Il full-text non è disponibile per scelta dell'autore.
(
Contatta l'autore)
Abstract
Tracking the behaviour of cells over time can be used as a ground basis for developing models and methods for estimating the behaviour of a cell given different external conditions.
In this thesis, we consider automated Cell Tracking in 2D in vitro cultures. In this framework, we utilized Computer Vision methods to perform segmentation of the cell images. We design a modification of a state-of-the-art algorithm for Cell Tracking, and implement state-of-the-art Deep Learning methods for automated Cell Tracking. We test the effectiveness of the proposed methods by using timelapses provided by Rizzoli Orthopedic Institute. Notably, we show that performance sensibly depends on the dataset used to train the algorithms.
Abstract
Tracking the behaviour of cells over time can be used as a ground basis for developing models and methods for estimating the behaviour of a cell given different external conditions.
In this thesis, we consider automated Cell Tracking in 2D in vitro cultures. In this framework, we utilized Computer Vision methods to perform segmentation of the cell images. We design a modification of a state-of-the-art algorithm for Cell Tracking, and implement state-of-the-art Deep Learning methods for automated Cell Tracking. We test the effectiveness of the proposed methods by using timelapses provided by Rizzoli Orthopedic Institute. Notably, we show that performance sensibly depends on the dataset used to train the algorithms.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Guerrini, Daniele
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Computer Vision,Deep Learning,U-Net,ERFNet,DMNet,Convolutional Networks,Cell Tracking,2D+t Tracking,Morphological Geodesic Active Contours,Active Contour Models,Encoder-Decoder,Object Tracking,Segmentation,Cell Segmentation
Data di discussione della Tesi
22 Marzo 2023
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Guerrini, Daniele
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Computer Vision,Deep Learning,U-Net,ERFNet,DMNet,Convolutional Networks,Cell Tracking,2D+t Tracking,Morphological Geodesic Active Contours,Active Contour Models,Encoder-Decoder,Object Tracking,Segmentation,Cell Segmentation
Data di discussione della Tesi
22 Marzo 2023
URI
Gestione del documento: