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Abstract

Coordination of actions plays a crucial role in multi-agent systems, as it

allows entities to work in a shared environment, together towards a common

goal, or individually without hindering each other’s progress. In order for this

to occur, agents must demonstrate high levels of spatial awareness and col-

laborative skills that enable them to understand and acknowledge each other’s

intentions. Added to this challenge are all those constraints related to real-

world implementation, such as decentralisation of information and efficiency

requirements that cannot be easily ignored. This thesis aims to contribute to

the field of research by studying coordination among agents habilitated to ex-

change information. Existing challenges and solutions are discussed, then an

alternative approach is presented to address the problems. Specifically, the

paper argues that explicitly allowing agents to choose whether to coordinate

with others or to act independently provides them with adaptability to differ-

ent scenarios while still ensuring an optimal understanding when needed. To

support this claim, CoMix is presented as a novel method that reflects this

strategy. Extensive tests with a focus on the scalability of the solution show

its positive results in different scenarios, and a comparative analysis highlights

the ability of agents to learn strategic behaviour.



Chapter 1

Introduction

Cooperation and competition are commonly studied behaviours in multi-agent

environments, and state-of-the-art methods have shown great success in these

tasks [65, 82], but, it is important to recognise that most real-world scenarios

do not fit neatly into a defined category that includes one or the other. Instead,

by focusing on coordination dynamics, it would be possible to develop meth-

ods enabling optimal system evolution regardless of individual objectives set

by the environment [62]. This will require tackling the difficult challenge of

coordinated decision-making, but developments in this direction could lead

to significant advances in technology applications, especially in areas involv-

ing social skills such as swarm robotics and timely interactions such as au-

tonomous vehicle navigation.

1.1 Multi-agent systems

AMulti-Agent System (MAS) encompasses multiple autonomous entities, re-

ferred to as agents, that interact with each other within a shared environment

[79]. The goal of each agent is to accomplish a specific task which, depend-

ing on the difficulty, may also require cooperative or competitive interactions

with others. Due to the complexity of such systems, instead of developing

intelligent behaviours from scratch, it would be possible to inject intelligence
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into the agents, pre-programming responses to interactions, or adopting fixed

shared rules which decrease the space of uncertainty. However, it is generally

more desirable for agents to possess the ability to adapt and learn over time.

One prominent framework for that learning ability is Reinforcement Learning

(RL), which entails modifying behaviour through a process of trial and error.

Recent advances in Artificial Intelligence and Deep Learning have led to a

surge of research interest in Deep Reinforcement Learning (DRL). This ap-

proach has demonstrated success in a wide range of fields, including robotics,

natural language processing, game playing, and network security. In partic-

ular, RL (and MARL, in multi-agent settings) has been utilised to develop

intelligent robots that can navigate and manipulate objects in their environ-

ment [2]; strategy selections for acting in impractical spaces explorations [12]

or optimisation of resources [45]; in classic game playing it has been used

to develop agents that can compete at human levels, such as playing chess,

Go and poker [64, 66, 7], or in the case of strategic multiplayer online games

where cooperation with other agents is required to achieve a common goal,

such as DOTA 2 [49] and StarCraft II [76].

Despite the impressive results that can be achieved with DRL, its application

to a multi-agent setting poses unique challenges: the concurrent and hetero-

geneous behaviour of the agents leads to an unpredictable environment, phe-

nomenon referred to as non-stationarity [63, 8, 21]; the exponential explosion

of states leads to the curse of dimensionality [63, 8], making it difficult to as-

sign credit to specific agents for a given outcome [80, 1]; large action spaces

coupledwith the need for global exploration [44], which increase the complex-

ity of the learning process; and potential for relative overgeneralisation [17,

78, 51]. For this reason, a successful single-agent RL methodology cannot

be simply applied to a multi-agent setting without re-evaluating its learning

approach.
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1.2 Coordination

Intelligent coordination refers to the coordinated effort of a group of agents,

capable of making intelligent decisions, in acting not only on the basis of their

own goals, but also taking into account other entities in the environment. It in-

volves establishing a shared understanding of the task at hand and developing

a plan that outlines the roles and responsibilities of each agent. This concept

is a promising area of research in MARL as it addresses the challenges in-

troduced by the presence of multiple entities, enabling more effective action

selection and limiting inefficient behaviours.

In general, we seek coordination ability both in cooperative and competitive

settings.

• Cooperation refers to the act of working together towards a common

goal. It involves the mutual support and assistance of multiple agents,

each of whom contributes with their own unique skills and abilities to

the collective effort.

• Competition refers to the ability of agents to compete with each other

to achieve their goals. It typically involves agents taking actions that

maximise their own reward or utility, potentially at the expense of other

agents.

Cooperative contexts are undoubtedly the most researched [9] as by mod-

elling an environment for this purpose, it is possible to arrive at the achieve-

ment of greater goals beyond the capabilities of the single agent and the emer-

gence of group intelligence. This is the foundation of many applications in

robotics, swarm intelligence, and social studies. However, competition is also

a vital aspect worth considering, as it can motivate agents to improve their per-

formance and explore the environment more efficiently. Furthermore, com-

petition can prevent agents from becoming too dependent on one another and
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encourage them to develop more sophisticated strategies. Despite this com-

mon distinction, it should be noted that usually, we do not have a clear cut

between cooperative and competitive behaviour in most real-world scenarios.

In some cases, cooperative agent may temporarily act selfishly while trying

to achieve a common goal, and a competitive agent may temporarily form a

coalition with its opponent to achieve its own goal [8, 23]. Therefore, when

designing a coordination system, it is important to avoid injecting a fixed cri-

terion for collaboration or obstruction.

1.3 Information sharing

Intelligent agents – whether humans or artificial – can greatly benefit from

the ability of information exchange to coordinate, strategise, and combine re-

ciprocally their sensory experiences to act in the environment. Indeed, it is

usually assumed that agents placed in the real world have to operate in situ-

ations of partial observability, limited in their knowledge and perception of

their surroundings, and it would be unrealistic to assume otherwise.

By enabling communication, we can aid the agents in gathering information

about the environment and improve their decision-making process by sharing

observations, action policies, future intentions, or other relevant information.

Furthermore, communication enables agents to form strong relationships and

work together in groups, leading to improved behaviours and increased ef-

ficiency in task completion. This is achieved through the parallelisation of

activities and optimisation of resources. We can see examples of this ability

in a wide range of RL applications, like multi-player gameplay in environ-

ments simulated (e.g., DoTA, StarCraft) or physical (e.g., robot soccer), and

in real applications like self-driving car networks working together for safe

and efficient transportation or teams of robots deployed in hostile and rapidly-

evolving environments, as well as many others.
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1.4 Centralised decision

When trying to achieve coordinated behaviour, a straightforward approach is

to adopt a hierarchical structure, where one agent takes on the role of coor-

dinator to establish order and take effective decisions for the system evolu-

tion. However, the question arises of who should be in charge of this role

and who better understands the situation. Approaches based on centralised

coordination delegate the responsibility of coordinating the agents to a single

agreed-upon entity, but even if a reliable hierarchical mechanism is in place,

the question remains: How can the higher-level agent acquire the necessary in-

formation and successfully coordinate all other agents? How can this method

address scalability and generalisation to different situations?

An alternative and often preferred approach is a decentralised one, where

there are no agents with higher roles controlling the behaviour of others. This

method eliminates the difficulties associatedwith centralisation, such as global

coordination and scalability issues. On the other hand, agents in a decen-

tralised system have limited knowledge and must rely solely on their local

information, which increases uncertainty and variability of action and makes

it difficult to predict the overall behaviour of the group. As a result, this leads

to suboptimal policies and ineffective interactions during testing, especially

when complex coordination is required. This particular problem has been

widely studied under the name of Interactive Consistency, or in a more re-

stricted setting as Byzantine Generals, where the agents have to take a group

action with shared consensus to succeed.

1.5 From simulation to reality

The process of transition from a simulated environment to the real world is of-

ten advocated in the field of RL research. However, the lack of interpretability

and explainability associated with black box algorithms, such as deep neural
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networks, presents a significant challenge in this transition. The inability to

effectively transfer the learned behaviours of an agent outside of controlled

environments due to a lack of transparency and interpretability can limit the

applicability of RL research to practical scenarios. To address this difficulty,

there has been a trend towards using more realistic simulation environments

and combining RL and robotic research efforts. Thanks also to independent

organisations [74] and open source communities [72], many simulated envi-

ronments are available to test physics interactions, structural properties, and

complex behaviour at scale.

It is also necessary to mention the implementation of the communication

process, which despite playing a key role in the deployment is often taken for

granted. There is a vast research activity in the telecommunication field and

under the Internet of Things (IoT) umbrella, that tries to design infrastruc-

ture and cope with interconnected entities limited in their computation and

decision ability. However, this thesis will not cover the physical aspects that

agents deployed in real scenarios are usually subject to, such as unreacha-

bility or disrupted communications. The analysis and reasoning will assume

an agent-to-agent (A2A) communication, following the traditional device-to-

device (D2D) paradigm, where physically close devices (e.g., two agents),

can communicate directly over a so-called sideline. Compared to regular cen-

tralised uplink-downlink communication, D2D communications benefit from

a shorter link distance and fewer hops, which is better in terms of reliability.

Moreover, since communication is direct, i.e., without intermediate nodes,

D2D has the potential to provide lower latency in the transmission of infor-

mation.

These topics represent central points of the research field, and develop-

ments in their directions are crucial for the extensive use of AI in the wild.

The central focus of this thesis work is the development of new architec-

tures and strategies for autonomous agents operating in shared environments.
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Specifically, the research aims to investigate the ability of agents to learn au-

tonomously, to act, and purposely coordinate when necessary. The proposed

architecture and the deriving analysis described in the following chapters aim

to answer the following research questions:

• Can agents acting in a shared environment with the ability to communi-

cate, learn autonomously when coordination is necessary and preferable

to selfish behaviour?

• Is it possible to design an action strategy for independent agents that

uses simple communication to achieve effective group coordination?

The intent, therefore, is to demonstrate, under different constraints and

needs, whether a consensus in behaviour can be reached through the individual

striving for a better reward without forcing coordination.



Chapter 2

Background

This chapter provides a comprehensive introduction to Reinforcement learn-

ing and Multi-Agent Reinforcement Learning. Beginning with a naturalistic

explanation of the mechanisms involved, it proceeds by discussing the taxon-

omy of problems and tractability properties. The focus then shifts to the area

of communication and coordination mechanisms, which constitutes the core

of this dissertation.

2.1 Origins and definition of RL

The field of RL has its origins in the study of animals, specifically in the psy-

chological literature [57] and animal experimentation [61], which have shown

that animals can learn to perform complex tasks through trial-and-error, with

the help of rewards and punishments. Later, the concept of RL was formalised

in the field of artificial intelligence, defining it as a type of learning in which

an agent learns to perform actions that maximise a scalar reward signal. The

agent’s goal is to learn a policy, which is a mapping from states of the envi-

ronment to actions, that maximises the expected cumulative reward over time

[57].

The standard mathematical framework for modelling sequential decision-

making problems is the Markov decision process (MDP), which is defined as
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a tuple M = (S, A, P, r, γ), where:

• S is the state-space, a finite set of world states, represented as S =

1, 2, . . . , |S|.

• A is the action-space, a finite set of actions, represented asA = 1, 2, . . . , |A|.

• P (st+1|st, a) is the state transition probability function that expresses

the probability of transitioning from state st to state st+1 by selecting

action a.

• r = R(st, a, st+1) is the reward obtained from the reward function,

given the transition from state st to state st+1 by taking action a.

• γ ∈ [0, 1] is the discount factor, which is used to handle both finite and

infinite-horizon problems.

The goal of an RL agent in aMDP is to find a deterministic, optimal policy

π∗ : S → A, which will dictate how the agent should act in order to maximise

its rewards. Mathematically, the optimal policy can be defined as,

π∗ = arg max
π∈θ

E[
∞∑

t=0
γtR(st, π(st), st+1) | s0 = s] (2.1)

where θ is the set of all admissible deterministic policies, and (s0, a0, s1, a1, . . . )

is a state-action trajectory generated by the Markov chain under policy π. The

optimal policy is the one that maximises the expected cumulative reward over

an infinite horizon.

Alternatively to directly search for the optimal policy, is possible to de-

fine two utility functions that capture the concept of expected return. These

are the value function and the state-action value function, also known as the

Q-function. The value function for a given policy π is defined as:

V π(s) = E[∑∞
t=0 γtr(st, π(st))|s0 = s]. It encodes the expected cumulative

reward when starting in state s and following the policy π thereafter.

The state-action value function, or Q-function, is defined as:
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Qπ(s, a) = E[∑∞
t=0 γtr(st, π(st))|s0 = s, a0 = a]. It measures the expected

cumulative reward when starting from state s, taking action a, and then fol-

lowing the policy π. In the context of DRL, the policy, the value functions, or

both are typically represented by neural networks.

2.2 MARL

In Multi-Agent Reinforcement Learning, we extend the single-agent case by

introducing a different formulation known as aMarkov Game. This is a gener-

alisation of Markov Decision Processes and allows for modelling more com-

plex decision-making scenarios where agents need to make strategic decisions

based on the actions of other agents. In a Markov Game, each agent acts

according to its own policy, which may differ from one another, and influ-

ences the rewards and future states of others. This is formalised by the tuple

(N, S, Ai, P, Ri, γ), where:

• N = {1, . . . , n} denotes the set of n > 1 interacting agents

• S is the set of states observed by all agents

• A = A1 × · · · × An joint action space is the collection of individual

action spaces from agents i ∈ N

• P : S × A → P (S) is the transition probability function and describes

the chance of a state transition

• Ri is the reward function defined as Ri : S × A × S → R associated

to each agent i ∈ N

• γ ∈ [0, 1] is the discount factor.

At stage t, each agent i ∈ N selects and executes an action based on

the individual policy πi : S → P (Ai). The system evolves from state s =
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{s1, . . . , sn} under the joint action a = {a1, . . . , an} with respect to the tran-

sition probability function P to the next state s′, while each agent receives r

as immediate feedback to the state transition. The goal of each agent, simi-

lar to a single-agent problem, is to modify its policy in order to maximise its

long-term reward [57].

2.3 Taxonomy of the problem

The study of MAS often involves categorising situations using standard tax-

onomies to understand the system’s characteristics clearly, compare it with

other multi-agent systems, and identify specific challenges and opportunities.

For example, we can distinguish between settings where the rewards obtained

are shared or individually assigned. The relative taxonomy classifies them as:

• Fully cooperative setting, in which all agents receive the same reward

for state transitions, i.e. R = Ri = · · · = RN . Agents are motivated to

collaborate in order to maximise the performance of the team.

• Fully competitive setting, where the problem is described as a zero-sum

Markov Game. In this setting, the sum of rewards equals zero for any

state transition, i.e. R = ∑N
i=1 Ri(s, a, s′) = 0. Agents are motivated

to maximise their own individual reward while minimising the reward

of others.

• Mixed setting, also known as a general-sum game, the setting is neither

fully cooperative nor fully competitive, and therefore does not impose

any restrictions on the goals of the agents.

Another commonly used taxonomy regards the learning and execution

process, where we have a distinction based on the information available to

agents:
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• Decentralised settings [6, 29], are characterised by the presence of in-

dependent learners who are unaware of the existence of other agents

and are unable to observe their rewards or actions. A lack of global

observability and coordination among agents usually marks this type of

setting.

• Centralised settings [25, 37], feature joint-action learners capable of

observing the actions taken by all other agents a-posteriori. Usually, it

is adopted to introduce coordination among agents and some level of

global observability.

The rewards and information available to agents in MAS can significantly

impact the complexity of the problem. In cases where all agents receive a

common reward and have complete knowledge of the environment (fully ob-

servable and fully cooperative), the problem can be reduced to a single-agent

problem, allowing for the identification of exact optimal policies without co-

ordination among agents [21]. However, these assumptions are often not met

in reality, and even if they were, it would be beneficial to factorise the joint

stochastic policy into π(a | s) = ∀i πi(ai | s) to avoid the exponential growth

of the action space A with the number of agents, which can make greedy ac-

tion selection, exploration, and learning intractable. On the other hand, this

inevitably leads to the problem of partial observability, where agents must act

and learn with limited knowledge of the state of the world.

Another problem with independent agents is that it is equivalent to hav-

ing N learning algorithms running in a shared environment that is constantly

changing due to unpredictable rules, as each agent is simultaneously learning

an action policy of its own. This effect of non-stationarity of the environ-

ment is referred to as the moving target problem and can be formulated as

P (s′ | s, a, π1, . . . , πN) ̸= P (s′ | s, a, π̄1, . . . , π̄N), which is the change in

transition probability function as a result of the co-evolution of all agents’

policies.
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As the focus of this thesis is on decentralised control settings under the

assumption of partial observability, it is important to emphasise the diffi-

culty of solving the decision problem for Decentralised Partially Observable

Markov Decision Processes (Dec-POMDPs). In fact, computing even an ap-

proximately optimal policy for Dec-POMDPs is NEXP-complete [3, 56]. De-

spite some recent empirical successes [33, 15], finding an exact solution to

Dec-POMDPs using RL methods with theoretical guarantees is still an open

research question. Nonetheless, by introducing the relaxation of free com-

munication between agents, we can expand the knowledge of the agents and

move the problem into P-SPACE [4], without introducing unrealistic abstrac-

tions that can only be achieved in simulations.

2.4 Coordination and agreement

In order to achieve coordination among decentralised, independent agents,

some form of communication and agreement on actions must be established.

This can be thought of as a distributed optimisation problem, where consen-

sus in policy development (the development of an optimal policy attainable in

multi-agent contexts) is achieved through local computation and communica-

tion with neighbouring agents.

In standard consensus algorithms, we have a set of agents A = {ai|i ∈

1, 2, . . . , N}, each initialised with some initial state ∈ S. To enable com-

munication, we can imagine the agents being interconnected over a reliable

communication network, ideally represented as an oriented graph. To reach

consensus, every agent communicates with others by exchanging values, lo-

cally processes the information, and then proposes a single value v, drawn

from the set V = {vi|i ∈ 1, 2, . . . , M}. The agents are said to reach a con-

sensus if, from a certain time step t, it holds, limt→∞vt
1 = vt

2 = · · · = vt
N , for

every set of initial states ∈ S.
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A consensus algorithm is considered to be formally correct [10] if it satis-

fies the following three conditions in every execution:

• Termination: eventually, all correct processes set their decision value.

• Agreement: the decision value of all correct processes is the same.

• Integrity: if all correct processes propose the same value, then any

correct process in the decided state must choose that value.

By keeping these conditions in mind but relaxing some strict constraints

like the convergence to a single state (value) of consensus, this research will

focus on the design of a method of agreement among agents to optimise the

local policy for individual needs but in accordance with the group’s intentions.

2.5 Common approaches

MARL encompasses all those methods used to train multiple agents in learn-

ing to interact in a shared environment. They are therefore designed to handle

the added complexity of having multiple interacting entities, capable of han-

dling large environments and most often, designed with scalability in mind.

[18, 22, 69]. One common technique able to deal with these challenges is

imitation learning [26], in which agents learn to imitate the actions of an ex-

pert demonstrator by using a set of collected trajectories. For instance, [50,

43] uses this approach to transfer the driving ability of human experts to an

agent that can control a physical car, reducing the need for extensive trial and

error exploration of the enormous state space that characterises autonomous

driving. However, this approach requires a significant amount of expert tra-

jectories, which, being specific to the environment and task at hand, are hardly

reusable for other tasks, as well as having the potential for overfitting during

training.

Another relevant method is hierarchical reinforcement learning (HRL) [27].
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In HRL, the learning process is divided into multiple levels or layers of ab-

straction, with each one being used to represent the space or the goal with a

different degree of granularity. For example, an RL agent learning to play a

video game might have a lower level that focuses on actions such as moving

and jumping, and a higher level that rewards strategies such as exploring the

environment or attacking enemies. By breaking the learning process into mul-

tiple levels, HRL can simplify the problem and make it more manageable at

scale. Indeed, it is currently considered a state-of-the-art technique in the field

of robotic control problems [46]. The downside is that HRL can be difficult

to implement, as it requires careful design of the hierarchical structure and

abstraction at each level, with the associated risk of leading to sub-optimal

solutions during training or lack of generalisation.

On the other hand, we find extensions of single-agent algorithms or fully de-

centralised approaches that focus on learning directly from the interactions of

multiple agents in the environment, allowing them to handle non-stationary

and evolving environments more effectively.

2.5.1 Centralised and decentralised approaches

When dealing with simple MARL applications, we can adopt a centralised

approach where the environment is viewed as a whole and the interactions

between agents are observed from a global perspective. While this simplifies

interactions and makes policy computation easier, it would not be suitable for

the scalability of the system, a requirement that has recently attracted much

attention in the development of new methods [18, 22, 69]. Additionally, the

assumptions of centralisation may be difficult to attain in practice, as the pres-

ence of a central entity in the system may not be feasible.

An alternative approach is decentralised control, where each agent makes

its own decisions independently, without the need for a central controller or

global coordination. The independent learning framework can obtain good
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empirical performance in several benchmarks [52], but there are few theo-

retical guarantees for decentralised learning optimality, and the interpretabil-

ity is often insufficient. Recent work has focused on a hybrid approach [40,

16, 71, 58], where global information is required only during the training

phase, freeing the algorithm from the need to continuously know the behaviour

of other agents during testing. Centralised Training with Decentralised Ex-

ecution (CTDE) is one such approach, which has been expanded into two

main lines of research that align with standard MARL frameworks. Multi-

Agent Deep Deterministic Policy Gradient (MADDPG) [40], is an example

of actor-critic model which uses a centralised per-agent critic to estimate the

Q-function and decentralised actors to optimise the agents’ policies. There is

no explicit communication in this approach, as the other agents’ actions are in-

ferred from their respective policies. Another similar approach is Counterfac-

tualMulti-Agent (COMA) [16], which addresses the challenges ofmulti-agent

credit assignment by using a counterfactual baseline that marginalises out a

single agent’s action while keeping the other agents’ actions fixed. However,

these actor-critic models require on-policy learning, which can be sample-

inefficient, especially when the state space is large.

An alternative CTDE approach is to learn a centralised Q-function [71, 58,

68, 81, 77], in which the optimality is reached by considering the relationship

between joint action value and optimal local actions. For example, Value De-

composition Network (VDN) [71] learn the joint-action Q-values by factoring

them as the sum of each agent’s Q-value, and QMIX [58] extends VDN to al-

low the joint action Q-function to be a monotonic combination of each agent’s

Q-value that can vary depending on the global state. Despite achieving excel-

lent results, QMIX has faced criticism for its limited representation capacity

due to the monotonic constraint, and several alternatives have been developed

to address this limitation. Between themost importants, we find QTRAN [68],

which learns an unrestricted joint action-value function and aims to solve a

constrained optimisation problem in order to decentralise it, and QPLEX [77],
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which takes advantage of the dueling network architecture to factor the joint

Q-function in a manner that does not restrict the representational capacity. In

this thesis, I will use the advances of the centralised Q-function approach to

train agents in a non-stationary environment characterised by partial observ-

ability.

2.5.2 Communication channel

Mechanisms for information sharing and communication are introduced to re-

duce non-stationarity effects [20, 59]. Communication between agents can

take the form of explicit communication using talk channels, or implicit com-

munication by observing other agents’ actions or their effect on the environ-

ment. In the former case, one option is to rely on standardised message for-

mats, such as the Agent Communication Language (ACL), to enable indepen-

dent agents to communicate with a precisely defined syntax, semantics and

pragmatics [55, 14]. On the other hand, ad-hoc communication protocols with

learnt languages are mostly adopted when complex coordination is required.

Even though the first approach may result in a lack of generality and flexibil-

ity due to the imposed form, having a standardised and well-defined structure

is helpful when the goal necessitates common understanding. Some research

tries to find a balance between standardisation and flexible communication

taking the best of both approaches [41, 31].

Efficiency, as well, is a common driver in designing effective communication,

as real-world environments involve other factors such as security overhead,

message brokering time and dynamism of the whole environment. There are

differing opinions on the best format to adopt for messages (structured, dis-

crete, continuous, etc.) [40, 31, 34, 70], and the optimal method for exchang-

ing information in terms of costs and benefits. Some methods use a common

memory buffer where agents can write and read to share information [54],
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or adopt an event-based framework where communication occurs only un-

der certain circumstances [24], or choose to integrate implicit communication

mechanisms by observing the actions of others and inferring their policies to

reduce the communication needs [13].

Communication can take place in one or both directions: direct messages are

shared between two agents by opening a communication channel [47, 83], or

by broadcasting it to everyone [30, 36, 70, 11]. The latter approach is more

expressive under partial observability assumptions, but it is also more expen-

sive in terms of transmission traffic and can lead to situations where commu-

nications are dominated by useless transmissions. Some approaches aim to

create smaller groups of agents that focus on inter- and intra-communications

to limit irrelevant reasoning and improve coordination performance [38, 47,

39, 47, 28]. Others reduce the number of messages sent by learning to under-

stand when communication is really necessary or when the information held is

redundant and communication avoidable [39, 13]. Some solutions aim at tar-

geting communication only to those who are interested in it [83], while others

act on the side of the listener by adopting different mechanisms of attention

to filter out irrelevant messages [34, 30, 70, 11]. While these methods of

obscuration or filtering are often effective, they typically do not take into con-

sideration the messages in the context of the whole communication channel,

but filter the individual message only for its relevance to the agent, ignoring

possibilities of more complex coordination.

Lastly, the adoption of cooperative assumptionsmakes it much easier to design

solutions in this research area [16, 34, 38, 42, 13, 70], in contrast to mixed en-

vironments [73, 5] where the lack of fixed directions to succeed can make the

task more challenging. This work, in particular, does not impose a fixed struc-

ture on communication, while maintaining a focus on efficiency, and does not

limit its applicability only to cooperative frameworks.
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2.5.3 Message content

Themessage content is a crucial aspect for the recipient agent. It should be de-

signed to provide additional information about the communicator’s perspec-

tive, reducing uncertainty about his behaviour and facilitating coordination.

One option is to use a highly expressive message encapsulating the agent’s

reasoning process. For instance, some works [70, 67, 11, 53] have structured

their architectures around recurrent modules, using the hidden state as a sig-

nal message for others. However, this is typically used internally to encode

past and current information and reusing the individual reasoning vector for

communication intent can have limiting effects in difficult tasks. Other works

[70, 67] merge multiple incoming messages into a single communication vec-

tor using weighted operations, which may not result in strong coordination

when many agents participate in the communication.

[11, 28] use crafted messages to transmit elaborate information and train suc-

cessful agents able to understand each other. They also use weight sharing be-

tween agents [30, 11, 53, 28], which is quite common to reach a better action

understanding and counteract scalability issues. Nevertheless, this implies that

agents will have the same reasoning ability on the information gathered, and

that policies will be learned to be effective for the average agent, but not for

each individual.

More straightforward transmission approaches [39, 30] use current or time-

delayed observation as a communication message, usually with additional in-

formation expressing intentions. This implementation delegates most of the

interpretation and coordination to the receiver but allows for more flexible in-

teraction dynamics. In combination with the use of a module to learn a better

representation [36], this method can also be used without the burden of raw

information exchange.

Finally, in some cases it is not even considered the presence of an explicit mes-

sage and, assuming full mutual knowledge of each other, the effort will only be
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focused on learning a policy expressing coordination. Previous works [60, 48]

included the use of a mechanism where the consensus is mandatory in order

to proceed, while current methods implemented with agents able to ”learn”,

prefer a looser agreement, aiming instead for convergence in the choice of

target and coordination in actions. For example, [35] forms groups of agents

with similar objectives to have tighter cooperation and variety of strategies

between teams, but the proposed architecture is not end-to-end differentiable.

The main point of this work is that coordination should not be seen as a global

requirement, but rather, only necessary in certain situations, as extensive rea-

soning about the beliefs and intentions of others can slow down convergence

towards a good individual policy and even be harmful.



Chapter 3

Approach

In this section, the proposed solution for addressing the coordination problem

in multi-agent systems will be presented. Based on established algorithms and

principles, this work attempts to make a significant contribution in terms of a

method for implementing reasoning processes in RL agents. The claims are

supported in the next chapter by in-depth tests in two different environments,

with a focus on scalability performance, and by conducting an ablation study

to assess the impact of the novelties introduced and strategies adopted.

3.1 Description

The traditional approach to address the problem of coordination in MARL

systems is to prioritise group dynamics over other individual considerations.

While this approach may be appropriate in scenarios where cooperation is the

only way to succeed, it can prove detrimental in scenarios where agents are

permitted to exhibit different behaviours to achieve their own individual goals.

An intuitive example of this is a car driver who wants to go from a starting

point to their destination. If the driver were to constantly consider the inten-

tions and actions of other drivers at each ”step” of the trip, e.g. evaluating the

possibility of allowing another driver to go first or taking the lead themselves,

the trip would become endless. This reasoning is accentuated in large and



3.1 Description 23

sparsely-rewarded environments, where it is harder to extract rules and the ex-

ponential possibilities of interactions with others can lead to high uncertainty

of action and slow down the convergence to a good policy or suboptimal con-

vergence.

Another criticism of other common approaches is the reliance on complex

communication channels for establishing coordination. The primary goal of

communication should be to reduce uncertainty and non-stationarity effects

by providing additional information about the actions and intentions of other

agents. However, many methods rely on the exchange of complex vectors

that encapsulate agents’ history or personal thoughts, which can be cryptic for

thirds. This can make it difficult for agents to fully understand the true inten-

tions of the speaker in a general context. Additionally, complex environments

are more challenging in terms of state evaluation, thus it is important to keep

the size of the state space small by providing agents with only relevant infor-

mation.

As a final thought, the proposed work does not claim a declarative and impera-

tive agreement between agents since coordination can arise from continued in-

teractions. In fact, since all agents are subject to the same environmental rules,

they will eventually avoid making decisions that prove to be self-damaging

and will occasionally cooperate to maximise their respective reward signals.

On top of that, I propose a policy that can adopt both egoistic and altruistic

behaviours, a reasoning process that takes into account information from other

agents, and a simple yet effective communication channel for exchanging in-

formation. The architecture of coordination and policy modules are imple-

mented with recurrent neural networks to maintain consistency in decisions

over time and are trained using a centralised training decentralised execution

paradigm. Details of each module are discussed in the following sections, and

the overall architecture is depicted in figure 3.1.
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Figure 3.1: CoMix architecture overview. The figure depicts the CoMix ar-
chitecture, with each module expanded into its components. (left) Individual
agents are trained under a CTDE framework, with a mixer network used only
during training that takes partial observations and state-action values to eval-
uate the system’s performance. (middle) At each step, the agents partially ob-
serve the environment and process the information to produce an independent
choice of action, Qself , which is then communicated through a communica-
tion channel. Every agent then considers all received messages to decide how
to modify its previous selfish decision, producing the additional term Qcoord,
which incorporates additional information filtered by the Coordinator. (right)
The Coordinator computes a boolean mask to filter the communication chan-
nel, taking into account each neighbouring agent’s communicated intention in
relation to personal objectives. All decision-making components are imple-
mented with recurrent modules to maintain consistency over time and enable
agents to develop more structured strategies.
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3.1.1 Action policy

The Q-network is responsible for predicting the state-action value for each

agent based on the information at his disposal. We can define it with the fol-

lowing formula: Qi(si, ai, hi) where si, ai, and hi are the observation, action

and hidden state of agent i respectively. This would be considered sufficient

for an implementation of an independent learner, however, in this setting, we

incorporate communication messages as additional information that can aid

the decision-making process when available. To achieve this, we reformulate

the previous definition as the sum of two terms: Qi = Qself + Qcoord. Here,

Qself represent the selfish action intention, which, once computed, produces

state-action values for the current state and updates the hidden state for the

next state hi → h′
i. The second term Qcoord modifies the first on the base of

the current updated hidden state and incoming messages filtered out by a coor-

dination module. Furthermore, the introduction of a feature extractor is made

in the proposed solution. When executed on raw observation data, it extracts

meaningful information, enabling the policy network to reason within a more

defined space. It is worth noting that the input processing module used has

shared weights among all agents. As highlighted by [36], this is an important

implementation detail to allow all agents to reason about data from the same

distribution.

The final formula representing the policy network involved is the follow-

ing (superscript to indicate the timestep is omitted for brevity):

Qi(si, ai, hi, m̄i) = Qself (si, ai, hi) + Qcoord(ai, h′
i, m̄i) (3.1)

The overall network is implemented with two distinct GRU modules and

related linear layers to extract the value corresponding to each action, sharing

only the sequential vector of the hidden state. The recurrence of the first is

necessary to process the new observation in relation to the past, while the sec-

ond aims to properly mix the self-interests with the new information obtained
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from other agents.

3.1.2 Coordinator

The coordination module is responsible for determining the relevance of other

agents’ communications in relation to the agent’s intentions by producing a

coordination mask used to filter out incoming messages. A message is de-

fined as the communicated intention of an agent to take a certain action in

order to achieve a personal objective, âi = arg maxa Qself (si, a, hi), and is

represented by the tuple mi =< si, âi >. Consequently, we define m =

{m1, . . . , mn}, as the set of incoming messages sent by n agents at a certain

timestep, and m̄i, as the filtered set for agent i obtained with the application

of the communication mask ci, result of the Coordinator execution:

zi = {< mi, m1 >, . . . , < mi, mn >}−<mi,mi> (3.2)

ci = Coord(zi) (3.3)

where ci = {ci,1, . . . , ci,n}−ci,i and ci,j =


1 if agent i coordinate with agent j,

0 otherwise

m̄i = m ⊙ ci (3.4)

As previously proposed in [28], the module for this reasoning is implemented

using a BiGRU layer, in order to take into account the intentions of all other

agents under the same circumstances, but also in a reciprocal relation. The

individual scores produced by this layer are then used to calculate an indepen-

dent probability of communication through a two-way softmax.
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3.1.3 Centralised network

Learning communication and action policy at the same time, in a setting of

partial observability, may lead agents to inaccurately estimate their local Q-

function. The adoption of a CTDE learning algorithm prevents this, providing

current observations s and state-action values q of the agents to a centralised

network to learn a joint action-value function. The specific implementation

used is the one proposed by [58] (QMIX), which decomposes the joint function

into factors depending only on individual agents, enabling it to cope with large

joint action spaces. Therefore, when defining QT OT (s,q), we have to respect

the following two properties:

• QT OT yields the same result as a set of individual argmax operations

performed on each Qi:

arg max
a

QT OT (s, [a,h, m̄]) =


arg maxa1 Q1(s1, a1, h1, m̄1)

...

arg maxan Qn(sn, an, hn, m̄n)


(3.5)

• The relationship between QT OT and each Qi is constrained to be mono-

tonic:
∂QT OT

∂Qi

≥ 0, ∀i ∈ [i, n] (3.6)

Despite its limitations in terms of representational ability due to the mono-

tonicity constraint, which limits QMIX to suboptimal value approximations,

this algorithm has long been considered a state-of-the-art approach in the field.

Nonetheless, the idea at the basis of the method proposed is not bound to the

use of QMIX and can be adapted to different CTDE algorithms.
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3.2 Training

3.2.1 Loss functions

The agents’ Q policy network is trained end-to-end with the error propagation

being able to flow between the two reasoning processes bymeans of the hidden

state shared. The rule of update for their parameters θQ follows the common

implementation of QMIX [58], with the computation of a temporal difference

error:

LQ(θQ) = |yT OT − QT OT (s,q; θQ)|, (3.7)

where yT OT = r + γ max
q′

QT OT (s′,q′; θQ′) and θQ, θQ′ are respectively the

parameters of the online policy network and target policy network, periodi-

cally copied from θQ as in standard DDQN [75]. Note that compared to an

individual network per agent, having a centralised function leads to consid-

erably lower variance in policy gradient estimates since it takes into account

actions from all agents. At test time, this is not needed, and policy execution

is fully decentralised.

In designing an efficient learning schema for the coordination module, dif-

ferent options were evaluated following the same general intuition. Since the

probability of communication produced by the single agent for each other sees

its effects in a modified set of values for the state-action pairs, we can effec-

tively measure an improvement or decrease in action performance by consid-

ering an alternative coordination mask and assuming an optimal estimate of

the state-action value from the policy. Therefore, we can define the formula

of update of the Coordinator’s parameters as a clipped delta between the maxi-

mum state-action value obtained with filtered messages m̄i from the predicted

mask of coordination with respect to the alternative estimated value obtained

from messages filtered with inverted probabilities of communication. That is

c̃i = (1 − Coord(zi; θC)) and m̃i = m ⊙ c̃i from Eq. 3.3 and Eq. 3.4.
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LC(θC) =
n∑

i=1
wi∆Qi

=
n∑

i=1
wi max(0, max

ai
Qi(si, hi, m̃i, ai) − max

ai
Qi(si, hi, m̄i, ai))

(3.8)

Following this reasoning, we can further improve the method at the cost

of additional computation by performing n − 1 inferences of the Q-function,

each considering a set of different messages. Instead of computing the Q value

considering communicating with the opposite set of agents – with respect to

the predicted one – we can compute an averaged expectation of the state ac-

tion value, taking into account the advantage of reversing the communication

probability per each single agent. Although this training implementation is

much more expensive, it allows for improved results, especially when many

agents are present. The choice is discussed further in the section dedicated to

the ablation study (See Sec. 4.4).

The adoption of the QMIX approach gives us an additional element that

can be used to better estimate the gain in using a mask of coordination in place

of another. Being the mixer network a mapping from states to a set of weights

in the hidden space used independently in linear combination with the state-

action value of the respective agent, we can reuse these parameters to weight

each ∆Qi. In these terms, we can make updates more precisely related to the

gain given by the communication with a certain agent in a certain state. We

find mention of this in the above formula with the term wi.

3.2.2 Training details

Randomness was incorporated in the training of the model to capture the un-

certainty of the predictions and to further explore the action space. On the

Coordinator’s side, the coordination mask selection process was implemented
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by applying the Gumbel Softmax to the two decision logits, which differs from

the Softmax function by adding random noise from the Gumbel distribution to

the output. For exploration in action selection, an epsilon decay technique was

used, with a decreasing value from 0.9 to 0.05 in 60% of the training time. To

optimise the Q-networks and Coordinators, ADAM was utilised with learn-

ing rates of 7e−4 and 8e−5, respectively. To mitigate the risk of catastrophic

forgetting and overfitting, a weight decay value of 1e−4 was used as a regular-

isation term, and a soft update technique was adopted for the target network

weights. The network sizes, learning rates and decay parameters were care-

fully chosen for each environment in order to optimise the algorithm’s per-

formance and achieve higher results. The learning algorithm also proved to

be very sensitive to the number of recurrent steps considered during training,

the value of which was chosen according to the dynamics of the task in each

environment.



Chapter 4

Experiments

The aim of this chapter is to evaluate the proposed approach and its effective-

ness in addressing the research questions stated earlier. The evaluation pro-

cess will include a comparative analysis with other relevant methodologies in

the field, based on results obtained through a comprehensive and systematic

evaluation process. The results will be examined in detail, along with a study

of the components of the proposed architecture and implementation details, in

order to identify overall strengths and limitations. In summary, this evaluation

aims to shed light on the performance of the proposedmethodology and enable

the reader to draw informed and insightful conclusions on its effectiveness in

practical applications.

4.1 Baselines of comparison

IndividualisedControlledContinuousCommunicationModel (IC3Net)[67]

is proposed as an extension of a previous method [70], introducing a gating

mechanism on each other agent’s communication channel. They use the cur-

rent observation encoded, both as internal thought and communication mes-

sage, and a mask of communication to filter out incoming messages computed

at the previous step. The reasoning process then occurs by processing the in-

dividual thoughts in an LSTM module and averaging the remaining incoming
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messages. The result is used as input to two output heads to obtain the actions’

probabilities and the individualised probability of communication.

ATOC [28] is an attentional communication model proposed to learn ef-

fective and efficient communication at scale by adopting weight sharing be-

tween each agent’s network. In their proposal, the communication message is

represented by the hidden state of a recurrent module that processes the obser-

vation at each step, thus sharing a vector which resembles the agent’s history.

Based on the internal reasoning, the agent will decide whether or not to com-

municate with its neighbours, observing that this decision will create a group

of maximum m agents maintained for T steps, with m and T as hyperparam-

eters. The incoming messages from each group are mixed with a bidirectional

LSTM module, where the final output is merged with the internal thoughts

and processed to obtain the state-action values.

4.2 Environments

For the evaluation, two testing environments were considered. The first of

these is the Switch environment [32] (Fig. 4.1), a grid world where four agents

must navigate to reach their respective switch on the map, having as input

only the current position and target distance. The agents’ challenge lies in

the layout of the map, which features two rooms with starting points and a

narrow corridor connecting them. The corridor can only be crossed by one

agent at a time, meaning that coordinated behaviour is necessary to prevent

the agents from getting stuck. It is worth mentioning that the agents are unable

to see each other, and must therefore use a communication channel to gather

information about the positions and intentions of their neighbours. The task

ends after 250 steps of execution, or when all agents have successfully reached

their destination.

