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For in this age of machine might

We must ensure we get it right

And build with care, and build with grace

An AI that’s ethical and safe.

- ChatGPT





Abstract

Cooperation is an important tool for humans, crucial to reach optimal

and ethical behaviour in many contexts. Multi-agent Reinforcement

Learning techniques are an excellent instrument for studying the emerg-

ing cooperative behaviour of AI agents in different environments that can

be simulated through games, which can be considered simplifications of

the real world. Some of the most studied cases are Social Dilemmas,

such as the Common Pool Resource Problem, where the cooperation or

defection of the agents is crucial to the outcomes of the collective and

the individuals.

The latest research has led to a good performance of the cooperation

between AI agents. However, another critical characteristic agents need

is Norm Inference, which is the ability to identify and understand the

social norms that govern behaviour in a society. It is a serious aspect

that must be considered when designing them since artificial learning

agents will likely be embodied in our future society and will need to

interact with both humans and non-human agents.

In this dissertation, an Inverse Reinforcement Learning (IRL) ap-

proach is used on the problem of Norm Inference in a Common Pool

Resource problem, where the norm of private areas has been established.

It is shown how it is possible to recover the expert policy that follows

the norm through IRL and how the recovered reward function can be

informative about the norm.
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Chapter 1

Introduction

With Cooperative AI, we refer to a class of problems that aims to solve

cooperation in Artificial Intelligence systems. Cooperation is an essen-

tial tool for humans, necessary to reach optimal and ethical behaviour in

many contexts. It is a well-known area, studied for decades, especially in

game theory and economics. Lately, it also became a relevant subject of

study in the Multi-Agent Reinforcement Learning Systems field since it

is a good instrument for simulating games, which can be considered sim-

plifications of the real world, and studying the emerging behaviour of AI

agents in different environments. While traditional AI approaches often

involve a single agent working in isolation to achieve a goal, Cooperative

AI involves multiple agents working together to achieve a common or

individual goal. Cooperation can help improve the AI system’s overall

performance and effectiveness.

Some of the most studied cases in Cooperative AI are Social Dilem-

mas, where the cooperation or defection of the agents is crucial to the

outcomes of the collective and the individuals. In these settings, agents

have the opportunity to improve their joint welfare by cooperating but

are not easily able to do so.

Cooperative AI is an important field to investigate; it allows us to bet-

ter understand cooperative interactions in different settings that resemble

1



2 CHAPTER 1. INTRODUCTION

real-world situations and discover new solutions to present relevant prob-

lems. It is also an instrument that will allow us to achieve more moral

and ethical AI agents. In the near future, artificial learning agents will

likely be embodied in our society and will need to interact with both

human and non-human agents. Designing agents capable of cooperating

well with humans is a fundamental characteristic. A key aspect of these

systems will be their ability to align with human values and norms.

Norm Inference refers to an AI system’s ability to identify and un-

derstand the social norms that govern behaviour in a society. Norms are

an essential part of human social interactions, and they help to ensure

that people behave in ways that are accepted and expected by others in

their community. AI systems that are able to detect norms can use this

information to interact more effectively with other human or non-human

agents in a given social context.

Social Norms are standard solutions used in human society to solve

Social Dilemmas, such as the problem of Common Pool Resource. The

problem of Common Pool Resource is a situation in which a group of

individuals share a limited resource, such as a natural resource or envi-

ronmental goods. It can be found in real-world examples, such as fishery

stocks, water-management issues, and clean air rights. This can be dif-

ficult for the agents of this system to avoid over-exploiting the resource

because of the greed to take as much of it as possible while it is still avail-

able and the fear that others will take all the resources. It can lead to re-

source depletion and, eventually, to conflicts among the individuals who

share it. Cooperation and joint welfare are complex outcomes to achieve;

for this reason, the Common Pool Resource problem is often referred to

as the Tragedy of the Commons, from the homonym essay published in

Science in 1968 by ecologist Garrett Hardinref [1]. However, human soci-

ety has found cooperative solutions, often through social norms and rules.

One solution to this problem is the creation of private areas and property
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rights, which can help ensure that the resource is managed sustainably.

In Cooperative AI, the main problem investigated is how to make

agents more cooperative and less selfish. Many studies aim to find ways to

achieve cooperation by training a population of agents in Social Dilemma

problems so that the emerging behaviour of the society follows some

norms that enable them to behave cooperatively. Lately, another aspect

of the problem has also been investigated by researchers.

What happens when an external agent needs to enter a society where

a norm is already established? Typically, the agent is trained to align

with the values of other agents before it enters the new system, otherwise,

its non-cooperative behaviour could threaten the balance and cooperation

achieved in the group. The external agent, which has to be trained to

gain knowledge about the system’s norms, is not aware of the reward

function needed to learn cooperative behaviour. To tackle this issue, we

can use Inverse Reinforcement Learning, a method capable of learning

the reward function of a given task through expert demonstrations.

The use of Inverse Reinforcement Learning to solve Norm Inference

is an open research problem discussed by the community in recent years,

but the only work, to our knowledge, and state of the art, to research

and implement the problem is [18], which proposes a modified Inverse Re-

inforcement Learning algorithm to learn context-sensitive norms, called

Context-Sensitive Norm Inverse Reinforcement Learning (CNIRL). It de-

pends on the assumption that observations and contexts are separated

in the environment, as we explain in Section 2.4.2. In our project, we

instead rely on the Adversarial Inverse Reinforcement Learning algo-

rithm to learn the context-sensitive norm from observations, relaxing

the assumption, and we apply the problem of Norm Inference to a Social

Dilemma, differently from [18].

In this dissertation, we investigate Norm Inference in a Common Pool

Resource problem through Inverse Reinforcement Learning by learning a
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reward function and an optimal policy from expert demonstrations. The

norm established is the one of private areas which enable the system’s

agents to learn cooperative behaviour. We further analyse the retrieved

reward function to investigate which information about the norm it en-

codes and how it could be extracted and used on a random policy to

reduce the number of norm violations.



Chapter 2

Background

This section reviews the underlying concepts and techniques upon which

we build the approach presented in the next chapter.

2.1 Social Dilemmas

A Social Dilemma is a situation in which individual interests conflict with

the collective good. In other words, it is a scenario where an individual’s

most beneficial choice differs from the most beneficial one for the group.

