�𝑡−1
1 − �̅�𝑡

⋅ 𝛽𝑡

�̃�𝑡(𝐱𝑡, 𝐱0) =

(
√𝛼𝑡
𝛽𝑡

𝐱𝑡 +
√�̅�𝑡−1
1 − �̅�𝑡−1

𝐱0)

(
𝛼𝑡
𝛽𝑡
+

1
1 − �̅�𝑡−1

)

= (
√𝛼𝑡

𝛽𝑡
𝐱𝑡 +

√�̅�𝑡−1

1 − �̅�𝑡−1
𝐱0)

1 − �̅�𝑡−1
1 − �̅�𝑡

⋅ 𝛽𝑡

=
√𝛼𝑡(1 − �̅�𝑡−1)

1 − �̅�𝑡
𝐱𝑡 +

√�̅�𝑡−1𝛽𝑡

1 − �̅�𝑡
𝐱0

 

Thanks to the nice property, we can represent 𝐱0 =
1

√�̅�𝑡
(𝐱𝑡 −√1 − �̅�𝑡𝝐𝑡) and plug it into the 

above equation and obtain: 

�̃�𝑡 =
√𝛼𝑡(1 − �̅�𝑡−1)

1 − �̅�𝑡
𝐱𝑡 +

√�̅�𝑡−1𝛽𝑡

1 − �̅�𝑡

1

√�̅�𝑡
(𝐱𝑡 −√1 − �̅�𝑡𝝐𝑡)

=
1

√𝛼𝑡
(𝐱𝑡 −

1 − 𝛼𝑡

√1 − �̅�𝑡
𝝐𝑡)

 

As demonstrated in Fig. 3., such a setup is very similar to VAE and thus we can use the variational 

lower bound to optimize the negative log-likelihood. 
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− log 𝑝𝜃(𝐱0) ≤ − log 𝑝𝜃(𝐱0) + 𝐷KL(𝑞(𝐱1:𝑇 ∣ 𝐱0) ∥ 𝑝𝜃(𝐱1:𝑇 ∣ 𝐱0))

= − log 𝑝𝜃(𝐱0) + 𝔼𝐱1:𝑇∼𝑞(𝐱1:𝑇∣𝐱0) [log
𝑞(𝐱1:𝑇 ∣ 𝐱0)

𝑝𝜃(𝐱0:𝑇)
𝑝𝜃(𝐱0)

]

= − log 𝑝𝜃(𝐱0) + 𝔼𝑞 [log
𝑞(𝐱1:𝑇 ∣ 𝐱0)

𝑝𝜃(𝐱0:𝑇)
+ log 𝑝𝜃(𝐱0)]

= 𝔼𝑞 [log
𝑞(𝐱1:𝑇 ∣ 𝐱0)

𝑝𝜃(𝐱0:𝑇)
]

 Let 𝐿VLB = 𝔼𝑞(𝐱0:𝑇) [log
𝑞(𝐱1:𝑇 ∣ 𝐱0)

𝑝𝜃(𝐱0:𝑇)
] ≥ −𝔼𝑞(𝐱0) log 𝑝𝜃(𝐱0)

 

It is also straightforward to get the same result using Jensen’s inequality. Say we want to minimize 

the cross entropy as the learning objective, 

𝐿CE = −𝔼𝑞(𝐱0) log 𝑝𝜃(𝐱0)

= −𝔼𝑞(𝐱0) log(∫ 𝑝𝜃(𝐱0:𝑇)𝑑𝐱1:𝑇)

= −𝔼𝑞(𝐱0) log (∫ 𝑞(𝐱1:𝑇 ∣ 𝐱0)
𝑝𝜃(𝐱0:𝑇)

𝑞(𝐱1:𝑇 ∣ 𝐱0)
𝑑𝐱1:𝑇)

= −𝔼𝑞(𝐱0) log (𝔼𝑞(𝐱1:𝑇∣𝐱0)
𝑝𝜃(𝐱0:𝑇)

𝑞(𝐱1:𝑇 ∣ 𝐱0)
)

≤ −𝔼𝑞(𝐱0:𝑇) log
𝑝𝜃(𝐱0:𝑇)

𝑞(𝐱1:𝑇 ∣ 𝐱0)

= 𝔼𝑞(𝐱0:𝑇) [log
𝑞(𝐱1:𝑇 ∣ 𝐱0)

𝑝𝜃(𝐱0:𝑇)
] = 𝐿VLB

 

The objective can be further rewritten to be a combination of several KL-divergence and entropy 

terms in order to convert each term in the equation to be analytically computable. This can be 

accomplished by using the following strategy. 

𝐿VLB = 𝔼𝑞(𝐱0:𝑇) [log
𝑞(𝐱1:𝑇 ∣ 𝐱0)

𝑝𝜃(𝐱0:𝑇)
] 

= 𝔼𝑞 [log
∏  𝑇
𝑡=1 𝑞(𝐱𝑡 ∣ 𝐱𝑡−1)

𝑝𝜃(𝐱𝑇)∏  𝑇
𝑡=1 𝑝𝜃(𝐱𝑡−1 ∣ 𝐱𝑡)

] 

= 𝔼𝑞 [− log 𝑝𝜃(𝐱𝑇) +∑  

𝑇

𝑡=1

log
𝑞(𝐱𝑡 ∣ 𝐱𝑡−1)

𝑝𝜃(𝐱𝑡−1 ∣ 𝐱𝑡)
] 

= 𝔼𝑞 [−log 𝑝𝜃(𝐱𝑇) +∑  

𝑇

𝑡=2

log 
𝑞(𝐱𝑡 ∣ 𝐱𝑡−1)

𝑝𝜃(𝐱𝑡−1 ∣ 𝐱𝑡)
+ log 

𝑞(𝐱1 ∣ 𝐱0)

𝑝𝜃(𝐱0 ∣ 𝐱1)
] 



9 
 

= 𝔼𝑞 [− log 𝑝𝜃(𝐱𝑇) +∑  

𝑇

𝑡=2

log (
𝑞(𝐱𝑡−1 ∣ 𝐱𝑡, 𝐱0)

𝑝𝜃(𝐱𝑡−1 ∣ 𝐱𝑡)
⋅
𝑞(𝐱𝑡 ∣ 𝐱0)

𝑞(𝐱𝑡−1 ∣ 𝐱0)
) + log

𝑞(𝐱1 ∣ 𝐱0)

𝑝𝜃(𝐱0 ∣ 𝐱1)
]

= 𝔼𝑞 [− log 𝑝𝜃(𝐱𝑇) +∑  

𝑇

𝑡=2

log
𝑞(𝐱𝑡−1 ∣ 𝐱𝑡, 𝐱0)

𝑝𝜃(𝐱𝑡−1 ∣ 𝐱𝑡)
+∑  

𝑇

𝑡=2

log
𝑞(𝐱𝑡 ∣ 𝐱0)

𝑞(𝐱𝑡−1 ∣ 𝐱0)
+ log

𝑞(𝐱1 ∣ 𝐱0)

𝑝𝜃(𝐱0 ∣ 𝐱1)
]

= 𝔼𝑞 [− log 𝑝𝜃(𝐱𝑇) +∑  

𝑇

𝑡=2

log
𝑞(𝐱𝑡−1 ∣ 𝐱𝑡, 𝐱0)

𝑝𝜃(𝐱𝑡−1 ∣ 𝐱𝑡)
+ log

𝑞(𝐱𝑇 ∣ 𝐱0)

𝑞(𝐱1 ∣ 𝐱0)
+ log

𝑞(𝐱1 ∣ 𝐱0)

𝑝𝜃(𝐱0 ∣ 𝐱1)
]

= 𝔼𝑞 [log
𝑞(𝐱𝑇 ∣ 𝐱0)

𝑝𝜃(𝐱𝑇)
+∑  

𝑇

𝑡=2

log
𝑞(𝐱𝑡−1 ∣ 𝐱𝑡, 𝐱0)

𝑝𝜃(𝐱𝑡−1 ∣ 𝐱𝑡)
− log 𝑝𝜃(𝐱0 ∣ 𝐱1)]

= 𝔼𝑞 [𝐷KL(𝑞(𝐱𝑇 ∣ 𝐱0) ∥ 𝑝𝜃(𝐱𝑇))⏟                
𝐿𝑇

+∑  

𝑇

𝑡=2

𝐷KL(𝑞(𝐱𝑡−1 ∣ 𝐱𝑡, 𝐱0) ∥ 𝑝𝜃(𝐱𝑡−1 ∣ 𝐱𝑡))⏟                        
𝐿𝑡−1

− log 𝑝𝜃(𝐱0 ∣ 𝐱1)⏟        
𝐿0

]

 

Let’s label each component in the variational lower bound loss separately: 

𝐿VLB = 𝐿𝑇 + 𝐿𝑇−1 +⋯+ 𝐿0
 where 𝐿𝑇 = 𝐷KL(𝑞(𝐱𝑇 ∣ 𝐱0) ∥ 𝑝𝜃(𝐱𝑇))

𝐿𝑡 = 𝐷KL(𝑞(𝐱𝑡 ∣ 𝐱𝑡+1, 𝐱0) ∥ 𝑝𝜃(𝐱𝑡 ∣ 𝐱𝑡+1)) for 1 ≤ 𝑡 ≤ 𝑇 − 1

𝐿0 = − log 𝑝𝜃(𝐱0 ∣ 𝐱1)

 

Because each and every KL term in 𝐋𝐕𝐋𝐁  (with the exception of 𝐋𝟎 ) involves a comparison of two 

Gaussian distributions, it is possible to compute them using a closed form 𝐋𝐓 is unchanging and 

can be disregarded during the training process q due to the fact that it is a Gaussian noise and has 

no learnable parameters 𝒙𝑻. Ho et al. (2020) [59] models 𝑳𝟎  using a separate discrete decoder 

derived from 𝒩(𝐱0; 𝝁𝜃(𝐱1, 1), 𝚺𝜃(𝐱1, 1)). 

 

Parameterization of 𝑳𝒕  for Training Loss: 

It is important to keep in mind that we need to train a neural network in order to create an 

approximation of the conditioned probability distributions on the reverse diffusion process 

 𝑝𝜃(𝐱𝑡−1 ∣ 𝐱𝑡) = 𝒩(𝐱𝑡−1; 𝝁𝜃(𝐱𝑡, 𝑡), 𝚺𝜃(𝐱𝑡, 𝑡)) 

We would like to train 𝝁𝜽 to predict �̃�𝑡 =
1

√𝛼𝑡
(𝐱𝑡 −

1−𝛼𝑡

√1−�̅�𝑡
𝝐𝑡). Because 𝒙𝒕  is available as input at 

training time, we can reparametrize the Gaussian noise term instead to make it predict 𝝐𝒕  from the 

input 𝒙𝒕  at time step t: 

𝝁𝜃(𝐱𝑡, 𝑡) =
1

√𝛼𝑡
(𝐱𝑡 −

1 − 𝛼𝑡

√1 − �̅�𝑡
𝝐𝜃(𝐱𝑡, 𝑡)) 



10 
 

 Thus 𝐱𝑡−1 = 𝒩(𝐱𝑡−1;
1

√𝛼𝑡
(𝐱𝑡 −

1 − 𝛼𝑡

√1 − �̅�𝑡
𝝐𝜃(𝐱𝑡, 𝑡)) , 𝚺𝜃(𝐱𝑡, 𝑡)) 

The loss term 𝑳𝒕 is parameterized to minimize the difference from �̃�: 

𝐿𝑡 = 𝔼𝐱0,𝝐 [
1

2∥∥𝚺𝜃(𝐱𝑡, 𝑡)∥∥2
2 ∥∥�̃�𝑡(𝐱𝑡, 𝐱0) − 𝝁𝜃(𝐱𝑡, 𝑡)∥∥

2
]

= 𝔼𝐱0,𝜖 [
1

2∥∥𝚺𝜃∥∥2
2

∥
∥
∥
∥
∥
1

√𝛼𝑡
(𝐱𝑡 −

1 − 𝛼𝑡

√1 − �̅�𝑡
𝝐𝑡) −

1

√𝛼𝑡
(𝐱𝑡 −

1 − 𝛼𝑡

√1 − �̅�𝑡
𝝐𝜃(𝐱𝑡, 𝑡))

∥
∥
∥
∥
∥
2

]

= 𝔼𝐱0,𝜖 [
(1 − 𝛼𝑡)

2

2𝛼𝑡(1 − �̅�𝑡)∥∥𝚺𝜃∥∥2
2 ∥∥𝝐𝑡 − 𝝐𝜃(𝐱𝑡, 𝑡)∥∥

2
]

= 𝔼𝐱0,𝜖 [
(1 − 𝛼𝑡)

2

2𝛼𝑡(1 − �̅�𝑡)∥∥𝚺𝜃∥∥2
2 ∥
∥𝝐𝑡 − 𝝐𝜃(√�̅�𝑡𝐱0 +√1 − �̅�𝑡𝝐𝑡, 𝑡)∥∥

2
]

 

 

Simplification: From an empirical standpoint, Ho et al (2020) [59] discovered that training the 

diffusion model with a simplified objective that ignores the weighting term results in better 

performance: 

𝐿𝑡
simple 

= 𝔼𝑡∼[1,𝑇],𝐱0,𝜖𝑡[∥∥𝝐𝑡 − 𝝐𝜃(𝐱𝑡, 𝑡)∥∥
2
]

= 𝔼𝑡∼[1,𝑇],𝐱0,𝜖𝑡 [∥
∥𝝐𝑡 − 𝝐𝜃(√�̅�𝑡𝐱0 +√1 − �̅�𝑡𝝐𝑡, 𝑡)∥∥

2
]
 

The ultimate aim, which is quite straightforward, is 

𝐿simple = 𝐿𝑡
simple 

+ 𝐶 

Where C is a constant not depending on θ. 

 

 

Fig. 5. The training and sampling algorithms in DDPM (Image source: Ho et al.2020) 
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2.2. Score-Based Generative Models (SGMs) 

Score-based generative models are a type of generative model that uses the score function, 

which is a vector field that gives the direction of the steepest ascent of the probability density 

function, to define a diffusion process that transforms a simple base distribution into the target 

distribution. Score-based models are known for their ability to generate high-quality samples with 

high diversity, and for their flexibility in modeling complex data distributions. 

Score-based generative models (SGMs) are a class of generative models that learn to 

generate samples by directly estimating a score function. The score function gives a high score to 

samples that are likely to be generated from the underlying distribution and a low score to samples 

that are unlikely to be generated. 

 

Fig. 6. Score-Based Generative Models (SGMs) 

 

SGMs can be trained using only samples from the underlying distribution, and they do not 

require access to the density function or the partition function of the distribution. This makes them 

particularly useful for modeling complex high-dimensional distributions, where computing the 

partition function may be intractable or impossible. 

One popular method for training SGMs is the maximum likelihood estimation (MLE) 

approach. The model is trained to maximize the log-likelihood of the data, which is defined in 

terms of the score function. The score function is typically parameterized by a neural network, and 

the parameters of the network are learned through backpropagation. 

One advantage of SGMs is that they can generate high-quality samples even when the 

training data is limited or noisy. However, they may suffer from mode collapse, where the model 

learns to generate a small set of similar samples, ignoring other possible modes of the distribution. 

To address this issue, various techniques such as entropy regularization, diversity promotion, and 

adversarial training have been proposed. 
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Overall, SGMs are a promising approach for generative modeling, and they have shown 

impressive results in various applications such as image generation, text generation, and molecular 

design. 

There are several types of score-based generative models, including: 

A. Generative Score Networks (GSNs): These models use a neural network to directly 

learn the score function of a probability density function. The score function is used to 

define a diffusion process that transforms a noise distribution into the target 

distribution. 

B. Noise-Conditional Score Networks (NCSNs): These models are similar to GSNs, but 

they are conditioned on a noise vector. The noise vector is used to control the diversity 

of the generated samples. 

C. Hamiltonian Generative Networks (HGNs): These models use a Hamiltonian dynamics 

simulation to generate samples. The score function is used to define the dynamics of 

the system, and the Hamiltonian dynamics simulation is used to generate samples from 

the target distribution. 

D. Energy-Based Generative Models (EBMs): These models use an energy function to 

model the score function of a probability density function. The energy function is used 

to define a Markov chain that samples from the target distribution. 

Score-based generative models have shown promising results on a variety of datasets, 

including images, audio, and text. They are an active area of research in the field of 

generative modeling, and new variants and improvements are continuously being 

developed. 

2.3 Noise-conditioned score network 

Noise-conditioned score networks (NCSNs) are a type of generative model that uses a 

neural network to model the score function of a diffusion process. The score function is a vector 

field that gives the direction of the steepest ascent of the probability density function, and it can 

be used to define a diffusion process that transforms a noise distribution into the target distribution. 

The score function of a probability density function, denoted by 𝑝(𝑥), is represented in 

NCSNs by the gradient of the log density with respect to the input, denoted as ∇𝑥 log 𝑝(𝑥). A 

score-matching neural network denoted by the symbol s is trained in order to learn and estimate 

the score function. The objective of this neural network is to ensure that 𝑆𝜃(𝑥) ≈ ∇𝑥 log 𝑝(𝑥).As 

a result, the objective function of the scoring network can be defined as the following: 

𝔼𝑥∼𝑝(𝑥)∥∥𝑠𝜃(𝑥) − ∇𝑥 log 𝑝(𝑥)∥∥2
2
 

Even though the problem has been clearly defined, numerically optimizing above equation 

is nearly impossible because there is no way to determine the value of ∇𝑥 log 𝑝(𝑥). This is despite 

the fact that the problem has been clearly defined. There are, however, some tried-and-true 

methods for learning score functions from data, such as score matching [67], denoising score 

matching[140], and sliced score matching. Score matching is one of these methods. 
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In addition, we emphasized that the primary challenge of training lay in the fact that the 

trained score functions were unreliable in a low-dimension manifold. This is due to the fact that 

data are typically located in a low-dimension manifold that is embedded in a high-dimension space 

(the manifold hypothesis). They also demonstrated that these problems could be resolved by 

including Gaussian noise in the data at various scales. This resulted in an improvement in the 

suitability of the data distribution for score-based generative modeling. 

As a result, they suggested using a single noise-conditioned score network, or NCSN, to 

estimate the score that was associated with each noise level. Let there be a sequence of Gaussian 

noise levels that goes from0 < 𝜎1 < 𝜎2 < ⋯ < 𝜎𝑡 < ⋯ < 𝜎𝑇. This sequence should be 

constructed in such a way that 𝑝𝜎𝑡(𝑥𝑡 ∣ 𝑥) = 𝒩(𝑥𝑡; 𝑥, 𝜎𝑡
2𝐈), 𝑝𝜎1(𝑥) ≈ 𝑝(𝑥0), and𝑝𝜎𝜏(𝑥) ≈

𝒩(0, 𝐈). 

The noise-conditioned score network 𝑠𝜃(𝑥, 𝜎𝑡) with the denoising score matching is able 

to approximate the gradient log density function, which results in the equation 𝑠𝜃(𝑥, 𝜎𝑡) ≈

∇𝑥 log (𝑝𝜎𝑡(𝑥)) , ∀𝑡 ∈ {1,… , 𝑇} And for 𝑥𝑡, ∇𝑥 log (𝑝𝜎𝑡(𝑥))is derived as . 

∇𝑥𝑡 log 𝑝𝜎𝑡(𝑥𝑡 ∣ 𝑥) = −
𝑥𝑡 − 𝑥

𝜎𝑡
 

As a consequence of this, the objective function for optimization found in above equations can be 

rewritten as: 

1

𝑇
∑  

𝑇

𝑡=1

𝜆(𝜎𝑡)𝔼𝑝(𝑥)𝔼𝑥𝑡∼𝑝𝑡(𝑥𝑡∣𝑥) ∥
∥
∥
𝑠𝜃(𝑥𝑡, 𝜎𝑡) +

𝑥𝑡 − 𝑥

𝜎𝑡 ∥
∥
∥

2

2

 

in which the 𝜆(𝜎𝑡) is a weighting function. 

The annealed Langevin dynamics algorithm is utilized by NCSNs during the sampling phase. This 

algorithm makes use of a Markov Chain Monte Carlo (MCMC) procedure to take a simple sample 

from a distribution in accordance with its score function, which is denoted by ∇𝑥 log 𝑝(𝑥). 

Calculating 𝑥𝑖 using the Langevin method in a recursive manner looks like this: 

𝑥𝑖 = 𝑥𝑖−1 +
𝛾

2
∇𝑥 log 𝑝(𝑥) + √𝛾𝜔𝑖 

Where 𝛾 determines the amplitude of the update in the direction of the score, 𝑥0 is sampled from 

the prior distribution, and the noise is drawn according to 𝜔𝑖 ∼ 𝒩(0, 𝐼) where I is the iterative 

norm of the normal distribution. 

Advantage of NCSNs over DDPMs is that they can generate more diverse samples by 

conditioning the diffusion process on a noise vector. This allows the model to learn a richer 

distribution and generate samples with more variability. NCSNs have shown promising results on 

a variety of datasets, including images and audio, and are an active area of research in the field of 

generative modeling. 
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2.4. Stochastic Differential Equations 

Stochastic differential equations (SDEs) are a type of differential equation that incorporates 

random noise into the dynamics of the system. They are widely used in many areas of science and 

engineering to model systems that are subject to random fluctuations or noise. 

DDPMs and NCSNs can be further generalized to the situation in which the perturbation 

and denoising processes can be described as stochastic differential equations. This situation arises 

when either the time steps or the noise levels are unlimited (SDEs). The formulation score SDE 

refers to this generalized approach [135], which gradually transforms the data into noise. A 

stochastic differential equation is used in the forward process of the formulation score SDE. 

Additionally, an estimated score function of the noisy data distribution is required for this process. 

It is the same as the solution found in the Itô SDE, which includes a drift component for mean 

transformation and a diffusion coefficient for describing noise: 

𝑑𝑥 = 𝑓(𝑥, 𝑡)𝑑𝑡 + 𝑔(𝑡)𝑑𝑤, 𝑡 ∈ [0, 𝑇] 

where 𝑤 stands for the standard Wiener process also known as Brownian motion, 𝑓(𝑥, 𝑡) and 𝑔(𝑡) 
are the drift and diffusion coefficients of SDE, and x represents the time variable. A particular 

instance of the discretizational SDE is represented by the forward process in DDPMs and SGMs. 

Below equation in [162], also known as the reverse-time SDE, provides the formulation of the 

SDE's reverse diffusion process, which is as follows: 

𝑑𝑥 = [𝑓(𝑥, 𝑡) − 𝑔2(𝑡)∇𝑥 log 𝑝𝑡(𝑥)]𝑑𝑡 + 𝑔(𝑡)𝑑�̅� 

where �̅� is the standard Brownian motion running backward in time and 𝑑𝑡 is the infinitesimally 

small negative time step represents the standard Brownian motion. The marginal densities of the 

reverse SDE and the forward SDE are identical; the only difference is that they are expressed in 

the opposite time direction. A trainable neural network 𝑠𝜃(𝑥, 𝑡) is used, in the same way that 

DDPMs and NCSNs are, in order to numerically solve the reverse-time SDE. This is done in order 

to estimate the actual score function ∇𝑥 log 𝑝𝑡(𝑥). One way to define the objective function is as 

follows: 

𝔼𝑥(𝑡)∼𝑝( 𝑥(𝑡) ∣∣ 𝑥(0) )𝑥(0) ∼ 𝑝data [
𝜆(𝑡)

2
∥∥𝑠𝜃(𝑥(𝑡), 𝑡) − ∇𝑥(𝑡) log 𝑝𝑡( 𝑥(𝑡) ∣∣ 𝑥(0) )∥∥2

2
] 

where 𝑡 ∼ 𝒰([0, 𝑇]) denotes the uniform distribution over [0, 𝑇] and 𝜆 is a weighting function. 

This distribution is denoted by the notation. In addition, Song et al. suggested a number of methods 

for collecting samples, such as the Predictor-Corrector sampler, in order to produce high-quality 

data. After using a numerical approach to sample data from the reverse-time SDE, this procedure 

uses a score-based method (i.e., annealed Langevin dynamics) as a corrector. This method is called 

annealed Langevin dynamics [132]. 
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SDEs can be used to model a wide range of phenomena, such as the diffusion of particles, 

the evolution of populations, the spread of epidemics, and the dynamics of financial markets. SDEs 

can also be used to model the behavior of neural networks and other machine learning models. 

SDEs are a powerful tool for modeling systems that are subject to random fluctuations or 

noise, and they have many applications in science and engineering. They are an active area of 

research in the field of stochastic processes and have the potential to revolutionize the way we 

model and understand complex systems. 
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Chapter 3 

DIFFUSION MODELS WITH EFFICIENT SAMPLING 

In most cases, it is necessary to use iterative methods that consist of a great number of 

assessment steps in order to generate samples from diffusion models. Recent research has spent a 

significant amount of effort on developing methods to simultaneously accelerate the sampling 

process and improve the overall sample quality. We divide these effective sampling strategies into 

two primary categories: those that do not involve learning (learning-free sampling), and those that 

require an additional learning process after the diffusion model has been trained. We call the 

former "learning-free sampling," and the latter "learning-required sampling" (learning-based 

sampling). 