The second testing environment (Fig. 4.2) is an instance of the Predator-

Prey problem [19], which implementation requires particularly high levels of
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Figure 4.1: Environment visualisation - Switch. Four agents, with limited
observation abilities, are tasked with reaching the switch of the corresponding
colour. Coordination between the agents is necessary to avoid getting stuck in
the corridor indefinitely.

coordination to succeed. The environment consists of a grid world in which

some agents chase randomly moving entities with the aim of capturing them.

The predators have limited visibility of the world, extending up to three units

in each direction from their positions, and same speed as the prey. While an

individual agent can only earn a small reward for ”tagging” a target, i.e. being

in its same position, a group of organised agents can receive a bigger shared

reward ”capturing” it, i.e. surrounding its position in the 4 axis. The task is

considered complete either when all evaders have been captured or after 500

steps of execution.

4.3 Results

In evaluating the efficacy of the proposed method in comparison to the base-

lines, it is important to account for the disparity in the training methodologies

employed. Specifically, IC3Net uses an on-policy training approach, in con-

trast to CoMix and ATOC. Furthermore, the latter two are trained with epsilon

decay action selection, which allows for a more thorough exploration of the

action space, but also leads to greater variance in the interactions with the

environment.

Switch - Figure 4.3a displays the learning curve of the CoMix method

and the two baseline approaches in terms of the total reward received by the

agents in an episode. A higher value indicates not only the agents’ capabil-

ity to reach their respective target, but also their ability to do so in a minimal
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Figure 4.2: Environment visualisation - Predator-Prey. Predator agents
navigate through space to capture prey. The agents’ observation is restricted
to a small area in their proximity, but they can communicate with each other
to gather additional information and coordinate their actions strategically.

(a) Switch (b) Predator-Prey

Figure 4.3: Learning results. Comparison of IC3Net [67], ATOC [28], and
CoMix approaches in the two environments. The data presented are the av-
erage results of 10 executions with random seed initialization. The methods
are compared in terms of the sum of agents’ rewards in (a) and the number of
captures in (b), per episode, against the number of weight updates. Note that
IC3Net uses on-policy learning in contrast to ATOC and CoMix and therefore
the number of steps seen by the former is two orders of magnitude higher than
the others.
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number of steps as the reward halves from 10 to 5 during the agents’ lifespan.

Given the simplicity of the task and its low potential for misunderstandings be-

tween agents, IC3Net’s straightforward communication mechanism proves to

be the most effective among the three methods compared. After about a thou-

sand updates, the agents have already learnt almost deterministic behaviour

and consistently achieve optimal rewards. CoMix follows, with slightly lower

results, while ATOC struggles in the task. A deeper analysis of the latter re-

veals that in the execution, all agents tend to adopt the same action selection

policy, moving in the same direction. This usually ensures that at least two

agents reach their intended target, while the others rarely show any further in-

tention of backtracking. The behaviour is probably caused by weight sharing

used for all components, which was not even mitigated by the introduction of

an ID in the policy computation. On the other hand, IC3Net reaches optimal

performance, likely because the task resolution requires low variability and

therefore does not necessitate strong communication skills. If the task is too

easy, the policy may adopt a deterministic sequence of actions, and the com-

munication channel may become of secondary utility. CoMix’s method of

communication and coordination maintains variability in the choices, which

often leads to a slightly slower resolution but still enables all agents to reach

their target with high scores.

Predator-Prey - The agents were required to decide whether to act indi-

vidually or coordinate in groups to capture prey and receive higher rewards.

Figure 4.3b show the evolution of learning for the basic configuration which

involves four agents in a 16x16 map with 16 prey.

The analysis revealed that IC3Net performed quite well even in this case, with

the agents often strategizing to converge in a fixed corner of the map then sur-

rounding prey when they move within the agents’ observable area. However,
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(a) 8 agents, 18x18 map (b) 16 agents, 20x20 map

Figure 4.4: Predator-Prey results at scale. Comparison of IC3Net [67],
ATOC [28], and CoMix approaches in two Predator-Prey scenarios at scale.
In scenario (a), 8 agents were trained on an 18x18 map, while in scenario (b),
16 agents were trained on a 20x20 map. Both scenarios included 16 prey, and
a time limit of 500 steps was used.

this strategy relies on the randomicity of prey movements and does not pro-

vide exploration to the agents, therefore could not be beneficial in general. In

contrast, ATOC uses a more elaborate method of mixing the thoughts of others

and shows agents very dedicated to catching prey. However, they often get

’distracted’ and drift away from the group. This explains the variance in the

reported results. CoMix, on the other hand, challenges both methods by intro-

ducing the right amount of randomness during learning. It combines explo-

ration with the preservation of cohesive relationships between agents leading

to effective coordination for the capture of nearby prey.

The results obtained in the basic configuration of the environment demon-

strated the need for further testing in larger spaces and with more agents in

action. Consequently, two additional configurations were considered:

• 8 agents in a 18x18 map

• 16 agents in a 20x20 map

Despite scaling the space and the number of predators, we kept the number

of prey and episode length constant at 16 and 500, respectively, to ensure

comparability between results and agents’ abilities. Figure 4.4 shows the best
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results obtained after an equivalent training time for the three methods. As hy-

pothesized, IC3Net’s performance degrades due to the sparsity of the map and

its inability to cover larger portions of it effectively. In contrast, the coordi-

nated planning ability demonstrated by CoMix and ATOC allows them to per-

form better as the scale of the scenario increases. Interestingly, despite their

comparable performance, they seem to adopt different methodologies, with

CoMix leading to partial map coverage and preferring compactness, while

ATOC leads to agents more distributed over the entire map surface but also to

situations with too small groups trying to catch prey or lone agents wandering

around the map. Overall, the results demonstrate the effectiveness of CoMix

in balancing exploration and coordination, even in larger environments.

4.4 Ablation study

Building upon the quantitative and qualitative analysis presented in the com-

parison against other methods, this section delves deeper into the factors that

contribute to the success of the proposed method. Tests were repeated in both

environments – only in the smaller version in the case of Predator-Prey, to

limit the use of computational resources – considering the final proposal as a

baseline against variants that differ in the architecture or training methodolo-

gies.

• ’no comm’ (Q w/o Qcoord), uses the base structure of learning, but with

agents lacking communication abilities. Agents are required to under-

stand the environment dynamics thoroughly to achieve their objective,

as centralised training is the only mechanism for information sharing.

• ’no weights’ (LC w/o w), does not use the weights provided by the

QMIX framework for the computation of the Coordinator loss. This

variant shows the performance of the base method if extrapolated from

the current CTDE framework.
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(a) Switch (b) Predator-Prey

Figure 4.5: Ablation results. Comparison between the ablated variants of the
proposed method and the basic implementation of CoMix. The data presented
are the average results of 10 (a) and 5 (b) episodes, after an equivalent amount
of training, averaged over 3 executions each.

• ’true’ (c̃true) and ’inverse’ (c̃inverse) adopt different flavours of train-

ing for the Coordinator. The first use an all-true mask of coordination,

and the second use a single-inference full inversion of probabilities, as

explained in 3.2.1.

4.4.1 Performance analysis

Figure 4.5 puts in perspective the average results obtained after an equivalent

time of training for each variant discussed. As in the method evaluation, the

total reward is considered as a metric of success for the Switch environment

and the number of captures in Predator-Prey. The comparison also provides

very interesting insights into how different choices influence agent training

and consequently the strategies developed.

In the Switch environment, we can see inverse and no weights demonstrat-

ing the same coordination performances as the baseline. However, they re-

quire more training steps to reach the same achievements as they obtain lower

rewards over time. In both variants we can identify situations in which the

agents struggle to reach their position, but this is mainly due to individual

misbehaviour rather than coordination impediments. On the other hand, we

observe true obtaining very good results even if with a slower convergence
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and a weaker coordination (See Fig. 4.6). Interestingly, while the baseline

implementation allows agents to learn incrementally and navigate the envi-

ronment, true does not initially report successes. This is due to the fact that

this method of supervision incentivises considering everyone’s intentions in-

stead of limiting the space for collaboration to local coordination.

In the Predator-Prey environment, the baseline outperformed the other vari-

ants, demonstrating superior performance and strategies not observed in oth-

ers. For instance, the agents employed a group exploration strategy of moving

along the map edges, as capturing prey in these positions requires fewer preda-

tors. The inverse and true flavours ranked behind the baseline with similar

results in terms of performance. However, true exhibited coordination issues

and achieved few captures even when opportunities were present, while in-

verse as well as no weights encountered significant exploration difficulties.

The absence of communication capabilities results in an apparent lack of coor-

dination between agents in both environments. In the Predator-Prey, this was

evidenced by the tendency of the no comm agents to disperse and not remain

cohesive, leading to poor performance compared to the other variants. In the

Switch environment, no comm agents seem disturbed by each other’s actions,

moving back and forth several times when facing one another, unable to an-

ticipate or understand their movements.

To further analyse the performance of the alternatives, we examine the Coor-

dinator module’s training loss. no weights exhibited high spikes in training

loss, while the true and inverse variants showed more stable learning. How-

ever, it’s possible that the stability is due to the ineffectiveness of the methods,

as both true and inverse performed lower than the baseline and no weights.

Looking at the results as a whole, it can be deduced that enabling commu-

nication between agents with the inclusion of the additional term in the state-

action computation is crucial for improved performance. Regarding the tested

learning modalities, it can be observed that, except for true, which is highly

situation and environment-dependent, the others can be considered simplified
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variants of the baseline leading to slower results.

4.4.2 Communication analysis

To conclude the analysis, the communication mechanism of CoMix has been

investigated by analysing the evolution of the predicted communicationmasks.

Coordination success was determined by comparing the predicted state-action

values against the values obtainedwith the alternative coordinationmaskwhen

computing the Coordinator’s loss. The ”Good/bad coordination ratio”, shown

in Figure 4.6, indicates the percentage of agents making correct predictions per

each step. The increasing metric for all ablated strategies shows promising re-

sults, with the base method achieving the maximum value. However, although

the proposed strategy is generally applicable, adopting a learning process for

the Coordinator tailored to the specific environment dynamics could poten-

tially yield better results (e.g., in a fully cooperative environment, could be

more proficient training against the maximum amount of information and then

learn to filter out what is perceived as irrelevant for the current step). Another

important finding is given by the number of times agents coordinate with oth-

ers during training. In the Switch environment, we observe a decrease in this

value, whereas in the Predator-Prey environment, the value remains almost

constant and higher overall. This finding aligns with the intuition, as the latter

environment requires all four agents to coordinate in order to capture prey.

Furthermore, it should be noted that the CoMix implementation inherently

offers interpretability for the agents’ decisions on actions. We can trace an ac-

tion back to single interactions with other agents or to the agents’ self-imposed

objectives. For example, in the Switch environment, when a single agent re-

mains, Qcoord term has a null value since its actions are not influenced by oth-

ers. In the case of the Predator-Prey environment, we can observe the norm

of Qself and Qcoord to determine whether an agent acts primarily by following

its own will or by adopting a strategy aimed at coordination.
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Figure 4.6: Good/bad coordination ratio - Switch. Ratio relative to the num-
ber of agents predicting action-state values above or below their loss target.
As this value is directly influenced by the communication mask, it can be read
as the ratio of agents communicating effectively.

4.5 Conclusions

This master thesis addresses the problem of coordination in multi-agent rein-

forcement learning systems, proposing a new approach in which agents make

decisions based on an explicit combination of self-interest and willingness

to coordinate. As an implementation of this approach, CoMix is presented,

demonstrating performance comparable to, if not superior to, important works

in the field. The evaluation analysis provides insights into the underlying

mechanisms of the method and its effectiveness in training agents to cope with

complex environmental dynamics, such as partial observability and hidden re-

ward structures. The ablation study provides useful information on the role of

the different components of the architecture and underlines the importance of

design and training choices. Overall, CoMix appears to be a promising ap-

proach to coordination in multi-agent systems, with potential for implementa-

tion in various contexts beyond virtual environments.

4.5.1 Future work

Future research may focus on the further development of the method with

alternative training frameworks to QMIX, thus testing its effectiveness in dif-

ferent environments not subject to its limitations. In addition, future studies
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could explore the interpretability of CoMix and its ability to learn coordina-

tion strategies, providing valuable insights into the dynamics that may occur

in simulated situations and better understanding their evolution. Overall, I see

these directions as an opportunity to advance the field of research on smarter

and more flexible solutions for multi-agent systems.

4.5.2 Limitations

While this approach has demonstrated promising results in various scenarios,

it is important to acknowledge certain limitations of it to ensure its successful

implementation and to suggest further improvements in research. One of the

main limitations is the observed slowness in the training process, attributed to

the inherent complexity of the approach. The absence of mechanisms limiting

computation, such as restrictions in communication range or attention mod-

ules, together with the presence of multiple action selection mechanisms, are

the main causes. However, it is worth noting that this limitation can be ad-

dressed partly by incorporating additional mechanisms on top of the CoMix

approach, drawing on the extensive literature on multi-agent systems.

It should be noted that, despite the accuracy of the results presented, the testing

and evaluation phase was limited to the specific environments presented, thus

not adequately evaluated in purely competitive/cooperative scenarios. Fur-

thermore, since the final choice of CTDE framework fell on QMIX, it is nec-

essary to emphasise how its limitations and representation constraints influ-

enced the choice and set-up of the test environments. For instance, QMIX is

not suitable for competitive implementations, and the environments were nec-

essarily modelled without negative rewards due to the monotonic constraint.

Although these constraints do not automatically represent simplifications in

solving tasks or shortcuts in learning for agents, they do limit the general ap-

plicability of the method.
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