
ALMAMATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Machine Learning for Computer Vision

CONSISTENT 6D POSE ESTIMATION VIA
GEOMETRY-GUIDED OBJECT POSE GRAPH

CONSTRUCTION

CANDIDATE SUPERVISOR

Ludovico Granata Prof. Samuele Salti

CO-SUPERVISORS

Dr. Fabian Manhardt

Dr. Yan Di

Academic year 2021-2022

Session 3rd

ii

Contents

Introduction 1

1 Background and Related Works 3

1.1 Graph Neural Networks . 3

1.1.1 Graph R-CNN . 5

1.2 MonoPair . 7

1.3 Holistic 3D Scene Understanding 8

1.4 Holistic Pose Graph . 10

2 Architecture 12

2.1 Overview . 12

2.2 YOLOX . 13

2.3 GDR-Net . 15

2.4 Relative Translation Network 17

2.4.1 Preprocessing . 17

2.4.2 Architecture . 21

2.5 Pose Graph Neural Network 21

3 Evaluation Framework 23

3.1 BOP . 23

3.2 Task . 24

3.3 Dataset . 24

3.4 Metrics . 26

iii

3.4.1 Visible Surface Discrepancy 26

3.4.2 Maximum Symmetry-Aware Surface Distance 26

3.4.3 Maximum Symmetry-Aware Projection Distance . . . 27

3.4.4 Accuracy Score . 27

4 Experiments and Training Setup 29

4.1 Environment . 29

4.2 Relative Translation Network 30

4.2.1 Setup . 31

4.3 Graph Pose Network . 31

4.3.1 Loss . 32

4.3.2 Setup . 34

4.3.3 Results . 34

Conclusion 35

Bibliography 37

Acknowledgements 41

iv

List of Figures

1.1 Pipeline of the Graph R-CNN architecture [27] 5

1.2 Overview of the MonoPair architecture [2] 7

1.3 Overview of the Holistic 3D Scene Understanding architec-

ture [28] . 8

1.4 Overview of the Holistic Pose Graph Architecture [26] 10

2.1 Overview of the proposed architecture 12

2.2 Overview of the GDR-Net architecture[23] 15

2.3 Relative Translation Network architecture 17

2.4 Pair selection algorithm. The green circles identify two neigh-

boring objects. The red circle has other object centers that fall

in it, resulting in the classification of the yellow duck and the

pink cat as not neighbors. 18

2.5 Crop of images containing pair of objects 19

2.6 Example of augmentation techniques applied to crops of the

image . 19

2.7 Architecture of the Pose Graph Neural Network 21

3.1 Examples taken from the LM-O dataset[1] of real-world im-

age(a) and synthetic PBR image(b) 25

v

4.1 In the images, two bounding boxes are shown, one in blue

identifying the starting object, while the other in red is the tar-

get object. A rendering of the object in the estimated position

is shown. 30

vi

List of Tables

4.1 The table shows the results of the RTN model, tested on both

real images and synthetic ones. A comparison of the usage of

augmentation is also presented. 31

4.2 Comparison of GDR-Net and Ours on PBR and Real test set . 34

vii

Abstract

The process of determining the position and orientation of an object in

3D space with respect to the camera is known as 6D pose estimation. This

is a fundamental problem in computer vision that has numerous real-world

applications. Most of the existing approaches in the literature focus solely

on the object itself, without considering its relationships with other objects

within the scene. Therefore, in this thesis, we propose a novel method for

refining the monocular 6D object pose at the instance level of multiple objects

by leveraging geometric information about the relationships of neighboring

objects. Our experimental results demonstrate that our architecture, which

is trained exclusively on synthetic images, can produce satisfactory results

within the synthetic domain. However, when tested on real-world images, it

does not deliver the same level of performance.

Introduction

6D Pose Estimation refers to the process of determining the position and ori-

entation of an object in 3D space with respect to the camera. It is a fundamen-

tal problem in computer vision that has many real-world applications such as

robotic manipulation[4], augmented reality[16] and autonomous driving[24].

The task of 6D pose estimation is particularly challenging, since it requires not

only detecting the objects, but also determining their position in the 3D space,

despite cluttered environments, occlusions, and varying lighting conditions.

To overcome some of these challenges, most traditional methods make use

of RGB and depth data, commonly referred to as RGB-D methods. With the

advent of deep learning and especially with Convolutional Neural Networks

(CNNs)[17], the accuracy of monocular methods (i.e., using only one RGB

image) has improved significantly and is now comparable to that of RGB-D

methods.

6D Pose estimation can operate at either the instance level or the categori-

cal level. At the instance level, the specific objects in the scene are already

known and their computer-aided design (CAD) 3D models are provided as

input during training and testing, while, at the categorical level, only the cate-

gories of the objects in the scene are known, making the task harder. Instance-

level 6D pose estimation is more suitable for closely controlled environments

where high precision is desired and objects are not expected to change while

categorical-level 6D pose estimation is better suited for less constrained use

cases.

2

In this thesis, we present a method to refine the instance-level monocu-

lar 6D pose estimation of multiple objects in the same scene. Our approach

takes advantage of the relationship between pairs of objects to gain a more

comprehensive understanding of the whole scene, instead of focusing on indi-

vidual objects. By having a more general understanding of the scene we aim

to achieve a more consistent placement of each object resulting in improved

accuracy. Specifically, we aim to refine the 6D pose estimates generated by

GDR-Net[23], the state-of-the-art model for this task, by using a graph neural

network, where each node of the graph represents an object in the scene and

each edge encodes geometric features extracted from pairs of neighboring ob-

jects.

The structure of this thesis is as follows. The first chapter offers an overview

of related works that incorporate graphs and object relations in their pipeline,

which provided inspiration for our work. The second chapter introduces the

proposed architecture and details each component and its purpose. The third

chapter focuses on the dataset we used and the metric used to evaluate the

results. Lastly, the fourth chapter outlines the training environment, the loss

function utilized, the training process, and the final results.

Chapter 1

Background and Related Works

The aim of this chapter is to give a comprehensive understanding of the ex-

isting techniques and approaches used to tackle the problem of 6D Pose Es-

timation by exploiting relations between objects in the scene. We will start

with an introduction to Graph Neural Networks, as they will be used in our

architecture, and then we will present three approaches that inspired our work:

MonoPair[2], Holistic 3D sceneUnderstanding[28] andHolistic PoseGraph[26].

1.1 Graph Neural Networks

Representing data as graphs is a natural approach for many real-world appli-

cations where relationships between entities need to be considered. With the

rise of deep learning models in recent years, there have been many attempts to

apply this method to graphs, however, the application is not straightforward.

For instance, convolution neural networks (CNNs)[17] can achieve excellent

performance when applied to images because they can exploit their grid-like

nature, allowing them to take advantage of hierarchical patterns and extract

high-level features. The fundamental mechanism of CNNs is to learn a fixed-

size filter that scans every pixel in the image and combines it with the sur-

rounding pixels. Graphs, on the other hand, can have an irregular structure,

so convolution and filtering cannot be defined as with images. Therefore,

1.1 Graph Neural Networks 4

researchers have identified two main ways to apply convolution on graphs:

spectral graph convolution and spatial graph convolution.