3.1 Learning-Free Sampling 

Many samplers used in diffusion models are dependent on discretizing either the reverse-time SDE 

found in above equation in chapter 2.4, or the probability flow ODE derived from equation in 

chapter 2.4. Because the cost of sampling rises in direct proportion to the number of time steps 

that are discretized, a significant number of researchers have been concentrating their efforts on 

developing discretization schemes that reduce the total number of time steps while simultaneously 

reducing the number of discretization errors. 

3.1.1 Solvers for SDEs. One such discretization of the reverse-time stochastic differential equation 

can be seen as the generation process of DDPM [59, 128]. As was covered in chapter 2.4, the 

stochastic differential equation (SDE) represented by Equation is discretized by the forward 

process of DDPM, whose corresponding reverse SDE is represented as 

dx = −
1

2
𝛽(𝑡)(x𝑡 − ∇𝐱𝑡 log 𝑞𝑡(x𝑡))d𝑡 + √𝛽(𝑡)dw 

The authors Song et al. (2020) [135] demonstrate that the numerical SDE solver for Equation is 

equivalent to the reverse Markov chain that is specified by the equation in above chapter 2.1. 

Both Critically-Damped Langevin Diffusion (CLD) [35] and Noise-Conditional Score Networks 

(NCSNs) [132] are able to solve the reverse-time SDE by drawing inspiration from Langevin 

dynamics. In particular, NCSNs make use of annealed Langevin dynamics (ALD, see Chapter 2.1) 

to iteratively produce data while gradually reducing noise level. This continues until the 

distribution of the generated data converges to the distribution of the original data. Despite the fact 

that the sampling trajectories of ALD are not precise solutions to the reverse-time SDE, they have 

the correct marginals and, as a result, provide the correct samples. This is based on the premise 

that Langevin dynamics converges to its equilibrium at any noise level. Consistent Annealed 

Sampling (CAS) [72], a score-based MCMC strategy that features improved scaling of time steps 

and additional noise, is a further improvement that may be made to the ALD methodology. CLD 

presents an augmented SDE with an auxiliary velocity term that resembles underdamped Langevin 

diffusion. This idea comes from statistical mechanics, which inspired CLD's work. It is possible 

that learning scores of data directly is more difficult than learning the score function of the 

conditional distribution of velocity given data. However, in order for CLD to obtain the time 
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reversal of the extended SDE, it is only necessary to learn the score function of the conditional 

distribution of velocity given data. It has been found that the additional velocity term improves 

both the sampling speed and the quality. 

The reverse diffusion method that is proposed in [135] discretizes the reverse-time SDE in the 

same way as the forward diffusion method does. 

For any discretization of the forward SDE that only requires one step, one can express the general 

form as follows: 

𝐱𝒊+𝟏 = 𝐱𝒊 + 𝐟𝒊(𝐱𝒊) + 𝐠𝒊𝐳𝒊, 𝒊 = 𝟎, 𝟏,⋯ ,𝑵 − 𝟏 

Where Z𝑖 ∼ 𝒩(0, I), f𝑖 and g𝑖 are constants that are dependent on the drift/diffusion coefficients 

of the SDE as well as the discretization scheme. 

The idea behind reverse diffusion is to discretize the reverse-time SDE in the same way that the 

forward SDE is discretized, that is, 

𝐱𝒊 = 𝐱𝒊+𝟏 − 𝐟𝒊+𝟏(𝐱𝒊+𝟏) + 𝐠𝒊+𝟏𝐠𝒊+𝟏
𝒕 𝐬𝜽∗(𝐱𝒊+𝟏, 𝒕𝒊+𝟏) + 𝐠𝒊+𝟏𝐳𝒊𝒊 = 𝟎, 𝟏,⋯ ,𝑵 − 𝟏 

where 𝐬𝜃∗(𝐱𝑖, 𝑡𝑖) represents the noise-conditional score model that has been trained. The authors 

Song et al. (2020) [135] provide evidence that the reverse diffusion method is a numerical SDE 

solver that can be applied to the equation containing the reverse-time SDE. Empirical data indicate 

that the performance of this sampler is somewhat better than that of DDPM [135] for a certain type 

of SDEs that is referred to as the VP-SDE. This technique can be used to any sorts of forward 

SDEs. 

Jolicoeur-Martineau et al. (2021) [71] create an SDE solver that has adaptable step sizes for the 

purpose of producing results more quickly. A comparison is made between the output of a high-

order SDE solver and the output of a low-order SDE solver in order to determine the appropriate 

step size. Each time there is a new time step, the high-order and low-order solvers generate a new 

sample 𝒙high 
′ and 𝒙low 

′ accordingly, based on the sample 𝒙prev 
′ that came before. After that, the step 

size is modified by analysing the difference in the results of the two samples. In the event that 

𝒙high 
′ and 𝒙low 

′ produce comparable results, the algorithm will return 𝒙high 
′ and then proceed to raise 

the step size. The resemblance between 𝒙high 
′ and 𝒙low 

′ is as follows: 

𝐸𝑞 = ∥
∥∥
𝒙low 
′ −𝒙high 

′

𝛿(𝒙′,𝒙prev 
′ )∥

∥∥
2

  

where 𝜹(𝒙low 
′ , 𝒙𝒑𝒓𝒆𝒗

′ ):= 𝑚𝑎𝑥 (𝝐𝒂𝒃𝒔, 𝝐rel 𝑚𝑎𝑥(|𝒙low 
′ , |𝒙𝒑𝒓𝒆𝒗

′ ∣)),where 𝝐𝒂𝒃𝒔 and 𝝐rel  are absolute 

and relative tolerances respectively, and where 𝑚𝑎𝑥(|𝒙low 
′ , |𝒙𝒑𝒓𝒆𝒗

′ ∣) is the maximum value. 

The reverse SDE can be solved using the predictor-corrector method that was developed in [135]. 

This method combines numerical SDE solvers (referred to as the "predictor") and iterative Markov 

chain Monte Carlo (MCMC) procedures (referred to as the "corrector"). At each time step, the 

predictor-corrector technique first uses a numerical SDE solver to produce a coarse sample. Next, 

a "corrector" is used to correct the sample's marginal distribution using score-based MCMC. 
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Finally, the method concludes with a "predictor" that generates a refined sample. The final samples 

have the same time-marginals as the solution trajectories of the reverse-time SDE, which means 

that their distributions are comparable at each and every time step. The use of an additional 

predictor that does not include correctors is shown to be less effective than adding a corrector that 

is based on the Langevin Monte Carlo algorithm, as shown by empirical results [135]. Karras et 

al. (2022) [74] further improved the Langevin dynamics corrector in [135] by suggesting a 

Langevin-like "churn" step of adding and eliminating noise. As a result, they were able to achieve 

a new state-of-the-art sample quality on datasets such as CIFAR-10 and ImageNet-64. 

3.1.2 ODE solvers. Solving the probability flow ODE, which was presented in Part 2.3, is the 

foundation of a significant portion of the research on faster diffusion samplers. ODE solvers, in 

contrast to SDE solvers, have deterministic trajectories, which means that they are unaffected by 

the fluctuations caused by stochastic processes. In general, these deterministic ODE solvers 

converge substantially more quickly than their stochastic analogues, although at the expense of 

slightly lower sample quality. 

One of the earliest works on accelerating diffusion model sampling is called Denoising Diffusion 

Implicit Models (DDIM), which was published in [129]. The first goal was to extend the original 

DDPM to non-Markovian cases using the Markov chain that is presented in the following sentence. 

𝑞(𝐱1, … , 𝐱𝑇 ∣ 𝐱0) = ∏  𝑇
𝑡=1 𝑞(𝐱𝑡 ∣ 𝐱𝑡−1, 𝐱0)

𝑞𝜎(𝐱𝑡−1 ∣ 𝐱𝑡, 𝐱0) = 𝒩(𝐱𝑡−1 ∣ 𝜇𝑡(𝐱𝑡, 𝐱0), 𝜎𝑡
2I)

𝜇𝑡(𝐱𝑡, 𝐱0) ≔ √�̅�𝑡−1𝐱0 +√1 − �̅�𝑡−1 − 𝜎𝑡
2 ⋅

𝐱𝒕−√�̅�𝑡𝐱0

√1−�̅�𝑡

  

This formulation contains DDPM and DDIM as special cases. More specifically, DDPM 

corresponds to the setting 𝜎𝑡
2 =

�̂�𝑡−1

�̂�𝑡
𝛽𝑡, whereas DDIM corresponds to the setting 𝜎𝑡

2 = 0. To 

reverse this non-Markov perturbation process, which is totally predictable when 𝜎𝑡
2 = 0, DDIM 

learns a Markov chain to use as a learning tool. According to the findings presented in [88] and 

[129], the DDIM sampling process may be equated to a unique discretization scheme of the 

probability flow ODE. These findings were derived from the fact that these papers. generalized 

Denoising Diffusion Implicit Models (gDDIM) [159] proposes a modified parameterization of the 

score network that enables deterministic sampling for more general diffusion processes, such as 

the one in Critically-Damped Langevin Diffusion (CLD) [35]. This modification was inspired by 

an analysis of DDIM on a singleton dataset. A pseudo numerical method is suggested in PNDM 

[85] for generating samples along a certain manifold in ℛ𝑁. After solving differential equations 

on manifolds with a numerical solver that has a nonlinear transfer portion, it generates a sample 

that incorporates DDIM as a special case. This process takes place in two steps. 

Karras et al. (2022) [74] demonstrate that Heun's 2nd order approach [3] offers a fantastic 

compromise between the sample quality and the sampling speed that is required. These findings 

are based on extensive experimental research. The higher-order solver results in less discretization 

error, but at the expense of one more evaluation of the learnt score function for each time step. 

While Euler's approach produces samples of equivalent quality, Heun's method generates samples 

of comparable or even superior quality with fewer sampling steps. 
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Both the Diffusion Exponential Integrator Sampler [158] and the DPM-solver [88] take advantage 

of the semi-linear nature of the probability flow ODE in order to construct specialised ODE solvers 

that are more effective than general-purpose Runge-Kutta methods. 

To be more specific, the linear portion of the probability flow ODE can be estimated analytically, 

and the non-linear portion of the ODE can be solved using methods that are analogous to 

exponential integrators in the field of ODE solvers. These techniques utilize DDIM as a first-order 

approximation in their calculations. However, because of this, higher order integrators are now 

possible. These integrators can produce high-quality samples in as few as 10 to 20 iterations, which 

is a significant reduction from the hundreds of iterations that are typically required by diffusion 

models that do not use accelerated sampling. 

3.2 Learning-Based Sampling 

Another effective method for constructing diffusion models is one that relies on learning-based 

sampling. This method offers higher sampling speeds by utilizing partial steps or by training a 

sampler for the reverse process. Nevertheless, the modest decrease in sample quality is a price that 

must be paid for these faster sampling speeds. Learning-based sampling, as opposed to learning-

free approaches, often entails selecting steps by optimizing particular learning objectives, as 

opposed to learning-free approaches, which use handcrafted steps. 

3.2.1 Optimized Discretization: Discretization that has been optimized Given a diffusion model 

that has already been trained, Watson et al. (2021) [143] proposed a method for determining the 

best discretization scheme by choosing the best K time steps to maximize the training objective 

for DDPMs. This method requires the use of a pre-trained diffusion model. The realization that 

the DDPM objective may be partitioned into a total of its constituent parts—which makes it an 

excellent candidate for dynamic programming—is essential to the implementation of this strategy. 

On the other hand, it is common knowledge that the variational lower bound that is employed for 

DDPM training does not correspond directly with the quality of the samples. This problem was 

solved in a subsequent piece of research referred to as Differentiable Diffusion Sampler Search 

[142], which focused on directly improving a standard measure for measuring sample quality 

known as the Kernel Inception Distance (KID). With the assistance of reparameterization [117] 

and gradient rematerialization, it is possible to carry out this optimization. Dockhorn et al. (2022) 

[36] design a second-order solver for accelerating synthesis using truncated Taylor techniques. 

This is accomplished by training an additional head on top of the first-order scoring network. 

3.2.2 Truncated Diffusion: Truncated diffusion is the third topic. By cutting short the forward 

and reverse diffusion processes, one can make the sample process go much more quickly [96]. The 

most important step is to terminate the forward diffusion process as soon as possible, preferably 

within the first few steps, and then to start the reverse denoising process with a distribution that is 

not Gaussian. Diffusion of samples from pre-trained generative models, such as variational 

autoencoders [117] or generative adversarial networks [49], is an effective method for obtaining 

samples from this  distribution. This method allows for the efficient collection of data. 

3.2.3 Knowledge Distillation: The Process of Distilling Knowledge Methods that rely on the 

distillation of knowledge [90] have the potential to dramatically boost the sampling speed of 
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diffusion models. To be more specific, in Progressive Distillation, the authors propose condensing 

the entire process of sampling into a speedier sampler that requires only half as many steps as the 

current method. The authors are able to train the new sampler to match the input and output 

produced by the DDIM sampling method because they have parameterized the new sampler as a 

deep neural network. 

The sampling stages can be lowered even further by repeating this technique; however, the quality 

of the samples may suffer if there are fewer steps total. The authors provide new weighting 

schemes for the objective function as well as new parameterizations for the diffusion models so 

that they can solve this issue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4 
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DIFFUSION MODELS WITH IMPROVED LIKELIHOOD 

According to what was covered in Chapter 2.1, the goal of training diffusion models is to 

achieve a variational lower bound (VLB) on the log-likelihood that is negative. This bound, on the 

other hand, might not be very tight in many situations [77], which could result in diffusion models 

producing log-likelihoods that are less than ideal. In this part, we will review recent research on 

maximizing the likelihood of events occurring in diffusion models. Our primary concentration is 

placed on the following three categories of methods: noise schedule optimization, reverse variance 

learning, and exact loglikelihood evaluation. 

4.1 Noise Schedule Optimization 

In the traditional approach of modelling diffusion, the noise schedules for the forward process are 

hand-created rather than using trainable parameters. One can further maximize the VLB in order 

to attain greater log-likelihood values by optimizing the forward noise schedule in conjunction 

with other parameters of diffusion models [77, 99]. This allows one to further maximize the VLB. 

The research conducted by iDDPM [99] shows that a particular cosine noise schedule has the 

potential to boost log-likelihoods. To be more specific, the cosine noise schedule that they 

developed takes the form: 

�̅�𝑡 =
ℎ(𝑡)

ℎ(0)
, ℎ(𝑡) = cos(

𝑡
𝑇
+𝑚

1 +𝑚
⋅
𝜋

2
)

2

 

where �̅�𝑡 and 𝛽𝑡 are described in earlier equations, respectively, and m is a hyperparameter that 

controls the noise scale when t = 0 is considered. In addition to this, they suggest a parameterization 

for the inverse variance that involves an interpolation in the log domain between the values 𝛽𝑡 and 

1 − �̅�𝑡. 

The authors of Variational Diffusion Models (VDMs) [77] propose that in order to increase the 

likelihood of continuous-time diffusion models, it is possible to improve the likelihood of these 

models by jointly training the noise schedule and other diffusion model parameters to maximize 

the VLB. [77] 

They construct the forward perturbation process in accordance with and use a monotonic neural 

network to parameterize the noise schedule. 

𝜎𝑡
2 = sigmoid (𝛾𝜂(𝑡)) , 𝑞(𝐱𝑡 ∣ 𝐱0) = 𝒩(�̅�𝑡𝐱0, 𝜎𝑡

2I), and �̅�𝑡 = √(1 − 𝜎𝑡
2) 

In addition, the authors demonstrate that the VLB for data point x may be reduced to a form that 

is solely reliant on the signal-to-noise ratio R(𝑡): =
�̅�𝑡
2

𝜎𝑡
2. This form can be found by using the 

aforementioned formula. In specifically, the 𝐿𝑉𝐿𝐵 is capable of being broken down into 

𝐿𝑉𝐿𝐵 = −𝔼𝐱0 KL(𝑞(𝐱𝑇 ∣ 𝐱0) ∥ 𝑝(𝐱𝑇)) + 𝔼𝐱0,𝐱1 log 𝑝(𝐱0 ∣ 𝐱1) − 𝐿𝐷, 
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where the first and second terms can be optimized directly in a manner analogous to how 

variational autoencoders are trained. The following constitutes an additional simplification of the 

third term: 

𝐿𝐷 =
1

2
𝔼x0,𝜖∼𝒩(0,I) ∫  

R𝑚𝑎𝑥
R𝑚𝑖𝑛

∥∥x0 − �̃�𝜃(𝐱𝑣 , 𝑣)∥∥2
2
𝑑𝑣, 

where R𝑚𝑎𝑥 = 𝑅(1) and R𝑚𝑖𝑛 = 𝑅(𝑇), 𝐱𝑣 = �̅�𝑣𝐱0 + 𝜎𝑣𝜖 signifies a noisy data point that was 

acquired by diffusing x0 with the forward perturbation process until 𝑡 = 𝑅−1(𝑣), and �̃�𝜃 denotes 

the noise-free data point that was predicted by the diffusion model. As a consequence of this, noise 

schedules do not have an effect on the VLB so long as they have the same values at R𝑚𝑖𝑛 and 

R𝑚𝑎𝑥. Instead, noise schedules will only have an effect on the variance of the Monte Carlo 

estimators for the VLB. 

4.2 Reverse Variance Learning 

In the traditional formulation of diffusion models, it is assumed that the variance parameters of 

Gaussian transition kernels in the reverse Markov chain are fixed. You may recall that we formed 

the reverse kernel as 𝑞𝜃(𝐱𝑡−1 ∣ 𝐱𝑡) = 𝒩(𝜇𝜃(𝐱𝑡, 𝑡), Σ𝜃(𝐱𝑡, 𝑡)) in equation, but that we frequently 

fixed the reverse variance Σ𝜃(𝐱𝑡, 𝑡) to 𝛽𝑡𝐈. A great number of techniques advocate training the 

reverse variances in addition to the forward ones in order to further maximise VLB and log-

likelihood values. 

Nichol and Dhariwal present a proposal in iDDPM [99] to learn the reverse variances by first 

parameterizing them with a type of linear interpolation and then training them with a hybrid 

objective. This would allow the reverse variances to be learned. This leads to larger log-likelihoods 

as well as faster sampling without a reduction in the quality of the samples collected. To be more 

specific, they parametrize the reverse variance in equation as follows: 

Σ𝜃(x𝑡 , 𝑡) = exp(𝜃 ⋅ log𝛽𝑡 + (1 − 𝜃) ⋅ log �̃�𝑡), 

where 𝛽𝑡: =
1−�̅�𝑡−1

1−�̅�𝑡
. 𝛽𝑡 and 𝜃 are both trained together to optimize VLB. This straightforward 

parameterization sidesteps the instability introduced by estimating more involved versions of 

Σ𝜃(𝐱𝑡, 𝑡) and is said to result in improved probability values. 

Analytic-DPM [6] reveals an astounding finding, namely that the optimal reverse variance may be 

derived from a pre-trained score function using the analytic form that can be found below: 

Σ𝜃(x𝑡 , 𝑡) = 𝜎𝑡
2 + (√

�̅�𝑡

𝛼𝑡
−√�̅�𝑡−1 − 𝜎𝑡

2)

2

⋅ (1 − �̅�𝑡𝔼𝑞𝑡(x𝑡)
∥∥∇𝐱𝑡 log 𝑞𝑡(x𝑡)∥

∥2

𝑑
)  

As a consequence of this, if we are provided with a pre-trained score model, we are able to estimate 

its first- and second-order moments in order to acquire the optimal reverse variances. Using them 

in the VLB analysis can result in more accurate VLBs and higher likelihood values. 

 

4.3 Exact Likelihood Computation 
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In the Score SDE [135] formulation, samples are created by solving the following reverse SDE, 

where ∇𝐱𝑡 log 𝑝𝜃(𝐱𝑡, 𝑡) is substituted by the learnt noise-conditional score models 𝐒𝜃(𝐱𝑡, 𝑡) 

dx = 𝑓(x𝑡 , 𝑡) − 𝑔(𝑡)
2s𝜃(x𝑡, 𝑡)d𝑡 + 𝑔(𝑡)dw. 

For the sake of this discussion, we will refer to the distribution of samples produced by solving the 

SDE shown above as 𝑝𝜃
sde . Data can also be generated by entering the score model into the 

probability flow ODE found in above equations, which produces the following results: 

dx𝑡
d𝑡

= 𝑓(x𝑡 , 𝑡) −
1

2
𝑔2(𝑡)s𝜃(x𝑡, 𝑡)⏟                

≔�̃�𝜃(x𝑡,𝑡)

 

In a similar vein, we will use 𝑝𝜃
ode to indicate the distribution of samples that were produced by 

solving this ODE, we will use the notation ode. According to the theory of neural ODEs[20] and 

continuous normalizing flows[17], 𝑝𝜃
ode  can be accurately computed, despite the fact that it 

requires a lot of processing power. Several concurrent works [65, 87, 131] demonstrate that there 

is an efficiently computable variational lower bound for 𝑝𝜃
sde . Furthermore, we can directly train 

our diffusion models to maximize 𝑝𝜃
sde  utilizing modified diffusion losses. This is possible because 

of the existence of an efficiently computable variational lower bound. 

In particular, Song et al. (2021) [131] demonstrate that using a particular weighting function 

known as likelihood weighting, the aim that is used for training score SDEs implicitly optimizes 

the predicted value of 𝑝𝜃
sde  on data. This was demonstrated by using a specific weighting function. 

The evidence suggests that 

D𝐾𝐿(𝑞0 ∥ 𝑝𝜃
sde ) ≤ ℒ(𝜃; 𝑔(⋅)2) + D𝐾𝐿(𝑞𝑇 ∥ 𝜋), 

where ℒ(𝜃; 𝑔(⋅)2) is the Score SDE objective, and 𝜆(𝑡) = 𝑔(𝑡)2 is the variable being evaluated. 

Since D𝐾𝐿(𝑞0 ∥ 𝑝𝜃
sde ) = −𝔼𝑞0 log(𝑝𝜃

sde ) +  const  and D𝐾𝐿(𝑞𝑇 ∥ 𝜋) is a constant, training with 

ℒ(𝜃; 𝑔(⋅)2) amounts to minimizing −𝔼𝑞0 log(𝑝𝜃
sde ), the expected negative log-likelihood on data. 

This can be thought of as minimizing the expected negative log-likely In addition, the following 

bound for 𝑝𝜃
sde (x) is provided by Song et al. (2021) and Huang et al. (2021) [65 

, 131]: 

− log 𝑝𝜃
sde (𝐱) ≤ ℒ′(𝐱) 

where the expression ℒ′(𝐱) is defined as 

ℒ′(𝐱) ≔ ∫  
𝑇

0

𝔼 [
1

2
∥∥𝑔(𝑡)𝐬𝜃(𝐱𝑡 , 𝑡)∥∥

2
+ ∇ ⋅ (𝑔(𝑡)2𝐬𝜃(𝐱𝑡, 𝑡) − 𝑓(x𝐭), t) ∣ 𝐱0 = x] 𝑑𝑡

− 𝔼𝐱𝑇[log𝑝𝜃
sde (𝐱𝑇) ∣ 𝐱0 = 𝑥] 

The initial half of above equation is similar to implicit score matching [67], and the entire bound 

can be effectively determined through the use of Monte Carlo methods. 
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As the probability flow ODE is a specific instance of neural ODEs or continuous normalizing 

flows, we may use well-established methods from those domains to reliably compute log 𝑝𝜃
ode . 

This is because the probability flow ODE is a special case of neural ODEs or continuous 

normalizing flows. To be more specific, we have 

log 𝑝𝜃
ode (x0) = log 𝑝𝑇(x𝑇) + ∫  

𝑇

𝑡=0

∇ ⋅ 𝑓𝜃(x𝑡, 𝑡)d𝑡 

With the use of numerical ODE solvers and the Skilling-Hutchinson trace estimator [127], it is 

possible to construct the one-dimensional integral that was discussed earlier. Unfortunately, this 

formula cannot be directly optimized to maximize 𝑝𝜃
ode  on data since it requires invoking 

expensive ODE solvers for each data point x0. As a result, direct optimization of this formula to 

maximize 𝑝𝜃
ode  on data is not possible. Song et al. (2021) [131] propose to maximize the variational 

lower bound of 𝑝𝜃
sde  as a proxy for maximizing 𝑝𝜃

ode , which gives rise to a family of diffusion 

models called Score Flows. This is done to reduce the expense of directly maximizing 𝑝𝜃
ode  with 

the aforementioned formula. 

Lu et al. (2022) [87] propose a further improvement to Score Flows by minimizing not just the 

vanilla score matching loss function, but also its higher order generalizations. This is done in order 

to get a lower overall loss. They demonstrate that a bound may be placed on log 𝑝𝜃
ode  using the 

first-, second-, and third-order score matching mistakes. Using this theoretical notion as a jumping 

off point, the authors go on to offer efficient training techniques for minimizing high order score 

matching losses and report improved 𝑝𝜃
ode on data. 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

Chapter 5 

DIFFUSION MODELS FOR DATA WITH SPECIAL STRUCTURES 

Even though diffusion models have been quite successful in the past for data domains such 

as images and audio, it is not always the case that they can be effortlessly transferred to other 

modalities. In order for diffusion models to perform their functions accurately, it is necessary to 

take into account the unique structures of a great number of significant data domains. When models 

rely on score functions that can only be constructed on continuous data domains, for instance, or 

when data reside on low-dimensional manifolds, this might give rise to a number of challenges 

and complications. The models of dispersal need to be modified in a number of different ways in 

order to accommodate these issues. 