These circumstances often arise when individuals must decide whether

to act in their own self-interest (defection) or in the group’s interest

(cooperation).

One of the most famous Social Dilemmas is the Prisoner’s Dilemma

(PD), where two prisoners must decide whether to betray each other or

cooperate. If they both defect, they receive a worse outcome than if

they had cooperated. However, if one betrays the other while the other

remains loyal, the betrayer receives the best possible outcome, while the

loyal prisoner receives the worst. It creates a dilemma because the most

beneficial choice for an individual is to betray the other prisoner, but the

most beneficial choice for both prisoners is to cooperate. In this problem,

mutual defection is a Nash Equilibrium.

5
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SD C D
C R, R S, T
D T, S P, P

Prisoners C D
C 3, 3 0, 4
D 4, 0 1, 1

Table 2.1: Left: Canonical Payoff Matrix for Social Dilemmas. Right:
Payoff Matrix for Prisoner’s Dilemma. The two possible actions are co-
operation (C) and defection (D)

In game theory, the Nash equilibrium defines a set of strategies for

each player in a game such that no player has the incentive to deviate

from their strategy. In other words, no player can improve their outcome

by switching to a different strategy, given the other players’ strategies.

Social Dilemmas can be represented through matrix games. In Ma-

trix Game Social Dilemmas (MGSD), the payoffs satisfy the following

inequalities (this formulation from [2]):

1. R > P Mutual cooperation is preferred to mutual defection.

2. R > S Mutual cooperation is preferred to being exploited by a

defector.

3. 2R > T +S Mutual cooperation is preferred to an equal proba-

bility of unilateral cooperation and defection.

4. either greed: T > R Exploiting a cooperator is preferred over

mutual cooperation

or fear: P > S Mutual defection is preferred over being exploited.

where R is the reward of mutual cooperation, P is the punishment arising

from mutual defection, S (sucker) is the outcome obtained by cooperating

against a defector, and T (temptation) is the the outcome obtained by

defecting against a cooperator. Payoff matrices of the Prisoner’s Dilemma

are shown in table 2.1.

However, in real-life situations, Social Dilemmas are temporally ex-

tended and not one-shot games as in MGDS. For this reason, Sequential

Social Dilemma models have been proposed [3].
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In a Sequential Social Dilemma (SSD), the consequences of an indi-

vidual’s action do not depend only on their action at a current step but

also on all the actions made previously by all the agents in the system.

A classic example of an SSD is the Common Pool Resource (CPR)

problem. As already explained in chapter 1, if everyone uses the resource

sparingly, it will be preserved and could be used for more time. However,

if everyone acts in their self-interest and uses as much of the resource as

possible, it will be depleted and no longer available for future use. Also

in this problem, mutual defection is a Nash Equilibrium. Agents are

prone to defect out of fear and greed. They are afraid of others defecting

(taking all the resources before them) and want to maximise their own

reward.

2.2 Reinforcement Learning

Reinforcement Learning (RL) is an area of Machine Learning in which

an agent learns, by trial and error, to reach a goal. The agent interacts

with its environment by taking actions and receives feedback in the form

of rewards and punishments. The feedback is used to correct its policy,

which determines which action to take in each possible state. The goal

of the agent is to find the optimal policy, which maximizes its expected

cumulative reward R, defined as:

Rt =
T∑

i=t

γi−tri (1)

where ri is the reward received at timestep i and γ is the discount rate, a

parameter between 0 and 1, determining the importance of future rewards

versus immediate rewards, used in continuing tasks.

Deep Reinforcement Learning includes all the RL algorithms that

use Artificial Neural Networks to approximate the learnt policy or value
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function.

2.2.1 Markov Decision Process

RL is modelled as a Markov decision process. A Markov decision process

(MDP) is a mathematical framework for modelling sequential decision-

making problems under uncertainty. It is a discrete-time stochastic con-

trol process.

Formally, an MDP is defined as a tuple (S, A, P, R), where S is a

finite set of states, A is a finite set of actions, P is a state transition

function, R is a reward function, and γ is a discount factor. At each time

step t, the MDP is in some state st ∈ S. The agent can choose an action

at ∈ A, which will cause the MDP to transition to a new state st+1 ∈ S

according to the state transition function P . The agent receives a reward

rt ∈ R for its action, according to the reward function R. The agent’s

goal is to maximize its expected cumulative reward over time.

2.2.2 Sequential Social Dilemmas

Sequential Social Dilemmas (SSD) are defined as general-sum (simulta-

neous move) Markov games with each agent having a partial observation

of the environment.

Formally, SSD is a tuple (M, ΠC , ΠD) where ΠC and ΠD are dis-

joint sets of policies that are said to implement cooperation and defec-

tion, respectively. M is a Markov game with state space S. Let the

empirical payoff matrix (R(s), P (s), S(s), T (s)) be induced by policies

(πC ∈ ΠC ; πD ∈ ΠD). A Markov game is an SSD when there exist states

s ∈ S for which the induced empirical payoff matrix satisfies the social

dilemma inequalities reported in Section 2.1. [3]
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2.2.3 RL Algorithms

Reinforcement Learning algorithms differ in how they approach learning,

the kinds of problems they can solve, and their strengths and weaknesses.

There is no agreed-upon set of categories for all RL algorithms, but some

common ways of categorizing them include:

• Model-based vs model-free: in model-based Reinforcement Learn-

ing, the algorithm learns a model of the environment and uses it

to plan its actions. In contrast, model-free Reinforcement Learn-

ing algorithms learn directly from experience without building an

explicit model of the environment.

• On-policy vs off-policy: in on-policy Reinforcement Learning, the

algorithm learns from the actions it takes in the environment. In off-

policy Reinforcement Learning, the algorithm can learn from pre-

recorded experiences independently of the agent’s current actions

in the environment.

• Value-based vs policy-based: In value-based Reinforcement Learn-

ing, the algorithm learns a function that estimates the long-term

reward for each possible state-action pair. The optimal policy will

be the one that chooses, at each timestep, the action with the high-

est value. In policy-based Reinforcement Learning, the algorithm

directly learns a policy that outputs a probability distribution over

the actions. Again, the optimal policy is the one that chooses the

action with the highest probability.

We now introduce some RL algorithms that we will meet again in the

next chapter.