Spectral graph convolutions are defined in the spectral domain that is based

on the graph Fourier transform. Here, convolution can be computed by taking

the inverse Fourier transform of the multiplication between two Fourier trans-

formed graph signals. The limitations of this type of approach include the high

computational costs of the Fourier transformations, as well as the difficulties

in generalizing to graphs with different topologies. To address the limitations

of spectral graph convolution, researchers have proposed an alternative ap-

proach, known as spatial graph convolution. The central idea of spatial graph

convolution is to directly aggregate the features of neighboring nodes in the

graph to compute a new representation for each node. As a result, spatial graph

convolution approaches are more computationally efficient as they don’t re-

quire the computation of the Fourier transform, and also they can capture local

relationships, being able to generalize to different types of graphs. One of the

most influential papers on this subject is the Graph Convolutional Network

(GCN)[12], which introduced a method that is still used today and inspired

many subsequent works. GCN is often considered to bridge the gap between

spectral-based methods and spatial-based methods, as can be explained from

both perspectives.

A graph G is defined as G = {V,E}, where V is the set of nodes and E is the

set of edges. The adjacency matrix A is built by setting the entry A(i, j) to 1

if there is an edge between i and j, 0 otherwise. The degree matrix of A , D ,

is a diagonal matrix defined as

D(i, i) =
n∑

j=1
A(i, j)

The output Hl+1 of the convolution at layer l is defined as

H l+1 = σ(D̃− 1
2 ÃD̃− 1

2 H(l)W (l))

1.1 Graph Neural Networks 5

where Ã is the adjacencymatrix summedwith the identity matrix, while D̃, the

degree matrix computed on Ã, is used to normalize the adjacency matrix. The

matrixW(l) contains the trainable weights while σ(·) is the activation function

that introduces non-linearity to the network.

In the following, we introduce another model based on graph convolution,

called Graph R-CNN[27] that has been used as a reference for our architecture.

1.1.1 Graph R-CNN

Figure 1.1: Pipeline of the Graph R-CNN architecture [27]

Graph R-CNN[27] is a scene graph generation model that is capable of

effectively detecting objects and their semantic relations from an image. The

pipeline, shown in Figure 1.1 consists essentially of three parts: an object pro-

posal, a relation proposal, and an attentional GCN. The Faster R-CNN [20]

framework is used to extract the object proposals from the image including

the coordinates of the bounding box and the label associated with the detected

object. The Relation Proposal Network is then introduced to prune the dense

graph obtained by adding a relation between each object proposal. In partic-

ular, not every pair of objects will be related, so a relatedness score is learned

and every relationship with a score below a certain threshold is pruned.

The final graph is constructed considering both the object proposal and the

relation proposal as nodes. An edge is added between all the object nodes and

also between the relation node and the object involved in the relation. Once

1.2 MonoPair 6

the final graph is built, the author proposes to use an attentional graph con-

volutional network (aGCN)[22]. Instead of weighting each node of a neigh-

borhood with coefficients based on the symmetrically normalized adjacency

matrix like in GCNs, the weighting coefficients are learned through an atten-

tion mechanism that consists of a 2-layer MLP over the concatenation of pairs

of node features. The final attention coefficients are obtained by computing

the softmax over the resulting scores

uij = W2σ(W1[zi, zj])

ai = softmax(ui)

The constructed graph has different types of connections:

• object ↔ relationship

• relationship ↔ subject

• object ↔ object

each type of connection will have its own weights, so the features of an object

node zo
i can be computed as:

zo
i = σ(W ooZoaoo + W rsZrars + W roZraro)

while for relationship node:

zr
i = σ(zr

i + W srZoasr + W orZoaor)

where s = subjects, o = objects, and r = relationships.

1.2 MonoPair 7

Figure 1.2: Overview of the MonoPair architecture [2]

1.2 MonoPair

MonoPair[2] is a research paper that proposes a novel method for Monocular

3D Object Detection using pairwise spatial relationships. Published in 2020

this work was the first to add relations between pairs of objects to estimate the

6D pose.

The proposed network uses a one-stage architecture, as shown in Figure 1.2. It

is composed of a backbone network followed by three task-specific branches.

It takes as input a monocular RGB image, then the backbone extracts a feature

map that will be the input to the three following branches:

• 2D detection → the 2D detection module, derived from CenterNet[6],

has to detect the objects in the image, estimating their bounding boxes

and their labels;

• 3D detection → the 3D detection module predicts the center of the 3D

bounding box, the size, and its orientation. The center is determined

in two steps: first, the offset between its projection onto the 2D feature

map and the center of the 2D bounding box is calculated, then the depth

is determined. The dimension of the bounding box is regressed directly,

while, to determine the object orientation, local orientation is used in-

stead of global orientation in the camera coordinate system. This ap-

proach is preferred because local orientation is more meaningful when

dealing with image features;

• Pair Constraint → the pair constraint module estimates the pairwise

1.3 Holistic 3D Scene Understanding 8

geometric constraint among adjacent objects via keypoints on the fea-

ture map. For each selected pair, the keypoint is placed in the middle

of their 2D bounding box centers, and the regression target for the key-

points is the 3D distance between the two objects.

The 3D bounding boxes estimated by the network, involved in at least one

of the pair constraints, will be refined by a 3D global optimization step, one

of the main contributions of the paper. The optimization is formulated as a

nonlinear least square problem

arg min
(ut,vt,zt)

eT We

where e is the error vector,W is theweightmatrix for the different errors, u and

v are the projected center of the 3D bounding box on the feature map, while

z is the depth. There are three error terms ex, ey, and ez that are obtained by

measuring the inconsistency for each axis between the estimated 3D distance

and the distance obtained as the difference of the 3D bounding box of each

object.

1.3 Holistic 3D Scene Understanding

Figure 1.3: Overview of the Holistic 3D Scene Understanding architecture
[28]

Holistic 3D Scene Understanding [28] is a research paper that proposes a

1.4 Holistic Pose Graph 9

new pipeline for holistic 3D Scene Understanding from a single image. The

architecture goes beyond the scope of this thesis as it not only estimates the

6D poses of the objects but also estimates the 3D geometry of each object.

Even if the task is different we have identified some interesting ideas, such as

the use of Scene Graph Convolutional Networks.

The proposed architecture consists of two stages: the initial estimation stage

and the refinement stage, as shown in Figure 1.3. The initial estimation stage

includes a 2D detector to identify the 2D bounding box of the objects in the

scene, an Object Detection Network (ODN) to compute 3D bounding boxes,

and a Local Implicit Embedding Network (LIEN) to extract local shape in-

formation from each object to infer 3D geometry. The input image is also

processed by the Layout Estimation Network (LEN) to produce 3D layout

bounding boxes and the relative camera pose.