5.1 Discrete Data 

Because the Gaussian noise perturbation that is used in DDPMs does not have a natural fit for 

discrete data, and because the score functions that are required by SGMs and Score SDEs can only 

be defined on continuous data domains, the vast majority of diffusion models are designed for 

continuous data domains. Many research [6, 53] expand on Sohl-Dickstein et al. (2015) [128] to 

generate discrete data of high dimensions in order to get around this challenge. To be more specific, 

the Gaussian noise is replaced with a random walk on the discrete data space, also known as a 

random masking operation, when using the VQ-Diffusion [53] algorithm. The transition kernel for 

the forward process that was produced as a result takes the form of 

𝑞(𝐱𝑡 ∣ 𝐱𝑡−1) = 𝐯
⊤(𝐱𝑡)Q𝑡𝐯(𝐱𝑡−1) 

where 𝐐𝒕 represents the transition kernel of a lazy random walk and v(x) is a one-hot column 

vector. This is an example of a lazy random walk. Discrete Denoising Diffusion Probabilistic 

Models (D3PM) is able to account for discrete data in diffusion models by constructing the forward 

noise process with discretized absorbing state kernels. 

Gaussian kernels. The first continuous-time framework for discrete diffusion models is presented 

in Campbell's et al (2022) [15] research. They were able to derive efficient samplers that 

outperformed their discrete counterparts by utilizing Continuous Time Markov Chains. 

Additionally, they were able to provide a theoretical analysis on the error that existed between the 

sample distribution and the true data distribution. 

5.2 Data with Invariant Structures 

The structures of the data that are used in many significant domains remain constant. Examples of 

things that are invariant under permutation include graphs and point clouds, which can also 

withstand translation and rotation. These invariances are frequently disregarded in diffusion 

models, which can result in performance that is less than optimal. In an effort to solve this problem, 

a number of works [31, 104] have proposed equipping diffusion models with the capacity to take 

into account invariances in data. 
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Niu et al. (2020) [104] begin by addressing the issue of generation of permutation-invariant graphs 

using diffusion models. They are able to do this by parameterizing the noise-conditional score 

model with the help of an EDP-GNN, which is an abbreviation for a permutation equivariant graph 

neural network. This concept is developed further in GDSS [70], which suggests a graph diffusion 

process that operates in continuous time. The joint distribution of nodes and edges is modelled by 

this process using a system of stochastic differential equations (SDEs). Message-passing 

operations are used to guarantee that the model is permutation-invariant. 

In a similar manner, Shi et al. (2021) [124] and Xu et al. (2022) [172] make it possible for diffusion 

models to generate molecular conformations that are invariant to translation as well as rotation. 

For instance, Xu et al. (2022) [172] demonstrates that Markov chains beginning with an invariant 

prior and evolving with equivariant Markov kernels can induce an invariant marginal distribution. 

This distribution can then be used to enforce appropriate data invariance when it comes to the 

generation of molecular conformations. In technical parlance, we will refer to the rotation or 

translation operation as T. Given the above, 𝑝(𝐱𝑇) = 𝑝(𝒯(𝐱𝑇)), 𝑝𝜃(𝐱𝑡−1 ∣ 𝐱𝑡) = 𝑝𝜃(𝒯(𝐱𝑡−1) ∣

𝒯(𝐱𝑡)) Xu et al. (2022) [172] Demonstrate that the sample distribution is guaranteed to be 

invariant to 𝒯; more specifically, show that 𝑝0(𝐱) = 𝑝0(𝒯(𝐱))𝑝0(𝐱) = 𝑝0(𝒯(𝐱)).As a 

consequence of this, it is possible to construct a diffusion model that results in rotation- and 

translation-invariant molecular conformations, provided that both the prior and transition kernels 

enjoy the same degree of invariance. 

5.3 Data with Manifold Structures 

In machine learning, it is common to work with data that has many different structures. Natural 

data frequently exist on manifolds that have a lower intrinsic dimensionality, as the manifold 

hypothesis [41] postulates. In addition, many data domains have manifold structures that are well 

known to the public. Because our planet is shaped like a sphere, certain data, such as those 

pertaining to climate and earth, naturally lie on the sphere. Developing diffusion models for data 

on manifolds has been the focus of a great deal of research. We classify them according to whether 

the manifolds are known or learned, and then we present some representative works in the 

following chapter. 

5.3.1 Known Manifolds: Manifolds That Are Already Known Recent research has extended the 

Score SDE formulation to a variety of different manifolds that are already known. The 

generalization of neural ODEs[20] and continuous normalizing flows[17] to Riemannian 

manifolds [86, 97] is analogous to this adaptation. Score matching and score functions have also 

been adapted to Riemannian manifolds by the researchers so that these models can be trained using 

them. 

The Riemannian Score-Based Generative Model (RSGM) [31] is able to take into account a wide 

variety of manifolds, such as spheres and toruses, so long as these manifolds satisfy some relatively 

simple requirements. The Riemannian Smooth Group Model (RSGM) provides evidence that 

diffusion models can be extended to compact Riemannian manifolds. In addition, the model 

supplies a formula for inverting the process of diffusion on a manifold. 
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Taking an intrinsic point of view, the Riemannian Structure Generation Method (RSGM) uses a 

Geodesic Random Walk to approximate the sampling process on Riemannian manifolds. It is 

trained with the objective of matching the generalized denoising score. 

In contrast, the Riemannian Diffusion Model (RDM) [64] uses a variational framework to 

generalize the continuous-time diffusion model to Riemannian manifolds. This was accomplished 

by taking the continuous-time diffusion model and applying it to Riemannian manifolds. The 

variational lower bound (VLB) of the log-likelihood is employed by the RDM in its capacity as a 

loss function. The researchers who developed the RDM model demonstrated that achieving the 

maximum value of this VLB is equivalent to achieving the minimum value of a Riemannian score-

matching loss. In contrast to the RSGM, the RDM adopts an extrinsic point of view, working under 

the assumption that the relevant Riemannian manifold is contained within a Euclidean space with 

a higher dimension. 

5.3.2 Learned Manifolds: Acquired Knowledge of Manifolds The majority of natural data is 

thought to lie on manifolds that have significantly reduced intrinsic dimensionality, in accordance 

with the manifold hypothesis [41]. Because of this, locating these manifolds and then training 

diffusion models directly on them can be beneficial due to the lower dimensionality of the data. 

Many recent works have expanded upon this concept, beginning with the application of an 

autoencoder to compress the data into a lower dimensional manifold, then training the model to 

make it more accurate in this latent space, diffusion models are used. When this occurs, the 

manifold is discovered through the process of reconstruction loss and is considered to be implicitly 

defined by the autoencoder. To achieve one's goals, it is essential to develop a loss function that 

enables the simultaneous training of both the autoencoder and the diffusion models. This is a 

prerequisite for success. 

Combining a Score SDE diffusion model with a variational autoencoder (VAE) [117] is what the 

Latent Score-Based Generative Model (LSGM) [138] does in order to try and solve the issue of 

joint training. In this configuration, it is the responsibility of the diffusion model to learn the prior 

distribution. The authors of the LSGM propose a joint training objective in which the evidence 

lower bound from the VAE and the score matching objective from the diffusion model are merged 

into one. As a consequence of this, a new lower bound has been established for the data log-

likelihood. By placing the diffusion model within the latent space, the latent space generalized 

mixture model (LSGM) [138] is able to generate samples more quickly than traditional diffusion 

models. In addition to this, the LSGM has the capability of managing discrete data by converting 

it into continuous latent codes. 

The Latent Diffusion Model (LDM) [118] takes a component-by-component approach to training 

the autoencoder and the diffusion model rather than training both components together. In the 

beginning, a low-dimensional latent space is produced through the training of an autoencoder. The 

diffusion model is then instructed to produce latent codes through the process of training. DALLE-

2 [112] utilizes a strategy that is very similar by first training a diffusion model on the CLIP image 

embedding space, and then secondly training a separate decoder to create images based on the 

CLIP image embeddings. Both of these steps take place in the training phase of the algorithm. A 

study by Asperti et al. (2022) [5] has demonstrated that the image embedding process for denoising 
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generative models produces very good results. Image embedding is a powerful technique that is 

used in denoising generative models to represent images in a lower-dimensional space. This 

representation of images in a lower-dimensional space can be used to remove noise and generate 

clean images. The process of transforming the input images into a lower-dimensional embedding 

space, which allows for the noise to be removed by using denoising autoencoders, principal 

component analysis, or diffusion models. The use of image embedding helps to reduce the 

complexity of the computational work required, improves image quality, and enables the creation 

of new images. 
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Chapter 6 

CONNECTIONS WITH OTHER GENERATIVE MODELS 

First, in this chapter, we will discuss five additional important classes of generative models and 

then examine the benefits and drawbacks of each of those classes. Then, we demonstrate how the 

incorporation of diffusion models can help advance these generative models by introducing how 

they are connected with diffusion models and how they are connected with them. Additionally, 

Fig. 6 contains a schematic illustration of these algorithms in action. 

 

6.1 Variational Autoencoders and Connections with Diffusion Models 

Variational autoencoders [37, 78, 117] are designed to learn both an encoder and a decoder for the 

purpose of mapping input data to values in a continuous latent space. In these models, the 

embedding can be interpreted as a latent variable in a probabilistic generative model, and a 

probabilistic decoder can be formulated by a parameterized likelihood function. Alternatively, the 

embedding can be interpreted as a hidden variable in a probabilistic generative model. In addition, 

it is presumed that the data set x was produced by some unobserved latent variable z, and this 

assumption is supported by the conditional distribution 𝑝𝜃( x ∣ z ). 

 

Fig.7. Illustrations about works incorporating diffusion models with other generative models. 
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Moreover, 𝑞𝜙( 𝐳 ∣ 𝐱 ) is applied in order to approximate the value of z. In order to ensure that the 

inference will be accurate, a variational Bayes method is applied in order to maximise the evidence 

lower bound: 

ℒ(𝜙, 𝜃; 𝐱) = 𝔼𝑞(z∣x )[log𝑝𝜃(x, z) − log 𝑞𝜙( z ∣ x )] 

using the formula ℒ(𝜙, 𝜃; 𝐱) ≤ log 𝑝𝜃(𝐱). If the parameterized likelihood function 𝑝𝜃( x ∣ z ) and 

the parameterized posterior approximation 𝑞𝜙( 𝐳 ∣ 𝐱 ) can both be computed in a point-wise 

manner and are differentiable with their parameters, then the ELBO can be maximized with 

gradient descent. This is provided that both of these functions are differentiable with their 

parameters. This formulation makes it possible to select encoder and decoder models with a degree 

of flexibility. These models are typically represented by exponential family distributions, and the 

parameters of those distributions are generated by multi-layer neural networks. 

A hierarchical Markovian VAE with a fixed encoder is one way to think about the DDPM, which 

can be conceptualized as such. To be more specific, the DDPM's forward process serves as the 

encoder, and this process is structured as a linear Gaussian model. On the other hand, the DDPM's 

reverse process corresponds to the decoder, which is shared across multiple steps of the decoding 

process. The sample data and the latent variables contained within the decoder each have the same 

amount of information. 

Song et al. (2021) [135], Huang et al. (2021) [65], and Kingma et al. (2021) [77] demonstrate that 

the score matching objective may be approximated by the Evidence Lower Bound (ELBO) of a 

deep hierarchical VAE in a continuous-time setting. [135], [65], and [77] respectively. As a 

consequence of this, optimizing a diffusion model can be interpreted in the same manner as training 

an infinitely deep hierarchical VAE. This finding lends credence to the widely held notion that 

Score SDE diffusion models can be construed as the continuous limit of hierarchical VAEs. 

This line of research is advanced by the Latent Score-Based Generative Model (LSGM) [138], 

which demonstrates that the ELBO can be regarded as a specialized score matching objective when 

applied to the problem of latent space diffusion. [LSGM stands for "Latent Score-Based 

Generative Model"]. Even though the cross-entropy term in the ELBO cannot be solved, it is still 

possible to transform it into a score matching objective that can be solved by considering the score-

based generative model to be an infinitely deep VAE. 

6.2 Generative Adversarial Networks and Connections with Diffusion Models 

Generative Adversarial Networks, also known as GANs [28, 49, 54], are primarily made up of two 

different models: a generator G and a discriminator D. 

Both of these models are typically built using neural networks, but they could be implemented 

using any kind of differentiable system that maps input data from one space to another. The 

optimization of GANs can be thought of as a mini-max optimization problem with the value 

function V (G, D), which reads as follows: 
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𝑚𝑖𝑛
𝐺
 𝑚𝑎𝑥
𝐷
 𝔼𝐱∼𝑝data (x)

[log𝐷(x)] + 𝔼z∼𝑝𝐳(z) [log (1 − 𝐷(𝐺(z)))]. 