2.2.4 Actor-Critic

Actor-Critic is a model-free, on-policy, policy-based RL algorithm.
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Figure 2.1: Actor-Critic struc-
ture.

Actor-Critic algorithms use two

separate neural networks, the actor

and the critic, to learn and make de-

cisions. The actor is a policy network

and learns a probability distribution

over the actions for a given state, so it

is responsible for learning and choos-

ing actions. On the other hand, the

critic is a value network, meaning it

outputs an estimate of the expected

return for a given state and action. It is responsible for evaluating the

actions chosen by the actor and providing feedback. The actor then uses

this feedback to adjust the probabilities in the distribution and improve

the quality of its decisions.

The two networks are trained together using gradient descent. The

critic network is trained to minimize the mean-squared error between its

predictions and the target values, which are calculated using the Bell-

man equation. Meanwhile, the actor network is trained to maximize the

expected return.

The Bellman equation describes the relationship between a state’s

value and its successor states. Formally, the Bellman equation for the

action-value function Q can be written as follows:

Q(s, a) = E[R(s, a)] + E[max(Q(s′, a′))] (2)

where s is the current state, a is the current action, R(s, a) is the expected

reward for taking action a in state s, and s′ is the next state. The

equation states that the value of the current state and current action is

equal to the sum of the expected reward for taking that action in that

state and the expected maximum future return achievable from the next
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state and next action.

The Bellman equation is essential because it provides a way to update

the action-value function based on the current estimate of the expected

rewards and values of the next state. It allows Reinforcement Learning

algorithms to iteratively improve their estimates of the action-value func-

tion, which will be used by the actor to find an optimal policy for taking

actions in the environment.

It is an on-policy algorithm since it does an update at each step,

using subsequent information (state, action, reward) received from the

step just performed.

2.2.5 Soft Actor-Critic

Soft Actor-Critic (SAC) [4] is a model-free, off-policy, policy-based RL

algorithm. SAC combines ideas from Actor-Critic and Maximum Entropy

Reinforcement Learning.

The algorithm’s name comes from the concept of ”soft” policies. In a

traditional Actor-Critic algorithm, the actor is typically trained to select

actions according to a deterministic policy. On the other hand, a soft

Actor-Critic algorithm is trained to select actions according to a stochas-

tic (i.e., ”soft”) policy, allowing it to explore the environment and learn

more effectively. It can improve performance, especially in complex en-

vironments with large action spaces.

One critical method to encourage exploration is the use of the Max-

imum Entropy principle. This principle states that, when making de-

cisions, an agent should maximize the entropy of its future actions in

order to explore more of the state space and potentially discover better

options. In the case of SAC, the agent will try to find a balance between

exploiting known good actions and exploring new ones by maximizing

both the expected cumulative reward R and the entropy of the policy.
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The objective of the actor becomes:

J(π) =
T∑

t=0
E(st,at)∼pπ [r(st, at) + αH(π(·|st))] : (3)

SAC is an off-policy algorithm, meaning it can learn from experience

collected using a different policy than the one being learned. In prac-

tice, SAC uses a replay buffer to store past experiences, which are then

sampled to train the networks. It allows the algorithm to learn from a

diverse set of experiences and to improve sample efficiency.

2.3 Inverse Reinforcement Learning

The problem of Inverse Reinforcement Learning (IRL) in a Markov Deci-

sion Process consists of extracting the reward function given trajectories

of an expert policy that is assumed to be optimal. The final goal is usually

to use the extract function reward to train a new policy that behaves as

the optimal one. For this reason, IRL is considered an approach of Imita-

tion Learning, which is the more general problem of learning an optimal

policy by imitating an expert behaviour, given a set of demonstrations.

More formally, we are given a set of expert demonstrations D :

{τ}˜π∗, from an unknown distribution, each in the form of τ = {s1, a1, ...,

sT , aT }, where st and at are the state and action at timestep t. We want

to recover cθ(τ) = ∑
cθ(st, at), an unknown reward function parameter-

ized by θ, in a way that the agent can learn a near-optimal policy using

the learned reward function.

It is considered to be an underdefined problem since 1) different opti-

mal policies can explain a set of demonstrations, and 2) different reward

functions can induce the optimal behaviour. [5]

In the next sections we introduce three algorithms: the Maximum

Entropy IRL, the Generative Adversarial Imitation Learning, and the
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Adversarial Inverse Reinforcement Learning.

2.3.1 Maximum Entropy IRL

The most popular IRL algorithm is the Maximum Entropy Inverse Rein-

forcement Learning (MaxEnt IRL) [6], which deals with the first ambigu-

ity introduced in the previous section, by using a probabilistic behaviour

model.

The MaxEnt formulation states that the probability of the trajectories

under the expert is exponential in the reward:

p(τ) = 1
Z

exp(cθ(τ)) (4)

It means that trajectories with maximal reward are exponentially most

likely to be sampled by the expert under some reward function. To infer

the reward function, we can then maximize the log-likelihood of the set of

demonstrations with respect to the parameters θ of the reward function.

L(θ) =
∑
τ∈D

log(pcθ
(τ)) (5)

=
∑
τ∈D

log( 1
Z

exp(cθ(τ))) =
∑
τ∈D

cθ(τ) − Mlog(Z) (6)

with the partition function Z being Z =
∫

exp(cθ(τ)) dx . Then, the final

objective to optimize is:

L(θ) =
∑
τ∈D

cθ(τ) − Mlog(
∑

τ

exp(cθ(τ))) (7)

We can use gradient descent to optimize it by computing the following

gradient:

∇L(θ) =
∑
τ∈D

dcθ(τ)
dθ

− M
1∑

τ exp(cθ(τ))
∑

τ

exp(cθ(τ))dcθ(τ)
dθ

(8)
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The second term of the gradient can be simplified to avoid enumerating

all possible trajectories, becoming:

=
∑

τ

p(τ |θ)dcθ(τ)
dθ

=
∑

s

p(s|θ)dcθ(s)
dθ

(9)

where p(s|θ) is the state visitation frequency and can be computed using

a dynamic programming algorithm.

The MaxEnt IRL algorithm’s main drawbacks are the assumption of

known dynamics (the transition function) and the need to compute the

state visitation frequencies. They could be approximated through inter-

actions with the MDP, but using this algorithm in high dimensional state

space is not feasible. Moreover, it requires in input hand-engineering fea-

tures instead of row inputs and the recovered reward function does not

generalize well, is not robust to environment’s changes, and does not

manage to infer the true intentions of the expert.

2.3.2 Generative Adversarial Imitation Learning

Let us now introduce a different algorithm that manages to recover the ex-

pert policy from the raw expert trajectories (state-action pairs, removing

the need for hand-engineering features) and works on unknown dynamics.

Generative Adversarial Imitation Learning (GAIL) [7] is an Imitation

Learning Algorithm based on adversarial learning and GAN’s architec-

ture [8]. Adversarial learning is a technique in Machine Learning where

two models, the Generator G and the Discriminator D, are trained simul-

taneously. The Generator creates samples, in this case trajectories, that

are intended to be similar to the expert’s ones, while the Discriminator

attempts to distinguish the generated samples from the expert trajec-

tories. The two models are trained in an adversarial manner, with the

Generator trying to produce samples that can fool the Discriminator and

the Discriminator trying to correctly identify the generated samples. In
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Figure 2.2: GAN structure. In our problem, the samples are the trajec-
tories or the state-action pairs.

other words, D and G play the following two-player minimax game with

value function V (G, D):

minGmaxDV (D, G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 − D(G(z)))]

(10)

Even if the Generator manages to recover the optimal policy, the Dis-

criminator does not directly aim to recover the reward function since it

outputs a value between 0 and 1 that classifies the input (state-action

pair) as part of the expert trajectories distribution or not. It is not ro-

bust to the environment’s changes and is unsuitable to use as a reward

function. For this reason, GAIL is not considered to be an IRL algorithm.

2.3.3 Adversarial Inverse Reinforcement Learning

Adversarial Inverse Reinforcement Learning (AIRL) algorithm, differ-

ently from GAIL, is an IRL algorithm introduced in 2018 [9]. While

the Generator learns the expert policy, the Discriminator is trained to

learn the reward function.

One of the first works to show a direct connection between GANs

and IRL proposes to cast the maximum likelihood optimization of the

Maximum Entropy IRL in (5) as a GAN [10], as follows:

Dθ(τ) = exp{fθ(τ)}
exp{fθ(τ)} + π(τ)

(11)

Moreover, AIRL switches from a trajectory-centric formulation to a
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state-action pair one to solve the problem of high variance estimates of

the former formulations.

Lastly, AIRL Discriminator is modified to recover a generalizable and

robust reward function by disentangling it from the dynamics. The final

Discriminator takes the following form:

Dθ,ϕ(s, a, s′) = exp{fθ,ϕ(s, a, s′)}
exp{fθ,ϕ(s, a, s′)} + π(a|s)

(12)

with fθ,ϕ composed by a reward approximator gθ and a shaping term hϕ

as follows:

fθ,ϕ(s, a, s′) = gθ(s, a) − γhϕ(s′) + hϕ(s) (13)

The Discriminator objective is the same used in the traditional GAN

loss, while the policy can be updated using any policy optimization mod-

els that aim to maximize the expected cumulative reward, where the

reward function is given by:

r(s, a, s′) = log(Dθ,ϕ(s, a, s′)) − log(1 − Dθ,ϕ(s, a, s′)) (14)

2.4 Norm Inference

2.4.1 Overview

Social Norms can be defined as the expectations, rules, or guidelines

that govern the behaviour of individuals in a particular society or group.

These norms are typically based on the society’s shared values, beliefs,

and customs, and they regulate individuals’ behaviour to maintain social

order and achieve cooperation. They can be explicit, such as laws and

regulations, or implicit, such as unwritten rules of behaviour that are ex-

pected and accepted within a particular society. These norms are often
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enforced through social pressure, exclusion or some other kind of punish-

ment. Overall, social norms play a crucial role in shaping the behaviour

of individuals within a society.

Recognizing the norms that govern a society is a key ability an agent

must master, especially if it has to interact in a human society, where

norms are intrinsic in everyday activities.

The process of Norm Inference (also referred to in the literature as

Norm Detection, Norm Recognition or Norm Identification) enables the

agent to learn what is allowed, what is mandatory, and what is considered

prohibited within a society. As the agent joins and leaves different open

systems, the capability of recognizing the new norms that govern the

society helps it derive new ways of achieving its goals by behaving in the

way the other agents of the society expect it to do.

Norms are often classified by the Normative Multi-Agent systems

community as follows:

• Obligation norms: they require the agent to perform a specific

action or behaviour.

• Permission norms: they allow the agent to perform a specific ac-

tion or behaviour. The presence of a permission norm usually cor-

responds to the absence of norms, as individuals can act freely.

• Prohibition norms: they forbid the agent from performing a specific

action or behaviour.

Another critical aspect to consider is the Context-Sensitive character-

istic of norms, which indicates that different contexts activate different

norms. Usually, the context is intrinsic in the observation of the current

timestep, so the agent should be able to detect, from observations, if and

which type of norm is activated and choose the optimal behaviour to

reach his goal without violating the norms.
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2.4.2 Previous Work

A drawback found in previous work on Norm Inference is that some

assumptions are usually presupposed to hold.

Let us examine which are the most frequent assumptions.

• The system must be closed: in the early research stage, some works

suggested approaches that work only in closed systems. If the sys-

tem is closed, it is easier for the agents to communicate in some

ways and inform others of the norms or disclose other information.

In open multi-agent systems, agents may have different internal ar-

chitectures and concepts of norms, or they may not have a concept

of norms at all.

• There must be deviant agents: according to Therborn [12], the

detection of deviant agents is critical to the norms’ learning. Many

other works [11][12][14][18] assume the presence in the system of

some agents who violate the norms. These signalling actions [17]

are special events that help the agent identify behaviours that are

discouraged (or encouraged) by the society. This assumption does

not always hold, such as in optimal societies where all its agents

follow the norms. In this case, it is not possible to recognise special

events just by observing the agents’ behaviour.

• The reward function must be visible: many works, such as the ones

that assume the presence of deviant agents, also assume that the

reward function is visible. Even if signalling actions exist in the

system, observing the rewards or punishments that follow them

would still be necessary to detect them. If the rewards cannot be

accessed, it would be difficult for the agent to distinguish good from

bad actions.

• The norms have structured, domain-specific representation and/or
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can be enumerated [15][16]: many works of Norm Inference of the

past years had as their final goal the creation of an agent capable

of detecting norms and storing them in its belief, by encoding them

in structured representation. This representation can be domain-

specific or represented in some formal/logical language. It can be

limiting for different reasons; it does not generalise for different do-

mains, and some norms may be difficult or impossible to express in

formal languages or enumerate. It could be computationally expen-

sive and may not scale well to large systems. Moreover, learning

norms from observations in formal language is not always possible

since it requires the agent to structure the information in a fixed

representation that it may not be aware of.

• The context is already known: paper [18] assumes the context to

be already known and separated from the observation. It would

be a very convenient feature, but it is not likely to be present

in the environment, and this separation could be challenging to

accomplish.

The use of Inverse Reinforcement Learning to learn norms is still

an open problem researched by the community. It has been discussed

in recent years, but few works actually use it. As mentioned, [18] pro-

poses a modified IRL algorithm to learn context-sensitive norms, called

Context-Sensitive Norm Inverse Reinforcement Learning (CNIRL). As

we explained, it assumes to have observations and contexts already sepa-

rated. Moreover, its goal is to learn a policy which behaves following the

norms without analysing the reward function to investigate the presence

of possible information about the norms.
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Chapter 3

Approach

3.1 Problem Setting

Let us assume an intelligent learning agent, referred to as external agent,

wants to enter an open multi-agent system. The agents in this system

could have different internal structures and concepts of norm from the

external agent or among themselves, and they follow norms that the

external agent is unaware of. We assume all the agents in the system to

behave optimally, although the presence of a small percentage of deviant

agents should not affect much the performance of the approach proposed

in the next section.

The reward function is not observable, so the external agent can not

identify signalling actions in case they are present. Instead, it can observe

the interactions between the agents of the system. He can only access the

expert trajectories (state-action pairs) and has no real concept of context

or norm in his current architecture.

The problem investigated in this section is a Common Pool Resource

appropriation problem and is represented through Sequential Social Dilem-

mas. The agents’ goal is to gather resources from the environment. As

we have already explained, without any norms that regulate the agents’

behaviour, the problem will become a Tragedy of the Commons, with all

21
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the resources quickly depleted.

A norm capable of avoiding this outcome is the establishment of pri-

vate areas. In this way, each agent will be in control of all the resources

of the private area assigned to it. Without the fear of others taking the

resources before it, it will learn to gather its resources in a renewable

way. This norm is classified as a prohibition norm since it reduces the

freedom of the system’s agents, allowing them to take resources just from

their own area.

With renewable or sustainable policy, we refer to a policy which

menage to gather the resources until the end of the episode without

depleting them all.

3.2 Proposed Approach

The proposed approach consists of performing Norm Inference in Social

Dilemmas through Inverse Reinforcement Learning to obtain a policy

that behaves according to the norm and a reward function that encodes

information about the norm in the system and could help explain it.

More in detail, this project is organised as follows:

• Two initial policies are trained: one of the external agent, the other

of the expert.

• An IRL algorithm is trained on expert trajectories, and the expert

reward function and policy are obtained.

• The obtained reward function is compared with the external agent’s

one to extract information about the norm of the system.

3.2.1 Initial policies

The first part of the project consists of training the two initial policies

in the same environment. The first policy corresponds to the external
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agent’s one, which gathers resources without following any norm. The

second corresponds to the expert policy, which instead follows the sys-

tem’s norm.

The algorithm used in this section is a Soft Actor-Critic RL algorithm,

which manages, as explained in Section 2.2.5, to retrieve a soft policy.

Choosing a soft policy can be advantageous in this environment since

exploration could be critical in different situations, for example, when

the agent ends up in empty areas, far away from the resources. Using a

stochastic policy can help the agent avoid ending up in loops, going back

and forth in the same area. It can also benefit the learning of the expert

policy in the next step of the proposed approach since a soft policy can

generate more than one optimal expert trajectory, which will help with

generalization.

3.2.2 IRL Algorithm

The second part of the project consists of training the IRL algorithm to

recover the expert reward function and policy.

The IRL algorithm chosen to infer the behaviour of the expert is

Adversarial Inverse Reinforcement Learning. As explained in Section

2.3.3, it takes in input raw trajectories, made of a sequence of state-action

pairs, and produces a policy and a robust reward function in output.

Again, the policy optimization algorithm used to train the Generator

network is the Soft Actor-Critic algorithm.

The popular Maximum Entropy IRL is unsuitable for our problem

because of the unknown dynamics, the high dimensional state space and

the weak reward function it retrieves. Similarly, the GAIL algorithm is

unsuitable because, even if it can recover the expert policy, it cannot

retrieve an actual reward function.
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Figure 3.1: Environment’s map.

Object Value
Dividing wall 0
Framing wall 1

Left area 2
Right area 3

Apples 4
Left agent 5

Right agent 6

Table 3.1: Object’s values
in the environment.

3.2.3 Norm’s Information in the Reward Function

In the last part of the project, the retrieved reward function is further

analysed and compared with the one of the external agent to investigate

how the new reward function can provide information about the system’s

norm.

With the extracted information, a supervised classifier is trained to

recognise if a state-action pair will lead to a next state where the norm

is violated.

3.3 Environment

The environment is inspired by the one presented in the paper [19] of

Julien Perolat et al., where a similar game of Common Pool Resource

appropriation is implemented as a Sequential Social Dilemma.

It is a partially-observed Markov game environment implemented as a

2D grid map. The experiments are implemented in a two-agents system.

The map consists of a 17x17 grid framed by a 1x1 deep wall. Apples

and agents are represented by single pixels. Apples are structured in

groups of 5, in a cross-like shape, referred to as trees. Two private areas,
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represented by different values, divide the map vertically into two equal

regions, separated by another wall, as shown in Figure 3.1. The value of

each object in the map is reported in the Table 3.1.

Apples can respawn with a probability proportionate to the density

of nearby apples. It means that if all the apples on the map are gathered,

they will not respawn anymore for the rest of the episode. The respawn

probability pt of an apple depends on the number n of present apples at

the current timestep t in the 5x5 square centred around its location:

pt(n) =



0 if n = 0

0.035 if 0 < n < 3

0.065 if n = 3

0.1 if n > 3

(15)

Figure 3.2: Agent’s observation.

Agents observations O(s, i) ∈

R5x5 of the current state s depend on

the ith agent’s current position and

orientation. The observation is a 5x5

window that extends 4 grid squares

ahead and 2 grid squares from side

to side. The agent’s position in the

observation is fixed at (4, 2). The ob-

servations of the two agents are equiv-

alent, meaning that the right agent

sees the values of the environment as if it was the left agent (the values

of agents and private areas are exchanged in the right agent’s observa-

tion). Observation’s values are normalised between 0 and 1.

At each timestep, each agent can choose between 7 different actions:

step forward, step right, step backwards, step left, rotate right, rotate

left and stay still.
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Chapter 4

Evaluation

4.1 Experiments

This section presents the conducted experiments along with the exact

settings and parameters used for each of them.

4.1.1 Training of the Initial Policies

The preliminary step of our experiments consists in retrieving the initial

policies of the external agent and the expert.

Both policies were trained for 400 episodes, each of 1000 steps. If all

the apples are gathered before the 1000th step, the episode terminates

earlier. The reward is 0 for each step and 1 if the agent picks a resource.

It was used a batch size of 32, a discount factor of 0.999, a replay

buffer size of 105, 104 steps for the target network update, an Adam

optimizer with a learning rate of 10−5 and a weight decay of 0.05 for each

network. The entropy temperature hyperparameter was automatically

tuned accordingly to [20].

Each model has 3 Convolutional layers of 3, 6, and 9 filters, each

with a kernel size of 3, padding ’same’, and ReLU activation function.

A Flatten layer follows, with other 3 Fully-Connected layers of 64, 32,

27
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18 neurons and the ReLU activation function. The last Fully-Connected

layer outputs 7 values, one for each action.

The only difference between the two experiments is that in the first

one, each agent can move in both areas and gather all the apples on the

map, while in the second one, agents are permitted to move only in their

private area.

4.1.2 Training of the IRL Algorithm

The main experiments of the project consist in retrieving the expert

policy and reward function from expert trajectories using IRL.

In the original AIRL algorithm, as explained in Section 2.3.3, the

model of the reward function and the one of the policy are trained si-

multaneously in an adversarial manner. Because the policy’s training

depends on the reward function’s training, and we wished to evaluate

and display the policy’s performance during training on the final reward

function, we replaced adversarial training with two consecutive training

sessions.

Initially, the AIRL algorithm was used to train the reward function,

where the expert trajectories served as real samples, and a random policy

was used as the Generator. Then, the final policy is trained using the

SAC algorithm on the retrieved reward function.

Two experiments were executed by training the model on two differ-

ent expert policies. The first is a policy that follows the norm without

behaving in a renewable way. It was trained to evaluate if the retrieved

reward function can learn a sustainable policy even with expert trajec-

tories that are not sustainable. The second experiment instead uses an

expert policy that is already renewable. The policy used as the Genera-

tor for producing ’fake’ trajectories and training the optimal policy with

SAC is random.

A third experiment was run to test if using the external agent policy
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instead of a random one could improve the training of the models and

the final performance. We experimented both, using this policy as the

Generator to retrieve the reward function and as a starting policy in the

training of the final one using the reward function retrieved in the first

experiment.

The reward function is represented by two networks g and h, each

with the same structure of the networks reported in Section 4.1.1 except

for the number of neurons in the 3 Fully-Connected layers. The neurons’

numbers, in this case, are 64, 32, and 18.

The reward function was trained for 15 episodes of 500 steps each.

At each episode, 50 new samples were produced by the Generator and

added to the old ones. It was used a batch size of 32 and two Adam

optimizers with learning rates of 1e-3.

The policy was trained with the same hyperparameters reported in

Section 4.1.1 but for fewer episodes, as it will be shown in the next

section.

4.2 Results

This section reports the obtained results of each experiment.

4.2.1 Evaluation of the Initial Policies

Figure 4.1 shows the results of the two initial policies during training.

The steps function represents the number of steps the agent plays until

the episode is terminated. If its value is 1000, the episode was played till

the end, and the policy used is sustainable. If its value is less than 1000,

the agent has depleted all the resources, and the episode was terminated

earlier. In this case, the policy is not sustainable. The rewards function

represents the number of resources collected during the episode by both

agents.



30 CHAPTER 4. EVALUATION

(a) Policy without norm (b) Policy with norm

Figure 4.1: The two plots report the total reward obtained and the
episode’s steps of the two initial policies. (a) represents the external
agent policy which does not follow any norm. (b) represents the expert
policy which follows the system’s norm.

In both plots, when the policy is still random at training step 0, the

reward amount is already quite high. It is because the random policy

can not deplete all the resources and keep gathering them until the end

of the episode, even without maximising the reward.

As soon as the training starts, again in both plots, the reward amount

grows to drop shortly after in the following episodes. It can be explained

by considering that the soft policy obtained at training step 10 needs

more updates to learn to pick up apples perfectly but has already learned

how to behave most of the time. The ’errors’ it makes while it gathers

apples give enough time for the resources to respawn before being all

depleted. Soon after, the rewards and the steps function drop, indicating

that the agent has ended up in the Tragedy of the Commons since it

has become too fast in gathering the resources. Let us now explain the

following steps.

Plot (a), corresponding to the system without the norm, shows how

the agent does not manage to retrieve a sustainable policy and often gath-

ers all the resources at once because of the fear that the other agent could

take all the apples. Since the training is not stable, in some episodes, the

resources are gathered in a renewable way. By analysing the trajectories
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of the agent during those training episodes, it is possible to observe that

a drop in the performance has prevented the agent from depleting all the

resources.

Plot (b) instead, corresponding to the system with the norm, shows

how the agent learns, after some episodes, to gather resources in a re-

newable way as a result of the establishment of the norm of private areas

and the absence of the fear of the other agent taking its resources.

By analysing the trajectories, we discovered that the sustainable

learned policy gathers resources mainly from the same 2 trees on one

side of the map, sometimes picking up apples also from the other near-

est trees, keeping the last tree on the other side of the map untouched

most of the episode. It can be interpreted as an intentional behaviour to

keep the policy sustainable by using the untouched trees as a recharge

factor for the resources in the other trees. It is interesting to note how

the achievement of this particular policy would not have been possible

without the use of a soft policy.

4.2.2 Evaluation of the IRL Algorithm

In this section we evaluate the ability of our approach to 1) learn the

system’s norm, 2) recover the expert policy, and 3) recover a sustainable

policy.

Figure 4.2 reports the results of the first two experiments in terms

of the total number of apples gathered (rewards), the number of norm

violations (errors), namely the number of apples gathered in the wrong

private area, and the episode’s steps (steps). The first value is used to

evaluate if the policy is maximizing its objective, the second to evaluate

if it learns the norm, and the third to evaluate if it is a sustainable policy.

An analysis of the trajectories is necessary to evaluate if the agent learns

the exact same behaviour of the expert.

Plot (a) shows the results of the policy trained on the non-sustainable
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(a) Policy on expert non-sustainable
demonstrations

(b) Policy on expert sustainable
demonstrations

Figure 4.2: The two plots report the total reward obtained, the episode’s
steps, and the number of violations of the policies trained on expert
demonstrations with AIRL. (a) is trained on non-sustainable expert
demonstrations, (b) is trained on sustainable expert demonstrations.

expert policy, while plot (b) shows the policy trained on the sustainable

one.

It can be observed how the error function in both plots drops to 0,

while the reward function, even if more unstable, behaves similarly to the

previously explained ones, indicating that the agent has learned the norm.

Further considerations on this Figure can be found in the discussion in

Section 4.3.1.

The results of the last experiment, which uses the external agent

policy as a starting policy for the training of the AIRL algorithm, are

reported in Figure 4.3.

Plot (a) compares the loss of the reward function when trained with a

random policy as the Generator (as in the previous experiments) and the

one that uses the external agent policy instead. As it can be observed,

when using the external agent policy instead of the random one, the

Discriminator loss is overall higher, showing that a random algorithm

that explores the whole environment is more effective for learning the

reward function than a policy that explores the environment much less.

Plot (b) shows the results of the policy training on the reward function
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(a) Comparison of Discriminators’ loss (b) AIRL on expert demonstrations
starting from external agent policy

Figure 4.3: (a) reports the values of the Discriminator loss during AIRL
training on the non-sustainable expert demonstrations when the Genera-
tor is a random policy and when is the external agent policy. (b) reports
the total reward obtained, the episode’s steps, and the number of viola-
tions of the policy trained on the reward function obtained in experiment
1 starting from the external agent policy.

obtained in the first experiment, starting from the external agent policy.

As we can observe, it has many difficulties in retrieving the optimal

behaviour. It struggles to learn the norm in just 100 episodes. The

original policy has reinforced through rewards the action of gathering

apples in the wrong area. Unlearning this behaviour, which is already

incorporated into the policy can be challenging for an RL agent. The

agent also has difficulties learning a renewable policy since the original

one is not sustainable, and it is difficult not to end up in the Tragedy of

the Commons when it does not follow the norm.

Hence, these results show that, even if the external agent is already

aware of the final goal and knows how to gather apples, this does not

benefit the learning of the norm if part of its policy must be unlearned.

It is more advantageous to learn the new policy from scratch.
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4.3 Discussion

4.3.1 Discussion on the Retrieved Policies

The drop to 0 of the error functions, shown in Figure 4.2, proves that

the policies manage to learn the norm established to solve the Social

Dilemma using Inverse Reinforcement Learning on the expert trajectories.

The results were also evaluated by checking if the model can recover the

expert policy and learn a sustainable one.

Regarding the policy of the first experiment, trained on the non-

sustainable expert demonstrations, shown in plot (a), the steps function

reveals that the policy never ends up in the Tragedy of the Commons. It

means that it learns the renewable policy right away and never recovers

the exact same policy of the expert. However, the agent’s behaviour is

similar to the expert’s one. It gathers all the apples in its area quickly,

then stops for some steps on a particular side of the map, giving enough

time for the apples to respawn. It can be interpreted as intentional be-

haviour. The reward function retrieved by the IRL algorithm manages to

reflect the real rewards of the original system. In this way, the agent is

able to learn an optimal renewable policy really quickly. It is also impor-

tant to note that the model learns the norm and the optimal policy in a

few episodes. It is because rewards learned through IRL are derived from

expert behaviour, which provides a more natural and informative signal

for learning. It is also relevant to consider that even if learning this policy

took much fewer iterations than the ones needed to train the policy on

handcrafted rewards, each training step is computationally more expen-

sive and more time-consuming. It is due to the forward step required to

interrogate the reward function at each timestep to retrieve the correct

reward.

In the second experiment, we can observe that the training is more

unstable but still manage to learn a sustainable policy that follows the
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(a) Distributions of the obtained
reward function values

(b) Distributions of the differences
between the two reward function values

Figure 4.4: (a) reports the rewards distributions obtained by running the
external agent on the reward function retrieved in experiment 1 on the left
and right areas. (b) reports the distributions of the differences between
the corresponding rewards obtained by running the external agent on
the reward function retrieved in episode 1 and on the reward function
retrieved by running AIRL on the external agent demonstrations on the
left and right areas.

norm. We also analysed the trajectories to investigate if it learned the

expert policy. The learned policy consists in gathering the apples just

from one tree. It can be considered similar to the expert’s since it keeps

the other trees untouched as a recharge factor, but it is far from being

an optimal policy. The sustainable expert policy is more complex to

learn than the non-sustainable one since it also makes significant use

of the soft policy. In the expert demonstrations, different actions could

follow the same state, meaning that the probability distribution over the

actions is stochastic rather than deterministic. This stochasticity could

be challenging to achieve since it could take more exploration, hence more

training, for the agent to learn.

4.3.2 Reward Function Analysis

Lastly, we analysed the obtained reward function to investigate what

information about the norm it encodes.

We examined the distributions of the reward values in the two private
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areas by generating 20 episodes using the external agent policy, which

gathers resources in both areas, and collecting the rewards at each step

from the retrieved reward function. The trajectories obtained by running

the episodes were preprocessed by eliminating double state-action pairs

to produce a set of tuples (state, action, reward) to analyse. We com-

pared the obtained distribution by plotting the histograms of the rewards

reported in Figure 4.4 (a). The left area was considered to be the one

where is allowed to gather resources. As expected, the two distributions

are quite different. The rewards obtained by the agent in the left area are

higher, with most of them being positive values. The rewards obtained

in the right area, instead, are lower and all negative.