In the refinement stage, the initial 3D bounding box predictions are refined by

incorporating scene context information using the Scene Graph Convolutional

Network. This network is based on Graph R-CNN [27], it creates a graph by

treating objects in the scene as nodes and connecting each object to others,

allowing information to flow between them. In a second step relation nodes

are added between pairs of neighboring object’s nodes. Each node has a set

of features: object nodes will include the object id, the initial 3D bounding

box estimation from the ODN network, and the object geometry embedding

from the LIEN network; the relation nodes will have as feature the 2D bound-

ing box coordinate for the two objects involved in the relation. The graph is

designed with different types of nodes, so different message passing weights

are defined for each of the source-destination types for the graph convolution.

The final refined results are obtained by passing each node’s representation to

a Multi Layers Perceptron (MLP).

1.4 Holistic Pose Graph 10

Figure 1.4: Overview of the Holistic Pose Graph Architecture [26]

1.4 Holistic Pose Graph

Holistic Pose Graph[26] is a research paper proposing a new pipeline for

Monocular 6D Pose Estimation at categorical level.

The proposed architecture in Figure 1.4 consists of two branches that predict

the pose of the camera and the pose of each object, respectively. The first

branch uses a ResNet-34[9] network as features extractor starting from the

whole image to estimate the camera pose.

The second branch first computes the 2D bounding box, then each detected

object proposal is cropped and fed to a ResNet-34 to extract its features. A

fully connected graph that models all geometric relationships between each

pair of objects is built by representing each detected object as a node. To in-

tegrate geometric information, a message passing mechanism is used to pass

the information along the graph structure and update the node GRUs[3] and

the edge GRUs. The GRUs of nodes are initialized with the features previ-

ously extracted for each object, while the GRUs of edges are initialized with

the features created by concatenating the features of the objects involved in the

relationship. All node GRUs share the same weights, and all edge GRUs share

another set of weights. During each iteration of message passing, each node

GRU is updated with messages from all related edges, while each edge GRU

is updated with messages from its subject node and object node. The features

1.4 Holistic Pose Graph 11

of each final object node are used to regress the 6D object pose, while the rel-

ative pose between the two connected objects is regressed for each edge node.

A term is also added to the loss function to enforce the consistency between

the object pose and the relative pose.

Chapter 2

Architecture

2.1 Overview

Figure 2.1: Overview of the proposed architecture

The proposed architecture is built on the premise that having a deep un-

derstanding of a scene’s characteristics, particularly in terms of the geometric

relationships between objects, can significantly enhance the accuracy when

estimating the 6D pose of each individual object. Therefore, the architecture

is designed to identify object pairs within the scene, extract their spatial rela-

tionships, and use this information to process the entire scene as a whole.

The proposed architecture, as illustrated in Figure 2.1, includes four build-

ing components:

2.2 YOLOX 13

• 2D detector −→ the 2D detector is implemented using YOLOX [8]. Its

function is to detect objects present in the image by estimating their 2D

bounding box and their identifiers. The 2D bounding box information

is essential for all the subsequent parts of the architecture;

• 6D object pose estimator −→ the 6D object pose estimator is imple-

mented using GDR-Net [23]. It operates at the instance level, utilizing

only a single RGB image to estimate the initial 6D poses for each object

detected by the 2D detector. This initial estimation is then refined by

the other parts of the network;

• Relative Translation Network (RTN)−→ the third component, the Rel-

ative Translation Network, encodes the relative geometry between pairs

of neighboring objects. It takes pairs of objects and extracts their spatial

relationships, which are used to refine the initial 6D poses;

• Pose Graph Neural Network (PGNN) −→ the Pose Graph Neural Net-

work leverages the initial 6D estimation along with the pairs embedding

from the Relative Translation Network and performs graph convolution

obtaining the refined 6D poses for each object.

In the following sections, we will provide a more detailed explanation of

each component of the architecture.

2.2 YOLOX

YOLOX[8] is an object detection model that was introduced in 2021 as an

improvement over the YOLO series. The authors build it on top of the most

widely used detectors in the industry, YOLOv3[19] by introducing several

modifications that we summarize in the following:

• Decoupled head → in YOLOv3, the detection head is a single branch

2.2 YOLOX 14

that outputs both the class probabilities and the bounding box coordi-

nates for each object. This means that the head has to perform both

classification and regression tasks, which can lead to suboptimal perfor-

mance in both tasks. In YOLOX, the detection head is decoupled into

two separate branches: a classification branch and a regression branch.

The classification branch predicts the probability of an object belonging

to each class, while the regression branch predicts the bounding box as

four values (top-left corner and height and width). This decoupling of

the head allows for more efficient and accurate predictions, as the two

tasks can be optimized separately;

• Strong data augmentation → with respect to YOLOv3, YOLOX in-

troduces two strong data augmentation techniques called Mosaic and

MixUp. Mosaic is a data augmentation technique that combines four

images into a single mosaic image that is then used as input to the net-

work. Specifically, the four images are randomly cropped and resized

and then combined into a single mosaic image together with the ad-

justed object annotations. MixUp is an augmentation technique that

involves blending two images and their corresponding labels to create a

new training example. Specifically, this technique involves taking two

random images and blending their pixels together using a predetermined

ratio. In addition, the one-hot labels are also mixed up using the same

ratio;

• Anchor-Free approach→ in the anchor-based approach used inYOLOv3,

the detection head predicts the offsets of predefined anchor boxes, which

are fixed in size and aspect ratio. The network then adjusts the an-

chor boxes based on the predicted offsets and assigns each object to

the anchor box with the highest Intersection-over-Union (IoU) overlap.

Although this approach works well in practice, it requires careful se-

lection of anchor boxes and complicates the overall pipeline. In the

2.3 GDR-Net 15

anchor-free approach used in YOLOX, based on FCOS [21], the detec-

tion head directly predicts the coordinates of the bounding box for each

object, without the need for predefined anchor boxes. Specifically, the

detection head predicts four values for each object: the coordinates of

the top-left corner and the width and height of the bounding box;

• SimOTA → during training the method for determining positive and

negative samples for detection is referred to as label assignment strat-

egy. In recent years advanced label assignment has become an impor-

tant improvement for object detection, and YOLOX proposes SimOTA.

SimOTA is based on OTA[7], and approaches the problem from a global

perspective, viewing it as an Optimal Transport (OT) problem. In-

stead of using the computationally expensive Sinkhorn-Knopp algo-

rithm, SimOTA utilizes a dynamic top-k strategy that can generate an

approximate solution for the OT problem.

2.3 GDR-Net

Figure 2.2: Overview of the GDR-Net architecture[23]

GDR-Net [23] is a state-of-the-art model for monocular 6D pose estima-

tion at instance level. Differently from the majority of the work on this task,

GDR-Net doesn’t use PnP/RANSAC to find 2D-3D correspondences but it

uses amethod fully based on deep neural network. The usage of PnP/RANSAC

is proven to be very effective but it can be very time-consuming and it also

2.3 GDR-Net 16

makes the pipeline more complex as it has to decouple the problem into two

separate steps, one of which is not differentiable preventing the network to be

trained in an end-to-end fashion.