The purpose of the generator G is to produce fresh examples while also providing an implicit 

model of the data distribution. The discriminator D is typically a binary classifier that is utilized 

in order to differentiate between generated examples and true examples with the highest degree of 

precision possible. A saddle point is reached at the end of the process of optimization. This point 

produces a minimum about the generator and a maximum about the discriminator. To be more 

specific, the objective of GAN optimization is to reach a state of Nash equilibrium [116]. When 

this condition is met, the generator can be thought of as having successfully captured the accurate 

distribution of real examples. 

One of the problems with GAN is that the training process is unstable, which is primarily caused 

by the fact that the distribution of input data and that of generated data do not overlap. This is one 

of the main causes of the instability. One possible solution is to introduce noise into the 

discriminator input in order to broaden the distributions that can be supported by the generator as 

well as the discriminator. Wang et al. (2022) [174] inject noise into the discriminator using an 

adaptive noise schedule that is determined by a diffusion model. This is done in order to take 

advantage of the flexible diffusion model. On the other hand, GAN can make sampling speed for 

diffusion models more manageable. Xiao et al. (2021) [148] demonstrate that the Gaussian 

assumption made during the denoising step, which is justified only for steps with small sizes, is 

the root cause of slow sampling. As a consequence of this, each step of the denoising process is 

modelled by a conditional GAN, which enables larger step sizes. 

6.3 Normalizing Flows and Connections with Diffusion Models 

Normalizing flows are examples of generative models that can model high-dimensional data 

[53,122]. These models generate tractable distributions. When flows are normalized, a simple 

probability distribution can be transformed into an extremely complex probability distribution. 

This extremely complex probability distribution has applications in generative models, 

reinforcement learning, variational inference, and other areas of study. 

The change of variable formula is used as the foundation for the construction of existing 

normalizing flows [175]. A differential equation is used to describe the trajectory that is produced 

by normalizing flows. In the setting of discrete time, the mapping from data x to latent z in 

normalizing flows is a composition of a sequence of bijections, taking the form of 𝐹 = 𝐹𝑁 ∘ 𝐹𝑁−1 ∘

… ∘ 𝐹1. In other words, the mapping is a sequence of bijections. 

In normalizing flows, the following conditions must be met for the trajectory denoted by 

{𝑥1, 𝑥2, … 𝑥𝑁} etc.: 

𝐱𝑖 = 𝐹𝑖(𝐱𝑖−1, 𝜃), 𝐱𝑖−1 = 𝐹𝑖
−1(𝐱𝑖, 𝜃) 

for all 𝑖 ≤ 𝑁 

In a manner analogous to that of the continuous setting, normalizing flows make it possible to 

retrieve the exact log-likelihood by modifying the formula for the variable in question. The 
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modelling of complex data is hindered, however, by the bijection requirement, which applies in 

both practical and theoretical settings [27, 144]. Several works [34, 93] make an effort to modify 

this bijection requirement in some way. For instance, in [157], a generative modelling algorithm 

called DiffFlow is presented. This algorithm combines the advantages of flow-based models with 

those of diffusion models. As a consequence of this, DiffFlow generates boundaries that are more 

distinct than those produced by normalizing flow, and it discovers more general distributions with 

fewer discretization steps than diffusion probabilistic models. 

6.4 Autoregressive Models and Connections with Diffusion Models 

Autoregressive Models (ARMs) work by decomposing the joint distribution of data into a product 

of conditional distributions using the probability chain rule: 

log 𝑝(𝐱1:𝑇) =∑  

𝑇

𝑡=1

log 𝑝(𝑥𝑡 ∣ 𝐱<𝑡) 

where 𝐱<𝑡 is an abbreviation for 𝑥1, 𝑥2, … , 𝑥𝑡−1[80]. Recent developments in deep learning have 

made it possible for significant progress to be made across a wide variety of data modalities, 

including image, audio, and text. 

The application of a single neural network allows autoregressive models, also known as ARMs, to 

provide generative capabilities. Taking a sample from one of these models requires the same 

amount of network calls regardless of the dimensionality of the data. Although ARMs are reliable 

density estimators, the sampling process is iterative and time-consuming, which is especially 

problematic when dealing with high-dimensional data. 

On the other hand, the Autoregressive Diffusion Model (ARDM) [63] is able to generate arbitrary-

order data, which can include order-agnostic autoregressive models and discrete diffusion models 

as special cases [96, 128]. Instead of employing causal masking on representations such as ARMs, 

the ARDM is trained with an effective objective that is analogous to that of diffusion probabilistic 

models. During the testing phase, the ARDM is capable of generating data in parallel, which 

enables its application to a variety of tasks involving arbitrary generation. 

6.5 Energy-based Models and Connections with Diffusion Models 

Energy-based Models (EBMs) [18, 45, 103, 110, 160] can be viewed as one generative version of 

discriminators [51], while also having the capability of learning from unlabeled input data. [45]. 

A training example is denoted by the notation 𝐱 ∼ 𝑝data (𝐱), and the probability density function 

that attempts to approximate pdata is denoted by the notation 𝑝𝜃(x).A model that is based on 

energy can be defined as: 

𝑝𝜃(𝐱) =
1

𝑍𝜃
exp(𝑓𝜃(𝐱)) 

where 𝑍𝜃 = exp∫ (𝑓𝜃(𝐱))𝑑𝐱 is the partition function, and it is mathematically impossible to 

analyze for high-dimensional x. In the case of images, the parameterization of f' (x) is handled by 
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a convolutional neural network that has a scalar output. Salimans et al. (2021) [121] compare both 

constrained score models and energy-based models for modelling the score of the data distribution. 

They come to the conclusion that constrained score models, i.e., energy based models, can perform 

just as well as unconstrained models when employing a comparable model structure. This finding 

was made possible by the fact that unconstrained models were compared to both constrained score 

models and energy-based models. 

There are still two obstacles to overcome when modelling high-dimensional data, despite the fact 

that EBMs have a number of properties that are desirable. To begin, learning EBMs by maximizing 

the likelihood requires the use of the MCMC method in order to generate samples from the model, 

which can be very computationally expensive. Second, as shown in [102], the energy potentials 

that are learned with non-convergent MCMC are not stable. This means that samples from long-

run Markov chains can be significantly different from the observed samples, and as a result, it is 

difficult to evaluate the learned energy potentials. In a recent piece of research, Gao et al. (2021) 

[46] present a diffusion recovery likelihood method to learn samples from a sequence of EBMs in 

a way that is tractable. This method is used in the reverse process of the diffusion model. Each 

EBM is trained using recovery likelihood, which seeks to maximize the conditional probability of 

the data at a certain noise level, given their noisy versions at a higher noise level. This is done by 

comparing the data at the lower noise level with the noisier versions at the higher noise level. 

EBMs aim to maximize the recovery likelihood rather than the marginal likelihood because the 

former is easier to work with. This is due to the fact that sampling from conditional distributions 

is much less difficult than sampling from marginal distributions. This model is capable of 

generating samples of a high quality, and even after a long run, MCMC samples derived from 

conditional distributions still look like realistic pictures. 
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Chapter 7 

APPLICATIONS OF DIFFUSION MODELS 

Because of their adaptability and robustness, diffusion models have recently begun to be used to 

tackle a wide range of difficult problems that arise in the real world. We have separated these 

applications into the following six distinct categories according to the task at hand: computer 

vision, natural language processing, temporal data modelling, multi-modal learning, and robust 

learning applications. For each category, we begin with a condensed introduction to the activity, 

then move on to a comprehensive discussion of the ways in which diffusion models have been 

utilized to enhance performance. The many different applications of diffusion models are 

discussed in this chapter. 

7.1 Computer Vision 

7.1.1. Super Resolution, Inpainting, and Translation. Several image restoration tasks, such as 

super-resolution, inpainting, and translation, have been successfully tackled by generative models 

[8, 40, 68, 82,113]. Image super-resolution aims to restore high-resolution images from low-

resolution inputs, whereas image inpainting focuses on reconstructing missing or damaged regions 

in an image. Both of these techniques are used in digital photography. 

Diffusion models are utilized by multiple methodologies to accomplish the aforementioned goals. 

One application of DDPM that enables conditional image generation is Super-Resolution via 

Repeated Refinement (SR3), for instance. A stochastic and iterative denoising process is used to 

carry out super-resolution calculations in SR3. The Cascaded Diffusion Model (CDM) [60] is 

made up of multiple diffusion models that are run one after another, with each one producing 

images with a higher resolution than the previous one. Both the SR3 and the CDM perform the 

diffusion process on the input images in a direct manner, which results in more extensive 

evaluation steps. 

Some methods [118, 138] have moved the diffusion process to the latent space using pre-trained 

autoencoders in order to make it possible to train diffusion models despite having limited 

computational resources. This makes it possible to train diffusion models. The Latent Diffusion 

Model (LDM) [118] is a method that improves the quality of denoising diffusion models while 

simultaneously making the training and sampling processes more efficient. Repaint [89] has an 

improved denoising strategy that works well for inpainting tasks. This strategy makes use of 

resampling iterations in order to better condition the image (see Figure Fig. 7). In the meantime, 

Palette [119] makes use of conditional diffusion models to develop a unified framework for the 

generation of four different types of images, namely colorization, inpainting, upcropping, and 

JPEG restoration. 
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Image translation is primarily concerned with the creation of images that are modelled after 

particular aesthetic preferences [68]. To achieve a higher level of fidelity, SDEdit [98] applies a 

stochastic differential equation (SDE) prior. To be more specific, it starts by adding noise to the 

image that was input, and then it denoises the image by running it through the SDE. 

Fig. 8. Image super resolution results produced by LDM [118]. 

Fig. 9. Image inpainting results produced by Repaint [89]. 

7.1.2. Semantic Segmentation. The goal of semantic segmentation is to assign a label to each 

pixel in an image in accordance with predetermined object categories. Recent research has shown 

that representations learned through DDPM contain high-level semantic information that is useful 

for segmentation tasks [7, 50, 170]. Generative pre-training can improve the label utilization of 

semantic segmentation models, and this research has also shown that representations learned 

through DDPM contain high-level semantic information. Alternatives such as VDVAE  and ALAE 

haven't been able to compete with the success of the few-shot method that makes use of these 

learned representations. Similar to DDP, Decoder Denoising Pretraining (DDeP) [12] combines 
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diffusion models and denoising autoencoders [141] to achieve label-efficient semantic 

segmentation with promising results. 

7.1.3. Video Generation. Producing videos of a high quality is still difficult in this day and age 

of deep learning due to the complexity and spatio-temporal continuity of video frames [ 103, 

152]. Diffusion models have been the focus of recent research that aims to improve the overall 

quality of generated videos [61, 156, 168]. For instance, the Flexible Diffusion Model (FDM) 

makes use of a generative model to enable the sampling of any arbitrary subset of video frames, 

given any other subset. This makes it possible to detect motion blur in videos. A is also included 

in the FDM. 

 

Fig. 10. The directed graphical model of the diffusion process for point clouds [91]. 

 

architecture that is specifically tailored to serve this function. Additionally, the Residual Video 

Diffusion (RVD) model [153] utilizes an autoregressive, end-to-end optimized video diffusion 

model. It does this by modifying a deterministic prediction of the next frame and making use of a 

stochastic residual that is produced through an inverse diffusion process. This results in the 

generation of future frames. 

7.1.4. Point Cloud Completion and Generation. When it comes to capturing real-world objects, 

point clouds are an essential form of 3D representation to have. Nevertheless, scans frequently 

produce point clouds that are missing points due to either partial observation or self-occlusion. 

Recent studies have applied diffusion models to address this challenge, using them to infer missing 

parts in order to reconstruct complete shapes. This work has repercussions for a variety of tasks 

that come after it, including 3D reconstruction, augmented reality, and scene comprehension [92]. 

The approach that was taken by Luo et al. 2021 [91] was to treat point clouds as particles in a 

thermodynamic system. They used a heat bath to facilitate diffusion from the original distribution 

to a noise distribution. This approach was successful. In the meantime, the Point-Voxel Diffusion 

(PVD) model [161] combines denoising diffusion models with the point voxel representation of 

three-dimensional shapes. The Point Diffusion-Refinement (PDR) model establishes a point-wise 

mapping between the generated point cloud and the ground truth. It does this by utilizing a 

conditional DDPM to generate a coarse completion from partial observations. 
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7.1.5. Anomaly Detection. The Detection of Anomalies Both machine learning and computer 

vision face the crucial and difficult problem of anomaly detection. It has been demonstrated that 

generative models are in possession of a potent mechanism for anomaly detection [47, 57, 147], 

which involves modelling normal or healthy reference data. AnoDDPM [147] makes use of DDPM 

to corrupt the input image and then reconstructs the image into a more accurate representation of 

itself. These methods may perform better than alternatives that are based on adversarial training 

because they can model smaller datasets more effectively and have more stable training schemes. 

This is because they use effective sampling. 

The training process used by DDPM is enhanced by the addition of a substantial number of 

unsupervised remote sensing images provided by DDPM-CD [47]. Using a pre-trained DDPM and 

applying the multi-scale representations from the diffusion model decoder, changes in remotely 

sensed images can be identified and analyzed. 

7.2 Natural Language Processing 

The goal of natural language processing is to comprehend, model, and manage human languages 

derived from a variety of sources including text and sound. Text generation has emerged as one of 

the natural language processing field's most important and difficult tasks [83]. Its goal is to 

generate plausible and readable text in the human language based on a set of input data, such as a 

sequence of keywords, or a random noise stream. Text generation has been approached from a 

number of different angles, many of which are based on diffusion models. Discrete Denoising 

Diffusion Probabilistic Models, or D3PM, [6] is an algorithm that introduces diffusion-like 

generative models for character-level text generation. It goes beyond corruption processes with 

uniform transition probabilities, which is how the multinomial diffusion model [96] is generalized 

by this theory. It has been demonstrated that large autoregressive language models (LMs) are able 

to produce high-quality text [13, 23,174]. In order to reliably deploy these LMs in applications that 

run in the real world, it is typically expected that the text generation process will be able to be 

controlled. This means that we need to generate text that can meet the requirements that are desired 

(e.g., topic, syntactic structure). 

The problem of controlling the behavior of language models without resorting to retraining is a 

significant one that arises frequently in the process of text generation. Even though more recent 

methods have had a lot of success controlling simple sentence attributes (like sentiment) [151], 

there hasn't been a lot of progress made on more complex and fine-grained controls (e.g., syntactic 

structure). In order to deal with controls that are more complex, Diffusion-LM [84] suggests a new 

language model that is based on continuous diffusion. The Diffusion-LM algorithm begins with a 

string of Gaussian noise vectors and gradually denoises them until they are transformed into 

vectors that correspond to words. In order to produce hierarchical continuous latent 

representations, the gradual denoising steps are helpful. This hierarchical and continuous latent 

variable has the potential to make it possible for simple methods that are based on gradients to 

accomplish complex control. In Analog Bits [22], the analogue bits that represent the discrete 

variables are generated, and the sample quality is further improved with self-conditioning and 

asymmetric time intervals. A new conditional diffusion model is proposed in DiffuSeq [58] as a 

means of completing more difficult text generation tasks. 
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7.3 Temporal Data Modeling 

7.3.1. Time Series Imputation. Time series data are utilized in a variety of significant 

applications that take place in the real world [39, 106, 152]. Despite this, time series frequently 

have values that are absent for a variety of reasons, including those that are the result of mechanical 

or artificial errors [100]. Imputation techniques have undergone significant development in recent 

years, particularly in the areas of deterministic imputation [95] and probabilistic imputation [42] 

as well as diffusion-based methods. This paper presents a novel method for imputation of time 

series that makes use of score-based diffusion models and is referred to as Conditional Score-based 

Diffusion models for Imputation (CSDI) [137]. 

To be more specific, it takes on the form of self-supervised training to optimize diffusion models 

in order to achieve the goal of capitalizing on correlations that are present within temporal data. 

The use of it in some real-world datasets has shown that it is superior to methods that have been 

used in the past. 

A novel probabilistic framework is proposed in Controlled Stochastic Differential Equation 

(CSDE) [107] for modelling stochastic dynamics with a neural-controlled stochastic differential 

equation. Structured State Space Diffusion (SSSD) [1] is an integration of conditional diffusion 

models and structured state-space models [52]. Its primary purpose is to specifically capture long-

term dependencies in time series. It is effective in both the imputation of time series and the 

forecasting of future events. 

 

Fig. 11. The procedure of time series imputation with CSDI [137]. 

 

7.3.2 Time Series Forecasting. Forecasting based on Time Series The process of forecasting or 

predicting the future value over a specified amount of time is referred to as time series forecasting. 

In recent years, neural methods have gained widespread popularity as a solution to the problem of 

making accurate predictions using univariate point forecasting methods [105] or univariate 

probabilistic methods [122]. In the setting of multiple variables, we also have point forecasting 

methods and probabilistic methods, which explicitly model the data distribution by utilizing 

Gaussian copulas [123], generalized additive models [155], or normalizing flows [115]. An 

autoregressive model is presented in TimeGrad [114] for the purpose of forecasting multivariate 
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probabilistic time series. This model takes a sample from the data distribution at each time step by 

estimating the gradient of that distribution. It makes use of diffusion probabilistic models, which 

are intrinsically linked to score matching and energy-based approaches. Specifically, it learns 

gradients by optimizing a variational bound on the likelihood of the data, and during inference 

time it converts white noise into a sample of the distribution of interest through a Markov chain 

using Langevin sampling [132]. Both of these processes take place through a Markov chain. 

7.3.3. Waveform Signal Processing. In electronics, acoustics, and other fields that are related, 

the waveform of a signal is denoted by the shape of the graph that represents the signal as a function 

of time. This shape is independent of the signal's time scale and magnitude scale. Wave Grad [19] 

is a publication that presents a conditional model for the generation of waveforms. This model 

estimates gradients of the data density. It takes in a signal that is characterized by Gaussian white 

noise as its input and then uses a gradient-based sampler to iteratively improve the signal. Wave 

Grad makes a connection between nonauto regressive and autoregressive models in terms of audio 

quality. This is accomplished by adjusting the number of refinement steps, which causes a natural 

tradeoff between inference speed and sample quality. DiffWave [79] demonstrates a diffusion 

probabilistic model that is both flexible and efficient, and it can generate waveforms either 

conditionally or unconditionally. The model is non-autoregressive and has an effective training 

process that involves efficiently optimizing a variational bound on the data likelihood. In addition 

to this, it is capable of producing audio of a high-fidelity in a variety of waveform generation tasks, 

such as class-conditional generation and unconditional generation. 

7.4 Multi-Modal Learning 

7.4.1. Text-to-Image Generation. Vision-language models have attracted a lot of attention 

recently due to the number of potential applications. Text-to-Image generation is the task of 

generating a corresponding image from a descriptive text [75, 139]. An example is shown in Fig. 

8. Blended diffusion [4] utilizes both pre-trained DDPM [33] and CLIPmodels, and it proposes a 

solution for region-based image editing for general purposes, which uses natural language 

guidance and is applicable to real and diverse images. On the other hand, unCLIP (DALLE-2) 

[112] proposes a two-stage approach, a prior model that can generate a CLIP-based image 

embedding conditioned on a text caption, and a diffusion-based decoder that can generate an image 

conditioned on the image embedding. Recently, Imagen [120] proposes a text-to-image diffusion 

model and a comprehensive benchmark for performance evaluation. It shows that Imagen performs 

well against the state-of-the-art approaches including VQ-GAN+CLIP [29], Latent Diffusion 

Models [88], and DALL-E 2 [112]. Inspired by the ability of guided diffusion models [33] to 

generate photorealistic samples and the ability of text-to-image models to handle free-form 

prompts, GLIDE [100] applies guided diffusion to the application of text-conditioned image 

synthesis. Many researches like VQ-Diffusion [53] proposes a vector-quantized diffusion model 

for text-to-image generation, and Q-Diffusion [169] to text-guided image generation it eliminates 

the unidirectional bias and avoids accumulative prediction errors. 

7.4.2. Text-to-Audio Generation. Generation of Audio from Written Text The process of 

converting regular language texts into voice outputs is referred to as text-to-audio generation [81, 

145]. A novel text-to-speech model called Grad-TTS [109] is presented, which includes a score-
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based decoder and diffusion models. It gradually alters the noise that was predicted by the encoder, 

and after that, it is aligned with the text that was input using a technique called Monotonic 

Alignment Search [111]. Grad-TTS2 [76] is an adaptive improvement that was made to Grad-TTS. 

Diffsound presents a non-autoregressive decoder that is based on the discrete diffusion model [6, 

128]. This decoder predicts all of the mel-spectrogram tokens in each and every step, and then 

refines the predicted tokens in the steps that come after them. EdiTTS [136] makes use of a score-

based text-to-speech model in order to fine-tune a mel-spectrogram prior that has been roughly 

altered. ProDiff [66] parameterizes the denoising diffusion model by directly predicting the clean 

data. This is in contrast to the traditional method of estimating the gradient of data density. 

 

 

Fig. 12. Text-to-image result generated by DALL-E-2 [112]. 

 

7.5 Robust Learning 

Learning networks that are resilient in the face of adversarial perturbations or noises are referred 

to as "robust" [11, 101, 149, 171]. Robust learning is a class of defensive methods that helps 

learning networks. While adversarial training is considered to be a standard method for defending 

against adversarial attacks for image classifiers, adversarial purification [101], which transforms 

attacked images into clean images using a standalone purification model, has demonstrated 
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significant performances as an alternative method for defending against adversarial attacks [154]. 

After receiving an adversarial example, the DiffPure [101] algorithm first applies a forward 

diffusion process to it, which generates a small amount of noise, and then it applies a reverse 

generative process, which restores the original, clean image. Adaptive Denoising Purification, or 

ADP [154], demonstrates that an EBM that has been trained with denoising score matching [140] 

can effectively purify images that have been attacked in a relatively short amount of time. In 

addition to this, it suggests an efficient method of randomised purification, which involves the 

addition of random noises to images prior to purification. [9] presents a new stochastic diffusion-

based pre-processing robustification called Projected Gradient Descent (PGD). Its goal is to be a 

model-agnostic adversarial defence and produce a high-quality denoised outcome. In addition, 

some works suggest using a guided diffusion process for advanced adversarial purification [149]. 

7.6 Bioinformatics 

In recent years, a great number of diffusion models have begun to be utilized in an effort to solve 

a variety of issues in the field of bioinformatics [43]. These issues include denoising cryo-EM data, 

single-cell gene expression analysis, protein design, drug and small molecule design, and modeling 

of protein-ligand interactions. This demonstrates the enormous potential that diffusion-based 

models have in the field of bioinformatics because these models routinely perform better than their 

forerunners, such as VAE and GAN. The purpose of this review is to provide a comprehensive 

analysis of diffusion models as well as a survey of their most recent applications in bioinformatics. 

7.6.1. Cryo-EM data analysis. Cryo-EM, which stands for single particle cryo-electron 

microscopy, is one of the most important imaging techniques for determining and visualizing the 

three-dimensional conformation (structure) of large biomolecular complexes (such as protein 

complexes) at the atomic resolution. Cryo-electron microscopy (cryo-EM) images of protein 

complexes can be used to reconstruct their three-dimensional conformation, which is represented 

by three-dimensional density maps. 

CryoDRGN [164] is a method for the reconstruction of the structure of protein complexes. As part 

of this method, a latent variable Z was introduced to define a conformational space V for a protein 

complex based on cryo-EM density maps. The conventional CryoDRGN algorithm, which is based 

on the Variational Autoencoder (VAE) framework, is trained to discover a continuous distribution 

in the latent space for protein structures using cryo-EM data. However, the fact that the Gaussian 

prior distribution of VAE does not match the aggregate approximation posterior restricts the 

generative capability of the model, despite the fact that CryoDRGN is capable of simulating 

complicated structural dynamics. A high-quality generative model for protein conformations can 

now be learned directly from cryo-EM imaging data thanks to the recent addition of a continuous-

time diffusion model (also known as Score SDEs) into CryoDRGN. With its expressive denoising 

diffusion generative models, the brand-new CryoDRGN [163] is able to better capture the 3D 

conformations of protein complexes and reconstruct 3D conformation of a higher quality. 

7.6.2. Protein design and generation. In order to design novel proteins, such as enzymes, that 

are more efficient at performing certain functions than natural proteins, it is necessary to first 

determine the structure of a protein and then design protein sequences that can fold into that 
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structure (also known as the inverse protein folding problem). RFDiffusion is capable of 

constructing a DDPM generative model of protein backbones. This model can then be put to use 

in the process of designing protein monomers, symmetric protein oligomers, enzyme active site 

scaffolding, and symmetric motif scaffolding. It has been put to use in the development of 

therapeutic proteins and proteins that bind metals. Some of the proteins that were designed using 

RFDiffusion have been validated experimentally. 

To solve the motif-scaffolding problem, which requires designing a scaffold structure based on a 

protein motif, another diffusion model called SMCDiff was proposed. After employing the 

diffusion-based model ProtDiff to make an initial prediction of the protein backbone, it then makes 

use of the SMCDiff algorithm in order to produce scaffolds for arbitrary motifs. It is capable of 

producing scaffolds that are longer and more diverse than the methods that came before it. 