In a second analysis, we compared the obtained reward function,

which infers the norm, with the one of the external agent, which does

not. In order to do that, we first trained the AIRL algorithm on the

external agent trajectories to obtain a reward function that was more

similar to the expert’s, one in teams of magnitude and scale, compared

to the handcrafted one where the reward values are all 0s and 1s. Then,

we generated 20 episodes again using the external agent policy, prepro-

cessed them, and collected the rewards from both functions for each step.

We compared the distributions of the differences between corresponding

rewards (rewards obtained from the same state-action pair) in the two

areas of the map. Results are shown in Figure 4.4 (b). We can observe

that the differences between the values of the two reward functions are

higher in the right area, corresponding to the one where the norm is

active and encoded in the expert reward function.

The two analyses prove again that the reward function obtained by

the IRL algorithm is able to learn the norm of the system and encodes

information about it. The external agent, unaware of the norm, could

potentially extract this information from the reward function and use it

to infer the norm.
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To test this hypothesis, a supervised model, which we will refer to

as Norm Classifier, was trained on labelled state-action pairs, with the

label being:

label =


1 if the pair lead to a state that violates the norm

0 otherwise
(16)

The external agent, unaware that the system’s norm is correlated to

the two areas of the map, can not label the pairs based on the position

of the next state on the map, and neither can access Figure 4.4 (b).

Figure 4.5: The plot reports the
distribution of the differences be-
tween the corresponding rewards
obtained by running the exter-
nal agent on the reward func-
tion retrieved in experiment 1 and
on the reward function retrieved
by running AIRL on the exter-
nal agent demonstrations, on the
whole map. The threshold divides
what are predicted to be the val-
ues corresponding to state-action
pairs where the norm is active to
the one where it is not active.

Instead, it can access the over-

all distribution of the differences be-

tween the values of two reward func-

tions and use a threshold to choose

the labels, as shown in Figure 4.5.

If the difference between the two

rewards obtained in a state-action

pair is greater than the threshold,

the next state is considered to vio-

late the norm, and the label assigned

to the state-action pair is 1, other-

wise, 0 is assigned. It is because the

two reward functions differ more in

states where the norm is active since

the expert function encodes it and

the external agent function does not.

In the examined problem, the estab-

lished norm is a prohibition norm. As a consequence, the rewards of the

expert function on states affected by the norm will be lower than the

external agent’s one to discourage the agent from violating the norm. If
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(a) Confusion matrix of the Norm
Classifier

(b) Resources gathered not using the
Norm Classifier and using it.

Figure 4.6: (a) reports the confusion matrix of the predictions made by
the Norm Classifier on a random policy. The values above represent
the predictions made when a resource was gathered. The values below
represent the predictions made at each step. (b) reports the number of
resources gathered by a 1) random policy and 2) a random policy which
does not take actions that are predicted as norm violations by the Norm
Classifier.

instead, it was an obligation norm, the rewards would have been higher

to encourage the agent to behave following the norm.

The model was trained on 40 episodes, preprocessed again by elimi-

nating double state-action pairs to avoid over-represented samples in the

dataset. The accuracy achieved on the test set is 0.9. To test this model,

a random policy was run on the environment, and at each step, the Norm

Classifier was interrogated if taking action a in state s was a violation of

the norm.

The confusion matrix is reported in Figure 4.6 (a). The values on the

first row correspond to the predictions made by the Classifier only when

a resource was gathered. The values on the second row correspond to

the predictions at each step, but the ones of the Positive True Label are

missing. The reason is that the norm of private areas has no clear rules.

It is clear that gathering apples in the area of the other agent violates

the norm and that moving and gathering apples in its own area does

not. It is unclear if moving around in the other agent’s area is permitted.
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In principle, it is, but since there is no gain in doing that, the expert

never crosses the wall that separates the two areas. The external agent

could infer from the expert observations that crossing the wall violates

the norm. Hence, we decided to consider 0 and 1 predictions to be both

correct for each state-action pair in which the agent moves around in the

wrong area without gathering resources. For this reason, those samples

were not considered in the calculation of the confusion matrix.

Figure 4.6 (b) reports a comparison between two bar charts, one

representing the resources gathered by an agent which follows a random

policy, the other by an agent that chooses a random action at each step

and interrogates the Norm Classifier about the presence of the norm. If

the Classifier predicts that the next state violates the norm, the agent

chooses another action.

As we can observe in both figures, the trained model is not perfect.

The main reason is that the labels themselves are not all correct. In

Figure 4.4 is clear that a large number of entries of the two distributions

share the same values, leading to a wrong assignment of the labels to the

state-action pairs. Even though the Norm Classifier makes errors, we can

show that a random policy, without any information about the norm, was

able to move around in the environment, reducing the number of norm

violations by a large amount just by relying on this simple classification

model.
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Chapter 5

Conclusion

5.1 Summary

We have approached the open research problem of Norm Inference by

using Inverse Reinforcement Learning to retrieve a reward function and

a policy that follows the expert behaviour in a Social Dilemma problem.

We have shown through experiments how the retrieved policy manages

to learn both the norm and a sustainable behaviour. We have further

analysed the reward function to show how it encodes information about

the norm. We have provided a simple example of how it is possible

to extract and use this information on a random policy by training a

classification model to recognise norm violations.

With future progress in the IRL field, it will be possible to retrieve

better and better reward functions, which will automatically improve

both our experiments’ results and our proposed Norm Classifier.

This study aims to demonstrate that it is possible to use IRL for

Norm Inference in Social Dilemmas, and even if the problem approached

is rather a simple one and the performance could be improved, it is a

starting point for future research.
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5.2 Future Work

The problem discussed in this dissertation could be complicated by es-

tablishing more than one norm, and some considerations can be made.

The information that can be extracted from the retrieved reward

function in case of more than one norm, using the approach described in

this project, will be able to distinguish between obligation and prohibi-

tion norms, following the reasoning done at the end of Section 4.3.2. The

Norm Classifier could be trained to predict three classes (obligation norm,

permission norm, and prohibition norm), and based on the predictions,

an agent could behave accordingly.

It could be argued, in principle, that it is unnecessary to distinguish

every single norm from each other to teach an agent how to behave in

the presence of norms and that it is only needed to distinguish between

obligation and prohibition norms. However, this could not hold based on

what the information about the norms wants to be used for.

Future research could bring new and better ideas to this approach

which is still considered to be an open problem.
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