The GDR-Net architecture, depicted in Figure 2.2, zooms into the region of in-

terest corresponding to each object detection and utilizes it as input to predict

multiple intermediate geometric feature maps. The 6D object pose is directly

regressed from the dense correspondence-based intermediate geometric fea-

tures. In particular, the network predicts three intermediate feature maps:

• Dense CorrespondencesMap: the Dense Correspondences Map is ob-

tained by stacking the Dense Coordinates Map onto a map containing

the corresponding 2D pixel coordinates from the original image. The

Dense Coordinates Map itself is generated through the rendering of the

3D object model in its associated pose;

• Surface Region Attention Map: starting from the Dense Coordinates

Maps, the Surface Region Attention Map can be obtained by employing

farthest points sampling;

• Visible Object Mask : the Visible Object Mask is a binary mask that

indicates which pixels in the cropped image correspond to the visible

surface of the 3D object.

As these intermediate geometric feature maps are organized as 2D-3D corre-

spondences with respect to the image, a 2D convolution is used to estimate

the 6D object pose. This module is referred to as Patch-PnP.

GDRNPP

In our network, we use an updated version of GDR-Net, called GDRNPP[14],

which is the winner (most of the awards) of the BOP Challenge 2022 3.1. The

differences with GDR-Net include:

• Domain Randomization: usage of stronger domain randomization;

2.4 Relative Translation Network 17

• Backbone: usage of the more powerful ConvNeXt[15] backbone in-

stead of ResNet-34[9];

• DecoupledHead: usage of twomask heads for predicting amodal mask

and visible mask separately;

• Hyperparameters: usage of different learning rate, weight decay, and

other hyperparameters.

2.4 Relative Translation Network

Figure 2.3: Relative Translation Network architecture

2.4.1 Preprocessing

Pair selection

The process of selecting pairs of objects in the proposed method follows the

same algorithm described in MonoPair[2]. The approach involves select-

ing pairs of neighboring objects that have no multiple objects between them.

Specifically, the process begins by randomly selecting two objects and con-

sidering the centers of their respective 2D bounding boxes. A pair of objects is

then defined as neighbors if no other object center falls within the circumfer-

ence, which has the mean point between the two objects’ centers as its center

2.4 Relative Translation Network 18

Figure 2.4: Pair selection algorithm. The green circles identify two neighbor-
ing objects. The red circle has other object centers that fall in it, resulting in
the classification of the yellow duck and the pink cat as not neighbors.

and the distance between the mean and one of the objects as its radius.

Crop and Pair Infos

After selecting neighboring object pairs from the input image, the proposed

method extracts the input for the network. To begin, the RGB image is cropped

to a square of size 256 × 256 that includes both objects. In order to avoid de-

formation of the image that could lead to degraded results, the square crop is

zoomed in or out until the two objects are included, padding with zeros if nec-

essary. The resulting image is then normalized using amean of (0.485, 0.456, 406)

and a standard deviation of (0.229, 0.224, 0.225).

In addition to the cropped image, information about each object is concate-

nated together for each pair. This includes the 2D bounding box for each

object, its unique object ID, and information about the object model, such as

2.4 Relative Translation Network 19

(a) (b) (c)

Figure 2.5: Crop of images containing pair of objects

(a) (b) (c)

Figure 2.6: Example of augmentation techniques applied to crops of the image

its diameter and size.

Augmentation

As described in Section 3.2, during training the input images have to be exclu-

sively synthetic, while for testing they are real-world images; this can result

in a mismatch between the performance of the network during training and

testing. This problem is known in the relevant literature as domain gap, and

the problem arises from the fact that the synthetic and real-world images live

in the same feature space but have different distributions. The problem is

partially addressed by the way synthetic images are produced. In fact, as de-

scribed in Section 3.3, thanks to the physically-based renderer the produced

images are almost photorealistic, resulting in a distribution that is closer to

the real images. However, even if the differences with real images are only

slightly noticeable, the domain gap is still there. To further tackle the problem

2.4 Relative Translation Network 20

we propose to apply strong data augmentation. Data augmentation refers to

the process of creating new training data from the original dataset by applying

various transformations to the images. It is a standard technique, not only for

computer vision tasks, that is used to improve the performance and general-

ization capabilities of the model but also to tackle the domain gap problem,

as in our case. We will list all the pose invariant transformations that we have

applied in the following:

• Cutout: sets rectangular areas within images to zero;

• Gaussian Blur: blur images using the Gaussian kernel;

• Enhance Sharpness;

• Enhance Contrast;

• Enhance Brightness;

• Enhance Color;

• Add: add a value to all pixels in an image;

• Invert: inverts all values in images, i.e. sets a pixel from value v to

255 − v;

• Multiply: multiply all pixels in an image with a specific value;

• Additive Gaussian Noise: add noise sampled from gaussian distribu-

tions elementwise to images;

• Linear Contrast: scale each pixel to 127 + alpha · (v − 127), where v

is the value of a pixel and alpha is sampled uniformly from an interval;

• Grayscale: convert the image to the grayscale version of the image with

varying strengths.

Each augmented image is the result of a random subset of all this transforma-

tion, both in order and in number.

2.5 Pose Graph Neural Network 21

2.4.2 Architecture

The proposed architecture for the Relative TranslationNetwork (RTN) is shown

in Figure 2.3 and has the purpose of encoding the spatial relationships between

pairs of objects within the scene.

To achieve this, the RTN takes as input a crop of pairs of objects, which is

obtained using the method described in 2.4.1. The crop is then processed by

ResNet-18[9], a widely used neural network architecture for computer vision

tasks.

In addition, the RTN processes in a second branch the pair’s information using

a fully connected layer. The output, together with the output of the ResNet-18

are concatenated and used as embeddings in the Pose Graph Neural Network

2.5.

Furthermore, the concatenation is also used as the input for a fully connected

layer that regresses the relative position between the two objects as a three-

dimensional translation vector.

2.5 Pose Graph Neural Network

Figure 2.7: Architecture of the Pose Graph Neural Network

The proposed architecture for the Pose Graph Neural Network is inspired

by Graph R-CNN[27], in particular by the way in which the attentional graph

neural network is used, as described in 1.1.1.

The graph is constructed by considering each detected object as a node, while

2.5 Pose Graph Neural Network 22

the relations between the objects are defined by applying to each possible

pair of objects the algorithm presented in 2.4.1. The relations are also rep-

resented as nodes, an edge is inserted between the relation nodes and their

associated objects. An edge is also added between each object, resulting in

an even greater information flow. The constructed graph is directional but the

information can always flow in both directions (e.g., from object node to re-

lation node and also from relation node to object node), so for each relation,

we will add two edges.

The object nodes are initialized with the 6D pose computed by GDR-Net[23]

while the relation node with the embedding estimated by the Relative Trans-

lation Network 2.4.

After the data in the graph is processed as described in 1.1.1 a shared head for

each object node is employed as two MLPs to regress the refined 3D rotation

and 3D translation for each object.

Chapter 3

Evaluation Framework

In this chapter, we will delve deeper into the chosen framework to evaluate

our architecture. We will provide a comprehensive overview of the task, the

utilized dataset, and the employed evaluation metrics. All of these elements

will be described within the context of the Benchmark for 6D Object Pose

Estimation (BOP)[10], which we will discuss in the next section.

3.1 BOP

The BOP (Benchmark for 6D Object Pose Estimation)[10] is a benchmark

evaluation framework for 6D object pose estimation algorithms. It provides

researchers with a standardized evaluation platform including common for-

mats, datasets, and metrics to fairly compare the performance of their algo-

rithms. In recent years, to accelerate the research process, a challenge with a

rewarding prize has been established attracting a significant number of sub-

missions, with hundreds of entries received, reflecting a high level of interest

among the research community. In the following sections, we will describe in

detail every aspect of the challenge.

3.2 Task 24

3.2 Task

In this study, we address one of the tasks defined by the BOP challenge. The

objective is to accurately estimate the 6D pose of an arbitrary number of ob-

jects present in a single RGB image. The constraint is that the training data

must consist solely of synthetic images and the use of depth information is

not allowed. However, the 3D mesh models of the objects can be used during

training and testing. The expected output is a 3 × 3 rotation matrix R and a

3 × 1 translation vector t for each detected object. The matrix P = [R|t] rep-

resents the rigid transformation from the 3D coordinate system of the object

model to the 3D coordinate system of the camera.

3.3 Dataset

The dataset that we have chosen is Linemod-Occluded(LM-O)[10], one of the

core datasets of BOP. The reason for this choice is that it is the only one among

the core datasets that have annotations for multiple objects in the same scene

during testing; this is very important because our method’s core contribution

is the use of multiple objects to refine the position of each of them. More-

over, the dataset offers challenging test cases with various levels of occlusion.

LM-O consists of 50k synthetic images for training Figure 3.1(a) and 200 real

images for testing Figure 3.1(b). It features 8 objects of common use or little

toys: a toy ape, a can, a toy cat, a driller, a duck, an eggbox, a glue, and an

holepuncher.

The synthetic training images are photorealistic images generated and auto-

matically annotated by BlenderProc4BOP [5], which is a physically-based

renderer (PBR), able to accurately simulate the flow of light energy in the

scene by ray tracing. To generate a high degree of variability, the objects in

the dataset are randomly placed within an empty cube. A randomly selected

texture from a library is assigned to the wall of the cube. Furthermore, the

3.3 Dataset 25

(a) (b)

Figure 3.1: Examples taken from the LM-O dataset[1] of real-world image(a)
and synthetic PBR image(b)

properties of the light source, including intensity, color and position, are also

randomly chosen to further increase the diversity of the dataset.

The real-world images used for testing in this dataset were captured within

the same environment, a work table, where objects were placed randomly, of-

ten with significant occlusion. The images were taken under different lighting

conditions and with varying camera positions, further increasing the complex-

ity and realism of the test environment.

The validation set is not predefined in the LM-O, so we have taken 1k images

from the 50k training ones as validation images, we also extracted another 1k

image to test on synthetic images, resulting in 48k images for training 1k im-

ages for validation, 1k synthetic images for testing, and 1k real images also

for testing.

Every image is annotated following the BOP format1, each image includes the

ground truth bounding box position of each object, its rotation and translation

matrix.
1https://github.com/thodan/bop_toolkit/blob/master/docs/bop_

datasets_format.md

 https://github.com/thodan/bop_toolkit/blob/master/docs/bop_datasets_format.md
 https://github.com/thodan/bop_toolkit/blob/master/docs/bop_datasets_format.md

3.4 Metrics 26

3.4 Metrics

BOP uses three different metrics to compute the error of an estimated 6D pose

P with respect to the ground-truth 6D pose P̂. In the following, we will ex-

plain more in detail the Visible Surface Discrepancy (VSD), the Maximum

Symmetry-Aware Surface Distance (MSSD), and the Maximum Symmetry-

Aware Projection Distance.

3.4.1 Visible Surface Discrepancy

The VSD (Visible Surface Discrepancy) loss measures the alignment of the

estimated pose with the ground truth pose only where the object is visible:

eV SD(D̂, D, V̂ , V , τ) = avgp∈V̂ ∪V


0 if p ∈ V̂ ∩ V ∧ |D̂(p) − D(p)| < τ

1 otherwise

D̂ and D are distance maps, at each pixel p is stored the distance from the

camera center to the 3D point xp that is projected to the pixel p. In particular,

D̂ and D are obtained by rendering the object model in the estimated pose

and in the ground-truth pose respectively. For each visible pixel, both in the

estimated and in the ground truth position, the VSD output is 0 if the pixel is

visible both in the estimated and in the ground truth position and the difference

of the distance maps is less than a certain tolerance; otherwise, the output is 1.

The output for each pixel is in the end averaged, resulting in a loss that ranges

between 0 and 1.

3.4.2 Maximum Symmetry-Aware Surface Distance

TheMSSD (Maximum Symmetry-Aware Surface Distance) loss measures the

largest distance between the vertices of the model in the estimated position and

in the ground truth position, taking into account the symmetry of the object

3.4 Metrics 27

model:

eMSSD(P̂ , P , SM , VM) = minS∈SM
maxx∈VM

||P̂x − PSx||2

where SM contains global symmetry transformations of the object model M,

and VM contains the model vertices. For each symmetry, we compute the

maximum Euclidean distance of the vertexes for the object in the estimated

position and in the ground truth position. Among all the maximum distances

for each symmetry, we choose the smaller one.

This loss function is especially significant in the context of robotic manipula-

tion tasks, as the maximum deviation between the surfaces directly indicates

the likelihood of a successful grasp.

3.4.3 Maximum Symmetry-Aware Projection Distance

The MSPD (Maximum Symmetry-Aware Projection Distance) loss measures

the largest distance between the projected vertices in the 2D plane of the model

in the estimated position and in the ground truth position:

eMSP D(P̂ , P , SM , VM) = minS∈SM
maxx∈VM

||proj(P̂ x) − proj(PSx)||2

The symbols meaning is the same as in MSSD 3.4.2, the function proj(·) is the

projection of the 3D point of the model onto the 2D image plane.

As this loss function only takes into account the perceivable discrepancy and

does not consider the depth axis, it is relevant for augmented reality applica-

tions and ideal for evaluating methods that use RGB data exclusively.

3.4.4 Accuracy Score

For each of the described losses, we computed the Recall value, the fraction

of annotated object instances for which a correct pose is estimated. A pose

estimate is considered correct in relation to a pose-error function e if it is less

3.4 Metrics 28

than a certain threshold of correctness e < θe. The Average Recall (AR) with

respect to a loss is defined as the average of recall values corresponding to dif-

ferent thresholds of correctness and also for varying misalignment tolerances

τ in the case of eV SD. In particular, they are the average of the following:

• ARV SD → τ ranging from 5% to 50% of the object diameter with a step

of 5% and for θV SD ranging from 0.05 to 0.5 with a step of 0.05.

• ARMSSD → θMSSD ranging from 5% to 50% of the object diameter

with a step of 5%

• ARMSP D → θMSP D ranging from 5r to 50r with a step of 5r, where

r = w/640, where w is the image width in pixels.

As a single general metric is proposed the average of the ARs of VSD, MSSD,

and MSPD:

ARD = (ARV SD + ARMSSD + ARMSP D)/3

Chapter 4

Experiments and Training Setup

We adopted a two-stage training strategy for our network: first, we trained the

Relative Translation Network (RTN) alone, then the whole network using the

pre-trained RTN. This strategy yielded better results than training the entire

network from scratch. We did not train YOLOX and GDR-Net as we used

the checkpoints published by the original authors of GDR-Net and kept their

weights fixed throughout our experiments. In this section, we provide more

details on how we trained our proposed network, including the training envi-

ronment, the hyperparameters, and the losses for each stage of the training.

4.1 Environment

All of the experiments were done on the HPC cluster1 offered by the Univer-

sity of Bologna, that is equipped with NVIDIA 2080Ti® GPUs.

The chosen programming language is Python as it has increasingly become

one of the most used programming languages for machine learning tasks re-

sulting in a big community of developers and researchers and a lot of available

libraries and frameworks. For this project, the framework chosen for build-

ing the Neural Networks is PyTorch[18], a popular open-source deep learning
1https://disi.unibo.it/it/dipartimento/servizi-tecnici-e-amministrativi/

servizi-informatici/utilizzo-cluster-hpc

https://disi.unibo.it/it/dipartimento/servizi-tecnici-e-amministrativi/servizi-informatici/utilizzo-cluster-hpc
https://disi.unibo.it/it/dipartimento/servizi-tecnici-e-amministrativi/servizi-informatici/utilizzo-cluster-hpc

4.2 Relative Translation Network 30

(a) (b)

Figure 4.1: In the images, two bounding boxes are shown, one in blue identi-
fying the starting object, while the other in red is the target object. A rendering
of the object in the estimated position is shown.

framework that is easy to use, flexible, and well integrated with other popular

libraries.

4.2 Relative Translation Network

As anticipated, the first phase of the training was dedicated to the Relative

Translation Network, whose architecture was described in 2.4. The objective

of this part of the network is to extract, from the crop of pairs of objects,

relevant geometric embedding. To do this we train the network to regress the

relative position between the pair of objects as shown in Figure 4.1, the ground

truth is computed by subtracting the ground truth position of the first object

from the ground truth position of the second one. The used loss is the Mean

Square Error (MSE):

LRT N = MSE((tobj2 − tobj1), (t̃obj2 − t̃obj1))

To evaluate the performance of the model we use a custom metric, guided by

the idea that the error committed by the network should be normalized by how

4.3 Graph Pose Network 31

Model Augmentation Test Synth Test Real
RTN Yes 16.35 25.6
RTN No 15.51 29.89

Table 4.1: The table shows the results of the RTN model, tested on both real
images and synthetic ones. A comparison of the usage of augmentation is also
presented.

far apart the two objects are:

eRT N = |(tobj2 − tobj1) − (t̃obj2 − t̃obj1)|2
|t̃obj2 − t̃obj1)|2

The results shown in Table 4.1 suggest that even when data augmentation

is used, the performance of the network on synthetic images is much better

than on real images. The usage of augmentation makes the difference lower

but does not solve the problem. This problem will also be reflected in the final

results 4.3.3.

4.2.1 Setup

The network was trained for 30 epochs using the Adam optimizer [11], weight

decay of 1e − 3, and a batch size of 128. To adjust the learning rate during

training, we employed a scheduler from PyTorch called StepLR, which re-

duces the learning rate by a factor of 0.5 every 5 epochs starting from 1e − 3.

Additionally, we implemented early stopping as a means of preventing the

model from overfitting with patience equal to 5.

4.3 Graph Pose Network

The second phase of the training is dedicated to the entire network. The Rela-

tive Translation Network part of the architecture is initialized with the pre-

trained weights. We start the training by keeping the Relative Translation

Network weights frozen and train only the graph neural network part of the

4.3 Graph Pose Network 32

architecture. In the final part of the training also the RTN weights are un-

frozen to further get the most from the model. The regression target for the

network is the 3D translation and 3D rotation for each object. The 3D transla-

tion is directly expressed as a vector of length three representing the x,y, and

z coordinates of the object in the camera reference system. For the rotation,

different representations can be chosen but many of them exhibit ambiguities,

meaning that even if Ri ̸= Rj it can still happen that they describe the same

rotation. A possible solution is to use representations that are unique, like

unit quaternions [25], however representation with four or fewer dimensions

for 3D rotation shows discontinuities in the Euclidian space. The representa-

tion that we have chosen is proposed by [29] and it solves the discontinuities

problem, specifically, the rotation can be expressed as a 6-dimensional vector

R6d = [r1|r2]

the rotation matrix R = [R1|R2|R3] can be computed as:



R1 = ϕ(r1)

R2 = ϕ(R1 × r2)

R3 = R3 × R1

where ϕ(·) is the vector normalization operation.

4.3.1 Loss

It is crucial to find the appropriate loss function to regress the 6D pose, in or-

der to achieve optimal results. Essentially, we are attempting to optimize two

sub-objectives: the 3D translation and the 3D rotation. There are two different

approaches that can be employed. One involves separately supervising trans-

lation and rotation, using methods such as the angular distance for rotation and

the L2 distance for translation. The other approach is to couple them together,

4.3 Graph Pose Network 33

resulting in a single expression loss. We have chosen the second option be-

cause it is less complex having only one loss function rather than dealing with

the sum of two losses and their relative weights. Additionally, since we must

modify the loss to suit our particular task, having only one expression is easier

to manage.

The chosen coupled loss is called Point Matching Loss, proposed in the article

DeepIM [13]. Given the ground truth pose p = [R|t] and the estimated pose

p̃ = [R̃|̃t] we compute the loss as:

Lpose(p, p̃) = 1
n

n∑
i=1

||(Rxi + t) − (R̃xi + t̃)||2

where xi are randomly selected points of the model.

We propose a slight modification to the loss function, where the focus is on

improving the initial 6D pose of GDR-Net rather than the absolute values.

Specifically, our objective is to distinguish between evaluating the same ab-

solute improvement from a poor initial position versus an already good initial

estimate. This is motivated by the fact that improving an already good po-

sition is more challenging than doing so from a bad initial position. If we

don’t make this distinction, a significant portion of the loss magnitude will be

composed of objects with a poor initial position, such as heavily occluded ob-

jects or outliers. In this case, the network will only attempt to learn to refine

their positions without the ability to do so successfully, as our network can

only make small modifications to already good initial positions. Therefore,

the loss will be computed as follows:

Lpose(p, p̃) = 1
n

n∑
i=1

||(Rxi + t) − (R̃xi + t̃)||2
||(Rinitialxi + tinitial) − (R̃xi + t̃)||2

4.3 Graph Pose Network 34

4.3.2 Setup

The networkwas trained for 150 epochs using theAdamoptimizer [11], weight

decay of 1e − 3, and a batch size of 4. To adjust the learning rate during train-

ing, we used a step decay scheduler, which reduces the learning rate by a factor

of 0.5 every 10 epochs starting from 1e − 4 and with a minimum of 1e − 5.

Additionally, we implemented early stopping as a means of preventing the

model from overfitting with patience equal to 10.

4.3.3 Results

The results of our study, as presented in Table 4.2, indicate that our model

outperforms GDR-Net when tested on synthetic images but performs poorly

on real images, as we had anticipated. This issue is commonly referred to as

the domain gap and we have identified the RTN network as the root cause of

the problem, as can be seen in Table 4.1. Despite implementing various aug-

mentation techniques to improve the generalization to the real domain of the

embeddings, this issue persists. While there are domain adaptation techniques

that may potentially resolve this issue, addressing it was not the primary ob-

jective of our thesis and was left for future research.

Synth Real
GDR-Net Ours GDR-Net Ours

ARMSP D 83.76 84.39 87.50 84.85
ARMSSD 75.66 76.49 66.47 64.46
ARV SD 73.72 77.70 51.78 50.24
ARD 77.71 79.52 68.58 66.51

Table 4.2: Comparison of GDR-Net and Ours on PBR and Real test set

Conclusion

In this work, we have investigated a technique to refine the 6D object pose

estimation of multiple objects using a monocular image. Our approach in-

corporates the context of the scene and the relationship between objects to

gain a better understanding of the scene. The idea is to develop a consistent

pose evaluation for each object using this additional information. Specifi-

cally, starting from the 6D object pose estimated by GDR-Net[23], we have

constructed a graph of the scene representing each object with a node and with

edges connecting neighboring objects. We designed a network to extract ge-

ometric features from the connected object pairs and utilized these features in

a graph neural network together with the objects’ initial 6D poses to get the

refined poses.

We have trained the proposed architecture solely on synthetic images and we

have tested it on both synthetic and real images. Our finding indicates that the

model produced better results compared to the initial 6D poses when tested

on synthetic images, but performed worst on real images. This discrepancy

can be attributed to the domain gap problem, where the model is evaluated on

data that differ in distribution from the training data, leading to sub-optimal

performance. We attempted to solve this issue using data augmentation, but

the improvements were only marginal.

In conclusion, our approach looks promising, but further investigation is nec-

essary to confirm its effectiveness. Future work may explore domain adap-

tation techniques to determine whether the results obtained in the synthetic

domain can be replicated in the real domain, as well as train the network on

4.3 Graph Pose Network 36

other datasets that contain both synthetic and real images in the training set.

Bibliography

[1] E. Brachmann. 6D Object Pose Estimation using 3D Object Coordi-

nates [Data]. Version V1, 2020. DOI: 10.11588/data/V4MUMX. URL:

https://doi.org/10.11588/data/V4MUMX.

[2] Y. Chen, L. Tai, K. Sun, and M. Li. Monopair: monocular 3d object

detection using pairwise spatial relationships, 2020. DOI: 10.48550/

ARXIV.2003.00504. URL: https://arxiv.org/abs/2003.00504.

[3] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio. Learning phrase representations using rnn

encoder-decoder for statistical machine translation, 2014. DOI: 10 .

48550/ARXIV.1406.1078. URL: https://arxiv.org/abs/1406.

1078.

[4] A. Collet, M. Martinez, and S. S. Srinivasa. The moped framework:

object recognition and pose estimation for manipulation. The interna-

tional journal of robotics research, 30(10):1284–1306, 2011.

[5] M. Denninger, M. Sundermeyer, D. Winkelbauer, D. Olefir, T. Hodan,

Y. Zidan, M. Elbadrawy, M. Knauer, H. Katam, and A. Lodhi. Blender-

proc: reducing the reality gap with photorealistic rendering, 2020.

[6] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian. Centernet: key-

point triplets for object detection. CoRR, abs/1904.08189, 2019. arXiv:

1904.08189. URL: http://arxiv.org/abs/1904.08189.

https://doi.org/10.11588/data/V4MUMX
https://doi.org/10.11588/data/V4MUMX
https://doi.org/10.48550/ARXIV.2003.00504
https://doi.org/10.48550/ARXIV.2003.00504
https://arxiv.org/abs/2003.00504
https://doi.org/10.48550/ARXIV.1406.1078
https://doi.org/10.48550/ARXIV.1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1904.08189
http://arxiv.org/abs/1904.08189

BIBLIOGRAPHY 38

[7] Z. Ge, S. Liu, Z. Li, O. Yoshie, and J. Sun. Ota: optimal transport assign-

ment for object detection, 2021. DOI: 10.48550/ARXIV.2103.14259.

URL: https://arxiv.org/abs/2103.14259.

[8] Z. Ge, S. Liu, F.Wang, Z. Li, and J. Sun. YOLOX: exceedingYOLO se-

ries in 2021. CoRR, abs/2107.08430, 2021. arXiv: 2107.08430. URL:

https://arxiv.org/abs/2107.08430.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for im-

age recognition, 2015. DOI: 10.48550/ARXIV.1512.03385. URL:

https://arxiv.org/abs/1512.03385.

[10] T. Hodaň, F. Michel, E. Brachmann, W. Kehl, A. Glent Buch, D. Kraft,

B. Drost, J. Vidal, S. Ihrke, X. Zabulis, C. Sahin, F.Manhardt, F. Tombari,

T.-K. Kim, J.Matas, and C. Rother. BOP: benchmark for 6D object pose

estimation. European Conference on Computer Vision (ECCV), 2018.

[11] D. P. Kingma and J. Ba. Adam: a method for stochastic optimization,

2014. DOI: 10.48550/ARXIV.1412.6980. URL: https://arxiv.

org/abs/1412.6980.

[12] T. N. Kipf and M. Welling. Semi-supervised classification with graph

convolutional networks. CoRR, abs/1609.02907, 2016. arXiv: 1609.

02907. URL: http://arxiv.org/abs/1609.02907.

[13] Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox. DeepIM: deep iterative

matching for 6d pose estimation. International Journal of Computer

Vision, 128(3):657–678, November 2019. DOI: 10.1007/s11263-

019-01250-9. URL: https://doi.org/10.1007%2Fs11263-019-

01250-9.

[14] X. Liu, R. Zhang, C. Zhang, B. Fu, J. Tang, X. Liang, J. Tang, X.