ProteinSGM[165] is a score-based generative diffusion model that generates images-like 2D 

matrices consisting of inter-residue pairwise distances and angles to represent protein backbone 

structures. These matrices can be viewed as a representation of protein backbone structures. After 

that, the matrices are used to generate native-like protein3D structures, which can then be utilized 

in the design of novel proteins. In a similar manner, Foldingdiff makes use of a DDPM model in 

conjunction with a vanilla transformer model in order to generate protein sequences that can fold 

into a backbone protein structure. Even though the folds of the designed protein sequences had not 

been verified by experiments such as x-ray crystallography, some of the generated protein 

sequences were put through protein structure prediction tools (such as AlphaFold2) to see if they 

were capable of folding into the desired protein structure. These tools checked to see if the 

generated protein sequences could form the desired protein structure. 

Chorma [166] is a diffusion-based generative model that can generate large protein singletons 

(with more than 3000 residues) as well as protein complexes. To control the generation of the 

structure, the model can take into account a variety of constraints, such as the distance between 

adjacent residues, symmetry, and shape. It does this by employing a backbone diffusion network 

to model the transformation of a collapsed polymer system into a protein complex backbone and 

a graph-based design network to generate protein sequences conditionally on the sampled 

backbone. Both of these networks are connected via a graph. It makes use of a random graph neural 

network, which, in comparison to some earlier work, allows it to reduce the time complexity from 

O(N2) or O(N3) down to O(N). As a result, it is able to generate large proteins and complexes in 

an effective manner. 

A generative model that was designed in previous works introduces a fully data-driven DDPM 1 

model for the purpose of generating realistic proteins across the full range of structural domains in 

the Protein Data Bank (PDB). This model was designed for use in previous work. It is able to 

achieve equivariance to rotations as well as translations of protein structures thanks to its invariant 

point attention modules. In order to generate discrete protein sequences, it makes use of an 

approach that is analogous to masked language modeling. In contrast to some of the methods that 

came before it, it is capable of producing large proteins with multiple domain topologies. 
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The Dynamic Graph Score Matching (DGSM) algorithm was initially developed for the purpose 

of predicting stable 3D conformations from 2D molecular graphs in the field of computational 

chemistry. Subsequently, the algorithm was extended to the prediction of protein sidechain 

conformation and multi-molecular complex prediction. It does this by dynamically building graph 

structures according to the atom-atom spatial proximity, which allows it to model both local and 

long-range interactions. The model can directly estimate the gradient fields of the logarithm 

density of atomic coordinates, particularly when the score matching method is used. The model is 

capable of receiving instruction from beginning to end. The new model has the potential to address, 

to a large extent, the limitation of traditional experimental and physics-based simulation methods, 

which is the tendency to ignore the long-range interactions that can occur between non-bounded 

atoms. 

7.6.3. Small molecule generation and drug design. It is essential for both fundamental 

biomedical research and the development of new drugs to design small molecules (such as drugs) 

that can mediate the structure and function of proteins. One of the methods that can be utilized in 

order to find new small molecules, such as potential drug candidates, in three-dimensional space 

is known as fragment-based drug design. When you start with molecular fragments, the objective 

is to design linkers that are composed of atoms so that you can combine the fragments into a 

functionally complete molecule. An E(3)-equivariant 3D-conditional diffusion model is utilized 

by DiffLinker[167] in order to generate molecular linkers for the purpose of connecting the various 

molecular fragments. A graph neural network is used to predict the size of the linker, and an 

equivariant diffusion model is used to generate the linker that connects the input fragments. 

Together, these two components make up the system. Not only is it able to generate linkers for 

multiple fragments, but it can also generate the number of atoms contained within the linker as 

well as the attachment points for the fragments that are fed into it. 

In order to produce small molecules, the E(3)-Equivariant Diffusion Model (EDM) applies the 

diffusion process to the atom coordinates and atom types in the Euclidean space. The previous 

methods had a limit of nine heavy atoms for the largest molecule structures they could generate, 

but this new method can generate molecules with as many as 29 atoms. 

The equivariant graph neural network (EGNN) and the diffusion process are both incorporated 

into this solution. The first method uses geometric symmetries to model the structures of 

molecules, while the second method simplifies training in order to improve both performance and 

scalability. A simple yet novel diffusion-based generative model called the Diffusion Informative 

Prior Bridge was designed to guide the diffusion process in order to generate high-quality and 

realistic molecules. This model was inspired by the physics that govern the formation of small 

molecules, and it was created in order to guide the diffusion process and generate high-quality 

molecules. In order to improve the generation of molecules as well as uniformity-enhanced 3D 

point clouds, several energy functions are integrated with the physical and statistical prior 

information. 
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7.7 Interdisciplinary Applications 

7.7.1. Molecular Graph Modeling. The Molecular Graph Modeling Procedure Graph Neural 

Networks [55] and corresponding representation learning [56] techniques have had a lot of success 

[10, 146] in a lot of different fields, including modelling molecule graph in various tasks ranging 

from property prediction [38, 48] to molecule generation [69, 73, 93, 125], where a molecule is 

naturally represented by a node-edge graph. This includes modelling molecule graph In spite of 

the fact that they are effective in a variety of applications, more fundamental and informative 

properties are beginning to be combined with diffusion models in order to improve molecular 

graph modelling. 

The paper "Torsional Diffusion" presents a new diffusion framework that performs operations on 

the space of torsion angles using a diffusion process on the hyperspace and an extrinsic-to-intrinsic 

scoring model. Torsional diffusion [173] can be found in aforementioned paper. Markov chains 

evolving with equivariant Markov kernels can produce an invariant distribution, as demonstrated 

by GeoDiff [172], which also designs blocks for the Markov kernels to maintain the desirable 

equivariance property. There are also other works that incorporate the equivariance property into 

the generation of 3D molecules [62] and proteins [2, 9]. ConfGF [124] directly estimates the 

gradient fields of the log density of atomic coordinates in molecular conformation generation. This 

method was motivated by the classical force field methods for simulating molecular dynamics. 

7.7.2. Material Design. The Design of Materials Solid state materials are the essential building 

blocks for the foundation of a great many important technologies [14]. Crystal Diffusion 

Variational Autoencoder (CDVAE) [149] is an algorithm that incorporates stability as an inductive 

bias by proposing a noise. 

 

Fig. 13. Molecule-to-conformation diffusion process in GeoDiff [172] 

conditional score network that makes use of permutation, translation, rotation, and periodic 

invariance properties all at the same time. To generate antibodies with atomic resolution, Luo et 

al. (2022) [94] model sequences and structures of complementarity-determining regions using 

equivariant diffusion. Additionally, they explicitly target specific antigen structures. 
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7.7.3. Medical Image Reconstruction. The process of recovering an unknown signal from 

observed measurements is referred to as an inverse problem. This is a significant challenge in the 

field of medical image reconstruction, specifically for computed tomography (CT) and magnetic 

resonance imaging (MRI) [16, 24, 25, 108, 134, 150, 160]. A score-based generative model was 

used by Song et al. (2021) [134] in order to reconstruct an image that is consistent with both the 

prior measurements and the observed measurements. Chung et al. (2022) [26] train a continuous 

time-dependent score function with denoising score matching and iterate between the numerical 

SDE solver and data consistency step for reconstruction at the evaluation stage. This is done in 

order to reconstruct the data. Peng et al. (2022) [108] perform MR reconstruction by gradually 

guiding the reverse-diffusion process given observed k-space signal, and they propose a coarse-

to-fine sampling algorithm for efficient sampling. This method was developed to improve the 

accuracy of MR imaging.  
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Chapter 8 

FUTURE DIRECTIONS and CONCLUSION 

 

FUTURE DIRECTIONS: The study of diffusion models is still in its infancy, and there is a 

significant amount of room for development in both the theoretical and empirical facets of the 

subject. As was covered in earlier chapters, key directions for future research include efficient 

sampling and improved likelihood, as well as the investigation of how diffusion models can handle 

special data structures, interface with various other types of generative models, and be adapted to 

a variety of applications. In addition, we believe that the scope of future research on diffusion 

models will most likely extend into the following areas of investigation. 

Revisiting Assumptions. A Look Back at the Presumptions It is necessary to reconsider and 

evaluate a great number of the standard assumptions found in diffusion models. For instance, the 

assumption that the forward process of diffusion models completely erases any information in data 

and renders it equivalent to a prior distribution may not always hold true. This is because the 

forward process of diffusion models occurs before the prior distribution. In reality, it is impossible 

to erase all traces of information in a period of time that is finite. It is of great interest to understand 

when to stop the forward noise process in order to strike a balance between sampling efficiency 

and sample quality [44]. Understanding when to stop the process is essential. Recent developments 

in Schrodinger bridges and optimal transport [21, 30, 32, 126, 130] provide promising alternative 

solutions. These developments suggest new formulations for diffusion models that are capable of 

converging to a specified prior distribution in finite time. The use of diffusion models has 

significantly advanced the state of the art in a number of significant areas of bioinformatics and 

has gained traction in a number of important bioinformatics domains. The use of diffusion models 

will continue to rapidly expand in the field of bioinformatics due to their superior capabilities, in 

comparison to those of other generative models, of both denoising existing data and generating 

new data that is more realistic. The field of bioinformatics possesses a vast quantity of issues that 

can be solved by using diffusion models. 

Theoretical Understanding. Theoretical Comprehending of the Situation Diffusion models have 

recently emerged as a powerful framework, particularly because they are the only ones that can 

compete with generative adversarial networks (GANs) in the majority of applications without the 

need to engage in adversarial training. Understanding why and when diffusion models are more 

effective than alternative approaches for particular tasks is essential to making effective use of this 

potential. It is essential to determine the fundamental characteristics that distinguish diffusion 

models from other types of generative models, such as variational autoencoders, energy-based 

models, or autoregressive models. 

If you are able to grasp these distinctions, you will be better able to comprehend why diffusion 

models are able to produce samples of such high quality while still achieving the highest 
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likelihood. To a similar degree of significance is the requirement to develop theoretical guidance 

for selecting and determining various hyperparameters of diffusion models in a systematic manner. 

Latent Representations. Latent representations are an essential aspect of diffusion models, as they 

capture the underlying structure of the data and allow for efficient modeling and prediction. In 

diffusion models, a latent representation is a low-dimensional space that describes the variations 

in the observed data. By projecting the data into this space, the model can capture the essential 

features of the data and perform tasks such as dimensionality reduction, clustering, and 

classification. 

The construction of latent representations in diffusion models can be achieved using various 

techniques such as principal component analysis (PCA), autoencoders, and variational 

autoencoders. PCA is a linear technique that decomposes the data into its principal components, 

which are the directions of maximum variance. Autoencoders and variational autoencoders are 

non-linear techniques that learn a mapping between the observed data and the latent space using 

neural networks. These techniques can learn complex non-linear relationships in the data, making 

them particularly useful for modeling complex systems. 

Once the latent representation is constructed, it can be used to model the diffusion process. In 

diffusion models, the observed data is assumed to be generated by a diffusion process that evolves 

over time. The diffusion process can be modeled using a stochastic differential equation, where 

the latent representation is the state variable. By modeling the diffusion process using the latent 

representation, the model can capture the temporal dependencies in the data and make predictions 

about future observations. 

Overall, latent representations are a critical component of diffusion models, as they allow for 

efficient modeling and prediction of complex systems. These representations can be constructed 

using various techniques such as PCA, autoencoders, and variational autoencoders and can be used 

to model the diffusion process and capture the underlying structure of the data. 
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CONCLUSION  

We have presented an extensive analysis of diffusion models from a variety of perspectives. 

diffusion models, including DDPM, SGM, NCNS, and SDE, have become a popular tool for 

modeling complex systems in various fields. These models have benefited from recent advances 

in sampling efficiency, likelihood maximization, and new techniques for handling data with 

special structures. 

The use of techniques such as Hamiltonian Monte Carlo, Langevin dynamics, and Stein variational 

gradient descent has improved the sampling efficiency of diffusion models. This has allowed for 

the generation of high-quality samples from complex distributions, which is critical for accurate 

modeling and prediction. 

Likelihood maximization has also been an essential aspect of diffusion modeling, and methods 

such as maximum likelihood estimation, variational inference, and Bayesian inference have been 

used to estimate model parameters and compare different models. 

New techniques for handling data with special structures have also been developed, including 

those for time-series data, high-dimensional data, and data with missing values. These techniques 

have improved the ability of diffusion models to accurately model and predict complex systems. 

DDPM has gained popularity in the machine learning community due to its ability to handle multi-

modal distributions and generate high-quality images. SGM has been applied to study the 

dynamics of physical systems and is known for its ability to capture non-Gaussian behavior. NCNS 

has been used to model biological systems, such as neuronal activity, and incorporates 

nonparametric noise models. Finally, SDE has been extensively used to model financial markets 

and can capture the stochastic dynamics of asset prices. 

In summary, diffusion models have benefited from recent advancements in sampling efficiency, 

likelihood maximization, and new techniques for handling data with special structures. These 

models, including DDPM, SGM, NCNS, and SDE, have become a powerful tool for modeling 

complex systems, and future research will undoubtedly continue to refine and expand these models 

to better understand the behavior of complex systems. 
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