Cheng, Y. Zhang, G. Wang, and X. Ji. Gdrnpp. https://github.

com/shanice-l/gdrnpp_bop2022, 2022.

https://doi.org/10.48550/ARXIV.2103.14259
https://arxiv.org/abs/2103.14259
https://arxiv.org/abs/2107.08430
https://arxiv.org/abs/2107.08430
https://doi.org/10.48550/ARXIV.1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://doi.org/10.1007/s11263-019-01250-9
https://doi.org/10.1007/s11263-019-01250-9
https://doi.org/10.1007%2Fs11263-019-01250-9
https://doi.org/10.1007%2Fs11263-019-01250-9
https://github.com/shanice-l/gdrnpp_bop2022
https://github.com/shanice-l/gdrnpp_bop2022

BIBLIOGRAPHY 39

[15] Z. Liu, H. Mao, C. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. A con-

vnet for the 2020s. CoRR, abs/2201.03545, 2022. arXiv: 2201.03545.

URL: https://arxiv.org/abs/2201.03545.

[16] E. Marchand, H. Uchiyama, and F. Spindler. Pose estimation for aug-

mented reality: a hands-on survey. IEEE transactions on visualization

and computer graphics, 22(12):2633–2651, 2015.

[17] K. O’Shea and R. Nash. An introduction to convolutional neural net-

works. arXiv preprint arXiv:1511.08458, 2015.

[18] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.

Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E.

Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,

L. Fang, J. Bai, and S. Chintala. Pytorch: an imperative style, high-

performance deep learning library, 2019. DOI: 10 . 48550 / ARXIV .

1912.01703. URL: https://arxiv.org/abs/1912.01703.

[19] J. Redmon andA. Farhadi. Yolov3: an incremental improvement.CoRR,

abs/1804.02767, 2018. arXiv: 1804.02767. URL: http://arxiv.

org/abs/1804.02767.

[20] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: towards real-time

object detectionwith region proposal networks, 2015. DOI: 10.48550/

ARXIV.1506.01497. URL: https://arxiv.org/abs/1506.01497.

[21] Z. Tian, C. Shen, H. Chen, and T. He. FCOS: fully convolutional one-

stage object detection.CoRR, abs/1904.01355, 2019. arXiv: 1904.01355.

URL: http://arxiv.org/abs/1904.01355.

[22] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y.

Bengio. Graph attention networks, 2017. DOI: 10 . 48550 / ARXIV .

1710.10903. URL: https://arxiv.org/abs/1710.10903.

https://arxiv.org/abs/2201.03545
https://arxiv.org/abs/2201.03545
https://doi.org/10.48550/ARXIV.1912.01703
https://doi.org/10.48550/ARXIV.1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
https://doi.org/10.48550/ARXIV.1506.01497
https://doi.org/10.48550/ARXIV.1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1904.01355
http://arxiv.org/abs/1904.01355
https://doi.org/10.48550/ARXIV.1710.10903
https://doi.org/10.48550/ARXIV.1710.10903
https://arxiv.org/abs/1710.10903

BIBLIOGRAPHY 40

[23] G.Wang, F.Manhardt, F. Tombari, and X. Ji. Gdr-net: geometry-guided

direct regression network formonocular 6d object pose estimation.CoRR,

abs/2102.12145, 2021. arXiv: 2102.12145. URL: https://arxiv.

org/abs/2102.12145.

[24] D. Wu, Z. Zhuang, C. Xiang, W. Zou, and X. Li. 6d-vnet: end-to-end 6-

dof vehicle pose estimation frommonocular rgb images. InProceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition Workshops, pages 0–0, 2019.

[25] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: a convolu-

tional neural network for 6d object pose estimation in cluttered scenes,

2017. DOI: 10.48550/ARXIV.1711.00199. URL: https://arxiv.

org/abs/1711.00199.

[26] J. Xiao, R. Wang, and X. Chen. Holistic pose graph: modeling geo-

metric structure among objects in a scene using graph inference for 3d

object prediction:12697–12706, 2021. DOI: 10.1109/ICCV48922.

2021.01248.

[27] J. Yang, J. Lu, S. Lee, D. Batra, and D. Parikh. Graph R-CNN for scene

graph generation. CoRR, abs/1808.00191, 2018. arXiv: 1808.00191.

URL: http://arxiv.org/abs/1808.00191.

[28] C. Zhang, Z. Cui, Y. Zhang, B. Zeng, M. Pollefeys, and S. Liu. Holistic

3d scene understanding from a single image with implicit representa-

tion. CoRR, abs/2103.06422, 2021. arXiv: 2103.06422. URL: https:

//arxiv.org/abs/2103.06422.

[29] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li. On the continuity of

rotation representations in neural networks, 2018. DOI: 10.48550/

ARXIV.1812.07035. URL: https://arxiv.org/abs/1812.07035.

https://arxiv.org/abs/2102.12145
https://arxiv.org/abs/2102.12145
https://arxiv.org/abs/2102.12145
https://doi.org/10.48550/ARXIV.1711.00199
https://arxiv.org/abs/1711.00199
https://arxiv.org/abs/1711.00199
https://doi.org/10.1109/ICCV48922.2021.01248
https://doi.org/10.1109/ICCV48922.2021.01248
https://arxiv.org/abs/1808.00191
http://arxiv.org/abs/1808.00191
https://arxiv.org/abs/2103.06422
https://arxiv.org/abs/2103.06422
https://arxiv.org/abs/2103.06422
https://doi.org/10.48550/ARXIV.1812.07035
https://doi.org/10.48550/ARXIV.1812.07035
https://arxiv.org/abs/1812.07035

Acknowledgements

This thesis is the result of the period I spent at the Technical University of

Munich (TUM) for the thesis abroad program.

I am deeply grateful to Prof. Samuele Salti and Prof. Federico Tombari for

providing me with this opportunity, and for their support and guidance.

A special thanks go to Dr. Fabian Manhardt and Dr. Yan Di for their mentor-

ship and feedback that shaped this work.

I would also like to express my sincere gratitude to the CAMP research group,

who welcomed me and provided resources and support to make the most of

my stay.

I am forever grateful to my parents, friends, and girlfriend for their invaluable

support and encouragement throughout this journey.

	Introduction
	Background and Related Works
	Graph Neural Networks
	Graph R-CNN

	MonoPair
	Holistic 3D Scene Understanding
	Holistic Pose Graph

	Architecture
	Overview
	YOLOX
	GDR-Net
	Relative Translation Network
	Preprocessing
	Architecture

	Pose Graph Neural Network

	Evaluation Framework
	BOP
	Task
	Dataset
	Metrics
	Visible Surface Discrepancy
	Maximum Symmetry-Aware Surface Distance
	Maximum Symmetry-Aware Projection Distance
	Accuracy Score

	Experiments and Training Setup
	Environment
	Relative Translation Network
	Setup

	Graph Pose Network
	Loss
	Setup
	Results

	Conclusion
	Bibliography
	Acknowledgements

